diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 8 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 4 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 4 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 2 | ||||
-rw-r--r-- | src/algebra/term.spad.pamphlet | 132 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3616 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6257 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1319 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10407 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33709 |
10 files changed, 27816 insertions, 27642 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index e7b02dea..96534806 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,11 @@ +2008-12-09 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/term.spad.pamphlet: New. Implement Arity and + OperatorCategory. + * algebra/Makefile.pamphlet (axiom_algebra_layer_15): Include ARITY. + (axiom_algebra_layer_16): Include OPERCAT. + * share/algebra: Update databases. + 2008-12-08 Gabriel Dos Reis <gdr@cs.tamu.edu> * interp/compiler.boot (compRetractAlternative): Handle domains diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 21ffaeee..1fe56152 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -650,7 +650,7 @@ axiom_algebra_layer_14_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_14))) axiom_algebra_layer_15 = \ - DSMP EXPUPXS \ + DSMP EXPUPXS ARITY \ FRAMALG FRAMALG- MDAGG ODPOL \ PLOT RMCAT2 ROIRC SDPOL \ SMATCAT SMATCAT- TUBETOOL UPXSCCA \ @@ -663,7 +663,7 @@ axiom_algebra_layer_15_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_15))) axiom_algebra_layer_16 = \ - DPMM EFUPXS FFINTBAS FRIDEAL \ + DPMM EFUPXS FFINTBAS FRIDEAL OPERCAT \ FRIDEAL2 FRMOD \ IBATOOL INTFACT \ MSETAGG MONOGEN MONOGEN- NFINTBAS \ diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index cc6071bc..2dccf863 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -786,7 +786,7 @@ plot.spad.pamphlet (PLOT PLOT1) <<layer15>>= axiom_algebra_layer_15 = \ - DSMP EXPUPXS \ + DSMP EXPUPXS ARITY \ FRAMALG FRAMALG- MDAGG ODPOL \ PLOT RMCAT2 ROIRC SDPOL \ SMATCAT SMATCAT- TUBETOOL UPXSCCA \ @@ -812,7 +812,7 @@ space.spad.pamphlet (SPACEC SPACE3 TOPSP) <<layer16>>= axiom_algebra_layer_16 = \ - DPMM EFUPXS FFINTBAS FRIDEAL \ + DPMM EFUPXS FFINTBAS FRIDEAL OPERCAT \ FRIDEAL2 FRMOD \ IBATOOL INTFACT \ MSETAGG MONOGEN MONOGEN- NFINTBAS \ diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 42325b06..4193cb77 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -60,6 +60,7 @@ (|AlgebraGivenByStructuralConstants| . ALGSC) (|Any| . ANY) (|AnyFunctions1| . ANY1) + (|Arity| . ARITY) (|ArrayStack| . ASTACK) (|AssociatedJordanAlgebra| . JORDAN) (|AssociatedLieAlgebra| . LIE) @@ -703,6 +704,7 @@ (|OctonionCategory| . OC) (|OneDimensionalArrayAggregate| . A1AGG) (|OpenMath| . OM) + (|OperatorCategory| . OPERCAT) (|OrderedAbelianGroup| . OAGROUP) (|OrderedAbelianMonoid| . OAMON) (|OrderedAbelianMonoidSup| . OAMONS) diff --git a/src/algebra/term.spad.pamphlet b/src/algebra/term.spad.pamphlet new file mode 100644 index 00000000..532bd720 --- /dev/null +++ b/src/algebra/term.spad.pamphlet @@ -0,0 +1,132 @@ +\documentclass{article} +\usepackage{open-axiom} + +\title{src/algebra term.spad} + +\begin{document} +\author{Gabriel Dos~Reis} +\maketitle + +\begin{abstract} +\end{abstract} + This file contains specifications and implementations for basic + support of term algebras, in the sense of Universal Algebra. +\tableofcontents +\eject + + +\section{The \code{Arity} domain} + +<<domain ARITY Arity>>= +)abbrev domain ARITY Arity +++ Author: Gabriel Dos Reis +++ Date Created: December 04, 2008 +++ Date Last Updated: December 04, 2008 +++ Description: +++ This domain implements the arity of a function or an operator, +++ e.g. the number of arguments that an operator can take. An +++ arity is either a definition nonnegative integer, and the special +++ value `arbitrary', signifying that an operation can take any +++ number of arguments. +Arity(): Public == Private where + Public == Join(SetCategory, RetractableTo NonNegativeInteger) with + arbitrary: % + ++ aribitrary is the arity of a function that accepts any + ++ number of arguments. + Private == add + Rep == SingleInteger + arbitrary == per(-1) + hash x == hash rep x + x = y == rep x = rep y + coerce(x: %): OutputForm == + x = arbitrary => 'arbitrary::OutputForm + rep(x)::OutputForm + coerce(n: NonNegativeInteger): % == + max()$SingleInteger < n => + error "arity is too large for OpenAxiom" + per(n::SingleInteger) + retractIfCan x == + (n := rep x) < 0 => "failed" + n::Integer::NonNegativeInteger + +@ + + +\section{Operator Interface: \code{OperatorCategory}} + +<<category OPERCAT OperatorCategory>>= +)abbrev category OPERCAT OperatorCategory +++ Author: Gabriel Dos Reis +++ Date Created: December 04, 2008 +++ Date Last Updated: December 04, 2008 +++ Description: +++ This category specifies the interface for operators used to build +++ terms, in the sense of Universal Algebra. The domain parameter S +++ provides representation for the `external name' of an operator. +OperatorCategory(S: SetCategory): Category == + SetCategory with + name: % -> S + ++ name(op) returns the externam name of `op'. + arity: % -> Arity + ++ arity(op) returns the arity of the operator `op'. + operator: S -> % + ++ operator(s) returns an operator object with external name `s', + ++ and of arbitrary arity. + operator: (S,NonNegativeInteger) -> % + ++ operator(s,n) returns an operator object with external + ++ name `s', and of arity `n'. + add + coerce(op: %): OutputForm == name(op)::OutputForm + +@ + + +\section{License} + +<<license>>= +--Copyright (C) 2007-2008, Gabriel Dos Reis +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +@ + + +\section{Putting It Altogether} + +<<*>>= +<<license>> +<<domain ARITY Arity>> +<<category OPERCAT OperatorCategory>> + +@ + + + +\end{document} diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 92a64920..68a95f5e 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2273396 . 3437447581) +(2275210 . 3437790954) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4366 . T) (-4364 . T) (-4363 . T) ((-4371 "*") . T) (-4362 . T) (-4367 . T) (-4361 . T)) +((-4370 . T) (-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4366 . T) (-4371 . T) (-4365 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3105) +(-32 R -3085) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) +((|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4369))) +((|HasAttribute| |#1| (QUOTE -4373))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3105 UP UPUP -2326) +(-40 -3085 UP UPUP -2340) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4362 |has| (-401 |#2|) (-357)) (-4367 |has| (-401 |#2|) (-357)) (-4361 |has| (-401 |#2|) (-357)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-3988 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-3988 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-3988 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -626) (QUOTE (-553)))) (-3988 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) -(-41 R -3105) +((-4366 |has| (-402 |#2|) (-358)) (-4371 |has| (-402 |#2|) (-358)) (-4365 |has| (-402 |#2|) (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-3994 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3994 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-3994 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358))))) +(-41 R -3085) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -424) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-301)))) +((|HasCategory| |#1| (QUOTE (-302)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4366 |has| |#1| (-545)) (-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) +((-4370 |has| |#1| (-546)) (-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4369 . T) (-4370 . T)) -((-3988 (-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-833))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|))))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-833))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-833))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|))))))) +((-4373 . T) (-4374 . T)) +((-3994 (-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|))))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| $ (QUOTE (-1031))) (|HasCategory| $ (LIST (QUOTE -1020) (QUOTE (-553))))) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4366 . T)) +((-4370 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,4857 +144,4869 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3105) +(-54 |Base| R -3085) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL -(-55 S R |Row| |Col|) +(-55) +((|constructor| (NIL "This domain implements the arity of a function or an operator,{} \\spadignore{e.g.} the number of arguments that an operator can take. An arity is either a definition nonnegative integer,{} and the special value `arbitrary',{} signifying that an operation can take any number of arguments.")) (|arbitrary| (($) "aribitrary is the arity of a function that accepts any number of arguments."))) +NIL +NIL +(-56 S R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) NIL NIL -(-56 R |Row| |Col|) +(-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-57 A B) +(-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-58 S) +(-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-59 R) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-60 -4298) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-61 -4309) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -4298) +(-62 -4309) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -4298) +(-63 -4309) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -4298) +(-64 -4309) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-64 -4298) +(-65 -4309) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-65 -4298) +(-66 -4309) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -4298) +(-67 -4309) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -4298) +(-68 -4309) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4298) +(-69 -4309) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -4298) +(-70 -4309) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -4298) +(-71 -4309) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -4298) +(-72 -4309) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -4298) +(-73 -4309) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -4298) +(-74 -4309) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-74 |nameOne| |nameTwo| |nameThree|) +(-75 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 |nameOne| |nameTwo| |nameThree|) +(-76 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -4298) +(-77 -4309) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -4298) +(-78 -4309) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -4298) +(-79 -4309) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -4298) +(-80 -4309) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4298) +(-81 -4309) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-81 -4298) +(-82 -4309) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -4298) +(-83 -4309) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4298) +(-84 -4309) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4298) +(-85 -4309) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4298) +(-86 -4309) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4298) +(-87 -4309) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4298) +(-88 -4309) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -4298) +(-89 -4309) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-89 R L) +(-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-357)))) -(-90 S) -((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) +((|HasCategory| |#1| (QUOTE (-358)))) (-91 S) +((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL NIL -(-92) +(-93) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL NIL -(-93 S) +(-94 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL NIL -(-94) +(-95) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL NIL -(-95) +(-96) ((|constructor| (NIL "This domain represents the syntax of an attribute in \\indented{2}{a category expression.}")) (|name| (((|SpadAst|) $) "\\spad{name(a)} returns the name of the attribute `a'. Note,{} this name may be domain name,{} not just an identifier."))) NIL NIL -(-96) +(-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4369 . T)) +((-4373 . T)) NIL -(-97) +(-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4369 . T) ((-4371 "*") . T) (-4370 . T) (-4366 . T) (-4364 . T) (-4363 . T) (-4362 . T) (-4367 . T) (-4361 . T) (-4360 . T) (-4359 . T) (-4358 . T) (-4357 . T) (-4365 . T) (-4368 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4356 . T)) +((-4373 . T) ((-4375 "*") . T) (-4374 . T) (-4370 . T) (-4368 . T) (-4367 . T) (-4366 . T) (-4371 . T) (-4365 . T) (-4364 . T) (-4363 . T) (-4362 . T) (-4361 . T) (-4369 . T) (-4372 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4360 . T)) NIL -(-98 R) +(-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-99 R UP) +(-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) NIL NIL -(-100 S) +(-101 S) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-101) +(-102) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-102 S) +(-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-103 R UP M |Row| |Col|) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4371 "*")))) -(-104) +((|HasAttribute| |#1| (QUOTE (-4375 "*")))) +(-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4369 . T)) +((-4373 . T)) NIL -(-105 A S) +(-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL -(-106 S) +(-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4370 . T)) +((-4374 . T)) NIL -(-107) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-553) (QUOTE (-891))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-553) (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-144))) (|HasCategory| (-553) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-553) (QUOTE (-1004))) (|HasCategory| (-553) (QUOTE (-806))) (-3988 (|HasCategory| (-553) (QUOTE (-806))) (|HasCategory| (-553) (QUOTE (-833)))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-1130))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-553) (QUOTE (-228))) (|HasCategory| (-553) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-553) (LIST (QUOTE -507) (QUOTE (-1155)) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -303) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -280) (QUOTE (-553)) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-301))) (|HasCategory| (-553) (QUOTE (-538))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-553) (LIST (QUOTE -626) (QUOTE (-553)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (|HasCategory| (-553) (QUOTE (-142))))) (-108) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143))))) +(-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL -(-109) +(-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1079))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-111) (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-111) (QUOTE (-1079))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-845))))) -(-110 R S) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-112) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -601) (QUOTE (-848))))) +(-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-111) +(-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-112 A) +(-113 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-833)))) -(-113) +((|HasCategory| |#1| (QUOTE (-836)))) +(-114) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-114 -3105 UP) +(-115 -3085 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-115 |p|) +(-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-116 |p|) +(-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-115 |#1|) (QUOTE (-891))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-144))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-115 |#1|) (QUOTE (-1004))) (|HasCategory| (-115 |#1|) (QUOTE (-806))) (-3988 (|HasCategory| (-115 |#1|) (QUOTE (-806))) (|HasCategory| (-115 |#1|) (QUOTE (-833)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-115 |#1|) (QUOTE (-1130))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| (-115 |#1|) (QUOTE (-228))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-301))) (|HasCategory| (-115 |#1|) (QUOTE (-538))) (|HasCategory| (-115 |#1|) (QUOTE (-833))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-891)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))))) -(-117 A S) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-894))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-116 |#1|) (QUOTE (-1007))) (|HasCategory| (-116 |#1|) (QUOTE (-807))) (-3994 (|HasCategory| (-116 |#1|) (QUOTE (-807))) (|HasCategory| (-116 |#1|) (QUOTE (-836)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-116 |#1|) (QUOTE (-1133))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-116 |#1|) (QUOTE (-229))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-302))) (|HasCategory| (-116 |#1|) (QUOTE (-539))) (|HasCategory| (-116 |#1|) (QUOTE (-836))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-894)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) +(-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4370))) -(-118 S) +((|HasAttribute| |#1| (QUOTE -4374))) +(-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL -(-119 UP) +(-120 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-120 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (-121 S) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL -(-122) +(-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-123 A S) +(-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-124 S) +(-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-125 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (-126 S) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-127) -((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it has it is not as rigid as PrimitiveArray Byte is. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`c'}. The array can then store up to \\spad{`c'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| (-128) (QUOTE (-833))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1079))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128)))))) (-3988 (-12 (|HasCategory| (-128) (QUOTE (-1079))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-128) (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| (-128) (QUOTE (-833))) (|HasCategory| (-128) (QUOTE (-1079)))) (|HasCategory| (-128) (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-128) (QUOTE (-1079))) (|HasCategory| (-128) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-128) (QUOTE (-1079))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128)))))) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (-128) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it has it is not as rigid as PrimitiveArray Byte is. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`c'}. The array can then store up to \\spad{`c'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| (-129) (QUOTE (-836))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129)))))) (-3994 (-12 (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-129) (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| (-129) (QUOTE (-836))) (|HasCategory| (-129) (QUOTE (-1082)))) (|HasCategory| (-129) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-129) (QUOTE (-1082))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129)))))) +(-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-129) +(-130) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-130) +(-131) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-131) +(-132) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) NIL NIL -(-132) +(-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4371 "*") . T)) +(((-4375 "*") . T)) NIL -(-133 |minix| -2026 S T$) +(-134 |minix| -4082 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-134 |minix| -2026 R) +(-135 |minix| -4082 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-135) +(-136) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-136) +(-137) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|Symbol|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-137) +(-138) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: February 16,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type"))) NIL NIL -(-138) +(-139) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4369 . T) (-4359 . T) (-4370 . T)) -((-3988 (-12 (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (QUOTE (-833))) (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) -(-139 R Q A) +((-4373 . T) (-4363 . T) (-4374 . T)) +((-3994 (-12 (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) +(-140 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-140) +(-141) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-141) +(-142) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-142) +(-143) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4366 . T)) +((-4370 . T)) NIL -(-143 R) +(-144 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-144) +(-145) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4366 . T)) +((-4370 . T)) NIL -(-145 -3105 UP UPUP) +(-146 -3085 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-146 R CR) +(-147 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-147 A S) +(-148 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasAttribute| |#1| (QUOTE -4369))) -(-148 S) +((|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasAttribute| |#1| (QUOTE -4373))) +(-149 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-149 |n| K Q) +(-150 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4364 . T) (-4363 . T) (-4366 . T)) +((-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-150) +(-151) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-151) +(-152) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-152 UP |Par|) +(-153 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-153) +(-154) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-154) +(-155) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-155 R -3105) +(-156 R -3085) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-156 I) +(-157 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-157) +(-158) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-158) +(-159) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-159) +(-160) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-160) +(-161) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-161 R UP UPUP) +(-162 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-162 S R) +(-163 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) NIL -((|HasCategory| |#2| (QUOTE (-891))) (|HasCategory| |#2| (QUOTE (-538))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1177))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4365)) (|HasAttribute| |#2| (QUOTE -4368)) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-833)))) -(-163 R) +((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1180))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4369)) (|HasAttribute| |#2| (QUOTE -4372)) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-836)))) +(-164 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) -((-4362 -3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4365 |has| |#1| (-6 -4365)) (-4368 |has| |#1| (-6 -4368)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 -3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4369 |has| |#1| (-6 -4369)) (-4372 |has| |#1| (-6 -4372)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-164 RR PR) +(-165 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-165 R S) +(-166 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-166 R) +(-167 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4362 -3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4365 |has| |#1| (-6 -4365)) (-4368 |has| |#1| (-6 -4368)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-891))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-891)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-891))))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-1040))) (-12 (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-1177)))) (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasAttribute| |#1| (QUOTE -4365)) (|HasAttribute| |#1| (QUOTE -4368)) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155))))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-343))))) -(-167 R S CS) +((-4366 -3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4369 |has| |#1| (-6 -4369)) (-4372 |has| |#1| (-6 -4372)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1007)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1180)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-894))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-894))))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-1043))) (-12 (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasAttribute| |#1| (QUOTE -4369)) (|HasAttribute| |#1| (QUOTE -4372)) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-344))))) +(-168 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-168) +(-169) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-169) +(-170) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-170) +(-171) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-171 R) +(-172 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4371 "*") . T) (-4362 . T) (-4367 . T) (-4361 . T) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") . T) (-4366 . T) (-4371 . T) (-4365 . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-172) +(-173) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-173 R) +(-174 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-174 R |PolR| E) +(-175 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-175 R S CS) +(-176 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-934 |#2|) (LIST (QUOTE -868) (|devaluate| |#1|)))) -(-176 R) +((|HasCategory| (-937 |#2|) (LIST (QUOTE -871) (|devaluate| |#1|)))) +(-177 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-177) +(-178) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-178 R UP) +(-179 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-179 S ST) +(-180 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-180) +(-181) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-181) +(-182) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' designates package constructors.")) (|domain| (($) "`domain' designates domain constructors")) (|category| (($) "`category' designates category constructors"))) NIL NIL -(-182) +(-183) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|arity| (((|SingleInteger|) $) "\\spad{arity(ctor)} returns the arity of the constructor `ctor'. \\indented{2}{A negative value means that the \\spad{ctor} takes a variable} \\indented{2}{length argument list,{} \\spadignore{e.g.} Mapping,{} Record,{} etc.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")) (|name| (((|Identifier|) $) "\\spad{name(ctor)} returns the name of the constructor `ctor'."))) NIL NIL -(-183 R -3105) +(-184 R -3085) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-184 R) +(-185 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-185) +(-186) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-186) +(-187) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-187) +(-188) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-188) +(-189) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-189) +(-190) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-190) +(-191) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-191) +(-192) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-192) +(-193) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-193) +(-194) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-194) +(-195) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-197) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-197) +(-198) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-198) +(-199) NIL NIL NIL -(-199) +(-200) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-200) +(-201) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-201) +(-202) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-202) +(-203) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-203) +(-204) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-204) +(-205) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-205) +(-206) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-206) +(-207) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-207) +(-208) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-208 N T$) +(-209 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-209 S) +(-210 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-210 -3105 UP UPUP R) +(-211 -3085 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-211 -3105 FP) +(-212 -3085 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-212) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-553) (QUOTE (-891))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-553) (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-144))) (|HasCategory| (-553) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-553) (QUOTE (-1004))) (|HasCategory| (-553) (QUOTE (-806))) (-3988 (|HasCategory| (-553) (QUOTE (-806))) (|HasCategory| (-553) (QUOTE (-833)))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-1130))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-553) (QUOTE (-228))) (|HasCategory| (-553) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-553) (LIST (QUOTE -507) (QUOTE (-1155)) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -303) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -280) (QUOTE (-553)) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-301))) (|HasCategory| (-553) (QUOTE (-538))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-553) (LIST (QUOTE -626) (QUOTE (-553)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (|HasCategory| (-553) (QUOTE (-142))))) (-213) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143))))) +(-214) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-214 R -3105) +(-215 R -3085) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-215 R) +(-216 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-216 R1 R2) +(-217 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-217 S) +(-218 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-218 |CoefRing| |listIndVar|) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-219 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-219 R -3105) +(-220 R -3085) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-220) +(-221) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4327 . T) (-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-221) +(-222) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-222 R) +(-223 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4371 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-223 A S) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))) (|HasAttribute| |#1| (QUOTE (-4375 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-224 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-224 S) +(-225 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4370 . T)) +((-4374 . T)) NIL -(-225 S R) +(-226 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228)))) -(-226 R) +((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229)))) +(-227 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-227 S) +(-228 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-228) +(-229) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4366 . T)) +((-4370 . T)) NIL -(-229 A S) +(-230 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4369))) -(-230 S) +((|HasAttribute| |#1| (QUOTE -4373))) +(-231 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4370 . T)) +((-4374 . T)) NIL -(-231) +(-232) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-232 S -2026 R) +(-233 S -4082 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-831))) (|HasAttribute| |#3| (QUOTE -4366)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (QUOTE (-1079)))) -(-233 -2026 R) +((|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834))) (|HasAttribute| |#3| (QUOTE -4370)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-1082)))) +(-234 -4082 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4363 |has| |#2| (-1031)) (-4364 |has| |#2| (-1031)) (-4366 |has| |#2| (-6 -4366)) ((-4371 "*") |has| |#2| (-169)) (-4369 . T)) +((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T)) NIL -(-234 -2026 A B) +(-235 -4082 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-235 -2026 R) +(-236 -4082 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4363 |has| |#2| (-1031)) (-4364 |has| |#2| (-1031)) (-4366 |has| |#2| (-6 -4366)) ((-4371 "*") |has| |#2| (-169)) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (QUOTE (-357))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-779))) (-3988 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1031)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1031))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| (-553) (QUOTE (-833))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-3988 (|HasCategory| |#2| (QUOTE (-1031))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))))) -(-236) +((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-780))) (-3994 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) +(-237) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-237 S) +(-238 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-238) +(-239) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4362 . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-239 S) +(-240 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-240 S) +(-241 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-241 M) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-242 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-242 |vl| R) +(-243 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4371 "*") |has| |#2| (-169)) (-4362 |has| |#2| (-545)) (-4367 |has| |#2| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-891))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-243) +(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-244) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-244 |n| R M S) +(-245 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4366 -3988 (-3726 (|has| |#4| (-1031)) (|has| |#4| (-228))) (-3726 (|has| |#4| (-1031)) (|has| |#4| (-882 (-1155)))) (|has| |#4| (-6 -4366)) (-3726 (|has| |#4| (-1031)) (|has| |#4| (-626 (-553))))) (-4363 |has| |#4| (-1031)) (-4364 |has| |#4| (-1031)) ((-4371 "*") |has| |#4| (-169)) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-779))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-831))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#4| (QUOTE (-357))) (-3988 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-1031)))) (-3988 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357)))) (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (QUOTE (-779))) (-3988 (|HasCategory| |#4| (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-831)))) (|HasCategory| |#4| (QUOTE (-831))) (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (QUOTE (-169))) (-3988 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1031)))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1031)))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-228)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-357)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-712)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-779)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-831)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-1031)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-1079))))) (-3988 (-12 (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-779))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-831))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-1031))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-712))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-779))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-831))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| (-553) (QUOTE (-833))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1031)))) (-3988 (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1031)))) (|HasCategory| |#4| (QUOTE (-712))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553))))) (-3988 (|HasCategory| |#4| (QUOTE (-1031))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-3988 (|HasAttribute| |#4| (QUOTE -4366)) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1031)))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#4| (QUOTE (-1031))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))))) -(-245 |n| R S) +((-4370 -3994 (-3726 (|has| |#4| (-1034)) (|has| |#4| (-229))) (-3726 (|has| |#4| (-1034)) (|has| |#4| (-885 (-1158)))) (|has| |#4| (-6 -4370)) (-3726 (|has| |#4| (-1034)) (|has| |#4| (-627 (-554))))) (-4367 |has| |#4| (-1034)) (-4368 |has| |#4| (-1034)) ((-4375 "*") |has| |#4| (-170)) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#4| (QUOTE (-358))) (-3994 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-1034)))) (-3994 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358)))) (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (QUOTE (-780))) (-3994 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (QUOTE (-834)))) (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (QUOTE (-170))) (-3994 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1034)))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-229)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-358)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-713)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-780)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-834)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1034)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1034))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-713))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-834))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (-3994 (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (|HasCategory| |#4| (QUOTE (-713))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554))))) (-3994 (|HasCategory| |#4| (QUOTE (-1034))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (QUOTE (-1082)))) (-3994 (|HasAttribute| |#4| (QUOTE -4370)) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1034)))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#4| (QUOTE (-1034))) (|HasCategory| |#4| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))))) +(-246 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4366 -3988 (-3726 (|has| |#3| (-1031)) (|has| |#3| (-228))) (-3726 (|has| |#3| (-1031)) (|has| |#3| (-882 (-1155)))) (|has| |#3| (-6 -4366)) (-3726 (|has| |#3| (-1031)) (|has| |#3| (-626 (-553))))) (-4363 |has| |#3| (-1031)) (-4364 |has| |#3| (-1031)) ((-4371 "*") |has| |#3| (-169)) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#3| (QUOTE (-357))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1031)))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (QUOTE (-779))) (-3988 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-831)))) (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-169))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1031)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-712)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-779)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-831)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1031)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1079))))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1031))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| (-553) (QUOTE (-833))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (-3988 (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (|HasCategory| |#3| (QUOTE (-712))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-3988 (|HasCategory| |#3| (QUOTE (-1031))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-3988 (|HasAttribute| |#3| (QUOTE -4366)) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) -(-246 A R S V E) +((-4370 -3994 (-3726 (|has| |#3| (-1034)) (|has| |#3| (-229))) (-3726 (|has| |#3| (-1034)) (|has| |#3| (-885 (-1158)))) (|has| |#3| (-6 -4370)) (-3726 (|has| |#3| (-1034)) (|has| |#3| (-627 (-554))))) (-4367 |has| |#3| (-1034)) (-4368 |has| |#3| (-1034)) ((-4375 "*") |has| |#3| (-170)) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#3| (QUOTE (-358))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-780))) (-3994 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834)))) (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-170))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-713)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-834)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-713))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-3994 (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082)))) (-3994 (|HasAttribute| |#3| (QUOTE -4370)) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) +(-247 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-228)))) -(-247 R S V E) +((|HasCategory| |#2| (QUOTE (-229)))) +(-248 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-248 S) +(-249 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-249) +(-250) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-250 R |Ex|) +(-251 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-251) +(-252) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-252 R) +(-253 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-253 |Ex|) +(-254 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-254) +(-255) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-255) +(-256) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-256 S) +(-257 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-257) +(-258) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-258 R S V) +(-259 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#3| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#3| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#3| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-259 A S) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#3| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-260 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-260 S) +(-261 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-261) +(-262) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-262) +(-263) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-263) +(-264) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-264) +(-265) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-265) +(-266) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-266) +(-267) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-267) +(-268) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-269) +(-270) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-270 R -3105) +(-271 R -3085) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-271 R -3105) +(-272 R -3085) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-272 |Coef| UTS ULS) +(-273 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-357)))) -(-273 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-358)))) +(-274 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-357)))) -(-274) +((|HasCategory| |#1| (QUOTE (-358)))) +(-275) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-275 A S) +(-276 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079)))) -(-276 S) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082)))) +(-277 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4370 . T)) +((-4374 . T)) NIL -(-277 S) +(-278 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-278) +(-279) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-279 |Coef| UTS) +(-280 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-280 S |Index|) +(-281 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-281 S |Dom| |Im|) +(-282 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4370))) -(-282 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4374))) +(-283 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-283 S R |Mod| -3668 -3160 |exactQuo|) +(-284 S R |Mod| -1877 -3717 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-284) +(-285) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4362 . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-285) +(-286) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-286 R) +(-287 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-287 S R) +(-288 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-288 S) +(-289 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4366 -3988 (|has| |#1| (-1031)) (|has| |#1| (-466))) (-4363 |has| |#1| (-1031)) (-4364 |has| |#1| (-1031))) -((|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-712)))) (|HasCategory| |#1| (QUOTE (-466))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1079)))) (-3988 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-296))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466)))) (-3988 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-712)))) (-3988 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#1| (QUOTE (-169)))) -(-289 |Key| |Entry|) +((-4370 -3994 (|has| |#1| (-1034)) (|has| |#1| (-467))) (-4367 |has| |#1| (-1034)) (-4368 |has| |#1| (-1034))) +((|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-713)))) (|HasCategory| |#1| (QUOTE (-467))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1082)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-297))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467)))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-170)))) +(-290 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-290) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-291) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-291 -3105 S) +(-292 -3085 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-292 E -3105) +(-293 E -3085) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-293 A B) +(-294 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-294) +(-295) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-295 S) +(-296 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-1031)))) -(-296) +((|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-1034)))) +(-297) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-297 R1) +(-298 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-298 R1 R2) +(-299 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-299) +(-300) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-300 S) +(-301 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-301) +(-302) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-302 S R) +(-303 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-303 R) +(-304 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-304 -3105) +(-305 -3085) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-305) +(-306) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-306) +(-307) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-307 R FE |var| |cen|) +(-308 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-891))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-1004))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-806))) (-3988 (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-806))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-833)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-1130))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-228))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -303) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-301))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-538))) (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-891))) (|HasCategory| $ (QUOTE (-142)))) (-3988 (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3| |#4|) (QUOTE (-891))) (|HasCategory| $ (QUOTE (-142)))))) -(-308 R S) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-894))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-1007))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (-3994 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-836)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-1133))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-229))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -304) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-302))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-539))) (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-894))) (|HasCategory| $ (QUOTE (-143)))) (-3994 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3| |#4|) (QUOTE (-894))) (|HasCategory| $ (QUOTE (-143)))))) +(-309 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-309 R FE) +(-310 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-310 R) +(-311 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4366 -3988 (-3726 (|has| |#1| (-1031)) (|has| |#1| (-626 (-553)))) (-12 (|has| |#1| (-545)) (-3988 (-3726 (|has| |#1| (-1031)) (|has| |#1| (-626 (-553)))) (|has| |#1| (-1031)) (|has| |#1| (-466)))) (|has| |#1| (-1031)) (|has| |#1| (-466))) (-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) ((-4371 "*") |has| |#1| (-545)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-545)) (-4361 |has| |#1| (-545))) -((-3988 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| |#1| (QUOTE (-545))) (-3988 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-1091)))) (-3988 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))))) (-3988 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-1091)))) (-3988 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))))) (-3988 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| $ (QUOTE (-1031))) (|HasCategory| $ (LIST (QUOTE -1020) (QUOTE (-553))))) -(-311 R -3105) +((-4370 -3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (-12 (|has| |#1| (-546)) (-3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (|has| |#1| (-1034)) (|has| |#1| (-467)))) (|has| |#1| (-1034)) (|has| |#1| (-467))) (-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) ((-4375 "*") |has| |#1| (-546)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-546)) (-4365 |has| |#1| (-546))) +((-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1094)))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))))) (-3994 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1094)))) (-3994 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))))) (-3994 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1034)))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554))))) +(-312 R -3085) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-312) +(-313) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-313 FE |var| |cen|) +(-314 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-553)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|))))))) -(-314 M) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|))))))) +(-315 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-315 E OV R P) +(-316 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-316 S) +(-317 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-778)))) -(-317 S E) +((-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-779)))) +(-318 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-318 S) +(-319 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-757) (QUOTE (-778)))) -(-319 S R E) +((|HasCategory| (-758) (QUOTE (-779)))) +(-320 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169)))) -(-320 R E) +((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170)))) +(-321 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-321 S) +(-322 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-322 S -3105) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-323 S -3085) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-362)))) -(-323 -3105) +((|HasCategory| |#2| (QUOTE (-363)))) +(-324 -3085) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-324) +(-325) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-325 E) +(-326 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-326) +(-327) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-327 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-328 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-328 S -3105 UP UPUP R) +(-329 S -3085 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-329 -3105 UP UPUP R) +(-330 -3085 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-330 -3105 UP UPUP R) +(-331 -3085 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-331 S R) +(-332 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-332 R) +((|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-333 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-333 |basicSymbols| |subscriptedSymbols| R) +(-334 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-373)))) (|HasCategory| $ (QUOTE (-1031))) (|HasCategory| $ (LIST (QUOTE -1020) (QUOTE (-553))))) -(-334 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-374)))) (|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554))))) +(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-335 S -3105 UP UPUP) +(-336 S -3085 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-357)))) -(-336 -3105 UP UPUP) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-358)))) +(-337 -3085 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4362 |has| (-401 |#2|) (-357)) (-4367 |has| (-401 |#2|) (-357)) (-4361 |has| (-401 |#2|) (-357)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 |has| (-402 |#2|) (-358)) (-4371 |has| (-402 |#2|) (-358)) (-4365 |has| (-402 |#2|) (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-337 |p| |extdeg|) +(-338 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| (-892 |#1|) (QUOTE (-142))) (|HasCategory| (-892 |#1|) (QUOTE (-362)))) (|HasCategory| (-892 |#1|) (QUOTE (-144))) (|HasCategory| (-892 |#1|) (QUOTE (-362))) (|HasCategory| (-892 |#1|) (QUOTE (-142)))) -(-338 GF |defpol|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| (-895 |#1|) (QUOTE (-143))) (|HasCategory| (-895 |#1|) (QUOTE (-363)))) (|HasCategory| (-895 |#1|) (QUOTE (-145))) (|HasCategory| (-895 |#1|) (QUOTE (-363))) (|HasCategory| (-895 |#1|) (QUOTE (-143)))) +(-339 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-339 GF |extdeg|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-340 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-340 GF) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-341 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-341 F1 GF F2) +(-342 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-342 S) +(-343 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-343) +(-344) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-344 R UP -3105) +(-345 R UP -3085) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-345 |p| |extdeg|) +(-346 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| (-892 |#1|) (QUOTE (-142))) (|HasCategory| (-892 |#1|) (QUOTE (-362)))) (|HasCategory| (-892 |#1|) (QUOTE (-144))) (|HasCategory| (-892 |#1|) (QUOTE (-362))) (|HasCategory| (-892 |#1|) (QUOTE (-142)))) -(-346 GF |uni|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| (-895 |#1|) (QUOTE (-143))) (|HasCategory| (-895 |#1|) (QUOTE (-363)))) (|HasCategory| (-895 |#1|) (QUOTE (-145))) (|HasCategory| (-895 |#1|) (QUOTE (-363))) (|HasCategory| (-895 |#1|) (QUOTE (-143)))) +(-347 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-347 GF |extdeg|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-348 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-348 |p| |n|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-349 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| (-892 |#1|) (QUOTE (-142))) (|HasCategory| (-892 |#1|) (QUOTE (-362)))) (|HasCategory| (-892 |#1|) (QUOTE (-144))) (|HasCategory| (-892 |#1|) (QUOTE (-362))) (|HasCategory| (-892 |#1|) (QUOTE (-142)))) -(-349 GF |defpol|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| (-895 |#1|) (QUOTE (-143))) (|HasCategory| (-895 |#1|) (QUOTE (-363)))) (|HasCategory| (-895 |#1|) (QUOTE (-145))) (|HasCategory| (-895 |#1|) (QUOTE (-363))) (|HasCategory| (-895 |#1|) (QUOTE (-143)))) +(-350 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-350 -3105 GF) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-351 -3085 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-351 GF) +(-352 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-352 -3105 FP FPP) +(-353 -3085 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-353 GF |n|) +(-354 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) -(-354 R |ls|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-355 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-355 S) +(-356 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4366 . T)) +((-4370 . T)) NIL -(-356 S) +(-357 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-357) +(-358) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-358 |Name| S) +(-359 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-359 S) +(-360 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-360 S R) +(-361 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-545)))) -(-361 R) +((|HasCategory| |#2| (QUOTE (-546)))) +(-362 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4366 |has| |#1| (-545)) (-4364 . T) (-4363 . T)) +((-4370 |has| |#1| (-546)) (-4368 . T) (-4367 . T)) NIL -(-362) +(-363) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-363 S R UP) +(-364 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-357)))) -(-364 R UP) +((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-358)))) +(-365 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-365 S A R B) +(-366 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-366 A S) +(-367 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079)))) -(-367 S) +((|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082)))) +(-368 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4369 . T)) +((-4373 . T)) NIL -(-368 |VarSet| R) +(-369 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4364 . T) (-4363 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4368 . T) (-4367 . T)) NIL -(-369 S V) +(-370 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-370 S R) +(-371 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) -(-371 R) +((|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) +(-372 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4366 . T)) +((-4370 . T)) NIL -(-372 |Par|) +(-373 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-373) +(-374) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4352 . T) (-4360 . T) (-4327 . T) (-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4356 . T) (-4364 . T) (-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-374 |Par|) +(-375 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-375 R S) +(-376 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169)))) -(-376 R |Basis|) +((-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (QUOTE (-170)))) +(-377 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-377) +(-378) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-378) +(-379) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-379 R S) +(-380 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169)))) -(-380 S) +((-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (QUOTE (-170)))) +(-381 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-833)))) -(-381) +((|HasCategory| |#1| (QUOTE (-836)))) +(-382) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-382) +(-383) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-383) +(-384) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-384 |n| |class| R) +(-385 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-385) +(-386) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-386 -3105 UP UPUP R) +(-387 -3085 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-387 S) +(-388 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-388) +(-389) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-389) +(-390) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-390) +(-391) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-391) +(-392) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-392 -4298 |returnType| -4112 |symbols|) +(-393 -4309 |returnType| -2793 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-393 -3105 UP) +(-394 -3085 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-394 R) +(-395 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-395 S) +(-396 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-396) +(-397) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-397 S) +(-398 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4352)) (|HasAttribute| |#1| (QUOTE -4360))) -(-398) +((|HasAttribute| |#1| (QUOTE -4356)) (|HasAttribute| |#1| (QUOTE -4364))) +(-399) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4327 . T) (-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-399 R S) +(-400 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-400 A B) +(-401 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-401 S) +(-402 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4356 -12 (|has| |#1| (-6 -4367)) (|has| |#1| (-445)) (|has| |#1| (-6 -4356))) (-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-806))) (-3988 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-833)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-814))))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-814))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-538))) (-12 (|HasAttribute| |#1| (QUOTE -4367)) (|HasAttribute| |#1| (QUOTE -4356)) (|HasCategory| |#1| (QUOTE (-445)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-402 S R UP) +((-4360 -12 (|has| |#1| (-6 -4371)) (|has| |#1| (-446)) (|has| |#1| (-6 -4360))) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-807))) (-3994 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-836)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-539))) (-12 (|HasAttribute| |#1| (QUOTE -4371)) (|HasAttribute| |#1| (QUOTE -4360)) (|HasCategory| |#1| (QUOTE (-446)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-403 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-403 R UP) +(-404 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-404 A S) +(-405 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) -(-405 S) +((|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) +(-406 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-406 R1 F1 U1 A1 R2 F2 U2 A2) +(-407 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-407 R -3105 UP A) +(-408 R -3085 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-408 R -3105 UP A |ibasis|) +(-409 R -3085 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1020) (|devaluate| |#2|)))) -(-409 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1023) (|devaluate| |#2|)))) +(-410 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-410 S R) +(-411 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-357)))) -(-411 R) +((|HasCategory| |#2| (QUOTE (-358)))) +(-412 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4366 |has| |#1| (-545)) (-4364 . T) (-4363 . T)) +((-4370 |has| |#1| (-546)) (-4368 . T) (-4367 . T)) NIL -(-412 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -303) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-1196))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-445)))) (-413 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -304) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-1199))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-446)))) +(-414 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-414 R FE |x| |cen|) +(-415 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-415 R A S B) +(-416 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-416 R FE |Expon| UPS TRAN |x|) +(-417 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-417 S A R B) +(-418 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-418 A S) +(-419 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-362)))) -(-419 S) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-363)))) +(-420 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4369 . T) (-4359 . T) (-4370 . T)) +((-4373 . T) (-4363 . T) (-4374 . T)) NIL -(-420 R -3105) +(-421 R -3085) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-421 R E) +(-422 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4356 -12 (|has| |#1| (-6 -4356)) (|has| |#2| (-6 -4356))) (-4363 . T) (-4364 . T) (-4366 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4356)) (|HasAttribute| |#2| (QUOTE -4356)))) -(-422 R -3105) +((-4360 -12 (|has| |#1| (-6 -4360)) (|has| |#2| (-6 -4360))) (-4367 . T) (-4368 . T) (-4370 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4360)) (|HasAttribute| |#2| (QUOTE -4360)))) +(-423 R -3085) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-423 S R) +(-424 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) -(-424 R) +((|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) +(-425 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4366 -3988 (|has| |#1| (-1031)) (|has| |#1| (-466))) (-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) ((-4371 "*") |has| |#1| (-545)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-545)) (-4361 |has| |#1| (-545))) +((-4370 -3994 (|has| |#1| (-1034)) (|has| |#1| (-467))) (-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) ((-4375 "*") |has| |#1| (-546)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-546)) (-4365 |has| |#1| (-546))) NIL -(-425 R -3105) +(-426 R -3085) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-426 R -3105) +(-427 R -3085) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-427 R -3105) +(-428 R -3085) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-428) +(-429) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-429 R -3105 UP) +(-430 R -3085 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-48))))) -(-430) +((|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-48))))) +(-431) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-431) +(-432) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-432 |f|) +(-433 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-433) +(-434) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-434) +(-435) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-435 UP) +(-436 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-436 R UP -3105) +(-437 R UP -3085) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-437 R UP) +(-438 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-438 R) +(-439 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-398)))) -(-439) +((|HasCategory| |#1| (QUOTE (-399)))) +(-440) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-440 |Dom| |Expon| |VarSet| |Dpol|) +(-441 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-441 |Dom| |Expon| |VarSet| |Dpol|) +(-442 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-442 |Dom| |Expon| |VarSet| |Dpol|) +(-443 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-443 |Dom| |Expon| |VarSet| |Dpol|) +(-444 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-357)))) -(-444 S) +((|HasCategory| |#1| (QUOTE (-358)))) +(-445 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-445) +(-446) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-446 R |n| |ls| |gamma|) +(-447 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4366 |has| (-401 (-934 |#1|)) (-545)) (-4364 . T) (-4363 . T)) -((|HasCategory| (-401 (-934 |#1|)) (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-401 (-934 |#1|)) (QUOTE (-545)))) -(-447 |vl| R E) +((-4370 |has| (-402 (-937 |#1|)) (-546)) (-4368 . T) (-4367 . T)) +((|HasCategory| (-402 (-937 |#1|)) (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| (-402 (-937 |#1|)) (QUOTE (-546)))) +(-448 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4371 "*") |has| |#2| (-169)) (-4362 |has| |#2| (-545)) (-4367 |has| |#2| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-891))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-448 R BP) +(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-449 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-449 OV E S R P) +(-450 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-450 E OV R P) +(-451 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-451 R) +(-452 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-452 R FE) +(-453 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-453 RP TP) +(-454 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-454 |vl| R IS E |ff| P) +(-455 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-455 E V R P Q) +(-456 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-456 R E |VarSet| P) +(-457 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-845))))) -(-457 S R E) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848))))) +(-458 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-458 R E) +(-459 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-459) +(-460) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-460) +(-461) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-461) +(-462) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-462 S R E) +(-463 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-463 R E) +(-464 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-464 |lv| -3105 R) +(-465 |lv| -3085 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-465 S) +(-466 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-466) +(-467) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-467 |Coef| |var| |cen|) +(-468 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-553)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|))))))) -(-468 |Key| |Entry| |Tbl| |dent|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|))))))) +(-469 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-833))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079)))) -(-469 R E V P) +((-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-836))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082)))) +(-470 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-845))))) -(-470) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848))))) +(-471) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-471) +(-472) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-472 |Key| |Entry| |hashfn|) +(-473 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-473) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-474) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-474 |vl| R) +(-475 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4371 "*") |has| |#2| (-169)) (-4362 |has| |#2| (-545)) (-4367 |has| |#2| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-891))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-475 -2026 S) +(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-476 -4082 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4363 |has| |#2| (-1031)) (-4364 |has| |#2| (-1031)) (-4366 |has| |#2| (-6 -4366)) ((-4371 "*") |has| |#2| (-169)) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (QUOTE (-357))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-779))) (-3988 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1031)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1031))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| (-553) (QUOTE (-833))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-3988 (|HasCategory| |#2| (QUOTE (-1031))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))))) -(-476) +((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-780))) (-3994 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) +(-477) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-477 S) +(-478 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-478 -3105 UP UPUP R) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-479 -3085 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-479 BP) +(-480 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-480) +(-481) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-553) (QUOTE (-891))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-553) (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-144))) (|HasCategory| (-553) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-553) (QUOTE (-1004))) (|HasCategory| (-553) (QUOTE (-806))) (-3988 (|HasCategory| (-553) (QUOTE (-806))) (|HasCategory| (-553) (QUOTE (-833)))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-1130))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-553) (QUOTE (-228))) (|HasCategory| (-553) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-553) (LIST (QUOTE -507) (QUOTE (-1155)) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -303) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -280) (QUOTE (-553)) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-301))) (|HasCategory| (-553) (QUOTE (-538))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-553) (LIST (QUOTE -626) (QUOTE (-553)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (|HasCategory| (-553) (QUOTE (-142))))) -(-481 A S) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143))))) +(-482 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4369)) (|HasAttribute| |#1| (QUOTE -4370)) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) -(-482 S) +((|HasAttribute| |#1| (QUOTE -4373)) (|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) +(-483 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-483 S) +(-484 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-484) +(-485) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-485 S) +(-486 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-487 -3105 UP |AlExt| |AlPol|) +(-488 -3085 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-488) +(-489) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| $ (QUOTE (-1031))) (|HasCategory| $ (LIST (QUOTE -1020) (QUOTE (-553))))) -(-489 S |mn|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| $ (QUOTE (-1034))) (|HasCategory| $ (LIST (QUOTE -1023) (QUOTE (-554))))) +(-490 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-490 R |mnRow| |mnCol|) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-491 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-491 K R UP) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-492 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-492 R UP -3105) +(-493 R UP -3085) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-493 |mn|) +(-494 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| (-111) (QUOTE (-1079))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-111) (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-111) (QUOTE (-1079))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-845))))) -(-494 K R UP L) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-112) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-112) (QUOTE (-1082))) (|HasCategory| (-112) (LIST (QUOTE -601) (QUOTE (-848))))) +(-495 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-495) +(-496) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-496 R Q A B) +(-497 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-497 -3105 |Expon| |VarSet| |DPoly|) +(-498 -3085 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-1155))))) -(-498 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-1158))))) +(-499 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-499) +(-500) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-500 A S) +(-501 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-501 A S) +(-502 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-502 A S) +(-503 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-503 A S) +(-504 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-504 A S) +(-505 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-505 A S) +(-506 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-506 S A B) +(-507 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-507 A B) +(-508 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-508 S E |un|) +(-509 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-778)))) -(-509 S |mn|) +((|HasCategory| |#2| (QUOTE (-779)))) +(-510 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-510) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-511) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-511 |p| |n|) +(-512 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| (-570 |#1|) (QUOTE (-142))) (|HasCategory| (-570 |#1|) (QUOTE (-362)))) (|HasCategory| (-570 |#1|) (QUOTE (-144))) (|HasCategory| (-570 |#1|) (QUOTE (-362))) (|HasCategory| (-570 |#1|) (QUOTE (-142)))) -(-512 R |mnRow| |mnCol| |Row| |Col|) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| (-571 |#1|) (QUOTE (-143))) (|HasCategory| (-571 |#1|) (QUOTE (-363)))) (|HasCategory| (-571 |#1|) (QUOTE (-145))) (|HasCategory| (-571 |#1|) (QUOTE (-363))) (|HasCategory| (-571 |#1|) (QUOTE (-143)))) +(-513 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-513 S |mn|) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-514 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-514 R |Row| |Col| M) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-515 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4370))) -(-515 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4374))) +(-516 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4370))) -(-516 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4374))) +(-517 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4371 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-517) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))) (|HasAttribute| |#1| (QUOTE (-4375 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-518) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-518) +(-519) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-519 S) +(-520 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-520) +(-521) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-521 GF) +(-522 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-522) +(-523) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-523 R) +(-524 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-524 |Varset|) +(-525 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-525 K -3105 |Par|) +(-526 K -3085 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-526) +(-527) NIL NIL NIL -(-527) +(-528) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-528 R) +(-529 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-529) +(-530) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-530 |Coef| UTS) +(-531 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-531 K -3105 |Par|) +(-532 K -3085 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-532 R BP |pMod| |nextMod|) +(-533 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-533 OV E R P) +(-534 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-534 K UP |Coef| UTS) +(-535 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-535 |Coef| UTS) +(-536 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-536 R UP) +(-537 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-537 S) +(-538 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-538) +(-539) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4367 . T) (-4368 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-539 |Key| |Entry| |addDom|) +(-540 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-540 R -3105) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-541 R -3085) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-541 R0 -3105 UP UPUP R) +(-542 R0 -3085 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-542) +(-543) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-543 R) +(-544 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4327 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4333 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-544 S) +(-545 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-545) +(-546) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-546 R -3105) +(-547 R -3085) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-547 I) +(-548 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-548) +(-549) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-549 R -3105 L) +(-550 R -3085 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -641) (|devaluate| |#2|)))) -(-550) +((|HasCategory| |#3| (LIST (QUOTE -642) (|devaluate| |#2|)))) +(-551) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-551 -3105 UP UPUP R) +(-552 -3085 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-552 -3105 UP) +(-553 -3085 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-553) +(-554) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4351 . T) (-4357 . T) (-4361 . T) (-4356 . T) (-4367 . T) (-4368 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4355 . T) (-4361 . T) (-4365 . T) (-4360 . T) (-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-554) +(-555) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-555 R -3105 L) +(-556 R -3085 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -641) (|devaluate| |#2|)))) -(-556 R -3105) +((|HasCategory| |#3| (LIST (QUOTE -642) (|devaluate| |#2|)))) +(-557 R -3085) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-616))))) -(-557 -3105 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-617))))) +(-558 -3085 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-558 S) +(-559 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-559 -3105) +(-560 -3085) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-560 R) +(-561 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4327 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4333 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-561) +(-562) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-562 R -3105) +(-563 R -3085) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-616))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155))))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-545)))) -(-563 -3105 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-617))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-546)))) +(-564 -3085 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-564 R -3105) +(-565 R -3085) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-565) +(-566) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-566) +(-567) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-567) +(-568) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-568) +(-569) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Union| $ "failed") (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-569 |p| |unBalanced?|) +(-570 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-570 |p|) +(-571 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-142))) (|HasCategory| $ (QUOTE (-362)))) -(-571) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363)))) +(-572) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-572 R -3105) +(-573 R -3085) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-573 E -3105) +(-574 E -3085) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-574 -3105) +(-575 -3085) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-1155))))) -(-575 I) +((-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-1158))))) +(-576 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-576 GF) +(-577 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-577 R) +(-578 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-144)))) -(-578) +((|HasCategory| |#1| (QUOTE (-145)))) +(-579) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-579 R E V P TS) +(-580 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-580) +(-581) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-581 |mn|) +(-582 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| (-141) (QUOTE (-833))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (-3988 (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| (-141) (QUOTE (-833))) (|HasCategory| (-141) (QUOTE (-1079)))) (|HasCategory| (-141) (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) -(-582 E V R P) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (-3994 (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082)))) (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) +(-583 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-583 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|)))) (|HasCategory| (-553) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553)))))) (-584 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|)))) (|HasCategory| (-554) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554)))))) +(-585 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4364 |has| |#1| (-545)) (-4363 |has| |#1| (-545)) ((-4371 "*") |has| |#1| (-545)) (-4362 |has| |#1| (-545)) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-545)))) -(-585 A B) +((-4368 |has| |#1| (-546)) (-4367 |has| |#1| (-546)) ((-4375 "*") |has| |#1| (-546)) (-4366 |has| |#1| (-546)) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-546)))) +(-586 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-586 A B C) +(-587 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-587 R -3105 FG) +(-588 R -3085 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-588 S) +(-589 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-589 R |mn|) +(-590 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#1| (QUOTE (-1031))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-590 S |Index| |Entry|) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-591 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-833))) (|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#3| (QUOTE (-1079)))) -(-591 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (QUOTE (-836))) (|HasAttribute| |#1| (QUOTE -4373)) (|HasCategory| |#3| (QUOTE (-1082)))) +(-592 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-592) +(-593) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-593) +(-594) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-594 R A) +(-595 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4366 -3988 (-3726 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))) (-4364 . T) (-4363 . T)) -((-3988 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) -(-595 |Entry|) +((-4370 -3994 (-3726 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))) (-4368 . T) (-4367 . T)) +((-3994 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) +(-596 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (QUOTE (-1137))) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| (-1137) (QUOTE (-833))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-596 S |Key| |Entry|) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1140))) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| (-1140) (QUOTE (-836))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-597 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-597 |Key| |Entry|) +(-598 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4370 . T)) +((-4374 . T)) NIL -(-598 R S) +(-599 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-599 S) +(-600 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) -(-600 S) +((|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) +(-601 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-601 S) +(-602 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-602 -3105 UP) +(-603 -3085 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-603 S) +(-604 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-604) +(-605) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-605 S) +(-606 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-606 S R) +(-607 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-607 R) +(-608 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4366 . T)) +((-4370 . T)) NIL -(-608 A R S) +(-609 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-831)))) -(-609 R -3105) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-834)))) +(-610 R -3085) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-610 R UP) +(-611 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4364 . T) (-4363 . T) ((-4371 "*") . T) (-4362 . T) (-4366 . T)) -((|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) -(-611 R E V P TS ST) +((-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4366 . T) (-4370 . T)) +((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) +(-612 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-612 OV E Z P) +(-613 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-613) +(-614) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-614 |VarSet| R |Order|) +(-615 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-615 R |ls|) +(-616 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-616) +(-617) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-617 R -3105) +(-618 R -3085) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-618 |lv| -3105) +(-619 |lv| -3085) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-619) +(-620) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (QUOTE (-1137))) (LIST (QUOTE |:|) (QUOTE -3256) (QUOTE (-52))))))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-52) (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-1137) (QUOTE (-833))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (QUOTE (-1079)))) -(-620 S R) +((-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1140))) (LIST (QUOTE |:|) (QUOTE -2701) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-52) (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-1140) (QUOTE (-836))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (QUOTE (-1082)))) +(-621 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-357)))) -(-621 R) +((|HasCategory| |#2| (QUOTE (-358)))) +(-622 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4364 . T) (-4363 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4368 . T) (-4367 . T)) NIL -(-622 R A) +(-623 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4366 -3988 (-3726 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))) (-4364 . T) (-4363 . T)) -((-3988 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) -(-623 R FE) +((-4370 -3994 (-3726 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))) (-4368 . T) (-4367 . T)) +((-3994 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) +(-624 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-624 R) +(-625 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-625 S R) +(-626 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2826 (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-357)))) -(-626 R) +((-4081 (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-358)))) +(-627 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-627 A B) +(-628 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-628 A B) +(-629 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-629 A B C) +(-630 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-630 S) +(-631 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-631 T$) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-632 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-632 S) +(-633 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-633 R) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-634 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-634 S E |un|) +(-635 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-635 A S) +(-636 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4370))) -(-636 S) +((|HasAttribute| |#1| (QUOTE -4374))) +(-637 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-637 R -3105 L) +(-638 R -3085 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-638 A) +(-639 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-639 A M) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-640 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-640 S A) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-641 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-357)))) -(-641 A) +((|HasCategory| |#2| (QUOTE (-358)))) +(-642 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-642 -3105 UP) +(-643 -3085 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-643 A -1725) +(-644 A -1523) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-644 A L) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-645 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-645 S) +(-646 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-646) +(-647) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-647 M R S) +(-648 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-777)))) -(-648 R) +((-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (QUOTE (-778)))) +(-649 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-649 |VarSet| R) +(-650 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4364 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-169)))) -(-650 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4368 . T) (-4367 . T)) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-170)))) +(-651 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-651 S) +(-652 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-652 -3105) +(-653 -3085) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-653 -3105 |Row| |Col| M) +(-654 -3085 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-654 R E OV P) +(-655 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-655 |n| R) +(-656 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4366 . T) (-4369 . T) (-4363 . T) (-4364 . T)) -((|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4371 "*"))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-545))) (-3988 (|HasAttribute| |#2| (QUOTE (-4371 "*"))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-169)))) -(-656) +((-4370 . T) (-4373 . T) (-4367 . T) (-4368 . T)) +((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-546))) (-3994 (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-657) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-657 |VarSet|) +(-658 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-658 A S) +(-659 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-659 S) +(-660 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-660 R) +(-661 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-661) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-662) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-662 |VarSet|) +(-663 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-663 A) +(-664 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-664 A C) +(-665 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-665 A B C) +(-666 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-666) +(-667) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-667 A) +(-668 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-668 A C) +(-669 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-669 A B C) +(-670 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-670 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-671 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-671 S R |Row| |Col|) +(-672 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4371 "*"))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-545)))) -(-672 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-546)))) +(-673 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-673 R |Row| |Col| M) +(-674 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-545)))) -(-674 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4369 . T) (-4370 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4371 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546)))) (-675 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4373 . T) (-4374 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-546))) (|HasAttribute| |#1| (QUOTE (-4375 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-676 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-676 T$) +(-677 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-677 S -3105 FLAF FLAS) +(-678 S -3085 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-678 R Q) +(-679 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-679) +(-680) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4362 . T) (-4367 |has| (-684) (-357)) (-4361 |has| (-684) (-357)) (-4368 |has| (-684) (-6 -4368)) (-4365 |has| (-684) (-6 -4365)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-684) (QUOTE (-144))) (|HasCategory| (-684) (QUOTE (-142))) (|HasCategory| (-684) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-684) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| (-684) (QUOTE (-362))) (|HasCategory| (-684) (QUOTE (-357))) (-3988 (|HasCategory| (-684) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-684) (QUOTE (-357)))) (|HasCategory| (-684) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-684) (QUOTE (-228))) (-3988 (|HasCategory| (-684) (QUOTE (-357))) (|HasCategory| (-684) (QUOTE (-343)))) (|HasCategory| (-684) (QUOTE (-343))) (|HasCategory| (-684) (LIST (QUOTE -280) (QUOTE (-684)) (QUOTE (-684)))) (|HasCategory| (-684) (LIST (QUOTE -303) (QUOTE (-684)))) (|HasCategory| (-684) (LIST (QUOTE -507) (QUOTE (-1155)) (QUOTE (-684)))) (|HasCategory| (-684) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-684) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-684) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-684) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (-3988 (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-357))) (|HasCategory| (-684) (QUOTE (-343)))) (|HasCategory| (-684) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-684) (QUOTE (-1004))) (|HasCategory| (-684) (QUOTE (-1177))) (-12 (|HasCategory| (-684) (QUOTE (-984))) (|HasCategory| (-684) (QUOTE (-1177)))) (-3988 (-12 (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (|HasCategory| (-684) (QUOTE (-357))) (-12 (|HasCategory| (-684) (QUOTE (-343))) (|HasCategory| (-684) (QUOTE (-891))))) (-3988 (-12 (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (-12 (|HasCategory| (-684) (QUOTE (-357))) (|HasCategory| (-684) (QUOTE (-891)))) (-12 (|HasCategory| (-684) (QUOTE (-343))) (|HasCategory| (-684) (QUOTE (-891))))) (|HasCategory| (-684) (QUOTE (-538))) (-12 (|HasCategory| (-684) (QUOTE (-1040))) (|HasCategory| (-684) (QUOTE (-1177)))) (|HasCategory| (-684) (QUOTE (-1040))) (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891))) (-3988 (-12 (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (|HasCategory| (-684) (QUOTE (-357)))) (-3988 (-12 (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (|HasCategory| (-684) (QUOTE (-545)))) (-12 (|HasCategory| (-684) (QUOTE (-228))) (|HasCategory| (-684) (QUOTE (-357)))) (-12 (|HasCategory| (-684) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-684) (QUOTE (-357)))) (|HasCategory| (-684) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-684) (QUOTE (-833))) (|HasCategory| (-684) (QUOTE (-545))) (|HasAttribute| (-684) (QUOTE -4368)) (|HasAttribute| (-684) (QUOTE -4365)) (-12 (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (|HasCategory| (-684) (QUOTE (-142)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-684) (QUOTE (-301))) (|HasCategory| (-684) (QUOTE (-891)))) (|HasCategory| (-684) (QUOTE (-343))))) -(-680 S) +((-4366 . T) (-4371 |has| (-685) (-358)) (-4365 |has| (-685) (-358)) (-4372 |has| (-685) (-6 -4372)) (-4369 |has| (-685) (-6 -4369)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-685) (QUOTE (-145))) (|HasCategory| (-685) (QUOTE (-143))) (|HasCategory| (-685) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-685) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-685) (QUOTE (-363))) (|HasCategory| (-685) (QUOTE (-358))) (-3994 (|HasCategory| (-685) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-685) (QUOTE (-358)))) (|HasCategory| (-685) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-685) (QUOTE (-229))) (-3994 (|HasCategory| (-685) (QUOTE (-358))) (|HasCategory| (-685) (QUOTE (-344)))) (|HasCategory| (-685) (QUOTE (-344))) (|HasCategory| (-685) (LIST (QUOTE -281) (QUOTE (-685)) (QUOTE (-685)))) (|HasCategory| (-685) (LIST (QUOTE -304) (QUOTE (-685)))) (|HasCategory| (-685) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-685)))) (|HasCategory| (-685) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-685) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-685) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-685) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (-3994 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-358))) (|HasCategory| (-685) (QUOTE (-344)))) (|HasCategory| (-685) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-685) (QUOTE (-1007))) (|HasCategory| (-685) (QUOTE (-1180))) (-12 (|HasCategory| (-685) (QUOTE (-987))) (|HasCategory| (-685) (QUOTE (-1180)))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-358))) (-12 (|HasCategory| (-685) (QUOTE (-344))) (|HasCategory| (-685) (QUOTE (-894))))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (-12 (|HasCategory| (-685) (QUOTE (-358))) (|HasCategory| (-685) (QUOTE (-894)))) (-12 (|HasCategory| (-685) (QUOTE (-344))) (|HasCategory| (-685) (QUOTE (-894))))) (|HasCategory| (-685) (QUOTE (-539))) (-12 (|HasCategory| (-685) (QUOTE (-1043))) (|HasCategory| (-685) (QUOTE (-1180)))) (|HasCategory| (-685) (QUOTE (-1043))) (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-358)))) (-3994 (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-546)))) (-12 (|HasCategory| (-685) (QUOTE (-229))) (|HasCategory| (-685) (QUOTE (-358)))) (-12 (|HasCategory| (-685) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-685) (QUOTE (-358)))) (|HasCategory| (-685) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-685) (QUOTE (-836))) (|HasCategory| (-685) (QUOTE (-546))) (|HasAttribute| (-685) (QUOTE -4372)) (|HasAttribute| (-685) (QUOTE -4369)) (-12 (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-143)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-685) (QUOTE (-302))) (|HasCategory| (-685) (QUOTE (-894)))) (|HasCategory| (-685) (QUOTE (-344))))) +(-681 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4370 . T)) +((-4374 . T)) NIL -(-681 U) +(-682 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-682) +(-683) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-683 OV E -3105 PG) +(-684 OV E -3085 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-684) +(-685) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4327 . T) (-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4333 . T) (-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-685 R) +(-686 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-686) +(-687) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4368 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4372 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-687 S D1 D2 I) +(-688 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-688 S) +(-689 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set."))) NIL NIL -(-689 S) +(-690 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-690 S) +(-691 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-691 S T$) +(-692 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-692 S -1780 I) +(-693 S -1787 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-693 E OV R P) +(-694 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-694 R) +(-695 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-695 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-696 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-696) +(-697) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-697 R |Mod| -3668 -3160 |exactQuo|) +(-698 R |Mod| -1877 -3717 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-698 R |Rep|) +(-699 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4365 |has| |#1| (-357)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-699 IS E |ff|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-700 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-700 R M) +(-701 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144)))) -(-701 R |Mod| -3668 -3160 |exactQuo|) +((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) +(-702 R |Mod| -1877 -3717 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4366 . T)) +((-4370 . T)) NIL -(-702 S R) +(-703 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-703 R) +(-704 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-704 -3105) +(-705 -3085) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-705 S) +(-706 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-706) +(-707) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-707 S) +(-708 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-708) +(-709) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-709 S R UP) +(-710 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362)))) -(-710 R UP) +((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363)))) +(-711 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4362 |has| |#1| (-357)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 |has| |#1| (-358)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-711 S) +(-712 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-712) +(-713) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-713 -3105 UP) +(-714 -3085 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-714 |VarSet| E1 E2 R S PR PS) +(-715 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-715 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-716 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-716 E OV R PPR) +(-717 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-717 |vl| R) +(-718 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4371 "*") |has| |#2| (-169)) (-4362 |has| |#2| (-545)) (-4367 |has| |#2| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-891))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-847 |#1|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-718 E OV R PRF) +(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-894))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-850 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-719 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-719 E OV R P) +(-720 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-720 R S M) +(-721 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-721 R M) +(-722 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) (-4366 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-833)))) -(-722 S) +((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-836)))) +(-723 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4359 . T) (-4370 . T)) +((-4363 . T) (-4374 . T)) NIL -(-723 S) +(-724 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4369 . T) (-4359 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-724) +((-4373 . T) (-4363 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-725) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-725 S) +(-726 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-726 |Coef| |Var|) +(-727 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4364 . T) (-4363 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-727 OV E R P) +(-728 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-728 E OV R P) +(-729 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-729 S R) +(-730 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-730 R) +(-731 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-731) +(-732) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-732) +(-733) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-733) +(-734) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-734) +(-735) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-735) +(-736) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-736) +(-737) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-737) +(-738) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-738) +(-739) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-739) +(-740) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-740) +(-741) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-741) +(-742) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-742) +(-743) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-743) +(-744) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-744) +(-745) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-745) +(-746) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-746 S) +(-747 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-748 S) +(-749 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-750 |Par|) +(-751 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-751 -3105) +(-752 -3085) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-752 P -3105) +(-753 P -3085) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-753 T$) +(-754 T$) NIL NIL NIL -(-754 UP -3105) +(-755 UP -3085) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-755) +(-756) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-756 R) +(-757 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4371 "*") . T)) +(((-4375 "*") . T)) NIL -(-758 R -3105) +(-759 R -3085) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-759 S) +(-760 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-761 R |PolR| E |PolE|) +(-762 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-762 R E V P TS) +(-763 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-763 -3105 |ExtF| |SUEx| |ExtP| |n|) +(-764 -3085 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-764 BP E OV R P) +(-765 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-765 |Par|) +(-766 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-766 R |VarSet|) +(-767 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155)))) (-2826 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155)))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155)))) (-2826 (|HasCategory| |#1| (QUOTE (-538)))) (-2826 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155)))) (-2826 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-553))))) (-2826 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1155)))) (-2826 (|HasCategory| |#1| (LIST (QUOTE -974) (QUOTE (-553))))))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-767 R S) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (QUOTE (-539)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-554))))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-1158)))) (-4081 (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-554))))))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-768 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-768 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4365 |has| |#1| (-357)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) (-769 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-770 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) -(-770 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) +(-771 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-771 S) +(-772 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-169)))) -(-772) +((-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-170)))) +(-773) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-773) +(-774) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-774) +(-775) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-775) +(-776) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-776 |Curve|) +(-777 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-777) +(-778) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-778) +(-779) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-779) +(-780) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-780) +(-781) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-781) +(-782) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-782 S R) +(-783 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-538))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-362)))) -(-783 R) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-363)))) +(-784 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-784 -3988 R OS S) +(-785 -3994 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-785 R) +(-786 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-3988 (|HasCategory| (-981 |#1|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (|HasCategory| (-981 |#1|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| (-981 |#1|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-981 |#1|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) -(-786) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-3994 (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-984 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) +(-787) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-787 R -3105 L) +(-788 R -3085 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-788 R -3105) +(-789 R -3085) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-789) +(-790) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-790 R -3105) +(-791 R -3085) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-791) +(-792) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-792 -3105 UP UPUP R) +(-793 -3085 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-793 -3105 UP L LQ) +(-794 -3085 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-794) +(-795) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-795 -3105 UP L LQ) +(-796 -3085 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-796 -3105 UP) +(-797 -3085 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-797 -3105 L UP A LO) +(-798 -3085 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-798 -3105 UP) +(-799 -3085 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-799 -3105 LO) +(-800 -3085 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-800 -3105 LODO) +(-801 -3085 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-801 -2026 S |f|) +(-802 -4082 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4363 |has| |#2| (-1031)) (-4364 |has| |#2| (-1031)) (-4366 |has| |#2| (-6 -4366)) ((-4371 "*") |has| |#2| (-169)) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (QUOTE (-357))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-779))) (-3988 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1031)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1031))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| (-553) (QUOTE (-833))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155))))) (-3988 (|HasCategory| |#2| (QUOTE (-1031))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasAttribute| |#2| (QUOTE -4366)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))))) -(-802 R) +((-4367 |has| |#2| (-1034)) (-4368 |has| |#2| (-1034)) (-4370 |has| |#2| (-6 -4370)) ((-4375 "*") |has| |#2| (-170)) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-780))) (-3994 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1034)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#2| (QUOTE (-1034))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) +(-803 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-804 (-1155)) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-804 (-1155)) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-804 (-1155)) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-804 (-1155)) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-804 (-1155)) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-803 |Kernels| R |var|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-805 (-1158)) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-804 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4371 "*") |has| |#2| (-357)) (-4362 |has| |#2| (-357)) (-4367 |has| |#2| (-357)) (-4361 |has| |#2| (-357)) (-4366 . T) (-4364 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-357)))) -(-804 S) +(((-4375 "*") |has| |#2| (-358)) (-4366 |has| |#2| (-358)) (-4371 |has| |#2| (-358)) (-4365 |has| |#2| (-358)) (-4370 . T) (-4368 . T) (-4367 . T)) +((|HasCategory| |#2| (QUOTE (-358)))) +(-805 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-805 S) +(-806 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-806) +(-807) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-807) +(-808) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-808) +(-809) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-809) +(-810) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-810) +(-811) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-811) +(-812) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-812 R) +(-813 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-813 P R) +(-814 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-228)))) -(-814) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-229)))) +(-815) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-815) +(-816) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-816 S) +(-817 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4369 . T) (-4359 . T) (-4370 . T)) +((-4373 . T) (-4363 . T) (-4374 . T)) NIL -(-817) +(-818) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-818 R S) +(-819 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-819 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4366 |has| |#1| (-831))) -((|HasCategory| |#1| (QUOTE (-831))) (-3988 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-3988 (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-21)))) (-820 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4370 |has| |#1| (-834))) +((|HasCategory| |#1| (QUOTE (-834))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-21)))) +(-821 A S) +((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|operator| (($ |#2| (|NonNegativeInteger|)) "\\spad{operator(s,{}n)} returns an operator object with external name \\spad{`s'},{} and of arity \\spad{`n'}.") (($ |#2|) "\\spad{operator(s)} returns an operator object with external name \\spad{`s'},{} and of arbitrary arity.")) (|arity| ((|Arity| $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) +NIL +NIL +(-822 S) +((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|operator| (($ |#1| (|NonNegativeInteger|)) "\\spad{operator(s,{}n)} returns an operator object with external name \\spad{`s'},{} and of arity \\spad{`n'}.") (($ |#1|) "\\spad{operator(s)} returns an operator object with external name \\spad{`s'},{} and of arbitrary arity.")) (|arity| ((|Arity| $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'."))) +NIL +NIL +(-823 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144)))) -(-821) +((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) +(-824) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-822) +(-825) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-823) +(-826) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-824) +(-827) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-825 R S) +(-828 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-826 R) +(-829 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4366 |has| |#1| (-831))) -((|HasCategory| |#1| (QUOTE (-831))) (-3988 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-3988 (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-21)))) -(-827) +((-4370 |has| |#1| (-834))) +((|HasCategory| |#1| (QUOTE (-834))) (-3994 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-21)))) +(-830) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-828 -2026 S) +(-831 -4082 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-829) +(-832) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-830 S) +(-833 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-831) +(-834) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4366 . T)) +((-4370 . T)) NIL -(-832 S) +(-835 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-833) +(-836) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-834 S R) +(-837 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169)))) -(-835 R) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170)))) +(-838 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-836 R C) +(-839 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) -(-837 R |sigma| -2245) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) +(-840 R |sigma| -1538) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) -(-838 |x| R |sigma| -2245) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-841 |x| R |sigma| -1538) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-357)))) -(-839 R) +((-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-358)))) +(-842 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) -(-840) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) +(-843) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-841) +(-844) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-842 S) +(-845 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-843) +(-846) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-844) +(-847) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-845) +(-848) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-846) +(-849) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-847 |VariableList|) +(-850 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-848 R |vl| |wl| |wtlevel|) +(-851 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) -(-849 R PS UP) +((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) +(-852 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-850 R |x| |pt|) +(-853 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-851 |p|) +(-854 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-852 |p|) +(-855 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-853 |p|) +(-856 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-852 |#1|) (QUOTE (-891))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-852 |#1|) (QUOTE (-142))) (|HasCategory| (-852 |#1|) (QUOTE (-144))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-852 |#1|) (QUOTE (-1004))) (|HasCategory| (-852 |#1|) (QUOTE (-806))) (-3988 (|HasCategory| (-852 |#1|) (QUOTE (-806))) (|HasCategory| (-852 |#1|) (QUOTE (-833)))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-852 |#1|) (QUOTE (-1130))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| (-852 |#1|) (QUOTE (-228))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -852) (|devaluate| |#1|)))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -852) (|devaluate| |#1|)))) (|HasCategory| (-852 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -852) (|devaluate| |#1|)) (LIST (QUOTE -852) (|devaluate| |#1|)))) (|HasCategory| (-852 |#1|) (QUOTE (-301))) (|HasCategory| (-852 |#1|) (QUOTE (-538))) (|HasCategory| (-852 |#1|) (QUOTE (-833))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-852 |#1|) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-852 |#1|) (QUOTE (-891)))) (|HasCategory| (-852 |#1|) (QUOTE (-142))))) -(-854 |p| PADIC) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-855 |#1|) (QUOTE (-894))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-855 |#1|) (QUOTE (-143))) (|HasCategory| (-855 |#1|) (QUOTE (-145))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-855 |#1|) (QUOTE (-1007))) (|HasCategory| (-855 |#1|) (QUOTE (-807))) (-3994 (|HasCategory| (-855 |#1|) (QUOTE (-807))) (|HasCategory| (-855 |#1|) (QUOTE (-836)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-855 |#1|) (QUOTE (-1133))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| (-855 |#1|) (QUOTE (-229))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -855) (|devaluate| |#1|)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -855) (|devaluate| |#1|)))) (|HasCategory| (-855 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -855) (|devaluate| |#1|)) (LIST (QUOTE -855) (|devaluate| |#1|)))) (|HasCategory| (-855 |#1|) (QUOTE (-302))) (|HasCategory| (-855 |#1|) (QUOTE (-539))) (|HasCategory| (-855 |#1|) (QUOTE (-836))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-855 |#1|) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-855 |#1|) (QUOTE (-894)))) (|HasCategory| (-855 |#1|) (QUOTE (-143))))) +(-857 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-891))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-806))) (-3988 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-538))) (|HasCategory| |#2| (QUOTE (-833))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-855 S T$) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-807))) (-3994 (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-836))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-858 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))))) -(-856) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))))) +(-859) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-857) +(-860) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-858 CF1 CF2) +(-861 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-859 |ComponentFunction|) +(-862 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-860 CF1 CF2) +(-863 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-861 |ComponentFunction|) +(-864 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-862) +(-865) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-863 CF1 CF2) +(-866 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-864 |ComponentFunction|) +(-867 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-865) +(-868) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-866 R) +(-869 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-867 R S L) +(-870 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-868 S) +(-871 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-869 |Base| |Subject| |Pat|) +(-872 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2826 (|HasCategory| |#2| (QUOTE (-1031)))) (-2826 (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155)))))) (-12 (|HasCategory| |#2| (QUOTE (-1031))) (-2826 (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155)))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155))))) -(-870 R A B) +((-12 (-4081 (|HasCategory| |#2| (QUOTE (-1034)))) (-4081 (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (-12 (|HasCategory| |#2| (QUOTE (-1034))) (-4081 (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158))))) +(-873 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-871 R S) +(-874 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-872 R -1780) +(-875 R -1787) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-873 R S) +(-876 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-874 R) +(-877 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-875 |VarSet|) +(-878 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-876 UP R) +(-879 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-877) +(-880) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-878 UP -3105) +(-881 UP -3085) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-879) +(-882) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-880) +(-883) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-881 A S) +(-884 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-882 S) +(-885 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4366 . T)) +((-4370 . T)) NIL -(-883 S) +(-886 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-884 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-887 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-885 S) +(-888 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4366 . T)) +((-4370 . T)) NIL -(-886 S) +(-889 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-887 S) +(-890 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4366 . T)) -((-3988 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-833)))) -(-888 R E |VarSet| S) +((-4370 . T)) +((-3994 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-836)))) +(-891 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-889 R S) +(-892 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-890 S) +(-893 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-142)))) -(-891) +((|HasCategory| |#1| (QUOTE (-143)))) +(-894) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-892 |p|) +(-895 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-142))) (|HasCategory| $ (QUOTE (-362)))) -(-893 R0 -3105 UP UPUP R) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363)))) +(-896 R0 -3085 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-894 UP UPUP R) +(-897 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-895 UP UPUP) +(-898 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-896 R) +(-899 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-897 R) +(-900 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-898 E OV R P) +(-901 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-899) +(-902) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-900 -3105) +(-903 -3085) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-901 R) +(-904 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-902) +(-905) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-903) +(-906) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4371 "*") . T)) +(((-4375 "*") . T)) NIL -(-904 -3105 P) +(-907 -3085 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-905 |xx| -3105) +(-908 |xx| -3085) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-906 R |Var| |Expon| GR) +(-909 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-907 S) +(-910 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-908) +(-911) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-909) +(-912) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-910) +(-913) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-911 R -3105) +(-914 R -3085) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-912) +(-915) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-913 S A B) +(-916 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-914 S R -3105) +(-917 S R -3085) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-915 I) +(-918 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-916 S E) +(-919 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-917 S R L) +(-920 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-918 S E V R P) +(-921 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -868) (|devaluate| |#1|)))) -(-919 R -3105 -1780) +((|HasCategory| |#3| (LIST (QUOTE -871) (|devaluate| |#1|)))) +(-922 R -3085 -1787) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-920 -1780) +(-923 -1787) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-921 S R Q) +(-924 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-922 S) +(-925 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-923 S R P) +(-926 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-924) +(-927) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-925 R) +(-928 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#1| (QUOTE (-1031))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-926 |lv| R) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-929 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-927 |TheField| |ThePols|) +(-930 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-831)))) -(-928 R S) +((|HasCategory| |#1| (QUOTE (-834)))) +(-931 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-929 |x| R) +(-932 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-930 S R E |VarSet|) +(-933 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-891))) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#4| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#4| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#4| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-833)))) -(-931 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-894))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#4| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#4| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#4| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-836)))) +(-934 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-932 E V R P -3105) +(-935 E V R P -3085) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-933 E |Vars| R P S) +(-936 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-934 R) +(-937 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1155) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-1155) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-1155) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-1155) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-1155) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-935 E V R P -3105) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1158) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-938 E V R P -3085) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-445)))) -(-936) +((|HasCategory| |#3| (QUOTE (-446)))) +(-939) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-937) +(-940) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-938 R L) +(-941 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-939 A B) +(-942 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-940 S) +(-943 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-941) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-944) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-942 -3105) +(-945 -3085) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-943 I) +(-946 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-944) +(-947) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-945 R E) +(-948 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-129)))) (|HasAttribute| |#1| (QUOTE -4367))) -(-946 A B) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4371))) +(-949 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4366 -12 (|has| |#2| (-466)) (|has| |#1| (-466)))) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-833))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))) (-12 (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-712)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-833))))) -(-947) +((-4370 -12 (|has| |#2| (-467)) (|has| |#1| (-467)))) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-836))))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-713))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-713)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-836))))) +(-950) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-948 T$) +(-951 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-949) +(-952) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-950 S) +(-953 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-951 R |polR|) +(-954 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-445)))) -(-952) +((|HasCategory| |#1| (QUOTE (-446)))) +(-955) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-953) +(-956) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-954 S |Coef| |Expon| |Var|) +(-957 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-955 |Coef| |Expon| |Var|) +(-958 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-956) +(-959) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-957 S R E |VarSet| P) +(-960 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-545)))) -(-958 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-546)))) +(-961 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4369 . T)) +((-4373 . T)) NIL -(-959 R E V P) +(-962 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-445)))) -(-960 K) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-446)))) +(-963 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-961 |VarSet| E RC P) +(-964 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-962 R) +(-965 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-963 R1 R2) +(-966 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-964 R) +(-967 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-965 K) +(-968 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-966 R E OV PPR) +(-969 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-967 K R UP -3105) +(-970 K R UP -3085) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-968 |vl| |nv|) +(-971 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-969 R |Var| |Expon| |Dpoly|) +(-972 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-301))))) -(-970 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302))))) +(-973 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-971) +(-974) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-972 A B R S) +(-975 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-973 A S) +(-976 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-891))) (|HasCategory| |#2| (QUOTE (-538))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-1130)))) -(-974 S) +((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-1133)))) +(-977 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-975 |n| K) +(-978 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-976) +(-979) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-977 S) +(-980 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-978 S R) +(-981 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-538))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-284)))) -(-979 R) +((|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-1043))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-285)))) +(-982 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4362 |has| |#1| (-284)) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 |has| |#1| (-285)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-980 QR R QS S) +(-983 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-981 R) +(-984 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4362 |has| |#1| (-284)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-538)))) -(-982 S) +((-4366 |has| |#1| (-285)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-1043))) (|HasCategory| |#1| (QUOTE (-539)))) +(-985 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-983 S) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-986 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-984) +(-987) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-985 -3105 UP UPUP |radicnd| |n|) +(-988 -3085 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4362 |has| (-401 |#2|) (-357)) (-4367 |has| (-401 |#2|) (-357)) (-4361 |has| (-401 |#2|) (-357)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-3988 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-3988 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-3988 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -626) (QUOTE (-553)))) (-3988 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) -(-986 |bb|) +((-4366 |has| (-402 |#2|) (-358)) (-4371 |has| (-402 |#2|) (-358)) (-4365 |has| (-402 |#2|) (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-3994 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3994 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-3994 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358))))) +(-989 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-553) (QUOTE (-891))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| (-553) (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-144))) (|HasCategory| (-553) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-553) (QUOTE (-1004))) (|HasCategory| (-553) (QUOTE (-806))) (-3988 (|HasCategory| (-553) (QUOTE (-806))) (|HasCategory| (-553) (QUOTE (-833)))) (|HasCategory| (-553) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-1130))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| (-553) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| (-553) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| (-553) (QUOTE (-228))) (|HasCategory| (-553) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| (-553) (LIST (QUOTE -507) (QUOTE (-1155)) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -303) (QUOTE (-553)))) (|HasCategory| (-553) (LIST (QUOTE -280) (QUOTE (-553)) (QUOTE (-553)))) (|HasCategory| (-553) (QUOTE (-301))) (|HasCategory| (-553) (QUOTE (-538))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-553) (LIST (QUOTE -626) (QUOTE (-553)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-553) (QUOTE (-891)))) (|HasCategory| (-553) (QUOTE (-142))))) -(-987) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-554) (QUOTE (-894))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| (-554) (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-145))) (|HasCategory| (-554) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-1007))) (|HasCategory| (-554) (QUOTE (-807))) (-3994 (|HasCategory| (-554) (QUOTE (-807))) (|HasCategory| (-554) (QUOTE (-836)))) (|HasCategory| (-554) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-1133))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| (-554) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| (-554) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| (-554) (QUOTE (-229))) (|HasCategory| (-554) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| (-554) (LIST (QUOTE -508) (QUOTE (-1158)) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -304) (QUOTE (-554)))) (|HasCategory| (-554) (LIST (QUOTE -281) (QUOTE (-554)) (QUOTE (-554)))) (|HasCategory| (-554) (QUOTE (-302))) (|HasCategory| (-554) (QUOTE (-539))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-554) (LIST (QUOTE -627) (QUOTE (-554)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-554) (QUOTE (-894)))) (|HasCategory| (-554) (QUOTE (-143))))) +(-990) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-988) +(-991) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-989 RP) +(-992 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-990 S) +(-993 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-991 A S) +(-994 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4370)) (|HasCategory| |#2| (QUOTE (-1079)))) -(-992 S) +((|HasAttribute| |#1| (QUOTE -4374)) (|HasCategory| |#2| (QUOTE (-1082)))) +(-995 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-993 S) +(-996 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-994) +(-997) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4362 . T) (-4367 . T) (-4361 . T) (-4364 . T) (-4363 . T) ((-4371 "*") . T) (-4366 . T)) +((-4366 . T) (-4371 . T) (-4365 . T) (-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4370 . T)) NIL -(-995 R -3105) +(-998 R -3085) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-996 R -3105) +(-999 R -3085) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-997 -3105 UP) +(-1000 -3085 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-998 -3105 UP) +(-1001 -3085 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-999 S) +(-1002 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1000 F1 UP UPUP R F2) +(-1003 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1001) +(-1004) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1002 |Pol|) +(-1005 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1003 |Pol|) +(-1006 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1004) +(-1007) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1005) +(-1008) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1006 |TheField|) +(-1009 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4362 . T) (-4367 . T) (-4361 . T) (-4364 . T) (-4363 . T) ((-4371 "*") . T) (-4366 . T)) -((-3988 (|HasCategory| (-401 (-553)) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-401 (-553)) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-401 (-553)) (LIST (QUOTE -1020) (QUOTE (-553))))) -(-1007 -3105 L) +((-4366 . T) (-4371 . T) (-4365 . T) (-4368 . T) (-4367 . T) ((-4375 "*") . T) (-4370 . T)) +((-3994 (|HasCategory| (-402 (-554)) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-402 (-554)) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-402 (-554)) (LIST (QUOTE -1023) (QUOTE (-554))))) +(-1010 -3085 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1008 S) +(-1011 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1079)))) -(-1009 R E V P) +((|HasCategory| |#1| (QUOTE (-1082)))) +(-1012 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1010 R) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1013 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4371 "*")))) -(-1011 R) +((|HasAttribute| |#1| (QUOTE (-4375 "*")))) +(-1014 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-301)))) -(-1012 S) +((-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302)))) +(-1015 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1013) +(-1016) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1014 S) +(-1017 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1015 S) +(-1018 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1016 -3105 |Expon| |VarSet| |FPol| |LFPol|) +(-1019 -3085 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1017) +(-1020) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -3256) (QUOTE (-52))))))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-52) (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-1155) (QUOTE (-833))) (|HasCategory| (-52) (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845))))) -(-1018) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -2701) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-52) (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-1158) (QUOTE (-836))) (|HasCategory| (-52) (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848))))) +(-1021) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1019 A S) +(-1022 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1020 S) +(-1023 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1021 Q R) +(-1024 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1022) +(-1025) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1023 UP) +(-1026 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1024 R) +(-1027 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1025 R) +(-1028 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1026 T$) +(-1029 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1027 T$) +(-1030 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1028 R |ls|) +(-1031 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| (-766 |#1| (-847 |#2|)) (QUOTE (-1079))) (|HasCategory| (-766 |#1| (-847 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -766) (|devaluate| |#1|) (LIST (QUOTE -847) (|devaluate| |#2|)))))) (|HasCategory| (-766 |#1| (-847 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-766 |#1| (-847 |#2|)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-847 |#2|) (QUOTE (-362))) (|HasCategory| (-766 |#1| (-847 |#2|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-1029) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| (-767 |#1| (-850 |#2|)) (QUOTE (-1082))) (|HasCategory| (-767 |#1| (-850 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -767) (|devaluate| |#1|) (LIST (QUOTE -850) (|devaluate| |#2|)))))) (|HasCategory| (-767 |#1| (-850 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-767 |#1| (-850 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| (-850 |#2|) (QUOTE (-363))) (|HasCategory| (-767 |#1| (-850 |#2|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-1032) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1030 S) +(-1033 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1031) +(-1034) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4366 . T)) +((-4370 . T)) NIL -(-1032 |xx| -3105) +(-1035 |xx| -3085) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1033 S |m| |n| R |Row| |Col|) +(-1036 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-301))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-545))) (|HasCategory| |#4| (QUOTE (-169)))) -(-1034 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-302))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-546))) (|HasCategory| |#4| (QUOTE (-170)))) +(-1037 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4369 . T) (-4364 . T) (-4363 . T)) +((-4373 . T) (-4368 . T) (-4367 . T)) NIL -(-1035 |m| |n| R) +(-1038 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4369 . T) (-4364 . T) (-4363 . T)) -((-3988 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-301))) (|HasCategory| |#3| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-169))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1036 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4373 . T) (-4368 . T) (-4367 . T)) +((-3994 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (QUOTE (-302))) (|HasCategory| |#3| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-170))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1039 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1037 R) +(-1040 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1038) +(-1041) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1039 S) +(-1042 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1040) +(-1043) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1041 |TheField| |ThePolDom|) +(-1044 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1042) +(-1045) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4357 . T) (-4361 . T) (-4356 . T) (-4367 . T) (-4368 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4361 . T) (-4365 . T) (-4360 . T) (-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1043) +(-1046) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (QUOTE (-1155))) (LIST (QUOTE |:|) (QUOTE -3256) (QUOTE (-52))))))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-52) (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| (-52) (QUOTE (-1079))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (QUOTE (-1079))) (|HasCategory| (-1155) (QUOTE (-833))) (|HasCategory| (-52) (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-52) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (LIST (QUOTE -600) (QUOTE (-845))))) -(-1044 S R E V) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -2701) (QUOTE (-52))))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-52) (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| (-52) (QUOTE (-1082))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (QUOTE (-1082))) (|HasCategory| (-1158) (QUOTE (-836))) (|HasCategory| (-52) (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-52) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (LIST (QUOTE -601) (QUOTE (-848))))) +(-1047 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-538))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -974) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-1155))))) -(-1045 R E V) +((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-1158))))) +(-1048 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-1046) +(-1049) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1047 S |TheField| |ThePols|) +(-1050 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1048 |TheField| |ThePols|) +(-1051 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1049 R E V P TS) +(-1052 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1050 S R E V P) +(-1053 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1051 R E V P) +(-1054 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1052 R E V P TS) +(-1055 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1053) +(-1056) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1054 |f|) +(-1057 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1055 |Base| R -3105) +(-1058 |Base| R -3085) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1056 |Base| R -3105) +(-1059 |Base| R -3085) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1057 R |ls|) +(-1060 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1058 UP SAE UPA) +(-1061 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1059 R UP M) +(-1062 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4362 |has| |#1| (-357)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-343)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))))) -(-1060 UP SAE UPA) +((-4366 |has| |#1| (-358)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-344)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))))) +(-1063 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1061) +(-1064) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1062) +(-1065) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1063 S) +(-1066 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1064) +(-1067) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1065 R) +(-1068 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1066 R) +(-1069 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1067 (-1155)) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-1067 (-1155)) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-1067 (-1155)) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-1067 (-1155)) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-1067 (-1155)) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1067 S) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1070 (-1158)) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1070 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1068 R S) +(-1071 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-831)))) -(-1069) +((|HasCategory| |#1| (QUOTE (-834)))) +(-1072) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1070 R S) +(-1073 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1071 S) +(-1074 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1079)))) -(-1072 S) +((|HasCategory| |#1| (QUOTE (-1082)))) +(-1075 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1073 S) +(-1076 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-1079)))) -(-1074 S L) +((|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) +(-1077 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) NIL NIL -(-1075) +(-1078) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1076 A S) +(-1079 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1077 S) +(-1080 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4359 . T)) +((-4363 . T)) NIL -(-1078 S) +(-1081 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1079) +(-1082) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1080 |m| |n|) +(-1083 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1081 S) +(-1084 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4369 . T) (-4359 . T) (-4370 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-1082 |Str| |Sym| |Int| |Flt| |Expr|) +((-4373 . T) (-4363 . T) (-4374 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-1085 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1083) +(-1086) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1084 |Str| |Sym| |Int| |Flt| |Expr|) +(-1087 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1085 R FS) +(-1088 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1086 R E V P TS) +(-1089 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1087 R E V P TS) +(-1090 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1088 R E V P) +(-1091 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1089) +(-1092) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1090 S) +(-1093 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1091) +(-1094) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1092 |dimtot| |dim1| S) +(-1095 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4363 |has| |#3| (-1031)) (-4364 |has| |#3| (-1031)) (-4366 |has| |#3| (-6 -4366)) ((-4371 "*") |has| |#3| (-169)) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#3| (QUOTE (-357))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1031)))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (QUOTE (-779))) (-3988 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-831)))) (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-169))) (-3988 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1031)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (-3988 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (QUOTE (-1079)))) (-3988 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1031)))) (-3988 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1031)))) (-3988 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1031)))) (-3988 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-129)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-712)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-779)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-831)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1031)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1079))))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1031))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-712))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-779))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-831))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))))) (|HasCategory| (-553) (QUOTE (-833))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1031)))) (-12 (|HasCategory| |#3| (QUOTE (-1031))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-1155))))) (-3988 (|HasCategory| |#3| (QUOTE (-1031))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553)))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasAttribute| |#3| (QUOTE -4366)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) -(-1093 R |x|) +((-4367 |has| |#3| (-1034)) (-4368 |has| |#3| (-1034)) (-4370 |has| |#3| (-6 -4370)) ((-4375 "*") |has| |#3| (-170)) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#3| (QUOTE (-358))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-780))) (-3994 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834)))) (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-170))) (-3994 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (QUOTE (-1082)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1034)))) (-3994 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-713)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-834)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-713))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-834))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (|HasCategory| (-554) (QUOTE (-836))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1034)))) (-12 (|HasCategory| |#3| (QUOTE (-1034))) (|HasCategory| |#3| (LIST (QUOTE -885) (QUOTE (-1158))))) (-3994 (|HasCategory| |#3| (QUOTE (-1034))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554)))))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#3| (QUOTE (-1082)))) (|HasAttribute| |#3| (QUOTE -4370)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) +(-1096 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-445)))) -(-1094) +((|HasCategory| |#1| (QUOTE (-446)))) +(-1097) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1095 R -3105) +(-1098 R -3085) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1096 R) +(-1099 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1097) +(-1100) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1098) +(-1101) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1099) +(-1102) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4357 . T) (-4361 . T) (-4356 . T) (-4367 . T) (-4368 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4361 . T) (-4365 . T) (-4360 . T) (-4371 . T) (-4372 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1100 S) +(-1103 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4369 . T) (-4370 . T)) +((-4373 . T) (-4374 . T)) NIL -(-1101 S |ndim| R |Row| |Col|) +(-1104 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-357))) (|HasAttribute| |#3| (QUOTE (-4371 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) -(-1102 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-358))) (|HasAttribute| |#3| (QUOTE (-4375 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) +(-1105 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4369 . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4373 . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1103 R |Row| |Col| M) +(-1106 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1104 R |VarSet|) +(-1107 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1105 |Coef| |Var| SMP) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1108 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-357)))) -(-1106 R E V P) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-358)))) +(-1109 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1107 UP -3105) +(-1110 UP -3085) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1108 R) +(-1111 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1109 R) +(-1112 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1110 R) +(-1113 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1111 S A) +(-1114 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-833)))) -(-1112 R) +((|HasCategory| |#1| (QUOTE (-836)))) +(-1115 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1113 R) +(-1116 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1114) +(-1117) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1115) +(-1118) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1116) +(-1119) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1117) +(-1120) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1118) +(-1121) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1119 V C) +(-1122 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1120 V C) +(-1123 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-1119 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1119) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1119 |#1| |#2|) (QUOTE (-1079)))) (|HasCategory| (-1119 |#1| |#2|) (QUOTE (-1079))) (-3988 (|HasCategory| (-1119 |#1| |#2|) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-1119 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1119) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1119 |#1| |#2|) (QUOTE (-1079))))) (|HasCategory| (-1119 |#1| |#2|) (LIST (QUOTE -600) (QUOTE (-845))))) -(-1121 |ndim| R) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1122) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1122 |#1| |#2|) (QUOTE (-1082)))) (|HasCategory| (-1122 |#1| |#2|) (QUOTE (-1082))) (-3994 (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1122) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1122 |#1| |#2|) (QUOTE (-1082))))) (|HasCategory| (-1122 |#1| |#2|) (LIST (QUOTE -601) (QUOTE (-848))))) +(-1124 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4366 . T) (-4358 |has| |#2| (-6 (-4371 "*"))) (-4369 . T) (-4363 . T) (-4364 . T)) -((|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4371 "*"))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-357))) (-3988 (|HasAttribute| |#2| (QUOTE (-4371 "*"))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-169)))) -(-1122 S) +((-4370 . T) (-4362 |has| |#2| (-6 (-4375 "*"))) (-4373 . T) (-4367 . T) (-4368 . T)) +((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-358))) (-3994 (|HasAttribute| |#2| (QUOTE (-4375 "*"))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-1125 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1123) +(-1126) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1124 R E V P TS) +(-1127 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1125 R E V P) +(-1128 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1126 S) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1129 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1127 A S) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1130 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1128 S) +(-1131 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1129 |Key| |Ent| |dent|) +(-1132 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-833))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079)))) -(-1130) +((-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-836))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082)))) +(-1133) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1131 |Coef|) +(-1134 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1132 S) +(-1135 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1133 A B) +(-1136 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1134 A B C) +(-1137 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1135 S) +(-1138 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4370 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1136) +((-4374 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1139) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1137) +(-1140) NIL -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| (-141) (QUOTE (-833))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| (-141) (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| (-141) (QUOTE (-1079))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) -(-1138 |Entry|) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| (-142) (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| (-142) (QUOTE (-1082))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) +(-1141 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (QUOTE (-1137))) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#1|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (QUOTE (-1079))) (|HasCategory| (-1137) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-1139 A) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (QUOTE (-1140))) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#1|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (QUOTE (-1082))) (|HasCategory| (-1140) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-1142 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) -(-1140 |Coef|) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) +(-1143 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1141 |Coef|) +(-1144 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1142 R UP) +(-1145 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-301)))) -(-1143 |n| R) +((|HasCategory| |#1| (QUOTE (-302)))) +(-1146 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1144 S1 S2) +(-1147 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1145) +(-1148) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1146 |Coef| |var| |cen|) +(-1149 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4371 "*") -3988 (-3726 (|has| |#1| (-357)) (|has| (-1153 |#1| |#2| |#3|) (-806))) (|has| |#1| (-169)) (-3726 (|has| |#1| (-357)) (|has| (-1153 |#1| |#2| |#3|) (-891)))) (-4362 -3988 (-3726 (|has| |#1| (-357)) (|has| (-1153 |#1| |#2| |#3|) (-806))) (|has| |#1| (-545)) (-3726 (|has| |#1| (-357)) (|has| (-1153 |#1| |#2| |#3|) (-891)))) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|)))))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|))))) (|HasCategory| (-553) (QUOTE (-1091))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1153 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1147 R -3105) +(((-4375 "*") -3994 (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-807))) (|has| |#1| (-170)) (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-894)))) (-4366 -3994 (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-807))) (|has| |#1| (-546)) (-3726 (|has| |#1| (-358)) (|has| (-1156 |#1| |#2| |#3|) (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|)))))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasCategory| (-554) (QUOTE (-1094))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1150 R -3085) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1148 R) +(-1151 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1149 R S) +(-1152 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1150 E OV R P) +(-1153 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1151 R) +(-1154 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4365 |has| |#1| (-357)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1152 |Coef| |var| |cen|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4371)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1155 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-553)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|))))))) -(-1153 |Coef| |var| |cen|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|))))))) +(-1156 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-757)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-757)) (|devaluate| |#1|)))) (|HasCategory| (-757) (QUOTE (-1091))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-757))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-757))))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|))))))) -(-1154) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|)))) (|HasCategory| (-758) (QUOTE (-1094))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|))))))) +(-1157) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1155) +(-1158) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1156 R) +(-1159 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1157 R) +(-1160 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-6 -4367)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| (-953) (QUOTE (-129))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasAttribute| |#1| (QUOTE -4367))) -(-1158) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-6 -4371)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| (-956) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasAttribute| |#1| (QUOTE -4371))) +(-1161) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1159) +(-1162) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1160) +(-1163) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1161 R) +(-1164 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1162) +(-1165) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1163 S) +(-1166 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1164 S) +(-1167 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1165 |Key| |Entry|) +(-1168 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4369 . T) (-4370 . T)) -((-12 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2578) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3256) (|devaluate| |#2|)))))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1079)))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -601) (QUOTE (-529)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-1079))) (-3988 (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-845)))) (|HasCategory| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (LIST (QUOTE -600) (QUOTE (-845))))) -(-1166 R) +((-4373 . T) (-4374 . T)) +((-12 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2564) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2701) (|devaluate| |#2|)))))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -602) (QUOTE (-530)))) (-12 (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-1082))) (-3994 (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-848)))) (|HasCategory| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (LIST (QUOTE -601) (QUOTE (-848))))) +(-1169 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1167 S |Key| |Entry|) +(-1170 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1168 |Key| |Entry|) +(-1171 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4370 . T)) +((-4374 . T)) NIL -(-1169 |Key| |Entry|) +(-1172 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1170) +(-1173) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1171 S) +(-1174 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1172) +(-1175) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1173) +(-1176) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1174 R) +(-1177 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1175) +(-1178) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1176 S) +(-1179 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1177) +(-1180) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1178 S) +(-1181 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1079))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1179 S) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1082))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1182 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1180) +(-1183) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1181 R -3105) +(-1184 R -3085) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1182 R |Row| |Col| M) +(-1185 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1183 R -3105) +(-1186 R -3085) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -868) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -868) (|devaluate| |#1|))))) -(-1184 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -602) (LIST (QUOTE -877) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -871) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -871) (|devaluate| |#1|))))) +(-1187 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-362)))) -(-1185 R E V P) +((|HasCategory| |#4| (QUOTE (-363)))) +(-1188 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1186 |Coef|) +(-1189 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-357)))) -(-1187 |Curve|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-358)))) +(-1190 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1188) +(-1191) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1189 S) +(-1192 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1190 -3105) +((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1193 -3085) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1191) +(-1194) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1192) +(-1195) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1193 S) +(-1196 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-833)))) -(-1194) +((|HasCategory| |#1| (QUOTE (-836)))) +(-1197) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1195 S) +(-1198 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1196) +(-1199) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1197 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1200 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1198 |Coef|) +(-1201 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1199 S |Coef| UTS) +(-1202 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-357)))) -(-1200 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-358)))) +(-1203 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1201 |Coef| UTS) +(-1204 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-891)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142))))) (-3988 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-144))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-228)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|))))) (|HasCategory| (-553) (QUOTE (-1091))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-891)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1004)))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-806)))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-833))))) (-3988 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-891)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1004)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-1155)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1155)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-891))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142)))))) -(-1202 |Coef| |var| |cen|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))) (-3994 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-145))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasCategory| (-554) (QUOTE (-1094))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1007)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836))))) (-3994 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1007)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-1158)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -508) (QUOTE (-1158)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-894))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143)))))) +(-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4371 "*") -3988 (-3726 (|has| |#1| (-357)) (|has| (-1230 |#1| |#2| |#3|) (-806))) (|has| |#1| (-169)) (-3726 (|has| |#1| (-357)) (|has| (-1230 |#1| |#2| |#3|) (-891)))) (-4362 -3988 (-3726 (|has| |#1| (-357)) (|has| (-1230 |#1| |#2| |#3|) (-806))) (|has| |#1| (-545)) (-3726 (|has| |#1| (-357)) (|has| (-1230 |#1| |#2| |#3|) (-891)))) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|)))))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-553)) (|devaluate| |#1|))))) (|HasCategory| (-553) (QUOTE (-1091))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-1155)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1155)) (LIST (QUOTE -1230) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-553))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-538))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-806))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1230 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) -(-1203 ZP) +(((-4375 "*") -3994 (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-807))) (|has| |#1| (-170)) (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-894)))) (-4366 -3994 (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-807))) (|has| |#1| (-546)) (-3726 (|has| |#1| (-358)) (|has| (-1233 |#1| |#2| |#3|) (-894)))) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|)))))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-554)) (|devaluate| |#1|))))) (|HasCategory| (-554) (QUOTE (-1094))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -508) (QUOTE (-1158)) (LIST (QUOTE -1233) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-554))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-894))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1233 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1206 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1204 R S) +(-1207 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-831)))) -(-1205 S) +((|HasCategory| |#1| (QUOTE (-834)))) +(-1208 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-1079)))) -(-1206 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) +(-1209 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1207 R Q UP) +(-1210 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1208 R UP) +(-1211 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1209 R UP) +(-1212 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1210 R U) +(-1213 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1211 |x| R) +(-1214 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4371 "*") |has| |#2| (-169)) (-4362 |has| |#2| (-545)) (-4365 |has| |#2| (-357)) (-4367 |has| |#2| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-891))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-373))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -868) (QUOTE (-553)))) (|HasCategory| |#2| (LIST (QUOTE -868) (QUOTE (-553))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-373)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -874) (QUOTE (-553)))))) (-12 (|HasCategory| (-1061) (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-529))))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (QUOTE (-553)))) (-3988 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| |#2| (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (-3988 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (-3988 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-891)))) (|HasCategory| |#2| (QUOTE (-142))))) -(-1212 R PR S PS) +(((-4375 "*") |has| |#2| (-170)) (-4366 |has| |#2| (-546)) (-4369 |has| |#2| (-358)) (-4371 |has| |#2| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-894))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-546)))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-374))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -871) (QUOTE (-554)))) (|HasCategory| |#2| (LIST (QUOTE -871) (QUOTE (-554))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-374)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -602) (LIST (QUOTE -877) (QUOTE (-554)))))) (-12 (|HasCategory| (-1064) (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-554)))) (-3994 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| |#2| (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (-3994 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE -4371)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (-3994 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-894)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-1215 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1213 S R) +(-1216 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1130)))) -(-1214 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-546))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1133)))) +(-1217 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4365 |has| |#1| (-357)) (-4367 |has| |#1| (-6 -4367)) (-4364 . T) (-4363 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4369 |has| |#1| (-358)) (-4371 |has| |#1| (-6 -4371)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-1215 S |Coef| |Expon|) +(-1218 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1091))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3110) (LIST (|devaluate| |#2|) (QUOTE (-1155)))))) -(-1216 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3075) (LIST (|devaluate| |#2|) (QUOTE (-1158)))))) +(-1219 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1217 RC P) +(-1220 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1218 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1221 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1219 |Coef|) +(-1222 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1220 S |Coef| ULS) +(-1223 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1221 |Coef| ULS) +(-1224 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1222 |Coef| ULS) +(-1225 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-553)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) -(-1223 |Coef| |var| |cen|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) +(-1226 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4367 |has| |#1| (-357)) (-4361 |has| |#1| (-357)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-169))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-553)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-3988 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-553)))))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|))))))) -(-1224 R FE |var| |cen|) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4371 |has| |#1| (-358)) (-4365 |has| |#1| (-358)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#1| (QUOTE (-170))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-554)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-3994 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-546)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-554)))))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|))))))) +(-1227 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4371 "*") |has| (-1223 |#2| |#3| |#4|) (-169)) (-4362 |has| (-1223 |#2| |#3| |#4|) (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| (-1223 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-1223 |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1223 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1223 |#2| |#3| |#4|) (QUOTE (-169))) (-3988 (|HasCategory| (-1223 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-1223 |#2| |#3| |#4|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553)))))) (|HasCategory| (-1223 |#2| |#3| |#4|) (LIST (QUOTE -1020) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| (-1223 |#2| |#3| |#4|) (LIST (QUOTE -1020) (QUOTE (-553)))) (|HasCategory| (-1223 |#2| |#3| |#4|) (QUOTE (-357))) (|HasCategory| (-1223 |#2| |#3| |#4|) (QUOTE (-445))) (|HasCategory| (-1223 |#2| |#3| |#4|) (QUOTE (-545)))) -(-1225 A S) +(((-4375 "*") |has| (-1226 |#2| |#3| |#4|) (-170)) (-4366 |has| (-1226 |#2| |#3| |#4|) (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-170))) (-3994 (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554)))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -1023) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| (-1226 |#2| |#3| |#4|) (LIST (QUOTE -1023) (QUOTE (-554)))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-358))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-446))) (|HasCategory| (-1226 |#2| |#3| |#4|) (QUOTE (-546)))) +(-1228 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4370))) -(-1226 S) +((|HasAttribute| |#1| (QUOTE -4374))) +(-1229 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1227 |Coef1| |Coef2| UTS1 UTS2) +(-1230 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1228 S |Coef|) +(-1231 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-1177))) (|HasSignature| |#2| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3406) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1155))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#2| (QUOTE (-357)))) -(-1229 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#2| (QUOTE (-944))) (|HasCategory| |#2| (QUOTE (-1180))) (|HasSignature| |#2| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2279) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1158))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#2| (QUOTE (-358)))) +(-1232 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1230 |Coef| |var| |cen|) +(-1233 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4371 "*") |has| |#1| (-169)) (-4362 |has| |#1| (-545)) (-4363 . T) (-4364 . T) (-4366 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasCategory| |#1| (QUOTE (-545))) (-3988 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-1155)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-757)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-757)) (|devaluate| |#1|)))) (|HasCategory| (-757) (QUOTE (-1091))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-757))))) (|HasSignature| |#1| (LIST (QUOTE -3110) (LIST (|devaluate| |#1|) (QUOTE (-1155)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-757))))) (|HasCategory| |#1| (QUOTE (-357))) (-3988 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-553)))) (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasSignature| |#1| (LIST (QUOTE -3406) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1155))))) (|HasSignature| |#1| (LIST (QUOTE -3506) (LIST (LIST (QUOTE -630) (QUOTE (-1155))) (|devaluate| |#1|))))))) -(-1231 |Coef| UTS) +(((-4375 "*") |has| |#1| (-170)) (-4366 |has| |#1| (-546)) (-4367 . T) (-4368 . T) (-4370 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasCategory| |#1| (QUOTE (-546))) (-3994 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -885) (QUOTE (-1158)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-758)) (|devaluate| |#1|)))) (|HasCategory| (-758) (QUOTE (-1094))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasSignature| |#1| (LIST (QUOTE -3075) (LIST (|devaluate| |#1|) (QUOTE (-1158)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-758))))) (|HasCategory| |#1| (QUOTE (-358))) (-3994 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-1180))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasSignature| |#1| (LIST (QUOTE -2279) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1158))))) (|HasSignature| |#1| (LIST (QUOTE -2405) (LIST (LIST (QUOTE -631) (QUOTE (-1158))) (|devaluate| |#1|))))))) +(-1234 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1232 -3105 UP L UTS) +(-1235 -3085 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-545)))) -(-1233) +((|HasCategory| |#1| (QUOTE (-546)))) +(-1236) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1234 |sym|) +(-1237 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1235 S R) +(-1238 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-712))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1236 R) +((|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-713))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1239 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4370 . T) (-4369 . T)) +((-4374 . T) (-4373 . T)) NIL -(-1237 A B) +(-1240 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1238 R) +(-1241 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4370 . T) (-4369 . T)) -((-3988 (-12 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-3988 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845))))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-529)))) (-3988 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-553) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-712))) (|HasCategory| |#1| (QUOTE (-1031))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) -(-1239) +((-4374 . T) (-4373 . T)) +((-3994 (-12 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3994 (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-530)))) (-3994 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-554) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-713))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1034)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-848)))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) +(-1242) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1240) +(-1243) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1241) +(-1244) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1242) +(-1245) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1243) +(-1246) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1244 A S) +(-1247 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1245 S) +(-1248 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4364 . T) (-4363 . T)) +((-4368 . T) (-4367 . T)) NIL -(-1246 R) +(-1249 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1247 K R UP -3105) +(-1250 K R UP -3085) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1248) +(-1251) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1249) +(-1252) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1250 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1253 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4364 |has| |#1| (-169)) (-4363 |has| |#1| (-169)) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) -(-1251 R E V P) +((-4368 |has| |#1| (-170)) (-4367 |has| |#1| (-170)) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) +(-1254 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4370 . T) (-4369 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-529)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-845))))) -(-1252 R) +((-4374 . T) (-4373 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-530)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-546))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-848))))) +(-1255 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4363 . T) (-4364 . T) (-4366 . T)) +((-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1253 |vl| R) +(-1256 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4366 . T) (-4362 |has| |#2| (-6 -4362)) (-4364 . T) (-4363 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4362))) -(-1254 R |VarSet| XPOLY) +((-4370 . T) (-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4366))) +(-1257 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1255 |vl| R) +(-1258 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4362 |has| |#2| (-6 -4362)) (-4364 . T) (-4363 . T) (-4366 . T)) +((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-1256 S -3105) +(-1259 S -3085) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144)))) -(-1257 -3105) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) +(-1260 -3085) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4361 . T) (-4367 . T) (-4362 . T) ((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +((-4365 . T) (-4371 . T) (-4366 . T) ((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL -(-1258 |VarSet| R) +(-1261 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4362 |has| |#2| (-6 -4362)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -703) (LIST (QUOTE -401) (QUOTE (-553))))) (|HasAttribute| |#2| (QUOTE -4362))) -(-1259 |vl| R) +((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -704) (LIST (QUOTE -402) (QUOTE (-554))))) (|HasAttribute| |#2| (QUOTE -4366))) +(-1262 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4362 |has| |#2| (-6 -4362)) (-4364 . T) (-4363 . T) (-4366 . T)) +((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T)) NIL -(-1260 R) +(-1263 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4362 |has| |#1| (-6 -4362)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4362))) -(-1261 R E) +((-4366 |has| |#1| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4366))) +(-1264 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4366 . T) (-4367 |has| |#1| (-6 -4367)) (-4362 |has| |#1| (-6 -4362)) (-4364 . T) (-4363 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4367)) (|HasAttribute| |#1| (QUOTE -4362))) -(-1262 |VarSet| R) +((-4370 . T) (-4371 |has| |#1| (-6 -4371)) (-4366 |has| |#1| (-6 -4366)) (-4368 . T) (-4367 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4370)) (|HasAttribute| |#1| (QUOTE -4371)) (|HasAttribute| |#1| (QUOTE -4366))) +(-1265 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4362 |has| |#2| (-6 -4362)) (-4364 . T) (-4363 . T) (-4366 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4362))) -(-1263 A) +((-4366 |has| |#2| (-6 -4366)) (-4368 . T) (-4367 . T) (-4370 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4366))) +(-1266 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1264 R |ls| |ls2|) +(-1267 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1265 R) +(-1268 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1266 |p|) +(-1269 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4371 "*") . T) (-4363 . T) (-4364 . T) (-4366 . T)) +(((-4375 "*") . T) (-4367 . T) (-4368 . T) (-4370 . T)) NIL NIL NIL @@ -5012,4 +5024,4 @@ NIL NIL NIL NIL -((-3 NIL 2273376 2273381 2273386 2273391) (-2 NIL 2273356 2273361 2273366 2273371) (-1 NIL 2273336 2273341 2273346 2273351) (0 NIL 2273316 2273321 2273326 2273331) (-1266 "ZMOD.spad" 2273125 2273138 2273254 2273311) (-1265 "ZLINDEP.spad" 2272169 2272180 2273115 2273120) (-1264 "ZDSOLVE.spad" 2262018 2262040 2272159 2272164) (-1263 "YSTREAM.spad" 2261511 2261522 2262008 2262013) (-1262 "XRPOLY.spad" 2260731 2260751 2261367 2261436) (-1261 "XPR.spad" 2258522 2258535 2260449 2260548) (-1260 "XPOLY.spad" 2258077 2258088 2258378 2258447) (-1259 "XPOLYC.spad" 2257394 2257410 2258003 2258072) (-1258 "XPBWPOLY.spad" 2255831 2255851 2257174 2257243) (-1257 "XF.spad" 2254292 2254307 2255733 2255826) (-1256 "XF.spad" 2252733 2252750 2254176 2254181) (-1255 "XFALG.spad" 2249757 2249773 2252659 2252728) (-1254 "XEXPPKG.spad" 2249008 2249034 2249747 2249752) (-1253 "XDPOLY.spad" 2248622 2248638 2248864 2248933) (-1252 "XALG.spad" 2248282 2248293 2248578 2248617) (-1251 "WUTSET.spad" 2244121 2244138 2247928 2247955) (-1250 "WP.spad" 2243320 2243364 2243979 2244046) (-1249 "WHILEAST.spad" 2243118 2243127 2243310 2243315) (-1248 "WHEREAST.spad" 2242789 2242798 2243108 2243113) (-1247 "WFFINTBS.spad" 2240352 2240374 2242779 2242784) (-1246 "WEIER.spad" 2238566 2238577 2240342 2240347) (-1245 "VSPACE.spad" 2238239 2238250 2238534 2238561) (-1244 "VSPACE.spad" 2237932 2237945 2238229 2238234) (-1243 "VOID.spad" 2237609 2237618 2237922 2237927) (-1242 "VIEW.spad" 2235231 2235240 2237599 2237604) (-1241 "VIEWDEF.spad" 2230428 2230437 2235221 2235226) (-1240 "VIEW3D.spad" 2214263 2214272 2230418 2230423) (-1239 "VIEW2D.spad" 2202000 2202009 2214253 2214258) (-1238 "VECTOR.spad" 2200675 2200686 2200926 2200953) (-1237 "VECTOR2.spad" 2199302 2199315 2200665 2200670) (-1236 "VECTCAT.spad" 2197202 2197213 2199270 2199297) (-1235 "VECTCAT.spad" 2194910 2194923 2196980 2196985) (-1234 "VARIABLE.spad" 2194690 2194705 2194900 2194905) (-1233 "UTYPE.spad" 2194334 2194343 2194680 2194685) (-1232 "UTSODETL.spad" 2193627 2193651 2194290 2194295) (-1231 "UTSODE.spad" 2191815 2191835 2193617 2193622) (-1230 "UTS.spad" 2186604 2186632 2190282 2190379) (-1229 "UTSCAT.spad" 2184055 2184071 2186502 2186599) (-1228 "UTSCAT.spad" 2181150 2181168 2183599 2183604) (-1227 "UTS2.spad" 2180743 2180778 2181140 2181145) (-1226 "URAGG.spad" 2175375 2175386 2180733 2180738) (-1225 "URAGG.spad" 2169971 2169984 2175331 2175336) (-1224 "UPXSSING.spad" 2167614 2167640 2169052 2169185) (-1223 "UPXS.spad" 2164762 2164790 2165746 2165895) (-1222 "UPXSCONS.spad" 2162519 2162539 2162894 2163043) (-1221 "UPXSCCA.spad" 2161084 2161104 2162365 2162514) (-1220 "UPXSCCA.spad" 2159791 2159813 2161074 2161079) (-1219 "UPXSCAT.spad" 2158372 2158388 2159637 2159786) (-1218 "UPXS2.spad" 2157913 2157966 2158362 2158367) (-1217 "UPSQFREE.spad" 2156325 2156339 2157903 2157908) (-1216 "UPSCAT.spad" 2153918 2153942 2156223 2156320) (-1215 "UPSCAT.spad" 2151217 2151243 2153524 2153529) (-1214 "UPOLYC.spad" 2146195 2146206 2151059 2151212) (-1213 "UPOLYC.spad" 2141065 2141078 2145931 2145936) (-1212 "UPOLYC2.spad" 2140534 2140553 2141055 2141060) (-1211 "UP.spad" 2137691 2137706 2138084 2138237) (-1210 "UPMP.spad" 2136581 2136594 2137681 2137686) (-1209 "UPDIVP.spad" 2136144 2136158 2136571 2136576) (-1208 "UPDECOMP.spad" 2134381 2134395 2136134 2136139) (-1207 "UPCDEN.spad" 2133588 2133604 2134371 2134376) (-1206 "UP2.spad" 2132950 2132971 2133578 2133583) (-1205 "UNISEG.spad" 2132303 2132314 2132869 2132874) (-1204 "UNISEG2.spad" 2131796 2131809 2132259 2132264) (-1203 "UNIFACT.spad" 2130897 2130909 2131786 2131791) (-1202 "ULS.spad" 2121449 2121477 2122542 2122971) (-1201 "ULSCONS.spad" 2113843 2113863 2114215 2114364) (-1200 "ULSCCAT.spad" 2111572 2111592 2113689 2113838) (-1199 "ULSCCAT.spad" 2109409 2109431 2111528 2111533) (-1198 "ULSCAT.spad" 2107625 2107641 2109255 2109404) (-1197 "ULS2.spad" 2107137 2107190 2107615 2107620) (-1196 "UFD.spad" 2106202 2106211 2107063 2107132) (-1195 "UFD.spad" 2105329 2105340 2106192 2106197) (-1194 "UDVO.spad" 2104176 2104185 2105319 2105324) (-1193 "UDPO.spad" 2101603 2101614 2104132 2104137) (-1192 "TYPE.spad" 2101535 2101544 2101593 2101598) (-1191 "TYPEAST.spad" 2101454 2101463 2101525 2101530) (-1190 "TWOFACT.spad" 2100104 2100119 2101444 2101449) (-1189 "TUPLE.spad" 2099588 2099599 2100003 2100008) (-1188 "TUBETOOL.spad" 2096425 2096434 2099578 2099583) (-1187 "TUBE.spad" 2095066 2095083 2096415 2096420) (-1186 "TS.spad" 2093655 2093671 2094631 2094728) (-1185 "TSETCAT.spad" 2080782 2080799 2093623 2093650) (-1184 "TSETCAT.spad" 2067895 2067914 2080738 2080743) (-1183 "TRMANIP.spad" 2062261 2062278 2067601 2067606) (-1182 "TRIMAT.spad" 2061220 2061245 2062251 2062256) (-1181 "TRIGMNIP.spad" 2059737 2059754 2061210 2061215) (-1180 "TRIGCAT.spad" 2059249 2059258 2059727 2059732) (-1179 "TRIGCAT.spad" 2058759 2058770 2059239 2059244) (-1178 "TREE.spad" 2057330 2057341 2058366 2058393) (-1177 "TRANFUN.spad" 2057161 2057170 2057320 2057325) (-1176 "TRANFUN.spad" 2056990 2057001 2057151 2057156) (-1175 "TOPSP.spad" 2056664 2056673 2056980 2056985) (-1174 "TOOLSIGN.spad" 2056327 2056338 2056654 2056659) (-1173 "TEXTFILE.spad" 2054884 2054893 2056317 2056322) (-1172 "TEX.spad" 2052016 2052025 2054874 2054879) (-1171 "TEX1.spad" 2051572 2051583 2052006 2052011) (-1170 "TEMUTL.spad" 2051127 2051136 2051562 2051567) (-1169 "TBCMPPK.spad" 2049220 2049243 2051117 2051122) (-1168 "TBAGG.spad" 2048256 2048279 2049200 2049215) (-1167 "TBAGG.spad" 2047300 2047325 2048246 2048251) (-1166 "TANEXP.spad" 2046676 2046687 2047290 2047295) (-1165 "TABLE.spad" 2045087 2045110 2045357 2045384) (-1164 "TABLEAU.spad" 2044568 2044579 2045077 2045082) (-1163 "TABLBUMP.spad" 2041351 2041362 2044558 2044563) (-1162 "SYSTEM.spad" 2040625 2040634 2041341 2041346) (-1161 "SYSSOLP.spad" 2038098 2038109 2040615 2040620) (-1160 "SYNTAX.spad" 2034368 2034377 2038088 2038093) (-1159 "SYMTAB.spad" 2032424 2032433 2034358 2034363) (-1158 "SYMS.spad" 2028409 2028418 2032414 2032419) (-1157 "SYMPOLY.spad" 2027416 2027427 2027498 2027625) (-1156 "SYMFUNC.spad" 2026891 2026902 2027406 2027411) (-1155 "SYMBOL.spad" 2024318 2024327 2026881 2026886) (-1154 "SWITCH.spad" 2021075 2021084 2024308 2024313) (-1153 "SUTS.spad" 2017974 2018002 2019542 2019639) (-1152 "SUPXS.spad" 2015109 2015137 2016106 2016255) (-1151 "SUP.spad" 2011878 2011889 2012659 2012812) (-1150 "SUPFRACF.spad" 2010983 2011001 2011868 2011873) (-1149 "SUP2.spad" 2010373 2010386 2010973 2010978) (-1148 "SUMRF.spad" 2009339 2009350 2010363 2010368) (-1147 "SUMFS.spad" 2008972 2008989 2009329 2009334) (-1146 "SULS.spad" 1999511 1999539 2000617 2001046) (-1145 "SUCHTAST.spad" 1999280 1999289 1999501 1999506) (-1144 "SUCH.spad" 1998960 1998975 1999270 1999275) (-1143 "SUBSPACE.spad" 1990967 1990982 1998950 1998955) (-1142 "SUBRESP.spad" 1990127 1990141 1990923 1990928) (-1141 "STTF.spad" 1986226 1986242 1990117 1990122) (-1140 "STTFNC.spad" 1982694 1982710 1986216 1986221) (-1139 "STTAYLOR.spad" 1975092 1975103 1982575 1982580) (-1138 "STRTBL.spad" 1973597 1973614 1973746 1973773) (-1137 "STRING.spad" 1973006 1973015 1973020 1973047) (-1136 "STRICAT.spad" 1972794 1972803 1972974 1973001) (-1135 "STREAM.spad" 1969652 1969663 1972319 1972334) (-1134 "STREAM3.spad" 1969197 1969212 1969642 1969647) (-1133 "STREAM2.spad" 1968265 1968278 1969187 1969192) (-1132 "STREAM1.spad" 1967969 1967980 1968255 1968260) (-1131 "STINPROD.spad" 1966875 1966891 1967959 1967964) (-1130 "STEP.spad" 1966076 1966085 1966865 1966870) (-1129 "STBL.spad" 1964602 1964630 1964769 1964784) (-1128 "STAGG.spad" 1963677 1963688 1964592 1964597) (-1127 "STAGG.spad" 1962750 1962763 1963667 1963672) (-1126 "STACK.spad" 1962101 1962112 1962357 1962384) (-1125 "SREGSET.spad" 1959805 1959822 1961747 1961774) (-1124 "SRDCMPK.spad" 1958350 1958370 1959795 1959800) (-1123 "SRAGG.spad" 1953447 1953456 1958318 1958345) (-1122 "SRAGG.spad" 1948564 1948575 1953437 1953442) (-1121 "SQMATRIX.spad" 1946180 1946198 1947096 1947183) (-1120 "SPLTREE.spad" 1940732 1940745 1945616 1945643) (-1119 "SPLNODE.spad" 1937320 1937333 1940722 1940727) (-1118 "SPFCAT.spad" 1936097 1936106 1937310 1937315) (-1117 "SPECOUT.spad" 1934647 1934656 1936087 1936092) (-1116 "SPADXPT.spad" 1926786 1926795 1934637 1934642) (-1115 "spad-parser.spad" 1926251 1926260 1926776 1926781) (-1114 "SPADAST.spad" 1925952 1925961 1926241 1926246) (-1113 "SPACEC.spad" 1909965 1909976 1925942 1925947) (-1112 "SPACE3.spad" 1909741 1909752 1909955 1909960) (-1111 "SORTPAK.spad" 1909286 1909299 1909697 1909702) (-1110 "SOLVETRA.spad" 1907043 1907054 1909276 1909281) (-1109 "SOLVESER.spad" 1905563 1905574 1907033 1907038) (-1108 "SOLVERAD.spad" 1901573 1901584 1905553 1905558) (-1107 "SOLVEFOR.spad" 1899993 1900011 1901563 1901568) (-1106 "SNTSCAT.spad" 1899593 1899610 1899961 1899988) (-1105 "SMTS.spad" 1897853 1897879 1899158 1899255) (-1104 "SMP.spad" 1895292 1895312 1895682 1895809) (-1103 "SMITH.spad" 1894135 1894160 1895282 1895287) (-1102 "SMATCAT.spad" 1892245 1892275 1894079 1894130) (-1101 "SMATCAT.spad" 1890287 1890319 1892123 1892128) (-1100 "SKAGG.spad" 1889248 1889259 1890255 1890282) (-1099 "SINT.spad" 1887556 1887565 1889114 1889243) (-1098 "SIMPAN.spad" 1887284 1887293 1887546 1887551) (-1097 "SIG.spad" 1886612 1886621 1887274 1887279) (-1096 "SIGNRF.spad" 1885720 1885731 1886602 1886607) (-1095 "SIGNEF.spad" 1884989 1885006 1885710 1885715) (-1094 "SIGAST.spad" 1884370 1884379 1884979 1884984) (-1093 "SHP.spad" 1882288 1882303 1884326 1884331) (-1092 "SHDP.spad" 1871999 1872026 1872508 1872639) (-1091 "SGROUP.spad" 1871607 1871616 1871989 1871994) (-1090 "SGROUP.spad" 1871213 1871224 1871597 1871602) (-1089 "SGCF.spad" 1864094 1864103 1871203 1871208) (-1088 "SFRTCAT.spad" 1863022 1863039 1864062 1864089) (-1087 "SFRGCD.spad" 1862085 1862105 1863012 1863017) (-1086 "SFQCMPK.spad" 1856722 1856742 1862075 1862080) (-1085 "SFORT.spad" 1856157 1856171 1856712 1856717) (-1084 "SEXOF.spad" 1856000 1856040 1856147 1856152) (-1083 "SEX.spad" 1855892 1855901 1855990 1855995) (-1082 "SEXCAT.spad" 1853443 1853483 1855882 1855887) (-1081 "SET.spad" 1851743 1851754 1852864 1852903) (-1080 "SETMN.spad" 1850177 1850194 1851733 1851738) (-1079 "SETCAT.spad" 1849662 1849671 1850167 1850172) (-1078 "SETCAT.spad" 1849145 1849156 1849652 1849657) (-1077 "SETAGG.spad" 1845666 1845677 1849125 1849140) (-1076 "SETAGG.spad" 1842195 1842208 1845656 1845661) (-1075 "SEQAST.spad" 1841898 1841907 1842185 1842190) (-1074 "SEGXCAT.spad" 1841020 1841033 1841888 1841893) (-1073 "SEG.spad" 1840833 1840844 1840939 1840944) (-1072 "SEGCAT.spad" 1839740 1839751 1840823 1840828) (-1071 "SEGBIND.spad" 1838812 1838823 1839695 1839700) (-1070 "SEGBIND2.spad" 1838508 1838521 1838802 1838807) (-1069 "SEGAST.spad" 1838222 1838231 1838498 1838503) (-1068 "SEG2.spad" 1837647 1837660 1838178 1838183) (-1067 "SDVAR.spad" 1836923 1836934 1837637 1837642) (-1066 "SDPOL.spad" 1834313 1834324 1834604 1834731) (-1065 "SCPKG.spad" 1832392 1832403 1834303 1834308) (-1064 "SCOPE.spad" 1831537 1831546 1832382 1832387) (-1063 "SCACHE.spad" 1830219 1830230 1831527 1831532) (-1062 "SASTCAT.spad" 1830128 1830137 1830209 1830214) (-1061 "SAOS.spad" 1830000 1830009 1830118 1830123) (-1060 "SAERFFC.spad" 1829713 1829733 1829990 1829995) (-1059 "SAE.spad" 1827888 1827904 1828499 1828634) (-1058 "SAEFACT.spad" 1827589 1827609 1827878 1827883) (-1057 "RURPK.spad" 1825230 1825246 1827579 1827584) (-1056 "RULESET.spad" 1824671 1824695 1825220 1825225) (-1055 "RULE.spad" 1822875 1822899 1824661 1824666) (-1054 "RULECOLD.spad" 1822727 1822740 1822865 1822870) (-1053 "RSTRCAST.spad" 1822444 1822453 1822717 1822722) (-1052 "RSETGCD.spad" 1818822 1818842 1822434 1822439) (-1051 "RSETCAT.spad" 1808606 1808623 1818790 1818817) (-1050 "RSETCAT.spad" 1798410 1798429 1808596 1808601) (-1049 "RSDCMPK.spad" 1796862 1796882 1798400 1798405) (-1048 "RRCC.spad" 1795246 1795276 1796852 1796857) (-1047 "RRCC.spad" 1793628 1793660 1795236 1795241) (-1046 "RPTAST.spad" 1793330 1793339 1793618 1793623) (-1045 "RPOLCAT.spad" 1772690 1772705 1793198 1793325) (-1044 "RPOLCAT.spad" 1751764 1751781 1772274 1772279) (-1043 "ROUTINE.spad" 1747627 1747636 1750411 1750438) (-1042 "ROMAN.spad" 1746955 1746964 1747493 1747622) (-1041 "ROIRC.spad" 1746035 1746067 1746945 1746950) (-1040 "RNS.spad" 1744938 1744947 1745937 1746030) (-1039 "RNS.spad" 1743927 1743938 1744928 1744933) (-1038 "RNG.spad" 1743662 1743671 1743917 1743922) (-1037 "RMODULE.spad" 1743300 1743311 1743652 1743657) (-1036 "RMCAT2.spad" 1742708 1742765 1743290 1743295) (-1035 "RMATRIX.spad" 1741532 1741551 1741875 1741914) (-1034 "RMATCAT.spad" 1737065 1737096 1741488 1741527) (-1033 "RMATCAT.spad" 1732488 1732521 1736913 1736918) (-1032 "RINTERP.spad" 1732376 1732396 1732478 1732483) (-1031 "RING.spad" 1731846 1731855 1732356 1732371) (-1030 "RING.spad" 1731324 1731335 1731836 1731841) (-1029 "RIDIST.spad" 1730708 1730717 1731314 1731319) (-1028 "RGCHAIN.spad" 1729287 1729303 1730193 1730220) (-1027 "RGBCSPC.spad" 1729068 1729080 1729277 1729282) (-1026 "RGBCMDL.spad" 1728598 1728610 1729058 1729063) (-1025 "RF.spad" 1726212 1726223 1728588 1728593) (-1024 "RFFACTOR.spad" 1725674 1725685 1726202 1726207) (-1023 "RFFACT.spad" 1725409 1725421 1725664 1725669) (-1022 "RFDIST.spad" 1724397 1724406 1725399 1725404) (-1021 "RETSOL.spad" 1723814 1723827 1724387 1724392) (-1020 "RETRACT.spad" 1723242 1723253 1723804 1723809) (-1019 "RETRACT.spad" 1722668 1722681 1723232 1723237) (-1018 "RETAST.spad" 1722480 1722489 1722658 1722663) (-1017 "RESULT.spad" 1720540 1720549 1721127 1721154) (-1016 "RESRING.spad" 1719887 1719934 1720478 1720535) (-1015 "RESLATC.spad" 1719211 1719222 1719877 1719882) (-1014 "REPSQ.spad" 1718940 1718951 1719201 1719206) (-1013 "REP.spad" 1716492 1716501 1718930 1718935) (-1012 "REPDB.spad" 1716197 1716208 1716482 1716487) (-1011 "REP2.spad" 1705769 1705780 1716039 1716044) (-1010 "REP1.spad" 1699759 1699770 1705719 1705724) (-1009 "REGSET.spad" 1697556 1697573 1699405 1699432) (-1008 "REF.spad" 1696885 1696896 1697511 1697516) (-1007 "REDORDER.spad" 1696061 1696078 1696875 1696880) (-1006 "RECLOS.spad" 1694844 1694864 1695548 1695641) (-1005 "REALSOLV.spad" 1693976 1693985 1694834 1694839) (-1004 "REAL.spad" 1693848 1693857 1693966 1693971) (-1003 "REAL0Q.spad" 1691130 1691145 1693838 1693843) (-1002 "REAL0.spad" 1687958 1687973 1691120 1691125) (-1001 "RDUCEAST.spad" 1687679 1687688 1687948 1687953) (-1000 "RDIV.spad" 1687330 1687355 1687669 1687674) (-999 "RDIST.spad" 1686894 1686904 1687320 1687325) (-998 "RDETRS.spad" 1685691 1685708 1686884 1686889) (-997 "RDETR.spad" 1683799 1683816 1685681 1685686) (-996 "RDEEFS.spad" 1682873 1682889 1683789 1683794) (-995 "RDEEF.spad" 1681870 1681886 1682863 1682868) (-994 "RCFIELD.spad" 1679057 1679065 1681772 1681865) (-993 "RCFIELD.spad" 1676330 1676340 1679047 1679052) (-992 "RCAGG.spad" 1674243 1674253 1676320 1676325) (-991 "RCAGG.spad" 1672083 1672095 1674162 1674167) (-990 "RATRET.spad" 1671444 1671454 1672073 1672078) (-989 "RATFACT.spad" 1671137 1671148 1671434 1671439) (-988 "RANDSRC.spad" 1670457 1670465 1671127 1671132) (-987 "RADUTIL.spad" 1670212 1670220 1670447 1670452) (-986 "RADIX.spad" 1667114 1667127 1668679 1668772) (-985 "RADFF.spad" 1665528 1665564 1665646 1665802) (-984 "RADCAT.spad" 1665122 1665130 1665518 1665523) (-983 "RADCAT.spad" 1664714 1664724 1665112 1665117) (-982 "QUEUE.spad" 1664057 1664067 1664321 1664348) (-981 "QUAT.spad" 1662639 1662649 1662981 1663046) (-980 "QUATCT2.spad" 1662258 1662276 1662629 1662634) (-979 "QUATCAT.spad" 1660423 1660433 1662188 1662253) (-978 "QUATCAT.spad" 1658339 1658351 1660106 1660111) (-977 "QUAGG.spad" 1657165 1657175 1658307 1658334) (-976 "QQUTAST.spad" 1656934 1656942 1657155 1657160) (-975 "QFORM.spad" 1656397 1656411 1656924 1656929) (-974 "QFCAT.spad" 1655100 1655110 1656299 1656392) (-973 "QFCAT.spad" 1653394 1653406 1654595 1654600) (-972 "QFCAT2.spad" 1653085 1653101 1653384 1653389) (-971 "QEQUAT.spad" 1652642 1652650 1653075 1653080) (-970 "QCMPACK.spad" 1647389 1647408 1652632 1652637) (-969 "QALGSET.spad" 1643464 1643496 1647303 1647308) (-968 "QALGSET2.spad" 1641460 1641478 1643454 1643459) (-967 "PWFFINTB.spad" 1638770 1638791 1641450 1641455) (-966 "PUSHVAR.spad" 1638099 1638118 1638760 1638765) (-965 "PTRANFN.spad" 1634225 1634235 1638089 1638094) (-964 "PTPACK.spad" 1631313 1631323 1634215 1634220) (-963 "PTFUNC2.spad" 1631134 1631148 1631303 1631308) (-962 "PTCAT.spad" 1630383 1630393 1631102 1631129) (-961 "PSQFR.spad" 1629690 1629714 1630373 1630378) (-960 "PSEUDLIN.spad" 1628548 1628558 1629680 1629685) (-959 "PSETPK.spad" 1613981 1613997 1628426 1628431) (-958 "PSETCAT.spad" 1607901 1607924 1613961 1613976) (-957 "PSETCAT.spad" 1601795 1601820 1607857 1607862) (-956 "PSCURVE.spad" 1600778 1600786 1601785 1601790) (-955 "PSCAT.spad" 1599545 1599574 1600676 1600773) (-954 "PSCAT.spad" 1598402 1598433 1599535 1599540) (-953 "PRTITION.spad" 1597347 1597355 1598392 1598397) (-952 "PRTDAST.spad" 1597066 1597074 1597337 1597342) (-951 "PRS.spad" 1586628 1586645 1597022 1597027) (-950 "PRQAGG.spad" 1586059 1586069 1586596 1586623) (-949 "PROPLOG.spad" 1585462 1585470 1586049 1586054) (-948 "PROPFRML.spad" 1583380 1583391 1585452 1585457) (-947 "PROPERTY.spad" 1582874 1582882 1583370 1583375) (-946 "PRODUCT.spad" 1580554 1580566 1580840 1580895) (-945 "PR.spad" 1578940 1578952 1579645 1579772) (-944 "PRINT.spad" 1578692 1578700 1578930 1578935) (-943 "PRIMES.spad" 1576943 1576953 1578682 1578687) (-942 "PRIMELT.spad" 1574924 1574938 1576933 1576938) (-941 "PRIMCAT.spad" 1574547 1574555 1574914 1574919) (-940 "PRIMARR.spad" 1573552 1573562 1573730 1573757) (-939 "PRIMARR2.spad" 1572275 1572287 1573542 1573547) (-938 "PREASSOC.spad" 1571647 1571659 1572265 1572270) (-937 "PPCURVE.spad" 1570784 1570792 1571637 1571642) (-936 "PORTNUM.spad" 1570559 1570567 1570774 1570779) (-935 "POLYROOT.spad" 1569388 1569410 1570515 1570520) (-934 "POLY.spad" 1566685 1566695 1567202 1567329) (-933 "POLYLIFT.spad" 1565946 1565969 1566675 1566680) (-932 "POLYCATQ.spad" 1564048 1564070 1565936 1565941) (-931 "POLYCAT.spad" 1557454 1557475 1563916 1564043) (-930 "POLYCAT.spad" 1550162 1550185 1556626 1556631) (-929 "POLY2UP.spad" 1549610 1549624 1550152 1550157) (-928 "POLY2.spad" 1549205 1549217 1549600 1549605) (-927 "POLUTIL.spad" 1548146 1548175 1549161 1549166) (-926 "POLTOPOL.spad" 1546894 1546909 1548136 1548141) (-925 "POINT.spad" 1545733 1545743 1545820 1545847) (-924 "PNTHEORY.spad" 1542399 1542407 1545723 1545728) (-923 "PMTOOLS.spad" 1541156 1541170 1542389 1542394) (-922 "PMSYM.spad" 1540701 1540711 1541146 1541151) (-921 "PMQFCAT.spad" 1540288 1540302 1540691 1540696) (-920 "PMPRED.spad" 1539757 1539771 1540278 1540283) (-919 "PMPREDFS.spad" 1539201 1539223 1539747 1539752) (-918 "PMPLCAT.spad" 1538271 1538289 1539133 1539138) (-917 "PMLSAGG.spad" 1537852 1537866 1538261 1538266) (-916 "PMKERNEL.spad" 1537419 1537431 1537842 1537847) (-915 "PMINS.spad" 1536995 1537005 1537409 1537414) (-914 "PMFS.spad" 1536568 1536586 1536985 1536990) (-913 "PMDOWN.spad" 1535854 1535868 1536558 1536563) (-912 "PMASS.spad" 1534866 1534874 1535844 1535849) (-911 "PMASSFS.spad" 1533835 1533851 1534856 1534861) (-910 "PLOTTOOL.spad" 1533615 1533623 1533825 1533830) (-909 "PLOT.spad" 1528446 1528454 1533605 1533610) (-908 "PLOT3D.spad" 1524866 1524874 1528436 1528441) (-907 "PLOT1.spad" 1524007 1524017 1524856 1524861) (-906 "PLEQN.spad" 1511223 1511250 1523997 1524002) (-905 "PINTERP.spad" 1510839 1510858 1511213 1511218) (-904 "PINTERPA.spad" 1510621 1510637 1510829 1510834) (-903 "PI.spad" 1510228 1510236 1510595 1510616) (-902 "PID.spad" 1509184 1509192 1510154 1510223) (-901 "PICOERCE.spad" 1508841 1508851 1509174 1509179) (-900 "PGROEB.spad" 1507438 1507452 1508831 1508836) (-899 "PGE.spad" 1498691 1498699 1507428 1507433) (-898 "PGCD.spad" 1497573 1497590 1498681 1498686) (-897 "PFRPAC.spad" 1496716 1496726 1497563 1497568) (-896 "PFR.spad" 1493373 1493383 1496618 1496711) (-895 "PFOTOOLS.spad" 1492631 1492647 1493363 1493368) (-894 "PFOQ.spad" 1492001 1492019 1492621 1492626) (-893 "PFO.spad" 1491420 1491447 1491991 1491996) (-892 "PF.spad" 1490994 1491006 1491225 1491318) (-891 "PFECAT.spad" 1488660 1488668 1490920 1490989) (-890 "PFECAT.spad" 1486354 1486364 1488616 1488621) (-889 "PFBRU.spad" 1484224 1484236 1486344 1486349) (-888 "PFBR.spad" 1481762 1481785 1484214 1484219) (-887 "PERM.spad" 1477443 1477453 1481592 1481607) (-886 "PERMGRP.spad" 1472179 1472189 1477433 1477438) (-885 "PERMCAT.spad" 1470731 1470741 1472159 1472174) (-884 "PERMAN.spad" 1469263 1469277 1470721 1470726) (-883 "PENDTREE.spad" 1468602 1468612 1468892 1468897) (-882 "PDRING.spad" 1467093 1467103 1468582 1468597) (-881 "PDRING.spad" 1465592 1465604 1467083 1467088) (-880 "PDEPROB.spad" 1464607 1464615 1465582 1465587) (-879 "PDEPACK.spad" 1458609 1458617 1464597 1464602) (-878 "PDECOMP.spad" 1458071 1458088 1458599 1458604) (-877 "PDECAT.spad" 1456425 1456433 1458061 1458066) (-876 "PCOMP.spad" 1456276 1456289 1456415 1456420) (-875 "PBWLB.spad" 1454858 1454875 1456266 1456271) (-874 "PATTERN.spad" 1449289 1449299 1454848 1454853) (-873 "PATTERN2.spad" 1449025 1449037 1449279 1449284) (-872 "PATTERN1.spad" 1447327 1447343 1449015 1449020) (-871 "PATRES.spad" 1444874 1444886 1447317 1447322) (-870 "PATRES2.spad" 1444536 1444550 1444864 1444869) (-869 "PATMATCH.spad" 1442693 1442724 1444244 1444249) (-868 "PATMAB.spad" 1442118 1442128 1442683 1442688) (-867 "PATLRES.spad" 1441202 1441216 1442108 1442113) (-866 "PATAB.spad" 1440966 1440976 1441192 1441197) (-865 "PARTPERM.spad" 1438328 1438336 1440956 1440961) (-864 "PARSURF.spad" 1437756 1437784 1438318 1438323) (-863 "PARSU2.spad" 1437551 1437567 1437746 1437751) (-862 "script-parser.spad" 1437071 1437079 1437541 1437546) (-861 "PARSCURV.spad" 1436499 1436527 1437061 1437066) (-860 "PARSC2.spad" 1436288 1436304 1436489 1436494) (-859 "PARPCURV.spad" 1435746 1435774 1436278 1436283) (-858 "PARPC2.spad" 1435535 1435551 1435736 1435741) (-857 "PAN2EXPR.spad" 1434947 1434955 1435525 1435530) (-856 "PALETTE.spad" 1433917 1433925 1434937 1434942) (-855 "PAIR.spad" 1432900 1432913 1433505 1433510) (-854 "PADICRC.spad" 1430230 1430248 1431405 1431498) (-853 "PADICRAT.spad" 1428245 1428257 1428466 1428559) (-852 "PADIC.spad" 1427940 1427952 1428171 1428240) (-851 "PADICCT.spad" 1426481 1426493 1427866 1427935) (-850 "PADEPAC.spad" 1425160 1425179 1426471 1426476) (-849 "PADE.spad" 1423900 1423916 1425150 1425155) (-848 "OWP.spad" 1423140 1423170 1423758 1423825) (-847 "OVAR.spad" 1422921 1422944 1423130 1423135) (-846 "OUT.spad" 1422005 1422013 1422911 1422916) (-845 "OUTFORM.spad" 1411301 1411309 1421995 1422000) (-844 "OUTBFILE.spad" 1410719 1410727 1411291 1411296) (-843 "OUTBCON.spad" 1409997 1410005 1410709 1410714) (-842 "OUTBCON.spad" 1409273 1409283 1409987 1409992) (-841 "OSI.spad" 1408748 1408756 1409263 1409268) (-840 "OSGROUP.spad" 1408666 1408674 1408738 1408743) (-839 "ORTHPOL.spad" 1407127 1407137 1408583 1408588) (-838 "OREUP.spad" 1406580 1406608 1406807 1406846) (-837 "ORESUP.spad" 1405879 1405903 1406260 1406299) (-836 "OREPCTO.spad" 1403698 1403710 1405799 1405804) (-835 "OREPCAT.spad" 1397755 1397765 1403654 1403693) (-834 "OREPCAT.spad" 1391702 1391714 1397603 1397608) (-833 "ORDSET.spad" 1390868 1390876 1391692 1391697) (-832 "ORDSET.spad" 1390032 1390042 1390858 1390863) (-831 "ORDRING.spad" 1389422 1389430 1390012 1390027) (-830 "ORDRING.spad" 1388820 1388830 1389412 1389417) (-829 "ORDMON.spad" 1388675 1388683 1388810 1388815) (-828 "ORDFUNS.spad" 1387801 1387817 1388665 1388670) (-827 "ORDFIN.spad" 1387735 1387743 1387791 1387796) (-826 "ORDCOMP.spad" 1386200 1386210 1387282 1387311) (-825 "ORDCOMP2.spad" 1385485 1385497 1386190 1386195) (-824 "OPTPROB.spad" 1384123 1384131 1385475 1385480) (-823 "OPTPACK.spad" 1376508 1376516 1384113 1384118) (-822 "OPTCAT.spad" 1374183 1374191 1376498 1376503) (-821 "OPQUERY.spad" 1373732 1373740 1374173 1374178) (-820 "OP.spad" 1373474 1373484 1373554 1373621) (-819 "ONECOMP.spad" 1372219 1372229 1373021 1373050) (-818 "ONECOMP2.spad" 1371637 1371649 1372209 1372214) (-817 "OMSERVER.spad" 1370639 1370647 1371627 1371632) (-816 "OMSAGG.spad" 1370427 1370437 1370595 1370634) (-815 "OMPKG.spad" 1369039 1369047 1370417 1370422) (-814 "OM.spad" 1368004 1368012 1369029 1369034) (-813 "OMLO.spad" 1367429 1367441 1367890 1367929) (-812 "OMEXPR.spad" 1367263 1367273 1367419 1367424) (-811 "OMERR.spad" 1366806 1366814 1367253 1367258) (-810 "OMERRK.spad" 1365840 1365848 1366796 1366801) (-809 "OMENC.spad" 1365184 1365192 1365830 1365835) (-808 "OMDEV.spad" 1359473 1359481 1365174 1365179) (-807 "OMCONN.spad" 1358882 1358890 1359463 1359468) (-806 "OINTDOM.spad" 1358645 1358653 1358808 1358877) (-805 "OFMONOID.spad" 1354832 1354842 1358635 1358640) (-804 "ODVAR.spad" 1354093 1354103 1354822 1354827) (-803 "ODR.spad" 1353737 1353763 1353905 1354054) (-802 "ODPOL.spad" 1351083 1351093 1351423 1351550) (-801 "ODP.spad" 1340930 1340950 1341303 1341434) (-800 "ODETOOLS.spad" 1339513 1339532 1340920 1340925) (-799 "ODESYS.spad" 1337163 1337180 1339503 1339508) (-798 "ODERTRIC.spad" 1333104 1333121 1337120 1337125) (-797 "ODERED.spad" 1332491 1332515 1333094 1333099) (-796 "ODERAT.spad" 1330042 1330059 1332481 1332486) (-795 "ODEPRRIC.spad" 1326933 1326955 1330032 1330037) (-794 "ODEPROB.spad" 1326190 1326198 1326923 1326928) (-793 "ODEPRIM.spad" 1323464 1323486 1326180 1326185) (-792 "ODEPAL.spad" 1322840 1322864 1323454 1323459) (-791 "ODEPACK.spad" 1309442 1309450 1322830 1322835) (-790 "ODEINT.spad" 1308873 1308889 1309432 1309437) (-789 "ODEIFTBL.spad" 1306268 1306276 1308863 1308868) (-788 "ODEEF.spad" 1301635 1301651 1306258 1306263) (-787 "ODECONST.spad" 1301154 1301172 1301625 1301630) (-786 "ODECAT.spad" 1299750 1299758 1301144 1301149) (-785 "OCT.spad" 1297888 1297898 1298604 1298643) (-784 "OCTCT2.spad" 1297532 1297553 1297878 1297883) (-783 "OC.spad" 1295306 1295316 1297488 1297527) (-782 "OC.spad" 1292805 1292817 1294989 1294994) (-781 "OCAMON.spad" 1292653 1292661 1292795 1292800) (-780 "OASGP.spad" 1292468 1292476 1292643 1292648) (-779 "OAMONS.spad" 1291988 1291996 1292458 1292463) (-778 "OAMON.spad" 1291849 1291857 1291978 1291983) (-777 "OAGROUP.spad" 1291711 1291719 1291839 1291844) (-776 "NUMTUBE.spad" 1291298 1291314 1291701 1291706) (-775 "NUMQUAD.spad" 1279160 1279168 1291288 1291293) (-774 "NUMODE.spad" 1270296 1270304 1279150 1279155) (-773 "NUMINT.spad" 1267854 1267862 1270286 1270291) (-772 "NUMFMT.spad" 1266694 1266702 1267844 1267849) (-771 "NUMERIC.spad" 1258766 1258776 1266499 1266504) (-770 "NTSCAT.spad" 1257268 1257284 1258734 1258761) (-769 "NTPOLFN.spad" 1256813 1256823 1257185 1257190) (-768 "NSUP.spad" 1249823 1249833 1254363 1254516) (-767 "NSUP2.spad" 1249215 1249227 1249813 1249818) (-766 "NSMP.spad" 1245410 1245429 1245718 1245845) (-765 "NREP.spad" 1243782 1243796 1245400 1245405) (-764 "NPCOEF.spad" 1243028 1243048 1243772 1243777) (-763 "NORMRETR.spad" 1242626 1242665 1243018 1243023) (-762 "NORMPK.spad" 1240528 1240547 1242616 1242621) (-761 "NORMMA.spad" 1240216 1240242 1240518 1240523) (-760 "NONE.spad" 1239957 1239965 1240206 1240211) (-759 "NONE1.spad" 1239633 1239643 1239947 1239952) (-758 "NODE1.spad" 1239102 1239118 1239623 1239628) (-757 "NNI.spad" 1237989 1237997 1239076 1239097) (-756 "NLINSOL.spad" 1236611 1236621 1237979 1237984) (-755 "NIPROB.spad" 1235152 1235160 1236601 1236606) (-754 "NFINTBAS.spad" 1232612 1232629 1235142 1235147) (-753 "NETCLT.spad" 1232586 1232597 1232602 1232607) (-752 "NCODIV.spad" 1230784 1230800 1232576 1232581) (-751 "NCNTFRAC.spad" 1230426 1230440 1230774 1230779) (-750 "NCEP.spad" 1228586 1228600 1230416 1230421) (-749 "NASRING.spad" 1228182 1228190 1228576 1228581) (-748 "NASRING.spad" 1227776 1227786 1228172 1228177) (-747 "NARNG.spad" 1227120 1227128 1227766 1227771) (-746 "NARNG.spad" 1226462 1226472 1227110 1227115) (-745 "NAGSP.spad" 1225535 1225543 1226452 1226457) (-744 "NAGS.spad" 1215060 1215068 1225525 1225530) (-743 "NAGF07.spad" 1213453 1213461 1215050 1215055) (-742 "NAGF04.spad" 1207685 1207693 1213443 1213448) (-741 "NAGF02.spad" 1201494 1201502 1207675 1207680) (-740 "NAGF01.spad" 1197097 1197105 1201484 1201489) (-739 "NAGE04.spad" 1190557 1190565 1197087 1197092) (-738 "NAGE02.spad" 1180899 1180907 1190547 1190552) (-737 "NAGE01.spad" 1176783 1176791 1180889 1180894) (-736 "NAGD03.spad" 1174703 1174711 1176773 1176778) (-735 "NAGD02.spad" 1167234 1167242 1174693 1174698) (-734 "NAGD01.spad" 1161347 1161355 1167224 1167229) (-733 "NAGC06.spad" 1157134 1157142 1161337 1161342) (-732 "NAGC05.spad" 1155603 1155611 1157124 1157129) (-731 "NAGC02.spad" 1154858 1154866 1155593 1155598) (-730 "NAALG.spad" 1154393 1154403 1154826 1154853) (-729 "NAALG.spad" 1153948 1153960 1154383 1154388) (-728 "MULTSQFR.spad" 1150906 1150923 1153938 1153943) (-727 "MULTFACT.spad" 1150289 1150306 1150896 1150901) (-726 "MTSCAT.spad" 1148323 1148344 1150187 1150284) (-725 "MTHING.spad" 1147980 1147990 1148313 1148318) (-724 "MSYSCMD.spad" 1147414 1147422 1147970 1147975) (-723 "MSET.spad" 1145356 1145366 1147120 1147159) (-722 "MSETAGG.spad" 1145201 1145211 1145324 1145351) (-721 "MRING.spad" 1142172 1142184 1144909 1144976) (-720 "MRF2.spad" 1141740 1141754 1142162 1142167) (-719 "MRATFAC.spad" 1141286 1141303 1141730 1141735) (-718 "MPRFF.spad" 1139316 1139335 1141276 1141281) (-717 "MPOLY.spad" 1136751 1136766 1137110 1137237) (-716 "MPCPF.spad" 1136015 1136034 1136741 1136746) (-715 "MPC3.spad" 1135830 1135870 1136005 1136010) (-714 "MPC2.spad" 1135472 1135505 1135820 1135825) (-713 "MONOTOOL.spad" 1133807 1133824 1135462 1135467) (-712 "MONOID.spad" 1133126 1133134 1133797 1133802) (-711 "MONOID.spad" 1132443 1132453 1133116 1133121) (-710 "MONOGEN.spad" 1131189 1131202 1132303 1132438) (-709 "MONOGEN.spad" 1129957 1129972 1131073 1131078) (-708 "MONADWU.spad" 1127971 1127979 1129947 1129952) (-707 "MONADWU.spad" 1125983 1125993 1127961 1127966) (-706 "MONAD.spad" 1125127 1125135 1125973 1125978) (-705 "MONAD.spad" 1124269 1124279 1125117 1125122) (-704 "MOEBIUS.spad" 1122955 1122969 1124249 1124264) (-703 "MODULE.spad" 1122825 1122835 1122923 1122950) (-702 "MODULE.spad" 1122715 1122727 1122815 1122820) (-701 "MODRING.spad" 1122046 1122085 1122695 1122710) (-700 "MODOP.spad" 1120705 1120717 1121868 1121935) (-699 "MODMONOM.spad" 1120434 1120452 1120695 1120700) (-698 "MODMON.spad" 1117193 1117209 1117912 1118065) (-697 "MODFIELD.spad" 1116551 1116590 1117095 1117188) (-696 "MMLFORM.spad" 1115411 1115419 1116541 1116546) (-695 "MMAP.spad" 1115151 1115185 1115401 1115406) (-694 "MLO.spad" 1113578 1113588 1115107 1115146) (-693 "MLIFT.spad" 1112150 1112167 1113568 1113573) (-692 "MKUCFUNC.spad" 1111683 1111701 1112140 1112145) (-691 "MKRECORD.spad" 1111285 1111298 1111673 1111678) (-690 "MKFUNC.spad" 1110666 1110676 1111275 1111280) (-689 "MKFLCFN.spad" 1109622 1109632 1110656 1110661) (-688 "MKCHSET.spad" 1109487 1109497 1109612 1109617) (-687 "MKBCFUNC.spad" 1108972 1108990 1109477 1109482) (-686 "MINT.spad" 1108411 1108419 1108874 1108967) (-685 "MHROWRED.spad" 1106912 1106922 1108401 1108406) (-684 "MFLOAT.spad" 1105428 1105436 1106802 1106907) (-683 "MFINFACT.spad" 1104828 1104850 1105418 1105423) (-682 "MESH.spad" 1102560 1102568 1104818 1104823) (-681 "MDDFACT.spad" 1100753 1100763 1102550 1102555) (-680 "MDAGG.spad" 1100040 1100050 1100733 1100748) (-679 "MCMPLX.spad" 1096026 1096034 1096640 1096829) (-678 "MCDEN.spad" 1095234 1095246 1096016 1096021) (-677 "MCALCFN.spad" 1092336 1092362 1095224 1095229) (-676 "MAYBE.spad" 1091585 1091596 1092326 1092331) (-675 "MATSTOR.spad" 1088861 1088871 1091575 1091580) (-674 "MATRIX.spad" 1087565 1087575 1088049 1088076) (-673 "MATLIN.spad" 1084891 1084915 1087449 1087454) (-672 "MATCAT.spad" 1076476 1076498 1084859 1084886) (-671 "MATCAT.spad" 1067933 1067957 1076318 1076323) (-670 "MATCAT2.spad" 1067201 1067249 1067923 1067928) (-669 "MAPPKG3.spad" 1066100 1066114 1067191 1067196) (-668 "MAPPKG2.spad" 1065434 1065446 1066090 1066095) (-667 "MAPPKG1.spad" 1064252 1064262 1065424 1065429) (-666 "MAPPAST.spad" 1063565 1063573 1064242 1064247) (-665 "MAPHACK3.spad" 1063373 1063387 1063555 1063560) (-664 "MAPHACK2.spad" 1063138 1063150 1063363 1063368) (-663 "MAPHACK1.spad" 1062768 1062778 1063128 1063133) (-662 "MAGMA.spad" 1060558 1060575 1062758 1062763) (-661 "MACROAST.spad" 1060137 1060145 1060548 1060553) (-660 "M3D.spad" 1057833 1057843 1059515 1059520) (-659 "LZSTAGG.spad" 1055061 1055071 1057823 1057828) (-658 "LZSTAGG.spad" 1052287 1052299 1055051 1055056) (-657 "LWORD.spad" 1048992 1049009 1052277 1052282) (-656 "LSTAST.spad" 1048776 1048784 1048982 1048987) (-655 "LSQM.spad" 1047002 1047016 1047400 1047451) (-654 "LSPP.spad" 1046535 1046552 1046992 1046997) (-653 "LSMP.spad" 1045375 1045403 1046525 1046530) (-652 "LSMP1.spad" 1043179 1043193 1045365 1045370) (-651 "LSAGG.spad" 1042848 1042858 1043147 1043174) (-650 "LSAGG.spad" 1042537 1042549 1042838 1042843) (-649 "LPOLY.spad" 1041491 1041510 1042393 1042462) (-648 "LPEFRAC.spad" 1040748 1040758 1041481 1041486) (-647 "LO.spad" 1040149 1040163 1040682 1040709) (-646 "LOGIC.spad" 1039751 1039759 1040139 1040144) (-645 "LOGIC.spad" 1039351 1039361 1039741 1039746) (-644 "LODOOPS.spad" 1038269 1038281 1039341 1039346) (-643 "LODO.spad" 1037653 1037669 1037949 1037988) (-642 "LODOF.spad" 1036697 1036714 1037610 1037615) (-641 "LODOCAT.spad" 1035355 1035365 1036653 1036692) (-640 "LODOCAT.spad" 1034011 1034023 1035311 1035316) (-639 "LODO2.spad" 1033284 1033296 1033691 1033730) (-638 "LODO1.spad" 1032684 1032694 1032964 1033003) (-637 "LODEEF.spad" 1031456 1031474 1032674 1032679) (-636 "LNAGG.spad" 1027258 1027268 1031446 1031451) (-635 "LNAGG.spad" 1023024 1023036 1027214 1027219) (-634 "LMOPS.spad" 1019760 1019777 1023014 1023019) (-633 "LMODULE.spad" 1019402 1019412 1019750 1019755) (-632 "LMDICT.spad" 1018685 1018695 1018953 1018980) (-631 "LITERAL.spad" 1018591 1018602 1018675 1018680) (-630 "LIST.spad" 1016309 1016319 1017738 1017765) (-629 "LIST3.spad" 1015600 1015614 1016299 1016304) (-628 "LIST2.spad" 1014240 1014252 1015590 1015595) (-627 "LIST2MAP.spad" 1011117 1011129 1014230 1014235) (-626 "LINEXP.spad" 1010549 1010559 1011097 1011112) (-625 "LINDEP.spad" 1009326 1009338 1010461 1010466) (-624 "LIMITRF.spad" 1007240 1007250 1009316 1009321) (-623 "LIMITPS.spad" 1006123 1006136 1007230 1007235) (-622 "LIE.spad" 1004137 1004149 1005413 1005558) (-621 "LIECAT.spad" 1003613 1003623 1004063 1004132) (-620 "LIECAT.spad" 1003117 1003129 1003569 1003574) (-619 "LIB.spad" 1001165 1001173 1001776 1001791) (-618 "LGROBP.spad" 998518 998537 1001155 1001160) (-617 "LF.spad" 997437 997453 998508 998513) (-616 "LFCAT.spad" 996456 996464 997427 997432) (-615 "LEXTRIPK.spad" 991959 991974 996446 996451) (-614 "LEXP.spad" 989962 989989 991939 991954) (-613 "LETAST.spad" 989661 989669 989952 989957) (-612 "LEADCDET.spad" 988045 988062 989651 989656) (-611 "LAZM3PK.spad" 986749 986771 988035 988040) (-610 "LAUPOL.spad" 985438 985451 986342 986411) (-609 "LAPLACE.spad" 985011 985027 985428 985433) (-608 "LA.spad" 984451 984465 984933 984972) (-607 "LALG.spad" 984227 984237 984431 984446) (-606 "LALG.spad" 984011 984023 984217 984222) (-605 "KVTFROM.spad" 983746 983756 984001 984006) (-604 "KTVLOGIC.spad" 983169 983177 983736 983741) (-603 "KRCFROM.spad" 982907 982917 983159 983164) (-602 "KOVACIC.spad" 981620 981637 982897 982902) (-601 "KONVERT.spad" 981342 981352 981610 981615) (-600 "KOERCE.spad" 981079 981089 981332 981337) (-599 "KERNEL.spad" 979614 979624 980863 980868) (-598 "KERNEL2.spad" 979317 979329 979604 979609) (-597 "KDAGG.spad" 978420 978442 979297 979312) (-596 "KDAGG.spad" 977531 977555 978410 978415) (-595 "KAFILE.spad" 976494 976510 976729 976756) (-594 "JORDAN.spad" 974321 974333 975784 975929) (-593 "JOINAST.spad" 974015 974023 974311 974316) (-592 "JAVACODE.spad" 973881 973889 974005 974010) (-591 "IXAGG.spad" 972004 972028 973871 973876) (-590 "IXAGG.spad" 969982 970008 971851 971856) (-589 "IVECTOR.spad" 968753 968768 968908 968935) (-588 "ITUPLE.spad" 967898 967908 968743 968748) (-587 "ITRIGMNP.spad" 966709 966728 967888 967893) (-586 "ITFUN3.spad" 966203 966217 966699 966704) (-585 "ITFUN2.spad" 965933 965945 966193 966198) (-584 "ITAYLOR.spad" 963725 963740 965769 965894) (-583 "ISUPS.spad" 956136 956151 962699 962796) (-582 "ISUMP.spad" 955633 955649 956126 956131) (-581 "ISTRING.spad" 954636 954649 954802 954829) (-580 "ISAST.spad" 954355 954363 954626 954631) (-579 "IRURPK.spad" 953068 953087 954345 954350) (-578 "IRSN.spad" 951028 951036 953058 953063) (-577 "IRRF2F.spad" 949503 949513 950984 950989) (-576 "IRREDFFX.spad" 949104 949115 949493 949498) (-575 "IROOT.spad" 947435 947445 949094 949099) (-574 "IR.spad" 945224 945238 947290 947317) (-573 "IR2.spad" 944244 944260 945214 945219) (-572 "IR2F.spad" 943444 943460 944234 944239) (-571 "IPRNTPK.spad" 943204 943212 943434 943439) (-570 "IPF.spad" 942769 942781 943009 943102) (-569 "IPADIC.spad" 942530 942556 942695 942764) (-568 "IP4ADDR.spad" 942078 942086 942520 942525) (-567 "IOMODE.spad" 941699 941707 942068 942073) (-566 "IOBFILE.spad" 941060 941068 941689 941694) (-565 "IOBCON.spad" 940925 940933 941050 941055) (-564 "INVLAPLA.spad" 940570 940586 940915 940920) (-563 "INTTR.spad" 933816 933833 940560 940565) (-562 "INTTOOLS.spad" 931527 931543 933390 933395) (-561 "INTSLPE.spad" 930833 930841 931517 931522) (-560 "INTRVL.spad" 930399 930409 930747 930828) (-559 "INTRF.spad" 928763 928777 930389 930394) (-558 "INTRET.spad" 928195 928205 928753 928758) (-557 "INTRAT.spad" 926870 926887 928185 928190) (-556 "INTPM.spad" 925233 925249 926513 926518) (-555 "INTPAF.spad" 923001 923019 925165 925170) (-554 "INTPACK.spad" 913311 913319 922991 922996) (-553 "INT.spad" 912672 912680 913165 913306) (-552 "INTHERTR.spad" 911938 911955 912662 912667) (-551 "INTHERAL.spad" 911604 911628 911928 911933) (-550 "INTHEORY.spad" 908017 908025 911594 911599) (-549 "INTG0.spad" 901480 901498 907949 907954) (-548 "INTFTBL.spad" 895509 895517 901470 901475) (-547 "INTFACT.spad" 894568 894578 895499 895504) (-546 "INTEF.spad" 892883 892899 894558 894563) (-545 "INTDOM.spad" 891498 891506 892809 892878) (-544 "INTDOM.spad" 890175 890185 891488 891493) (-543 "INTCAT.spad" 888428 888438 890089 890170) (-542 "INTBIT.spad" 887931 887939 888418 888423) (-541 "INTALG.spad" 887113 887140 887921 887926) (-540 "INTAF.spad" 886605 886621 887103 887108) (-539 "INTABL.spad" 885123 885154 885286 885313) (-538 "INS.spad" 882590 882598 885025 885118) (-537 "INS.spad" 880143 880153 882580 882585) (-536 "INPSIGN.spad" 879577 879590 880133 880138) (-535 "INPRODPF.spad" 878643 878662 879567 879572) (-534 "INPRODFF.spad" 877701 877725 878633 878638) (-533 "INNMFACT.spad" 876672 876689 877691 877696) (-532 "INMODGCD.spad" 876156 876186 876662 876667) (-531 "INFSP.spad" 874441 874463 876146 876151) (-530 "INFPROD0.spad" 873491 873510 874431 874436) (-529 "INFORM.spad" 870652 870660 873481 873486) (-528 "INFORM1.spad" 870277 870287 870642 870647) (-527 "INFINITY.spad" 869829 869837 870267 870272) (-526 "INETCLTS.spad" 869806 869814 869819 869824) (-525 "INEP.spad" 868338 868360 869796 869801) (-524 "INDE.spad" 868067 868084 868328 868333) (-523 "INCRMAPS.spad" 867488 867498 868057 868062) (-522 "INBFILE.spad" 866560 866568 867478 867483) (-521 "INBFF.spad" 862330 862341 866550 866555) (-520 "INBCON.spad" 861629 861637 862320 862325) (-519 "INBCON.spad" 860926 860936 861619 861624) (-518 "INAST.spad" 860591 860599 860916 860921) (-517 "IMPTAST.spad" 860299 860307 860581 860586) (-516 "IMATRIX.spad" 859244 859270 859756 859783) (-515 "IMATQF.spad" 858338 858382 859200 859205) (-514 "IMATLIN.spad" 856943 856967 858294 858299) (-513 "ILIST.spad" 855599 855614 856126 856153) (-512 "IIARRAY2.spad" 854987 855025 855206 855233) (-511 "IFF.spad" 854397 854413 854668 854761) (-510 "IFAST.spad" 854011 854019 854387 854392) (-509 "IFARRAY.spad" 851498 851513 853194 853221) (-508 "IFAMON.spad" 851360 851377 851454 851459) (-507 "IEVALAB.spad" 850749 850761 851350 851355) (-506 "IEVALAB.spad" 850136 850150 850739 850744) (-505 "IDPO.spad" 849934 849946 850126 850131) (-504 "IDPOAMS.spad" 849690 849702 849924 849929) (-503 "IDPOAM.spad" 849410 849422 849680 849685) (-502 "IDPC.spad" 848344 848356 849400 849405) (-501 "IDPAM.spad" 848089 848101 848334 848339) (-500 "IDPAG.spad" 847836 847848 848079 848084) (-499 "IDENT.spad" 847753 847761 847826 847831) (-498 "IDECOMP.spad" 844990 845008 847743 847748) (-497 "IDEAL.spad" 839913 839952 844925 844930) (-496 "ICDEN.spad" 839064 839080 839903 839908) (-495 "ICARD.spad" 838253 838261 839054 839059) (-494 "IBPTOOLS.spad" 836846 836863 838243 838248) (-493 "IBITS.spad" 836045 836058 836482 836509) (-492 "IBATOOL.spad" 832920 832939 836035 836040) (-491 "IBACHIN.spad" 831407 831422 832910 832915) (-490 "IARRAY2.spad" 830395 830421 831014 831041) (-489 "IARRAY1.spad" 829440 829455 829578 829605) (-488 "IAN.spad" 827653 827661 829256 829349) (-487 "IALGFACT.spad" 827254 827287 827643 827648) (-486 "HYPCAT.spad" 826678 826686 827244 827249) (-485 "HYPCAT.spad" 826100 826110 826668 826673) (-484 "HOSTNAME.spad" 825908 825916 826090 826095) (-483 "HOMOTOP.spad" 825651 825661 825898 825903) (-482 "HOAGG.spad" 822919 822929 825641 825646) (-481 "HOAGG.spad" 819962 819974 822686 822691) (-480 "HEXADEC.spad" 818064 818072 818429 818522) (-479 "HEUGCD.spad" 817079 817090 818054 818059) (-478 "HELLFDIV.spad" 816669 816693 817069 817074) (-477 "HEAP.spad" 816061 816071 816276 816303) (-476 "HEADAST.spad" 815592 815600 816051 816056) (-475 "HDP.spad" 805435 805451 805812 805943) (-474 "HDMP.spad" 802611 802626 803229 803356) (-473 "HB.spad" 800848 800856 802601 802606) (-472 "HASHTBL.spad" 799318 799349 799529 799556) (-471 "HASAST.spad" 799034 799042 799308 799313) (-470 "HACKPI.spad" 798517 798525 798936 799029) (-469 "GTSET.spad" 797456 797472 798163 798190) (-468 "GSTBL.spad" 795975 796010 796149 796164) (-467 "GSERIES.spad" 793142 793169 794107 794256) (-466 "GROUP.spad" 792411 792419 793122 793137) (-465 "GROUP.spad" 791688 791698 792401 792406) (-464 "GROEBSOL.spad" 790176 790197 791678 791683) (-463 "GRMOD.spad" 788747 788759 790166 790171) (-462 "GRMOD.spad" 787316 787330 788737 788742) (-461 "GRIMAGE.spad" 779921 779929 787306 787311) (-460 "GRDEF.spad" 778300 778308 779911 779916) (-459 "GRAY.spad" 776759 776767 778290 778295) (-458 "GRALG.spad" 775806 775818 776749 776754) (-457 "GRALG.spad" 774851 774865 775796 775801) (-456 "GPOLSET.spad" 774305 774328 774533 774560) (-455 "GOSPER.spad" 773570 773588 774295 774300) (-454 "GMODPOL.spad" 772708 772735 773538 773565) (-453 "GHENSEL.spad" 771777 771791 772698 772703) (-452 "GENUPS.spad" 767878 767891 771767 771772) (-451 "GENUFACT.spad" 767455 767465 767868 767873) (-450 "GENPGCD.spad" 767039 767056 767445 767450) (-449 "GENMFACT.spad" 766491 766510 767029 767034) (-448 "GENEEZ.spad" 764430 764443 766481 766486) (-447 "GDMP.spad" 761448 761465 762224 762351) (-446 "GCNAALG.spad" 755343 755370 761242 761309) (-445 "GCDDOM.spad" 754515 754523 755269 755338) (-444 "GCDDOM.spad" 753749 753759 754505 754510) (-443 "GB.spad" 751267 751305 753705 753710) (-442 "GBINTERN.spad" 747287 747325 751257 751262) (-441 "GBF.spad" 743044 743082 747277 747282) (-440 "GBEUCLID.spad" 740918 740956 743034 743039) (-439 "GAUSSFAC.spad" 740215 740223 740908 740913) (-438 "GALUTIL.spad" 738537 738547 740171 740176) (-437 "GALPOLYU.spad" 736983 736996 738527 738532) (-436 "GALFACTU.spad" 735148 735167 736973 736978) (-435 "GALFACT.spad" 725281 725292 735138 735143) (-434 "FVFUN.spad" 722304 722312 725271 725276) (-433 "FVC.spad" 721356 721364 722294 722299) (-432 "FUNCTION.spad" 721205 721217 721346 721351) (-431 "FT.spad" 719498 719506 721195 721200) (-430 "FTEM.spad" 718661 718669 719488 719493) (-429 "FSUPFACT.spad" 717561 717580 718597 718602) (-428 "FST.spad" 715647 715655 717551 717556) (-427 "FSRED.spad" 715125 715141 715637 715642) (-426 "FSPRMELT.spad" 713949 713965 715082 715087) (-425 "FSPECF.spad" 712026 712042 713939 713944) (-424 "FS.spad" 706088 706098 711801 712021) (-423 "FS.spad" 699928 699940 705643 705648) (-422 "FSINT.spad" 699586 699602 699918 699923) (-421 "FSERIES.spad" 698773 698785 699406 699505) (-420 "FSCINT.spad" 698086 698102 698763 698768) (-419 "FSAGG.spad" 697203 697213 698042 698081) (-418 "FSAGG.spad" 696282 696294 697123 697128) (-417 "FSAGG2.spad" 694981 694997 696272 696277) (-416 "FS2UPS.spad" 689464 689498 694971 694976) (-415 "FS2.spad" 689109 689125 689454 689459) (-414 "FS2EXPXP.spad" 688232 688255 689099 689104) (-413 "FRUTIL.spad" 687174 687184 688222 688227) (-412 "FR.spad" 680868 680878 686198 686267) (-411 "FRNAALG.spad" 675955 675965 680810 680863) (-410 "FRNAALG.spad" 671054 671066 675911 675916) (-409 "FRNAAF2.spad" 670508 670526 671044 671049) (-408 "FRMOD.spad" 669902 669932 670439 670444) (-407 "FRIDEAL.spad" 669097 669118 669882 669897) (-406 "FRIDEAL2.spad" 668699 668731 669087 669092) (-405 "FRETRCT.spad" 668210 668220 668689 668694) (-404 "FRETRCT.spad" 667587 667599 668068 668073) (-403 "FRAMALG.spad" 665915 665928 667543 667582) (-402 "FRAMALG.spad" 664275 664290 665905 665910) (-401 "FRAC.spad" 661374 661384 661777 661950) (-400 "FRAC2.spad" 660977 660989 661364 661369) (-399 "FR2.spad" 660311 660323 660967 660972) (-398 "FPS.spad" 657120 657128 660201 660306) (-397 "FPS.spad" 653957 653967 657040 657045) (-396 "FPC.spad" 652999 653007 653859 653952) (-395 "FPC.spad" 652127 652137 652989 652994) (-394 "FPATMAB.spad" 651889 651899 652117 652122) (-393 "FPARFRAC.spad" 650362 650379 651879 651884) (-392 "FORTRAN.spad" 648868 648911 650352 650357) (-391 "FORT.spad" 647797 647805 648858 648863) (-390 "FORTFN.spad" 644967 644975 647787 647792) (-389 "FORTCAT.spad" 644651 644659 644957 644962) (-388 "FORMULA.spad" 642115 642123 644641 644646) (-387 "FORMULA1.spad" 641594 641604 642105 642110) (-386 "FORDER.spad" 641285 641309 641584 641589) (-385 "FOP.spad" 640486 640494 641275 641280) (-384 "FNLA.spad" 639910 639932 640454 640481) (-383 "FNCAT.spad" 638497 638505 639900 639905) (-382 "FNAME.spad" 638389 638397 638487 638492) (-381 "FMTC.spad" 638187 638195 638315 638384) (-380 "FMONOID.spad" 635242 635252 638143 638148) (-379 "FM.spad" 634937 634949 635176 635203) (-378 "FMFUN.spad" 631967 631975 634927 634932) (-377 "FMC.spad" 631019 631027 631957 631962) (-376 "FMCAT.spad" 628673 628691 630987 631014) (-375 "FM1.spad" 628030 628042 628607 628634) (-374 "FLOATRP.spad" 625751 625765 628020 628025) (-373 "FLOAT.spad" 619039 619047 625617 625746) (-372 "FLOATCP.spad" 616456 616470 619029 619034) (-371 "FLINEXP.spad" 616168 616178 616436 616451) (-370 "FLINEXP.spad" 615834 615846 616104 616109) (-369 "FLASORT.spad" 615154 615166 615824 615829) (-368 "FLALG.spad" 612800 612819 615080 615149) (-367 "FLAGG.spad" 609818 609828 612780 612795) (-366 "FLAGG.spad" 606737 606749 609701 609706) (-365 "FLAGG2.spad" 605418 605434 606727 606732) (-364 "FINRALG.spad" 603447 603460 605374 605413) (-363 "FINRALG.spad" 601402 601417 603331 603336) (-362 "FINITE.spad" 600554 600562 601392 601397) (-361 "FINAALG.spad" 589535 589545 600496 600549) (-360 "FINAALG.spad" 578528 578540 589491 589496) (-359 "FILE.spad" 578111 578121 578518 578523) (-358 "FILECAT.spad" 576629 576646 578101 578106) (-357 "FIELD.spad" 576035 576043 576531 576624) (-356 "FIELD.spad" 575527 575537 576025 576030) (-355 "FGROUP.spad" 574136 574146 575507 575522) (-354 "FGLMICPK.spad" 572923 572938 574126 574131) (-353 "FFX.spad" 572298 572313 572639 572732) (-352 "FFSLPE.spad" 571787 571808 572288 572293) (-351 "FFPOLY.spad" 563039 563050 571777 571782) (-350 "FFPOLY2.spad" 562099 562116 563029 563034) (-349 "FFP.spad" 561496 561516 561815 561908) (-348 "FF.spad" 560944 560960 561177 561270) (-347 "FFNBX.spad" 559456 559476 560660 560753) (-346 "FFNBP.spad" 557969 557986 559172 559265) (-345 "FFNB.spad" 556434 556455 557650 557743) (-344 "FFINTBAS.spad" 553848 553867 556424 556429) (-343 "FFIELDC.spad" 551423 551431 553750 553843) (-342 "FFIELDC.spad" 549084 549094 551413 551418) (-341 "FFHOM.spad" 547832 547849 549074 549079) (-340 "FFF.spad" 545267 545278 547822 547827) (-339 "FFCGX.spad" 544114 544134 544983 545076) (-338 "FFCGP.spad" 543003 543023 543830 543923) (-337 "FFCG.spad" 541795 541816 542684 542777) (-336 "FFCAT.spad" 534822 534844 541634 541790) (-335 "FFCAT.spad" 527928 527952 534742 534747) (-334 "FFCAT2.spad" 527673 527713 527918 527923) (-333 "FEXPR.spad" 519382 519428 527429 527468) (-332 "FEVALAB.spad" 519088 519098 519372 519377) (-331 "FEVALAB.spad" 518579 518591 518865 518870) (-330 "FDIV.spad" 518021 518045 518569 518574) (-329 "FDIVCAT.spad" 516063 516087 518011 518016) (-328 "FDIVCAT.spad" 514103 514129 516053 516058) (-327 "FDIV2.spad" 513757 513797 514093 514098) (-326 "FCPAK1.spad" 512310 512318 513747 513752) (-325 "FCOMP.spad" 511689 511699 512300 512305) (-324 "FC.spad" 501604 501612 511679 511684) (-323 "FAXF.spad" 494539 494553 501506 501599) (-322 "FAXF.spad" 487526 487542 494495 494500) (-321 "FARRAY.spad" 485672 485682 486709 486736) (-320 "FAMR.spad" 483792 483804 485570 485667) (-319 "FAMR.spad" 481896 481910 483676 483681) (-318 "FAMONOID.spad" 481546 481556 481850 481855) (-317 "FAMONC.spad" 479768 479780 481536 481541) (-316 "FAGROUP.spad" 479374 479384 479664 479691) (-315 "FACUTIL.spad" 477570 477587 479364 479369) (-314 "FACTFUNC.spad" 476746 476756 477560 477565) (-313 "EXPUPXS.spad" 473579 473602 474878 475027) (-312 "EXPRTUBE.spad" 470807 470815 473569 473574) (-311 "EXPRODE.spad" 467679 467695 470797 470802) (-310 "EXPR.spad" 462954 462964 463668 464075) (-309 "EXPR2UPS.spad" 459046 459059 462944 462949) (-308 "EXPR2.spad" 458749 458761 459036 459041) (-307 "EXPEXPAN.spad" 455687 455712 456321 456414) (-306 "EXIT.spad" 455358 455366 455677 455682) (-305 "EXITAST.spad" 455094 455102 455348 455353) (-304 "EVALCYC.spad" 454552 454566 455084 455089) (-303 "EVALAB.spad" 454116 454126 454542 454547) (-302 "EVALAB.spad" 453678 453690 454106 454111) (-301 "EUCDOM.spad" 451220 451228 453604 453673) (-300 "EUCDOM.spad" 448824 448834 451210 451215) (-299 "ESTOOLS.spad" 440664 440672 448814 448819) (-298 "ESTOOLS2.spad" 440265 440279 440654 440659) (-297 "ESTOOLS1.spad" 439950 439961 440255 440260) (-296 "ES.spad" 432497 432505 439940 439945) (-295 "ES.spad" 424950 424960 432395 432400) (-294 "ESCONT.spad" 421723 421731 424940 424945) (-293 "ESCONT1.spad" 421472 421484 421713 421718) (-292 "ES2.spad" 420967 420983 421462 421467) (-291 "ES1.spad" 420533 420549 420957 420962) (-290 "ERROR.spad" 417854 417862 420523 420528) (-289 "EQTBL.spad" 416326 416348 416535 416562) (-288 "EQ.spad" 411200 411210 413999 414111) (-287 "EQ2.spad" 410916 410928 411190 411195) (-286 "EP.spad" 407230 407240 410906 410911) (-285 "ENV.spad" 405932 405940 407220 407225) (-284 "ENTIRER.spad" 405600 405608 405876 405927) (-283 "EMR.spad" 404801 404842 405526 405595) (-282 "ELTAGG.spad" 403041 403060 404791 404796) (-281 "ELTAGG.spad" 401245 401266 402997 403002) (-280 "ELTAB.spad" 400692 400710 401235 401240) (-279 "ELFUTS.spad" 400071 400090 400682 400687) (-278 "ELEMFUN.spad" 399760 399768 400061 400066) (-277 "ELEMFUN.spad" 399447 399457 399750 399755) (-276 "ELAGG.spad" 397390 397400 399427 399442) (-275 "ELAGG.spad" 395270 395282 397309 397314) (-274 "ELABEXPR.spad" 394201 394209 395260 395265) (-273 "EFUPXS.spad" 390977 391007 394157 394162) (-272 "EFULS.spad" 387813 387836 390933 390938) (-271 "EFSTRUC.spad" 385768 385784 387803 387808) (-270 "EF.spad" 380534 380550 385758 385763) (-269 "EAB.spad" 378810 378818 380524 380529) (-268 "E04UCFA.spad" 378346 378354 378800 378805) (-267 "E04NAFA.spad" 377923 377931 378336 378341) (-266 "E04MBFA.spad" 377503 377511 377913 377918) (-265 "E04JAFA.spad" 377039 377047 377493 377498) (-264 "E04GCFA.spad" 376575 376583 377029 377034) (-263 "E04FDFA.spad" 376111 376119 376565 376570) (-262 "E04DGFA.spad" 375647 375655 376101 376106) (-261 "E04AGNT.spad" 371489 371497 375637 375642) (-260 "DVARCAT.spad" 368174 368184 371479 371484) (-259 "DVARCAT.spad" 364857 364869 368164 368169) (-258 "DSMP.spad" 362288 362302 362593 362720) (-257 "DROPT.spad" 356233 356241 362278 362283) (-256 "DROPT1.spad" 355896 355906 356223 356228) (-255 "DROPT0.spad" 350723 350731 355886 355891) (-254 "DRAWPT.spad" 348878 348886 350713 350718) (-253 "DRAW.spad" 341478 341491 348868 348873) (-252 "DRAWHACK.spad" 340786 340796 341468 341473) (-251 "DRAWCX.spad" 338228 338236 340776 340781) (-250 "DRAWCURV.spad" 337765 337780 338218 338223) (-249 "DRAWCFUN.spad" 326937 326945 337755 337760) (-248 "DQAGG.spad" 325105 325115 326905 326932) (-247 "DPOLCAT.spad" 320446 320462 324973 325100) (-246 "DPOLCAT.spad" 315873 315891 320402 320407) (-245 "DPMO.spad" 308099 308115 308237 308538) (-244 "DPMM.spad" 300338 300356 300463 300764) (-243 "DOMAIN.spad" 299609 299617 300328 300333) (-242 "DMP.spad" 296831 296846 297403 297530) (-241 "DLP.spad" 296179 296189 296821 296826) (-240 "DLIST.spad" 294758 294768 295362 295389) (-239 "DLAGG.spad" 293169 293179 294748 294753) (-238 "DIVRING.spad" 292711 292719 293113 293164) (-237 "DIVRING.spad" 292297 292307 292701 292706) (-236 "DISPLAY.spad" 290477 290485 292287 292292) (-235 "DIRPROD.spad" 280057 280073 280697 280828) (-234 "DIRPROD2.spad" 278865 278883 280047 280052) (-233 "DIRPCAT.spad" 277807 277823 278729 278860) (-232 "DIRPCAT.spad" 276478 276496 277402 277407) (-231 "DIOSP.spad" 275303 275311 276468 276473) (-230 "DIOPS.spad" 274287 274297 275283 275298) (-229 "DIOPS.spad" 273245 273257 274243 274248) (-228 "DIFRING.spad" 272537 272545 273225 273240) (-227 "DIFRING.spad" 271837 271847 272527 272532) (-226 "DIFEXT.spad" 270996 271006 271817 271832) (-225 "DIFEXT.spad" 270072 270084 270895 270900) (-224 "DIAGG.spad" 269702 269712 270052 270067) (-223 "DIAGG.spad" 269340 269352 269692 269697) (-222 "DHMATRIX.spad" 267644 267654 268797 268824) (-221 "DFSFUN.spad" 261052 261060 267634 267639) (-220 "DFLOAT.spad" 257773 257781 260942 261047) (-219 "DFINTTLS.spad" 255982 255998 257763 257768) (-218 "DERHAM.spad" 253892 253924 255962 255977) (-217 "DEQUEUE.spad" 253210 253220 253499 253526) (-216 "DEGRED.spad" 252825 252839 253200 253205) (-215 "DEFINTRF.spad" 250350 250360 252815 252820) (-214 "DEFINTEF.spad" 248846 248862 250340 250345) (-213 "DEFAST.spad" 248214 248222 248836 248841) (-212 "DECIMAL.spad" 246320 246328 246681 246774) (-211 "DDFACT.spad" 244119 244136 246310 246315) (-210 "DBLRESP.spad" 243717 243741 244109 244114) (-209 "DBASE.spad" 242371 242381 243707 243712) (-208 "DATAARY.spad" 241833 241846 242361 242366) (-207 "D03FAFA.spad" 241661 241669 241823 241828) (-206 "D03EEFA.spad" 241481 241489 241651 241656) (-205 "D03AGNT.spad" 240561 240569 241471 241476) (-204 "D02EJFA.spad" 240023 240031 240551 240556) (-203 "D02CJFA.spad" 239501 239509 240013 240018) (-202 "D02BHFA.spad" 238991 238999 239491 239496) (-201 "D02BBFA.spad" 238481 238489 238981 238986) (-200 "D02AGNT.spad" 233285 233293 238471 238476) (-199 "D01WGTS.spad" 231604 231612 233275 233280) (-198 "D01TRNS.spad" 231581 231589 231594 231599) (-197 "D01GBFA.spad" 231103 231111 231571 231576) (-196 "D01FCFA.spad" 230625 230633 231093 231098) (-195 "D01ASFA.spad" 230093 230101 230615 230620) (-194 "D01AQFA.spad" 229539 229547 230083 230088) (-193 "D01APFA.spad" 228963 228971 229529 229534) (-192 "D01ANFA.spad" 228457 228465 228953 228958) (-191 "D01AMFA.spad" 227967 227975 228447 228452) (-190 "D01ALFA.spad" 227507 227515 227957 227962) (-189 "D01AKFA.spad" 227033 227041 227497 227502) (-188 "D01AJFA.spad" 226556 226564 227023 227028) (-187 "D01AGNT.spad" 222615 222623 226546 226551) (-186 "CYCLOTOM.spad" 222121 222129 222605 222610) (-185 "CYCLES.spad" 218953 218961 222111 222116) (-184 "CVMP.spad" 218370 218380 218943 218948) (-183 "CTRIGMNP.spad" 216860 216876 218360 218365) (-182 "CTOR.spad" 216303 216311 216850 216855) (-181 "CTORKIND.spad" 215918 215926 216293 216298) (-180 "CTORCALL.spad" 215506 215514 215908 215913) (-179 "CSTTOOLS.spad" 214749 214762 215496 215501) (-178 "CRFP.spad" 208453 208466 214739 214744) (-177 "CRCEAST.spad" 208173 208181 208443 208448) (-176 "CRAPACK.spad" 207216 207226 208163 208168) (-175 "CPMATCH.spad" 206716 206731 207141 207146) (-174 "CPIMA.spad" 206421 206440 206706 206711) (-173 "COORDSYS.spad" 201314 201324 206411 206416) (-172 "CONTOUR.spad" 200716 200724 201304 201309) (-171 "CONTFRAC.spad" 196328 196338 200618 200711) (-170 "CONDUIT.spad" 196086 196094 196318 196323) (-169 "COMRING.spad" 195760 195768 196024 196081) (-168 "COMPPROP.spad" 195274 195282 195750 195755) (-167 "COMPLPAT.spad" 195041 195056 195264 195269) (-166 "COMPLEX.spad" 189077 189087 189321 189570) (-165 "COMPLEX2.spad" 188790 188802 189067 189072) (-164 "COMPFACT.spad" 188392 188406 188780 188785) (-163 "COMPCAT.spad" 186530 186540 188138 188387) (-162 "COMPCAT.spad" 184349 184361 185959 185964) (-161 "COMMUPC.spad" 184095 184113 184339 184344) (-160 "COMMONOP.spad" 183628 183636 184085 184090) (-159 "COMM.spad" 183437 183445 183618 183623) (-158 "COMMAAST.spad" 183200 183208 183427 183432) (-157 "COMBOPC.spad" 182105 182113 183190 183195) (-156 "COMBINAT.spad" 180850 180860 182095 182100) (-155 "COMBF.spad" 178218 178234 180840 180845) (-154 "COLOR.spad" 177055 177063 178208 178213) (-153 "COLONAST.spad" 176721 176729 177045 177050) (-152 "CMPLXRT.spad" 176430 176447 176711 176716) (-151 "CLLCTAST.spad" 176092 176100 176420 176425) (-150 "CLIP.spad" 172184 172192 176082 176087) (-149 "CLIF.spad" 170823 170839 172140 172179) (-148 "CLAGG.spad" 167308 167318 170813 170818) (-147 "CLAGG.spad" 163664 163676 167171 167176) (-146 "CINTSLPE.spad" 162989 163002 163654 163659) (-145 "CHVAR.spad" 161067 161089 162979 162984) (-144 "CHARZ.spad" 160982 160990 161047 161062) (-143 "CHARPOL.spad" 160490 160500 160972 160977) (-142 "CHARNZ.spad" 160243 160251 160470 160485) (-141 "CHAR.spad" 158111 158119 160233 160238) (-140 "CFCAT.spad" 157427 157435 158101 158106) (-139 "CDEN.spad" 156585 156599 157417 157422) (-138 "CCLASS.spad" 154734 154742 155996 156035) (-137 "CATEGORY.spad" 154513 154521 154724 154729) (-136 "CATAST.spad" 154140 154148 154503 154508) (-135 "CASEAST.spad" 153854 153862 154130 154135) (-134 "CARTEN.spad" 148957 148981 153844 153849) (-133 "CARTEN2.spad" 148343 148370 148947 148952) (-132 "CARD.spad" 145632 145640 148317 148338) (-131 "CAPSLAST.spad" 145406 145414 145622 145627) (-130 "CACHSET.spad" 145028 145036 145396 145401) (-129 "CABMON.spad" 144581 144589 145018 145023) (-128 "BYTE.spad" 143902 143910 144571 144576) (-127 "BYTEBUF.spad" 141724 141732 143071 143098) (-126 "BTREE.spad" 140793 140803 141331 141358) (-125 "BTOURN.spad" 139796 139806 140400 140427) (-124 "BTCAT.spad" 139184 139194 139764 139791) (-123 "BTCAT.spad" 138592 138604 139174 139179) (-122 "BTAGG.spad" 137714 137722 138560 138587) (-121 "BTAGG.spad" 136856 136866 137704 137709) (-120 "BSTREE.spad" 135591 135601 136463 136490) (-119 "BRILL.spad" 133786 133797 135581 135586) (-118 "BRAGG.spad" 132710 132720 133776 133781) (-117 "BRAGG.spad" 131598 131610 132666 132671) (-116 "BPADICRT.spad" 129579 129591 129834 129927) (-115 "BPADIC.spad" 129243 129255 129505 129574) (-114 "BOUNDZRO.spad" 128899 128916 129233 129238) (-113 "BOP.spad" 124363 124371 128889 128894) (-112 "BOP1.spad" 121749 121759 124319 124324) (-111 "BOOLEAN.spad" 121073 121081 121739 121744) (-110 "BMODULE.spad" 120785 120797 121041 121068) (-109 "BITS.spad" 120204 120212 120421 120448) (-108 "BINDING.spad" 119623 119631 120194 120199) (-107 "BINARY.spad" 117734 117742 118090 118183) (-106 "BGAGG.spad" 116931 116941 117714 117729) (-105 "BGAGG.spad" 116136 116148 116921 116926) (-104 "BFUNCT.spad" 115700 115708 116116 116131) (-103 "BEZOUT.spad" 114834 114861 115650 115655) (-102 "BBTREE.spad" 111653 111663 114441 114468) (-101 "BASTYPE.spad" 111325 111333 111643 111648) (-100 "BASTYPE.spad" 110995 111005 111315 111320) (-99 "BALFACT.spad" 110435 110447 110985 110990) (-98 "AUTOMOR.spad" 109882 109891 110415 110430) (-97 "ATTREG.spad" 106601 106608 109634 109877) (-96 "ATTRBUT.spad" 102624 102631 106581 106596) (-95 "ATTRAST.spad" 102341 102348 102614 102619) (-94 "ATRIG.spad" 101811 101818 102331 102336) (-93 "ATRIG.spad" 101279 101288 101801 101806) (-92 "ASTCAT.spad" 101183 101190 101269 101274) (-91 "ASTCAT.spad" 101085 101094 101173 101178) (-90 "ASTACK.spad" 100418 100427 100692 100719) (-89 "ASSOCEQ.spad" 99218 99229 100374 100379) (-88 "ASP9.spad" 98299 98312 99208 99213) (-87 "ASP8.spad" 97342 97355 98289 98294) (-86 "ASP80.spad" 96664 96677 97332 97337) (-85 "ASP7.spad" 95824 95837 96654 96659) (-84 "ASP78.spad" 95275 95288 95814 95819) (-83 "ASP77.spad" 94644 94657 95265 95270) (-82 "ASP74.spad" 93736 93749 94634 94639) (-81 "ASP73.spad" 93007 93020 93726 93731) (-80 "ASP6.spad" 91874 91887 92997 93002) (-79 "ASP55.spad" 90383 90396 91864 91869) (-78 "ASP50.spad" 88200 88213 90373 90378) (-77 "ASP4.spad" 87495 87508 88190 88195) (-76 "ASP49.spad" 86494 86507 87485 87490) (-75 "ASP42.spad" 84901 84940 86484 86489) (-74 "ASP41.spad" 83480 83519 84891 84896) (-73 "ASP35.spad" 82468 82481 83470 83475) (-72 "ASP34.spad" 81769 81782 82458 82463) (-71 "ASP33.spad" 81329 81342 81759 81764) (-70 "ASP31.spad" 80469 80482 81319 81324) (-69 "ASP30.spad" 79361 79374 80459 80464) (-68 "ASP29.spad" 78827 78840 79351 79356) (-67 "ASP28.spad" 70100 70113 78817 78822) (-66 "ASP27.spad" 68997 69010 70090 70095) (-65 "ASP24.spad" 68084 68097 68987 68992) (-64 "ASP20.spad" 67548 67561 68074 68079) (-63 "ASP1.spad" 66929 66942 67538 67543) (-62 "ASP19.spad" 61615 61628 66919 66924) (-61 "ASP12.spad" 61029 61042 61605 61610) (-60 "ASP10.spad" 60300 60313 61019 61024) (-59 "ARRAY2.spad" 59660 59669 59907 59934) (-58 "ARRAY1.spad" 58495 58504 58843 58870) (-57 "ARRAY12.spad" 57164 57175 58485 58490) (-56 "ARR2CAT.spad" 52826 52847 57132 57159) (-55 "ARR2CAT.spad" 48508 48531 52816 52821) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2275190 2275195 2275200 2275205) (-2 NIL 2275170 2275175 2275180 2275185) (-1 NIL 2275150 2275155 2275160 2275165) (0 NIL 2275130 2275135 2275140 2275145) (-1269 "ZMOD.spad" 2274939 2274952 2275068 2275125) (-1268 "ZLINDEP.spad" 2273983 2273994 2274929 2274934) (-1267 "ZDSOLVE.spad" 2263832 2263854 2273973 2273978) (-1266 "YSTREAM.spad" 2263325 2263336 2263822 2263827) (-1265 "XRPOLY.spad" 2262545 2262565 2263181 2263250) (-1264 "XPR.spad" 2260336 2260349 2262263 2262362) (-1263 "XPOLY.spad" 2259891 2259902 2260192 2260261) (-1262 "XPOLYC.spad" 2259208 2259224 2259817 2259886) (-1261 "XPBWPOLY.spad" 2257645 2257665 2258988 2259057) (-1260 "XF.spad" 2256106 2256121 2257547 2257640) (-1259 "XF.spad" 2254547 2254564 2255990 2255995) (-1258 "XFALG.spad" 2251571 2251587 2254473 2254542) (-1257 "XEXPPKG.spad" 2250822 2250848 2251561 2251566) (-1256 "XDPOLY.spad" 2250436 2250452 2250678 2250747) (-1255 "XALG.spad" 2250096 2250107 2250392 2250431) (-1254 "WUTSET.spad" 2245935 2245952 2249742 2249769) (-1253 "WP.spad" 2245134 2245178 2245793 2245860) (-1252 "WHILEAST.spad" 2244932 2244941 2245124 2245129) (-1251 "WHEREAST.spad" 2244603 2244612 2244922 2244927) (-1250 "WFFINTBS.spad" 2242166 2242188 2244593 2244598) (-1249 "WEIER.spad" 2240380 2240391 2242156 2242161) (-1248 "VSPACE.spad" 2240053 2240064 2240348 2240375) (-1247 "VSPACE.spad" 2239746 2239759 2240043 2240048) (-1246 "VOID.spad" 2239423 2239432 2239736 2239741) (-1245 "VIEW.spad" 2237045 2237054 2239413 2239418) (-1244 "VIEWDEF.spad" 2232242 2232251 2237035 2237040) (-1243 "VIEW3D.spad" 2216077 2216086 2232232 2232237) (-1242 "VIEW2D.spad" 2203814 2203823 2216067 2216072) (-1241 "VECTOR.spad" 2202489 2202500 2202740 2202767) (-1240 "VECTOR2.spad" 2201116 2201129 2202479 2202484) (-1239 "VECTCAT.spad" 2199016 2199027 2201084 2201111) (-1238 "VECTCAT.spad" 2196724 2196737 2198794 2198799) (-1237 "VARIABLE.spad" 2196504 2196519 2196714 2196719) (-1236 "UTYPE.spad" 2196148 2196157 2196494 2196499) (-1235 "UTSODETL.spad" 2195441 2195465 2196104 2196109) (-1234 "UTSODE.spad" 2193629 2193649 2195431 2195436) (-1233 "UTS.spad" 2188418 2188446 2192096 2192193) (-1232 "UTSCAT.spad" 2185869 2185885 2188316 2188413) (-1231 "UTSCAT.spad" 2182964 2182982 2185413 2185418) (-1230 "UTS2.spad" 2182557 2182592 2182954 2182959) (-1229 "URAGG.spad" 2177189 2177200 2182547 2182552) (-1228 "URAGG.spad" 2171785 2171798 2177145 2177150) (-1227 "UPXSSING.spad" 2169428 2169454 2170866 2170999) (-1226 "UPXS.spad" 2166576 2166604 2167560 2167709) (-1225 "UPXSCONS.spad" 2164333 2164353 2164708 2164857) (-1224 "UPXSCCA.spad" 2162898 2162918 2164179 2164328) (-1223 "UPXSCCA.spad" 2161605 2161627 2162888 2162893) (-1222 "UPXSCAT.spad" 2160186 2160202 2161451 2161600) (-1221 "UPXS2.spad" 2159727 2159780 2160176 2160181) (-1220 "UPSQFREE.spad" 2158139 2158153 2159717 2159722) (-1219 "UPSCAT.spad" 2155732 2155756 2158037 2158134) (-1218 "UPSCAT.spad" 2153031 2153057 2155338 2155343) (-1217 "UPOLYC.spad" 2148009 2148020 2152873 2153026) (-1216 "UPOLYC.spad" 2142879 2142892 2147745 2147750) (-1215 "UPOLYC2.spad" 2142348 2142367 2142869 2142874) (-1214 "UP.spad" 2139505 2139520 2139898 2140051) (-1213 "UPMP.spad" 2138395 2138408 2139495 2139500) (-1212 "UPDIVP.spad" 2137958 2137972 2138385 2138390) (-1211 "UPDECOMP.spad" 2136195 2136209 2137948 2137953) (-1210 "UPCDEN.spad" 2135402 2135418 2136185 2136190) (-1209 "UP2.spad" 2134764 2134785 2135392 2135397) (-1208 "UNISEG.spad" 2134117 2134128 2134683 2134688) (-1207 "UNISEG2.spad" 2133610 2133623 2134073 2134078) (-1206 "UNIFACT.spad" 2132711 2132723 2133600 2133605) (-1205 "ULS.spad" 2123263 2123291 2124356 2124785) (-1204 "ULSCONS.spad" 2115657 2115677 2116029 2116178) (-1203 "ULSCCAT.spad" 2113386 2113406 2115503 2115652) (-1202 "ULSCCAT.spad" 2111223 2111245 2113342 2113347) (-1201 "ULSCAT.spad" 2109439 2109455 2111069 2111218) (-1200 "ULS2.spad" 2108951 2109004 2109429 2109434) (-1199 "UFD.spad" 2108016 2108025 2108877 2108946) (-1198 "UFD.spad" 2107143 2107154 2108006 2108011) (-1197 "UDVO.spad" 2105990 2105999 2107133 2107138) (-1196 "UDPO.spad" 2103417 2103428 2105946 2105951) (-1195 "TYPE.spad" 2103349 2103358 2103407 2103412) (-1194 "TYPEAST.spad" 2103268 2103277 2103339 2103344) (-1193 "TWOFACT.spad" 2101918 2101933 2103258 2103263) (-1192 "TUPLE.spad" 2101402 2101413 2101817 2101822) (-1191 "TUBETOOL.spad" 2098239 2098248 2101392 2101397) (-1190 "TUBE.spad" 2096880 2096897 2098229 2098234) (-1189 "TS.spad" 2095469 2095485 2096445 2096542) (-1188 "TSETCAT.spad" 2082596 2082613 2095437 2095464) (-1187 "TSETCAT.spad" 2069709 2069728 2082552 2082557) (-1186 "TRMANIP.spad" 2064075 2064092 2069415 2069420) (-1185 "TRIMAT.spad" 2063034 2063059 2064065 2064070) (-1184 "TRIGMNIP.spad" 2061551 2061568 2063024 2063029) (-1183 "TRIGCAT.spad" 2061063 2061072 2061541 2061546) (-1182 "TRIGCAT.spad" 2060573 2060584 2061053 2061058) (-1181 "TREE.spad" 2059144 2059155 2060180 2060207) (-1180 "TRANFUN.spad" 2058975 2058984 2059134 2059139) (-1179 "TRANFUN.spad" 2058804 2058815 2058965 2058970) (-1178 "TOPSP.spad" 2058478 2058487 2058794 2058799) (-1177 "TOOLSIGN.spad" 2058141 2058152 2058468 2058473) (-1176 "TEXTFILE.spad" 2056698 2056707 2058131 2058136) (-1175 "TEX.spad" 2053830 2053839 2056688 2056693) (-1174 "TEX1.spad" 2053386 2053397 2053820 2053825) (-1173 "TEMUTL.spad" 2052941 2052950 2053376 2053381) (-1172 "TBCMPPK.spad" 2051034 2051057 2052931 2052936) (-1171 "TBAGG.spad" 2050070 2050093 2051014 2051029) (-1170 "TBAGG.spad" 2049114 2049139 2050060 2050065) (-1169 "TANEXP.spad" 2048490 2048501 2049104 2049109) (-1168 "TABLE.spad" 2046901 2046924 2047171 2047198) (-1167 "TABLEAU.spad" 2046382 2046393 2046891 2046896) (-1166 "TABLBUMP.spad" 2043165 2043176 2046372 2046377) (-1165 "SYSTEM.spad" 2042439 2042448 2043155 2043160) (-1164 "SYSSOLP.spad" 2039912 2039923 2042429 2042434) (-1163 "SYNTAX.spad" 2036182 2036191 2039902 2039907) (-1162 "SYMTAB.spad" 2034238 2034247 2036172 2036177) (-1161 "SYMS.spad" 2030223 2030232 2034228 2034233) (-1160 "SYMPOLY.spad" 2029230 2029241 2029312 2029439) (-1159 "SYMFUNC.spad" 2028705 2028716 2029220 2029225) (-1158 "SYMBOL.spad" 2026132 2026141 2028695 2028700) (-1157 "SWITCH.spad" 2022889 2022898 2026122 2026127) (-1156 "SUTS.spad" 2019788 2019816 2021356 2021453) (-1155 "SUPXS.spad" 2016923 2016951 2017920 2018069) (-1154 "SUP.spad" 2013692 2013703 2014473 2014626) (-1153 "SUPFRACF.spad" 2012797 2012815 2013682 2013687) (-1152 "SUP2.spad" 2012187 2012200 2012787 2012792) (-1151 "SUMRF.spad" 2011153 2011164 2012177 2012182) (-1150 "SUMFS.spad" 2010786 2010803 2011143 2011148) (-1149 "SULS.spad" 2001325 2001353 2002431 2002860) (-1148 "SUCHTAST.spad" 2001094 2001103 2001315 2001320) (-1147 "SUCH.spad" 2000774 2000789 2001084 2001089) (-1146 "SUBSPACE.spad" 1992781 1992796 2000764 2000769) (-1145 "SUBRESP.spad" 1991941 1991955 1992737 1992742) (-1144 "STTF.spad" 1988040 1988056 1991931 1991936) (-1143 "STTFNC.spad" 1984508 1984524 1988030 1988035) (-1142 "STTAYLOR.spad" 1976906 1976917 1984389 1984394) (-1141 "STRTBL.spad" 1975411 1975428 1975560 1975587) (-1140 "STRING.spad" 1974820 1974829 1974834 1974861) (-1139 "STRICAT.spad" 1974608 1974617 1974788 1974815) (-1138 "STREAM.spad" 1971466 1971477 1974133 1974148) (-1137 "STREAM3.spad" 1971011 1971026 1971456 1971461) (-1136 "STREAM2.spad" 1970079 1970092 1971001 1971006) (-1135 "STREAM1.spad" 1969783 1969794 1970069 1970074) (-1134 "STINPROD.spad" 1968689 1968705 1969773 1969778) (-1133 "STEP.spad" 1967890 1967899 1968679 1968684) (-1132 "STBL.spad" 1966416 1966444 1966583 1966598) (-1131 "STAGG.spad" 1965491 1965502 1966406 1966411) (-1130 "STAGG.spad" 1964564 1964577 1965481 1965486) (-1129 "STACK.spad" 1963915 1963926 1964171 1964198) (-1128 "SREGSET.spad" 1961619 1961636 1963561 1963588) (-1127 "SRDCMPK.spad" 1960164 1960184 1961609 1961614) (-1126 "SRAGG.spad" 1955261 1955270 1960132 1960159) (-1125 "SRAGG.spad" 1950378 1950389 1955251 1955256) (-1124 "SQMATRIX.spad" 1947994 1948012 1948910 1948997) (-1123 "SPLTREE.spad" 1942546 1942559 1947430 1947457) (-1122 "SPLNODE.spad" 1939134 1939147 1942536 1942541) (-1121 "SPFCAT.spad" 1937911 1937920 1939124 1939129) (-1120 "SPECOUT.spad" 1936461 1936470 1937901 1937906) (-1119 "SPADXPT.spad" 1928600 1928609 1936451 1936456) (-1118 "spad-parser.spad" 1928065 1928074 1928590 1928595) (-1117 "SPADAST.spad" 1927766 1927775 1928055 1928060) (-1116 "SPACEC.spad" 1911779 1911790 1927756 1927761) (-1115 "SPACE3.spad" 1911555 1911566 1911769 1911774) (-1114 "SORTPAK.spad" 1911100 1911113 1911511 1911516) (-1113 "SOLVETRA.spad" 1908857 1908868 1911090 1911095) (-1112 "SOLVESER.spad" 1907377 1907388 1908847 1908852) (-1111 "SOLVERAD.spad" 1903387 1903398 1907367 1907372) (-1110 "SOLVEFOR.spad" 1901807 1901825 1903377 1903382) (-1109 "SNTSCAT.spad" 1901407 1901424 1901775 1901802) (-1108 "SMTS.spad" 1899667 1899693 1900972 1901069) (-1107 "SMP.spad" 1897106 1897126 1897496 1897623) (-1106 "SMITH.spad" 1895949 1895974 1897096 1897101) (-1105 "SMATCAT.spad" 1894059 1894089 1895893 1895944) (-1104 "SMATCAT.spad" 1892101 1892133 1893937 1893942) (-1103 "SKAGG.spad" 1891062 1891073 1892069 1892096) (-1102 "SINT.spad" 1889370 1889379 1890928 1891057) (-1101 "SIMPAN.spad" 1889098 1889107 1889360 1889365) (-1100 "SIG.spad" 1888426 1888435 1889088 1889093) (-1099 "SIGNRF.spad" 1887534 1887545 1888416 1888421) (-1098 "SIGNEF.spad" 1886803 1886820 1887524 1887529) (-1097 "SIGAST.spad" 1886184 1886193 1886793 1886798) (-1096 "SHP.spad" 1884102 1884117 1886140 1886145) (-1095 "SHDP.spad" 1873813 1873840 1874322 1874453) (-1094 "SGROUP.spad" 1873421 1873430 1873803 1873808) (-1093 "SGROUP.spad" 1873027 1873038 1873411 1873416) (-1092 "SGCF.spad" 1865908 1865917 1873017 1873022) (-1091 "SFRTCAT.spad" 1864836 1864853 1865876 1865903) (-1090 "SFRGCD.spad" 1863899 1863919 1864826 1864831) (-1089 "SFQCMPK.spad" 1858536 1858556 1863889 1863894) (-1088 "SFORT.spad" 1857971 1857985 1858526 1858531) (-1087 "SEXOF.spad" 1857814 1857854 1857961 1857966) (-1086 "SEX.spad" 1857706 1857715 1857804 1857809) (-1085 "SEXCAT.spad" 1855257 1855297 1857696 1857701) (-1084 "SET.spad" 1853557 1853568 1854678 1854717) (-1083 "SETMN.spad" 1851991 1852008 1853547 1853552) (-1082 "SETCAT.spad" 1851476 1851485 1851981 1851986) (-1081 "SETCAT.spad" 1850959 1850970 1851466 1851471) (-1080 "SETAGG.spad" 1847480 1847491 1850939 1850954) (-1079 "SETAGG.spad" 1844009 1844022 1847470 1847475) (-1078 "SEQAST.spad" 1843712 1843721 1843999 1844004) (-1077 "SEGXCAT.spad" 1842834 1842847 1843702 1843707) (-1076 "SEG.spad" 1842647 1842658 1842753 1842758) (-1075 "SEGCAT.spad" 1841554 1841565 1842637 1842642) (-1074 "SEGBIND.spad" 1840626 1840637 1841509 1841514) (-1073 "SEGBIND2.spad" 1840322 1840335 1840616 1840621) (-1072 "SEGAST.spad" 1840036 1840045 1840312 1840317) (-1071 "SEG2.spad" 1839461 1839474 1839992 1839997) (-1070 "SDVAR.spad" 1838737 1838748 1839451 1839456) (-1069 "SDPOL.spad" 1836127 1836138 1836418 1836545) (-1068 "SCPKG.spad" 1834206 1834217 1836117 1836122) (-1067 "SCOPE.spad" 1833351 1833360 1834196 1834201) (-1066 "SCACHE.spad" 1832033 1832044 1833341 1833346) (-1065 "SASTCAT.spad" 1831942 1831951 1832023 1832028) (-1064 "SAOS.spad" 1831814 1831823 1831932 1831937) (-1063 "SAERFFC.spad" 1831527 1831547 1831804 1831809) (-1062 "SAE.spad" 1829702 1829718 1830313 1830448) (-1061 "SAEFACT.spad" 1829403 1829423 1829692 1829697) (-1060 "RURPK.spad" 1827044 1827060 1829393 1829398) (-1059 "RULESET.spad" 1826485 1826509 1827034 1827039) (-1058 "RULE.spad" 1824689 1824713 1826475 1826480) (-1057 "RULECOLD.spad" 1824541 1824554 1824679 1824684) (-1056 "RSTRCAST.spad" 1824258 1824267 1824531 1824536) (-1055 "RSETGCD.spad" 1820636 1820656 1824248 1824253) (-1054 "RSETCAT.spad" 1810420 1810437 1820604 1820631) (-1053 "RSETCAT.spad" 1800224 1800243 1810410 1810415) (-1052 "RSDCMPK.spad" 1798676 1798696 1800214 1800219) (-1051 "RRCC.spad" 1797060 1797090 1798666 1798671) (-1050 "RRCC.spad" 1795442 1795474 1797050 1797055) (-1049 "RPTAST.spad" 1795144 1795153 1795432 1795437) (-1048 "RPOLCAT.spad" 1774504 1774519 1795012 1795139) (-1047 "RPOLCAT.spad" 1753578 1753595 1774088 1774093) (-1046 "ROUTINE.spad" 1749441 1749450 1752225 1752252) (-1045 "ROMAN.spad" 1748769 1748778 1749307 1749436) (-1044 "ROIRC.spad" 1747849 1747881 1748759 1748764) (-1043 "RNS.spad" 1746752 1746761 1747751 1747844) (-1042 "RNS.spad" 1745741 1745752 1746742 1746747) (-1041 "RNG.spad" 1745476 1745485 1745731 1745736) (-1040 "RMODULE.spad" 1745114 1745125 1745466 1745471) (-1039 "RMCAT2.spad" 1744522 1744579 1745104 1745109) (-1038 "RMATRIX.spad" 1743346 1743365 1743689 1743728) (-1037 "RMATCAT.spad" 1738879 1738910 1743302 1743341) (-1036 "RMATCAT.spad" 1734302 1734335 1738727 1738732) (-1035 "RINTERP.spad" 1734190 1734210 1734292 1734297) (-1034 "RING.spad" 1733660 1733669 1734170 1734185) (-1033 "RING.spad" 1733138 1733149 1733650 1733655) (-1032 "RIDIST.spad" 1732522 1732531 1733128 1733133) (-1031 "RGCHAIN.spad" 1731101 1731117 1732007 1732034) (-1030 "RGBCSPC.spad" 1730882 1730894 1731091 1731096) (-1029 "RGBCMDL.spad" 1730412 1730424 1730872 1730877) (-1028 "RF.spad" 1728026 1728037 1730402 1730407) (-1027 "RFFACTOR.spad" 1727488 1727499 1728016 1728021) (-1026 "RFFACT.spad" 1727223 1727235 1727478 1727483) (-1025 "RFDIST.spad" 1726211 1726220 1727213 1727218) (-1024 "RETSOL.spad" 1725628 1725641 1726201 1726206) (-1023 "RETRACT.spad" 1725056 1725067 1725618 1725623) (-1022 "RETRACT.spad" 1724482 1724495 1725046 1725051) (-1021 "RETAST.spad" 1724294 1724303 1724472 1724477) (-1020 "RESULT.spad" 1722354 1722363 1722941 1722968) (-1019 "RESRING.spad" 1721701 1721748 1722292 1722349) (-1018 "RESLATC.spad" 1721025 1721036 1721691 1721696) (-1017 "REPSQ.spad" 1720754 1720765 1721015 1721020) (-1016 "REP.spad" 1718306 1718315 1720744 1720749) (-1015 "REPDB.spad" 1718011 1718022 1718296 1718301) (-1014 "REP2.spad" 1707583 1707594 1717853 1717858) (-1013 "REP1.spad" 1701573 1701584 1707533 1707538) (-1012 "REGSET.spad" 1699370 1699387 1701219 1701246) (-1011 "REF.spad" 1698699 1698710 1699325 1699330) (-1010 "REDORDER.spad" 1697875 1697892 1698689 1698694) (-1009 "RECLOS.spad" 1696658 1696678 1697362 1697455) (-1008 "REALSOLV.spad" 1695790 1695799 1696648 1696653) (-1007 "REAL.spad" 1695662 1695671 1695780 1695785) (-1006 "REAL0Q.spad" 1692944 1692959 1695652 1695657) (-1005 "REAL0.spad" 1689772 1689787 1692934 1692939) (-1004 "RDUCEAST.spad" 1689493 1689502 1689762 1689767) (-1003 "RDIV.spad" 1689144 1689169 1689483 1689488) (-1002 "RDIST.spad" 1688707 1688718 1689134 1689139) (-1001 "RDETRS.spad" 1687503 1687521 1688697 1688702) (-1000 "RDETR.spad" 1685610 1685628 1687493 1687498) (-999 "RDEEFS.spad" 1684684 1684700 1685600 1685605) (-998 "RDEEF.spad" 1683681 1683697 1684674 1684679) (-997 "RCFIELD.spad" 1680868 1680876 1683583 1683676) (-996 "RCFIELD.spad" 1678141 1678151 1680858 1680863) (-995 "RCAGG.spad" 1676054 1676064 1678131 1678136) (-994 "RCAGG.spad" 1673894 1673906 1675973 1675978) (-993 "RATRET.spad" 1673255 1673265 1673884 1673889) (-992 "RATFACT.spad" 1672948 1672959 1673245 1673250) (-991 "RANDSRC.spad" 1672268 1672276 1672938 1672943) (-990 "RADUTIL.spad" 1672023 1672031 1672258 1672263) (-989 "RADIX.spad" 1668925 1668938 1670490 1670583) (-988 "RADFF.spad" 1667339 1667375 1667457 1667613) (-987 "RADCAT.spad" 1666933 1666941 1667329 1667334) (-986 "RADCAT.spad" 1666525 1666535 1666923 1666928) (-985 "QUEUE.spad" 1665868 1665878 1666132 1666159) (-984 "QUAT.spad" 1664450 1664460 1664792 1664857) (-983 "QUATCT2.spad" 1664069 1664087 1664440 1664445) (-982 "QUATCAT.spad" 1662234 1662244 1663999 1664064) (-981 "QUATCAT.spad" 1660150 1660162 1661917 1661922) (-980 "QUAGG.spad" 1658976 1658986 1660118 1660145) (-979 "QQUTAST.spad" 1658745 1658753 1658966 1658971) (-978 "QFORM.spad" 1658208 1658222 1658735 1658740) (-977 "QFCAT.spad" 1656911 1656921 1658110 1658203) (-976 "QFCAT.spad" 1655205 1655217 1656406 1656411) (-975 "QFCAT2.spad" 1654896 1654912 1655195 1655200) (-974 "QEQUAT.spad" 1654453 1654461 1654886 1654891) (-973 "QCMPACK.spad" 1649200 1649219 1654443 1654448) (-972 "QALGSET.spad" 1645275 1645307 1649114 1649119) (-971 "QALGSET2.spad" 1643271 1643289 1645265 1645270) (-970 "PWFFINTB.spad" 1640581 1640602 1643261 1643266) (-969 "PUSHVAR.spad" 1639910 1639929 1640571 1640576) (-968 "PTRANFN.spad" 1636036 1636046 1639900 1639905) (-967 "PTPACK.spad" 1633124 1633134 1636026 1636031) (-966 "PTFUNC2.spad" 1632945 1632959 1633114 1633119) (-965 "PTCAT.spad" 1632194 1632204 1632913 1632940) (-964 "PSQFR.spad" 1631501 1631525 1632184 1632189) (-963 "PSEUDLIN.spad" 1630359 1630369 1631491 1631496) (-962 "PSETPK.spad" 1615792 1615808 1630237 1630242) (-961 "PSETCAT.spad" 1609712 1609735 1615772 1615787) (-960 "PSETCAT.spad" 1603606 1603631 1609668 1609673) (-959 "PSCURVE.spad" 1602589 1602597 1603596 1603601) (-958 "PSCAT.spad" 1601356 1601385 1602487 1602584) (-957 "PSCAT.spad" 1600213 1600244 1601346 1601351) (-956 "PRTITION.spad" 1599158 1599166 1600203 1600208) (-955 "PRTDAST.spad" 1598877 1598885 1599148 1599153) (-954 "PRS.spad" 1588439 1588456 1598833 1598838) (-953 "PRQAGG.spad" 1587870 1587880 1588407 1588434) (-952 "PROPLOG.spad" 1587273 1587281 1587860 1587865) (-951 "PROPFRML.spad" 1585191 1585202 1587263 1587268) (-950 "PROPERTY.spad" 1584685 1584693 1585181 1585186) (-949 "PRODUCT.spad" 1582365 1582377 1582651 1582706) (-948 "PR.spad" 1580751 1580763 1581456 1581583) (-947 "PRINT.spad" 1580503 1580511 1580741 1580746) (-946 "PRIMES.spad" 1578754 1578764 1580493 1580498) (-945 "PRIMELT.spad" 1576735 1576749 1578744 1578749) (-944 "PRIMCAT.spad" 1576358 1576366 1576725 1576730) (-943 "PRIMARR.spad" 1575363 1575373 1575541 1575568) (-942 "PRIMARR2.spad" 1574086 1574098 1575353 1575358) (-941 "PREASSOC.spad" 1573458 1573470 1574076 1574081) (-940 "PPCURVE.spad" 1572595 1572603 1573448 1573453) (-939 "PORTNUM.spad" 1572370 1572378 1572585 1572590) (-938 "POLYROOT.spad" 1571199 1571221 1572326 1572331) (-937 "POLY.spad" 1568496 1568506 1569013 1569140) (-936 "POLYLIFT.spad" 1567757 1567780 1568486 1568491) (-935 "POLYCATQ.spad" 1565859 1565881 1567747 1567752) (-934 "POLYCAT.spad" 1559265 1559286 1565727 1565854) (-933 "POLYCAT.spad" 1551973 1551996 1558437 1558442) (-932 "POLY2UP.spad" 1551421 1551435 1551963 1551968) (-931 "POLY2.spad" 1551016 1551028 1551411 1551416) (-930 "POLUTIL.spad" 1549957 1549986 1550972 1550977) (-929 "POLTOPOL.spad" 1548705 1548720 1549947 1549952) (-928 "POINT.spad" 1547544 1547554 1547631 1547658) (-927 "PNTHEORY.spad" 1544210 1544218 1547534 1547539) (-926 "PMTOOLS.spad" 1542967 1542981 1544200 1544205) (-925 "PMSYM.spad" 1542512 1542522 1542957 1542962) (-924 "PMQFCAT.spad" 1542099 1542113 1542502 1542507) (-923 "PMPRED.spad" 1541568 1541582 1542089 1542094) (-922 "PMPREDFS.spad" 1541012 1541034 1541558 1541563) (-921 "PMPLCAT.spad" 1540082 1540100 1540944 1540949) (-920 "PMLSAGG.spad" 1539663 1539677 1540072 1540077) (-919 "PMKERNEL.spad" 1539230 1539242 1539653 1539658) (-918 "PMINS.spad" 1538806 1538816 1539220 1539225) (-917 "PMFS.spad" 1538379 1538397 1538796 1538801) (-916 "PMDOWN.spad" 1537665 1537679 1538369 1538374) (-915 "PMASS.spad" 1536677 1536685 1537655 1537660) (-914 "PMASSFS.spad" 1535646 1535662 1536667 1536672) (-913 "PLOTTOOL.spad" 1535426 1535434 1535636 1535641) (-912 "PLOT.spad" 1530257 1530265 1535416 1535421) (-911 "PLOT3D.spad" 1526677 1526685 1530247 1530252) (-910 "PLOT1.spad" 1525818 1525828 1526667 1526672) (-909 "PLEQN.spad" 1513034 1513061 1525808 1525813) (-908 "PINTERP.spad" 1512650 1512669 1513024 1513029) (-907 "PINTERPA.spad" 1512432 1512448 1512640 1512645) (-906 "PI.spad" 1512039 1512047 1512406 1512427) (-905 "PID.spad" 1510995 1511003 1511965 1512034) (-904 "PICOERCE.spad" 1510652 1510662 1510985 1510990) (-903 "PGROEB.spad" 1509249 1509263 1510642 1510647) (-902 "PGE.spad" 1500502 1500510 1509239 1509244) (-901 "PGCD.spad" 1499384 1499401 1500492 1500497) (-900 "PFRPAC.spad" 1498527 1498537 1499374 1499379) (-899 "PFR.spad" 1495184 1495194 1498429 1498522) (-898 "PFOTOOLS.spad" 1494442 1494458 1495174 1495179) (-897 "PFOQ.spad" 1493812 1493830 1494432 1494437) (-896 "PFO.spad" 1493231 1493258 1493802 1493807) (-895 "PF.spad" 1492805 1492817 1493036 1493129) (-894 "PFECAT.spad" 1490471 1490479 1492731 1492800) (-893 "PFECAT.spad" 1488165 1488175 1490427 1490432) (-892 "PFBRU.spad" 1486035 1486047 1488155 1488160) (-891 "PFBR.spad" 1483573 1483596 1486025 1486030) (-890 "PERM.spad" 1479254 1479264 1483403 1483418) (-889 "PERMGRP.spad" 1473990 1474000 1479244 1479249) (-888 "PERMCAT.spad" 1472542 1472552 1473970 1473985) (-887 "PERMAN.spad" 1471074 1471088 1472532 1472537) (-886 "PENDTREE.spad" 1470413 1470423 1470703 1470708) (-885 "PDRING.spad" 1468904 1468914 1470393 1470408) (-884 "PDRING.spad" 1467403 1467415 1468894 1468899) (-883 "PDEPROB.spad" 1466418 1466426 1467393 1467398) (-882 "PDEPACK.spad" 1460420 1460428 1466408 1466413) (-881 "PDECOMP.spad" 1459882 1459899 1460410 1460415) (-880 "PDECAT.spad" 1458236 1458244 1459872 1459877) (-879 "PCOMP.spad" 1458087 1458100 1458226 1458231) (-878 "PBWLB.spad" 1456669 1456686 1458077 1458082) (-877 "PATTERN.spad" 1451100 1451110 1456659 1456664) (-876 "PATTERN2.spad" 1450836 1450848 1451090 1451095) (-875 "PATTERN1.spad" 1449138 1449154 1450826 1450831) (-874 "PATRES.spad" 1446685 1446697 1449128 1449133) (-873 "PATRES2.spad" 1446347 1446361 1446675 1446680) (-872 "PATMATCH.spad" 1444504 1444535 1446055 1446060) (-871 "PATMAB.spad" 1443929 1443939 1444494 1444499) (-870 "PATLRES.spad" 1443013 1443027 1443919 1443924) (-869 "PATAB.spad" 1442777 1442787 1443003 1443008) (-868 "PARTPERM.spad" 1440139 1440147 1442767 1442772) (-867 "PARSURF.spad" 1439567 1439595 1440129 1440134) (-866 "PARSU2.spad" 1439362 1439378 1439557 1439562) (-865 "script-parser.spad" 1438882 1438890 1439352 1439357) (-864 "PARSCURV.spad" 1438310 1438338 1438872 1438877) (-863 "PARSC2.spad" 1438099 1438115 1438300 1438305) (-862 "PARPCURV.spad" 1437557 1437585 1438089 1438094) (-861 "PARPC2.spad" 1437346 1437362 1437547 1437552) (-860 "PAN2EXPR.spad" 1436758 1436766 1437336 1437341) (-859 "PALETTE.spad" 1435728 1435736 1436748 1436753) (-858 "PAIR.spad" 1434711 1434724 1435316 1435321) (-857 "PADICRC.spad" 1432041 1432059 1433216 1433309) (-856 "PADICRAT.spad" 1430056 1430068 1430277 1430370) (-855 "PADIC.spad" 1429751 1429763 1429982 1430051) (-854 "PADICCT.spad" 1428292 1428304 1429677 1429746) (-853 "PADEPAC.spad" 1426971 1426990 1428282 1428287) (-852 "PADE.spad" 1425711 1425727 1426961 1426966) (-851 "OWP.spad" 1424951 1424981 1425569 1425636) (-850 "OVAR.spad" 1424732 1424755 1424941 1424946) (-849 "OUT.spad" 1423816 1423824 1424722 1424727) (-848 "OUTFORM.spad" 1413112 1413120 1423806 1423811) (-847 "OUTBFILE.spad" 1412530 1412538 1413102 1413107) (-846 "OUTBCON.spad" 1411808 1411816 1412520 1412525) (-845 "OUTBCON.spad" 1411084 1411094 1411798 1411803) (-844 "OSI.spad" 1410559 1410567 1411074 1411079) (-843 "OSGROUP.spad" 1410477 1410485 1410549 1410554) (-842 "ORTHPOL.spad" 1408938 1408948 1410394 1410399) (-841 "OREUP.spad" 1408391 1408419 1408618 1408657) (-840 "ORESUP.spad" 1407690 1407714 1408071 1408110) (-839 "OREPCTO.spad" 1405509 1405521 1407610 1407615) (-838 "OREPCAT.spad" 1399566 1399576 1405465 1405504) (-837 "OREPCAT.spad" 1393513 1393525 1399414 1399419) (-836 "ORDSET.spad" 1392679 1392687 1393503 1393508) (-835 "ORDSET.spad" 1391843 1391853 1392669 1392674) (-834 "ORDRING.spad" 1391233 1391241 1391823 1391838) (-833 "ORDRING.spad" 1390631 1390641 1391223 1391228) (-832 "ORDMON.spad" 1390486 1390494 1390621 1390626) (-831 "ORDFUNS.spad" 1389612 1389628 1390476 1390481) (-830 "ORDFIN.spad" 1389546 1389554 1389602 1389607) (-829 "ORDCOMP.spad" 1388011 1388021 1389093 1389122) (-828 "ORDCOMP2.spad" 1387296 1387308 1388001 1388006) (-827 "OPTPROB.spad" 1385934 1385942 1387286 1387291) (-826 "OPTPACK.spad" 1378319 1378327 1385924 1385929) (-825 "OPTCAT.spad" 1375994 1376002 1378309 1378314) (-824 "OPQUERY.spad" 1375543 1375551 1375984 1375989) (-823 "OP.spad" 1375285 1375295 1375365 1375432) (-822 "OPERCAT.spad" 1374597 1374607 1375275 1375280) (-821 "OPERCAT.spad" 1373907 1373919 1374587 1374592) (-820 "ONECOMP.spad" 1372652 1372662 1373454 1373483) (-819 "ONECOMP2.spad" 1372070 1372082 1372642 1372647) (-818 "OMSERVER.spad" 1371072 1371080 1372060 1372065) (-817 "OMSAGG.spad" 1370860 1370870 1371028 1371067) (-816 "OMPKG.spad" 1369472 1369480 1370850 1370855) (-815 "OM.spad" 1368437 1368445 1369462 1369467) (-814 "OMLO.spad" 1367862 1367874 1368323 1368362) (-813 "OMEXPR.spad" 1367696 1367706 1367852 1367857) (-812 "OMERR.spad" 1367239 1367247 1367686 1367691) (-811 "OMERRK.spad" 1366273 1366281 1367229 1367234) (-810 "OMENC.spad" 1365617 1365625 1366263 1366268) (-809 "OMDEV.spad" 1359906 1359914 1365607 1365612) (-808 "OMCONN.spad" 1359315 1359323 1359896 1359901) (-807 "OINTDOM.spad" 1359078 1359086 1359241 1359310) (-806 "OFMONOID.spad" 1355265 1355275 1359068 1359073) (-805 "ODVAR.spad" 1354526 1354536 1355255 1355260) (-804 "ODR.spad" 1354170 1354196 1354338 1354487) (-803 "ODPOL.spad" 1351516 1351526 1351856 1351983) (-802 "ODP.spad" 1341363 1341383 1341736 1341867) (-801 "ODETOOLS.spad" 1339946 1339965 1341353 1341358) (-800 "ODESYS.spad" 1337596 1337613 1339936 1339941) (-799 "ODERTRIC.spad" 1333537 1333554 1337553 1337558) (-798 "ODERED.spad" 1332924 1332948 1333527 1333532) (-797 "ODERAT.spad" 1330475 1330492 1332914 1332919) (-796 "ODEPRRIC.spad" 1327366 1327388 1330465 1330470) (-795 "ODEPROB.spad" 1326623 1326631 1327356 1327361) (-794 "ODEPRIM.spad" 1323897 1323919 1326613 1326618) (-793 "ODEPAL.spad" 1323273 1323297 1323887 1323892) (-792 "ODEPACK.spad" 1309875 1309883 1323263 1323268) (-791 "ODEINT.spad" 1309306 1309322 1309865 1309870) (-790 "ODEIFTBL.spad" 1306701 1306709 1309296 1309301) (-789 "ODEEF.spad" 1302068 1302084 1306691 1306696) (-788 "ODECONST.spad" 1301587 1301605 1302058 1302063) (-787 "ODECAT.spad" 1300183 1300191 1301577 1301582) (-786 "OCT.spad" 1298321 1298331 1299037 1299076) (-785 "OCTCT2.spad" 1297965 1297986 1298311 1298316) (-784 "OC.spad" 1295739 1295749 1297921 1297960) (-783 "OC.spad" 1293238 1293250 1295422 1295427) (-782 "OCAMON.spad" 1293086 1293094 1293228 1293233) (-781 "OASGP.spad" 1292901 1292909 1293076 1293081) (-780 "OAMONS.spad" 1292421 1292429 1292891 1292896) (-779 "OAMON.spad" 1292282 1292290 1292411 1292416) (-778 "OAGROUP.spad" 1292144 1292152 1292272 1292277) (-777 "NUMTUBE.spad" 1291731 1291747 1292134 1292139) (-776 "NUMQUAD.spad" 1279593 1279601 1291721 1291726) (-775 "NUMODE.spad" 1270729 1270737 1279583 1279588) (-774 "NUMINT.spad" 1268287 1268295 1270719 1270724) (-773 "NUMFMT.spad" 1267127 1267135 1268277 1268282) (-772 "NUMERIC.spad" 1259199 1259209 1266932 1266937) (-771 "NTSCAT.spad" 1257701 1257717 1259167 1259194) (-770 "NTPOLFN.spad" 1257246 1257256 1257618 1257623) (-769 "NSUP.spad" 1250256 1250266 1254796 1254949) (-768 "NSUP2.spad" 1249648 1249660 1250246 1250251) (-767 "NSMP.spad" 1245843 1245862 1246151 1246278) (-766 "NREP.spad" 1244215 1244229 1245833 1245838) (-765 "NPCOEF.spad" 1243461 1243481 1244205 1244210) (-764 "NORMRETR.spad" 1243059 1243098 1243451 1243456) (-763 "NORMPK.spad" 1240961 1240980 1243049 1243054) (-762 "NORMMA.spad" 1240649 1240675 1240951 1240956) (-761 "NONE.spad" 1240390 1240398 1240639 1240644) (-760 "NONE1.spad" 1240066 1240076 1240380 1240385) (-759 "NODE1.spad" 1239535 1239551 1240056 1240061) (-758 "NNI.spad" 1238422 1238430 1239509 1239530) (-757 "NLINSOL.spad" 1237044 1237054 1238412 1238417) (-756 "NIPROB.spad" 1235585 1235593 1237034 1237039) (-755 "NFINTBAS.spad" 1233045 1233062 1235575 1235580) (-754 "NETCLT.spad" 1233019 1233030 1233035 1233040) (-753 "NCODIV.spad" 1231217 1231233 1233009 1233014) (-752 "NCNTFRAC.spad" 1230859 1230873 1231207 1231212) (-751 "NCEP.spad" 1229019 1229033 1230849 1230854) (-750 "NASRING.spad" 1228615 1228623 1229009 1229014) (-749 "NASRING.spad" 1228209 1228219 1228605 1228610) (-748 "NARNG.spad" 1227553 1227561 1228199 1228204) (-747 "NARNG.spad" 1226895 1226905 1227543 1227548) (-746 "NAGSP.spad" 1225968 1225976 1226885 1226890) (-745 "NAGS.spad" 1215493 1215501 1225958 1225963) (-744 "NAGF07.spad" 1213886 1213894 1215483 1215488) (-743 "NAGF04.spad" 1208118 1208126 1213876 1213881) (-742 "NAGF02.spad" 1201927 1201935 1208108 1208113) (-741 "NAGF01.spad" 1197530 1197538 1201917 1201922) (-740 "NAGE04.spad" 1190990 1190998 1197520 1197525) (-739 "NAGE02.spad" 1181332 1181340 1190980 1190985) (-738 "NAGE01.spad" 1177216 1177224 1181322 1181327) (-737 "NAGD03.spad" 1175136 1175144 1177206 1177211) (-736 "NAGD02.spad" 1167667 1167675 1175126 1175131) (-735 "NAGD01.spad" 1161780 1161788 1167657 1167662) (-734 "NAGC06.spad" 1157567 1157575 1161770 1161775) (-733 "NAGC05.spad" 1156036 1156044 1157557 1157562) (-732 "NAGC02.spad" 1155291 1155299 1156026 1156031) (-731 "NAALG.spad" 1154826 1154836 1155259 1155286) (-730 "NAALG.spad" 1154381 1154393 1154816 1154821) (-729 "MULTSQFR.spad" 1151339 1151356 1154371 1154376) (-728 "MULTFACT.spad" 1150722 1150739 1151329 1151334) (-727 "MTSCAT.spad" 1148756 1148777 1150620 1150717) (-726 "MTHING.spad" 1148413 1148423 1148746 1148751) (-725 "MSYSCMD.spad" 1147847 1147855 1148403 1148408) (-724 "MSET.spad" 1145789 1145799 1147553 1147592) (-723 "MSETAGG.spad" 1145634 1145644 1145757 1145784) (-722 "MRING.spad" 1142605 1142617 1145342 1145409) (-721 "MRF2.spad" 1142173 1142187 1142595 1142600) (-720 "MRATFAC.spad" 1141719 1141736 1142163 1142168) (-719 "MPRFF.spad" 1139749 1139768 1141709 1141714) (-718 "MPOLY.spad" 1137184 1137199 1137543 1137670) (-717 "MPCPF.spad" 1136448 1136467 1137174 1137179) (-716 "MPC3.spad" 1136263 1136303 1136438 1136443) (-715 "MPC2.spad" 1135905 1135938 1136253 1136258) (-714 "MONOTOOL.spad" 1134240 1134257 1135895 1135900) (-713 "MONOID.spad" 1133559 1133567 1134230 1134235) (-712 "MONOID.spad" 1132876 1132886 1133549 1133554) (-711 "MONOGEN.spad" 1131622 1131635 1132736 1132871) (-710 "MONOGEN.spad" 1130390 1130405 1131506 1131511) (-709 "MONADWU.spad" 1128404 1128412 1130380 1130385) (-708 "MONADWU.spad" 1126416 1126426 1128394 1128399) (-707 "MONAD.spad" 1125560 1125568 1126406 1126411) (-706 "MONAD.spad" 1124702 1124712 1125550 1125555) (-705 "MOEBIUS.spad" 1123388 1123402 1124682 1124697) (-704 "MODULE.spad" 1123258 1123268 1123356 1123383) (-703 "MODULE.spad" 1123148 1123160 1123248 1123253) (-702 "MODRING.spad" 1122479 1122518 1123128 1123143) (-701 "MODOP.spad" 1121138 1121150 1122301 1122368) (-700 "MODMONOM.spad" 1120867 1120885 1121128 1121133) (-699 "MODMON.spad" 1117626 1117642 1118345 1118498) (-698 "MODFIELD.spad" 1116984 1117023 1117528 1117621) (-697 "MMLFORM.spad" 1115844 1115852 1116974 1116979) (-696 "MMAP.spad" 1115584 1115618 1115834 1115839) (-695 "MLO.spad" 1114011 1114021 1115540 1115579) (-694 "MLIFT.spad" 1112583 1112600 1114001 1114006) (-693 "MKUCFUNC.spad" 1112116 1112134 1112573 1112578) (-692 "MKRECORD.spad" 1111718 1111731 1112106 1112111) (-691 "MKFUNC.spad" 1111099 1111109 1111708 1111713) (-690 "MKFLCFN.spad" 1110055 1110065 1111089 1111094) (-689 "MKCHSET.spad" 1109920 1109930 1110045 1110050) (-688 "MKBCFUNC.spad" 1109405 1109423 1109910 1109915) (-687 "MINT.spad" 1108844 1108852 1109307 1109400) (-686 "MHROWRED.spad" 1107345 1107355 1108834 1108839) (-685 "MFLOAT.spad" 1105861 1105869 1107235 1107340) (-684 "MFINFACT.spad" 1105261 1105283 1105851 1105856) (-683 "MESH.spad" 1102993 1103001 1105251 1105256) (-682 "MDDFACT.spad" 1101186 1101196 1102983 1102988) (-681 "MDAGG.spad" 1100473 1100483 1101166 1101181) (-680 "MCMPLX.spad" 1096459 1096467 1097073 1097262) (-679 "MCDEN.spad" 1095667 1095679 1096449 1096454) (-678 "MCALCFN.spad" 1092769 1092795 1095657 1095662) (-677 "MAYBE.spad" 1092018 1092029 1092759 1092764) (-676 "MATSTOR.spad" 1089294 1089304 1092008 1092013) (-675 "MATRIX.spad" 1087998 1088008 1088482 1088509) (-674 "MATLIN.spad" 1085324 1085348 1087882 1087887) (-673 "MATCAT.spad" 1076909 1076931 1085292 1085319) (-672 "MATCAT.spad" 1068366 1068390 1076751 1076756) (-671 "MATCAT2.spad" 1067634 1067682 1068356 1068361) (-670 "MAPPKG3.spad" 1066533 1066547 1067624 1067629) (-669 "MAPPKG2.spad" 1065867 1065879 1066523 1066528) (-668 "MAPPKG1.spad" 1064685 1064695 1065857 1065862) (-667 "MAPPAST.spad" 1063998 1064006 1064675 1064680) (-666 "MAPHACK3.spad" 1063806 1063820 1063988 1063993) (-665 "MAPHACK2.spad" 1063571 1063583 1063796 1063801) (-664 "MAPHACK1.spad" 1063201 1063211 1063561 1063566) (-663 "MAGMA.spad" 1060991 1061008 1063191 1063196) (-662 "MACROAST.spad" 1060570 1060578 1060981 1060986) (-661 "M3D.spad" 1058266 1058276 1059948 1059953) (-660 "LZSTAGG.spad" 1055494 1055504 1058256 1058261) (-659 "LZSTAGG.spad" 1052720 1052732 1055484 1055489) (-658 "LWORD.spad" 1049425 1049442 1052710 1052715) (-657 "LSTAST.spad" 1049209 1049217 1049415 1049420) (-656 "LSQM.spad" 1047435 1047449 1047833 1047884) (-655 "LSPP.spad" 1046968 1046985 1047425 1047430) (-654 "LSMP.spad" 1045808 1045836 1046958 1046963) (-653 "LSMP1.spad" 1043612 1043626 1045798 1045803) (-652 "LSAGG.spad" 1043281 1043291 1043580 1043607) (-651 "LSAGG.spad" 1042970 1042982 1043271 1043276) (-650 "LPOLY.spad" 1041924 1041943 1042826 1042895) (-649 "LPEFRAC.spad" 1041181 1041191 1041914 1041919) (-648 "LO.spad" 1040582 1040596 1041115 1041142) (-647 "LOGIC.spad" 1040184 1040192 1040572 1040577) (-646 "LOGIC.spad" 1039784 1039794 1040174 1040179) (-645 "LODOOPS.spad" 1038702 1038714 1039774 1039779) (-644 "LODO.spad" 1038086 1038102 1038382 1038421) (-643 "LODOF.spad" 1037130 1037147 1038043 1038048) (-642 "LODOCAT.spad" 1035788 1035798 1037086 1037125) (-641 "LODOCAT.spad" 1034444 1034456 1035744 1035749) (-640 "LODO2.spad" 1033717 1033729 1034124 1034163) (-639 "LODO1.spad" 1033117 1033127 1033397 1033436) (-638 "LODEEF.spad" 1031889 1031907 1033107 1033112) (-637 "LNAGG.spad" 1027691 1027701 1031879 1031884) (-636 "LNAGG.spad" 1023457 1023469 1027647 1027652) (-635 "LMOPS.spad" 1020193 1020210 1023447 1023452) (-634 "LMODULE.spad" 1019835 1019845 1020183 1020188) (-633 "LMDICT.spad" 1019118 1019128 1019386 1019413) (-632 "LITERAL.spad" 1019024 1019035 1019108 1019113) (-631 "LIST.spad" 1016742 1016752 1018171 1018198) (-630 "LIST3.spad" 1016033 1016047 1016732 1016737) (-629 "LIST2.spad" 1014673 1014685 1016023 1016028) (-628 "LIST2MAP.spad" 1011550 1011562 1014663 1014668) (-627 "LINEXP.spad" 1010982 1010992 1011530 1011545) (-626 "LINDEP.spad" 1009759 1009771 1010894 1010899) (-625 "LIMITRF.spad" 1007673 1007683 1009749 1009754) (-624 "LIMITPS.spad" 1006556 1006569 1007663 1007668) (-623 "LIE.spad" 1004570 1004582 1005846 1005991) (-622 "LIECAT.spad" 1004046 1004056 1004496 1004565) (-621 "LIECAT.spad" 1003550 1003562 1004002 1004007) (-620 "LIB.spad" 1001598 1001606 1002209 1002224) (-619 "LGROBP.spad" 998951 998970 1001588 1001593) (-618 "LF.spad" 997870 997886 998941 998946) (-617 "LFCAT.spad" 996889 996897 997860 997865) (-616 "LEXTRIPK.spad" 992392 992407 996879 996884) (-615 "LEXP.spad" 990395 990422 992372 992387) (-614 "LETAST.spad" 990094 990102 990385 990390) (-613 "LEADCDET.spad" 988478 988495 990084 990089) (-612 "LAZM3PK.spad" 987182 987204 988468 988473) (-611 "LAUPOL.spad" 985871 985884 986775 986844) (-610 "LAPLACE.spad" 985444 985460 985861 985866) (-609 "LA.spad" 984884 984898 985366 985405) (-608 "LALG.spad" 984660 984670 984864 984879) (-607 "LALG.spad" 984444 984456 984650 984655) (-606 "KVTFROM.spad" 984179 984189 984434 984439) (-605 "KTVLOGIC.spad" 983602 983610 984169 984174) (-604 "KRCFROM.spad" 983340 983350 983592 983597) (-603 "KOVACIC.spad" 982053 982070 983330 983335) (-602 "KONVERT.spad" 981775 981785 982043 982048) (-601 "KOERCE.spad" 981512 981522 981765 981770) (-600 "KERNEL.spad" 980047 980057 981296 981301) (-599 "KERNEL2.spad" 979750 979762 980037 980042) (-598 "KDAGG.spad" 978853 978875 979730 979745) (-597 "KDAGG.spad" 977964 977988 978843 978848) (-596 "KAFILE.spad" 976927 976943 977162 977189) (-595 "JORDAN.spad" 974754 974766 976217 976362) (-594 "JOINAST.spad" 974448 974456 974744 974749) (-593 "JAVACODE.spad" 974314 974322 974438 974443) (-592 "IXAGG.spad" 972437 972461 974304 974309) (-591 "IXAGG.spad" 970415 970441 972284 972289) (-590 "IVECTOR.spad" 969186 969201 969341 969368) (-589 "ITUPLE.spad" 968331 968341 969176 969181) (-588 "ITRIGMNP.spad" 967142 967161 968321 968326) (-587 "ITFUN3.spad" 966636 966650 967132 967137) (-586 "ITFUN2.spad" 966366 966378 966626 966631) (-585 "ITAYLOR.spad" 964158 964173 966202 966327) (-584 "ISUPS.spad" 956569 956584 963132 963229) (-583 "ISUMP.spad" 956066 956082 956559 956564) (-582 "ISTRING.spad" 955069 955082 955235 955262) (-581 "ISAST.spad" 954788 954796 955059 955064) (-580 "IRURPK.spad" 953501 953520 954778 954783) (-579 "IRSN.spad" 951461 951469 953491 953496) (-578 "IRRF2F.spad" 949936 949946 951417 951422) (-577 "IRREDFFX.spad" 949537 949548 949926 949931) (-576 "IROOT.spad" 947868 947878 949527 949532) (-575 "IR.spad" 945657 945671 947723 947750) (-574 "IR2.spad" 944677 944693 945647 945652) (-573 "IR2F.spad" 943877 943893 944667 944672) (-572 "IPRNTPK.spad" 943637 943645 943867 943872) (-571 "IPF.spad" 943202 943214 943442 943535) (-570 "IPADIC.spad" 942963 942989 943128 943197) (-569 "IP4ADDR.spad" 942511 942519 942953 942958) (-568 "IOMODE.spad" 942132 942140 942501 942506) (-567 "IOBFILE.spad" 941493 941501 942122 942127) (-566 "IOBCON.spad" 941358 941366 941483 941488) (-565 "INVLAPLA.spad" 941003 941019 941348 941353) (-564 "INTTR.spad" 934249 934266 940993 940998) (-563 "INTTOOLS.spad" 931960 931976 933823 933828) (-562 "INTSLPE.spad" 931266 931274 931950 931955) (-561 "INTRVL.spad" 930832 930842 931180 931261) (-560 "INTRF.spad" 929196 929210 930822 930827) (-559 "INTRET.spad" 928628 928638 929186 929191) (-558 "INTRAT.spad" 927303 927320 928618 928623) (-557 "INTPM.spad" 925666 925682 926946 926951) (-556 "INTPAF.spad" 923434 923452 925598 925603) (-555 "INTPACK.spad" 913744 913752 923424 923429) (-554 "INT.spad" 913105 913113 913598 913739) (-553 "INTHERTR.spad" 912371 912388 913095 913100) (-552 "INTHERAL.spad" 912037 912061 912361 912366) (-551 "INTHEORY.spad" 908450 908458 912027 912032) (-550 "INTG0.spad" 901913 901931 908382 908387) (-549 "INTFTBL.spad" 895942 895950 901903 901908) (-548 "INTFACT.spad" 895001 895011 895932 895937) (-547 "INTEF.spad" 893316 893332 894991 894996) (-546 "INTDOM.spad" 891931 891939 893242 893311) (-545 "INTDOM.spad" 890608 890618 891921 891926) (-544 "INTCAT.spad" 888861 888871 890522 890603) (-543 "INTBIT.spad" 888364 888372 888851 888856) (-542 "INTALG.spad" 887546 887573 888354 888359) (-541 "INTAF.spad" 887038 887054 887536 887541) (-540 "INTABL.spad" 885556 885587 885719 885746) (-539 "INS.spad" 883023 883031 885458 885551) (-538 "INS.spad" 880576 880586 883013 883018) (-537 "INPSIGN.spad" 880010 880023 880566 880571) (-536 "INPRODPF.spad" 879076 879095 880000 880005) (-535 "INPRODFF.spad" 878134 878158 879066 879071) (-534 "INNMFACT.spad" 877105 877122 878124 878129) (-533 "INMODGCD.spad" 876589 876619 877095 877100) (-532 "INFSP.spad" 874874 874896 876579 876584) (-531 "INFPROD0.spad" 873924 873943 874864 874869) (-530 "INFORM.spad" 871085 871093 873914 873919) (-529 "INFORM1.spad" 870710 870720 871075 871080) (-528 "INFINITY.spad" 870262 870270 870700 870705) (-527 "INETCLTS.spad" 870239 870247 870252 870257) (-526 "INEP.spad" 868771 868793 870229 870234) (-525 "INDE.spad" 868500 868517 868761 868766) (-524 "INCRMAPS.spad" 867921 867931 868490 868495) (-523 "INBFILE.spad" 866993 867001 867911 867916) (-522 "INBFF.spad" 862763 862774 866983 866988) (-521 "INBCON.spad" 862062 862070 862753 862758) (-520 "INBCON.spad" 861359 861369 862052 862057) (-519 "INAST.spad" 861024 861032 861349 861354) (-518 "IMPTAST.spad" 860732 860740 861014 861019) (-517 "IMATRIX.spad" 859677 859703 860189 860216) (-516 "IMATQF.spad" 858771 858815 859633 859638) (-515 "IMATLIN.spad" 857376 857400 858727 858732) (-514 "ILIST.spad" 856032 856047 856559 856586) (-513 "IIARRAY2.spad" 855420 855458 855639 855666) (-512 "IFF.spad" 854830 854846 855101 855194) (-511 "IFAST.spad" 854444 854452 854820 854825) (-510 "IFARRAY.spad" 851931 851946 853627 853654) (-509 "IFAMON.spad" 851793 851810 851887 851892) (-508 "IEVALAB.spad" 851182 851194 851783 851788) (-507 "IEVALAB.spad" 850569 850583 851172 851177) (-506 "IDPO.spad" 850367 850379 850559 850564) (-505 "IDPOAMS.spad" 850123 850135 850357 850362) (-504 "IDPOAM.spad" 849843 849855 850113 850118) (-503 "IDPC.spad" 848777 848789 849833 849838) (-502 "IDPAM.spad" 848522 848534 848767 848772) (-501 "IDPAG.spad" 848269 848281 848512 848517) (-500 "IDENT.spad" 848186 848194 848259 848264) (-499 "IDECOMP.spad" 845423 845441 848176 848181) (-498 "IDEAL.spad" 840346 840385 845358 845363) (-497 "ICDEN.spad" 839497 839513 840336 840341) (-496 "ICARD.spad" 838686 838694 839487 839492) (-495 "IBPTOOLS.spad" 837279 837296 838676 838681) (-494 "IBITS.spad" 836478 836491 836915 836942) (-493 "IBATOOL.spad" 833353 833372 836468 836473) (-492 "IBACHIN.spad" 831840 831855 833343 833348) (-491 "IARRAY2.spad" 830828 830854 831447 831474) (-490 "IARRAY1.spad" 829873 829888 830011 830038) (-489 "IAN.spad" 828086 828094 829689 829782) (-488 "IALGFACT.spad" 827687 827720 828076 828081) (-487 "HYPCAT.spad" 827111 827119 827677 827682) (-486 "HYPCAT.spad" 826533 826543 827101 827106) (-485 "HOSTNAME.spad" 826341 826349 826523 826528) (-484 "HOMOTOP.spad" 826084 826094 826331 826336) (-483 "HOAGG.spad" 823352 823362 826074 826079) (-482 "HOAGG.spad" 820395 820407 823119 823124) (-481 "HEXADEC.spad" 818497 818505 818862 818955) (-480 "HEUGCD.spad" 817512 817523 818487 818492) (-479 "HELLFDIV.spad" 817102 817126 817502 817507) (-478 "HEAP.spad" 816494 816504 816709 816736) (-477 "HEADAST.spad" 816025 816033 816484 816489) (-476 "HDP.spad" 805868 805884 806245 806376) (-475 "HDMP.spad" 803044 803059 803662 803789) (-474 "HB.spad" 801281 801289 803034 803039) (-473 "HASHTBL.spad" 799751 799782 799962 799989) (-472 "HASAST.spad" 799467 799475 799741 799746) (-471 "HACKPI.spad" 798950 798958 799369 799462) (-470 "GTSET.spad" 797889 797905 798596 798623) (-469 "GSTBL.spad" 796408 796443 796582 796597) (-468 "GSERIES.spad" 793575 793602 794540 794689) (-467 "GROUP.spad" 792844 792852 793555 793570) (-466 "GROUP.spad" 792121 792131 792834 792839) (-465 "GROEBSOL.spad" 790609 790630 792111 792116) (-464 "GRMOD.spad" 789180 789192 790599 790604) (-463 "GRMOD.spad" 787749 787763 789170 789175) (-462 "GRIMAGE.spad" 780354 780362 787739 787744) (-461 "GRDEF.spad" 778733 778741 780344 780349) (-460 "GRAY.spad" 777192 777200 778723 778728) (-459 "GRALG.spad" 776239 776251 777182 777187) (-458 "GRALG.spad" 775284 775298 776229 776234) (-457 "GPOLSET.spad" 774738 774761 774966 774993) (-456 "GOSPER.spad" 774003 774021 774728 774733) (-455 "GMODPOL.spad" 773141 773168 773971 773998) (-454 "GHENSEL.spad" 772210 772224 773131 773136) (-453 "GENUPS.spad" 768311 768324 772200 772205) (-452 "GENUFACT.spad" 767888 767898 768301 768306) (-451 "GENPGCD.spad" 767472 767489 767878 767883) (-450 "GENMFACT.spad" 766924 766943 767462 767467) (-449 "GENEEZ.spad" 764863 764876 766914 766919) (-448 "GDMP.spad" 761881 761898 762657 762784) (-447 "GCNAALG.spad" 755776 755803 761675 761742) (-446 "GCDDOM.spad" 754948 754956 755702 755771) (-445 "GCDDOM.spad" 754182 754192 754938 754943) (-444 "GB.spad" 751700 751738 754138 754143) (-443 "GBINTERN.spad" 747720 747758 751690 751695) (-442 "GBF.spad" 743477 743515 747710 747715) (-441 "GBEUCLID.spad" 741351 741389 743467 743472) (-440 "GAUSSFAC.spad" 740648 740656 741341 741346) (-439 "GALUTIL.spad" 738970 738980 740604 740609) (-438 "GALPOLYU.spad" 737416 737429 738960 738965) (-437 "GALFACTU.spad" 735581 735600 737406 737411) (-436 "GALFACT.spad" 725714 725725 735571 735576) (-435 "FVFUN.spad" 722737 722745 725704 725709) (-434 "FVC.spad" 721789 721797 722727 722732) (-433 "FUNCTION.spad" 721638 721650 721779 721784) (-432 "FT.spad" 719931 719939 721628 721633) (-431 "FTEM.spad" 719094 719102 719921 719926) (-430 "FSUPFACT.spad" 717994 718013 719030 719035) (-429 "FST.spad" 716080 716088 717984 717989) (-428 "FSRED.spad" 715558 715574 716070 716075) (-427 "FSPRMELT.spad" 714382 714398 715515 715520) (-426 "FSPECF.spad" 712459 712475 714372 714377) (-425 "FS.spad" 706521 706531 712234 712454) (-424 "FS.spad" 700361 700373 706076 706081) (-423 "FSINT.spad" 700019 700035 700351 700356) (-422 "FSERIES.spad" 699206 699218 699839 699938) (-421 "FSCINT.spad" 698519 698535 699196 699201) (-420 "FSAGG.spad" 697636 697646 698475 698514) (-419 "FSAGG.spad" 696715 696727 697556 697561) (-418 "FSAGG2.spad" 695414 695430 696705 696710) (-417 "FS2UPS.spad" 689897 689931 695404 695409) (-416 "FS2.spad" 689542 689558 689887 689892) (-415 "FS2EXPXP.spad" 688665 688688 689532 689537) (-414 "FRUTIL.spad" 687607 687617 688655 688660) (-413 "FR.spad" 681301 681311 686631 686700) (-412 "FRNAALG.spad" 676388 676398 681243 681296) (-411 "FRNAALG.spad" 671487 671499 676344 676349) (-410 "FRNAAF2.spad" 670941 670959 671477 671482) (-409 "FRMOD.spad" 670335 670365 670872 670877) (-408 "FRIDEAL.spad" 669530 669551 670315 670330) (-407 "FRIDEAL2.spad" 669132 669164 669520 669525) (-406 "FRETRCT.spad" 668643 668653 669122 669127) (-405 "FRETRCT.spad" 668020 668032 668501 668506) (-404 "FRAMALG.spad" 666348 666361 667976 668015) (-403 "FRAMALG.spad" 664708 664723 666338 666343) (-402 "FRAC.spad" 661807 661817 662210 662383) (-401 "FRAC2.spad" 661410 661422 661797 661802) (-400 "FR2.spad" 660744 660756 661400 661405) (-399 "FPS.spad" 657553 657561 660634 660739) (-398 "FPS.spad" 654390 654400 657473 657478) (-397 "FPC.spad" 653432 653440 654292 654385) (-396 "FPC.spad" 652560 652570 653422 653427) (-395 "FPATMAB.spad" 652322 652332 652550 652555) (-394 "FPARFRAC.spad" 650795 650812 652312 652317) (-393 "FORTRAN.spad" 649301 649344 650785 650790) (-392 "FORT.spad" 648230 648238 649291 649296) (-391 "FORTFN.spad" 645400 645408 648220 648225) (-390 "FORTCAT.spad" 645084 645092 645390 645395) (-389 "FORMULA.spad" 642548 642556 645074 645079) (-388 "FORMULA1.spad" 642027 642037 642538 642543) (-387 "FORDER.spad" 641718 641742 642017 642022) (-386 "FOP.spad" 640919 640927 641708 641713) (-385 "FNLA.spad" 640343 640365 640887 640914) (-384 "FNCAT.spad" 638930 638938 640333 640338) (-383 "FNAME.spad" 638822 638830 638920 638925) (-382 "FMTC.spad" 638620 638628 638748 638817) (-381 "FMONOID.spad" 635675 635685 638576 638581) (-380 "FM.spad" 635370 635382 635609 635636) (-379 "FMFUN.spad" 632400 632408 635360 635365) (-378 "FMC.spad" 631452 631460 632390 632395) (-377 "FMCAT.spad" 629106 629124 631420 631447) (-376 "FM1.spad" 628463 628475 629040 629067) (-375 "FLOATRP.spad" 626184 626198 628453 628458) (-374 "FLOAT.spad" 619472 619480 626050 626179) (-373 "FLOATCP.spad" 616889 616903 619462 619467) (-372 "FLINEXP.spad" 616601 616611 616869 616884) (-371 "FLINEXP.spad" 616267 616279 616537 616542) (-370 "FLASORT.spad" 615587 615599 616257 616262) (-369 "FLALG.spad" 613233 613252 615513 615582) (-368 "FLAGG.spad" 610251 610261 613213 613228) (-367 "FLAGG.spad" 607170 607182 610134 610139) (-366 "FLAGG2.spad" 605851 605867 607160 607165) (-365 "FINRALG.spad" 603880 603893 605807 605846) (-364 "FINRALG.spad" 601835 601850 603764 603769) (-363 "FINITE.spad" 600987 600995 601825 601830) (-362 "FINAALG.spad" 589968 589978 600929 600982) (-361 "FINAALG.spad" 578961 578973 589924 589929) (-360 "FILE.spad" 578544 578554 578951 578956) (-359 "FILECAT.spad" 577062 577079 578534 578539) (-358 "FIELD.spad" 576468 576476 576964 577057) (-357 "FIELD.spad" 575960 575970 576458 576463) (-356 "FGROUP.spad" 574569 574579 575940 575955) (-355 "FGLMICPK.spad" 573356 573371 574559 574564) (-354 "FFX.spad" 572731 572746 573072 573165) (-353 "FFSLPE.spad" 572220 572241 572721 572726) (-352 "FFPOLY.spad" 563472 563483 572210 572215) (-351 "FFPOLY2.spad" 562532 562549 563462 563467) (-350 "FFP.spad" 561929 561949 562248 562341) (-349 "FF.spad" 561377 561393 561610 561703) (-348 "FFNBX.spad" 559889 559909 561093 561186) (-347 "FFNBP.spad" 558402 558419 559605 559698) (-346 "FFNB.spad" 556867 556888 558083 558176) (-345 "FFINTBAS.spad" 554281 554300 556857 556862) (-344 "FFIELDC.spad" 551856 551864 554183 554276) (-343 "FFIELDC.spad" 549517 549527 551846 551851) (-342 "FFHOM.spad" 548265 548282 549507 549512) (-341 "FFF.spad" 545700 545711 548255 548260) (-340 "FFCGX.spad" 544547 544567 545416 545509) (-339 "FFCGP.spad" 543436 543456 544263 544356) (-338 "FFCG.spad" 542228 542249 543117 543210) (-337 "FFCAT.spad" 535255 535277 542067 542223) (-336 "FFCAT.spad" 528361 528385 535175 535180) (-335 "FFCAT2.spad" 528106 528146 528351 528356) (-334 "FEXPR.spad" 519815 519861 527862 527901) (-333 "FEVALAB.spad" 519521 519531 519805 519810) (-332 "FEVALAB.spad" 519012 519024 519298 519303) (-331 "FDIV.spad" 518454 518478 519002 519007) (-330 "FDIVCAT.spad" 516496 516520 518444 518449) (-329 "FDIVCAT.spad" 514536 514562 516486 516491) (-328 "FDIV2.spad" 514190 514230 514526 514531) (-327 "FCPAK1.spad" 512743 512751 514180 514185) (-326 "FCOMP.spad" 512122 512132 512733 512738) (-325 "FC.spad" 502037 502045 512112 512117) (-324 "FAXF.spad" 494972 494986 501939 502032) (-323 "FAXF.spad" 487959 487975 494928 494933) (-322 "FARRAY.spad" 486105 486115 487142 487169) (-321 "FAMR.spad" 484225 484237 486003 486100) (-320 "FAMR.spad" 482329 482343 484109 484114) (-319 "FAMONOID.spad" 481979 481989 482283 482288) (-318 "FAMONC.spad" 480201 480213 481969 481974) (-317 "FAGROUP.spad" 479807 479817 480097 480124) (-316 "FACUTIL.spad" 478003 478020 479797 479802) (-315 "FACTFUNC.spad" 477179 477189 477993 477998) (-314 "EXPUPXS.spad" 474012 474035 475311 475460) (-313 "EXPRTUBE.spad" 471240 471248 474002 474007) (-312 "EXPRODE.spad" 468112 468128 471230 471235) (-311 "EXPR.spad" 463387 463397 464101 464508) (-310 "EXPR2UPS.spad" 459479 459492 463377 463382) (-309 "EXPR2.spad" 459182 459194 459469 459474) (-308 "EXPEXPAN.spad" 456120 456145 456754 456847) (-307 "EXIT.spad" 455791 455799 456110 456115) (-306 "EXITAST.spad" 455527 455535 455781 455786) (-305 "EVALCYC.spad" 454985 454999 455517 455522) (-304 "EVALAB.spad" 454549 454559 454975 454980) (-303 "EVALAB.spad" 454111 454123 454539 454544) (-302 "EUCDOM.spad" 451653 451661 454037 454106) (-301 "EUCDOM.spad" 449257 449267 451643 451648) (-300 "ESTOOLS.spad" 441097 441105 449247 449252) (-299 "ESTOOLS2.spad" 440698 440712 441087 441092) (-298 "ESTOOLS1.spad" 440383 440394 440688 440693) (-297 "ES.spad" 432930 432938 440373 440378) (-296 "ES.spad" 425383 425393 432828 432833) (-295 "ESCONT.spad" 422156 422164 425373 425378) (-294 "ESCONT1.spad" 421905 421917 422146 422151) (-293 "ES2.spad" 421400 421416 421895 421900) (-292 "ES1.spad" 420966 420982 421390 421395) (-291 "ERROR.spad" 418287 418295 420956 420961) (-290 "EQTBL.spad" 416759 416781 416968 416995) (-289 "EQ.spad" 411633 411643 414432 414544) (-288 "EQ2.spad" 411349 411361 411623 411628) (-287 "EP.spad" 407663 407673 411339 411344) (-286 "ENV.spad" 406365 406373 407653 407658) (-285 "ENTIRER.spad" 406033 406041 406309 406360) (-284 "EMR.spad" 405234 405275 405959 406028) (-283 "ELTAGG.spad" 403474 403493 405224 405229) (-282 "ELTAGG.spad" 401678 401699 403430 403435) (-281 "ELTAB.spad" 401125 401143 401668 401673) (-280 "ELFUTS.spad" 400504 400523 401115 401120) (-279 "ELEMFUN.spad" 400193 400201 400494 400499) (-278 "ELEMFUN.spad" 399880 399890 400183 400188) (-277 "ELAGG.spad" 397823 397833 399860 399875) (-276 "ELAGG.spad" 395703 395715 397742 397747) (-275 "ELABEXPR.spad" 394634 394642 395693 395698) (-274 "EFUPXS.spad" 391410 391440 394590 394595) (-273 "EFULS.spad" 388246 388269 391366 391371) (-272 "EFSTRUC.spad" 386201 386217 388236 388241) (-271 "EF.spad" 380967 380983 386191 386196) (-270 "EAB.spad" 379243 379251 380957 380962) (-269 "E04UCFA.spad" 378779 378787 379233 379238) (-268 "E04NAFA.spad" 378356 378364 378769 378774) (-267 "E04MBFA.spad" 377936 377944 378346 378351) (-266 "E04JAFA.spad" 377472 377480 377926 377931) (-265 "E04GCFA.spad" 377008 377016 377462 377467) (-264 "E04FDFA.spad" 376544 376552 376998 377003) (-263 "E04DGFA.spad" 376080 376088 376534 376539) (-262 "E04AGNT.spad" 371922 371930 376070 376075) (-261 "DVARCAT.spad" 368607 368617 371912 371917) (-260 "DVARCAT.spad" 365290 365302 368597 368602) (-259 "DSMP.spad" 362721 362735 363026 363153) (-258 "DROPT.spad" 356666 356674 362711 362716) (-257 "DROPT1.spad" 356329 356339 356656 356661) (-256 "DROPT0.spad" 351156 351164 356319 356324) (-255 "DRAWPT.spad" 349311 349319 351146 351151) (-254 "DRAW.spad" 341911 341924 349301 349306) (-253 "DRAWHACK.spad" 341219 341229 341901 341906) (-252 "DRAWCX.spad" 338661 338669 341209 341214) (-251 "DRAWCURV.spad" 338198 338213 338651 338656) (-250 "DRAWCFUN.spad" 327370 327378 338188 338193) (-249 "DQAGG.spad" 325538 325548 327338 327365) (-248 "DPOLCAT.spad" 320879 320895 325406 325533) (-247 "DPOLCAT.spad" 316306 316324 320835 320840) (-246 "DPMO.spad" 308532 308548 308670 308971) (-245 "DPMM.spad" 300771 300789 300896 301197) (-244 "DOMAIN.spad" 300042 300050 300761 300766) (-243 "DMP.spad" 297264 297279 297836 297963) (-242 "DLP.spad" 296612 296622 297254 297259) (-241 "DLIST.spad" 295191 295201 295795 295822) (-240 "DLAGG.spad" 293602 293612 295181 295186) (-239 "DIVRING.spad" 293144 293152 293546 293597) (-238 "DIVRING.spad" 292730 292740 293134 293139) (-237 "DISPLAY.spad" 290910 290918 292720 292725) (-236 "DIRPROD.spad" 280490 280506 281130 281261) (-235 "DIRPROD2.spad" 279298 279316 280480 280485) (-234 "DIRPCAT.spad" 278240 278256 279162 279293) (-233 "DIRPCAT.spad" 276911 276929 277835 277840) (-232 "DIOSP.spad" 275736 275744 276901 276906) (-231 "DIOPS.spad" 274720 274730 275716 275731) (-230 "DIOPS.spad" 273678 273690 274676 274681) (-229 "DIFRING.spad" 272970 272978 273658 273673) (-228 "DIFRING.spad" 272270 272280 272960 272965) (-227 "DIFEXT.spad" 271429 271439 272250 272265) (-226 "DIFEXT.spad" 270505 270517 271328 271333) (-225 "DIAGG.spad" 270135 270145 270485 270500) (-224 "DIAGG.spad" 269773 269785 270125 270130) (-223 "DHMATRIX.spad" 268077 268087 269230 269257) (-222 "DFSFUN.spad" 261485 261493 268067 268072) (-221 "DFLOAT.spad" 258206 258214 261375 261480) (-220 "DFINTTLS.spad" 256415 256431 258196 258201) (-219 "DERHAM.spad" 254325 254357 256395 256410) (-218 "DEQUEUE.spad" 253643 253653 253932 253959) (-217 "DEGRED.spad" 253258 253272 253633 253638) (-216 "DEFINTRF.spad" 250783 250793 253248 253253) (-215 "DEFINTEF.spad" 249279 249295 250773 250778) (-214 "DEFAST.spad" 248647 248655 249269 249274) (-213 "DECIMAL.spad" 246753 246761 247114 247207) (-212 "DDFACT.spad" 244552 244569 246743 246748) (-211 "DBLRESP.spad" 244150 244174 244542 244547) (-210 "DBASE.spad" 242804 242814 244140 244145) (-209 "DATAARY.spad" 242266 242279 242794 242799) (-208 "D03FAFA.spad" 242094 242102 242256 242261) (-207 "D03EEFA.spad" 241914 241922 242084 242089) (-206 "D03AGNT.spad" 240994 241002 241904 241909) (-205 "D02EJFA.spad" 240456 240464 240984 240989) (-204 "D02CJFA.spad" 239934 239942 240446 240451) (-203 "D02BHFA.spad" 239424 239432 239924 239929) (-202 "D02BBFA.spad" 238914 238922 239414 239419) (-201 "D02AGNT.spad" 233718 233726 238904 238909) (-200 "D01WGTS.spad" 232037 232045 233708 233713) (-199 "D01TRNS.spad" 232014 232022 232027 232032) (-198 "D01GBFA.spad" 231536 231544 232004 232009) (-197 "D01FCFA.spad" 231058 231066 231526 231531) (-196 "D01ASFA.spad" 230526 230534 231048 231053) (-195 "D01AQFA.spad" 229972 229980 230516 230521) (-194 "D01APFA.spad" 229396 229404 229962 229967) (-193 "D01ANFA.spad" 228890 228898 229386 229391) (-192 "D01AMFA.spad" 228400 228408 228880 228885) (-191 "D01ALFA.spad" 227940 227948 228390 228395) (-190 "D01AKFA.spad" 227466 227474 227930 227935) (-189 "D01AJFA.spad" 226989 226997 227456 227461) (-188 "D01AGNT.spad" 223048 223056 226979 226984) (-187 "CYCLOTOM.spad" 222554 222562 223038 223043) (-186 "CYCLES.spad" 219386 219394 222544 222549) (-185 "CVMP.spad" 218803 218813 219376 219381) (-184 "CTRIGMNP.spad" 217293 217309 218793 218798) (-183 "CTOR.spad" 216736 216744 217283 217288) (-182 "CTORKIND.spad" 216351 216359 216726 216731) (-181 "CTORCALL.spad" 215939 215947 216341 216346) (-180 "CSTTOOLS.spad" 215182 215195 215929 215934) (-179 "CRFP.spad" 208886 208899 215172 215177) (-178 "CRCEAST.spad" 208606 208614 208876 208881) (-177 "CRAPACK.spad" 207649 207659 208596 208601) (-176 "CPMATCH.spad" 207149 207164 207574 207579) (-175 "CPIMA.spad" 206854 206873 207139 207144) (-174 "COORDSYS.spad" 201747 201757 206844 206849) (-173 "CONTOUR.spad" 201149 201157 201737 201742) (-172 "CONTFRAC.spad" 196761 196771 201051 201144) (-171 "CONDUIT.spad" 196519 196527 196751 196756) (-170 "COMRING.spad" 196193 196201 196457 196514) (-169 "COMPPROP.spad" 195707 195715 196183 196188) (-168 "COMPLPAT.spad" 195474 195489 195697 195702) (-167 "COMPLEX.spad" 189510 189520 189754 190003) (-166 "COMPLEX2.spad" 189223 189235 189500 189505) (-165 "COMPFACT.spad" 188825 188839 189213 189218) (-164 "COMPCAT.spad" 186963 186973 188571 188820) (-163 "COMPCAT.spad" 184782 184794 186392 186397) (-162 "COMMUPC.spad" 184528 184546 184772 184777) (-161 "COMMONOP.spad" 184061 184069 184518 184523) (-160 "COMM.spad" 183870 183878 184051 184056) (-159 "COMMAAST.spad" 183633 183641 183860 183865) (-158 "COMBOPC.spad" 182538 182546 183623 183628) (-157 "COMBINAT.spad" 181283 181293 182528 182533) (-156 "COMBF.spad" 178651 178667 181273 181278) (-155 "COLOR.spad" 177488 177496 178641 178646) (-154 "COLONAST.spad" 177154 177162 177478 177483) (-153 "CMPLXRT.spad" 176863 176880 177144 177149) (-152 "CLLCTAST.spad" 176525 176533 176853 176858) (-151 "CLIP.spad" 172617 172625 176515 176520) (-150 "CLIF.spad" 171256 171272 172573 172612) (-149 "CLAGG.spad" 167741 167751 171246 171251) (-148 "CLAGG.spad" 164097 164109 167604 167609) (-147 "CINTSLPE.spad" 163422 163435 164087 164092) (-146 "CHVAR.spad" 161500 161522 163412 163417) (-145 "CHARZ.spad" 161415 161423 161480 161495) (-144 "CHARPOL.spad" 160923 160933 161405 161410) (-143 "CHARNZ.spad" 160676 160684 160903 160918) (-142 "CHAR.spad" 158544 158552 160666 160671) (-141 "CFCAT.spad" 157860 157868 158534 158539) (-140 "CDEN.spad" 157018 157032 157850 157855) (-139 "CCLASS.spad" 155167 155175 156429 156468) (-138 "CATEGORY.spad" 154946 154954 155157 155162) (-137 "CATAST.spad" 154573 154581 154936 154941) (-136 "CASEAST.spad" 154287 154295 154563 154568) (-135 "CARTEN.spad" 149390 149414 154277 154282) (-134 "CARTEN2.spad" 148776 148803 149380 149385) (-133 "CARD.spad" 146065 146073 148750 148771) (-132 "CAPSLAST.spad" 145839 145847 146055 146060) (-131 "CACHSET.spad" 145461 145469 145829 145834) (-130 "CABMON.spad" 145014 145022 145451 145456) (-129 "BYTE.spad" 144335 144343 145004 145009) (-128 "BYTEBUF.spad" 142157 142165 143504 143531) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index e007c40e..8ec5be3b 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,989 +1,989 @@ -(161702 . 3437447587) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -((((-553)) . T) (($) -3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-1020 (-401 (-553))))) ((|#1|) . T)) +(161756 . 3437790960) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +((((-554)) . T) (($) -3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-553)) . T)) -((($ $) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) ((|#2| |#2|) . T) ((#0=(-401 (-553)) #0#) |has| |#2| (-38 (-401 (-553))))) +((((-554)) . T)) +((($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2| |#2|) . T) ((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) (((|#2|) . T)) -((($) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) ((|#2|) . T) (((-401 (-553))) |has| |#2| (-38 (-401 (-553))))) -(|has| |#1| (-891)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((($) . T) (((-401 (-553))) . T)) +((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554))))) +(|has| |#1| (-894)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((($) . T) (((-402 (-554))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-141)) . T)) -((((-529)) . T) (((-1137)) . T) (((-220)) . T) (((-373)) . T) (((-874 (-373))) . T)) -(((|#1|) . T)) -((((-220)) . T) (((-845)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -((($ $) . T) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -(-3988 (|has| |#1| (-806)) (|has| |#1| (-833))) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(|has| |#1| (-831)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +((((-142)) . T)) +((((-530)) . T) (((-1140)) . T) (((-221)) . T) (((-374)) . T) (((-877 (-374))) . T)) +(((|#1|) . T)) +((((-221)) . T) (((-848)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +((($ $) . T) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T)) +(-3994 (|has| |#1| (-807)) (|has| |#1| (-836))) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(|has| |#1| (-834)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#1| |#2| |#3|) . T)) -((((-1160)) . T)) -((((-553)) . T) (((-852 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((($) . T) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-845)) . T)) -((((-1160)) . T)) +((((-1163)) . T)) +((((-554)) . T) (((-855 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-848)) . T)) +((((-1163)) . T)) (((|#4|) . T)) -((((-845)) . T)) -((((-845)) |has| |#1| (-1079))) -((((-845)) . T) (((-1160)) . T)) +((((-848)) . T)) +((((-848)) |has| |#1| (-1082))) +((((-848)) . T) (((-1163)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1160)) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(((|#2| (-475 (-2563 |#1|) (-757))) . T)) -(((|#1| (-524 (-1155))) . T)) -(((#0=(-852 |#1|) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -((((-1137)) . T) (((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(|has| |#4| (-362)) -(|has| |#3| (-362)) -(((|#1|) . T)) -((((-852 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) +((((-1163)) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(((|#2| (-476 (-2563 |#1|) (-758))) . T)) +(((|#1| (-525 (-1158))) . T)) +(((#0=(-855 |#1|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +((((-1140)) . T) (((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(|has| |#4| (-363)) +(|has| |#3| (-363)) +(((|#1|) . T)) +((((-855 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-545)) -((((-553)) . T) (((-401 (-553))) -3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553))))) ((|#2|) . T) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) (((-847 |#1|)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -((((-2 (|:| -2735 |#1|) (|:| -2692 |#2|))) . T)) -((($) . T)) -((((-553)) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) ((|#1|) . T) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) (((-1155)) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -((((-1155)) . T)) -((((-553)) . T) (($) . T)) -((($) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -((((-845)) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-1230 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-546)) +((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +((((-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) . T)) +((($) . T)) +((((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1158)) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +((((-1158)) . T)) +((((-554)) . T) (($) . T)) +((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) +((((-848)) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) . T)) (((|#1| |#2|) . T)) -((((-845)) . T)) +((((-848)) . T)) (((|#1|) . T)) -(((#0=(-401 (-553)) #0#) |has| |#2| (-38 (-401 (-553)))) ((|#2| |#2|) . T) (($ $) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) +(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) (((|#1|) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (($) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553)))) ((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) (((|#2|) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T) (($) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) ((($ $) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-362)) +(|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -((((-845)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) (((|#1| |#2|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) (((|#1| |#1|) . T)) -(|has| |#1| (-545)) -(((|#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) (((-1155) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-507 (-1155) |#2|)))) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(|has| |#1| (-1079)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(|has| |#1| (-1079)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(|has| |#1| (-831)) -((($) . T) (((-401 (-553))) . T)) -(((|#1|) . T)) -((((-553) (-128)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-128)) . T)) -((((-1160)) . T)) -(-3988 (|has| |#4| (-779)) (|has| |#4| (-831))) -(-3988 (|has| |#4| (-779)) (|has| |#4| (-831))) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) +((((-848)) . T)) +(|has| |#1| (-546)) +(((|#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) (((-1158) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-508 (-1158) |#2|)))) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(|has| |#1| (-1082)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(|has| |#1| (-1082)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(|has| |#1| (-834)) +((($) . T) (((-402 (-554))) . T)) +(((|#1|) . T)) +((((-554) (-129)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-129)) . T)) +((((-1163)) . T)) +(-3994 (|has| |#4| (-780)) (|has| |#4| (-834))) +(-3994 (|has| |#4| (-780)) (|has| |#4| (-834))) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1079)) -(|has| |#1| (-1079)) -(((|#1| (-1155) (-1067 (-1155)) (-524 (-1067 (-1155)))) . T)) -((((-553) |#1|) . T)) -((((-553)) . T)) -((((-553)) . T)) -((((-892 |#1|)) . T)) -(((|#1| (-524 |#2|)) . T)) -((((-553)) . T)) -((((-553)) . T)) -(((|#1|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-712)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(((|#1| (-757)) . T)) -(|has| |#2| (-779)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(|has| |#2| (-831)) +(|has| |#1| (-1082)) +(|has| |#1| (-1082)) +(((|#1| (-1158) (-1070 (-1158)) (-525 (-1070 (-1158)))) . T)) +((((-554) |#1|) . T)) +((((-554)) . T)) +((((-554)) . T)) +((((-895 |#1|)) . T)) +(((|#1| (-525 |#2|)) . T)) +((((-554)) . T)) +((((-554)) . T)) +(((|#1|) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(((|#1| (-758)) . T)) +(|has| |#2| (-780)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(|has| |#2| (-834)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1137) |#1|) . T)) -((((-553) (-128)) . T)) -(((|#1|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#3| (-757)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(|has| |#1| (-1079)) -((((-401 (-553))) . T) (((-553)) . T)) -((((-553)) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((((-553)) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) ((|#1|) . T) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#2|) . T)) -((((-1155) |#2|) |has| |#2| (-507 (-1155) |#2|)) ((|#2| |#2|) |has| |#2| (-303 |#2|))) -((((-401 (-553))) . T) (((-553)) . T)) -((((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) (((-1061)) . T) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) +((((-1140) |#1|) . T)) +((((-554) (-129)) . T)) +(((|#1|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#3| (-758)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(|has| |#1| (-1082)) +((((-402 (-554))) . T) (((-554)) . T)) +((((-554)) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#2|) . T)) +((((-1158) |#2|) |has| |#2| (-508 (-1158) |#2|)) ((|#2| |#2|) |has| |#2| (-304 |#2|))) +((((-402 (-554))) . T) (((-554)) . T)) +((((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1064)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (((|#1|) . T) (($) . T)) -((((-553)) . T)) -((((-553)) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -((((-553)) . T)) -((((-553)) . T)) -(((#0=(-684) (-1151 #0#)) . T)) -((((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -((((-553) |#1|) . T)) -((($) . T) (((-553)) . T) (((-401 (-553))) . T)) -(((|#1|) . T)) -(|has| |#2| (-357)) +((((-554)) . T)) +((((-554)) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +((((-554)) . T)) +((((-554)) . T)) +(((#0=(-685) (-1154 #0#)) . T)) +((((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +((((-554) |#1|) . T)) +((($) . T) (((-554)) . T) (((-402 (-554))) . T)) +(((|#1|) . T)) +(|has| |#2| (-358)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-845)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-1137) |#1|) . T)) +((((-848)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-1140) |#1|) . T)) (((|#3| |#3|) . T)) -((((-845)) . T)) -((((-845)) . T)) +((((-848)) . T)) +((((-848)) . T)) (((|#1| |#1|) . T)) -(((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553)))) ((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((($) -3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) ((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031)))) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-553) |#1|) . T)) -((((-845)) . T)) -((((-166 (-220))) |has| |#1| (-1004)) (((-166 (-373))) |has| |#1| (-1004)) (((-529)) |has| |#1| (-601 (-529))) (((-1151 |#1|)) . T) (((-874 (-553))) |has| |#1| (-601 (-874 (-553)))) (((-874 (-373))) |has| |#1| (-601 (-874 (-373))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -(|has| |#1| (-357)) -((((-128)) . T)) -(-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) -(-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) -(-3988 (|has| |#4| (-169)) (|has| |#4| (-831)) (|has| |#4| (-1031))) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-626 (-553)))) -(((|#2|) . T) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -(|has| |#1| (-545)) -((((-553)) -3988 (|has| |#4| (-169)) (|has| |#4| (-831)) (-12 (|has| |#4| (-1020 (-553))) (|has| |#4| (-1079))) (|has| |#4| (-1031))) ((|#4|) -3988 (|has| |#4| (-169)) (|has| |#4| (-1079))) (((-401 (-553))) -12 (|has| |#4| (-1020 (-401 (-553)))) (|has| |#4| (-1079)))) -((((-553)) -3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079))) (|has| |#3| (-1031))) ((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-1079))) (((-401 (-553))) -12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(|has| |#1| (-545)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#1|) . T)) -(|has| |#1| (-545)) -(|has| |#1| (-545)) -(|has| |#1| (-545)) -((((-684)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-984)) (|has| |#1| (-1177))) -(((|#2|) . T) (($) . T) (((-401 (-553))) . T)) -(-12 (|has| |#1| (-1079)) (|has| |#2| (-1079))) -((($) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-1153 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (($) . T)) -(((|#4| |#4|) -3988 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1031))) (($ $) |has| |#4| (-169))) -(((|#3| |#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1031))) (($ $) |has| |#3| (-169))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-529)) |has| |#2| (-601 (-529))) (((-874 (-373))) |has| |#2| (-601 (-874 (-373)))) (((-874 (-553))) |has| |#2| (-601 (-874 (-553))))) -((((-845)) . T)) +(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034)))) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-554) |#1|) . T)) +((((-848)) . T)) +((((-167 (-221))) |has| |#1| (-1007)) (((-167 (-374))) |has| |#1| (-1007)) (((-530)) |has| |#1| (-602 (-530))) (((-1154 |#1|)) . T) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374))))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +(|has| |#1| (-358)) +((((-129)) . T)) +(-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) +(-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) +(-3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (|has| |#4| (-1034))) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554)))) +(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +(|has| |#1| (-546)) +((((-554)) -3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082))) (|has| |#4| (-1034))) ((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-1082))) (((-402 (-554))) -12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082)))) +((((-554)) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(|has| |#1| (-546)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#1|) . T)) +(|has| |#1| (-546)) +(|has| |#1| (-546)) +(|has| |#1| (-546)) +((((-685)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-987)) (|has| |#1| (-1180))) +(((|#2|) . T) (($) . T) (((-402 (-554))) . T)) +(-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))) +((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) . T)) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T)) +(((|#4| |#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1034))) (($ $) |has| |#4| (-170))) +(((|#3| |#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($ $) |has| |#3| (-170))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554))))) +((((-848)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2735 |#1|) (|:| -2692 |#2|))) . T) (((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529))) (((-874 (-373))) |has| |#1| (-601 (-874 (-373)))) (((-874 (-553))) |has| |#1| (-601 (-874 (-553))))) -(((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1031))) (($) |has| |#3| (-169))) -(((|#4|) -3988 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1031))) (($) |has| |#4| (-169))) -((((-2 (|:| -2735 |#1|) (|:| -2692 |#2|))) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) . T) (((-553)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -((((-630 |#1|)) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((($) . T) (((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T)) -((((-401 $) (-401 $)) |has| |#2| (-545)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-891)) -((((-1137) (-52)) . T)) -((((-553)) |has| #0=(-401 |#2|) (-626 (-553))) ((#0#) . T)) -((((-529)) . T) (((-220)) . T) (((-373)) . T) (((-874 (-373))) . T)) -((((-845)) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) -(((|#1|) |has| |#1| (-169))) -(((|#1| $) |has| |#1| (-280 |#1| |#1|))) -((((-845)) . T)) -((((-845)) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-845)) . T)) -(|has| |#1| (-833)) -(((|#2|) . T) (((-553)) . T) (((-805 |#1|)) . T)) -(|has| |#1| (-1079)) -(((|#1|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) . T) (((-1160)) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((((-1160)) . T)) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(|has| |#1| (-228)) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1| (-524 (-804 (-1155)))) . T)) -(((|#1| (-953)) . T)) -(((#0=(-852 |#1|) $) |has| #0# (-280 #0# #0#))) -((((-553) |#4|) . T)) -((((-553) |#3|) . T)) +((((-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) . T) (((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554))))) +(((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1034))) (($) |has| |#4| (-170))) +(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($) |has| |#3| (-170))) +((((-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +((((-631 |#1|)) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T)) +((((-402 $) (-402 $)) |has| |#2| (-546)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-894)) +((((-1140) (-52)) . T)) +((((-554)) |has| #0=(-402 |#2|) (-627 (-554))) ((#0#) . T)) +((((-530)) . T) (((-221)) . T) (((-374)) . T) (((-877 (-374))) . T)) +((((-848)) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) +(((|#1|) |has| |#1| (-170))) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-848)) . T)) +((((-848)) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-848)) . T)) +(|has| |#1| (-836)) +(((|#2|) . T) (((-554)) . T) (((-806 |#1|)) . T)) +(|has| |#1| (-1082)) +(((|#1|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) . T) (((-1163)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((((-1163)) . T)) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(|has| |#1| (-229)) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1| (-525 (-805 (-1158)))) . T)) +(((|#1| (-956)) . T)) +(((#0=(-855 |#1|) $) |has| #0# (-281 #0# #0#))) +((((-554) |#4|) . T)) +((((-554) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1130)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -(|has| (-1224 |#1| |#2| |#3| |#4|) (-142)) -(|has| (-1224 |#1| |#2| |#3| |#4|) (-144)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(((|#1|) |has| |#1| (-169))) -((((-1155)) -12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) -(((|#2|) . T)) -(|has| |#1| (-1079)) -((((-1137) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) -((((-1104 |#1| (-1155))) . T) (((-553)) . T) (((-804 (-1155))) . T) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) (((-1155)) . T)) -(|has| |#2| (-362)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +(|has| |#1| (-1133)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +(|has| (-1227 |#1| |#2| |#3| |#4|) (-143)) +(|has| (-1227 |#1| |#2| |#3| |#4|) (-145)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(((|#1|) |has| |#1| (-170))) +((((-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) +(((|#2|) . T)) +(|has| |#1| (-1082)) +((((-1140) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) +((((-1107 |#1| (-1158))) . T) (((-554)) . T) (((-805 (-1158))) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-1158)) . T)) +(|has| |#2| (-363)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1031))) -((((-845)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) +(((|#2|) |has| |#2| (-1034))) +((((-848)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) (((|#1|) . T)) -((((-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((#0=(-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) #0#) |has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))))) -((((-845)) . T)) -((((-553) |#1|) . T)) -((((-529)) -12 (|has| |#1| (-601 (-529))) (|has| |#2| (-601 (-529)))) (((-874 (-373))) -12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373))))) (((-874 (-553))) -12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) +((((-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((#0=(-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) #0#) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) +((((-848)) . T)) +((((-554) |#1|) . T)) +((((-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530)))) (((-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374))))) (((-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) ((($) . T)) -((((-845)) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) +((((-848)) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) -((((-845)) . T)) -(|has| (-1223 |#2| |#3| |#4|) (-144)) -(|has| (-1223 |#2| |#3| |#4|) (-142)) -(((|#2|) |has| |#2| (-1079)) (((-553)) -12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (((-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) +((((-848)) . T)) +(|has| (-1226 |#2| |#3| |#4|) (-145)) +(|has| (-1226 |#2| |#3| |#4|) (-143)) +(((|#2|) |has| |#2| (-1082)) (((-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((|#1|) . T)) -(|has| |#1| (-1079)) -((((-845)) . T)) +(|has| |#1| (-1082)) +((((-848)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) (((|#1|) . T)) -((((-553) |#1|) . T)) -(((|#2|) |has| |#2| (-169))) -(((|#1|) |has| |#1| (-169))) +((((-554) |#1|) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -((((-845)) |has| |#1| (-1079))) -(-3988 (|has| |#1| (-466)) (|has| |#1| (-712)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031)) (|has| |#1| (-1091))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-892 |#1|)) . T)) -((((-401 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-553) |#1|))) -((((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-833)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +((((-848)) |has| |#1| (-1082))) +(-3994 (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-895 |#1|)) . T)) +((((-402 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-554) |#1|))) +((((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-836)) (((|#1|) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -(|has| |#1| (-357)) -(-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))) -(|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) -(|has| |#1| (-357)) -((((-553)) . T)) -(|has| |#1| (-15 * (|#1| (-757) |#1|))) -((((-1121 |#2| (-401 (-934 |#1|)))) . T) (((-401 (-934 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-169)) (($) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (($) . T)) -(((|#1|) . T)) -((((-553) |#1|) . T)) -((((-845)) . T)) -(((|#2|) . T)) -(-3988 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -((((-553)) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((($) |has| |#1| (-545)) (((-553)) . T)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -((((-1230 |#1| |#2| |#3|)) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-553)) . T) ((|#1|) |has| |#1| (-169))) -((((-1234 |#2|)) . T) (((-1230 |#1| |#2| |#3|)) . T) (((-1202 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (((-553)) . T)) -(((|#1|) . T)) -((((-1155)) -12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-806))) -(-3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-545))) -(((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553)))) ((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545)))) -((($ $) |has| |#1| (-545))) -(((#0=(-684) (-1151 #0#)) . T)) -((((-845)) . T) (((-1238 |#4|)) . T)) -((((-845)) . T) (((-1238 |#3|)) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545)))) -((($) |has| |#1| (-545))) -((((-845)) . T)) -((($) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((#1=(-1230 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357)))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-1230 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) -(((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357)))) -(((|#3|) |has| |#3| (-1031))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(|has| |#1| (-1079)) -(((|#2| (-805 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-357)) -((((-401 $) (-401 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1061) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-892 |#1|)) . T)) -((((-141)) . T)) -((((-141)) . T)) -(((|#3|) |has| |#3| (-1079)) (((-553)) -12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079))) (((-401 (-553))) -12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -(|has| |#1| (-357)) -((((-1160)) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -((((-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(|has| |#2| (-806)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-831)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-529)) |has| |#1| (-601 (-529)))) +((((-402 (-554))) . T) (($) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +(|has| |#1| (-358)) +(-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))) +(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) +(|has| |#1| (-358)) +((((-554)) . T)) +(|has| |#1| (-15 * (|#1| (-758) |#1|))) +((((-1124 |#2| (-402 (-937 |#1|)))) . T) (((-402 (-937 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T)) +(((|#1|) . T)) +((((-554) |#1|) . T)) +((((-848)) . T)) +(((|#2|) . T)) +(-3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +((((-554)) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((($) |has| |#1| (-546)) (((-554)) . T)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +((((-1233 |#1| |#2| |#3|)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) ((|#1|) |has| |#1| (-170))) +((((-1237 |#2|)) . T) (((-1233 |#1| |#2| |#3|)) . T) (((-1205 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (((-554)) . T)) +(((|#1|) . T)) +((((-1158)) -12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-807))) +(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) +(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546)))) +((($ $) |has| |#1| (-546))) +(((#0=(-685) (-1154 #0#)) . T)) +((((-848)) . T) (((-1241 |#4|)) . T)) +((((-848)) . T) (((-1241 |#3|)) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546)))) +((($) |has| |#1| (-546))) +((((-848)) . T)) +((($) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((#1=(-1233 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358)))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T)) +(((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358)))) +(((|#3|) |has| |#3| (-1034))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(|has| |#1| (-1082)) +(((|#2| (-806 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-358)) +((((-402 $) (-402 $)) |has| |#1| (-546)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1064) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-895 |#1|)) . T)) +((((-142)) . T)) +((((-142)) . T)) +(((|#3|) |has| |#3| (-1082)) (((-554)) -12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +(|has| |#1| (-358)) +((((-1163)) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(|has| |#2| (-807)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-834)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-530)) |has| |#1| (-602 (-530)))) (((|#1| |#2|) . T)) -((((-1155)) -12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) -((((-1137) |#1|) . T)) -(((|#1| |#2| |#3| (-524 |#3|)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-845)) . T)) -(((|#1|) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(|has| |#1| (-362)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-553)) . T)) -((((-553)) . T)) -(((|#1|) . T) (((-553)) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -((((-845)) . T)) -((((-845)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (((-553)) . T) (($) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -(-12 (|has| |#2| (-228)) (|has| |#2| (-1031))) -((((-1155) #0=(-852 |#1|)) |has| #0# (-507 (-1155) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) -(((|#1|) . T)) -((((-553) |#4|) . T)) -((((-553) |#3|) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-626 (-553)))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -((((-401 (-553))) . T) (((-553)) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) +((((-1158)) -12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) +((((-1140) |#1|) . T)) +(((|#1| |#2| |#3| (-525 |#3|)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((((-848)) . T)) +(((|#1|) . T)) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(|has| |#1| (-363)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-554)) . T)) +((((-554)) . T)) +(((|#1|) . T) (((-554)) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +((((-848)) . T)) +((((-848)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +(-12 (|has| |#2| (-229)) (|has| |#2| (-1034))) +((((-1158) #0=(-855 |#1|)) |has| #0# (-508 (-1158) #0#)) ((#0# #0#) |has| #0# (-304 #0#))) +(((|#1|) . T)) +((((-554) |#4|) . T)) +((((-554) |#3|) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554)))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +((((-402 (-554))) . T) (((-554)) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-553)) . T) (((-401 (-553))) . T)) -((((-553)) . T)) -((((-553)) . T)) -((($) . T) (((-553)) . T) (((-401 (-553))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -((((-553)) -3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031))) ((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-1079))) (((-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#0=(-553) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) |has| |#1| (-545))) -((((-553) |#4|) . T)) -((((-553) |#3|) . T)) -((((-845)) . T)) -((((-553)) . T) (((-401 (-553))) . T) (($) . T)) -((((-845)) . T)) -((((-553) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-847 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1155) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-169))) -((($) -3988 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) ((|#2|) |has| |#2| (-169)) (((-401 (-553))) |has| |#2| (-38 (-401 (-553))))) -(((|#2| |#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031))) (($ $) |has| |#2| (-169))) -((((-141)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-362))) -((((-845)) . T)) -(((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031))) (($) |has| |#2| (-169))) -(((|#1|) . T)) -((((-845)) . T)) -(|has| |#1| (-1079)) -(|has| $ (-144)) -((((-1160)) . T)) -((((-553) |#1|) . T)) -((($) -3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) -(|has| |#1| (-357)) -(-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))) -(|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) -(|has| |#1| (-357)) -(|has| |#1| (-15 * (|#1| (-757) |#1|))) -(((|#1|) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((((-845)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(((|#2| (-524 (-847 |#1|))) . T)) -((((-845)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-570 |#1|)) . T)) -((($) . T)) -((((-553)) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-554)) . T) (((-402 (-554))) . T)) +((((-554)) . T)) +((((-554)) . T)) +((($) . T) (((-554)) . T) (((-402 (-554))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +((((-554)) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) |has| |#1| (-546))) +((((-554) |#4|) . T)) +((((-554) |#3|) . T)) +((((-848)) . T)) +((((-554)) . T) (((-402 (-554))) . T) (($) . T)) +((((-848)) . T)) +((((-554) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1158) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-170))) +((($) -3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2|) |has| |#2| (-170)) (((-402 (-554))) |has| |#2| (-38 (-402 (-554))))) +(((|#2| |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($ $) |has| |#2| (-170))) +((((-142)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-363))) +((((-848)) . T)) +(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($) |has| |#2| (-170))) +(((|#1|) . T)) +((((-848)) . T)) +(|has| |#1| (-1082)) +(|has| $ (-145)) +((((-1163)) . T)) +((((-554) |#1|) . T)) +((($) -3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) +(|has| |#1| (-358)) +(-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))) +(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) +(|has| |#1| (-358)) +(|has| |#1| (-15 * (|#1| (-758) |#1|))) +(((|#1|) . T)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((((-848)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(((|#2| (-525 (-850 |#1|))) . T)) +((((-848)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-571 |#1|)) . T)) +((($) . T)) +((((-554)) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) (((|#1|) . T) (($) . T)) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) -((((-1153 |#1| |#2| |#3|)) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-553)) . T) ((|#1|) |has| |#1| (-169))) -((((-1234 |#2|)) . T) (((-1153 |#1| |#2| |#3|)) . T) (((-1146 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) +((((-1156 |#1| |#2| |#3|)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) ((|#1|) |has| |#1| (-170))) +((((-1237 |#2|)) . T) (((-1156 |#1| |#2| |#3|)) . T) (((-1149 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) (((|#4|) . T)) (((|#3|) . T)) -((((-852 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (((-553)) . T)) -((((-1155)) -12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) -(((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-553)) . T) (((-401 (-553))) -3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553))))) ((|#2|) . T) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) (((-847 |#1|)) . T)) -((((-553) |#2|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) +((((-855 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (((-554)) . T)) +((((-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) +(((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T)) +((((-554) |#2|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553)))) ((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545)))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((#1=(-1153 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357)))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) -(((|#2|) |has| |#2| (-1031))) -(|has| |#1| (-1079)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545)))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-1153 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) -(((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357)))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) |has| |#1| (-169)) (($) . T)) -(((|#1|) . T)) -(((#0=(-401 (-553)) #0#) |has| |#2| (-38 (-401 (-553)))) ((|#2| |#2|) . T) (($ $) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((((-845)) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) +(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546)))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((#1=(-1156 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358)))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) +(((|#2|) |has| |#2| (-1034))) +(|has| |#1| (-1082)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546)))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T)) +(((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358)))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) |has| |#1| (-170)) (($) . T)) +(((|#1|) . T)) +(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((((-848)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) -(((#0=(-1061) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T) (($) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((($) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (($) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-357))) -(((|#2|) |has| |#2| (-1079)) (((-553)) -12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (((-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) -((((-553) |#1|) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T)) -((((-401 |#2|) |#3|) . T)) -(((|#1| (-401 (-553))) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-845)) . T) (((-1160)) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -((((-1160)) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -(((|#2| |#3| (-847 |#1|)) . T)) -((((-1155)) |has| |#2| (-882 (-1155)))) -(((|#1|) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -(((|#1| (-757) (-1061)) . T)) -((((-401 (-553))) |has| |#2| (-357)) (($) . T)) -(((|#1| (-524 (-1067 (-1155))) (-1067 (-1155))) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(((|#1|) . T)) -((((-981 |#1|)) . T) (((-553)) . T) ((|#1|) . T) (((-401 (-553))) -3988 (|has| (-981 |#1|) (-1020 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-712)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(|has| |#2| (-779)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#2| (-831)) -((((-875 |#1|)) . T) (((-805 |#1|)) . T)) -((((-805 (-1155))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-630 (-553))) . T)) -((((-630 (-553))) . T) (((-845)) . T)) -((((-401 (-553))) . T) (((-845)) . T)) -((((-529)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -(|has| |#1| (-228)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) +(((#0=(-1064) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((($) . T)) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-358))) +(((|#2|) |has| |#2| (-1082)) (((-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) +((((-554) |#1|) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T)) +((((-402 |#2|) |#3|) . T)) +(((|#1| (-402 (-554))) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-848)) . T) (((-1163)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-1163)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T)) +(((|#2| |#3| (-850 |#1|)) . T)) +((((-1158)) |has| |#2| (-885 (-1158)))) +(((|#1|) . T)) +(((|#1| (-525 |#2|) |#2|) . T)) +(((|#1| (-758) (-1064)) . T)) +((((-402 (-554))) |has| |#2| (-358)) (($) . T)) +(((|#1| (-525 (-1070 (-1158))) (-1070 (-1158))) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(((|#1|) . T)) +((((-984 |#1|)) . T) (((-554)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(|has| |#2| (-780)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#2| (-834)) +((((-878 |#1|)) . T) (((-806 |#1|)) . T)) +((((-806 (-1158))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-631 (-554))) . T)) +((((-631 (-554))) . T) (((-848)) . T)) +((((-402 (-554))) . T) (((-848)) . T)) +((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +(|has| |#1| (-229)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-1230 |#1| |#2| |#3|) $) -12 (|has| (-1230 |#1| |#2| |#3|) (-280 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-1233 |#1| |#2| |#3|) $) -12 (|has| (-1233 |#1| |#2| |#3|) (-281 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1119 |#1| |#2|)) |has| (-1119 |#1| |#2|) (-303 (-1119 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#2|) . T) (((-553)) |has| |#2| (-1020 (-553))) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) -(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) +((((-1122 |#1| |#2|)) |has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) +(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -(((|#2|) . T)) -((((-845)) -3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-600 (-845))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) (((-1238 |#2|)) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((|#1|) . T) (((-553)) . T) (($) . T)) -(((|#1|) |has| |#1| (-169))) -((((-553)) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-553) (-141)) . T)) -((($) -3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) ((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031)))) -((((-553)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-553)) . T)) -((($) |has| |#1| (-545)) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) (((-553)) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) -(((|#1|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) -(((|#2|) |has| |#1| (-357))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +(((|#2|) . T)) +((((-848)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-601 (-848))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((-1241 |#2|)) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T) (($) . T)) +(((|#1|) |has| |#1| (-170))) +((((-554)) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-554) (-142)) . T)) +((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034)))) +((((-554)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-554)) . T)) +((($) |has| |#1| (-546)) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-554)) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) +(((|#1|) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) +(((|#2|) |has| |#1| (-358))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-1160)) . T)) -(((|#1| (-524 #0=(-1155)) #0#) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-1163)) . T)) +(((|#1| (-525 #0=(-1158)) #0#) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-169)) -(|has| |#3| (-169)) -(((#0=(-401 (-934 |#1|)) #0#) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(|has| |#1| (-1079)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(|has| |#1| (-1079)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -(((|#1| |#1|) |has| |#1| (-169))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -((((-401 (-934 |#1|))) . T)) -(((|#1|) |has| |#1| (-169))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-845)) . T)) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1031)) (((-553)) -12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))) +(|has| |#4| (-170)) +(|has| |#3| (-170)) +(((#0=(-402 (-937 |#1|)) #0#) . T)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(|has| |#1| (-1082)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(|has| |#1| (-1082)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +(((|#1| |#1|) |has| |#1| (-170))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T)) +((((-402 (-937 |#1|))) . T)) +(((|#1|) |has| |#1| (-170))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-848)) . T)) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1034)) (((-554)) -12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((|#1| |#2|) . T)) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-712)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -(|has| |#3| (-779)) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -(|has| |#3| (-831)) -(((|#1|) . T)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -(((|#2|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1| (-1135 |#1|)) |has| |#1| (-831))) -((((-553) |#2|) . T)) -(|has| |#1| (-1079)) -(((|#1|) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-1130))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(|has| |#1| (-1079)) -(((|#2|) . T)) -((((-529)) |has| |#2| (-601 (-529))) (((-874 (-373))) |has| |#2| (-601 (-874 (-373)))) (((-874 (-553))) |has| |#2| (-601 (-874 (-553))))) -(((|#4|) -3988 (|has| |#4| (-169)) (|has| |#4| (-357)))) -(((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)))) -((((-845)) . T)) -(((|#1|) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-891))) -((($ $) . T) ((#0=(-1155) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-804 (-1155)) |#1|) . T) ((#1# $) . T)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-891))) -((((-553) |#2|) . T)) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((($) -3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (|has| |#3| (-1031))) ((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1031)))) -((((-553) |#1|) . T)) -(|has| (-401 |#2|) (-144)) -(|has| (-401 |#2|) (-142)) -(((|#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|)))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-401 (-553))) . T)) -((((-845)) . T)) -(|has| |#1| (-545)) -(|has| |#1| (-545)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-845)) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-382) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#2| (-1130)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-1191)) . T) (((-845)) . T) (((-1160)) . T)) -((((-115 |#1|)) . T)) -((((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -(((|#1|) . T)) -((((-382) (-1137)) . T)) -(|has| |#1| (-545)) -((((-553) |#1|) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -(((|#2|) . T)) -((((-845)) . T)) -((((-805 |#1|)) . T)) -(((|#2|) |has| |#2| (-169))) -((((-1155) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-545)) -(((|#1|) |has| |#1| (-169))) -((((-630 |#1|)) . T)) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#2|) |has| |#2| (-303 |#2|))) -(((#0=(-553) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1151 |#1|)) . T)) -(|has| $ (-144)) -(((|#2|) . T)) -(((#0=(-553) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -((($) . T) (((-553)) . T) (((-401 (-553))) . T)) -(|has| |#2| (-362)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -((((-553)) . T) (((-401 (-553))) . T) (($) . T)) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +(|has| |#3| (-780)) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +(|has| |#3| (-834)) +(((|#1|) . T)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +(((|#2|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1| (-1138 |#1|)) |has| |#1| (-834))) +((((-554) |#2|) . T)) +(|has| |#1| (-1082)) +(((|#1|) . T)) +(-12 (|has| |#1| (-358)) (|has| |#2| (-1133))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(|has| |#1| (-1082)) +(((|#2|) . T)) +((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554))))) +(((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)))) +(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)))) +((((-848)) . T)) +(((|#1|) . T)) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-894))) +((($ $) . T) ((#0=(-1158) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-805 (-1158)) |#1|) . T) ((#1# $) . T)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-894))) +((((-554) |#2|) . T)) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((($) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034)))) +((((-554) |#1|) . T)) +(|has| (-402 |#2|) (-145)) +(|has| (-402 |#2|) (-143)) +(((|#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-402 (-554))) . T)) +((((-848)) . T)) +(|has| |#1| (-546)) +(|has| |#1| (-546)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-848)) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-383) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#2| (-1133)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-1194)) . T) (((-848)) . T) (((-1163)) . T)) +((((-116 |#1|)) . T)) +((((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +(((|#1|) . T)) +((((-383) (-1140)) . T)) +(|has| |#1| (-546)) +((((-554) |#1|) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +(((|#2|) . T)) +((((-848)) . T)) +((((-806 |#1|)) . T)) +(((|#2|) |has| |#2| (-170))) +((((-1158) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-546)) +(((|#1|) |has| |#1| (-170))) +((((-631 |#1|)) . T)) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#2|) |has| |#2| (-304 |#2|))) +(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1154 |#1|)) . T)) +(|has| $ (-145)) +(((|#2|) . T)) +(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +((($) . T) (((-554)) . T) (((-402 (-554))) . T)) +(|has| |#2| (-363)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +((((-554)) . T) (((-402 (-554))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-553)) . T) (((-401 (-553))) . T) (($) . T)) -((((-1153 |#1| |#2| |#3|) $) -12 (|has| (-1153 |#1| |#2| |#3|) (-280 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((($) . T) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-554)) . T) (((-402 (-554))) . T) (($) . T)) +((((-1156 |#1| |#2| |#3|) $) -12 (|has| (-1156 |#1| |#2| |#3|) (-281 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) ((($ $) . T)) -((((-845)) . T)) +((((-848)) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((#0=(-1230 |#1| |#2| |#3|) #0#) -12 (|has| (-1230 |#1| |#2| |#3|) (-303 (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1155) #0#) -12 (|has| (-1230 |#1| |#2| |#3|) (-507 (-1155) (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -(-12 (|has| |#1| (-1079)) (|has| |#2| (-1079))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-401 (-553))) . T) (((-553)) . T)) -((((-553) (-141)) . T)) -((((-141)) . T)) -(((|#1|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) -((((-111)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-111)) . T)) -(((|#1|) . T)) -((((-529)) |has| |#1| (-601 (-529))) (((-220)) . #0=(|has| |#1| (-1004))) (((-373)) . #0#)) -((((-845)) . T)) -((((-1160)) . T)) -(|has| |#1| (-806)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(|has| |#1| (-833)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -(|has| |#1| (-545)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((|#1|) . T) (((-553)) . T)) -(|has| |#1| (-891)) -(((|#1|) . T)) -(|has| |#1| (-1079)) -((((-845)) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1| (-1238 |#1|) (-1238 |#1|)) . T)) -((((-553) (-141)) . T)) -((($) . T)) -(-3988 (|has| |#4| (-169)) (|has| |#4| (-831)) (|has| |#4| (-1031))) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-1160)) . T) (((-845)) . T)) -((((-1160)) . T)) -((((-845)) . T)) -(|has| |#1| (-1079)) -(((|#1| (-953)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((#0=(-1233 |#1| |#2| |#3|) #0#) -12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1158) #0#) -12 (|has| (-1233 |#1| |#2| |#3|) (-508 (-1158) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) +(-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-402 (-554))) . T) (((-554)) . T)) +((((-554) (-142)) . T)) +((((-142)) . T)) +(((|#1|) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) +((((-112)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-112)) . T)) +(((|#1|) . T)) +((((-530)) |has| |#1| (-602 (-530))) (((-221)) . #0=(|has| |#1| (-1007))) (((-374)) . #0#)) +((((-848)) . T)) +((((-1163)) . T)) +(|has| |#1| (-807)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(|has| |#1| (-836)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +(|has| |#1| (-546)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T)) +(|has| |#1| (-894)) +(((|#1|) . T)) +(|has| |#1| (-1082)) +((((-848)) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1| (-1241 |#1|) (-1241 |#1|)) . T)) +((((-554) (-142)) . T)) +((($) . T)) +(-3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (|has| |#4| (-1034))) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-1163)) . T) (((-848)) . T)) +((((-1163)) . T)) +((((-848)) . T)) +(|has| |#1| (-1082)) +(((|#1| (-956)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(-12 (|has| |#1| (-466)) (|has| |#2| (-466))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-712)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(-12 (|has| |#1| (-467)) (|has| |#2| (-467))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))) (((|#1|) . T)) -(|has| |#2| (-779)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) +(|has| |#2| (-780)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(|has| |#2| (-831)) -(-12 (|has| |#1| (-779)) (|has| |#2| (-779))) -(-12 (|has| |#1| (-779)) (|has| |#2| (-779))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(|has| |#2| (-834)) +(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) +(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-169)) ((|#4|) . T) (((-553)) . T)) -(((|#2|) |has| |#2| (-169))) -(((|#1|) |has| |#1| (-169))) -((((-845)) . T)) -(|has| |#1| (-343)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-401 (-553))) . T) (($) . T)) -((($) |has| |#1| (-545)) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) (((-553)) . T)) -((($) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) . T)) -(|has| |#1| (-814)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -(|has| |#1| (-1079)) -(((|#1| $) |has| |#1| (-280 |#1| |#1|))) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((($) |has| |#1| (-545))) -(((|#4|) |has| |#4| (-1079))) -(((|#3|) |has| |#3| (-1079))) -(|has| |#3| (-362)) -(((|#1|) . T) (((-845)) . T)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-1230 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) . T)) -((((-845)) . T)) +(((|#1|) |has| |#1| (-170)) ((|#4|) . T) (((-554)) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) +((((-848)) . T)) +(|has| |#1| (-344)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-402 (-554))) . T) (($) . T)) +((($) |has| |#1| (-546)) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-554)) . T)) +((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) . T)) +(|has| |#1| (-815)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +(|has| |#1| (-1082)) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((($) |has| |#1| (-546))) +(((|#4|) |has| |#4| (-1082))) +(((|#3|) |has| |#3| (-1082))) +(|has| |#3| (-363)) +(((|#1|) . T) (((-848)) . T)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +((((-848)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1| |#1|) |has| |#1| (-169))) -(|has| |#2| (-357)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-169))) -((((-401 (-553))) . T) (((-553)) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -((((-141)) . T)) -(((|#1|) . T)) -((($) -3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) ((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031)))) -((((-141)) . T)) -((((-141)) . T)) -((((-401 (-553))) . #0=(|has| |#2| (-357))) (($) . #0#) ((|#2|) . T) (((-553)) . T)) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1| |#1|) |has| |#1| (-170))) +(|has| |#2| (-358)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-170))) +((((-402 (-554))) . T) (((-554)) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +((((-142)) . T)) +(((|#1|) . T)) +((($) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034)))) +((((-142)) . T)) +((((-142)) . T)) +((((-402 (-554))) . #0=(|has| |#2| (-358))) (($) . #0#) ((|#2|) . T) (((-554)) . T)) (((|#1| |#2| |#3|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) -(|has| $ (-144)) -(|has| $ (-144)) -((((-1160)) . T)) -(|has| |#1| (-1079)) -((((-845)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-545)) (|has| |#1| (-1031)) (|has| |#1| (-1091))) -((($ $) |has| |#1| (-280 $ $)) ((|#1| $) |has| |#1| (-280 |#1| |#1|))) -(((|#1| (-401 (-553))) . T)) -(((|#1|) . T)) -((((-1155)) . T)) -(|has| |#1| (-545)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(|has| |#1| (-545)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-845)) . T)) -(|has| |#2| (-142)) -(|has| |#2| (-144)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) +(|has| $ (-145)) +(|has| $ (-145)) +((((-1163)) . T)) +(|has| |#1| (-1082)) +((((-848)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-546)) (|has| |#1| (-1034)) (|has| |#1| (-1094))) +((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|))) +(((|#1| (-402 (-554))) . T)) +(((|#1|) . T)) +((((-1158)) . T)) +(|has| |#1| (-546)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(|has| |#1| (-546)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-848)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -(|has| |#4| (-831)) -(((|#2| (-235 (-2563 |#1|) (-757)) (-847 |#1|)) . T)) -(|has| |#3| (-831)) -(((|#1| (-524 |#3|) |#3|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -(((#0=(-401 (-553)) #0#) |has| |#2| (-357)) (($ $) . T)) -((((-852 |#1|)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-142)) -((((-401 (-553))) |has| |#2| (-357)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-343)) (|has| |#1| (-362))) -((((-1121 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-169)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(|has| |#4| (-834)) +(((|#2| (-236 (-2563 |#1|) (-758)) (-850 |#1|)) . T)) +(|has| |#3| (-834)) +(((|#1| (-525 |#3|) |#3|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((#0=(-402 (-554)) #0#) |has| |#2| (-358)) (($ $) . T)) +((((-855 |#1|)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-143)) +((((-402 (-554))) |has| |#2| (-358)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-344)) (|has| |#1| (-363))) +((((-1124 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-170)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-228)) (|has| |#2| (-1031))) -(((|#2|) . T) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -((((-845)) . T)) +(-12 (|has| |#2| (-229)) (|has| |#2| (-1034))) +(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +((((-848)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-684)) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(|has| |#1| (-545)) +((((-685)) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(|has| |#1| (-546)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -991,2532 +991,2535 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1155) (-52)) . T)) +((((-1158) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-986 10)) . T) (((-401 (-553))) . T) (((-845)) . T)) -((((-529)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -(((|#1|) . T)) -((((-986 16)) . T) (((-401 (-553))) . T) (((-845)) . T)) -((((-529)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -(((|#1| (-553)) . T)) -((((-845)) . T)) -((((-845)) . T)) +((((-989 10)) . T) (((-402 (-554))) . T) (((-848)) . T)) +((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +(((|#1|) . T)) +((((-989 16)) . T) (((-402 (-554))) . T) (((-848)) . T)) +((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +(((|#1| (-554)) . T)) +((((-848)) . T)) +((((-848)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-401 (-553))) . T)) -(((|#3|) . T) (((-599 $)) . T)) +(((|#1| (-402 (-554))) . T)) +(((|#3|) . T) (((-600 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-553)) -3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031))) ((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-1079))) (((-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-554)) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -(((#0=(-1153 |#1| |#2| |#3|) #0#) -12 (|has| (-1153 |#1| |#2| |#3|) (-303 (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1155) #0#) -12 (|has| (-1153 |#1| |#2| |#3|) (-507 (-1155) (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -((((-845)) . T)) -((((-845)) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +(((#0=(-1156 |#1| |#2| |#3|) #0#) -12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1158) #0#) -12 (|has| (-1156 |#1| |#2| |#3|) (-508 (-1158) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) +((((-848)) . T)) +((((-848)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) |has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))))) -((((-845)) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) +((((-848)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1155) (-52)) . T)) +((((-1158) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-847 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-1079)) -(((|#2| |#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031))) (($ $) |has| |#2| (-169))) -(((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)))) -((((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031))) (($) |has| |#2| (-169))) -((((-1160)) . T)) -((((-757)) . T)) -(|has| |#1| (-545)) -((((-553)) . T)) -((((-845)) . T)) -(((|#1| (-401 (-553)) (-1061)) . T)) -(|has| |#1| (-142)) -(((|#1|) . T)) -(|has| |#1| (-545)) -((((-553)) . T)) -((((-115 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-144)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -((((-874 (-553))) . T) (((-874 (-373))) . T) (((-529)) . T) (((-1155)) . T)) -((((-845)) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((($) . T)) -((((-845)) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(((|#2|) |has| |#2| (-169))) -((($) -3988 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) ((|#2|) |has| |#2| (-169)) (((-401 (-553))) |has| |#2| (-38 (-401 (-553))))) -((((-852 |#1|)) . T)) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) -(-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) -(|has| |#2| (-1130)) -(((#0=(-52)) . T) (((-2 (|:| -2578 (-1155)) (|:| -3256 #0#))) . T)) +((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-1082)) +(((|#2| |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($ $) |has| |#2| (-170))) +(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)))) +((((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($) |has| |#2| (-170))) +((((-1163)) . T)) +((((-758)) . T)) +(|has| |#1| (-546)) +((((-554)) . T)) +((((-848)) . T)) +(((|#1| (-402 (-554)) (-1064)) . T)) +(|has| |#1| (-143)) +(((|#1|) . T)) +(|has| |#1| (-546)) +((((-554)) . T)) +((((-116 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-145)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +((((-877 (-554))) . T) (((-877 (-374))) . T) (((-530)) . T) (((-1158)) . T)) +((((-848)) . T)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((($) . T)) +((((-848)) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(((|#2|) |has| |#2| (-170))) +((($) -3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) ((|#2|) |has| |#2| (-170)) (((-402 (-554))) |has| |#2| (-38 (-402 (-554))))) +((((-855 |#1|)) . T)) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) +(-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) +(|has| |#2| (-1133)) +(((#0=(-52)) . T) (((-2 (|:| -2564 (-1158)) (|:| -2701 #0#))) . T)) (((|#1| |#2|) . T)) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -(((|#1| (-553) (-1061)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| (-401 (-553)) (-1061)) . T)) -((($) -3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-553) |#2|) . T)) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +(((|#1| (-554) (-1064)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| (-402 (-554)) (-1064)) . T)) +((($) -3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-554) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-362)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-362))) -((((-845)) . T)) -((((-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(((|#1|) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-1153 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) +(|has| |#2| (-363)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-363))) +((((-848)) . T)) +((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) (((|#4|) . T)) -(|has| |#1| (-343)) -((((-553)) -3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079))) (|has| |#3| (-1031))) ((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-1079))) (((-401 (-553))) -12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) -(((|#1|) . T)) -(((|#4|) . T) (((-845)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -(|has| |#1| (-545)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) +(|has| |#1| (-344)) +((((-554)) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) +(((|#1|) . T)) +(((|#4|) . T) (((-848)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +(|has| |#1| (-546)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) (((|#1| |#2|) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-891))) -((((-401 (-553))) . T) (((-553)) . T)) -((((-553)) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((($) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-852 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((((-845)) . T)) -(((|#3| |#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1031))) (($ $) |has| |#3| (-169))) -(|has| |#1| (-1004)) -((((-845)) . T)) -(((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1031))) (($) |has| |#3| (-169))) -((((-553) (-111)) . T)) -((((-1160)) . T)) -(((|#1|) |has| |#1| (-303 |#1|))) -((((-1160)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-1155) $) |has| |#1| (-507 (-1155) $)) (($ $) |has| |#1| (-303 $)) ((|#1| |#1|) |has| |#1| (-303 |#1|)) (((-1155) |#1|) |has| |#1| (-507 (-1155) |#1|))) -((((-1155)) |has| |#1| (-882 (-1155)))) -(-3988 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343))) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-894))) +((((-402 (-554))) . T) (((-554)) . T)) +((((-554)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((($) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-855 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((((-848)) . T)) +(((|#3| |#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($ $) |has| |#3| (-170))) +(|has| |#1| (-1007)) +((((-848)) . T)) +(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034))) (($) |has| |#3| (-170))) +((((-554) (-112)) . T)) +((((-1163)) . T)) +(((|#1|) |has| |#1| (-304 |#1|))) +((((-1163)) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((((-1158) $) |has| |#1| (-508 (-1158) $)) (($ $) |has| |#1| (-304 $)) ((|#1| |#1|) |has| |#1| (-304 |#1|)) (((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|))) +((((-1158)) |has| |#1| (-885 (-1158)))) +(-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-382) |#1|) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-1079)) -(((|#2|) . T) (((-845)) . T)) -((((-845)) . T)) -(((|#2|) . T)) -((((-892 |#1|)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) +((((-383) |#1|) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +(|has| |#1| (-1082)) +(((|#2|) . T) (((-848)) . T)) +((((-848)) . T)) +(((|#2|) . T)) +((((-895 |#1|)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) (((|#1| |#1|) . T)) -(((#0=(-852 |#1|)) |has| #0# (-303 #0#))) -((((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-1020 (-401 (-553))))) ((|#1|) . T)) +(((#0=(-855 |#1|)) |has| #0# (-304 #0#))) +((((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-1023 (-402 (-554))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(-12 (|has| |#1| (-779)) (|has| |#2| (-779))) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (((|#1|) . T)) -(-12 (|has| |#1| (-779)) (|has| |#2| (-779))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) +(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(|has| |#1| (-1177)) -(((#0=(-553) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -((((-401 (-553))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1031))) -(((|#3|) |has| |#3| (-1031))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(|has| |#1| (-357)) -((((-553)) . T) (((-401 (-553))) . T) (($) . T)) -((($ $) . T) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-553) |#3|) . T)) -((((-845)) . T)) -((((-529)) |has| |#3| (-601 (-529)))) -((((-674 |#3|)) . T) (((-845)) . T)) +(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(|has| |#1| (-1180)) +(((#0=(-554) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +((((-402 (-554))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1034))) +(((|#3|) |has| |#3| (-1034))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(|has| |#1| (-358)) +((((-554)) . T) (((-402 (-554))) . T) (($) . T)) +((($ $) . T) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-554) |#3|) . T)) +((((-848)) . T)) +((((-530)) |has| |#3| (-602 (-530)))) +((((-675 |#3|)) . T) (((-848)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-831)) -(|has| |#1| (-831)) -((($) . T) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -((($) . T)) -(((#0=(-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) #0#) |has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))))) -(|has| |#2| (-833)) -((($) . T)) -(((|#2|) |has| |#2| (-1079))) -((((-845)) -3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-600 (-845))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) (((-1238 |#2|)) . T)) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -((((-1137) (-52)) . T)) -(|has| |#1| (-833)) -((((-845)) . T)) -((((-553)) |has| #0=(-401 |#2|) (-626 (-553))) ((#0#) . T)) -((($) . T) (((-553)) . T)) -((((-553) (-141)) . T)) -((((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((|#1| |#2|) . T)) -((((-401 (-553))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-845)) . T)) -((((-892 |#1|)) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) -(|has| |#1| (-831)) -(|has| |#1| (-357)) -(|has| |#1| (-831)) +(|has| |#1| (-834)) +(|has| |#1| (-834)) +((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +((($) . T)) +(((#0=(-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) #0#) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) +(|has| |#2| (-836)) +((($) . T)) +(((|#2|) |has| |#2| (-1082))) +((((-848)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-601 (-848))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((-1241 |#2|)) . T)) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +((((-1140) (-52)) . T)) +(|has| |#1| (-836)) +((((-848)) . T)) +((((-554)) |has| #0=(-402 |#2|) (-627 (-554))) ((#0#) . T)) +((($) . T) (((-554)) . T)) +((((-554) (-142)) . T)) +((((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#1| |#2|) . T)) +((((-402 (-554))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-848)) . T)) +((((-895 |#1|)) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) +(|has| |#1| (-834)) +(|has| |#1| (-358)) +(|has| |#1| (-834)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-831)) -((((-1155)) |has| |#1| (-882 (-1155)))) -(((|#1| (-1155)) . T)) -(((|#1| (-1238 |#1|) (-1238 |#1|)) . T)) -((((-845)) . T) (((-1160)) . T)) +(|has| |#1| (-834)) +((((-1158)) |has| |#1| (-885 (-1158)))) +(((|#1| (-1158)) . T)) +(((|#1| (-1241 |#1|) (-1241 |#1|)) . T)) +((((-848)) . T) (((-1163)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1160)) . T)) -(|has| |#1| (-1079)) -(((|#1| (-1155) (-804 (-1155)) (-524 (-804 (-1155)))) . T)) -((((-401 (-934 |#1|))) . T)) -((((-529)) . T)) -((((-845)) . T)) +((((-1163)) . T)) +(|has| |#1| (-1082)) +(((|#1| (-1158) (-805 (-1158)) (-525 (-805 (-1158)))) . T)) +((((-402 (-937 |#1|))) . T)) +((((-530)) . T)) +((((-848)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((|#1| |#2|) . T)) +((((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-169))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +(((|#1|) |has| |#1| (-170))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-169))) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891)))) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-553)) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-529)) |has| |#1| (-601 (-529))) (((-874 (-373))) |has| |#1| (-601 (-874 (-373)))) (((-874 (-553))) |has| |#1| (-601 (-874 (-553))))) -((((-845)) . T)) -(((|#2|) . T) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(|has| |#2| (-831)) -(-12 (|has| |#2| (-228)) (|has| |#2| (-1031))) -(|has| |#1| (-545)) -(|has| |#1| (-1130)) -((((-1137) |#1|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-940 |#1|)) . T)) -(((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((|#1| |#1|) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-553))) (((-553)) |has| |#1| (-1020 (-553))) (((-1155)) |has| |#1| (-1020 (-1155))) ((|#1|) . T)) -((((-553) |#2|) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -((((-553)) |has| |#1| (-868 (-553))) (((-373)) |has| |#1| (-868 (-373)))) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((|#1|) . T)) -(((|#1|) . T)) -((((-630 |#4|)) . T) (((-845)) . T)) -((((-529)) |has| |#4| (-601 (-529)))) -((((-529)) |has| |#4| (-601 (-529)))) -((((-845)) . T) (((-630 |#4|)) . T)) -((($) |has| |#1| (-831))) -((((-553)) -3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031))) ((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-1079))) (((-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) -(((|#1|) . T)) -((((-630 |#4|)) . T) (((-845)) . T)) -((((-529)) |has| |#4| (-601 (-529)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1155)) |has| (-401 |#2|) (-882 (-1155)))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-845)) -3988 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-600 (-845))) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-712)) (|has| |#3| (-779)) (|has| |#3| (-831)) (|has| |#3| (-1031)) (|has| |#3| (-1079))) (((-1238 |#3|)) . T)) -((((-553) |#2|) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#2| |#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031))) (($ $) |has| |#2| (-169))) -(((|#2|) . T) (((-553)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((|#2|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-1137) (-1155) (-553) (-220) (-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-845)) . T)) -((((-553) (-111)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-111)) . T)) -((((-111)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-111)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1031))) (($) |has| |#2| (-169))) -(|has| $ (-144)) -((((-401 |#2|)) . T)) -((((-875 |#1|)) . T) ((|#2|) . T) (((-553)) . T) (((-805 |#1|)) . T)) -((((-401 (-553))) |has| #0=(-401 |#2|) (-1020 (-401 (-553)))) (((-553)) |has| #0# (-1020 (-553))) ((#0#) . T)) +(((|#1|) |has| |#1| (-170))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894)))) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-530)) |has| |#1| (-602 (-530))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554))))) +((((-848)) . T)) +(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(|has| |#2| (-834)) +(-12 (|has| |#2| (-229)) (|has| |#2| (-1034))) +(|has| |#1| (-546)) +(|has| |#1| (-1133)) +((((-1140) |#1|) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-943 |#1|)) . T)) +(((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1| |#1|) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-554))) (((-554)) |has| |#1| (-1023 (-554))) (((-1158)) |has| |#1| (-1023 (-1158))) ((|#1|) . T)) +((((-554) |#2|) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +((((-554)) |has| |#1| (-871 (-554))) (((-374)) |has| |#1| (-871 (-374)))) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1|) . T)) +(((|#1|) . T)) +((((-631 |#4|)) . T) (((-848)) . T)) +((((-530)) |has| |#4| (-602 (-530)))) +((((-530)) |has| |#4| (-602 (-530)))) +((((-848)) . T) (((-631 |#4|)) . T)) +((($) |has| |#1| (-834))) +((((-554)) -3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034))) ((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) +(((|#1|) . T)) +((((-631 |#4|)) . T) (((-848)) . T)) +((((-530)) |has| |#4| (-602 (-530)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1158)) |has| (-402 |#2|) (-885 (-1158)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-848)) -3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-601 (-848))) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-713)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)) (|has| |#3| (-1082))) (((-1241 |#3|)) . T)) +((((-554) |#2|) . T)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#2| |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($ $) |has| |#2| (-170))) +(((|#2|) . T) (((-554)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((|#2|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-1140) (-1158) (-554) (-221) (-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-848)) . T)) +((((-554) (-112)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-112)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1034))) (($) |has| |#2| (-170))) +(|has| $ (-145)) +((((-402 |#2|)) . T)) +((((-878 |#1|)) . T) ((|#2|) . T) (((-554)) . T) (((-806 |#1|)) . T)) +((((-402 (-554))) |has| #0=(-402 |#2|) (-1023 (-402 (-554)))) (((-554)) |has| #0# (-1023 (-554))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-169))) -(|has| |#2| (-142)) -(|has| |#2| (-144)) -(((|#3|) |has| |#3| (-169))) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(|has| |#1| (-144)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(|has| |#1| (-144)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(|has| |#1| (-144)) -(((|#1|) . T)) -(|has| |#2| (-228)) -(((|#2|) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-1155) (-52)) . T)) -((((-845)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) +(((|#4|) |has| |#4| (-170))) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#3|) |has| |#3| (-170))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(|has| |#1| (-145)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(|has| |#1| (-145)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(|has| |#1| (-145)) +(((|#1|) . T)) +(|has| |#2| (-229)) +(((|#2|) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-1158) (-52)) . T)) +((((-848)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) (((|#1| |#1|) . T)) -((((-1155)) |has| |#2| (-882 (-1155)))) -((((-128)) . T)) -(((|#1|) . T) (((-553)) . T) (((-805 (-1155))) . T)) -((((-553) (-111)) . T)) -(|has| |#1| (-545)) +((((-1158)) |has| |#2| (-885 (-1158)))) +((((-129)) . T)) +(((|#1|) . T) (((-554)) . T) (((-806 (-1158))) . T)) +((((-554) (-112)) . T)) +(|has| |#1| (-546)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) (((|#3|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-553)) . T) ((|#2|) . T) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) -(((|#1|) . T)) -((((-986 2)) . T) (((-401 (-553))) . T) (((-845)) . T)) -((((-529)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-981 |#1|)) . T) ((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-401 (-553))) . T) (((-401 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1151 |#1|)) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-554)) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) +(((|#1|) . T)) +((((-989 2)) . T) (((-402 (-554))) . T) (((-848)) . T)) +((((-530)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-984 |#1|)) . T) ((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-402 (-554))) . T) (((-402 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1154 |#1|)) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-833)) -(((|#2|) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -((((-553) |#2|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#2|) . T)) -((((-553) |#3|) . T)) -(((|#2|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -(|has| |#1| (-38 (-401 (-553)))) -((((-845)) . T)) -(|has| |#1| (-1079)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) +(|has| |#1| (-836)) +(((|#2|) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +((((-554) |#2|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#2|) . T)) +((((-554) |#3|) . T)) +(((|#2|) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-38 (-402 (-554)))) +((((-848)) . T)) +(|has| |#1| (-1082)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) (((|#2| |#2|) . T)) (((|#1|) . T)) -(|has| |#2| (-357)) -(((|#2|) . T) (((-553)) |has| |#2| (-1020 (-553))) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) +(|has| |#2| (-358)) +(((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) (((|#2|) . T)) -((((-1137) (-52)) . T)) -(((|#2|) |has| |#2| (-169))) -((((-553) |#3|) . T)) -((((-553) (-141)) . T)) -((((-141)) . T)) -((((-845)) . T)) -((((-1160)) . T)) -((((-111)) . T)) -(|has| |#1| (-144)) +((((-1140) (-52)) . T)) +(((|#2|) |has| |#2| (-170))) +((((-554) |#3|) . T)) +((((-554) (-142)) . T)) +((((-142)) . T)) +((((-848)) . T)) +((((-1163)) . T)) +((((-112)) . T)) +(|has| |#1| (-145)) (((|#1|) . T)) -(|has| |#1| (-142)) +(|has| |#1| (-143)) ((($) . T)) -(|has| |#1| (-545)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +(|has| |#1| (-546)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) -((((-141)) . T)) -((((-845)) . T)) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) -((((-1137) (-52)) . T)) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) +((((-142)) . T)) +((((-848)) . T)) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) +((((-1140) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#1| |#2|) . T)) -((((-553) (-141)) . T)) -(((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(|has| |#1| (-833)) -(((|#2| (-757) (-1061)) . T)) +((((-554) (-142)) . T)) +(((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(|has| |#1| (-836)) +(((|#2| (-758) (-1064)) . T)) (((|#1| |#2|) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -(|has| |#1| (-777)) -(((|#1|) |has| |#1| (-169))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +(|has| |#1| (-778)) +(((|#1|) |has| |#1| (-170))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3988 (|has| |#1| (-144)) (-12 (|has| |#1| (-357)) (|has| |#2| (-144)))) -(-3988 (|has| |#1| (-142)) (-12 (|has| |#1| (-357)) (|has| |#2| (-142)))) +(-3994 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| |#2| (-145)))) +(-3994 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143)))) (((|#4|) . T)) -(|has| |#1| (-142)) -((((-1137) |#1|) . T)) -(|has| |#1| (-144)) +(|has| |#1| (-143)) +((((-1140) |#1|) . T)) +(|has| |#1| (-145)) (((|#1|) . T)) -((((-553)) . T)) -((((-845)) . T)) +((((-554)) . T)) +((((-848)) . T)) (((|#1| |#2|) . T)) -((((-845)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +((((-848)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#3|) . T)) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-845)) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(((|#1|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079))) (((-940 |#1|)) . T)) -(|has| |#1| (-831)) -(|has| |#1| (-831)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-940 |#1|)) . T)) -(|has| |#2| (-357)) -(((|#1|) |has| |#1| (-169))) -(((|#2|) |has| |#2| (-1031))) -((((-1137) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) -(((|#2| (-875 |#1|)) . T)) -((($) . T)) -((((-382) (-1137)) . T)) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-845)) -3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-600 (-845))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) (((-1238 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2578 (-1137)) (|:| -3256 #0#))) . T)) -(((|#1|) . T)) -((((-845)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -((((-141)) . T)) -(|has| |#2| (-142)) -(|has| |#2| (-144)) -(|has| |#1| (-466)) -(-3988 (|has| |#1| (-466)) (|has| |#1| (-712)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) -(|has| |#1| (-357)) -((((-845)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((($) |has| |#1| (-545))) -((((-1160)) . T)) -(|has| |#1| (-831)) -(|has| |#1| (-831)) -((((-845)) . T)) -(((|#2|) . T)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-1230 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#2|) . T) (((-553)) . T) (((-805 |#1|)) . T)) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-848)) . T)) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(((|#1|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082))) (((-943 |#1|)) . T)) +(|has| |#1| (-834)) +(|has| |#1| (-834)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-943 |#1|)) . T)) +(|has| |#2| (-358)) +(((|#1|) |has| |#1| (-170))) +(((|#2|) |has| |#2| (-1034))) +((((-1140) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) +(((|#2| (-878 |#1|)) . T)) +((($) . T)) +((((-383) (-1140)) . T)) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-848)) -3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-601 (-848))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((-1241 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2564 (-1140)) (|:| -2701 #0#))) . T)) +(((|#1|) . T)) +((((-848)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +((((-142)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(|has| |#1| (-467)) +(-3994 (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) +(|has| |#1| (-358)) +((((-848)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((($) |has| |#1| (-546))) +((((-1163)) . T)) +(|has| |#1| (-834)) +(|has| |#1| (-834)) +((((-848)) . T)) +(((|#2|) . T)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1233 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#2|) . T) (((-554)) . T) (((-806 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1155)) |has| |#1| (-882 (-1155)))) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((((-845)) . T)) -((((-845)) . T)) -(|has| |#1| (-1079)) -(((|#2| (-475 (-2563 |#1|) (-757)) (-847 |#1|)) . T)) -((((-401 (-553))) . #0=(|has| |#2| (-357))) (($) . #0#)) -(((|#1| (-524 (-1155)) (-1155)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) +((((-1158)) |has| |#1| (-885 (-1158)))) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((((-848)) . T)) +((((-848)) . T)) +(|has| |#1| (-1082)) +(((|#2| (-476 (-2563 |#1|) (-758)) (-850 |#1|)) . T)) +((((-402 (-554))) . #0=(|has| |#2| (-358))) (($) . #0#)) +(((|#1| (-525 (-1158)) (-1158)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-169)) +(|has| |#2| (-170)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-1155) (-52)) . T)) +(((|#1|) . T) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-1158) (-52)) . T)) ((($ $) . T)) -(((|#1| (-553)) . T)) -((((-892 |#1|)) . T)) -(((|#1|) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1031))) (($) -3988 (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031)))) -(((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -((((-553) |#2|) . T)) -((((-553)) . T)) -((((-1230 |#1| |#2| |#3|)) -12 (|has| (-1230 |#1| |#2| |#3|) (-303 (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -(|has| |#1| (-833)) -((((-674 |#2|)) . T) (((-845)) . T)) -((((-401 (-553))) . T) (((-553)) . T) (($) . T)) +(((|#1| (-554)) . T)) +((((-895 |#1|)) . T)) +(((|#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1034))) (($) -3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))) +(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +((((-554) |#2|) . T)) +((((-554)) . T)) +((((-1233 |#1| |#2| |#3|)) -12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) +(|has| |#1| (-836)) +((((-675 |#2|)) . T) (((-848)) . T)) +((((-402 (-554))) . T) (((-554)) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-401 (-934 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#1|) |has| |#1| (-169))) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(|has| |#2| (-833)) -(|has| |#1| (-833)) -(((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)))) -(-3988 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-891))) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -((((-553) |#2|) . T)) -(((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)))) -(|has| |#1| (-343)) -(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) -(((|#2|) . T) (((-553)) . T)) -((($) . T) (((-401 (-553))) . T)) -((((-553) (-111)) . T)) -(|has| |#1| (-806)) -(|has| |#1| (-806)) -(((|#1|) . T)) -(-3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-831)) -(|has| |#1| (-831)) -(|has| |#1| (-831)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-38 (-401 (-553)))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-1155)) |has| |#1| (-882 (-1155))) (((-1061)) . T)) -(((|#1|) . T)) -(|has| |#1| (-831)) -(((#0=(-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) #0#) |has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(|has| |#1| (-1079)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) +((((-402 (-937 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#1|) |has| |#1| (-170))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(|has| |#2| (-836)) +(|has| |#1| (-836)) +(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)))) +(-3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-894))) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +((((-554) |#2|) . T)) +(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)))) +(|has| |#1| (-344)) +(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) +(((|#2|) . T) (((-554)) . T)) +((($) . T) (((-402 (-554))) . T)) +((((-554) (-112)) . T)) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +(((|#1|) . T)) +(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344))) +(|has| |#1| (-834)) +(|has| |#1| (-834)) +(|has| |#1| (-834)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +(|has| |#1| (-38 (-402 (-554)))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-1158)) |has| |#1| (-885 (-1158))) (((-1064)) . T)) +(((|#1|) . T)) +(|has| |#1| (-834)) +(((#0=(-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) #0#) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(|has| |#1| (-1082)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -((((-845)) . T)) -((((-141)) . T) (((-757)) . T) (((-845)) . T)) -(((|#1| (-757) (-1061)) . T)) +(((|#1| (-525 |#2|) |#2|) . T)) +((((-848)) . T)) +((((-142)) . T) (((-758)) . T) (((-848)) . T)) +(((|#1| (-758) (-1064)) . T)) (((|#3|) . T)) -((((-141)) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) -3988 (|has| |#1| (-831)) (|has| |#1| (-1020 (-553)))) ((|#1|) . T)) +((((-142)) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) -3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))) ((|#1|) . T)) (((|#1|) . T)) -((((-141)) . T)) -(((|#2|) |has| |#2| (-169))) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) +((((-142)) . T)) +(((|#2|) |has| |#2| (-170))) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) (((|#1|) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#3| (-169)) -(((|#4|) |has| |#4| (-357))) -(((|#3|) |has| |#3| (-357))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#3| (-170)) +(((|#4|) |has| |#4| (-358))) +(((|#3|) |has| |#3| (-358))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-357))) -((((-845)) . T)) +(((|#2|) |has| |#1| (-358))) +((((-848)) . T)) (((|#2|) . T)) -(((|#1| (-1151 |#1|)) . T)) -((((-1061)) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((($) . T) ((|#1|) . T) (((-401 (-553))) . T)) +(((|#1| (-1154 |#1|)) . T)) +((((-1064)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((($) . T) ((|#1|) . T) (((-402 (-554))) . T)) (((|#2|) . T)) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) -((($) |has| |#1| (-831))) -(|has| |#1| (-891)) -((((-1155)) . T)) -((((-845)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) +((($) |has| |#1| (-834))) +(|has| |#1| (-894)) +((((-1158)) . T)) +((((-848)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((#0=(-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) #0#) |has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))))) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-891))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((#0=(-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) #0#) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-894))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)))) -(|has| |#1| (-833)) -(|has| |#1| (-545)) -((((-570 |#1|)) . T)) +(((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)))) +(|has| |#1| (-836)) +(|has| |#1| (-546)) +((((-571 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3988 (-12 (|has| |#1| (-357)) (|has| |#2| (-806))) (-12 (|has| |#1| (-357)) (|has| |#2| (-833)))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -((((-892 |#1|)) . T)) -(((|#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) . T)) +(-3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-807))) (-12 (|has| |#1| (-358)) (|has| |#2| (-836)))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +((((-895 |#1|)) . T)) +(((|#1| (-490 |#1| |#3|) (-490 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-757)) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-1153 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -((((-657 |#1|)) . T)) +(((|#1| (-758)) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +((((-658 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-529)) . T)) -((((-845)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((((-1160)) . T)) -((((-401 (-553))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T) (((-553)) . T)) -(((|#3|) . T) (((-553)) . T) (((-599 $)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#2|) . T)) -(-3988 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-712)) (|has| |#3| (-779)) (|has| |#3| (-831)) (|has| |#3| (-1031)) (|has| |#3| (-1079))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -(|has| |#1| (-1177)) -(|has| |#1| (-1177)) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) -(|has| |#1| (-1177)) -(|has| |#1| (-1177)) +((((-848)) . T) (((-1163)) . T)) +((((-530)) . T)) +((((-848)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((((-1163)) . T)) +((((-402 (-554))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T) (((-554)) . T)) +(((|#3|) . T) (((-554)) . T) (((-600 $)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#2|) . T)) +(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-713)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)) (|has| |#3| (-1082))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +(|has| |#1| (-1180)) +(|has| |#1| (-1180)) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) +(|has| |#1| (-1180)) +(|has| |#1| (-1180)) (((|#3| |#3|) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -((($) . T) (((-401 (-553))) . T) (((-401 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T) ((#1=(-401 |#1|) #1#) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +((($) . T) (((-402 (-554))) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T) ((#1=(-402 |#1|) #1#) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -((((-1137) (-52)) . T)) -(|has| |#1| (-1079)) -(-3988 (|has| |#2| (-806)) (|has| |#2| (-833))) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-169)) (($) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T)) -((((-1153 |#1| |#2| |#3|)) -12 (|has| (-1153 |#1| |#2| |#3|) (-303 (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) -((((-845)) . T)) -((((-553)) . T) (($) . T)) -((((-757)) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -((($) . T) (((-553)) . T)) -((($) . T)) -(|has| |#2| (-891)) -(|has| |#1| (-357)) -(((|#2|) |has| |#2| (-1079))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-529)) . T) (((-401 (-1151 (-553)))) . T) (((-220)) . T) (((-373)) . T)) -((((-373)) . T) (((-220)) . T) (((-845)) . T)) -(|has| |#1| (-891)) -(|has| |#1| (-891)) -(|has| |#1| (-891)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-891))) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +((((-1140) (-52)) . T)) +(|has| |#1| (-1082)) +(-3994 (|has| |#2| (-807)) (|has| |#2| (-836))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((($) . T)) +((((-1156 |#1| |#2| |#3|)) -12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) +((((-848)) . T)) +((((-554)) . T) (($) . T)) +((((-758)) . T)) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) +((($) . T) (((-554)) . T)) +((($) . T)) +(|has| |#2| (-894)) +(|has| |#1| (-358)) +(((|#2|) |has| |#2| (-1082))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-530)) . T) (((-402 (-1154 (-554)))) . T) (((-221)) . T) (((-374)) . T)) +((((-374)) . T) (((-221)) . T) (((-848)) . T)) +(|has| |#1| (-894)) +(|has| |#1| (-894)) +(|has| |#1| (-894)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-894))) ((($) . T) ((|#2|) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-891))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-894))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) ((($ $) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) ((($ $) . T)) -((((-553) (-111)) . T)) +((((-554) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-553)) . T)) -((((-111)) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#1| (-553)) . T)) +((((-554)) . T)) +((((-112)) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#1| (-554)) . T)) ((($) . T)) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) (((|#1|) . T)) -((((-553)) . T)) +((((-554)) . T)) (((|#1| |#2|) . T)) -((((-1155)) |has| |#1| (-1031))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#1|) . T)) -((((-845)) . T)) -(((|#1| (-553)) . T)) -(((|#1| (-1230 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-401 (-553))) . T)) -(((|#1| (-1202 |#1| |#2| |#3|)) . T)) -(((|#1| (-757)) . T)) -(((|#1|) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-845)) . T)) -(|has| |#1| (-1079)) -((((-1137) |#1|) . T)) -((($) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-142)) -(((|#1| (-524 (-804 (-1155))) (-804 (-1155))) . T)) -((((-845)) . T)) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1031))) -((((-553) (-111)) . T)) -((((-845)) |has| |#1| (-1079))) -(|has| |#2| (-169)) -((((-553)) . T)) -(|has| |#2| (-831)) -(((|#1|) . T)) -((((-553)) . T)) -((((-845)) . T)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-343))) -(|has| |#1| (-144)) -((((-845)) . T)) +((((-1158)) |has| |#1| (-1034))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#1|) . T)) +((((-848)) . T)) +(((|#1| (-554)) . T)) +(((|#1| (-1233 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-402 (-554))) . T)) +(((|#1| (-1205 |#1| |#2| |#3|)) . T)) +(((|#1| (-758)) . T)) +(((|#1|) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-848)) . T)) +(|has| |#1| (-1082)) +((((-1140) |#1|) . T)) +((($) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-143)) +(((|#1| (-525 (-805 (-1158))) (-805 (-1158))) . T)) +((((-848)) . T)) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1034))) +((((-554) (-112)) . T)) +((((-848)) |has| |#1| (-1082))) +(|has| |#2| (-170)) +((((-554)) . T)) +(|has| |#2| (-834)) +(((|#1|) . T)) +((((-554)) . T)) +((((-848)) . T)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-344))) +(|has| |#1| (-145)) +((((-848)) . T)) (((|#3|) . T)) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-845)) . T)) -((((-1223 |#2| |#3| |#4|)) . T) (((-1224 |#1| |#2| |#3| |#4|)) . T)) -((((-845)) . T)) -((((-48)) -12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553)))) (((-599 $)) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) -3988 (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) (((-401 (-934 |#1|))) |has| |#1| (-545)) (((-934 |#1|)) |has| |#1| (-1031)) (((-1155)) . T)) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-848)) . T)) +((((-1226 |#2| |#3| |#4|)) . T) (((-1227 |#1| |#2| |#3| |#4|)) . T)) +((((-848)) . T)) +((((-48)) -12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (((-600 $)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) -3994 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-402 (-937 |#1|))) |has| |#1| (-546)) (((-937 |#1|)) |has| |#1| (-1034)) (((-1158)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-757)) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-303 |#1|))) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -((((-553)) |has| |#1| (-868 (-553))) (((-373)) |has| |#1| (-868 (-373)))) -(((|#1|) . T)) -(|has| |#1| (-545)) -(((|#1|) . T)) -((((-845)) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -(((|#1|) |has| |#1| (-169))) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1079))) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(((|#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-357)))) -((((-1223 |#2| |#3| |#4|)) . T)) -((((-111)) . T)) -(|has| |#1| (-806)) -(|has| |#1| (-806)) -(((|#1| (-553) (-1061)) . T)) -((($) |has| |#1| (-303 $)) ((|#1|) |has| |#1| (-303 |#1|))) -(|has| |#1| (-831)) -(|has| |#1| (-831)) -(((|#1| (-553) (-1061)) . T)) -(-3988 (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1| (-401 (-553)) (-1061)) . T)) -(((|#1| (-757) (-1061)) . T)) -(|has| |#1| (-833)) -(((#0=(-892 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-553)) #1#) . T)) -(|has| |#2| (-142)) -(|has| |#2| (-144)) -(((|#2|) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-1079)) -((((-892 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -(|has| |#1| (-1079)) -((((-553)) -3988 (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031)))) -(((|#1|) . T)) -(|has| |#1| (-1079)) -((((-553)) -12 (|has| |#1| (-357)) (|has| |#2| (-626 (-553)))) ((|#2|) |has| |#1| (-357))) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) -((((-674 (-333 (-3121) (-3121 (QUOTE X) (QUOTE HESS)) (-684)))) . T)) -(((|#2|) |has| |#2| (-169))) -(((|#1|) |has| |#1| (-169))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -((((-845)) . T)) -(|has| |#3| (-831)) -((((-845)) . T)) -((((-1223 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) -((((-845)) . T)) -(((|#1| |#1|) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1031)))) -(((|#1|) . T)) -((((-553)) . T)) -((((-553)) . T)) -(((|#1|) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1031)))) -(((|#2|) |has| |#2| (-357))) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-357))) -(|has| |#1| (-833)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) |has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-891))) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) . T) (((-553)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -((((-845)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -(|has| |#1| (-228)) -(((|#1|) . T)) -(((|#1| (-553)) . T)) -(|has| |#1| (-831)) -(((|#1| (-1153 |#1| |#2| |#3|)) . T)) +(((|#1| (-758)) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-304 |#1|))) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +((((-554)) |has| |#1| (-871 (-554))) (((-374)) |has| |#1| (-871 (-374)))) +(((|#1|) . T)) +(|has| |#1| (-546)) +(((|#1|) . T)) +((((-848)) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +(((|#1|) |has| |#1| (-170))) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1082))) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(((|#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-358)))) +((((-1226 |#2| |#3| |#4|)) . T)) +((((-112)) . T)) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +(((|#1| (-554) (-1064)) . T)) +((($) |has| |#1| (-304 $)) ((|#1|) |has| |#1| (-304 |#1|))) +(|has| |#1| (-834)) +(|has| |#1| (-834)) +(((|#1| (-554) (-1064)) . T)) +(-3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1| (-402 (-554)) (-1064)) . T)) +(((|#1| (-758) (-1064)) . T)) +(|has| |#1| (-836)) +(((#0=(-895 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +(((|#2|) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-1082)) +((((-895 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +(|has| |#1| (-1082)) +((((-554)) -3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)))) +(((|#1|) . T)) +(|has| |#1| (-1082)) +((((-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-627 (-554)))) ((|#2|) |has| |#1| (-358))) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) +((((-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685)))) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +((((-848)) . T)) +(|has| |#3| (-834)) +((((-848)) . T)) +((((-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) +((((-848)) . T)) +(((|#1| |#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1034)))) +(((|#1|) . T)) +((((-554)) . T)) +((((-554)) . T)) +(((|#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1034)))) +(((|#2|) |has| |#2| (-358))) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-358))) +(|has| |#1| (-836)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-894))) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +((((-848)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +(|has| |#1| (-229)) +(((|#1|) . T)) +(((|#1| (-554)) . T)) +(|has| |#1| (-834)) +(((|#1| (-1156 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-401 (-553))) . T)) -(((|#1| (-1146 |#1| |#2| |#3|)) . T)) -(((|#1| (-757)) . T)) +(((|#1| (-402 (-554))) . T)) +(((|#1| (-1149 |#1| |#2| |#3|)) . T)) +(((|#1| (-758)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -((((-553)) . T) ((|#1|) . T) (($) . T) (((-401 (-553))) . T) (((-1155)) |has| |#1| (-1020 (-1155)))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-554)) . T) ((|#1|) . T) (($) . T) (((-402 (-554))) . T) (((-1158)) |has| |#1| (-1023 (-1158)))) (((|#1| |#2|) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) -3988 (|has| |#1| (-831)) (|has| |#1| (-1020 (-553)))) ((|#1|) . T)) -((((-141)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#1|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-553)) . T)) -((((-845)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| (-401 |#2|) (-228)) -((((-630 |#1|)) . T)) -(|has| |#1| (-891)) -(((|#2|) |has| |#2| (-1031))) -((((-1160)) . T)) -(|has| |#1| (-357)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -(((|#1|) |has| |#1| (-169))) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) -3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))) ((|#1|) . T)) +((((-142)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#1|) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-554)) . T)) +((((-848)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| (-402 |#2|) (-229)) +((((-631 |#1|)) . T)) +(|has| |#1| (-894)) +(((|#2|) |has| |#2| (-1034))) +((((-1163)) . T)) +(|has| |#1| (-358)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +(((|#1|) |has| |#1| (-170))) (((|#1| |#1|) . T)) -((((-852 |#1|)) . T)) -((((-845)) . T)) +((((-855 |#1|)) . T)) +((((-848)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1079))) -(|has| |#2| (-833)) +(((|#2|) |has| |#2| (-1082))) +(|has| |#2| (-836)) (((|#1|) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -((((-630 $)) . T) (((-1137)) . T) (((-1155)) . T) (((-553)) . T) (((-220)) . T) (((-845)) . T)) -((((-401 (-553))) . T) (((-553)) . T) (((-599 $)) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +((((-631 $)) . T) (((-1140)) . T) (((-1158)) . T) (((-554)) . T) (((-221)) . T) (((-848)) . T)) +((((-402 (-554))) . T) (((-554)) . T) (((-600 $)) . T)) (((|#1|) . T)) -((((-845)) . T)) +((((-848)) . T)) ((($) . T)) -(|has| |#1| (-833)) -((((-845)) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -(((|#1| (-553) (-1061)) . T)) -((((-892 |#1|)) . T)) -((((-845)) . T)) +(|has| |#1| (-836)) +((((-848)) . T)) +(((|#1| (-525 |#2|) |#2|) . T)) +(((|#1| (-554) (-1064)) . T)) +((((-895 |#1|)) . T)) +((((-848)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-401 (-553)) (-1061)) . T)) -(((|#1| (-757) (-1061)) . T)) -(((#0=(-401 |#2|) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-553)) -3988 (|has| (-401 (-553)) (-1020 (-553))) (|has| |#1| (-1020 (-553)))) (((-401 (-553))) . T)) -(((|#1| (-589 |#1| |#3|) (-589 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-169))) +(((|#1| (-402 (-554)) (-1064)) . T)) +(((|#1| (-758) (-1064)) . T)) +(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-554)) -3994 (|has| (-402 (-554)) (-1023 (-554))) (|has| |#1| (-1023 (-554)))) (((-402 (-554))) . T)) +(((|#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-170))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -(|has| |#2| (-228)) -(((|#2| (-524 (-847 |#1|)) (-847 |#1|)) . T)) -((((-845)) . T)) -((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +(|has| |#2| (-229)) +(((|#2| (-525 (-850 |#1|)) (-850 |#1|)) . T)) +((((-848)) . T)) +((($) |has| |#1| (-546)) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) (((|#1| |#3|) . T)) -((((-845)) . T)) -(((|#1|) |has| |#1| (-169)) (((-934 |#1|)) . T) (((-553)) . T)) -(((|#1|) |has| |#1| (-169))) -((((-684)) . T)) -((((-684)) . T)) -(((|#2|) |has| |#2| (-169))) -(|has| |#2| (-831)) -((((-553)) . T) ((|#2|) . T) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) -((((-111)) |has| |#1| (-1079)) (((-845)) -3988 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-712)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031)) (|has| |#1| (-1091)) (|has| |#1| (-1079)))) +((((-848)) . T)) +(((|#1|) |has| |#1| (-170)) (((-937 |#1|)) . T) (((-554)) . T)) +(((|#1|) |has| |#1| (-170))) +((((-685)) . T)) +((((-685)) . T)) +(((|#2|) |has| |#2| (-170))) +(|has| |#2| (-834)) +((((-554)) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) +((((-112)) |has| |#1| (-1082)) (((-848)) -3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)) (|has| |#1| (-1082)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) . T)) -((((-845)) . T)) -((((-553) |#1|) . T)) -((((-845)) . T)) -((((-684)) . T) (((-401 (-553))) . T) (((-553)) . T)) -(((|#1| |#1|) |has| |#1| (-169))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -((((-373)) . T)) -((((-684)) . T)) -((((-401 (-553))) . #0=(|has| |#2| (-357))) (($) . #0#)) -(((|#1|) |has| |#1| (-169))) -((((-401 (-934 |#1|))) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T)) +((((-848)) . T)) +((((-554) |#1|) . T)) +((((-848)) . T)) +((((-685)) . T) (((-402 (-554))) . T) (((-554)) . T)) +(((|#1| |#1|) |has| |#1| (-170))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +((((-374)) . T)) +((((-685)) . T)) +((((-402 (-554))) . #0=(|has| |#2| (-358))) (($) . #0#)) +(((|#1|) |has| |#1| (-170))) +((((-402 (-937 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(((|#2|) . T)) -(|has| |#2| (-833)) -(|has| |#2| (-891)) -(|has| |#1| (-891)) -(|has| |#1| (-357)) -(|has| |#1| (-833)) -(((|#3|) |has| |#3| (-1031))) -((((-1155)) |has| |#2| (-882 (-1155)))) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-466)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-357)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-545)) (|has| |#1| (-1031)) (|has| |#1| (-1091))) -(|has| |#1| (-38 (-401 (-553)))) -((((-115 |#1|)) . T)) -((((-115 |#1|)) . T)) -(|has| |#1| (-343)) -((((-141)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((($) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#2|) . T) (((-845)) . T)) -(((|#2|) . T) (((-845)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-833)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(((|#2|) . T)) +(|has| |#2| (-836)) +(|has| |#2| (-894)) +(|has| |#1| (-894)) +(|has| |#1| (-358)) +(|has| |#1| (-836)) +(((|#3|) |has| |#3| (-1034))) +((((-1158)) |has| |#2| (-885 (-1158)))) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-467)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-358)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-546)) (|has| |#1| (-1034)) (|has| |#1| (-1094))) +(|has| |#1| (-38 (-402 (-554)))) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +(|has| |#1| (-344)) +((((-142)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((($) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#2|) . T) (((-848)) . T)) +(((|#2|) . T) (((-848)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-836)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) ((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) ((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (((|#2|) . T)) (((|#3|) . T)) -((((-115 |#1|)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-833)) -(((|#2|) . T) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -((((-115 |#1|)) . T)) -(((|#2|) |has| |#2| (-169))) -(((|#1|) . T)) -((((-553)) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529))) (((-874 (-553))) |has| |#1| (-601 (-874 (-553)))) (((-874 (-373))) |has| |#1| (-601 (-874 (-373)))) (((-373)) . #0=(|has| |#1| (-1004))) (((-220)) . #0#)) -(((|#1|) |has| |#1| (-357))) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((($ $) . T) (((-599 $) $) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -((($) . T) (((-1224 |#1| |#2| |#3| |#4|)) . T) (((-401 (-553))) . T)) -((($) -3988 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-545))) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -((((-373)) . T) (((-553)) . T) (((-401 (-553))) . T)) -((((-630 (-766 |#1| (-847 |#2|)))) . T) (((-845)) . T)) -((((-529)) |has| (-766 |#1| (-847 |#2|)) (-601 (-529)))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-373)) . T)) -(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) -((((-845)) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-891))) -(((|#1|) . T)) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -(|has| |#1| (-1079)) -((((-845)) . T)) -((((-1155)) . T) (((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-401 (-553))) . T) (((-553)) . T) (((-599 $)) . T)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -((((-553)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(((#0=(-1223 |#2| |#3| |#4|)) . T) (((-401 (-553))) |has| #0# (-38 (-401 (-553)))) (($) . T)) -((((-553)) . T)) -(|has| |#1| (-357)) -(-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) -(-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) -(|has| |#1| (-357)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -(|has| |#1| (-228)) -(|has| |#1| (-357)) +((((-116 |#1|)) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-836)) +(((|#2|) . T) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +((((-116 |#1|)) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) . T)) +((((-554)) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374)))) (((-374)) . #0=(|has| |#1| (-1007))) (((-221)) . #0#)) +(((|#1|) |has| |#1| (-358))) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((($ $) . T) (((-600 $) $) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +((($) . T) (((-1227 |#1| |#2| |#3| |#4|)) . T) (((-402 (-554))) . T)) +((($) -3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-546))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +((((-374)) . T) (((-554)) . T) (((-402 (-554))) . T)) +((((-631 (-767 |#1| (-850 |#2|)))) . T) (((-848)) . T)) +((((-530)) |has| (-767 |#1| (-850 |#2|)) (-602 (-530)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-374)) . T)) +(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) +((((-848)) . T)) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-894))) +(((|#1|) . T)) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +((((-758)) . T)) +(|has| |#1| (-1082)) +((((-848)) . T)) +((((-1158)) . T) (((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-402 (-554))) . T) (((-554)) . T) (((-600 $)) . T)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +((((-554)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(((#0=(-1226 |#2| |#3| |#4|)) . T) (((-402 (-554))) |has| #0# (-38 (-402 (-554)))) (($) . T)) +((((-554)) . T)) +(|has| |#1| (-358)) +(-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145))) +(-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))) +(|has| |#1| (-358)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(|has| |#1| (-229)) +(|has| |#1| (-358)) (((|#3|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-553)) |has| |#2| (-626 (-553))) ((|#2|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-554)) |has| |#2| (-627 (-554))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1079)) +(|has| |#1| (-1082)) (((|#1| |#2|) . T)) -((((-553)) . T) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553)))))) -(((|#1|) . T) (((-553)) |has| |#1| (-626 (-553)))) -(((|#3|) |has| |#3| (-169))) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) -((((-845)) . T)) -((((-553)) . T)) -(((|#1| $) |has| |#1| (-280 |#1| |#1|))) -((((-401 (-553))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T)) -((((-934 |#1|)) . T) (((-845)) . T)) +((((-554)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554)))))) +(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554)))) +(((|#3|) |has| |#3| (-170))) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) +((((-848)) . T)) +((((-554)) . T)) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-402 (-554))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +((((-937 |#1|)) . T) (((-848)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-284)) (|has| |#1| (-357))) ((#0=(-401 (-553)) #0#) |has| |#1| (-357))) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -((((-934 |#1|)) . T)) -((($) . T)) -((((-553) |#1|) . T)) -((((-1155)) |has| (-401 |#2|) (-882 (-1155)))) -(((|#1|) . T) (($) -3988 (|has| |#1| (-284)) (|has| |#1| (-357))) (((-401 (-553))) |has| |#1| (-357))) -((((-529)) |has| |#2| (-601 (-529)))) -((((-674 |#2|)) . T) (((-845)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -((((-852 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(-3988 (|has| |#4| (-779)) (|has| |#4| (-831))) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -((((-845)) . T)) -((((-845)) . T)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#2|) |has| |#2| (-1031))) -(((|#1|) . T)) -((((-401 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) -((((-553) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-553)) . T) (($) . T) (((-401 (-553))) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 (-553))) . T) (($) . T)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-1196))) -((($) . T)) -((((-401 (-553))) |has| #0=(-401 |#2|) (-1020 (-401 (-553)))) (((-553)) |has| #0# (-1020 (-553))) ((#0#) . T)) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) -(((|#1| (-757)) . T)) -(|has| |#1| (-833)) -(((|#1|) . T) (((-553)) |has| |#1| (-626 (-553)))) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-553)) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) |has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(|has| |#1| (-831)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-343)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -((((-1137)) . T) (((-1155)) . T) (((-220)) . T) (((-553)) . T)) -(((|#2|) . T) (((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) (((-1061)) . T) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) +(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-285)) (|has| |#1| (-358))) ((#0=(-402 (-554)) #0#) |has| |#1| (-358))) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +((((-937 |#1|)) . T)) +((($) . T)) +((((-554) |#1|) . T)) +((((-1158)) |has| (-402 |#2|) (-885 (-1158)))) +(((|#1|) . T) (($) -3994 (|has| |#1| (-285)) (|has| |#1| (-358))) (((-402 (-554))) |has| |#1| (-358))) +((((-530)) |has| |#2| (-602 (-530)))) +((((-675 |#2|)) . T) (((-848)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +((((-855 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(-3994 (|has| |#4| (-780)) (|has| |#4| (-834))) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +((((-848)) . T)) +((((-848)) . T)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#2|) |has| |#2| (-1034))) +(((|#1|) . T)) +((((-402 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) +((((-554) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-554)) . T) (($) . T) (((-402 (-554))) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 (-554))) . T) (($) . T)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-1199))) +((($) . T)) +((((-402 (-554))) |has| #0=(-402 |#2|) (-1023 (-402 (-554)))) (((-554)) |has| #0# (-1023 (-554))) ((#0#) . T)) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) +(((|#1| (-758)) . T)) +(|has| |#1| (-836)) +(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554)))) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-554)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(|has| |#1| (-834)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-344)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +((((-1140)) . T) (((-1158)) . T) (((-221)) . T) (((-554)) . T)) +(((|#2|) . T) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1064)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (((|#1| |#2|) . T)) -((((-141)) . T)) -((((-766 |#1| (-847 |#2|))) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(|has| |#1| (-1177)) -((((-845)) . T)) -(((|#1|) . T)) -(-3988 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-712)) (|has| |#3| (-779)) (|has| |#3| (-831)) (|has| |#3| (-1031)) (|has| |#3| (-1079))) -((((-1155) |#1|) |has| |#1| (-507 (-1155) |#1|))) -(((|#2|) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((((-892 |#1|)) . T)) -((($) . T)) -((((-401 (-934 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-529)) |has| |#4| (-601 (-529)))) -((((-845)) . T) (((-630 |#4|)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-831)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) |has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))))) -(|has| |#1| (-1079)) -(|has| |#1| (-357)) -(|has| |#1| (-833)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-657 |#1|)) . T)) -((($) . T) (((-401 (-553))) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) -(-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -(|has| |#1| (-831)) +((((-142)) . T)) +((((-767 |#1| (-850 |#2|))) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(|has| |#1| (-1180)) +((((-848)) . T)) +(((|#1|) . T)) +(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-713)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034)) (|has| |#3| (-1082))) +((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|))) +(((|#2|) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((((-895 |#1|)) . T)) +((($) . T)) +((((-402 (-937 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-530)) |has| |#4| (-602 (-530)))) +((((-848)) . T) (((-631 |#4|)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-834)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) |has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) +(|has| |#1| (-1082)) +(|has| |#1| (-358)) +(|has| |#1| (-836)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-658 |#1|)) . T)) +((($) . T) (((-402 (-554))) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145))) +(-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-834)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-626 (-553)))) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-1079)) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T) (((-553)) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((|#1|) . T) (((-553)) . T)) -(|has| |#2| (-142)) -(|has| |#2| (-144)) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-1079)) -(((|#2|) |has| |#2| (-169))) +(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554)))) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-1082)) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T) (((-554)) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T)) +(|has| |#2| (-143)) +(|has| |#2| (-145)) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-1082)) +(((|#2|) |has| |#2| (-170))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-357))) -((((-401 |#2|)) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -(((|#1|) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)))) -((((-310 |#1|)) . T)) -(((|#2|) |has| |#2| (-357))) -(((|#2|) . T)) -((((-401 (-553))) . T) (((-684)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((#0=(-766 |#1| (-847 |#2|)) #0#) |has| (-766 |#1| (-847 |#2|)) (-303 (-766 |#1| (-847 |#2|))))) -((((-553)) . T) (($) . T)) -((((-847 |#1|)) . T)) -(((|#2|) |has| |#2| (-169))) -(((|#1|) |has| |#1| (-169))) -(((|#2|) . T)) -((((-1155)) |has| |#1| (-882 (-1155))) (((-1061)) . T)) -((((-1155)) |has| |#1| (-882 (-1155))) (((-1067 (-1155))) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(|has| |#1| (-38 (-401 (-553)))) -(((|#4|) |has| |#4| (-1031)) (((-553)) -12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031)))) -(((|#3|) |has| |#3| (-1031)) (((-553)) -12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031)))) -(|has| |#1| (-142)) -(|has| |#1| (-144)) +(((|#3|) |has| |#3| (-358))) +((((-402 |#2|)) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(((|#1|) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)))) +((((-311 |#1|)) . T)) +(((|#2|) |has| |#2| (-358))) +(((|#2|) . T)) +((((-402 (-554))) . T) (((-685)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((#0=(-767 |#1| (-850 |#2|)) #0#) |has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|))))) +((((-554)) . T) (($) . T)) +((((-850 |#1|)) . T)) +(((|#2|) |has| |#2| (-170))) +(((|#1|) |has| |#1| (-170))) +(((|#2|) . T)) +((((-1158)) |has| |#1| (-885 (-1158))) (((-1064)) . T)) +((((-1158)) |has| |#1| (-885 (-1158))) (((-1070 (-1158))) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(|has| |#1| (-38 (-402 (-554)))) +(((|#4|) |has| |#4| (-1034)) (((-554)) -12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034)))) +(((|#3|) |has| |#3| (-1034)) (((-554)) -12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) ((($ $) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-712)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031)) (|has| |#1| (-1091)) (|has| |#1| (-1079))) -(|has| |#1| (-545)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)) (|has| |#1| (-1082))) +(|has| |#1| (-546)) (((|#2|) . T)) -((((-553)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) +((((-554)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) (((|#1|) . T)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) -((((-570 |#1|)) . T)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) +((((-571 |#1|)) . T)) ((($) . T)) -(((|#1| (-58 |#1|) (-58 |#1|)) . T)) +(((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-845)) . T)) -(((|#2|) |has| |#2| (-6 (-4371 "*")))) +((((-848)) . T)) +(((|#2|) |has| |#2| (-6 (-4375 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1223 |#2| |#3| |#4|)) . T) (((-553)) . T) (((-1224 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-553))) . T)) -((((-48)) -12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553)))) (((-553)) -3988 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1020 (-553))) (|has| |#1| (-1031))) ((|#1|) . T) (((-599 $)) . T) (($) |has| |#1| (-545)) (((-401 (-553))) -3988 (|has| |#1| (-545)) (|has| |#1| (-1020 (-401 (-553))))) (((-401 (-934 |#1|))) |has| |#1| (-545)) (((-934 |#1|)) |has| |#1| (-1031)) (((-1155)) . T)) -((((-401 (-553))) |has| |#2| (-1020 (-401 (-553)))) (((-553)) |has| |#2| (-1020 (-553))) ((|#2|) . T) (((-847 |#1|)) . T)) -((($) . T) (((-115 |#1|)) . T) (((-401 (-553))) . T)) -((((-1104 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((((-1151 |#1|)) . T) (((-1061)) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((((-1104 |#1| (-1155))) . T) (((-1067 (-1155))) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-1155)) . T)) -(|has| |#1| (-1079)) +((((-1226 |#2| |#3| |#4|)) . T) (((-554)) . T) (((-1227 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-554))) . T)) +((((-48)) -12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (((-554)) -3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))) (|has| |#1| (-1034))) ((|#1|) . T) (((-600 $)) . T) (($) |has| |#1| (-546)) (((-402 (-554))) -3994 (|has| |#1| (-546)) (|has| |#1| (-1023 (-402 (-554))))) (((-402 (-937 |#1|))) |has| |#1| (-546)) (((-937 |#1|)) |has| |#1| (-1034)) (((-1158)) . T)) +((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-402 (-554))) . T)) +((((-1107 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((((-1154 |#1|)) . T) (((-1064)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((((-1107 |#1| (-1158))) . T) (((-1070 (-1158))) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-1158)) . T)) +(|has| |#1| (-1082)) ((($) . T)) -(|has| |#1| (-1079)) -((((-553)) -12 (|has| |#1| (-868 (-553))) (|has| |#2| (-868 (-553)))) (((-373)) -12 (|has| |#1| (-868 (-373))) (|has| |#2| (-868 (-373))))) +(|has| |#1| (-1082)) +((((-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))) (((-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374))))) (((|#1| |#2|) . T)) -((((-1155) |#1|) . T)) +((((-1158) |#1|) . T)) (((|#4|) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-1155) (-52)) . T)) -((((-1223 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T)) -((((-845)) . T)) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-712)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031)) (|has| |#2| (-1079))) -(((#0=(-1224 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-169)) ((#0=(-401 (-553)) #0#) |has| |#1| (-545)) (($ $) |has| |#1| (-545))) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1| $) |has| |#1| (-280 |#1| |#1|))) -((((-1224 |#1| |#2| |#3| |#4|)) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-545)) (($) |has| |#1| (-545))) -(|has| |#1| (-357)) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -((((-401 (-553))) . T) (($) . T)) -(((|#3|) |has| |#3| (-357))) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -((((-1155)) . T)) -((($) . T) (((-1223 |#2| |#3| |#4|)) . T) (((-401 (-553))) |has| (-1223 |#2| |#3| |#4|) (-38 (-401 (-553)))) (((-553)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-1158) (-52)) . T)) +((((-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T)) +((((-848)) . T)) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-713)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034)) (|has| |#2| (-1082))) +(((#0=(-1227 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-402 (-554)) #0#) |has| |#1| (-546)) (($ $) |has| |#1| (-546))) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-1227 |#1| |#2| |#3| |#4|)) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-546)) (($) |has| |#1| (-546))) +(|has| |#1| (-358)) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((((-402 (-554))) . T) (($) . T)) +(((|#3|) |has| |#3| (-358))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +((((-1158)) . T)) +((($) . T) (((-1226 |#2| |#3| |#4|)) . T) (((-402 (-554))) |has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554)))) (((-554)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (((|#2| |#3|) . T)) -(-3988 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(((|#1| (-524 |#2|)) . T)) -(((|#1| (-757)) . T)) -(((|#1| (-524 (-1067 (-1155)))) . T)) -(((|#1|) |has| |#1| (-169))) -(((|#1|) . T)) -(|has| |#2| (-891)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -((((-845)) . T)) -((($ $) . T) ((#0=(-1223 |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-553)) #1#) |has| #0# (-38 (-401 (-553))))) -((((-892 |#1|)) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-806))) -((($) . T) (((-401 (-553))) . T)) -((((-845)) . T)) -((($) . T)) -((($) . T)) -(-3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-545))) -(|has| |#1| (-357)) -(|has| |#1| (-357)) +(-3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(((|#1| (-525 |#2|)) . T)) +(((|#1| (-758)) . T)) +(((|#1| (-525 (-1070 (-1158)))) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(|has| |#2| (-894)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +((((-848)) . T)) +((($ $) . T) ((#0=(-1226 |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-554)) #1#) |has| #0# (-38 (-402 (-554))))) +((((-895 |#1|)) . T)) +(-12 (|has| |#1| (-358)) (|has| |#2| (-807))) +((($) . T) (((-402 (-554))) . T)) +((((-848)) . T)) +((($) . T)) +((($) . T)) +(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-546))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1223 |#2| |#3| |#4|)) . T) (((-401 (-553))) |has| #0# (-38 (-401 (-553))))) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) -(-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357)) (|has| |#1| (-343))) -(-3988 (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031))) -((((-553)) |has| |#1| (-626 (-553))) ((|#1|) . T)) +((($) . T) ((#0=(-1226 |#2| |#3| |#4|)) . T) (((-402 (-554))) |has| #0# (-38 (-402 (-554))))) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) +(-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358)) (|has| |#1| (-344))) +(-3994 (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034))) +((((-554)) |has| |#1| (-627 (-554))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-111)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|))) . T)) -(|has| |#2| (-357)) -(|has| |#1| (-833)) +(((|#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) . T)) +(|has| |#2| (-358)) +(|has| |#1| (-836)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-553)) . T)) -((((-845)) . T)) -(|has| |#1| (-1079)) +((((-554)) . T)) +((((-848)) . T)) +(|has| |#1| (-1082)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-401 $) (-401 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-806)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-402 $) (-402 $)) |has| |#1| (-546)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-807)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-845)) . T)) -(((|#1| (-524 (-1155))) . T)) -(((|#1|) |has| |#1| (-169))) -((((-845)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(((|#2|) -3988 (|has| |#2| (-6 (-4371 "*"))) (|has| |#2| (-169)))) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(|has| |#2| (-833)) -(|has| |#2| (-891)) -(|has| |#1| (-891)) -(((|#2|) |has| |#2| (-169))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) . T) (((-553)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) +((((-848)) . T)) +(((|#1| (-525 (-1158))) . T)) +(((|#1|) |has| |#1| (-170))) +((((-848)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(((|#2|) -3994 (|has| |#2| (-6 (-4375 "*"))) (|has| |#2| (-170)))) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(|has| |#2| (-836)) +(|has| |#2| (-894)) +(|has| |#1| (-894)) +(((|#2|) |has| |#2| (-170))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T)) (((|#1|) . T)) -((((-845)) . T)) +((((-848)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-401 (-553))) . T)) +(((|#1| (-402 (-554))) . T)) (((|#1|) . T)) -(-3988 (|has| |#1| (-284)) (|has| |#1| (-357))) -((((-141)) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-831)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) +(-3994 (|has| |#1| (-285)) (|has| |#1| (-358))) +((((-142)) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-834)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529))) (((-874 (-553))) |has| |#1| (-601 (-874 (-553)))) (((-874 (-373))) |has| |#1| (-601 (-874 (-373))))) -((((-1155) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-630 (-141))) . T) (((-1137)) . T)) -((((-845)) . T)) -((((-1137)) . T)) -((((-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -(|has| |#1| (-833)) -((((-845)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) . T)) -(((|#2|) |has| |#2| (-357))) -((((-845)) . T)) -((((-529)) |has| |#4| (-601 (-529)))) -((((-845)) . T) (((-630 |#4|)) . T)) -(((|#2|) . T)) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((($) . T) (((-553)) . T) (((-401 (-553))) . T) (((-599 $)) . T)) -(-3988 (|has| |#4| (-169)) (|has| |#4| (-712)) (|has| |#4| (-831)) (|has| |#4| (-1031))) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-712)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-1155) (-52)) . T)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(|has| |#1| (-891)) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(|has| |#1| (-891)) -(((|#1|) . T) (((-553)) . T) (((-401 (-553))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-553)) . T)) -(((#0=(-401 (-553)) #0#) . T) (($ $) . T)) -((((-401 (-553))) . T) (($) . T)) -(((|#1| (-401 (-553)) (-1061)) . T)) -(|has| |#1| (-1079)) -(|has| |#1| (-545)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(|has| |#1| (-806)) -(((#0=(-892 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-553)) #1#) . T)) -((((-401 |#2|)) . T)) -(|has| |#1| (-831)) -((((-1178 |#1|)) . T) (((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) . T) ((#1=(-553) #1#) . T) (($ $) . T)) -((((-892 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -(((|#2|) |has| |#2| (-1031)) (((-553)) -12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) -(((|#1|) . T) (((-401 (-553))) . T) (((-553)) . T) (($) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530))) (((-877 (-554))) |has| |#1| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#1| (-602 (-877 (-374))))) +((((-1158) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-631 (-142))) . T) (((-1140)) . T)) +((((-848)) . T)) +((((-1140)) . T)) +((((-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +(|has| |#1| (-836)) +((((-848)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) . T)) +(((|#2|) |has| |#2| (-358))) +((((-848)) . T)) +((((-530)) |has| |#4| (-602 (-530)))) +((((-848)) . T) (((-631 |#4|)) . T)) +(((|#2|) . T)) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((($) . T) (((-554)) . T) (((-402 (-554))) . T) (((-600 $)) . T)) +(-3994 (|has| |#4| (-170)) (|has| |#4| (-713)) (|has| |#4| (-834)) (|has| |#4| (-1034))) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-1158) (-52)) . T)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(|has| |#1| (-894)) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(|has| |#1| (-894)) +(((|#1|) . T) (((-554)) . T) (((-402 (-554))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-554)) . T)) +(((#0=(-402 (-554)) #0#) . T) (($ $) . T)) +((((-402 (-554))) . T) (($) . T)) +(((|#1| (-402 (-554)) (-1064)) . T)) +(|has| |#1| (-1082)) +(|has| |#1| (-546)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(|has| |#1| (-807)) +(((#0=(-895 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T)) +((((-402 |#2|)) . T)) +(|has| |#1| (-834)) +((((-1181 |#1|)) . T) (((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) . T) ((#1=(-554) #1#) . T) (($ $) . T)) +((((-895 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +(((|#2|) |has| |#2| (-1034)) (((-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) +(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -(((|#2|) . T)) -((((-845)) . T)) -((((-401 (-553))) . T) (((-684)) . T) (($) . T) (((-553)) . T)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2578 (-1155)) (|:| -3256 #0#))) . T)) -(|has| |#1| (-343)) -((((-553)) . T)) -((((-845)) . T)) -(((#0=(-1224 |#1| |#2| |#3| |#4|) $) |has| #0# (-280 #0# #0#))) -(|has| |#1| (-357)) -(((#0=(-1061) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -(((#0=(-401 (-553)) #0#) . T) ((#1=(-684) #1#) . T) (($ $) . T)) -((((-310 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-357))) -(|has| |#1| (-1079)) -(((|#1|) . T)) -(((|#1|) -3988 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#1|) -3988 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#2|) . T)) -((((-401 (-553))) . T) (((-684)) . T) (($) . T)) -((((-568)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +(((|#2|) . T)) +((((-848)) . T)) +((((-402 (-554))) . T) (((-685)) . T) (($) . T) (((-554)) . T)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2564 (-1158)) (|:| -2701 #0#))) . T)) +(|has| |#1| (-344)) +((((-554)) . T)) +((((-848)) . T)) +(((#0=(-1227 |#1| |#2| |#3| |#4|) $) |has| #0# (-281 #0# #0#))) +(|has| |#1| (-358)) +(((#0=(-1064) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +(((#0=(-402 (-554)) #0#) . T) ((#1=(-685) #1#) . T) (($ $) . T)) +((((-311 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-358))) +(|has| |#1| (-1082)) +(((|#1|) . T)) +(((|#1|) -3994 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|)))) +(((|#1|) -3994 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|)))) +(((|#2|) . T)) +((((-402 (-554))) . T) (((-685)) . T) (($) . T)) +((((-569)) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-228)) -((((-847 |#1|)) . T)) -((((-1155)) |has| |#1| (-882 (-1155))) ((|#3|) . T)) -((((-630 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-1004))) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-845)) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -((((-401 (-553))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T)) -((((-553)) . T) (((-115 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((((-553)) . T)) +(|has| |#2| (-229)) +((((-850 |#1|)) . T)) +((((-1158)) |has| |#1| (-885 (-1158))) ((|#3|) . T)) +((((-631 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-358)) (|has| |#2| (-1007))) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-848)) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +((((-402 (-554))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +((((-554)) . T) (((-116 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((((-554)) . T)) (((|#3|) . T)) -(|has| |#1| (-1079)) +(|has| |#1| (-1082)) (((|#2|) . T)) (((|#1|) . T)) -((((-553)) . T)) -(((|#2|) . T) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((|#1|) . T) (($) . T) (((-553)) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) +((((-554)) . T)) +(((|#2|) . T) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (($) . T) (((-554)) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-570 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((($) . T) (((-401 (-553))) . T)) +((((-571 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((($) . T) (((-402 (-554))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1238 |#1|) (-1238 |#1|)) . T)) +(((|#1| (-1241 |#1|) (-1241 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((#0=(-115 |#1|) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -((((-401 (-553))) |has| |#2| (-1020 (-401 (-553)))) (((-553)) |has| |#2| (-1020 (-553))) ((|#2|) . T) (((-847 |#1|)) . T)) -((((-1104 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((|#2|) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T)) +((((-1107 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-657 |#1|)) . T)) -((($) . T) (((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T)) -((((-115 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((((-553)) -12 (|has| |#1| (-868 (-553))) (|has| |#3| (-868 (-553)))) (((-373)) -12 (|has| |#1| (-868 (-373))) (|has| |#3| (-868 (-373))))) +((((-658 |#1|)) . T)) +((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((((-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) (((-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) (($) . T)) -((((-141)) . T)) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) (($) . T)) +((((-142)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-373)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-374)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) (((|#1|) . T)) -(|has| |#2| (-891)) -(|has| |#1| (-891)) -(|has| |#1| (-891)) +(|has| |#2| (-894)) +(|has| |#1| (-894)) +(|has| |#1| (-894)) (((|#4|) . T)) -(|has| |#2| (-1004)) +(|has| |#2| (-1007)) ((($) . T)) -(|has| |#1| (-891)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) +(|has| |#1| (-894)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-357)) -((((-892 |#1|)) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(-3988 (|has| |#1| (-362)) (|has| |#1| (-833))) -(((|#1|) . T)) -((((-845)) . T)) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) -((((-401 |#2|) |#3|) . T)) -((($) . T) (((-401 (-553))) . T)) -((($) . T) (((-553)) . T) (((-401 (-553))) . T) (((-599 $)) . T)) -((((-553)) . T) (($) . T)) -((((-553)) . T) (($) . T)) -((((-757) |#1|) . T)) -(((|#2| (-235 (-2563 |#1|) (-757))) . T)) -(((|#1| (-524 |#3|)) . T)) -((((-401 (-553))) . T)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-1137)) . T) (((-845)) . T)) -(((#0=(-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) #0#) |has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))))) -((((-1137)) . T)) -(|has| |#1| (-891)) -(|has| |#2| (-357)) -(-3988 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-166 (-373))) . T) (((-220)) . T) (((-373)) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-373)) . T) (((-553)) . T)) -(((#0=(-401 (-553)) #0#) . T) (($ $) . T)) +(|has| |#1| (-358)) +((((-895 |#1|)) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(-3994 (|has| |#1| (-363)) (|has| |#1| (-836))) +(((|#1|) . T)) +((((-758)) . T)) +((((-848)) . T)) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) +((((-402 |#2|) |#3|) . T)) +((($) . T) (((-402 (-554))) . T)) +((($) . T) (((-554)) . T) (((-402 (-554))) . T) (((-600 $)) . T)) +((((-554)) . T) (($) . T)) +((((-554)) . T) (($) . T)) +((((-758) |#1|) . T)) +(((|#2| (-236 (-2563 |#1|) (-758))) . T)) +(((|#1| (-525 |#3|)) . T)) +((((-402 (-554))) . T)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-1140)) . T) (((-848)) . T)) +(((#0=(-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) #0#) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) +((((-1140)) . T)) +(|has| |#1| (-894)) +(|has| |#2| (-358)) +(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-374)) . T) (((-554)) . T)) +(((#0=(-402 (-554)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-845)) . T)) -(|has| |#1| (-545)) -((((-401 (-553))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(-3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) -(|has| |#1| (-38 (-401 (-553)))) -(-12 (|has| |#1| (-538)) (|has| |#1| (-814))) -((((-845)) . T)) -((((-1155)) -3988 (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))) (-12 (|has| |#1| (-357)) (|has| |#2| (-882 (-1155)))))) -(|has| |#1| (-357)) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) -(|has| |#1| (-357)) -((((-401 (-553))) . T) (($) . T)) -((($) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T)) -((((-553) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-357))) -(((|#2|) |has| |#1| (-357))) -((((-553)) . T) (($) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-169))) -(((|#1|) . T)) -(((|#2|) . T) (((-1155)) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-1155)))) (((-553)) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-553)))) (((-401 (-553))) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-553))))) -(((|#2|) . T)) -((((-1155) #0=(-1224 |#1| |#2| |#3| |#4|)) |has| #0# (-507 (-1155) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) -((((-599 $) $) . T) (($ $) . T)) -((((-166 (-220))) . T) (((-166 (-373))) . T) (((-1151 (-684))) . T) (((-874 (-373))) . T)) -((((-845)) . T)) -(|has| |#1| (-545)) -(|has| |#1| (-545)) -(|has| (-401 |#2|) (-228)) -(((|#1| (-401 (-553))) . T)) +((((-848)) . T)) +(|has| |#1| (-546)) +((((-402 (-554))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344))) +(|has| |#1| (-38 (-402 (-554)))) +(-12 (|has| |#1| (-539)) (|has| |#1| (-815))) +((((-848)) . T)) +((((-1158)) -3994 (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-885 (-1158)))))) +(|has| |#1| (-358)) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) +(|has| |#1| (-358)) +((((-402 (-554))) . T) (($) . T)) +((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T)) +((((-554) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-358))) +(((|#2|) |has| |#1| (-358))) +((((-554)) . T) (($) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(((|#2|) . T) (((-1158)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) (((-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))) (((-402 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554))))) +(((|#2|) . T)) +((((-1158) #0=(-1227 |#1| |#2| |#3| |#4|)) |has| #0# (-508 (-1158) #0#)) ((#0# #0#) |has| #0# (-304 #0#))) +((((-600 $) $) . T) (($ $) . T)) +((((-167 (-221))) . T) (((-167 (-374))) . T) (((-1154 (-685))) . T) (((-877 (-374))) . T)) +((((-848)) . T)) +(|has| |#1| (-546)) +(|has| |#1| (-546)) +(|has| (-402 |#2|) (-229)) +(((|#1| (-402 (-554))) . T)) ((($ $) . T)) -((((-1155)) |has| |#2| (-882 (-1155)))) -((($) . T)) -((((-845)) . T)) -((((-401 (-553))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -(((|#2|) |has| |#1| (-357))) -((((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-868 (-373)))) (((-553)) -12 (|has| |#1| (-357)) (|has| |#2| (-868 (-553))))) -(|has| |#1| (-357)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(|has| |#1| (-357)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(|has| |#1| (-357)) -(|has| |#1| (-545)) -(((|#1|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) +((((-1158)) |has| |#2| (-885 (-1158)))) +((($) . T)) +((((-848)) . T)) +((((-402 (-554))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) +(((|#2|) |has| |#1| (-358))) +((((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-374)))) (((-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-554))))) +(|has| |#1| (-358)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(|has| |#1| (-358)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(|has| |#1| (-358)) +(|has| |#1| (-546)) +(((|#1|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (((|#3|) . T)) -((((-1137)) . T) (((-1155)) . T) (((-220)) . T) (((-553)) . T)) +((((-1140)) . T) (((-1158)) . T) (((-221)) . T) (((-554)) . T)) (((|#1|) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(-3988 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) (((|#2|) . T)) (((|#2|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-712)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(|has| |#1| (-38 (-401 (-553)))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(|has| |#1| (-38 (-402 (-554)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(|has| |#1| (-144)) -((((-1137) |#1|) . T)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(|has| |#1| (-144)) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-362))) -(|has| |#1| (-144)) -((((-570 |#1|)) . T)) -((($) . T)) -((((-401 |#2|)) . T)) -(|has| |#1| (-545)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-343))) -(|has| |#1| (-144)) -((((-845)) . T)) -((($) . T)) -((((-401 (-553))) |has| |#2| (-1020 (-553))) (((-553)) |has| |#2| (-1020 (-553))) (((-1155)) |has| |#2| (-1020 (-1155))) ((|#2|) . T)) -(((#0=(-401 |#2|) #0#) . T) ((#1=(-401 (-553)) #1#) . T) (($ $) . T)) -((((-1119 |#1| |#2|)) . T)) -(((|#1| (-553)) . T)) -(((|#1| (-401 (-553))) . T)) -((((-553)) |has| |#2| (-868 (-553))) (((-373)) |has| |#2| (-868 (-373)))) -(((|#2|) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -((((-111)) . T)) -(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-845)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-1155) (-52)) . T)) -((((-401 |#2|)) . T)) -((((-845)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1079)) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -((((-845)) . T)) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-113)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-220)) . T) (((-373)) . T) (((-874 (-373))) . T)) -((((-845)) . T)) -((((-1224 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545)) (((-401 (-553))) |has| |#1| (-545))) -((((-845)) . T)) -((((-845)) . T)) -(((|#2|) . T)) -((((-845)) . T)) -(((#0=(-892 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-553)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-892 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -(|has| |#1| (-357)) -(((|#2|) . T)) -((((-553)) . T)) -((((-845)) . T)) -((((-553)) . T)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -((((-166 (-373))) . T) (((-220)) . T) (((-373)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-1137)) . T) (((-529)) . T) (((-553)) . T) (((-874 (-553))) . T) (((-373)) . T) (((-220)) . T)) -((((-845)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-142)) -((($) . T) ((#0=(-1223 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-553))) |has| #0# (-38 (-401 (-553))))) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-712)) (|has| |#1| (-882 (-1155))) (|has| |#1| (-1031)) (|has| |#1| (-1091)) (|has| |#1| (-1079))) -(|has| |#1| (-1130)) -((((-553) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-115 |#1|) $) |has| #0# (-280 #0# #0#))) -(((|#1|) |has| |#1| (-169))) -((((-310 |#1|)) . T) (((-553)) . T)) -(((|#1|) . T)) -((((-113)) . T) ((|#1|) . T)) -((((-845)) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(|has| |#1| (-145)) +((((-1140) |#1|) . T)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(|has| |#1| (-145)) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-363))) +(|has| |#1| (-145)) +((((-571 |#1|)) . T)) +((($) . T)) +((((-402 |#2|)) . T)) +(|has| |#1| (-546)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-344))) +(|has| |#1| (-145)) +((((-848)) . T)) +((($) . T)) +((((-402 (-554))) |has| |#2| (-1023 (-554))) (((-554)) |has| |#2| (-1023 (-554))) (((-1158)) |has| |#2| (-1023 (-1158))) ((|#2|) . T)) +(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-554)) #1#) . T) (($ $) . T)) +((((-1122 |#1| |#2|)) . T)) +(((|#1| (-554)) . T)) +(((|#1| (-402 (-554))) . T)) +((((-554)) |has| |#2| (-871 (-554))) (((-374)) |has| |#2| (-871 (-374)))) +(((|#2|) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +((((-112)) . T)) +(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-848)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-1158) (-52)) . T)) +((((-402 |#2|)) . T)) +((((-848)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1082)) +(|has| |#1| (-778)) +(|has| |#1| (-778)) +((((-848)) . T)) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-114)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-221)) . T) (((-374)) . T) (((-877 (-374))) . T)) +((((-848)) . T)) +((((-1227 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)) (((-402 (-554))) |has| |#1| (-546))) +((((-848)) . T)) +((((-848)) . T)) +(((|#2|) . T)) +((((-848)) . T)) +(((#0=(-895 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-895 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +(|has| |#1| (-358)) +((((-848)) . T)) +(((|#2|) . T)) +((((-554)) . T)) +((((-848)) . T)) +((((-554)) . T)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-1140)) . T) (((-530)) . T) (((-554)) . T) (((-877 (-554))) . T) (((-374)) . T) (((-221)) . T)) +((((-848)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-143)) +((($) . T) ((#0=(-1226 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-554))) |has| #0# (-38 (-402 (-554))))) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-713)) (|has| |#1| (-885 (-1158))) (|has| |#1| (-1034)) (|has| |#1| (-1094)) (|has| |#1| (-1082))) +(|has| |#1| (-1133)) +((((-554) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-116 |#1|) $) |has| #0# (-281 #0# #0#))) +(((|#1|) |has| |#1| (-170))) +((((-311 |#1|)) . T) (((-554)) . T)) +(((|#1|) . T)) +((((-114)) . T) ((|#1|) . T)) +((((-848)) . T)) (((|#1| |#2|) . T)) -((((-1155) |#1|) . T)) -(((|#1|) |has| |#1| (-303 |#1|))) -((((-553) |#1|) . T)) +((((-1158) |#1|) . T)) +(((|#1|) |has| |#1| (-304 |#1|))) +((((-554) |#1|) . T)) (((|#1|) . T)) -((((-553)) . T) (((-401 (-553))) . T)) +((((-554)) . T) (((-402 (-554))) . T)) (((|#1|) . T)) -(|has| |#1| (-545)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -((((-373)) . T)) +(|has| |#1| (-546)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +((((-374)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-545)) -(|has| |#1| (-1079)) -((((-766 |#1| (-847 |#2|))) |has| (-766 |#1| (-847 |#2|)) (-303 (-766 |#1| (-847 |#2|))))) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-546)) +(|has| |#1| (-1082)) +((((-767 |#1| (-850 |#2|))) |has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|))))) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-891)) -(((|#1| (-524 |#2|)) . T)) -(((|#1| (-757)) . T)) -(|has| |#1| (-228)) -(((|#1| (-524 (-1067 (-1155)))) . T)) -(|has| |#2| (-357)) -((((-570 |#1|)) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -((((-553)) . T) (((-401 (-553))) . T) (($) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-553)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -((((-845)) . T)) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -((((-845)) . T)) -((((-1099)) . T) (((-845)) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-599 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-553)) . T)) +(|has| |#2| (-894)) +(((|#1| (-525 |#2|)) . T)) +(((|#1| (-758)) . T)) +(|has| |#1| (-229)) +(((|#1| (-525 (-1070 (-1158)))) . T)) +(|has| |#2| (-358)) +((((-571 |#1|)) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +((((-554)) . T) (((-402 (-554))) . T) (($) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-554)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) +((((-848)) . T)) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +((((-848)) . T)) +((((-1102)) . T) (((-848)) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-600 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-554)) . T)) (((|#3|) . T)) -((((-845)) . T)) -(-3988 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-553)) . T) (((-401 (-553))) -3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553))))) ((|#2|) . T) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) (((-847 |#1|)) . T)) -((((-1104 |#1| |#2|)) . T) ((|#2|) . T) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) (((-553)) . T)) -((((-1151 |#1|)) . T) (((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) (((-1061)) . T) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) -(-3988 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-545)) (|has| |#1| (-1031))) -((((-1104 |#1| (-1155))) . T) (((-553)) . T) (((-1067 (-1155))) . T) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) (((-1155)) . T)) -(((#0=(-570 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-553)) #1#) . T)) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(((|#1|) |has| |#1| (-169))) -(((|#1| (-1238 |#1|) (-1238 |#1|)) . T)) -((((-570 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((($) . T) (((-401 (-553))) . T)) -((($) . T) (((-401 (-553))) . T)) -(((|#2|) |has| |#2| (-6 (-4371 "*")))) -(((|#1|) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((|#1|) . T) (((-553)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-288 |#3|)) . T)) -(((#0=(-401 (-553)) #0#) |has| |#2| (-38 (-401 (-553)))) ((|#2| |#2|) . T) (($ $) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) +((((-848)) . T)) +(-3994 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T)) +((((-1107 |#1| |#2|)) . T) ((|#2|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-554)) . T)) +((((-1154 |#1|)) . T) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) (((-1064)) . T) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) +(-3994 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-546)) (|has| |#1| (-1034))) +((((-1107 |#1| (-1158))) . T) (((-554)) . T) (((-1070 (-1158))) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) (((-1158)) . T)) +(((#0=(-571 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-554)) #1#) . T)) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(((|#1|) |has| |#1| (-170))) +(((|#1| (-1241 |#1|) (-1241 |#1|)) . T)) +((((-571 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((($) . T) (((-402 (-554))) . T)) +((($) . T) (((-402 (-554))) . T)) +(((|#2|) |has| |#2| (-6 (-4375 "*")))) +(((|#1|) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((|#1|) . T) (((-554)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-289 |#3|)) . T)) +(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) +((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) (((|#2|) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T) (($) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(|has| |#2| (-891)) -(|has| |#1| (-891)) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(|has| |#2| (-894)) +(|has| |#1| (-894)) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) (((|#1|) . T)) -((((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) . T)) +((((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1079)) -(((|#1|) . T)) -((((-1155)) . T) ((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) -(((#0=(-401 (-553)) #0#) . T)) -((((-401 (-553))) . T)) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(((|#1|) . T)) -(((|#1|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-401 (-553))) . T) (((-553)) . T) (($) . T)) -((((-529)) . T)) -((((-845)) . T)) -((((-553)) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((((-1155)) |has| |#2| (-882 (-1155))) (((-1061)) . T)) -((((-1223 |#2| |#3| |#4|)) . T)) -((((-892 |#1|)) . T)) -((($) . T) (((-401 (-553))) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-806))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-806))) -((((-845)) . T)) -(|has| |#1| (-1196)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -((((-1155)) |has| |#1| (-882 (-1155)))) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((($) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) . T)) -(((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553)))) ((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-545)))) -((($) . T) (((-401 (-553))) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (((-553)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1031)) (((-553)) -12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-545)))) -(|has| |#1| (-545)) -(((|#1|) |has| |#1| (-357))) -((((-553)) . T)) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -((((-1155) #0=(-115 |#1|)) |has| #0# (-507 (-1155) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) -(((|#2|) . T) (((-553)) |has| |#2| (-1020 (-553))) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) -((((-1061)) . T) ((|#2|) . T) (((-553)) |has| |#2| (-1020 (-553))) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-553) (-757)) . T) ((|#3| (-757)) . T)) +(|has| |#1| (-1082)) +(((|#1|) . T)) +((((-1158)) . T) ((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) +(((#0=(-402 (-554)) #0#) . T)) +((((-402 (-554))) . T)) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(((|#1|) . T)) +(((|#1|) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-402 (-554))) . T) (((-554)) . T) (($) . T)) +((((-530)) . T)) +((((-848)) . T)) +((((-554)) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((((-1158)) |has| |#2| (-885 (-1158))) (((-1064)) . T)) +((((-1226 |#2| |#3| |#4|)) . T)) +((((-895 |#1|)) . T)) +((($) . T) (((-402 (-554))) . T)) +(-12 (|has| |#1| (-358)) (|has| |#2| (-807))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-807))) +((((-848)) . T)) +(|has| |#1| (-1199)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +((((-1158)) |has| |#1| (-885 (-1158)))) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) . T)) +(((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554)))) ((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-546)))) +((($) . T) (((-402 (-554))) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1034)) (((-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-546)))) +(|has| |#1| (-546)) +(((|#1|) |has| |#1| (-358))) +((((-554)) . T)) +(|has| |#1| (-778)) +(|has| |#1| (-778)) +((((-1158) #0=(-116 |#1|)) |has| #0# (-508 (-1158) #0#)) ((#0# #0#) |has| #0# (-304 #0#))) +(((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) +((((-1064)) . T) ((|#2|) . T) (((-554)) |has| |#2| (-1023 (-554))) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-554) (-758)) . T) ((|#3| (-758)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-845)) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((((-553)) |has| |#1| (-868 (-553))) (((-373)) |has| |#1| (-868 (-373)))) -(((|#1|) . T)) -((((-852 |#1|)) . T)) -((((-852 |#1|)) . T)) -(-12 (|has| |#1| (-357)) (|has| |#2| (-891))) -((((-401 (-553))) . T) (((-684)) . T) (($) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -(|has| |#1| (-357)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-847 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2| (-757)) . T)) -((((-1155)) . T)) -((((-852 |#1|)) . T)) -(-3988 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-779)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-845)) . T)) -(((|#1|) . T)) -(-3988 (|has| |#2| (-779)) (|has| |#2| (-831))) -(-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))) -((((-852 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((($ $) . T) (((-599 $) $) . T)) -((($) . T)) -((((-845)) . T)) -((((-553)) . T)) -(((|#2|) . T)) -((((-845)) . T)) -(((|#1|) . T) (((-401 (-553))) |has| |#1| (-357))) -((((-845)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((($) . T) ((|#2|) . T) (((-401 (-553))) . T)) -(|has| |#1| (-1079)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-845)) . T)) -(|has| |#2| (-891)) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -((((-529)) |has| |#2| (-601 (-529))) (((-874 (-373))) |has| |#2| (-601 (-874 (-373)))) (((-874 (-553))) |has| |#2| (-601 (-874 (-553))))) -((((-845)) . T)) -((((-845)) . T)) -(((|#3|) |has| |#3| (-1031)) (((-553)) -12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031)))) -((((-1104 |#1| |#2|)) . T) (((-934 |#1|)) |has| |#2| (-601 (-1155))) (((-845)) . T)) -((((-934 |#1|)) |has| |#2| (-601 (-1155))) (((-1137)) -12 (|has| |#1| (-1020 (-553))) (|has| |#2| (-601 (-1155)))) (((-874 (-553))) -12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553))))) (((-874 (-373))) -12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373))))) (((-529)) -12 (|has| |#1| (-601 (-529))) (|has| |#2| (-601 (-529))))) -((((-1151 |#1|)) . T) (((-845)) . T)) -((((-845)) . T)) -((((-401 (-553))) |has| |#2| (-1020 (-401 (-553)))) (((-553)) |has| |#2| (-1020 (-553))) ((|#2|) . T) (((-847 |#1|)) . T)) -((((-115 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T) (((-1155)) . T)) -((((-845)) . T)) -((((-553)) . T)) -(((|#1|) . T)) -((($) . T)) -((((-373)) |has| |#1| (-868 (-373))) (((-553)) |has| |#1| (-868 (-553)))) -((((-553)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-630 |#1|)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -(((|#1|) |has| |#1| (-169)) (($) . T)) -((((-553)) . T) (((-401 (-553))) . T)) -(((|#1|) |has| |#1| (-303 |#1|))) -((((-845)) . T)) -((((-373)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-845)) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-401 |#2|) |#3|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1079)) -(((|#2| (-475 (-2563 |#1|) (-757))) . T)) -((((-553) |#1|) . T)) -((((-1137)) . T) (((-845)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-848)) . T)) +(|has| |#2| (-807)) +(|has| |#2| (-807)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((((-554)) |has| |#1| (-871 (-554))) (((-374)) |has| |#1| (-871 (-374)))) +(((|#1|) . T)) +((((-855 |#1|)) . T)) +((((-855 |#1|)) . T)) +(-12 (|has| |#1| (-358)) (|has| |#2| (-894))) +((((-402 (-554))) . T) (((-685)) . T) (($) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +(|has| |#1| (-358)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-850 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2| (-758)) . T)) +((((-1158)) . T)) +((((-855 |#1|)) . T)) +(-3994 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-848)) . T)) +(((|#1|) . T)) +(-3994 (|has| |#2| (-780)) (|has| |#2| (-834))) +(-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))) +((((-855 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((($ $) . T) (((-600 $) $) . T)) +((($) . T)) +((((-848)) . T)) +((((-554)) . T)) +(((|#2|) . T)) +((((-848)) . T)) +(((|#1|) . T) (((-402 (-554))) |has| |#1| (-358))) +((((-848)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((($) . T) ((|#2|) . T) (((-402 (-554))) . T)) +(|has| |#1| (-1082)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-848)) . T)) +(|has| |#2| (-894)) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554))))) +((((-848)) . T)) +((((-848)) . T)) +(((|#3|) |has| |#3| (-1034)) (((-554)) -12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) +((((-1107 |#1| |#2|)) . T) (((-937 |#1|)) |has| |#2| (-602 (-1158))) (((-848)) . T)) +((((-937 |#1|)) |has| |#2| (-602 (-1158))) (((-1140)) -12 (|has| |#1| (-1023 (-554))) (|has| |#2| (-602 (-1158)))) (((-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554))))) (((-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374))))) (((-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530))))) +((((-1154 |#1|)) . T) (((-848)) . T)) +((((-848)) . T)) +((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T) (((-1158)) . T)) +((((-848)) . T)) +((((-554)) . T)) +(((|#1|) . T)) +((($) . T)) +((((-374)) |has| |#1| (-871 (-374))) (((-554)) |has| |#1| (-871 (-554)))) +((((-554)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-631 |#1|)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((((-554)) . T) (((-402 (-554))) . T)) +(((|#1|) |has| |#1| (-304 |#1|))) +((((-848)) . T)) +((((-374)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-848)) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-402 |#2|) |#3|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1082)) +(((|#2| (-476 (-2563 |#1|) (-758))) . T)) +((((-554) |#1|) . T)) +((((-1140)) . T) (((-848)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-524 (-1155))) . T)) -(-3988 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-553)) . T)) +(((|#1| (-525 (-1158))) . T)) +(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-554)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1155)) |has| |#1| (-882 (-1155))) (((-1061)) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-626 (-553)))) -(|has| |#1| (-545)) -((($) . T) (((-401 (-553))) . T)) +((((-1158)) |has| |#1| (-885 (-1158))) (((-1064)) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-627 (-554)))) +(|has| |#1| (-546)) +((($) . T) (((-402 (-554))) . T)) ((($) . T)) ((($) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) (((|#1|) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-845)) . T)) -((((-141)) . T)) -(((|#1|) . T) (((-401 (-553))) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-848)) . T)) +((((-142)) . T)) +(((|#1|) . T) (((-402 (-554))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-845)) . T)) +((((-848)) . T)) (((|#1|) . T)) -(|has| |#1| (-1130)) -(((|#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|))) . T)) +(|has| |#1| (-1133)) +(((|#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) . T)) (((|#1|) . T)) -((((-401 $) (-401 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((((-845)) . T)) -((((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-553)) |has| |#1| (-1020 (-553))) ((|#1|) . T) ((|#2|) . T)) -((((-1061)) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553))))) -((((-373)) -12 (|has| |#1| (-868 (-373))) (|has| |#2| (-868 (-373)))) (((-553)) -12 (|has| |#1| (-868 (-553))) (|has| |#2| (-868 (-553))))) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -((((-553) |#1|) . T)) +((((-402 $) (-402 $)) |has| |#1| (-546)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((((-848)) . T)) +((((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-554)) |has| |#1| (-1023 (-554))) ((|#1|) . T) ((|#2|) . T)) +((((-1064)) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554))))) +((((-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374)))) (((-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554))))) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +((((-554) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-169)) (($) . T)) -((($) . T)) -((((-684)) . T)) -((((-766 |#1| (-847 |#2|))) . T)) -((($) . T)) -((((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-1079)) -(|has| |#1| (-1079)) -(|has| |#2| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-38 (-401 (-553)))) -((((-553)) . T)) -((((-1155)) -12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) -((((-1155)) -12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) -(((|#1|) . T)) -(|has| |#1| (-228)) -(((|#1| (-524 |#3|)) . T)) -(((|#2| (-235 (-2563 |#1|) (-757))) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) +(((|#1|) |has| |#1| (-170)) (($) . T)) +((($) . T)) +((((-685)) . T)) +((((-767 |#1| (-850 |#2|))) . T)) +((($) . T)) +((((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-1082)) +(|has| |#1| (-1082)) +(|has| |#2| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-38 (-402 (-554)))) +((((-554)) . T)) +((((-1158)) -12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) +((((-1158)) -12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) +(((|#1|) . T)) +(|has| |#1| (-229)) +(((|#1| (-525 |#3|)) . T)) +(((|#2| (-236 (-2563 |#1|) (-758))) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) (((|#1|) . T) (($) . T)) -(((|#1| (-524 |#2|)) . T)) -(-3988 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(((|#1| (-757)) . T)) -(|has| |#1| (-545)) -(-3988 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-831)) (|has| |#2| (-1031))) +(((|#1| (-525 |#2|)) . T)) +(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(((|#1| (-758)) . T)) +(|has| |#1| (-546)) +(-3994 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-834)) (|has| |#2| (-1034))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-845)) . T)) -((((-553)) . T) (((-401 (-553))) . T) (($) . T)) -(-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) -(-3988 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-779)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-712)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(((|#1|) |has| |#1| (-169))) -(((|#4|) |has| |#4| (-1031))) -(((|#3|) |has| |#3| (-1031))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-806))) -(-12 (|has| |#1| (-357)) (|has| |#2| (-806))) -((((-553)) . T) (((-401 (-553))) -3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553))))) ((|#2|) . T) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) (((-847 |#1|)) . T)) -((((-1104 |#1| |#2|)) . T) (((-553)) . T) ((|#3|) . T) (($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))) ((|#2|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (($) . T) (((-553)) . T)) -((((-1160)) . T)) -((((-657 |#1|)) . T)) -((((-401 |#2|)) . T) (((-401 (-553))) . T) (($) . T)) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -((((-845)) . T)) -((((-630 $)) . T) (((-1137)) . T) (((-1155)) . T) (((-553)) . T) (((-220)) . T) (((-845)) . T)) -((($) . T) (((-401 (-553))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1079)) (((-553)) -12 (|has| |#4| (-1020 (-553))) (|has| |#4| (-1079))) (((-401 (-553))) -12 (|has| |#4| (-1020 (-401 (-553)))) (|has| |#4| (-1079)))) -(((|#3|) |has| |#3| (-1079)) (((-553)) -12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079))) (((-401 (-553))) -12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) -(|has| |#2| (-357)) -(((|#2|) |has| |#2| (-1031)) (((-553)) -12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) -(((|#1|) . T)) -(|has| |#2| (-357)) -(((#0=(-401 (-553)) #0#) |has| |#2| (-38 (-401 (-553)))) ((|#2| |#2|) . T) (($ $) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1| |#1|) . T) ((#0=(-401 (-553)) #0#) |has| |#1| (-38 (-401 (-553))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-553)) #0#) . T)) +((((-848)) . T)) +((((-554)) . T) (((-402 (-554))) . T) (($) . T)) +(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) +(-3994 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(((|#1|) |has| |#1| (-170))) +(((|#4|) |has| |#4| (-1034))) +(((|#3|) |has| |#3| (-1034))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-807))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-807))) +((((-554)) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))) ((|#2|) . T) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-850 |#1|)) . T)) +((((-1107 |#1| |#2|)) . T) (((-554)) . T) ((|#3|) . T) (($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))) ((|#2|) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (($) . T) (((-554)) . T)) +((((-1163)) . T)) +((((-658 |#1|)) . T)) +((((-402 |#2|)) . T) (((-402 (-554))) . T) (($) . T)) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +((((-848)) . T)) +((((-631 $)) . T) (((-1140)) . T) (((-1158)) . T) (((-554)) . T) (((-221)) . T) (((-848)) . T)) +((($) . T) (((-402 (-554))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1082)) (((-554)) -12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082))) (((-402 (-554))) -12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082)))) +(((|#3|) |has| |#3| (-1082)) (((-554)) -12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (((-402 (-554))) -12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) +(|has| |#2| (-358)) +(((|#2|) |has| |#2| (-1034)) (((-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) +(((|#1|) . T)) +(|has| |#2| (-358)) +(((#0=(-402 (-554)) #0#) |has| |#2| (-38 (-402 (-554)))) ((|#2| |#2|) . T) (($ $) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1| |#1|) . T) ((#0=(-402 (-554)) #0#) |has| |#1| (-38 (-402 (-554))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-554)) #0#) . T)) (((|#2| |#2|) . T)) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T) (($) -3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) . T) (($) . T) (((-401 (-553))) . T)) -(((|#2|) . T)) -((((-845)) |has| |#1| (-1079))) -((($) . T)) -((((-1224 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) -(|has| |#1| (-357)) -(((|#1|) |has| |#2| (-411 |#1|))) -(((|#1|) |has| |#2| (-411 |#1|))) -((((-1137)) . T)) -((((-892 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-630 |#1|)) . T) (((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-630 |#1|)) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1191)) . T) (((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) |has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))))) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -((((-553) |#1|) . T)) -((((-553) |#1|) . T)) -((((-553) |#1|) . T)) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-553) |#1|) . T)) -(((|#1|) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-553)) . T) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) -((((-1155)) |has| |#1| (-882 (-1155))) (((-804 (-1155))) . T)) -(-3988 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-779)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-805 |#1|)) . T)) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T) (($) -3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) . T) (($) . T) (((-402 (-554))) . T)) +(((|#2|) . T)) +((((-848)) |has| |#1| (-1082))) +((($) . T)) +((((-1227 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-807)) +(|has| |#2| (-807)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) +(|has| |#1| (-358)) +(((|#1|) |has| |#2| (-412 |#1|))) +(((|#1|) |has| |#2| (-412 |#1|))) +((((-1140)) . T)) +((((-895 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-631 |#1|)) . T) (((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-631 |#1|)) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1194)) . T) (((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) |has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +((((-554) |#1|) . T)) +((((-554) |#1|) . T)) +((((-554) |#1|) . T)) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-554) |#1|) . T)) +(((|#1|) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +((((-1158)) |has| |#1| (-885 (-1158))) (((-805 (-1158))) . T)) +(-3994 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-780)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-806 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-845)) . T)) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-712)) (|has| |#3| (-831)) (|has| |#3| (-1031))) +((((-848)) . T)) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -((((-845)) . T)) -((((-1224 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-553))) . T)) -(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545)) (((-401 (-553))) |has| |#1| (-545))) -(((|#2|) . T) (((-553)) |has| |#2| (-626 (-553)))) -(|has| |#1| (-357)) -(-3988 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (-12 (|has| |#1| (-357)) (|has| |#2| (-228)))) -(|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) -(|has| |#1| (-357)) -(((|#1|) . T)) -(((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((|#1| |#1|) . T)) -((((-553) |#1|) . T)) -((((-310 |#1|)) . T)) -(((#0=(-684) (-1151 #0#)) . T)) -((((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((|#1|) . T)) +(|has| |#1| (-38 (-402 (-554)))) +((((-848)) . T)) +((((-1227 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-554))) . T)) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546)) (((-402 (-554))) |has| |#1| (-546))) +(((|#2|) . T) (((-554)) |has| |#2| (-627 (-554)))) +(|has| |#1| (-358)) +(-3994 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (-12 (|has| |#1| (-358)) (|has| |#2| (-229)))) +(|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) +(|has| |#1| (-358)) +(((|#1|) . T)) +(((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1| |#1|) . T)) +((((-554) |#1|) . T)) +((((-311 |#1|)) . T)) +(((#0=(-685) (-1154 #0#)) . T)) +((((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-831)) -(((|#2|) . T) (((-1155)) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-1155)))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545))) (((-553)) . T) ((|#1|) |has| |#1| (-169))) -(((|#2|) . T) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) (((-553)) . T) (($) -3988 (|has| |#1| (-357)) (|has| |#1| (-545)))) -((($ $) . T) ((#0=(-847 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1104 |#1| (-1155))) . T) (((-804 (-1155))) . T) ((|#1|) . T) (((-553)) |has| |#1| (-1020 (-553))) (((-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) (((-1155)) . T)) +(|has| |#1| (-834)) +(((|#2|) . T) (((-1158)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546))) (((-554)) . T) ((|#1|) |has| |#1| (-170))) +(((|#2|) . T) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) (((-554)) . T) (($) -3994 (|has| |#1| (-358)) (|has| |#1| (-546)))) +((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1107 |#1| (-1158))) . T) (((-805 (-1158))) . T) ((|#1|) . T) (((-554)) |has| |#1| (-1023 (-554))) (((-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) (((-1158)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1061) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1155) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-1067 (-1155)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1064) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1158) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-1070 (-1158)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-401 (-553))) |has| |#2| (-38 (-401 (-553))))) -(|has| |#2| (-891)) -((($) . T) ((#0=(-1223 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-553))) |has| #0# (-38 (-401 (-553))))) -((((-553) |#1|) . T)) -((((-1160)) . T)) -(((#0=(-1224 |#1| |#2| |#3| |#4|)) |has| #0# (-303 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#2| |#2|) |has| |#1| (-357)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) ((#0=(-401 (-553)) #0#) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357)))) -(|has| |#2| (-228)) -(|has| $ (-144)) -((((-845)) . T)) -((($) . T) (((-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) -((((-845)) . T)) -(|has| |#1| (-831)) -((((-128)) . T)) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) -((((-401 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-128)) . T)) -((((-845)) . T)) -(((|#2| (-657 |#1|)) . T)) -(-12 (|has| |#1| (-301)) (|has| |#1| (-891))) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +((($) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554))))) +(|has| |#2| (-894)) +((($) . T) ((#0=(-1226 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-554))) |has| #0# (-38 (-402 (-554))))) +((((-554) |#1|) . T)) +((((-1163)) . T)) +(((#0=(-1227 |#1| |#2| |#3| |#4|)) |has| #0# (-304 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#2| |#2|) |has| |#1| (-358)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) ((#0=(-402 (-554)) #0#) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358)))) +(|has| |#2| (-229)) +(|has| $ (-145)) +((((-848)) . T)) +((($) . T) (((-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-848)) . T)) +(|has| |#1| (-834)) +((((-129)) . T)) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) +((((-402 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-129)) . T)) +((((-848)) . T)) +(((|#2| (-658 |#1|)) . T)) +(-12 (|has| |#1| (-302)) (|has| |#1| (-894))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#4|) . T)) -(|has| |#1| (-545)) -((($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) ((|#1|) . T)) -((((-1155)) -3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) -(((|#1|) . T) (($) -3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-545))) (((-401 (-553))) -3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-357)))) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) -(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) -((((-553) |#1|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(((|#1|) . T)) -(((|#1| (-524 (-804 (-1155)))) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((((-553)) . T) ((|#2|) . T) (($) . T) (((-401 (-553))) . T) (((-1155)) |has| |#2| (-1020 (-1155)))) -(((|#1|) . T)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -(((|#1|) . T)) -(-3988 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -((($) . T) (((-852 |#1|)) . T) (((-401 (-553))) . T)) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -(|has| |#1| (-545)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-401 |#2|)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-401 (-553)) #0#) . T) (($ $) . T)) -((((-553)) . T)) -((((-845)) . T)) -(((|#2|) . T) (((-401 (-553))) . T) (($) . T)) -((((-570 |#1|)) . T) (((-401 (-553))) . T) (($) . T)) -((((-845)) . T)) -((((-401 (-553))) . T) (($) . T)) -((((-553) |#1|) . T)) -((((-845)) . T)) -((($ $) . T) (((-1155) $) . T)) -((((-1230 |#1| |#2| |#3|)) . T)) -((((-529)) |has| |#2| (-601 (-529))) (((-874 (-373))) |has| |#2| (-601 (-874 (-373)))) (((-874 (-553))) |has| |#2| (-601 (-874 (-553))))) -((((-845)) . T)) -((((-845)) . T)) -((((-874 (-553))) -12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#3| (-601 (-874 (-553))))) (((-874 (-373))) -12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#3| (-601 (-874 (-373))))) (((-529)) -12 (|has| |#1| (-601 (-529))) (|has| |#3| (-601 (-529))))) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1|) . T) (((-845)) . T) (((-1160)) . T)) -((((-845)) . T)) -((((-1160)) . T)) -((((-113)) . T) ((|#1|) . T) (((-553)) . T)) -(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|))) . T)) -(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) -((((-128)) . T)) -((((-845)) . T)) -((((-1230 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) |has| |#2| (-169)) (($) -3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891)))) +(|has| |#1| (-546)) +((($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) ((|#1|) . T)) +((((-1158)) -3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) +(((|#1|) . T) (($) -3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-546))) (((-402 (-554))) -3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-358)))) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) +((((-554) |#1|) . T)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(((|#1|) . T)) +(((|#1| (-525 (-805 (-1158)))) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((((-554)) . T) ((|#2|) . T) (($) . T) (((-402 (-554))) . T) (((-1158)) |has| |#2| (-1023 (-1158)))) +(((|#1|) . T)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +(((|#1|) . T)) +(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +((($) . T) (((-855 |#1|)) . T) (((-402 (-554))) . T)) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-546)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-402 |#2|)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-402 (-554)) #0#) . T) (($ $) . T)) +((((-554)) . T)) +((((-848)) . T)) +(((|#2|) . T) (((-402 (-554))) . T) (($) . T)) +((((-571 |#1|)) . T) (((-402 (-554))) . T) (($) . T)) +((((-848)) . T)) +((((-402 (-554))) . T) (($) . T)) +((((-554) |#1|) . T)) +((((-848)) . T)) +((($ $) . T) (((-1158) $) . T)) +((((-1233 |#1| |#2| |#3|)) . T)) +((((-530)) |has| |#2| (-602 (-530))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554))))) +((((-848)) . T)) +((((-848)) . T)) +((((-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) (((-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) (((-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530))))) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1|) . T) (((-848)) . T) (((-1163)) . T)) +((((-848)) . T)) +((((-1163)) . T)) +((((-114)) . T) ((|#1|) . T) (((-554)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) . T)) +(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) +((((-129)) . T)) +((((-848)) . T)) +((((-1233 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) |has| |#2| (-170)) (($) -3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-401 (-553))) |has| |#2| (-38 (-401 (-553)))) ((|#2|) . T)) -(|has| |#1| (-357)) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-1083)) . T)) -((((-845)) . T)) -((($) -3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((($) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T)) -((($) . T)) -((($) -3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) ((|#1|) |has| |#1| (-169)) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -((((-1230 |#1| |#2| |#3|)) . T) (((-1202 |#1| |#2| |#3|)) . T)) -((((-1155)) . T) (((-845)) . T)) -(|has| |#2| (-891)) -(((|#1|) . T)) -(|has| |#1| (-891)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-169))) -((((-684)) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-1160)) . T)) -(((|#1|) |has| |#1| (-169))) -((((-1160)) . T)) -((((-1160)) . T)) -(((|#1|) |has| |#1| (-169))) -((((-401 (-553))) . T) (($) . T)) -(((|#1| (-553)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-1160)) . T)) -((((-1160)) . T)) -(|has| |#1| (-357)) -(|has| |#1| (-357)) -(-3988 (|has| |#1| (-169)) (|has| |#1| (-545))) -(((|#1| (-553)) . T)) -(((|#1| (-401 (-553))) . T)) -(((|#1| (-757)) . T)) -((((-401 (-553))) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -((((-553) |#1|) . T)) -((((-553) |#1|) . T)) -(|has| |#1| (-1079)) -((((-553) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-874 (-373))) . T) (((-874 (-553))) . T) (((-1155)) . T) (((-529)) . T)) -(((|#1|) . T)) -((((-845)) . T)) -(-3988 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-779)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -(-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) -((((-553)) . T)) -((((-553)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) +((($) . T) (((-402 (-554))) |has| |#2| (-38 (-402 (-554)))) ((|#2|) . T)) +(|has| |#1| (-358)) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-1086)) . T)) +((((-848)) . T)) +((($) -3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T)) +((($) . T)) +((($) -3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) ((|#1|) |has| |#1| (-170)) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +((((-1233 |#1| |#2| |#3|)) . T) (((-1205 |#1| |#2| |#3|)) . T)) +((((-1158)) . T) (((-848)) . T)) +(|has| |#2| (-894)) +(((|#1|) . T)) +(|has| |#1| (-894)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-170))) +((((-685)) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-1163)) . T)) +(((|#1|) |has| |#1| (-170))) +((((-1163)) . T)) +((((-1163)) . T)) +(((|#1|) |has| |#1| (-170))) +((((-402 (-554))) . T) (($) . T)) +(((|#1| (-554)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-1163)) . T)) +((((-1163)) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3994 (|has| |#1| (-170)) (|has| |#1| (-546))) +(((|#1| (-554)) . T)) +(((|#1| (-402 (-554))) . T)) +(((|#1| (-758)) . T)) +((((-402 (-554))) . T)) +(((|#1| (-525 |#2|) |#2|) . T)) +((((-554) |#1|) . T)) +((((-554) |#1|) . T)) +(|has| |#1| (-1082)) +((((-554) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-877 (-374))) . T) (((-877 (-554))) . T) (((-1158)) . T) (((-530)) . T)) +(((|#1|) . T)) +((((-848)) . T)) +(-3994 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-780)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +(-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) +((((-554)) . T)) +((((-554)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-3988 (|has| |#2| (-169)) (|has| |#2| (-712)) (|has| |#2| (-831)) (|has| |#2| (-1031))) -((((-1155)) -12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) -(-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) -(|has| |#1| (-142)) -(|has| |#1| (-144)) -(|has| |#1| (-357)) +(-3994 (|has| |#2| (-170)) (|has| |#2| (-713)) (|has| |#2| (-834)) (|has| |#2| (-1034))) +((((-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) +(-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))) +(|has| |#1| (-143)) +(|has| |#1| (-145)) +(|has| |#1| (-358)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-228)) -((((-845)) . T)) -(((|#1| (-757) (-1061)) . T)) -((((-553) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-553) |#1|) . T)) -((((-553) |#1|) . T)) -((((-115 |#1|)) . T)) -((((-401 (-553))) . T) (((-553)) . T)) -(((|#2|) |has| |#2| (-1031))) -((((-401 (-553))) . T) (($) . T)) -(((|#2|) . T)) -((((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-545))) -((((-553)) . T)) -((((-553)) . T)) -((((-1137) (-1155) (-553) (-220) (-845)) . T)) +(|has| |#1| (-229)) +((((-848)) . T)) +(((|#1| (-758) (-1064)) . T)) +((((-554) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-554) |#1|) . T)) +((((-554) |#1|) . T)) +((((-116 |#1|)) . T)) +((((-402 (-554))) . T) (((-554)) . T)) +(((|#2|) |has| |#2| (-1034))) +((((-402 (-554))) . T) (($) . T)) +(((|#2|) . T)) +((((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-546))) +((((-554)) . T)) +((((-554)) . T)) +((((-1140) (-1158) (-554) (-221) (-848)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-553)) . T) ((|#2|) |has| |#2| (-169))) -((((-113)) . T) ((|#1|) . T) (((-553)) . T)) -(-3988 (|has| |#1| (-343)) (|has| |#1| (-362))) +((((-554)) . T) ((|#2|) |has| |#2| (-170))) +((((-114)) . T) ((|#1|) . T) (((-554)) . T)) +(-3994 (|has| |#1| (-344)) (|has| |#1| (-363))) (((|#1| |#2|) . T)) -((((-220)) . T)) -((((-401 (-553))) . T) (($) . T) (((-553)) . T)) +((((-221)) . T)) +((((-402 (-554))) . T) (($) . T) (((-554)) . T)) ((($) . T) ((|#1|) . T)) -((((-845)) . T)) -((($) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-401 (-553))) |has| |#1| (-38 (-401 (-553))))) -(((|#2|) |has| |#2| (-1079)) (((-553)) -12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (((-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-529)) |has| |#1| (-601 (-529)))) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-833)) (|has| |#1| (-1079)))) -((($) . T) (((-401 (-553))) . T)) -(|has| |#1| (-891)) -(|has| |#1| (-891)) -((((-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1004))) (((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1004))) (((-874 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-601 (-874 (-373))))) (((-874 (-553))) -12 (|has| |#1| (-357)) (|has| |#2| (-601 (-874 (-553))))) (((-529)) -12 (|has| |#1| (-357)) (|has| |#2| (-601 (-529))))) -((((-845)) . T)) -((((-845)) . T)) +((((-848)) . T)) +((($) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-402 (-554))) |has| |#1| (-38 (-402 (-554))))) +(((|#2|) |has| |#2| (-1082)) (((-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (((-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-530)) |has| |#1| (-602 (-530)))) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-836)) (|has| |#1| (-1082)))) +((($) . T) (((-402 (-554))) . T)) +(|has| |#1| (-894)) +(|has| |#1| (-894)) +((((-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) (((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) (((-877 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-374))))) (((-877 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-554))))) (((-530)) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-530))))) +((((-848)) . T)) +((((-848)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-169))) -(((|#1|) . T) (((-553)) . T)) -((((-1160)) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-545))) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -(((|#2|) . T)) -(-3988 (|has| |#1| (-21)) (|has| |#1| (-831))) -(((|#1|) |has| |#1| (-169))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-845)) -3988 (-12 (|has| |#1| (-600 (-845))) (|has| |#2| (-600 (-845)))) (-12 (|has| |#1| (-1079)) (|has| |#2| (-1079))))) -((((-401 |#2|) |#3|) . T)) -((((-401 (-553))) . T) (($) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-357)) -((($ $) . T) ((#0=(-401 (-553)) #0#) . T)) -(|has| (-401 |#2|) (-144)) -(|has| (-401 |#2|) (-142)) -((((-684)) . T)) -(((|#1|) . T) (((-401 (-553))) . T) (((-553)) . T) (($) . T)) -(((#0=(-553) #0#) . T)) -((($) . T) (((-401 (-553))) . T)) -(-3988 (|has| |#4| (-169)) (|has| |#4| (-712)) (|has| |#4| (-831)) (|has| |#4| (-1031))) -(-3988 (|has| |#3| (-169)) (|has| |#3| (-712)) (|has| |#3| (-831)) (|has| |#3| (-1031))) -((((-845)) . T) (((-1160)) . T)) -(|has| |#4| (-779)) -(-3988 (|has| |#4| (-779)) (|has| |#4| (-831))) -(|has| |#4| (-831)) -(|has| |#3| (-779)) -((((-1160)) . T)) -(-3988 (|has| |#3| (-779)) (|has| |#3| (-831))) -(|has| |#3| (-831)) -((((-553)) . T)) -(((|#2|) . T)) -((((-1155)) -3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) -((((-1155)) -12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) +(((|#1| |#1|) |has| |#1| (-170))) +(((|#1|) . T) (((-554)) . T)) +((((-1163)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-546))) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +(((|#2|) . T)) +(-3994 (|has| |#1| (-21)) (|has| |#1| (-834))) +(((|#1|) |has| |#1| (-170))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-848)) -3994 (-12 (|has| |#1| (-601 (-848))) (|has| |#2| (-601 (-848)))) (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) +((((-402 |#2|) |#3|) . T)) +((((-402 (-554))) . T) (($) . T)) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-358)) +((($ $) . T) ((#0=(-402 (-554)) #0#) . T)) +(|has| (-402 |#2|) (-145)) +(|has| (-402 |#2|) (-143)) +((((-685)) . T)) +(((|#1|) . T) (((-402 (-554))) . T) (((-554)) . T) (($) . T)) +(((#0=(-554) #0#) . T)) +((($) . T) (((-402 (-554))) . T)) +(-3994 (|has| |#4| (-170)) (|has| |#4| (-713)) (|has| |#4| (-834)) (|has| |#4| (-1034))) +(-3994 (|has| |#3| (-170)) (|has| |#3| (-713)) (|has| |#3| (-834)) (|has| |#3| (-1034))) +((((-848)) . T) (((-1163)) . T)) +(|has| |#4| (-780)) +(-3994 (|has| |#4| (-780)) (|has| |#4| (-834))) +(|has| |#4| (-834)) +(|has| |#3| (-780)) +((((-1163)) . T)) +(-3994 (|has| |#3| (-780)) (|has| |#3| (-834))) +(|has| |#3| (-834)) +((((-554)) . T)) +(((|#2|) . T)) +((((-1158)) -3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) +((((-1158)) -12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-847 |#1|)) . T)) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) -((((-1119 |#1| |#2|)) . T)) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) -(((|#2|) . T) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) +((((-850 |#1|)) . T)) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1122 |#1| |#2|)) . T)) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) +(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1004)) -(((|#2|) . T) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -((((-845)) . T)) -((((-529)) |has| |#2| (-601 (-529))) (((-874 (-553))) |has| |#2| (-601 (-874 (-553)))) (((-874 (-373))) |has| |#2| (-601 (-874 (-373)))) (((-373)) . #0=(|has| |#2| (-1004))) (((-220)) . #0#)) -((((-288 |#3|)) . T)) -((((-1155) (-52)) . T)) +(|has| |#1| (-1007)) +(((|#2|) . T) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +((((-848)) . T)) +((((-530)) |has| |#2| (-602 (-530))) (((-877 (-554))) |has| |#2| (-602 (-877 (-554)))) (((-877 (-374))) |has| |#2| (-602 (-877 (-374)))) (((-374)) . #0=(|has| |#2| (-1007))) (((-221)) . #0#)) +((((-289 |#3|)) . T)) +((((-1158) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-401 (-553)))) -(|has| |#1| (-38 (-401 (-553)))) +(|has| |#1| (-38 (-402 (-554)))) +(|has| |#1| (-38 (-402 (-554)))) (((|#2|) . T)) ((($ $) . T)) -((((-401 (-553))) . T) (((-684)) . T) (($) . T)) -((((-1153 |#1| |#2| |#3|)) . T)) -((((-1153 |#1| |#2| |#3|)) . T) (((-1146 |#1| |#2| |#3|)) . T)) -((((-845)) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-553) |#1|) . T)) -((((-1153 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-402 (-554))) . T) (((-685)) . T) (($) . T)) +((((-1156 |#1| |#2| |#3|)) . T)) +((((-1156 |#1| |#2| |#3|)) . T) (((-1149 |#1| |#2| |#3|)) . T)) +((((-848)) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-554) |#1|) . T)) +((((-1156 |#1| |#2| |#3|)) |has| |#1| (-358))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-357)) -(((|#3|) . T) ((|#2|) . T) (($) -3988 (|has| |#4| (-169)) (|has| |#4| (-831)) (|has| |#4| (-1031))) ((|#4|) -3988 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1031)))) -(((|#2|) . T) (($) -3988 (|has| |#3| (-169)) (|has| |#3| (-831)) (|has| |#3| (-1031))) ((|#3|) -3988 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1031)))) +(|has| |#2| (-358)) +(((|#3|) . T) ((|#2|) . T) (($) -3994 (|has| |#4| (-170)) (|has| |#4| (-834)) (|has| |#4| (-1034))) ((|#4|) -3994 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1034)))) +(((|#2|) . T) (($) -3994 (|has| |#3| (-170)) (|has| |#3| (-834)) (|has| |#3| (-1034))) ((|#3|) -3994 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1034)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-357)) -((((-115 |#1|)) . T)) +(|has| |#1| (-358)) +((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-401 (-553))) |has| |#2| (-1020 (-401 (-553)))) (((-553)) |has| |#2| (-1020 (-553))) ((|#2|) . T) (((-847 |#1|)) . T)) -((((-1155)) . T) ((|#1|) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) +((((-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) (((-554)) |has| |#2| (-1023 (-554))) ((|#2|) . T) (((-850 |#1|)) . T)) +((((-1158)) . T) ((|#1|) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) (((|#1|) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -((((-128)) . T) (((-845)) . T)) -((((-553) |#1|) . T)) -((((-128)) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +((((-129)) . T) (((-848)) . T)) +((((-554) |#1|) . T)) +((((-129)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-891))) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((((-845)) . T)) -((((-845)) . T)) -((((-845)) . T)) -(((|#1| (-524 |#2|)) . T)) -((((-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) . T)) -((((-553) (-128)) . T)) -(((|#1| (-553)) . T)) -(((|#1| (-401 (-553))) . T)) -(((|#1| (-757)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-115 |#1|)) . T) (($) . T) (((-401 (-553))) . T)) -((((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -(-3988 (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) -(-3988 (|has| |#1| (-445)) (|has| |#1| (-545)) (|has| |#1| (-891))) -((($) . T)) -(((|#2| (-524 (-847 |#1|))) . T)) -((((-1160)) . T)) -((((-1160)) . T)) -((((-553) |#1|) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -(((|#2|) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-845)) . T) (((-1160)) . T)) -((((-1160)) . T)) -((((-845)) -3988 (|has| |#1| (-600 (-845))) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(((|#2| (-757)) . T)) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-894))) +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((((-848)) . T)) +((((-848)) . T)) +((((-848)) . T)) +(((|#1| (-525 |#2|)) . T)) +((((-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) . T)) +((((-554) (-129)) . T)) +(((|#1| (-554)) . T)) +(((|#1| (-402 (-554))) . T)) +(((|#1| (-758)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-402 (-554))) . T)) +((((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +(-3994 (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) +(-3994 (|has| |#1| (-446)) (|has| |#1| (-546)) (|has| |#1| (-894))) +((($) . T)) +(((|#2| (-525 (-850 |#1|))) . T)) +((((-1163)) . T)) +((((-1163)) . T)) +((((-554) |#1|) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +(((|#2|) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-848)) . T) (((-1163)) . T)) +((((-1163)) . T)) +((((-848)) -3994 (|has| |#1| (-601 (-848))) (|has| |#1| (-1082)))) +(((|#1|) . T)) +(((|#2| (-758)) . T)) (((|#1| |#2|) . T)) -((((-1137) |#1|) . T)) -((((-401 |#2|)) . T)) -((((-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T)) -(|has| |#1| (-545)) -(|has| |#1| (-545)) +((((-1140) |#1|) . T)) +((((-402 |#2|)) . T)) +((((-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T)) +(|has| |#1| (-546)) +(|has| |#1| (-546)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-553)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-280 |#2| |#2|))) -(((|#1| (-630 |#1|)) |has| |#1| (-831))) -(-3988 (|has| |#1| (-228)) (|has| |#1| (-343))) -(-3988 (|has| |#1| (-357)) (|has| |#1| (-343))) -((((-1234 |#1|)) . T) (((-553)) . T) ((|#2|) . T) (((-401 (-553))) |has| |#2| (-1020 (-401 (-553))))) -(|has| |#1| (-1079)) -(((|#1|) . T)) -((((-1234 |#1|)) . T) (((-553)) . T) (($) -3988 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-545)) (|has| |#2| (-891))) (((-1061)) . T) ((|#2|) . T) (((-401 (-553))) -3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553)))))) -((((-401 (-553))) . T) (($) . T)) -((((-981 |#1|)) . T) ((|#1|) . T) (((-553)) -3988 (|has| (-981 |#1|) (-1020 (-553))) (|has| |#1| (-1020 (-553)))) (((-401 (-553))) -3988 (|has| (-981 |#1|) (-1020 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -((((-1155)) |has| |#1| (-882 (-1155)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) -(((|#1| (-589 |#1| |#3|) (-589 |#1| |#2|)) . T)) +((((-554)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-281 |#2| |#2|))) +(((|#1| (-631 |#1|)) |has| |#1| (-834))) +(-3994 (|has| |#1| (-229)) (|has| |#1| (-344))) +(-3994 (|has| |#1| (-358)) (|has| |#1| (-344))) +((((-1237 |#1|)) . T) (((-554)) . T) ((|#2|) . T) (((-402 (-554))) |has| |#2| (-1023 (-402 (-554))))) +(|has| |#1| (-1082)) +(((|#1|) . T)) +((((-1237 |#1|)) . T) (((-554)) . T) (($) -3994 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-546)) (|has| |#2| (-894))) (((-1064)) . T) ((|#2|) . T) (((-402 (-554))) -3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) +((((-402 (-554))) . T) (($) . T)) +((((-984 |#1|)) . T) ((|#1|) . T) (((-554)) -3994 (|has| (-984 |#1|) (-1023 (-554))) (|has| |#1| (-1023 (-554)))) (((-402 (-554))) -3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +((((-1158)) |has| |#1| (-885 (-1158)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) +(((|#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1119 |#1| |#2|) #0#) |has| (-1119 |#1| |#2|) (-303 (-1119 |#1| |#2|)))) +(((#0=(-1122 |#1| |#2|) #0#) |has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((#0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) #0#) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) -(((#0=(-115 |#1|)) |has| #0# (-303 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((#0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) #0#) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-304 #0#))) ((($ $) . T)) -(-3988 (|has| |#1| (-833)) (|has| |#1| (-1079))) -((($ $) . T) ((#0=(-847 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-228)) ((|#2| |#1|) |has| |#1| (-228)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-471 . -1079) T) ((-258 . -507) 161593) ((-242 . -507) 161536) ((-240 . -1079) 161486) ((-560 . -110) 161471) ((-524 . -23) T) ((-136 . -1079) T) ((-135 . -1079) T) ((-116 . -303) 161428) ((-131 . -1079) T) ((-472 . -507) 161220) ((-662 . -603) 161204) ((-679 . -101) T) ((-1120 . -507) 161123) ((-384 . -129) T) ((-1251 . -958) 161092) ((-31 . -92) T) ((-589 . -482) 161076) ((-608 . -129) T) ((-805 . -829) T) ((-516 . -56) 161026) ((-58 . -507) 160959) ((-512 . -507) 160892) ((-412 . -882) 160851) ((-166 . -1031) T) ((-509 . -507) 160784) ((-490 . -507) 160717) ((-489 . -507) 160650) ((-785 . -1020) 160433) ((-684 . -38) 160398) ((-1211 . -603) 160146) ((-337 . -343) T) ((-1073 . -1072) 160130) ((-1073 . -1079) 160108) ((-838 . -603) 160005) ((-166 . -238) 159956) ((-166 . -228) 159907) ((-1073 . -1074) 159865) ((-854 . -280) 159823) ((-220 . -781) T) ((-220 . -778) T) ((-679 . -278) NIL) ((-560 . -603) 159795) ((-1129 . -1168) 159774) ((-401 . -974) 159758) ((-686 . -21) T) ((-686 . -25) T) ((-1253 . -633) 159732) ((-310 . -157) 159711) ((-310 . -140) 159690) ((-1129 . -106) 159640) ((-132 . -25) T) ((-40 . -226) 159617) ((-115 . -21) T) ((-115 . -25) T) ((-595 . -282) 159593) ((-468 . -282) 159572) ((-1211 . -320) 159549) ((-1211 . -1031) T) ((-838 . -1031) T) ((-785 . -332) 159533) ((-116 . -1130) NIL) ((-90 . -600) 159465) ((-470 . -129) T) ((-1211 . -228) T) ((-1075 . -483) 159446) ((-1075 . -600) 159412) ((-1069 . -483) 159393) ((-1069 . -600) 159359) ((-581 . -1192) T) ((-1053 . -483) 159340) ((-560 . -1031) T) ((-1053 . -600) 159306) ((-647 . -703) 159290) ((-1046 . -483) 159271) ((-1046 . -600) 159237) ((-940 . -282) 159214) ((-59 . -34) T) ((-1042 . -781) T) ((-1042 . -778) T) ((-1018 . -483) 159195) ((-1001 . -483) 159176) ((-802 . -712) T) ((-717 . -47) 159141) ((-610 . -38) 159128) ((-349 . -284) T) ((-346 . -284) T) ((-338 . -284) T) ((-258 . -284) 159059) ((-242 . -284) 158990) ((-1018 . -600) 158956) ((-1006 . -101) T) ((-1001 . -600) 158922) ((-613 . -483) 158903) ((-407 . -712) T) ((-116 . -38) 158848) ((-476 . -483) 158829) ((-613 . -600) 158795) ((-407 . -466) T) ((-213 . -483) 158776) ((-476 . -600) 158742) ((-348 . -101) T) ((-213 . -600) 158708) ((-1186 . -1038) T) ((-697 . -1038) T) ((-1153 . -47) 158685) ((-1152 . -47) 158655) ((-1146 . -47) 158632) ((-127 . -282) 158607) ((-1017 . -148) 158553) ((-892 . -284) T) ((-1105 . -47) 158525) ((-679 . -303) NIL) ((-508 . -600) 158507) ((-503 . -600) 158489) ((-501 . -600) 158471) ((-321 . -1079) 158421) ((-698 . -445) 158352) ((-48 . -101) T) ((-1222 . -280) 158337) ((-1201 . -280) 158257) ((-630 . -651) 158241) ((-630 . -636) 158225) ((-333 . -21) T) ((-333 . -25) T) ((-40 . -343) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-630 . -367) 158209) ((-592 . -483) 158191) ((-589 . -280) 158168) ((-592 . -600) 158135) ((-382 . -101) T) ((-1099 . -140) T) ((-125 . -600) 158067) ((-856 . -1079) T) ((-643 . -405) 158051) ((-700 . -600) 158033) ((-182 . -600) 158015) ((-159 . -600) 157997) ((-154 . -600) 157979) ((-1253 . -712) T) ((-1081 . -34) T) ((-853 . -781) NIL) ((-853 . -778) NIL) ((-841 . -833) T) ((-717 . -868) NIL) ((-1262 . -129) T) ((-375 . -129) T) ((-874 . -603) 157947) ((-886 . -101) T) ((-717 . -1020) 157823) ((-524 . -129) T) ((-1066 . -405) 157807) ((-982 . -482) 157791) ((-116 . -394) 157768) ((-1146 . -1192) 157747) ((-768 . -405) 157731) ((-766 . -405) 157715) ((-925 . -34) T) ((-679 . -1130) NIL) ((-245 . -633) 157550) ((-244 . -633) 157372) ((-803 . -902) 157351) ((-447 . -405) 157335) ((-589 . -19) 157319) ((-1125 . -1185) 157288) ((-1146 . -868) NIL) ((-1146 . -866) 157240) ((-589 . -591) 157217) ((-1178 . -600) 157149) ((-1154 . -600) 157131) ((-61 . -389) T) ((-1152 . -1020) 157066) ((-1146 . -1020) 157032) ((-679 . -38) 156982) ((-467 . -280) 156967) ((-717 . -371) 156951) ((-643 . -1038) T) ((-1222 . -984) 156917) ((-1201 . -984) 156883) ((-1067 . -603) 156867) ((-1043 . -1168) 156842) ((-1055 . -603) 156819) ((-854 . -601) 156626) ((-854 . -600) 156608) ((-1165 . -482) 156545) ((-412 . -1004) 156523) ((-48 . -303) 156510) ((-1043 . -106) 156456) ((-472 . -482) 156393) ((-513 . -1192) T) ((-1146 . -332) 156345) ((-1120 . -482) 156316) ((-1146 . -371) 156268) ((-1066 . -1038) T) ((-431 . -101) T) ((-180 . -1079) T) ((-245 . -34) T) ((-244 . -34) T) ((-768 . -1038) T) ((-766 . -1038) T) ((-717 . -882) 156245) ((-447 . -1038) T) ((-58 . -482) 156229) ((-1016 . -1037) 156203) ((-512 . -482) 156187) ((-509 . -482) 156171) ((-490 . -482) 156155) ((-489 . -482) 156139) ((-240 . -507) 156072) ((-1016 . -110) 156039) ((-1153 . -882) 155952) ((-1152 . -882) 155858) ((-1146 . -882) 155691) ((-1105 . -882) 155675) ((-655 . -1091) T) ((-348 . -1130) T) ((-631 . -92) T) ((-316 . -1037) 155657) ((-245 . -777) 155636) ((-245 . -780) 155587) ((-31 . -483) 155568) ((-245 . -779) 155547) ((-244 . -777) 155526) ((-244 . -780) 155477) ((-244 . -779) 155456) ((-31 . -600) 155422) ((-50 . -1038) T) ((-245 . -712) 155332) ((-244 . -712) 155242) ((-1186 . -1079) T) ((-655 . -23) T) ((-570 . -1038) T) ((-511 . -1038) T) ((-373 . -1037) 155207) ((-316 . -110) 155182) ((-72 . -377) T) ((-72 . -389) T) ((-1006 . -38) 155119) ((-679 . -394) 155101) ((-98 . -101) T) ((-697 . -1079) T) ((-985 . -142) 155073) ((-985 . -144) 155045) ((-373 . -110) 155001) ((-313 . -1196) 154980) ((-467 . -984) 154946) ((-348 . -38) 154911) ((-40 . -364) 154883) ((-855 . -600) 154755) ((-126 . -124) 154739) ((-120 . -124) 154723) ((-820 . -1037) 154693) ((-819 . -21) 154645) ((-813 . -1037) 154629) ((-819 . -25) 154581) ((-313 . -545) 154532) ((-510 . -603) 154513) ((-553 . -814) T) ((-235 . -1192) T) ((-1016 . -603) 154482) ((-820 . -110) 154447) ((-813 . -110) 154426) ((-1222 . -600) 154408) ((-1201 . -600) 154390) ((-1201 . -601) 154061) ((-1151 . -891) 154040) ((-1104 . -891) 154019) ((-48 . -38) 153984) ((-1260 . -1091) T) ((-589 . -600) 153896) ((-589 . -601) 153857) ((-1258 . -1091) T) ((-355 . -603) 153841) ((-316 . -603) 153825) ((-235 . -1020) 153652) ((-1151 . -633) 153577) ((-1104 . -633) 153502) ((-704 . -600) 153484) ((-837 . -633) 153458) ((-1260 . -23) T) ((-1258 . -23) T) ((-484 . -1079) T) ((-373 . -603) 153408) ((-373 . -605) 153390) ((-1016 . -1031) T) ((-1165 . -280) 153369) ((-166 . -362) 153320) ((-986 . -1192) T) ((-820 . -603) 153274) ((-813 . -603) 153229) ((-44 . -23) T) ((-472 . -280) 153208) ((-574 . -1079) T) ((-1125 . -1088) 153177) ((-1083 . -1082) 153129) ((-384 . -21) T) ((-384 . -25) T) ((-149 . -1091) T) ((-1266 . -101) T) ((-986 . -866) 153111) ((-986 . -868) 153093) ((-1186 . -703) 152990) ((-610 . -226) 152974) ((-608 . -21) T) ((-283 . -545) T) ((-608 . -25) T) ((-1172 . -1079) T) ((-697 . -703) 152939) ((-235 . -371) 152908) ((-986 . -1020) 152868) ((-373 . -1031) T) ((-218 . -1038) T) ((-116 . -226) 152845) ((-58 . -280) 152822) ((-149 . -23) T) ((-509 . -280) 152799) ((-321 . -507) 152732) ((-489 . -280) 152709) ((-373 . -238) T) ((-373 . -228) T) ((-820 . -1031) T) ((-813 . -1031) T) ((-698 . -931) 152678) ((-686 . -833) T) ((-467 . -600) 152660) ((-813 . -228) 152639) ((-132 . -833) T) ((-643 . -1079) T) ((-1165 . -591) 152618) ((-539 . -1168) 152597) ((-330 . -1079) T) ((-313 . -357) 152576) ((-401 . -144) 152555) ((-401 . -142) 152534) ((-946 . -1091) 152433) ((-235 . -882) 152365) ((-801 . -1091) 152275) ((-639 . -835) 152259) ((-472 . -591) 152238) ((-539 . -106) 152188) ((-986 . -371) 152170) ((-986 . -332) 152152) ((-96 . -1079) T) ((-946 . -23) 151963) ((-470 . -21) T) ((-470 . -25) T) ((-801 . -23) 151833) ((-1155 . -600) 151815) ((-58 . -19) 151799) ((-1155 . -601) 151721) ((-1151 . -712) T) ((-1104 . -712) T) ((-509 . -19) 151705) ((-489 . -19) 151689) ((-58 . -591) 151666) ((-1066 . -1079) T) ((-883 . -101) 151644) ((-837 . -712) T) ((-768 . -1079) T) ((-509 . -591) 151621) ((-489 . -591) 151598) ((-766 . -1079) T) ((-766 . -1045) 151565) ((-454 . -1079) T) ((-447 . -1079) T) ((-574 . -703) 151540) ((-634 . -1079) T) ((-1230 . -47) 151517) ((-1224 . -101) T) ((-1223 . -47) 151487) ((-1202 . -47) 151464) ((-1186 . -169) 151415) ((-1152 . -301) 151394) ((-986 . -882) NIL) ((-1146 . -301) 151373) ((-614 . -1091) T) ((-655 . -129) T) ((-1075 . -603) 151354) ((-1069 . -603) 151335) ((-1059 . -545) 151286) ((-1059 . -1196) 151237) ((-1053 . -603) 151218) ((-269 . -1079) T) ((-84 . -434) T) ((-84 . -389) T) ((-1046 . -603) 151199) ((-1018 . -603) 151180) ((-50 . -1079) T) ((-1001 . -603) 151161) ((-697 . -169) T) ((-583 . -47) 151138) ((-220 . -633) 151103) ((-570 . -1079) T) ((-511 . -1079) T) ((-353 . -1196) T) ((-347 . -1196) T) ((-339 . -1196) T) ((-480 . -806) T) ((-480 . -902) T) ((-313 . -1091) T) ((-107 . -1196) T) ((-700 . -1037) 151073) ((-333 . -833) T) ((-212 . -902) T) ((-212 . -806) T) ((-613 . -603) 151054) ((-353 . -545) T) ((-347 . -545) T) ((-339 . -545) T) ((-476 . -603) 151035) ((-107 . -545) T) ((-643 . -703) 151005) ((-1146 . -1004) NIL) ((-213 . -603) 150986) ((-313 . -23) T) ((-66 . -1192) T) ((-982 . -600) 150918) ((-679 . -226) 150900) ((-700 . -110) 150865) ((-630 . -34) T) ((-240 . -482) 150849) ((-1081 . -1077) 150833) ((-168 . -1079) T) ((-934 . -891) 150812) ((-508 . -603) 150796) ((-1266 . -1130) T) ((-1262 . -21) T) ((-474 . -891) 150775) ((-1262 . -25) T) ((-1260 . -129) T) ((-1258 . -129) T) ((-1251 . -101) T) ((-1234 . -600) 150741) ((-1223 . -1020) 150676) ((-1066 . -703) 150525) ((-1042 . -633) 150512) ((-934 . -633) 150437) ((-768 . -703) 150266) ((-529 . -600) 150248) ((-529 . -601) 150229) ((-766 . -703) 150078) ((-1202 . -1192) 150057) ((-1056 . -101) T) ((-375 . -25) T) ((-375 . -21) T) ((-474 . -633) 149982) ((-454 . -703) 149953) ((-447 . -703) 149802) ((-969 . -101) T) ((-1202 . -868) NIL) ((-1202 . -866) 149754) ((-1165 . -601) NIL) ((-723 . -101) T) ((-1165 . -600) 149736) ((-592 . -603) 149718) ((-1121 . -1102) 149663) ((-1028 . -1185) 149592) ((-524 . -25) T) ((-883 . -303) 149530) ((-700 . -603) 149484) ((-337 . -1038) T) ((-631 . -483) 149465) ((-138 . -101) T) ((-44 . -129) T) ((-283 . -1091) T) ((-666 . -92) T) ((-661 . -92) T) ((-649 . -600) 149447) ((-631 . -600) 149400) ((-471 . -92) T) ((-349 . -600) 149382) ((-346 . -600) 149364) ((-338 . -600) 149346) ((-258 . -601) 149094) ((-258 . -600) 149076) ((-242 . -600) 149058) ((-242 . -601) 148919) ((-131 . -92) T) ((-136 . -92) T) ((-135 . -92) T) ((-1202 . -1020) 148885) ((-1186 . -507) 148852) ((-1120 . -600) 148834) ((-805 . -840) T) ((-805 . -712) T) ((-589 . -282) 148811) ((-570 . -703) 148776) ((-472 . -601) NIL) ((-472 . -600) 148758) ((-511 . -703) 148703) ((-310 . -101) T) ((-307 . -101) T) ((-283 . -23) T) ((-149 . -129) T) ((-380 . -712) T) ((-854 . -1037) 148655) ((-892 . -600) 148637) ((-892 . -601) 148619) ((-854 . -110) 148557) ((-700 . -1031) T) ((-698 . -1214) 148541) ((-134 . -101) T) ((-113 . -101) T) ((-679 . -343) NIL) ((-512 . -600) 148473) ((-373 . -781) T) ((-218 . -1079) T) ((-373 . -778) T) ((-220 . -780) T) ((-220 . -777) T) ((-58 . -601) 148434) ((-58 . -600) 148346) ((-220 . -712) T) ((-509 . -601) 148307) ((-509 . -600) 148219) ((-490 . -600) 148151) ((-489 . -601) 148112) ((-489 . -600) 148024) ((-1059 . -357) 147975) ((-40 . -405) 147952) ((-76 . -1192) T) ((-853 . -891) NIL) ((-353 . -323) 147936) ((-353 . -357) T) ((-347 . -323) 147920) ((-347 . -357) T) ((-339 . -323) 147904) ((-339 . -357) T) ((-310 . -278) 147883) ((-107 . -357) T) ((-69 . -1192) T) ((-1202 . -332) 147835) ((-853 . -633) 147780) ((-1202 . -371) 147732) ((-946 . -129) 147587) ((-801 . -129) 147457) ((-940 . -636) 147441) ((-1066 . -169) 147352) ((-940 . -367) 147336) ((-1042 . -780) T) ((-1042 . -777) T) ((-854 . -603) 147234) ((-768 . -169) 147125) ((-766 . -169) 147036) ((-802 . -47) 146998) ((-1042 . -712) T) ((-321 . -482) 146982) ((-934 . -712) T) ((-447 . -169) 146893) ((-240 . -280) 146870) ((-474 . -712) T) ((-1251 . -303) 146808) ((-1230 . -882) 146721) ((-1223 . -882) 146627) ((-1222 . -1037) 146462) ((-1202 . -882) 146295) ((-1201 . -1037) 146103) ((-1186 . -284) 146082) ((-1125 . -148) 146066) ((-1099 . -101) T) ((-1097 . -1079) T) ((-1059 . -23) T) ((-1054 . -101) T) ((-909 . -937) T) ((-723 . -303) 146004) ((-74 . -1192) T) ((-30 . -937) T) ((-166 . -891) 145957) ((-649 . -376) 145929) ((-111 . -827) T) ((-1 . -600) 145911) ((-1059 . -1091) T) ((-127 . -636) 145893) ((-50 . -607) 145877) ((-985 . -403) 145849) ((-583 . -882) 145762) ((-432 . -101) T) ((-138 . -303) NIL) ((-127 . -367) 145744) ((-854 . -1031) T) ((-819 . -833) 145723) ((-80 . -1192) T) ((-697 . -284) T) ((-40 . -1038) T) ((-570 . -169) T) ((-511 . -169) T) ((-504 . -600) 145705) ((-166 . -633) 145615) ((-500 . -600) 145597) ((-345 . -144) 145579) ((-345 . -142) T) ((-353 . -1091) T) ((-347 . -1091) T) ((-339 . -1091) T) ((-986 . -301) T) ((-896 . -301) T) ((-854 . -238) T) ((-107 . -1091) T) ((-854 . -228) 145558) ((-1222 . -110) 145379) ((-1201 . -110) 145168) ((-240 . -1226) 145152) ((-553 . -831) T) ((-353 . -23) T) ((-348 . -343) T) ((-310 . -303) 145139) ((-307 . -303) 145080) ((-347 . -23) T) ((-313 . -129) T) ((-339 . -23) T) ((-986 . -1004) T) ((-31 . -603) 145061) ((-107 . -23) T) ((-240 . -591) 145038) ((-1224 . -38) 144930) ((-1211 . -891) 144909) ((-111 . -1079) T) ((-1017 . -101) T) ((-1211 . -633) 144834) ((-853 . -780) NIL) ((-838 . -633) 144808) ((-853 . -777) NIL) ((-802 . -868) NIL) ((-853 . -712) T) ((-1066 . -507) 144681) ((-768 . -507) 144628) ((-766 . -507) 144580) ((-560 . -633) 144567) ((-802 . -1020) 144395) ((-447 . -507) 144338) ((-382 . -383) T) ((-1222 . -603) 144151) ((-1201 . -603) 143899) ((-59 . -1192) T) ((-608 . -833) 143878) ((-493 . -646) T) ((-1125 . -958) 143847) ((-985 . -445) T) ((-684 . -831) T) ((-503 . -778) T) ((-467 . -1037) 143682) ((-337 . -1079) T) ((-307 . -1130) NIL) ((-283 . -129) T) ((-388 . -1079) T) ((-679 . -364) 143649) ((-852 . -1038) T) ((-218 . -607) 143626) ((-321 . -280) 143603) ((-467 . -110) 143424) ((-1222 . -1031) T) ((-1201 . -1031) T) ((-802 . -371) 143408) ((-166 . -712) T) ((-639 . -101) T) ((-1222 . -238) 143387) ((-1222 . -228) 143339) ((-1201 . -228) 143244) ((-1201 . -238) 143223) ((-985 . -396) NIL) ((-655 . -626) 143171) ((-310 . -38) 143081) ((-307 . -38) 143010) ((-68 . -600) 142992) ((-313 . -486) 142958) ((-1165 . -282) 142937) ((-1092 . -1091) 142847) ((-82 . -1192) T) ((-60 . -600) 142829) ((-472 . -282) 142808) ((-1253 . -1020) 142785) ((-1143 . -1079) T) ((-1092 . -23) 142655) ((-802 . -882) 142591) ((-1211 . -712) T) ((-1081 . -1192) T) ((-467 . -603) 142417) ((-1066 . -284) 142348) ((-948 . -1079) T) ((-875 . -101) T) ((-768 . -284) 142259) ((-321 . -19) 142243) ((-58 . -282) 142220) ((-766 . -284) 142151) ((-838 . -712) T) ((-116 . -831) NIL) ((-509 . -282) 142128) ((-321 . -591) 142105) ((-489 . -282) 142082) ((-447 . -284) 142013) ((-1017 . -303) 141864) ((-666 . -483) 141845) ((-560 . -712) T) ((-661 . -483) 141826) ((-666 . -600) 141776) ((-661 . -600) 141742) ((-647 . -600) 141724) ((-471 . -483) 141705) ((-471 . -600) 141671) ((-240 . -601) 141632) ((-240 . -483) 141609) ((-136 . -483) 141590) ((-135 . -483) 141571) ((-131 . -483) 141552) ((-240 . -600) 141444) ((-208 . -101) T) ((-136 . -600) 141410) ((-135 . -600) 141376) ((-131 . -600) 141342) ((-1126 . -34) T) ((-925 . -1192) T) ((-337 . -703) 141287) ((-655 . -25) T) ((-655 . -21) T) ((-1155 . -603) 141268) ((-467 . -1031) T) ((-622 . -411) 141233) ((-594 . -411) 141198) ((-1099 . -1130) T) ((-570 . -284) T) ((-511 . -284) T) ((-1223 . -301) 141177) ((-467 . -228) 141129) ((-467 . -238) 141108) ((-1202 . -301) 141087) ((-1202 . -1004) NIL) ((-1059 . -129) T) ((-854 . -781) 141066) ((-141 . -101) T) ((-40 . -1079) T) ((-854 . -778) 141045) ((-630 . -992) 141029) ((-569 . -1038) T) ((-553 . -1038) T) ((-488 . -1038) T) ((-401 . -445) T) ((-353 . -129) T) ((-310 . -394) 141013) ((-307 . -394) 140974) ((-347 . -129) T) ((-339 . -129) T) ((-1160 . -1079) T) ((-1099 . -38) 140961) ((-1073 . -600) 140928) ((-107 . -129) T) ((-936 . -1079) T) ((-903 . -1079) T) ((-757 . -1079) T) ((-657 . -1079) T) ((-499 . -1062) T) ((-686 . -144) T) ((-115 . -144) T) ((-1260 . -21) T) ((-1260 . -25) T) ((-1258 . -21) T) ((-1258 . -25) T) ((-649 . -1037) 140912) ((-524 . -833) T) ((-493 . -833) T) ((-349 . -1037) 140864) ((-346 . -1037) 140816) ((-338 . -1037) 140768) ((-245 . -1192) T) ((-244 . -1192) T) ((-258 . -1037) 140611) ((-242 . -1037) 140454) ((-649 . -110) 140433) ((-349 . -110) 140371) ((-346 . -110) 140309) ((-338 . -110) 140247) ((-258 . -110) 140076) ((-242 . -110) 139905) ((-803 . -1196) 139884) ((-610 . -405) 139868) ((-44 . -21) T) ((-44 . -25) T) ((-801 . -626) 139774) ((-803 . -545) 139753) ((-245 . -1020) 139580) ((-244 . -1020) 139407) ((-125 . -118) 139391) ((-892 . -1037) 139356) ((-698 . -101) T) ((-684 . -1038) T) ((-529 . -605) 139259) ((-337 . -169) T) ((-149 . -21) T) ((-149 . -25) T) ((-87 . -600) 139241) ((-892 . -110) 139197) ((-40 . -703) 139142) ((-852 . -1079) T) ((-649 . -603) 139119) ((-631 . -603) 139100) ((-349 . -603) 139037) ((-346 . -603) 138974) ((-338 . -603) 138911) ((-321 . -601) 138872) ((-321 . -600) 138784) ((-258 . -603) 138537) ((-242 . -603) 138322) ((-1201 . -778) 138275) ((-1201 . -781) 138228) ((-245 . -371) 138197) ((-244 . -371) 138166) ((-639 . -38) 138136) ((-595 . -34) T) ((-475 . -1091) 138046) ((-468 . -34) T) ((-1092 . -129) 137916) ((-946 . -25) 137727) ((-892 . -603) 137677) ((-856 . -600) 137659) ((-946 . -21) 137614) ((-801 . -21) 137524) ((-801 . -25) 137375) ((-610 . -1038) T) ((-1157 . -545) 137354) ((-1151 . -47) 137331) ((-349 . -1031) T) ((-346 . -1031) T) ((-475 . -23) 137201) ((-338 . -1031) T) ((-242 . -1031) T) ((-258 . -1031) T) ((-1104 . -47) 137173) ((-116 . -1038) T) ((-1016 . -633) 137147) ((-940 . -34) T) ((-349 . -228) 137126) ((-349 . -238) T) ((-346 . -228) 137105) ((-346 . -238) T) ((-338 . -228) 137084) ((-338 . -238) T) ((-242 . -320) 137041) ((-258 . -320) 137013) ((-258 . -228) 136992) ((-1135 . -148) 136976) ((-245 . -882) 136908) ((-244 . -882) 136840) ((-1061 . -833) T) ((-408 . -1091) T) ((-1035 . -23) T) ((-892 . -1031) T) ((-316 . -633) 136822) ((-1006 . -831) T) ((-1186 . -984) 136788) ((-1152 . -902) 136767) ((-1146 . -902) 136746) ((-1146 . -806) NIL) ((-892 . -238) T) ((-803 . -357) 136725) ((-379 . -23) T) ((-126 . -1079) 136703) ((-120 . -1079) 136681) ((-892 . -228) T) ((-127 . -34) T) ((-373 . -633) 136646) ((-852 . -703) 136633) ((-1028 . -148) 136598) ((-40 . -169) T) ((-679 . -405) 136580) ((-698 . -303) 136567) ((-820 . -633) 136527) ((-813 . -633) 136501) ((-313 . -25) T) ((-313 . -21) T) ((-643 . -280) 136480) ((-569 . -1079) T) ((-553 . -1079) T) ((-488 . -1079) T) ((-240 . -282) 136457) ((-307 . -226) 136418) ((-1151 . -868) NIL) ((-1104 . -868) 136277) ((-128 . -833) T) ((-1151 . -1020) 136157) ((-1104 . -1020) 136040) ((-180 . -600) 136022) ((-837 . -1020) 135918) ((-768 . -280) 135845) ((-803 . -1091) T) ((-1016 . -712) T) ((-589 . -636) 135829) ((-1028 . -958) 135758) ((-981 . -101) T) ((-803 . -23) T) ((-698 . -1130) 135736) ((-679 . -1038) T) ((-589 . -367) 135720) ((-345 . -445) T) ((-337 . -284) T) ((-1239 . -1079) T) ((-243 . -1079) T) ((-393 . -101) T) ((-283 . -21) T) ((-283 . -25) T) ((-355 . -712) T) ((-696 . -1079) T) ((-684 . -1079) T) ((-355 . -466) T) ((-1186 . -600) 135702) ((-1151 . -371) 135686) ((-1104 . -371) 135670) ((-1006 . -405) 135632) ((-138 . -224) 135614) ((-373 . -780) T) ((-373 . -777) T) ((-852 . -169) T) ((-373 . -712) T) ((-697 . -600) 135596) ((-698 . -38) 135425) ((-1238 . -1236) 135409) ((-345 . -396) T) ((-1238 . -1079) 135359) ((-569 . -703) 135346) ((-553 . -703) 135333) ((-488 . -703) 135298) ((-310 . -616) 135277) ((-820 . -712) T) ((-813 . -712) T) ((-630 . -1192) T) ((-1059 . -626) 135225) ((-1151 . -882) 135168) ((-1104 . -882) 135152) ((-647 . -1037) 135136) ((-107 . -626) 135118) ((-475 . -129) 134988) ((-1157 . -1091) T) ((-934 . -47) 134957) ((-610 . -1079) T) ((-647 . -110) 134936) ((-484 . -600) 134902) ((-321 . -282) 134879) ((-474 . -47) 134836) ((-1157 . -23) T) ((-116 . -1079) T) ((-102 . -101) 134814) ((-1250 . -1091) T) ((-1035 . -129) T) ((-1006 . -1038) T) ((-805 . -1020) 134798) ((-985 . -710) 134770) ((-1250 . -23) T) ((-684 . -703) 134735) ((-574 . -600) 134717) ((-380 . -1020) 134701) ((-348 . -1038) T) ((-379 . -129) T) ((-318 . -1020) 134685) ((-220 . -868) 134667) ((-986 . -902) T) ((-90 . -34) T) ((-986 . -806) T) ((-896 . -902) T) ((-1172 . -600) 134649) ((-1099 . -814) T) ((-480 . -1196) T) ((-1084 . -1079) T) ((-1059 . -21) T) ((-1059 . -25) T) ((-212 . -1196) T) ((-981 . -303) 134614) ((-220 . -1020) 134574) ((-40 . -284) T) ((-700 . -633) 134534) ((-666 . -603) 134515) ((-661 . -603) 134496) ((-480 . -545) T) ((-471 . -603) 134477) ((-353 . -25) T) ((-353 . -21) T) ((-347 . -25) T) ((-212 . -545) T) ((-347 . -21) T) ((-339 . -25) T) ((-339 . -21) T) ((-240 . -603) 134454) ((-136 . -603) 134435) ((-135 . -603) 134416) ((-131 . -603) 134397) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1038) T) ((-569 . -169) T) ((-553 . -169) T) ((-488 . -169) T) ((-643 . -600) 134379) ((-723 . -722) 134363) ((-330 . -600) 134345) ((-67 . -377) T) ((-67 . -389) T) ((-1081 . -106) 134329) ((-1042 . -868) 134311) ((-934 . -868) 134236) ((-638 . -1091) T) ((-610 . -703) 134223) ((-474 . -868) NIL) ((-1125 . -101) T) ((-1073 . -605) 134207) ((-1042 . -1020) 134189) ((-96 . -600) 134171) ((-470 . -144) T) ((-934 . -1020) 134051) ((-116 . -703) 133996) ((-638 . -23) T) ((-474 . -1020) 133872) ((-1066 . -601) NIL) ((-1066 . -600) 133854) ((-768 . -601) NIL) ((-768 . -600) 133815) ((-766 . -601) 133449) ((-766 . -600) 133363) ((-1092 . -626) 133269) ((-454 . -600) 133251) ((-447 . -600) 133233) ((-447 . -601) 133094) ((-1017 . -224) 133040) ((-854 . -891) 133019) ((-125 . -34) T) ((-803 . -129) T) ((-634 . -600) 133001) ((-567 . -101) T) ((-349 . -1257) 132985) ((-346 . -1257) 132969) ((-338 . -1257) 132953) ((-126 . -507) 132886) ((-120 . -507) 132819) ((-504 . -778) T) ((-504 . -781) T) ((-503 . -780) T) ((-102 . -303) 132757) ((-217 . -101) 132735) ((-679 . -1079) T) ((-684 . -169) T) ((-854 . -633) 132687) ((-64 . -378) T) ((-269 . -600) 132669) ((-64 . -389) T) ((-934 . -371) 132653) ((-852 . -284) T) ((-50 . -600) 132635) ((-981 . -38) 132583) ((-570 . -600) 132565) ((-474 . -371) 132549) ((-570 . -601) 132531) ((-511 . -600) 132513) ((-892 . -1257) 132500) ((-853 . -1192) T) ((-686 . -445) T) ((-488 . -507) 132466) ((-480 . -357) T) ((-349 . -362) 132445) ((-346 . -362) 132424) ((-338 . -362) 132403) ((-700 . -712) T) ((-212 . -357) T) ((-115 . -445) T) ((-1261 . -1252) 132387) ((-853 . -866) 132364) ((-853 . -868) NIL) ((-946 . -833) 132263) ((-801 . -833) 132214) ((-639 . -641) 132198) ((-1178 . -34) T) ((-168 . -600) 132180) ((-1092 . -21) 132090) ((-1092 . -25) 131941) ((-853 . -1020) 131918) ((-934 . -882) 131899) ((-1211 . -47) 131876) ((-892 . -362) T) ((-58 . -636) 131860) ((-509 . -636) 131844) ((-474 . -882) 131821) ((-70 . -434) T) ((-70 . -389) T) ((-489 . -636) 131805) ((-58 . -367) 131789) ((-610 . -169) T) ((-509 . -367) 131773) ((-489 . -367) 131757) ((-813 . -694) 131741) ((-1151 . -301) 131720) ((-1157 . -129) T) ((-116 . -169) T) ((-1125 . -303) 131658) ((-166 . -1192) T) ((-622 . -730) 131642) ((-594 . -730) 131626) ((-1250 . -129) T) ((-1223 . -902) 131605) ((-1202 . -902) 131584) ((-1202 . -806) NIL) ((-679 . -703) 131534) ((-1201 . -891) 131487) ((-1006 . -1079) T) ((-853 . -371) 131464) ((-853 . -332) 131441) ((-887 . -1091) T) ((-166 . -866) 131425) ((-166 . -868) 131350) ((-480 . -1091) T) ((-348 . -1079) T) ((-212 . -1091) T) ((-75 . -434) T) ((-75 . -389) T) ((-166 . -1020) 131246) ((-313 . -833) T) ((-1238 . -507) 131179) ((-1222 . -633) 131076) ((-1201 . -633) 130946) ((-854 . -780) 130925) ((-854 . -777) 130904) ((-854 . -712) T) ((-480 . -23) T) ((-218 . -600) 130886) ((-171 . -445) T) ((-217 . -303) 130824) ((-85 . -434) T) ((-85 . -389) T) ((-212 . -23) T) ((-1262 . -1255) 130803) ((-569 . -284) T) ((-553 . -284) T) ((-662 . -1020) 130787) ((-488 . -284) T) ((-134 . -463) 130742) ((-48 . -1079) T) ((-698 . -226) 130726) ((-853 . -882) NIL) ((-1211 . -868) NIL) ((-871 . -101) T) ((-867 . -101) T) ((-382 . -1079) T) ((-166 . -371) 130710) ((-166 . -332) 130694) ((-1211 . -1020) 130574) ((-838 . -1020) 130470) ((-1121 . -101) T) ((-638 . -129) T) ((-116 . -507) 130378) ((-647 . -778) 130357) ((-647 . -781) 130336) ((-560 . -1020) 130318) ((-288 . -1245) 130288) ((-848 . -101) T) ((-945 . -545) 130267) ((-1186 . -1037) 130150) ((-475 . -626) 130056) ((-886 . -1079) T) ((-1006 . -703) 129993) ((-697 . -1037) 129958) ((-604 . -101) T) ((-589 . -34) T) ((-1126 . -1192) T) ((-1186 . -110) 129827) ((-467 . -633) 129724) ((-348 . -703) 129669) ((-166 . -882) 129628) ((-684 . -284) T) ((-679 . -169) T) ((-697 . -110) 129584) ((-1266 . -1038) T) ((-1211 . -371) 129568) ((-412 . -1196) 129546) ((-1097 . -600) 129528) ((-307 . -831) NIL) ((-412 . -545) T) ((-220 . -301) T) ((-1201 . -777) 129481) ((-1201 . -780) 129434) ((-1222 . -712) T) ((-1201 . -712) T) ((-48 . -703) 129399) ((-220 . -1004) T) ((-345 . -1245) 129376) ((-1224 . -405) 129342) ((-704 . -712) T) ((-1211 . -882) 129285) ((-1186 . -603) 129167) ((-111 . -600) 129149) ((-111 . -601) 129131) ((-704 . -466) T) ((-697 . -603) 129081) ((-475 . -21) 128991) ((-126 . -482) 128975) ((-120 . -482) 128959) ((-475 . -25) 128810) ((-610 . -284) T) ((-574 . -1037) 128785) ((-431 . -1079) T) ((-1042 . -301) T) ((-116 . -284) T) ((-1083 . -101) T) ((-985 . -101) T) ((-574 . -110) 128753) ((-1121 . -303) 128691) ((-1186 . -1031) T) ((-1042 . -1004) T) ((-65 . -1192) T) ((-1035 . -25) T) ((-1035 . -21) T) ((-697 . -1031) T) ((-379 . -21) T) ((-379 . -25) T) ((-679 . -507) NIL) ((-1006 . -169) T) ((-697 . -238) T) ((-1042 . -538) T) ((-499 . -101) T) ((-495 . -101) T) ((-348 . -169) T) ((-337 . -600) 128673) ((-388 . -600) 128655) ((-467 . -712) T) ((-1099 . -831) T) ((-874 . -1020) 128623) ((-107 . -833) T) ((-643 . -1037) 128607) ((-480 . -129) T) ((-1224 . -1038) T) ((-212 . -129) T) ((-1135 . -101) 128585) ((-98 . -1079) T) ((-240 . -651) 128569) ((-240 . -636) 128553) ((-643 . -110) 128532) ((-574 . -603) 128516) ((-310 . -405) 128500) ((-240 . -367) 128484) ((-1138 . -230) 128431) ((-981 . -226) 128415) ((-73 . -1192) T) ((-48 . -169) T) ((-686 . -381) T) ((-686 . -140) T) ((-1261 . -101) T) ((-1172 . -603) 128397) ((-1066 . -1037) 128240) ((-258 . -891) 128219) ((-242 . -891) 128198) ((-768 . -1037) 128021) ((-766 . -1037) 127864) ((-595 . -1192) T) ((-1143 . -600) 127846) ((-1066 . -110) 127675) ((-1028 . -101) T) ((-468 . -1192) T) ((-454 . -1037) 127646) ((-447 . -1037) 127489) ((-649 . -633) 127473) ((-853 . -301) T) ((-768 . -110) 127282) ((-766 . -110) 127111) ((-349 . -633) 127063) ((-346 . -633) 127015) ((-338 . -633) 126967) ((-258 . -633) 126892) ((-242 . -633) 126817) ((-1137 . -833) T) ((-1067 . -1020) 126801) ((-454 . -110) 126762) ((-447 . -110) 126591) ((-1055 . -1020) 126568) ((-982 . -34) T) ((-948 . -600) 126550) ((-940 . -1192) T) ((-125 . -992) 126534) ((-945 . -1091) T) ((-853 . -1004) NIL) ((-721 . -1091) T) ((-701 . -1091) T) ((-643 . -603) 126452) ((-1238 . -482) 126436) ((-1121 . -38) 126396) ((-945 . -23) T) ((-826 . -101) T) ((-803 . -21) T) ((-803 . -25) T) ((-721 . -23) T) ((-701 . -23) T) ((-109 . -646) T) ((-892 . -633) 126361) ((-570 . -1037) 126326) ((-511 . -1037) 126271) ((-222 . -56) 126229) ((-446 . -23) T) ((-401 . -101) T) ((-257 . -101) T) ((-679 . -284) T) ((-848 . -38) 126199) ((-570 . -110) 126155) ((-511 . -110) 126084) ((-1066 . -603) 125820) ((-412 . -1091) T) ((-310 . -1038) 125710) ((-307 . -1038) T) ((-127 . -1192) T) ((-768 . -603) 125458) ((-766 . -603) 125224) ((-643 . -1031) T) ((-1266 . -1079) T) ((-447 . -603) 125009) ((-166 . -301) 124940) ((-412 . -23) T) ((-40 . -600) 124922) ((-40 . -601) 124906) ((-107 . -974) 124888) ((-115 . -851) 124872) ((-634 . -603) 124856) ((-48 . -507) 124822) ((-1178 . -992) 124806) ((-1160 . -600) 124788) ((-1165 . -34) T) ((-936 . -600) 124754) ((-903 . -600) 124736) ((-1092 . -833) 124687) ((-757 . -600) 124669) ((-657 . -600) 124651) ((-1135 . -303) 124589) ((-472 . -34) T) ((-1071 . -1192) T) ((-470 . -445) T) ((-1120 . -34) T) ((-1066 . -1031) T) ((-50 . -603) 124558) ((-768 . -1031) T) ((-766 . -1031) T) ((-632 . -230) 124542) ((-619 . -230) 124488) ((-570 . -603) 124438) ((-511 . -603) 124368) ((-1211 . -301) 124347) ((-1066 . -320) 124308) ((-447 . -1031) T) ((-1157 . -21) T) ((-1066 . -228) 124287) ((-768 . -320) 124264) ((-768 . -228) T) ((-766 . -320) 124236) ((-717 . -1196) 124215) ((-321 . -636) 124199) ((-1157 . -25) T) ((-58 . -34) T) ((-512 . -34) T) ((-509 . -34) T) ((-447 . -320) 124178) ((-321 . -367) 124162) ((-490 . -34) T) ((-489 . -34) T) ((-985 . -1130) NIL) ((-717 . -545) 124093) ((-622 . -101) T) ((-594 . -101) T) ((-349 . -712) T) ((-346 . -712) T) ((-338 . -712) T) ((-258 . -712) T) ((-242 . -712) T) ((-1028 . -303) 124001) ((-883 . -1079) 123979) ((-50 . -1031) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-1153 . -545) 123958) ((-1152 . -1196) 123937) ((-570 . -1031) T) ((-511 . -1031) T) ((-1146 . -1196) 123916) ((-355 . -1020) 123900) ((-316 . -1020) 123884) ((-1006 . -284) T) ((-373 . -868) 123866) ((-1152 . -545) 123817) ((-1146 . -545) 123768) ((-985 . -38) 123713) ((-785 . -1091) T) ((-892 . -712) T) ((-570 . -238) T) ((-570 . -228) T) ((-511 . -228) T) ((-511 . -238) T) ((-1105 . -545) 123692) ((-348 . -284) T) ((-632 . -680) 123676) ((-373 . -1020) 123636) ((-1099 . -1038) T) ((-102 . -124) 123620) ((-785 . -23) T) ((-1238 . -280) 123597) ((-401 . -303) 123562) ((-1260 . -1255) 123538) ((-1258 . -1255) 123517) ((-1224 . -1079) T) ((-852 . -600) 123499) ((-820 . -1020) 123468) ((-198 . -773) T) ((-197 . -773) T) ((-196 . -773) T) ((-195 . -773) T) ((-194 . -773) T) ((-193 . -773) T) ((-192 . -773) T) ((-191 . -773) T) ((-190 . -773) T) ((-189 . -773) T) ((-488 . -984) T) ((-268 . -822) T) ((-267 . -822) T) ((-266 . -822) T) ((-265 . -822) T) ((-48 . -284) T) ((-264 . -822) T) ((-263 . -822) T) ((-262 . -822) T) ((-188 . -773) T) ((-599 . -833) T) ((-639 . -405) 123452) ((-218 . -603) 123414) ((-109 . -833) T) ((-638 . -21) T) ((-638 . -25) T) ((-1261 . -38) 123384) ((-116 . -280) 123335) ((-1238 . -19) 123319) ((-1238 . -591) 123296) ((-1251 . -1079) T) ((-1056 . -1079) T) ((-969 . -1079) T) ((-945 . -129) T) ((-723 . -1079) T) ((-721 . -129) T) ((-701 . -129) T) ((-504 . -779) T) ((-401 . -1130) 123274) ((-446 . -129) T) ((-504 . -780) T) ((-218 . -1031) T) ((-288 . -101) 123056) ((-138 . -1079) T) ((-684 . -984) T) ((-90 . -1192) T) ((-126 . -600) 122988) ((-120 . -600) 122920) ((-1266 . -169) T) ((-1152 . -357) 122899) ((-1146 . -357) 122878) ((-310 . -1079) T) ((-412 . -129) T) ((-307 . -1079) T) ((-401 . -38) 122830) ((-1112 . -101) T) ((-1224 . -703) 122722) ((-639 . -1038) T) ((-1114 . -1233) T) ((-313 . -142) 122701) ((-313 . -144) 122680) ((-134 . -1079) T) ((-113 . -1079) T) ((-841 . -101) T) ((-569 . -600) 122662) ((-553 . -601) 122561) ((-553 . -600) 122543) ((-488 . -600) 122525) ((-488 . -601) 122470) ((-478 . -23) T) ((-475 . -833) 122421) ((-480 . -626) 122403) ((-947 . -600) 122385) ((-212 . -626) 122367) ((-220 . -398) T) ((-647 . -633) 122351) ((-1151 . -902) 122330) ((-717 . -1091) T) ((-345 . -101) T) ((-1191 . -1062) T) ((-804 . -833) T) ((-717 . -23) T) ((-337 . -1037) 122275) ((-1137 . -1136) T) ((-1126 . -106) 122259) ((-1153 . -1091) T) ((-1152 . -1091) T) ((-508 . -1020) 122243) ((-1146 . -1091) T) ((-1105 . -1091) T) ((-337 . -110) 122172) ((-986 . -1196) T) ((-125 . -1192) T) ((-896 . -1196) T) ((-679 . -280) NIL) ((-1239 . -600) 122154) ((-1153 . -23) T) ((-1152 . -23) T) ((-1146 . -23) T) ((-986 . -545) T) ((-1121 . -226) 122138) ((-896 . -545) T) ((-1105 . -23) T) ((-243 . -600) 122120) ((-1054 . -1079) T) ((-785 . -129) T) ((-696 . -600) 122102) ((-310 . -703) 122012) ((-307 . -703) 121941) ((-684 . -600) 121923) ((-684 . -601) 121868) ((-401 . -394) 121852) ((-432 . -1079) T) ((-480 . -25) T) ((-480 . -21) T) ((-1099 . -1079) T) ((-212 . -25) T) ((-212 . -21) T) ((-698 . -405) 121836) ((-700 . -1020) 121805) ((-1238 . -600) 121717) ((-1238 . -601) 121678) ((-1224 . -169) T) ((-240 . -34) T) ((-337 . -603) 121608) ((-388 . -603) 121590) ((-908 . -956) T) ((-1178 . -1192) T) ((-647 . -777) 121569) ((-647 . -780) 121548) ((-392 . -389) T) ((-516 . -101) 121526) ((-1017 . -1079) T) ((-217 . -977) 121510) ((-497 . -101) T) ((-610 . -600) 121492) ((-45 . -833) NIL) ((-610 . -601) 121469) ((-1017 . -597) 121444) ((-883 . -507) 121377) ((-337 . -1031) T) ((-116 . -601) NIL) ((-116 . -600) 121359) ((-854 . -1192) T) ((-655 . -411) 121343) ((-655 . -1102) 121288) ((-493 . -148) 121270) ((-337 . -228) T) ((-337 . -238) T) ((-40 . -1037) 121215) ((-854 . -866) 121199) ((-854 . -868) 121124) ((-698 . -1038) T) ((-679 . -984) NIL) ((-3 . |UnionCategory|) T) ((-1222 . -47) 121094) ((-1201 . -47) 121071) ((-1120 . -992) 121042) ((-220 . -902) T) ((-40 . -110) 120971) ((-854 . -1020) 120835) ((-1099 . -703) 120822) ((-1084 . -600) 120804) ((-1059 . -144) 120783) ((-1059 . -142) 120734) ((-986 . -357) T) ((-313 . -1180) 120700) ((-373 . -301) T) ((-313 . -1177) 120666) ((-310 . -169) 120645) ((-307 . -169) T) ((-985 . -226) 120622) ((-896 . -357) T) ((-570 . -1257) 120609) ((-511 . -1257) 120586) ((-353 . -144) 120565) ((-353 . -142) 120516) ((-347 . -144) 120495) ((-347 . -142) 120446) ((-595 . -1168) 120422) ((-339 . -144) 120401) ((-339 . -142) 120352) ((-313 . -35) 120318) ((-468 . -1168) 120297) ((0 . |EnumerationCategory|) T) ((-313 . -94) 120263) ((-373 . -1004) T) ((-107 . -144) T) ((-107 . -142) NIL) ((-45 . -230) 120213) ((-639 . -1079) T) ((-595 . -106) 120160) ((-478 . -129) T) ((-468 . -106) 120110) ((-235 . -1091) 120020) ((-854 . -371) 120004) ((-854 . -332) 119988) ((-235 . -23) 119858) ((-40 . -603) 119788) ((-1042 . -902) T) ((-1042 . -806) T) ((-570 . -362) T) ((-511 . -362) T) ((-345 . -1130) T) ((-321 . -34) T) ((-44 . -411) 119772) ((-1160 . -603) 119707) ((-855 . -1192) T) ((-384 . -730) 119691) ((-1251 . -507) 119624) ((-717 . -129) T) ((-657 . -603) 119608) ((-1230 . -545) 119587) ((-1223 . -1196) 119566) ((-1223 . -545) 119517) ((-1202 . -1196) 119496) ((-305 . -1062) T) ((-1202 . -545) 119447) ((-723 . -507) 119380) ((-1201 . -1192) 119359) ((-1201 . -868) 119232) ((-875 . -1079) T) ((-141 . -827) T) ((-1201 . -866) 119202) ((-676 . -600) 119184) ((-1153 . -129) T) ((-516 . -303) 119122) ((-1152 . -129) T) ((-138 . -507) NIL) ((-1146 . -129) T) ((-1105 . -129) T) ((-1006 . -984) T) ((-986 . -23) T) ((-345 . -38) 119087) ((-986 . -1091) T) ((-896 . -1091) T) ((-81 . -600) 119069) ((-40 . -1031) T) ((-852 . -1037) 119056) ((-985 . -343) NIL) ((-854 . -882) 119015) ((-686 . -101) T) ((-953 . -23) T) ((-589 . -1192) T) ((-896 . -23) T) ((-852 . -110) 119000) ((-421 . -1091) T) ((-208 . -1079) T) ((-467 . -47) 118970) ((-132 . -101) T) ((-40 . -228) 118942) ((-40 . -238) T) ((-115 . -101) T) ((-584 . -545) 118921) ((-583 . -545) 118900) ((-679 . -600) 118882) ((-679 . -601) 118790) ((-310 . -507) 118756) ((-307 . -507) 118648) ((-1222 . -1020) 118632) ((-1201 . -1020) 118418) ((-981 . -405) 118402) ((-421 . -23) T) ((-1099 . -169) T) ((-1224 . -284) T) ((-639 . -703) 118372) ((-141 . -1079) T) ((-48 . -984) T) ((-401 . -226) 118356) ((-289 . -230) 118306) ((-853 . -902) T) ((-853 . -806) NIL) ((-852 . -603) 118278) ((-847 . -833) T) ((-1201 . -332) 118248) ((-1201 . -371) 118218) ((-217 . -1100) 118202) ((-1238 . -282) 118179) ((-1186 . -633) 118104) ((-945 . -21) T) ((-945 . -25) T) ((-721 . -21) T) ((-721 . -25) T) ((-701 . -21) T) ((-701 . -25) T) ((-697 . -633) 118069) ((-446 . -21) T) ((-446 . -25) T) ((-333 . -101) T) ((-171 . -101) T) ((-981 . -1038) T) ((-852 . -1031) T) ((-760 . -101) T) ((-1223 . -357) 118048) ((-1222 . -882) 117954) ((-1202 . -357) 117933) ((-1201 . -882) 117784) ((-1006 . -600) 117766) ((-401 . -814) 117719) ((-1153 . -486) 117685) ((-166 . -902) 117616) ((-1152 . -486) 117582) ((-1146 . -486) 117548) ((-698 . -1079) T) ((-1105 . -486) 117514) ((-569 . -1037) 117501) ((-553 . -1037) 117488) ((-488 . -1037) 117453) ((-310 . -284) 117432) ((-307 . -284) T) ((-348 . -600) 117414) ((-412 . -25) T) ((-412 . -21) T) ((-98 . -280) 117393) ((-569 . -110) 117378) ((-553 . -110) 117363) ((-488 . -110) 117319) ((-1155 . -868) 117286) ((-883 . -482) 117270) ((-48 . -600) 117252) ((-48 . -601) 117197) ((-235 . -129) 117067) ((-1211 . -902) 117046) ((-802 . -1196) 117025) ((-382 . -483) 117006) ((-1017 . -507) 116850) ((-382 . -600) 116816) ((-802 . -545) 116747) ((-574 . -633) 116722) ((-258 . -47) 116694) ((-242 . -47) 116651) ((-524 . -502) 116628) ((-569 . -603) 116600) ((-553 . -603) 116572) ((-488 . -603) 116505) ((-982 . -1192) T) ((-684 . -1037) 116470) ((-1230 . -1091) T) ((-1223 . -1091) T) ((-1202 . -1091) T) ((-985 . -364) 116442) ((-111 . -362) T) ((-467 . -882) 116348) ((-1230 . -23) T) ((-1223 . -23) T) ((-886 . -600) 116330) ((-90 . -106) 116314) ((-1186 . -712) T) ((-887 . -833) 116265) ((-686 . -1130) T) ((-684 . -110) 116221) ((-1202 . -23) T) ((-584 . -1091) T) ((-583 . -1091) T) ((-698 . -703) 116050) ((-697 . -712) T) ((-1099 . -284) T) ((-986 . -129) T) ((-480 . -833) T) ((-953 . -129) T) ((-896 . -129) T) ((-785 . -25) T) ((-212 . -833) T) ((-785 . -21) T) ((-569 . -1031) T) ((-553 . -1031) T) ((-488 . -1031) T) ((-584 . -23) T) ((-337 . -1257) 116027) ((-313 . -445) 116006) ((-333 . -303) 115993) ((-583 . -23) T) ((-421 . -129) T) ((-643 . -633) 115967) ((-240 . -992) 115951) ((-854 . -301) T) ((-1262 . -1252) 115935) ((-757 . -778) T) ((-757 . -781) T) ((-686 . -38) 115922) ((-553 . -228) T) ((-488 . -238) T) ((-488 . -228) T) ((-1129 . -230) 115872) ((-1066 . -891) 115851) ((-115 . -38) 115838) ((-204 . -786) T) ((-203 . -786) T) ((-202 . -786) T) ((-201 . -786) T) ((-854 . -1004) 115816) ((-1251 . -482) 115800) ((-768 . -891) 115779) ((-766 . -891) 115758) ((-1165 . -1192) T) ((-447 . -891) 115737) ((-723 . -482) 115721) ((-1066 . -633) 115646) ((-684 . -603) 115581) ((-768 . -633) 115506) ((-610 . -1037) 115493) ((-472 . -1192) T) ((-337 . -362) T) ((-138 . -482) 115475) ((-766 . -633) 115400) ((-1120 . -1192) T) ((-454 . -633) 115371) ((-258 . -868) 115230) ((-242 . -868) NIL) ((-116 . -1037) 115175) ((-447 . -633) 115100) ((-649 . -1020) 115077) ((-610 . -110) 115062) ((-349 . -1020) 115046) ((-346 . -1020) 115030) ((-338 . -1020) 115014) ((-258 . -1020) 114858) ((-242 . -1020) 114734) ((-116 . -110) 114663) ((-58 . -1192) T) ((-512 . -1192) T) ((-509 . -1192) T) ((-490 . -1192) T) ((-489 . -1192) T) ((-431 . -600) 114645) ((-428 . -600) 114627) ((-3 . -101) T) ((-1009 . -1185) 114596) ((-819 . -101) T) ((-674 . -56) 114554) ((-684 . -1031) T) ((-50 . -633) 114528) ((-283 . -445) T) ((-469 . -1185) 114497) ((0 . -101) T) ((-570 . -633) 114462) ((-511 . -633) 114407) ((-49 . -101) T) ((-892 . -1020) 114394) ((-684 . -238) T) ((-1059 . -403) 114373) ((-717 . -626) 114321) ((-981 . -1079) T) ((-698 . -169) 114212) ((-610 . -603) 114107) ((-480 . -974) 114089) ((-258 . -371) 114073) ((-242 . -371) 114057) ((-393 . -1079) T) ((-1008 . -101) 114035) ((-333 . -38) 114019) ((-212 . -974) 114001) ((-116 . -603) 113931) ((-171 . -38) 113863) ((-1222 . -301) 113842) ((-1201 . -301) 113821) ((-643 . -712) T) ((-98 . -600) 113803) ((-1146 . -626) 113755) ((-478 . -25) T) ((-478 . -21) T) ((-1201 . -1004) 113707) ((-610 . -1031) T) ((-373 . -398) T) ((-384 . -101) T) ((-1084 . -605) 113622) ((-258 . -882) 113568) ((-242 . -882) 113545) ((-116 . -1031) T) ((-802 . -1091) T) ((-1066 . -712) T) ((-610 . -228) 113524) ((-608 . -101) T) ((-768 . -712) T) ((-766 . -712) T) ((-407 . -1091) T) ((-116 . -238) T) ((-40 . -362) NIL) ((-116 . -228) NIL) ((-447 . -712) T) ((-802 . -23) T) ((-717 . -25) T) ((-717 . -21) T) ((-688 . -833) T) ((-1056 . -280) 113503) ((-77 . -390) T) ((-77 . -389) T) ((-526 . -753) 113485) ((-679 . -1037) 113435) ((-1230 . -129) T) ((-1223 . -129) T) ((-1202 . -129) T) ((-1121 . -405) 113419) ((-622 . -361) 113351) ((-594 . -361) 113283) ((-1135 . -1128) 113267) ((-102 . -1079) 113245) ((-1153 . -25) T) ((-1153 . -21) T) ((-1152 . -21) T) ((-981 . -703) 113193) ((-218 . -633) 113160) ((-679 . -110) 113094) ((-50 . -712) T) ((-1152 . -25) T) ((-345 . -343) T) ((-1146 . -21) T) ((-1059 . -445) 113045) ((-1146 . -25) T) ((-698 . -507) 112992) ((-570 . -712) T) ((-511 . -712) T) ((-1105 . -21) T) ((-1105 . -25) T) ((-584 . -129) T) ((-583 . -129) T) ((-353 . -445) T) ((-347 . -445) T) ((-339 . -445) T) ((-467 . -301) 112971) ((-307 . -280) 112906) ((-107 . -445) T) ((-78 . -434) T) ((-78 . -389) T) ((-470 . -101) T) ((-1266 . -600) 112888) ((-1266 . -601) 112870) ((-1059 . -396) 112849) ((-1017 . -482) 112780) ((-553 . -781) T) ((-553 . -778) T) ((-1043 . -230) 112726) ((-353 . -396) 112677) ((-347 . -396) 112628) ((-339 . -396) 112579) ((-1253 . -1091) T) ((-679 . -603) 112514) ((-1253 . -23) T) ((-1240 . -101) T) ((-172 . -600) 112496) ((-1121 . -1038) T) ((-655 . -730) 112480) ((-1157 . -142) 112459) ((-1157 . -144) 112438) ((-1125 . -1079) T) ((-1125 . -1051) 112407) ((-68 . -1192) T) ((-1006 . -1037) 112344) ((-848 . -1038) T) ((-235 . -626) 112250) ((-679 . -1031) T) ((-348 . -1037) 112195) ((-60 . -1192) T) ((-1006 . -110) 112111) ((-883 . -600) 112022) ((-679 . -238) T) ((-679 . -228) NIL) ((-826 . -831) 112001) ((-684 . -781) T) ((-684 . -778) T) ((-985 . -405) 111978) ((-348 . -110) 111907) ((-373 . -902) T) ((-401 . -831) 111886) ((-698 . -284) 111797) ((-218 . -712) T) ((-1230 . -486) 111763) ((-1223 . -486) 111729) ((-1202 . -486) 111695) ((-567 . -1079) T) ((-310 . -984) 111674) ((-217 . -1079) 111652) ((-313 . -955) 111614) ((-104 . -101) T) ((-48 . -1037) 111579) ((-1262 . -101) T) ((-375 . -101) T) ((-48 . -110) 111535) ((-986 . -626) 111517) ((-1224 . -600) 111499) ((-524 . -101) T) ((-493 . -101) T) ((-1112 . -1113) 111483) ((-149 . -1245) 111467) ((-240 . -1192) T) ((-1191 . -101) T) ((-1006 . -603) 111404) ((-1151 . -1196) 111383) ((-348 . -603) 111313) ((-1104 . -1196) 111292) ((-235 . -21) 111202) ((-235 . -25) 111053) ((-126 . -118) 111037) ((-120 . -118) 111021) ((-44 . -730) 111005) ((-1151 . -545) 110916) ((-1104 . -545) 110847) ((-1017 . -280) 110822) ((-1145 . -1062) T) ((-976 . -1062) T) ((-802 . -129) T) ((-116 . -781) NIL) ((-116 . -778) NIL) ((-349 . -301) T) ((-346 . -301) T) ((-338 . -301) T) ((-245 . -1091) 110732) ((-244 . -1091) 110642) ((-1006 . -1031) T) ((-985 . -1038) T) ((-48 . -603) 110575) ((-337 . -633) 110520) ((-608 . -38) 110504) ((-1251 . -600) 110466) ((-1251 . -601) 110427) ((-1056 . -600) 110409) ((-1006 . -238) T) ((-348 . -1031) T) ((-801 . -1245) 110379) ((-245 . -23) T) ((-244 . -23) T) ((-969 . -600) 110361) ((-723 . -601) 110322) ((-723 . -600) 110304) ((-785 . -833) 110283) ((-1138 . -148) 110230) ((-981 . -507) 110142) ((-348 . -228) T) ((-348 . -238) T) ((-382 . -603) 110123) ((-986 . -25) T) ((-138 . -600) 110105) ((-138 . -601) 110064) ((-892 . -301) T) ((-986 . -21) T) ((-953 . -25) T) ((-896 . -21) T) ((-896 . -25) T) ((-421 . -21) T) ((-421 . -25) T) ((-826 . -405) 110048) ((-48 . -1031) T) ((-1260 . -1252) 110032) ((-1258 . -1252) 110016) ((-1017 . -591) 109991) ((-310 . -601) 109852) ((-310 . -600) 109834) ((-307 . -601) NIL) ((-307 . -600) 109816) ((-48 . -238) T) ((-48 . -228) T) ((-639 . -280) 109777) ((-539 . -230) 109727) ((-134 . -600) 109709) ((-113 . -600) 109691) ((-470 . -38) 109656) ((-1262 . -1259) 109635) ((-1253 . -129) T) ((-1261 . -1038) T) ((-1061 . -101) T) ((-87 . -1192) T) ((-493 . -303) NIL) ((-982 . -106) 109619) ((-871 . -1079) T) ((-867 . -1079) T) ((-1238 . -636) 109603) ((-1238 . -367) 109587) ((-321 . -1192) T) ((-581 . -833) T) ((-1121 . -1079) T) ((-1121 . -1034) 109527) ((-102 . -507) 109460) ((-909 . -600) 109442) ((-337 . -712) T) ((-30 . -600) 109424) ((-848 . -1079) T) ((-826 . -1038) 109403) ((-40 . -633) 109348) ((-220 . -1196) T) ((-401 . -1038) T) ((-1137 . -148) 109330) ((-981 . -284) 109281) ((-604 . -1079) T) ((-220 . -545) T) ((-313 . -1219) 109265) ((-313 . -1216) 109235) ((-1165 . -1168) 109214) ((-1054 . -600) 109196) ((-632 . -148) 109180) ((-619 . -148) 109126) ((-1165 . -106) 109076) ((-472 . -1168) 109055) ((-480 . -144) T) ((-480 . -142) NIL) ((-1099 . -601) 108970) ((-432 . -600) 108952) ((-212 . -144) T) ((-212 . -142) NIL) ((-1099 . -600) 108934) ((-128 . -101) T) ((-52 . -101) T) ((-1202 . -626) 108886) ((-472 . -106) 108836) ((-975 . -23) T) ((-1262 . -38) 108806) ((-1151 . -1091) T) ((-1104 . -1091) T) ((-1042 . -1196) T) ((-305 . -101) T) ((-837 . -1091) T) ((-934 . -1196) 108785) ((-474 . -1196) 108764) ((-717 . -833) 108743) ((-1042 . -545) T) ((-934 . -545) 108674) ((-1151 . -23) T) ((-1104 . -23) T) ((-837 . -23) T) ((-474 . -545) 108605) ((-1121 . -703) 108537) ((-1125 . -507) 108470) ((-1017 . -601) NIL) ((-1017 . -600) 108452) ((-95 . -1062) T) ((-848 . -703) 108422) ((-1186 . -47) 108391) ((-244 . -129) T) ((-245 . -129) T) ((-1083 . -1079) T) ((-985 . -1079) T) ((-61 . -600) 108373) ((-1146 . -833) NIL) ((-1006 . -778) T) ((-1006 . -781) T) ((-1266 . -1037) 108360) ((-1266 . -110) 108345) ((-852 . -633) 108332) ((-1230 . -25) T) ((-1230 . -21) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1202 . -21) T) ((-1202 . -25) T) ((-1009 . -148) 108316) ((-854 . -806) 108295) ((-854 . -902) T) ((-698 . -280) 108222) ((-584 . -21) T) ((-584 . -25) T) ((-583 . -21) T) ((-40 . -712) T) ((-217 . -507) 108155) ((-583 . -25) T) ((-469 . -148) 108139) ((-456 . -148) 108123) ((-903 . -780) T) ((-903 . -712) T) ((-757 . -779) T) ((-757 . -780) T) ((-499 . -1079) T) ((-495 . -1079) T) ((-757 . -712) T) ((-220 . -357) T) ((-1135 . -1079) 108101) ((-853 . -1196) T) ((-639 . -600) 108083) ((-853 . -545) T) ((-679 . -362) NIL) ((-1266 . -603) 108065) ((-353 . -1245) 108049) ((-655 . -101) T) ((-347 . -1245) 108033) ((-339 . -1245) 108017) ((-1261 . -1079) T) ((-513 . -833) 107996) ((-803 . -445) 107975) ((-1028 . -1079) T) ((-1028 . -1051) 107904) ((-1009 . -958) 107873) ((-805 . -1091) T) ((-985 . -703) 107818) ((-380 . -1091) T) ((-469 . -958) 107787) ((-456 . -958) 107756) ((-109 . -148) 107738) ((-72 . -600) 107720) ((-875 . -600) 107702) ((-1059 . -710) 107681) ((-1266 . -1031) T) ((-802 . -626) 107629) ((-288 . -1038) 107571) ((-166 . -1196) 107476) ((-220 . -1091) T) ((-318 . -23) T) ((-1146 . -974) 107428) ((-826 . -1079) T) ((-1224 . -1037) 107333) ((-1105 . -726) 107312) ((-1222 . -902) 107291) ((-1201 . -902) 107270) ((-852 . -712) T) ((-166 . -545) 107181) ((-569 . -633) 107168) ((-553 . -633) 107155) ((-401 . -1079) T) ((-257 . -1079) T) ((-208 . -600) 107137) ((-488 . -633) 107102) ((-220 . -23) T) ((-1201 . -806) 107055) ((-1260 . -101) T) ((-348 . -1257) 107032) ((-1258 . -101) T) ((-1224 . -110) 106924) ((-141 . -600) 106906) ((-975 . -129) T) ((-44 . -101) T) ((-235 . -833) 106857) ((-1211 . -1196) 106836) ((-102 . -482) 106820) ((-1261 . -703) 106790) ((-1066 . -47) 106751) ((-1042 . -1091) T) ((-934 . -1091) T) ((-126 . -34) T) ((-120 . -34) T) ((-768 . -47) 106728) ((-766 . -47) 106700) ((-1211 . -545) 106611) ((-348 . -362) T) ((-474 . -1091) T) ((-1151 . -129) T) ((-1104 . -129) T) ((-447 . -47) 106590) ((-853 . -357) T) ((-837 . -129) T) ((-149 . -101) T) ((-1042 . -23) T) ((-934 . -23) T) ((-560 . -545) T) ((-802 . -25) T) ((-802 . -21) T) ((-1121 . -507) 106523) ((-580 . -1062) T) ((-574 . -1020) 106507) ((-1224 . -603) 106381) ((-474 . -23) T) ((-345 . -1038) T) ((-1186 . -882) 106362) ((-655 . -303) 106300) ((-1092 . -1245) 106270) ((-684 . -633) 106235) ((-985 . -169) T) ((-945 . -142) 106214) ((-622 . -1079) T) ((-594 . -1079) T) ((-945 . -144) 106193) ((-986 . -833) T) ((-721 . -144) 106172) ((-721 . -142) 106151) ((-953 . -833) T) ((-467 . -902) 106130) ((-310 . -1037) 106040) ((-307 . -1037) 105969) ((-981 . -280) 105927) ((-401 . -703) 105879) ((-686 . -831) T) ((-1224 . -1031) T) ((-310 . -110) 105775) ((-307 . -110) 105688) ((-946 . -101) T) ((-801 . -101) 105478) ((-698 . -601) NIL) ((-698 . -600) 105460) ((-643 . -1020) 105356) ((-1224 . -320) 105300) ((-1017 . -282) 105275) ((-569 . -712) T) ((-553 . -780) T) ((-166 . -357) 105226) ((-553 . -777) T) ((-553 . -712) T) ((-488 . -712) T) ((-1125 . -482) 105210) ((-1066 . -868) NIL) ((-853 . -1091) T) ((-116 . -891) NIL) ((-1260 . -1259) 105186) ((-1258 . -1259) 105165) ((-768 . -868) NIL) ((-766 . -868) 105024) ((-1253 . -25) T) ((-1253 . -21) T) ((-1189 . -101) 105002) ((-1085 . -389) T) ((-610 . -633) 104989) ((-447 . -868) NIL) ((-660 . -101) 104967) ((-1066 . -1020) 104794) ((-853 . -23) T) ((-768 . -1020) 104653) ((-766 . -1020) 104510) ((-116 . -633) 104455) ((-447 . -1020) 104331) ((-310 . -603) 103895) ((-307 . -603) 103778) ((-634 . -1020) 103762) ((-614 . -101) T) ((-217 . -482) 103746) ((-1238 . -34) T) ((-134 . -603) 103730) ((-622 . -703) 103714) ((-594 . -703) 103698) ((-655 . -38) 103658) ((-313 . -101) T) ((-84 . -600) 103640) ((-50 . -1020) 103624) ((-1099 . -1037) 103611) ((-1066 . -371) 103595) ((-768 . -371) 103579) ((-59 . -56) 103541) ((-684 . -780) T) ((-684 . -777) T) ((-570 . -1020) 103528) ((-511 . -1020) 103505) ((-684 . -712) T) ((-318 . -129) T) ((-310 . -1031) 103395) ((-307 . -1031) T) ((-166 . -1091) T) ((-766 . -371) 103379) ((-45 . -148) 103329) ((-986 . -974) 103311) ((-447 . -371) 103295) ((-401 . -169) T) ((-310 . -238) 103274) ((-307 . -238) T) ((-307 . -228) NIL) ((-288 . -1079) 103056) ((-220 . -129) T) ((-1099 . -110) 103041) ((-166 . -23) T) ((-785 . -144) 103020) ((-785 . -142) 102999) ((-245 . -626) 102905) ((-244 . -626) 102811) ((-313 . -278) 102777) ((-1135 . -507) 102710) ((-1112 . -1079) T) ((-220 . -1040) T) ((-801 . -303) 102648) ((-1066 . -882) 102583) ((-768 . -882) 102526) ((-766 . -882) 102510) ((-1260 . -38) 102480) ((-1258 . -38) 102450) ((-1211 . -1091) T) ((-838 . -1091) T) ((-447 . -882) 102427) ((-841 . -1079) T) ((-1211 . -23) T) ((-1099 . -603) 102399) ((-560 . -1091) T) ((-838 . -23) T) ((-610 . -712) T) ((-349 . -902) T) ((-346 . -902) T) ((-283 . -101) T) ((-338 . -902) T) ((-1042 . -129) T) ((-952 . -1062) T) ((-934 . -129) T) ((-116 . -780) NIL) ((-116 . -777) NIL) ((-116 . -712) T) ((-679 . -891) NIL) ((-1028 . -507) 102300) ((-474 . -129) T) ((-560 . -23) T) ((-660 . -303) 102238) ((-622 . -747) T) ((-594 . -747) T) ((-1202 . -833) NIL) ((-985 . -284) T) ((-245 . -21) T) ((-679 . -633) 102188) ((-345 . -1079) T) ((-245 . -25) T) ((-244 . -21) T) ((-244 . -25) T) ((-149 . -38) 102172) ((-2 . -101) T) ((-892 . -902) T) ((-475 . -1245) 102142) ((-218 . -1020) 102119) ((-1099 . -1031) T) ((-697 . -301) T) ((-288 . -703) 102061) ((-686 . -1038) T) ((-480 . -445) T) ((-401 . -507) 101973) ((-212 . -445) T) ((-1099 . -228) T) ((-289 . -148) 101923) ((-981 . -601) 101884) ((-981 . -600) 101866) ((-971 . -600) 101848) ((-115 . -1038) T) ((-639 . -1037) 101832) ((-220 . -486) T) ((-393 . -600) 101814) ((-393 . -601) 101791) ((-1035 . -1245) 101761) ((-639 . -110) 101740) ((-1121 . -482) 101724) ((-801 . -38) 101694) ((-62 . -434) T) ((-62 . -389) T) ((-1138 . -101) T) ((-853 . -129) T) ((-477 . -101) 101672) ((-1266 . -362) T) ((-1059 . -101) T) ((-1041 . -101) T) ((-345 . -703) 101617) ((-717 . -144) 101596) ((-717 . -142) 101575) ((-639 . -603) 101493) ((-1006 . -633) 101430) ((-516 . -1079) 101408) ((-353 . -101) T) ((-347 . -101) T) ((-339 . -101) T) ((-107 . -101) T) ((-497 . -1079) T) ((-348 . -633) 101353) ((-1151 . -626) 101301) ((-1104 . -626) 101249) ((-379 . -502) 101228) ((-819 . -831) 101207) ((-373 . -1196) T) ((-679 . -712) T) ((-333 . -1038) T) ((-1202 . -974) 101159) ((-171 . -1038) T) ((-102 . -600) 101091) ((-1153 . -142) 101070) ((-1153 . -144) 101049) ((-373 . -545) T) ((-1152 . -144) 101028) ((-1152 . -142) 101007) ((-1146 . -142) 100914) ((-401 . -284) T) ((-1146 . -144) 100821) ((-1105 . -144) 100800) ((-1105 . -142) 100779) ((-313 . -38) 100620) ((-166 . -129) T) ((-307 . -781) NIL) ((-307 . -778) NIL) ((-639 . -1031) T) ((-48 . -633) 100585) ((-875 . -603) 100562) ((-1145 . -101) T) ((-976 . -101) T) ((-975 . -21) T) ((-126 . -992) 100546) ((-120 . -992) 100530) ((-975 . -25) T) ((-883 . -118) 100514) ((-1137 . -101) T) ((-802 . -833) 100493) ((-1211 . -129) T) ((-1151 . -25) T) ((-1151 . -21) T) ((-838 . -129) T) ((-1104 . -25) T) ((-1104 . -21) T) ((-837 . -25) T) ((-837 . -21) T) ((-768 . -301) 100472) ((-632 . -101) 100450) ((-619 . -101) T) ((-1138 . -303) 100245) ((-560 . -129) T) ((-608 . -831) 100224) ((-1135 . -482) 100208) ((-1129 . -148) 100158) ((-1125 . -600) 100120) ((-1125 . -601) 100081) ((-1006 . -777) T) ((-1006 . -780) T) ((-1006 . -712) T) ((-698 . -1037) 99904) ((-477 . -303) 99842) ((-446 . -411) 99812) ((-345 . -169) T) ((-283 . -38) 99799) ((-268 . -101) T) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-337 . -1020) 99776) ((-262 . -101) T) ((-207 . -101) T) ((-206 . -101) T) ((-204 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-198 . -101) T) ((-197 . -101) T) ((-196 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-348 . -712) T) ((-698 . -110) 99585) ((-655 . -226) 99569) ((-570 . -301) T) ((-511 . -301) T) ((-288 . -507) 99518) ((-107 . -303) NIL) ((-71 . -389) T) ((-1092 . -101) 99308) ((-819 . -405) 99292) ((-1099 . -781) T) ((-1099 . -778) T) ((-686 . -1079) T) ((-567 . -600) 99274) ((-373 . -357) T) ((-166 . -486) 99252) ((-217 . -600) 99184) ((-132 . -1079) T) ((-115 . -1079) T) ((-48 . -712) T) ((-1028 . -482) 99149) ((-499 . -92) T) ((-138 . -419) 99131) ((-138 . -362) T) ((-1009 . -101) T) ((-505 . -502) 99110) ((-698 . -603) 98866) ((-469 . -101) T) ((-456 . -101) T) ((-1016 . -1091) T) ((-1160 . -1020) 98801) ((-1153 . -35) 98767) ((-1153 . -94) 98733) ((-1153 . -1180) 98699) ((-1153 . -1177) 98665) ((-1137 . -303) NIL) ((-88 . -390) T) ((-88 . -389) T) ((-1059 . -1130) 98644) ((-1152 . -1177) 98610) ((-1152 . -1180) 98576) ((-1016 . -23) T) ((-1152 . -94) 98542) ((-560 . -486) T) ((-1152 . -35) 98508) ((-1146 . -1177) 98474) ((-1146 . -1180) 98440) ((-1146 . -94) 98406) ((-355 . -1091) T) ((-353 . -1130) 98385) ((-347 . -1130) 98364) ((-339 . -1130) 98343) ((-1146 . -35) 98309) ((-1105 . -35) 98275) ((-1105 . -94) 98241) ((-107 . -1130) T) ((-1105 . -1180) 98207) ((-819 . -1038) 98186) ((-632 . -303) 98124) ((-619 . -303) 97975) ((-1105 . -1177) 97941) ((-698 . -1031) T) ((-1042 . -626) 97923) ((-1059 . -38) 97791) ((-934 . -626) 97739) ((-986 . -144) T) ((-986 . -142) NIL) ((-373 . -1091) T) ((-318 . -25) T) ((-316 . -23) T) ((-925 . -833) 97718) ((-698 . -320) 97695) ((-474 . -626) 97643) ((-40 . -1020) 97531) ((-698 . -228) T) ((-686 . -703) 97518) ((-333 . -1079) T) ((-171 . -1079) T) ((-325 . -833) T) ((-412 . -445) 97468) ((-373 . -23) T) ((-353 . -38) 97433) ((-347 . -38) 97398) ((-339 . -38) 97363) ((-79 . -434) T) ((-79 . -389) T) ((-220 . -25) T) ((-220 . -21) T) ((-820 . -1091) T) ((-107 . -38) 97313) ((-813 . -1091) T) ((-760 . -1079) T) ((-115 . -703) 97300) ((-657 . -1020) 97284) ((-599 . -101) T) ((-820 . -23) T) ((-813 . -23) T) ((-1135 . -280) 97261) ((-1092 . -303) 97199) ((-1081 . -230) 97183) ((-63 . -390) T) ((-63 . -389) T) ((-109 . -101) T) ((-40 . -371) 97160) ((-95 . -101) T) ((-638 . -835) 97144) ((-1114 . -1062) T) ((-1042 . -21) T) ((-1042 . -25) T) ((-801 . -226) 97113) ((-934 . -25) T) ((-934 . -21) T) ((-608 . -1038) T) ((-474 . -25) T) ((-474 . -21) T) ((-1009 . -303) 97051) ((-871 . -600) 97033) ((-867 . -600) 97015) ((-245 . -833) 96966) ((-244 . -833) 96917) ((-516 . -507) 96850) ((-853 . -626) 96827) ((-469 . -303) 96765) ((-456 . -303) 96703) ((-345 . -284) T) ((-1135 . -1226) 96687) ((-1121 . -600) 96649) ((-1121 . -601) 96610) ((-1119 . -101) T) ((-981 . -1037) 96506) ((-40 . -882) 96458) ((-1135 . -591) 96435) ((-1266 . -633) 96422) ((-848 . -483) 96399) ((-1043 . -148) 96345) ((-854 . -1196) T) ((-981 . -110) 96227) ((-333 . -703) 96211) ((-848 . -600) 96173) ((-171 . -703) 96105) ((-401 . -280) 96063) ((-854 . -545) T) ((-107 . -394) 96045) ((-83 . -378) T) ((-83 . -389) T) ((-686 . -169) T) ((-604 . -600) 96027) ((-98 . -712) T) ((-475 . -101) 95817) ((-98 . -466) T) ((-115 . -169) T) ((-1092 . -38) 95787) ((-166 . -626) 95735) ((-1035 . -101) T) ((-981 . -603) 95625) ((-853 . -25) T) ((-801 . -233) 95604) ((-853 . -21) T) ((-804 . -101) T) ((-408 . -101) T) ((-379 . -101) T) ((-109 . -303) NIL) ((-222 . -101) 95582) ((-126 . -1192) T) ((-120 . -1192) T) ((-1016 . -129) T) ((-655 . -361) 95566) ((-981 . -1031) T) ((-1211 . -626) 95514) ((-1083 . -600) 95496) ((-985 . -600) 95478) ((-508 . -23) T) ((-503 . -23) T) ((-337 . -301) T) ((-501 . -23) T) ((-316 . -129) T) ((-3 . -1079) T) ((-985 . -601) 95462) ((-981 . -238) 95441) ((-981 . -228) 95420) ((-1266 . -712) T) ((-1230 . -142) 95399) ((-819 . -1079) T) ((-1230 . -144) 95378) ((-1223 . -144) 95357) ((-1223 . -142) 95336) ((-1222 . -1196) 95315) ((-1202 . -142) 95222) ((-1202 . -144) 95129) ((-1201 . -1196) 95108) ((-373 . -129) T) ((-553 . -868) 95090) ((0 . -1079) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1079) T) ((-1224 . -633) 94995) ((-1222 . -545) 94946) ((-700 . -1091) T) ((-1201 . -545) 94897) ((-553 . -1020) 94879) ((-583 . -144) 94858) ((-583 . -142) 94837) ((-488 . -1020) 94780) ((-1114 . -1116) T) ((-86 . -378) T) ((-86 . -389) T) ((-854 . -357) T) ((-820 . -129) T) ((-813 . -129) T) ((-499 . -483) 94761) ((-700 . -23) T) ((-499 . -600) 94711) ((-495 . -600) 94693) ((-1262 . -1038) T) ((-373 . -1040) T) ((-1008 . -1079) 94671) ((-883 . -34) T) ((-475 . -303) 94609) ((-580 . -101) T) ((-1135 . -601) 94570) ((-1135 . -600) 94502) ((-1151 . -833) 94481) ((-45 . -101) T) ((-1104 . -833) 94460) ((-803 . -101) T) ((-1211 . -25) T) ((-1211 . -21) T) ((-838 . -25) T) ((-44 . -361) 94444) ((-838 . -21) T) ((-717 . -445) 94395) ((-1261 . -600) 94377) ((-1035 . -303) 94315) ((-656 . -1062) T) ((-593 . -1062) T) ((-384 . -1079) T) ((-560 . -25) T) ((-560 . -21) T) ((-177 . -1062) T) ((-158 . -1062) T) ((-153 . -1062) T) ((-151 . -1062) T) ((-608 . -1079) T) ((-684 . -868) 94297) ((-1238 . -1192) T) ((-222 . -303) 94235) ((-141 . -362) T) ((-1028 . -601) 94177) ((-1028 . -600) 94120) ((-307 . -891) NIL) ((-684 . -1020) 94065) ((-697 . -902) T) ((-467 . -1196) 94044) ((-1152 . -445) 94023) ((-1146 . -445) 94002) ((-324 . -101) T) ((-854 . -1091) T) ((-310 . -633) 93823) ((-307 . -633) 93752) ((-467 . -545) 93703) ((-333 . -507) 93669) ((-539 . -148) 93619) ((-40 . -301) T) ((-826 . -600) 93601) ((-686 . -284) T) ((-854 . -23) T) ((-373 . -486) T) ((-1059 . -226) 93571) ((-505 . -101) T) ((-401 . -601) 93378) ((-401 . -600) 93360) ((-257 . -600) 93342) ((-115 . -284) T) ((-1224 . -712) T) ((-1222 . -357) 93321) ((-1201 . -357) 93300) ((-1251 . -34) T) ((-116 . -1192) T) ((-107 . -226) 93282) ((-1157 . -101) T) ((-470 . -1079) T) ((-516 . -482) 93266) ((-723 . -34) T) ((-475 . -38) 93236) ((-138 . -34) T) ((-116 . -866) 93213) ((-116 . -868) NIL) ((-610 . -1020) 93096) ((-630 . -833) 93075) ((-1250 . -101) T) ((-289 . -101) T) ((-698 . -362) 93054) ((-116 . -1020) 93031) ((-384 . -703) 93015) ((-608 . -703) 92999) ((-45 . -303) 92803) ((-802 . -142) 92782) ((-802 . -144) 92761) ((-1261 . -376) 92740) ((-805 . -833) T) ((-1240 . -1079) T) ((-1138 . -224) 92687) ((-380 . -833) 92666) ((-1230 . -1180) 92632) ((-1230 . -1177) 92598) ((-1223 . -1177) 92564) ((-508 . -129) T) ((-1223 . -1180) 92530) ((-1202 . -1177) 92496) ((-1202 . -1180) 92462) ((-1230 . -35) 92428) ((-1230 . -94) 92394) ((-622 . -600) 92363) ((-594 . -600) 92332) ((-220 . -833) T) ((-1223 . -94) 92298) ((-1223 . -35) 92264) ((-1222 . -1091) T) ((-1099 . -633) 92251) ((-1202 . -94) 92217) ((-1201 . -1091) T) ((-581 . -148) 92199) ((-1059 . -343) 92178) ((-171 . -284) T) ((-116 . -371) 92155) ((-116 . -332) 92132) ((-1202 . -35) 92098) ((-852 . -301) T) ((-307 . -780) NIL) ((-307 . -777) NIL) ((-310 . -712) 91947) ((-307 . -712) T) ((-467 . -357) 91926) ((-353 . -343) 91905) ((-347 . -343) 91884) ((-339 . -343) 91863) ((-310 . -466) 91842) ((-1222 . -23) T) ((-1201 . -23) T) ((-704 . -1091) T) ((-700 . -129) T) ((-638 . -101) T) ((-470 . -703) 91807) ((-45 . -276) 91757) ((-104 . -1079) T) ((-67 . -600) 91739) ((-952 . -101) T) ((-847 . -101) T) ((-610 . -882) 91698) ((-1262 . -1079) T) ((-375 . -1079) T) ((-1191 . -1079) T) ((-1092 . -226) 91667) ((-81 . -1192) T) ((-1042 . -833) T) ((-934 . -833) 91646) ((-116 . -882) NIL) ((-768 . -902) 91625) ((-699 . -833) T) ((-524 . -1079) T) ((-493 . -1079) T) ((-349 . -1196) T) ((-346 . -1196) T) ((-338 . -1196) T) ((-258 . -1196) 91604) ((-242 . -1196) 91583) ((-526 . -843) T) ((-474 . -833) 91562) ((-1121 . -1037) 91546) ((-384 . -747) T) ((-1137 . -814) T) ((-679 . -1192) T) ((-349 . -545) T) ((-346 . -545) T) ((-338 . -545) T) ((-258 . -545) 91477) ((-242 . -545) 91408) ((-518 . -1062) T) ((-1121 . -110) 91387) ((-446 . -730) 91357) ((-848 . -1037) 91327) ((-803 . -38) 91269) ((-679 . -866) 91251) ((-679 . -868) 91233) ((-289 . -303) 91037) ((-892 . -1196) T) ((-655 . -405) 91021) ((-848 . -110) 90986) ((-679 . -1020) 90931) ((-986 . -445) T) ((-892 . -545) T) ((-526 . -600) 90913) ((-570 . -902) T) ((-467 . -1091) T) ((-511 . -902) T) ((-1135 . -282) 90890) ((-896 . -445) T) ((-64 . -600) 90872) ((-619 . -224) 90818) ((-467 . -23) T) ((-1099 . -780) T) ((-854 . -129) T) ((-1099 . -777) T) ((-1253 . -1255) 90797) ((-1099 . -712) T) ((-639 . -633) 90771) ((-288 . -600) 90512) ((-1121 . -603) 90430) ((-1017 . -34) T) ((-801 . -831) 90409) ((-569 . -301) T) ((-553 . -301) T) ((-488 . -301) T) ((-1262 . -703) 90379) ((-679 . -371) 90361) ((-679 . -332) 90343) ((-470 . -169) T) ((-375 . -703) 90313) ((-848 . -603) 90248) ((-853 . -833) NIL) ((-553 . -1004) T) ((-488 . -1004) T) ((-1112 . -600) 90230) ((-1092 . -233) 90209) ((-209 . -101) T) ((-1129 . -101) T) ((-70 . -600) 90191) ((-1121 . -1031) T) ((-1157 . -38) 90088) ((-841 . -600) 90070) ((-553 . -538) T) ((-655 . -1038) T) ((-717 . -931) 90023) ((-1121 . -228) 90002) ((-1061 . -1079) T) ((-1016 . -25) T) ((-1016 . -21) T) ((-985 . -1037) 89947) ((-887 . -101) T) ((-848 . -1031) T) ((-679 . -882) NIL) ((-349 . -323) 89931) ((-349 . -357) T) ((-346 . -323) 89915) ((-346 . -357) T) ((-338 . -323) 89899) ((-338 . -357) T) ((-480 . -101) T) ((-1250 . -38) 89869) ((-516 . -672) 89819) ((-212 . -101) T) ((-1006 . -1020) 89699) ((-985 . -110) 89628) ((-1153 . -955) 89597) ((-1152 . -955) 89559) ((-513 . -148) 89543) ((-1059 . -364) 89522) ((-345 . -600) 89504) ((-316 . -21) T) ((-348 . -1020) 89481) ((-316 . -25) T) ((-1146 . -955) 89450) ((-1105 . -955) 89417) ((-75 . -600) 89399) ((-684 . -301) T) ((-166 . -833) 89378) ((-892 . -357) T) ((-373 . -25) T) ((-373 . -21) T) ((-892 . -323) 89365) ((-85 . -600) 89347) ((-684 . -1004) T) ((-662 . -833) T) ((-1222 . -129) T) ((-1201 . -129) T) ((-883 . -992) 89331) ((-820 . -21) T) ((-48 . -1020) 89274) ((-820 . -25) T) ((-813 . -25) T) ((-813 . -21) T) ((-1260 . -1038) T) ((-1258 . -1038) T) ((-639 . -712) T) ((-1083 . -605) 89177) ((-985 . -603) 89107) ((-1261 . -1037) 89091) ((-1211 . -833) 89070) ((-801 . -405) 89039) ((-102 . -118) 89023) ((-128 . -1079) T) ((-52 . -1079) T) ((-908 . -600) 89005) ((-853 . -974) 88982) ((-809 . -101) T) ((-1261 . -110) 88961) ((-638 . -38) 88931) ((-560 . -833) T) ((-349 . -1091) T) ((-346 . -1091) T) ((-338 . -1091) T) ((-258 . -1091) T) ((-242 . -1091) T) ((-1129 . -303) 88735) ((-610 . -301) 88714) ((-517 . -1062) T) ((-305 . -1079) T) ((-649 . -23) T) ((-499 . -603) 88695) ((-475 . -226) 88664) ((-149 . -1038) T) ((-349 . -23) T) ((-346 . -23) T) ((-338 . -23) T) ((-116 . -301) T) ((-258 . -23) T) ((-242 . -23) T) ((-985 . -1031) T) ((-698 . -891) 88643) ((-1135 . -603) 88620) ((-985 . -228) 88592) ((-985 . -238) T) ((-116 . -1004) NIL) ((-892 . -1091) T) ((-1223 . -445) 88571) ((-1202 . -445) 88550) ((-516 . -600) 88482) ((-698 . -633) 88407) ((-401 . -1037) 88359) ((-497 . -600) 88341) ((-892 . -23) T) ((-480 . -303) NIL) ((-1261 . -603) 88297) ((-467 . -129) T) ((-212 . -303) NIL) ((-401 . -110) 88235) ((-801 . -1038) 88165) ((-723 . -1077) 88149) ((-1222 . -486) 88115) ((-1201 . -486) 88081) ((-138 . -1077) 88063) ((-470 . -284) T) ((-1261 . -1031) T) ((-1043 . -101) T) ((-826 . -603) 87931) ((-493 . -507) NIL) ((-688 . -101) T) ((-475 . -233) 87910) ((-401 . -603) 87808) ((-1151 . -142) 87787) ((-1151 . -144) 87766) ((-1104 . -144) 87745) ((-1104 . -142) 87724) ((-622 . -1037) 87708) ((-594 . -1037) 87692) ((-655 . -1079) T) ((-655 . -1034) 87632) ((-1153 . -1229) 87616) ((-1153 . -1216) 87593) ((-480 . -1130) T) ((-1152 . -1221) 87554) ((-1152 . -1216) 87524) ((-1152 . -1219) 87508) ((-212 . -1130) T) ((-337 . -902) T) ((-804 . -260) 87492) ((-622 . -110) 87471) ((-594 . -110) 87450) ((-1146 . -1200) 87411) ((-826 . -1031) 87390) ((-1146 . -1216) 87367) ((-508 . -25) T) ((-488 . -296) T) ((-504 . -23) T) ((-503 . -25) T) ((-501 . -25) T) ((-500 . -23) T) ((-1146 . -1198) 87351) ((-401 . -1031) T) ((-313 . -1038) T) ((-679 . -301) T) ((-107 . -831) T) ((-698 . -712) T) ((-401 . -238) T) ((-401 . -228) 87330) ((-480 . -38) 87280) ((-212 . -38) 87230) ((-467 . -486) 87196) ((-1137 . -1123) T) ((-1080 . -101) T) ((-686 . -600) 87178) ((-686 . -601) 87093) ((-700 . -21) T) ((-700 . -25) T) ((-1114 . -101) T) ((-132 . -600) 87075) ((-115 . -600) 87057) ((-154 . -25) T) ((-1260 . -1079) T) ((-854 . -626) 87005) ((-1258 . -1079) T) ((-945 . -101) T) ((-721 . -101) T) ((-701 . -101) T) ((-446 . -101) T) ((-802 . -445) 86956) ((-44 . -1079) T) ((-1067 . -833) T) ((-649 . -129) T) ((-1043 . -303) 86807) ((-655 . -703) 86791) ((-283 . -1038) T) ((-349 . -129) T) ((-346 . -129) T) ((-338 . -129) T) ((-258 . -129) T) ((-242 . -129) T) ((-412 . -101) T) ((-149 . -1079) T) ((-45 . -224) 86741) ((-940 . -833) 86720) ((-981 . -633) 86658) ((-235 . -1245) 86628) ((-1006 . -301) T) ((-288 . -1037) 86549) ((-892 . -129) T) ((-40 . -902) T) ((-480 . -394) 86531) ((-348 . -301) T) ((-212 . -394) 86513) ((-1059 . -405) 86497) ((-288 . -110) 86413) ((-854 . -25) T) ((-854 . -21) T) ((-333 . -600) 86395) ((-1224 . -47) 86339) ((-220 . -144) T) ((-171 . -600) 86321) ((-1092 . -831) 86300) ((-760 . -600) 86282) ((-127 . -833) T) ((-595 . -230) 86229) ((-468 . -230) 86179) ((-1260 . -703) 86149) ((-48 . -301) T) ((-1258 . -703) 86119) ((-64 . -603) 86048) ((-946 . -1079) T) ((-801 . -1079) 85838) ((-306 . -101) T) ((-883 . -1192) T) ((-48 . -1004) T) ((-1201 . -626) 85746) ((-674 . -101) 85724) ((-44 . -703) 85708) ((-539 . -101) T) ((-288 . -603) 85639) ((-66 . -377) T) ((-66 . -389) T) ((-647 . -23) T) ((-655 . -747) T) ((-1189 . -1079) 85617) ((-345 . -1037) 85562) ((-660 . -1079) 85540) ((-1042 . -144) T) ((-934 . -144) 85519) ((-934 . -142) 85498) ((-785 . -101) T) ((-149 . -703) 85482) ((-474 . -144) 85461) ((-474 . -142) 85440) ((-345 . -110) 85369) ((-1059 . -1038) T) ((-316 . -833) 85348) ((-1230 . -955) 85317) ((-614 . -1079) T) ((-1223 . -955) 85279) ((-504 . -129) T) ((-500 . -129) T) ((-289 . -224) 85229) ((-353 . -1038) T) ((-347 . -1038) T) ((-339 . -1038) T) ((-288 . -1031) 85171) ((-1202 . -955) 85140) ((-373 . -833) T) ((-107 . -1038) T) ((-981 . -712) T) ((-852 . -902) T) ((-826 . -781) 85119) ((-826 . -778) 85098) ((-412 . -303) 85037) ((-461 . -101) T) ((-583 . -955) 85006) ((-313 . -1079) T) ((-401 . -781) 84985) ((-401 . -778) 84964) ((-493 . -482) 84946) ((-1224 . -1020) 84912) ((-1222 . -21) T) ((-1222 . -25) T) ((-1201 . -21) T) ((-1201 . -25) T) ((-801 . -703) 84854) ((-345 . -603) 84784) ((-684 . -398) T) ((-1251 . -1192) T) ((-593 . -101) T) ((-1092 . -405) 84753) ((-985 . -362) NIL) ((-656 . -101) T) ((-177 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-151 . -101) T) ((-102 . -34) T) ((-723 . -1192) T) ((-44 . -747) T) ((-581 . -101) T) ((-76 . -390) T) ((-76 . -389) T) ((-638 . -641) 84737) ((-138 . -1192) T) ((-853 . -144) T) ((-853 . -142) NIL) ((-1191 . -92) T) ((-345 . -1031) T) ((-69 . -377) T) ((-69 . -389) T) ((-1144 . -101) T) ((-655 . -507) 84670) ((-674 . -303) 84608) ((-945 . -38) 84505) ((-721 . -38) 84475) ((-539 . -303) 84279) ((-310 . -1192) T) ((-345 . -228) T) ((-345 . -238) T) ((-307 . -1192) T) ((-283 . -1079) T) ((-1159 . -600) 84261) ((-697 . -1196) T) ((-1135 . -636) 84245) ((-1186 . -545) 84224) ((-697 . -545) T) ((-310 . -866) 84208) ((-310 . -868) 84133) ((-307 . -866) 84094) ((-307 . -868) NIL) ((-785 . -303) 84059) ((-313 . -703) 83900) ((-318 . -317) 83877) ((-478 . -101) T) ((-467 . -25) T) ((-467 . -21) T) ((-412 . -38) 83851) ((-310 . -1020) 83514) ((-220 . -1177) T) ((-220 . -1180) T) ((-3 . -600) 83496) ((-307 . -1020) 83426) ((-2 . -1079) T) ((-2 . |RecordCategory|) T) ((-819 . -600) 83408) ((-1092 . -1038) 83338) ((-569 . -902) T) ((-553 . -806) T) ((-553 . -902) T) ((-488 . -902) T) ((-134 . -1020) 83322) ((-220 . -94) T) ((-74 . -434) T) ((-74 . -389) T) ((0 . -600) 83304) ((-166 . -144) 83283) ((-166 . -142) 83234) ((-220 . -35) T) ((-49 . -600) 83216) ((-470 . -1038) T) ((-480 . -226) 83198) ((-477 . -950) 83182) ((-475 . -831) 83161) ((-212 . -226) 83143) ((-80 . -434) T) ((-80 . -389) T) ((-1125 . -34) T) ((-801 . -169) 83122) ((-717 . -101) T) ((-1008 . -600) 83089) ((-493 . -280) 83064) ((-310 . -371) 83033) ((-307 . -371) 82994) ((-307 . -332) 82955) ((-1064 . -600) 82937) ((-802 . -931) 82884) ((-647 . -129) T) ((-1211 . -142) 82863) ((-1211 . -144) 82842) ((-1153 . -101) T) ((-1152 . -101) T) ((-1146 . -101) T) ((-1138 . -1079) T) ((-1105 . -101) T) ((-217 . -34) T) ((-283 . -703) 82829) ((-1138 . -597) 82805) ((-581 . -303) NIL) ((-477 . -1079) 82783) ((-384 . -600) 82765) ((-503 . -833) T) ((-1129 . -224) 82715) ((-1230 . -1229) 82699) ((-1230 . -1216) 82676) ((-1223 . -1221) 82637) ((-1223 . -1216) 82607) ((-1223 . -1219) 82591) ((-1202 . -1200) 82552) ((-1202 . -1216) 82529) ((-608 . -600) 82511) ((-1202 . -1198) 82495) ((-684 . -902) T) ((-1153 . -278) 82461) ((-1152 . -278) 82427) ((-1146 . -278) 82393) ((-1059 . -1079) T) ((-1041 . -1079) T) ((-48 . -296) T) ((-310 . -882) 82359) ((-307 . -882) NIL) ((-1041 . -1048) 82338) ((-1099 . -868) 82320) ((-785 . -38) 82304) ((-258 . -626) 82252) ((-242 . -626) 82200) ((-686 . -1037) 82187) ((-583 . -1216) 82164) ((-1105 . -278) 82130) ((-313 . -169) 82061) ((-353 . -1079) T) ((-347 . -1079) T) ((-339 . -1079) T) ((-493 . -19) 82043) ((-1099 . -1020) 82025) ((-1081 . -148) 82009) ((-107 . -1079) T) ((-115 . -1037) 81996) ((-697 . -357) T) ((-493 . -591) 81971) ((-686 . -110) 81956) ((-430 . -101) T) ((-45 . -1128) 81906) ((-115 . -110) 81891) ((-622 . -706) T) ((-594 . -706) T) ((-801 . -507) 81824) ((-1017 . -1192) T) ((-925 . -148) 81808) ((-1151 . -445) 81739) ((-1145 . -1079) T) ((-1137 . -1079) T) ((-518 . -101) T) ((-513 . -101) 81689) ((-1121 . -633) 81663) ((-1104 . -445) 81614) ((-1066 . -1196) 81593) ((-768 . -1196) 81572) ((-766 . -1196) 81551) ((-61 . -1192) T) ((-470 . -600) 81503) ((-470 . -601) 81425) ((-1066 . -545) 81356) ((-976 . -1079) T) ((-768 . -545) 81267) ((-766 . -545) 81198) ((-475 . -405) 81167) ((-610 . -902) 81146) ((-447 . -1196) 81125) ((-717 . -303) 81112) ((-686 . -603) 81084) ((-392 . -600) 81066) ((-660 . -507) 80999) ((-649 . -25) T) ((-649 . -21) T) ((-447 . -545) 80930) ((-349 . -25) T) ((-349 . -21) T) ((-116 . -902) T) ((-116 . -806) NIL) ((-346 . -25) T) ((-346 . -21) T) ((-338 . -25) T) ((-338 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-242 . -25) T) ((-242 . -21) T) ((-82 . -378) T) ((-82 . -389) T) ((-132 . -603) 80912) ((-115 . -603) 80884) ((-1240 . -600) 80866) ((-1186 . -1091) T) ((-1186 . -23) T) ((-1146 . -303) 80751) ((-1105 . -303) 80738) ((-1059 . -703) 80606) ((-848 . -633) 80566) ((-925 . -962) 80550) ((-892 . -21) T) ((-283 . -169) T) ((-892 . -25) T) ((-305 . -92) T) ((-854 . -833) 80501) ((-697 . -1091) T) ((-697 . -23) T) ((-686 . -1031) T) ((-632 . -1079) 80479) ((-619 . -1079) T) ((-570 . -1196) T) ((-511 . -1196) T) ((-619 . -597) 80454) ((-570 . -545) T) ((-511 . -545) T) ((-353 . -703) 80406) ((-347 . -703) 80358) ((-333 . -1037) 80342) ((-339 . -703) 80294) ((-171 . -110) 80205) ((-171 . -1037) 80137) ((-107 . -703) 80087) ((-333 . -110) 80066) ((-268 . -1079) T) ((-267 . -1079) T) ((-266 . -1079) T) ((-265 . -1079) T) ((-264 . -1079) T) ((-263 . -1079) T) ((-262 . -1079) T) ((-207 . -1079) T) ((-206 . -1079) T) ((-204 . -1079) T) ((-166 . -1180) 80044) ((-166 . -1177) 80022) ((-203 . -1079) T) ((-202 . -1079) T) ((-115 . -1031) T) ((-201 . -1079) T) ((-198 . -1079) T) ((-686 . -228) T) ((-197 . -1079) T) ((-196 . -1079) T) ((-195 . -1079) T) ((-194 . -1079) T) ((-193 . -1079) T) ((-192 . -1079) T) ((-191 . -1079) T) ((-190 . -1079) T) ((-189 . -1079) T) ((-188 . -1079) T) ((-235 . -101) 79812) ((-166 . -35) 79790) ((-166 . -94) 79768) ((-639 . -1020) 79664) ((-475 . -1038) 79594) ((-1092 . -1079) 79384) ((-1121 . -34) T) ((-655 . -482) 79368) ((-72 . -1192) T) ((-104 . -600) 79350) ((-1262 . -600) 79332) ((-375 . -600) 79314) ((-333 . -603) 79266) ((-171 . -603) 79183) ((-1191 . -483) 79164) ((-717 . -38) 79013) ((-560 . -1180) T) ((-560 . -1177) T) ((-524 . -600) 78995) ((-513 . -303) 78933) ((-493 . -600) 78915) ((-493 . -601) 78897) ((-1191 . -600) 78863) ((-1146 . -1130) NIL) ((-1009 . -1051) 78832) ((-1009 . -1079) T) ((-986 . -101) T) ((-953 . -101) T) ((-896 . -101) T) ((-875 . -1020) 78809) ((-1121 . -712) T) ((-985 . -633) 78754) ((-469 . -1079) T) ((-456 . -1079) T) ((-574 . -23) T) ((-560 . -35) T) ((-560 . -94) T) ((-421 . -101) T) ((-1043 . -224) 78700) ((-1153 . -38) 78597) ((-848 . -712) T) ((-679 . -902) T) ((-504 . -25) T) ((-500 . -21) T) ((-500 . -25) T) ((-1152 . -38) 78438) ((-333 . -1031) T) ((-1146 . -38) 78234) ((-1059 . -169) T) ((-171 . -1031) T) ((-1105 . -38) 78131) ((-698 . -47) 78108) ((-353 . -169) T) ((-347 . -169) T) ((-512 . -56) 78082) ((-490 . -56) 78032) ((-345 . -1257) 78009) ((-220 . -445) T) ((-313 . -284) 77960) ((-339 . -169) T) ((-171 . -238) T) ((-1201 . -833) 77859) ((-107 . -169) T) ((-854 . -974) 77843) ((-643 . -1091) T) ((-570 . -357) T) ((-570 . -323) 77830) ((-511 . -323) 77807) ((-511 . -357) T) ((-310 . -301) 77786) ((-307 . -301) T) ((-589 . -833) 77765) ((-1092 . -703) 77707) ((-513 . -276) 77691) ((-643 . -23) T) ((-412 . -226) 77675) ((-307 . -1004) NIL) ((-330 . -23) T) ((-102 . -992) 77659) ((-45 . -36) 77638) ((-599 . -1079) T) ((-345 . -362) T) ((-517 . -101) T) ((-488 . -27) T) ((-235 . -303) 77576) ((-1066 . -1091) T) ((-1261 . -633) 77550) ((-768 . -1091) T) ((-766 . -1091) T) ((-447 . -1091) T) ((-1042 . -445) T) ((-934 . -445) 77501) ((-1094 . -1062) T) ((-109 . -1079) T) ((-1066 . -23) T) ((-803 . -1038) T) ((-768 . -23) T) ((-766 . -23) T) ((-474 . -445) 77452) ((-1138 . -507) 77235) ((-375 . -376) 77214) ((-1157 . -405) 77198) ((-454 . -23) T) ((-447 . -23) T) ((-95 . -1079) T) ((-477 . -507) 77131) ((-283 . -284) T) ((-1061 . -600) 77113) ((-1061 . -601) 77094) ((-401 . -891) 77073) ((-50 . -1091) T) ((-1006 . -902) T) ((-985 . -712) T) ((-698 . -868) NIL) ((-570 . -1091) T) ((-511 . -1091) T) ((-826 . -633) 77046) ((-1186 . -129) T) ((-1146 . -394) 76998) ((-986 . -303) NIL) ((-801 . -482) 76982) ((-348 . -902) T) ((-1135 . -34) T) ((-401 . -633) 76934) ((-50 . -23) T) ((-697 . -129) T) ((-698 . -1020) 76814) ((-570 . -23) T) ((-107 . -507) NIL) ((-511 . -23) T) ((-166 . -403) 76785) ((-1119 . -1079) T) ((-1253 . -1252) 76769) ((-686 . -781) T) ((-686 . -778) T) ((-1099 . -301) T) ((-373 . -144) T) ((-274 . -600) 76751) ((-1201 . -974) 76721) ((-48 . -902) T) ((-660 . -482) 76705) ((-245 . -1245) 76675) ((-244 . -1245) 76645) ((-1155 . -833) T) ((-1092 . -169) 76624) ((-1099 . -1004) T) ((-1028 . -34) T) ((-820 . -144) 76603) ((-820 . -142) 76582) ((-723 . -106) 76566) ((-599 . -130) T) ((-475 . -1079) 76356) ((-1157 . -1038) T) ((-853 . -445) T) ((-84 . -1192) T) ((-235 . -38) 76326) ((-138 . -106) 76308) ((-698 . -371) 76292) ((-819 . -603) 76160) ((-1099 . -538) T) ((-568 . -101) T) ((-128 . -483) 76142) ((-384 . -1037) 76126) ((-1261 . -712) T) ((-1151 . -931) 76095) ((-128 . -600) 76047) ((-52 . -600) 76029) ((-1104 . -931) 75996) ((-638 . -405) 75980) ((-1250 . -1038) T) ((-608 . -1037) 75964) ((-647 . -25) T) ((-647 . -21) T) ((-1137 . -507) NIL) ((-1230 . -101) T) ((-1223 . -101) T) ((-384 . -110) 75943) ((-217 . -248) 75927) ((-1202 . -101) T) ((-1035 . -1079) T) ((-986 . -1130) T) ((-1035 . -1034) 75867) ((-804 . -1079) T) ((-337 . -1196) T) ((-622 . -633) 75851) ((-608 . -110) 75830) ((-594 . -633) 75814) ((-584 . -101) T) ((-305 . -483) 75795) ((-574 . -129) T) ((-583 . -101) T) ((-408 . -1079) T) ((-379 . -1079) T) ((-305 . -600) 75761) ((-222 . -1079) 75739) ((-632 . -507) 75672) ((-619 . -507) 75516) ((-819 . -1031) 75495) ((-630 . -148) 75479) ((-337 . -545) T) ((-698 . -882) 75422) ((-539 . -224) 75372) ((-1230 . -278) 75338) ((-1059 . -284) 75289) ((-480 . -831) T) ((-218 . -1091) T) ((-1223 . -278) 75255) ((-1202 . -278) 75221) ((-986 . -38) 75171) ((-212 . -831) T) ((-1186 . -486) 75137) ((-896 . -38) 75089) ((-826 . -780) 75068) ((-826 . -777) 75047) ((-826 . -712) 75026) ((-353 . -284) T) ((-347 . -284) T) ((-339 . -284) T) ((-166 . -445) 74957) ((-421 . -38) 74941) ((-107 . -284) T) ((-218 . -23) T) ((-401 . -780) 74920) ((-401 . -777) 74899) ((-401 . -712) T) ((-493 . -282) 74874) ((-470 . -1037) 74839) ((-643 . -129) T) ((-608 . -603) 74808) ((-1092 . -507) 74741) ((-330 . -129) T) ((-166 . -396) 74720) ((-475 . -703) 74662) ((-801 . -280) 74639) ((-470 . -110) 74595) ((-638 . -1038) T) ((-1211 . -445) 74526) ((-1249 . -1062) T) ((-1248 . -1062) T) ((-1066 . -129) T) ((-1035 . -703) 74468) ((-258 . -833) 74447) ((-242 . -833) 74426) ((-768 . -129) T) ((-766 . -129) T) ((-560 . -445) T) ((-1009 . -507) 74359) ((-608 . -1031) T) ((-580 . -1079) T) ((-526 . -170) T) ((-454 . -129) T) ((-447 . -129) T) ((-45 . -1079) T) ((-379 . -703) 74329) ((-803 . -1079) T) ((-469 . -507) 74262) ((-456 . -507) 74195) ((-446 . -361) 74165) ((-45 . -597) 74144) ((-310 . -296) T) ((-470 . -603) 74094) ((-655 . -600) 74056) ((-58 . -833) 74035) ((-1202 . -303) 73920) ((-986 . -394) 73902) ((-801 . -591) 73879) ((-509 . -833) 73858) ((-489 . -833) 73837) ((-40 . -1196) T) ((-981 . -1020) 73733) ((-50 . -129) T) ((-570 . -129) T) ((-511 . -129) T) ((-288 . -633) 73593) ((-337 . -323) 73570) ((-337 . -357) T) ((-316 . -317) 73547) ((-313 . -280) 73532) ((-40 . -545) T) ((-373 . -1177) T) ((-373 . -1180) T) ((-1017 . -1168) 73507) ((-1165 . -230) 73457) ((-1146 . -226) 73409) ((-324 . -1079) T) ((-373 . -94) T) ((-373 . -35) T) ((-1017 . -106) 73355) ((-470 . -1031) T) ((-472 . -230) 73305) ((-1138 . -482) 73239) ((-1262 . -1037) 73223) ((-375 . -1037) 73207) ((-470 . -238) T) ((-802 . -101) T) ((-700 . -144) 73186) ((-700 . -142) 73165) ((-477 . -482) 73149) ((-478 . -329) 73118) ((-1262 . -110) 73097) ((-505 . -1079) T) ((-475 . -169) 73076) ((-981 . -371) 73060) ((-407 . -101) T) ((-375 . -110) 73039) ((-981 . -332) 73023) ((-273 . -965) 73007) ((-272 . -965) 72991) ((-1260 . -600) 72973) ((-1258 . -600) 72955) ((-109 . -507) NIL) ((-1151 . -1214) 72939) ((-837 . -835) 72923) ((-1157 . -1079) T) ((-102 . -1192) T) ((-934 . -931) 72884) ((-803 . -703) 72826) ((-1202 . -1130) NIL) ((-474 . -931) 72771) ((-1042 . -140) T) ((-59 . -101) 72749) ((-44 . -600) 72731) ((-77 . -600) 72713) ((-345 . -633) 72658) ((-1250 . -1079) T) ((-504 . -833) T) ((-337 . -1091) T) ((-289 . -1079) T) ((-981 . -882) 72617) ((-289 . -597) 72596) ((-1262 . -603) 72545) ((-1230 . -38) 72442) ((-1223 . -38) 72283) ((-1202 . -38) 72079) ((-480 . -1038) T) ((-375 . -603) 72063) ((-212 . -1038) T) ((-337 . -23) T) ((-149 . -600) 72045) ((-819 . -781) 72024) ((-819 . -778) 72003) ((-1191 . -603) 71984) ((-584 . -38) 71957) ((-583 . -38) 71854) ((-852 . -545) T) ((-218 . -129) T) ((-313 . -984) 71820) ((-78 . -600) 71802) ((-698 . -301) 71781) ((-288 . -712) 71683) ((-810 . -101) T) ((-847 . -827) T) ((-288 . -466) 71662) ((-1253 . -101) T) ((-40 . -357) T) ((-854 . -144) 71641) ((-854 . -142) 71620) ((-1137 . -482) 71602) ((-1262 . -1031) T) ((-475 . -507) 71535) ((-1125 . -1192) T) ((-946 . -600) 71517) ((-632 . -482) 71501) ((-619 . -482) 71432) ((-801 . -600) 71163) ((-48 . -27) T) ((-1157 . -703) 71060) ((-638 . -1079) T) ((-844 . -843) T) ((-430 . -358) 71034) ((-1081 . -101) T) ((-952 . -1079) T) ((-847 . -1079) T) ((-802 . -303) 71021) ((-526 . -520) T) ((-526 . -565) T) ((-1258 . -376) 70993) ((-1035 . -507) 70926) ((-1138 . -280) 70902) ((-235 . -226) 70871) ((-1250 . -703) 70841) ((-1145 . -92) T) ((-976 . -92) T) ((-803 . -169) 70820) ((-1189 . -483) 70797) ((-222 . -507) 70730) ((-608 . -781) 70709) ((-608 . -778) 70688) ((-1189 . -600) 70600) ((-217 . -1192) T) ((-660 . -600) 70532) ((-1135 . -992) 70516) ((-925 . -101) 70466) ((-345 . -712) T) ((-844 . -600) 70448) ((-1202 . -394) 70400) ((-1092 . -482) 70384) ((-59 . -303) 70322) ((-325 . -101) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-40 . -1091) T) ((-697 . -21) T) ((-614 . -600) 70304) ((-508 . -317) 70283) ((-697 . -25) T) ((-107 . -280) NIL) ((-903 . -1091) T) ((-40 . -23) T) ((-757 . -1091) T) ((-553 . -1196) T) ((-488 . -1196) T) ((-313 . -600) 70265) ((-986 . -226) 70247) ((-166 . -163) 70231) ((-569 . -545) T) ((-553 . -545) T) ((-488 . -545) T) ((-757 . -23) T) ((-1222 . -144) 70210) ((-1138 . -591) 70186) ((-1222 . -142) 70165) ((-1009 . -482) 70149) ((-1201 . -142) 70074) ((-1201 . -144) 69999) ((-1253 . -1259) 69978) ((-469 . -482) 69962) ((-456 . -482) 69946) ((-516 . -34) T) ((-638 . -703) 69916) ((-111 . -949) T) ((-647 . -833) 69895) ((-1157 . -169) 69846) ((-359 . -101) T) ((-235 . -233) 69825) ((-245 . -101) T) ((-244 . -101) T) ((-1211 . -931) 69794) ((-240 . -833) 69773) ((-802 . -38) 69622) ((-45 . -507) 69414) ((-1137 . -280) 69389) ((-209 . -1079) T) ((-1129 . -1079) T) ((-1129 . -597) 69368) ((-574 . -25) T) ((-574 . -21) T) ((-1081 . -303) 69306) ((-945 . -405) 69290) ((-684 . -1196) T) ((-619 . -280) 69265) ((-1066 . -626) 69213) ((-768 . -626) 69161) ((-766 . -626) 69109) ((-337 . -129) T) ((-283 . -600) 69091) ((-887 . -1079) T) ((-684 . -545) T) ((-128 . -603) 69073) ((-852 . -1091) T) ((-447 . -626) 69021) ((-887 . -885) 69005) ((-373 . -445) T) ((-480 . -1079) T) ((-686 . -633) 68992) ((-925 . -303) 68930) ((-212 . -1079) T) ((-310 . -902) 68909) ((-307 . -902) T) ((-307 . -806) NIL) ((-384 . -706) T) ((-852 . -23) T) ((-115 . -633) 68896) ((-467 . -142) 68875) ((-412 . -405) 68859) ((-467 . -144) 68838) ((-109 . -482) 68820) ((-305 . -603) 68801) ((-2 . -600) 68783) ((-181 . -101) T) ((-1137 . -19) 68765) ((-1137 . -591) 68740) ((-643 . -21) T) ((-643 . -25) T) ((-581 . -1123) T) ((-1092 . -280) 68717) ((-330 . -25) T) ((-330 . -21) T) ((-488 . -357) T) ((-1253 . -38) 68687) ((-1121 . -1192) T) ((-619 . -591) 68662) ((-1066 . -25) T) ((-1066 . -21) T) ((-524 . -778) T) ((-524 . -781) T) ((-116 . -1196) T) ((-945 . -1038) T) ((-610 . -545) T) ((-768 . -25) T) ((-768 . -21) T) ((-766 . -21) T) ((-766 . -25) T) ((-721 . -1038) T) ((-701 . -1038) T) ((-655 . -1037) 68646) ((-510 . -1062) T) ((-454 . -25) T) ((-116 . -545) T) ((-454 . -21) T) ((-447 . -25) T) ((-447 . -21) T) ((-1121 . -1020) 68542) ((-803 . -284) 68521) ((-809 . -1079) T) ((-1260 . -1037) 68505) ((-948 . -949) T) ((-655 . -110) 68484) ((-289 . -507) 68276) ((-1258 . -1037) 68260) ((-1222 . -1177) 68226) ((-1222 . -1180) 68192) ((-245 . -303) 68130) ((-244 . -303) 68068) ((-1205 . -101) 68046) ((-1138 . -601) NIL) ((-1138 . -600) 68028) ((-1222 . -94) 67994) ((-1202 . -226) 67946) ((-1201 . -1177) 67912) ((-95 . -92) T) ((-1201 . -1180) 67878) ((-1121 . -371) 67862) ((-1099 . -806) T) ((-1099 . -902) T) ((-1092 . -591) 67839) ((-1059 . -601) 67823) ((-477 . -600) 67755) ((-801 . -282) 67732) ((-595 . -148) 67679) ((-412 . -1038) T) ((-480 . -703) 67629) ((-475 . -482) 67613) ((-321 . -833) 67592) ((-333 . -633) 67566) ((-50 . -21) T) ((-50 . -25) T) ((-212 . -703) 67516) ((-166 . -710) 67487) ((-171 . -633) 67419) ((-570 . -21) T) ((-570 . -25) T) ((-511 . -25) T) ((-511 . -21) T) ((-468 . -148) 67369) ((-1059 . -600) 67351) ((-1041 . -600) 67333) ((-975 . -101) T) ((-845 . -101) T) ((-785 . -405) 67297) ((-40 . -129) T) ((-684 . -357) T) ((-686 . -712) T) ((-207 . -877) T) ((-686 . -780) T) ((-686 . -777) T) ((-569 . -1091) T) ((-553 . -1091) T) ((-488 . -1091) T) ((-353 . -600) 67279) ((-347 . -600) 67261) ((-339 . -600) 67243) ((-65 . -390) T) ((-65 . -389) T) ((-107 . -601) 67173) ((-107 . -600) 67116) ((-206 . -877) T) ((-940 . -148) 67100) ((-757 . -129) T) ((-655 . -603) 67018) ((-132 . -712) T) ((-115 . -712) T) ((-1222 . -35) 66984) ((-1035 . -482) 66968) ((-569 . -23) T) ((-553 . -23) T) ((-488 . -23) T) ((-1201 . -94) 66934) ((-1201 . -35) 66900) ((-1151 . -101) T) ((-1104 . -101) T) ((-837 . -101) T) ((-222 . -482) 66884) ((-1260 . -110) 66863) ((-1258 . -110) 66842) ((-44 . -1037) 66826) ((-1211 . -1214) 66810) ((-838 . -835) 66794) ((-1157 . -284) 66773) ((-109 . -280) 66748) ((-1260 . -603) 66694) ((-127 . -148) 66676) ((-1121 . -882) 66635) ((-44 . -110) 66614) ((-1160 . -1233) T) ((-1145 . -483) 66595) ((-1145 . -600) 66561) ((-1137 . -601) NIL) ((-655 . -1031) T) ((-1137 . -600) 66543) ((-1043 . -597) 66518) ((-1043 . -1079) T) ((-976 . -483) 66499) ((-976 . -600) 66465) ((-73 . -434) T) ((-73 . -389) T) ((-688 . -1079) T) ((-149 . -1037) 66449) ((-655 . -228) 66428) ((-560 . -543) 66412) ((-349 . -144) 66391) ((-349 . -142) 66342) ((-346 . -144) 66321) ((-346 . -142) 66272) ((-338 . -144) 66251) ((-338 . -142) 66202) ((-258 . -142) 66181) ((-258 . -144) 66160) ((-245 . -38) 66130) ((-242 . -144) 66109) ((-116 . -357) T) ((-242 . -142) 66088) ((-244 . -38) 66058) ((-149 . -110) 66037) ((-985 . -1020) 65925) ((-1146 . -831) NIL) ((-679 . -1196) T) ((-785 . -1038) T) ((-684 . -1091) T) ((-1260 . -1031) T) ((-1258 . -603) 65854) ((-1258 . -1031) T) ((-1135 . -1192) T) ((-985 . -371) 65831) ((-892 . -142) T) ((-892 . -144) 65813) ((-852 . -129) T) ((-801 . -1037) 65710) ((-679 . -545) T) ((-684 . -23) T) ((-632 . -600) 65642) ((-632 . -601) 65603) ((-619 . -601) NIL) ((-619 . -600) 65585) ((-480 . -169) T) ((-218 . -21) T) ((-212 . -169) T) ((-218 . -25) T) ((-467 . -1180) 65551) ((-467 . -1177) 65517) ((-268 . -600) 65499) ((-267 . -600) 65481) ((-266 . -600) 65463) ((-265 . -600) 65445) ((-264 . -600) 65427) ((-493 . -636) 65409) ((-263 . -600) 65391) ((-333 . -712) T) ((-262 . -600) 65373) ((-109 . -19) 65355) ((-171 . -712) T) ((-493 . -367) 65337) ((-207 . -600) 65319) ((-513 . -1128) 65303) ((-493 . -122) T) ((-109 . -591) 65278) ((-206 . -600) 65260) ((-467 . -35) 65226) ((-467 . -94) 65192) ((-204 . -600) 65174) ((-203 . -600) 65156) ((-202 . -600) 65138) ((-201 . -600) 65120) ((-198 . -600) 65102) ((-197 . -600) 65084) ((-196 . -600) 65066) ((-195 . -600) 65048) ((-194 . -600) 65030) ((-193 . -600) 65012) ((-192 . -600) 64994) ((-529 . -1082) 64946) ((-191 . -600) 64928) ((-190 . -600) 64910) ((-45 . -482) 64847) ((-189 . -600) 64829) ((-188 . -600) 64811) ((-149 . -603) 64780) ((-1094 . -101) T) ((-801 . -110) 64670) ((-630 . -101) 64620) ((-475 . -280) 64597) ((-1092 . -600) 64328) ((-1080 . -1079) T) ((-1028 . -1192) T) ((-1261 . -1020) 64312) ((-610 . -1091) T) ((-1151 . -303) 64299) ((-1114 . -1079) T) ((-1104 . -303) 64286) ((-1075 . -1062) T) ((-1069 . -1062) T) ((-1053 . -1062) T) ((-1046 . -1062) T) ((-1018 . -1062) T) ((-1001 . -1062) T) ((-116 . -1091) T) ((-805 . -101) T) ((-613 . -1062) T) ((-610 . -23) T) ((-1129 . -507) 64078) ((-476 . -1062) T) ((-985 . -882) 64030) ((-380 . -101) T) ((-318 . -101) T) ((-213 . -1062) T) ((-945 . -1079) T) ((-149 . -1031) T) ((-717 . -405) 64014) ((-116 . -23) T) ((-721 . -1079) T) ((-701 . -1079) T) ((-688 . -130) T) ((-446 . -1079) T) ((-401 . -1192) T) ((-310 . -424) 63998) ((-580 . -92) T) ((-1009 . -601) 63959) ((-1006 . -1196) T) ((-220 . -101) T) ((-1009 . -600) 63921) ((-802 . -226) 63905) ((-801 . -603) 63635) ((-1006 . -545) T) ((-819 . -633) 63608) ((-348 . -1196) T) ((-469 . -600) 63570) ((-469 . -601) 63531) ((-456 . -601) 63492) ((-456 . -600) 63454) ((-401 . -866) 63438) ((-313 . -1037) 63273) ((-401 . -868) 63198) ((-826 . -1020) 63094) ((-480 . -507) NIL) ((-475 . -591) 63071) ((-348 . -545) T) ((-212 . -507) NIL) ((-854 . -445) T) ((-412 . -1079) T) ((-401 . -1020) 62935) ((-313 . -110) 62756) ((-679 . -357) T) ((-220 . -278) T) ((-1189 . -603) 62733) ((-48 . -1196) T) ((-801 . -1031) 62663) ((-569 . -129) T) ((-553 . -129) T) ((-488 . -129) T) ((-48 . -545) T) ((-1138 . -282) 62639) ((-1151 . -1130) 62617) ((-310 . -27) 62596) ((-1042 . -101) T) ((-801 . -228) 62548) ((-235 . -831) 62527) ((-934 . -101) T) ((-699 . -101) T) ((-289 . -482) 62464) ((-474 . -101) T) ((-717 . -1038) T) ((-599 . -600) 62446) ((-599 . -601) 62307) ((-401 . -371) 62291) ((-401 . -332) 62275) ((-313 . -603) 62101) ((-1151 . -38) 61930) ((-1104 . -38) 61779) ((-837 . -38) 61749) ((-384 . -633) 61733) ((-630 . -303) 61671) ((-945 . -703) 61568) ((-721 . -703) 61538) ((-217 . -106) 61522) ((-45 . -280) 61447) ((-608 . -633) 61421) ((-306 . -1079) T) ((-283 . -1037) 61408) ((-109 . -600) 61390) ((-109 . -601) 61372) ((-446 . -703) 61342) ((-802 . -247) 61281) ((-674 . -1079) 61259) ((-539 . -1079) T) ((-1153 . -1038) T) ((-1152 . -1038) T) ((-95 . -483) 61240) ((-1146 . -1038) T) ((-283 . -110) 61225) ((-1105 . -1038) T) ((-539 . -597) 61204) ((-95 . -600) 61170) ((-986 . -831) T) ((-222 . -672) 61128) ((-679 . -1091) T) ((-1186 . -726) 61104) ((-313 . -1031) T) ((-337 . -25) T) ((-337 . -21) T) ((-401 . -882) 61063) ((-67 . -1192) T) ((-819 . -780) 61042) ((-412 . -703) 61016) ((-785 . -1079) T) ((-819 . -777) 60995) ((-684 . -129) T) ((-698 . -902) 60974) ((-679 . -23) T) ((-480 . -284) T) ((-819 . -712) 60953) ((-313 . -228) 60905) ((-313 . -238) 60884) ((-212 . -284) T) ((-1006 . -357) T) ((-1222 . -445) 60863) ((-1201 . -445) 60842) ((-348 . -323) 60819) ((-348 . -357) T) ((-1119 . -600) 60801) ((-45 . -1226) 60751) ((-853 . -101) T) ((-630 . -276) 60735) ((-684 . -1040) T) ((-1249 . -101) T) ((-1248 . -101) T) ((-470 . -633) 60700) ((-461 . -1079) T) ((-45 . -591) 60625) ((-1137 . -282) 60600) ((-283 . -603) 60572) ((-40 . -626) 60511) ((-48 . -357) T) ((-1085 . -600) 60493) ((-1066 . -833) 60472) ((-619 . -282) 60447) ((-768 . -833) 60426) ((-766 . -833) 60405) ((-475 . -600) 60136) ((-235 . -405) 60105) ((-934 . -303) 60092) ((-447 . -833) 60071) ((-64 . -1192) T) ((-1043 . -507) 59915) ((-610 . -129) T) ((-474 . -303) 59902) ((-593 . -1079) T) ((-116 . -129) T) ((-656 . -1079) T) ((-283 . -1031) T) ((-177 . -1079) T) ((-158 . -1079) T) ((-153 . -1079) T) ((-151 . -1079) T) ((-446 . -747) T) ((-31 . -1062) T) ((-945 . -169) 59853) ((-952 . -92) T) ((-1059 . -1037) 59763) ((-608 . -780) 59742) ((-581 . -1079) T) ((-608 . -777) 59721) ((-608 . -712) T) ((-289 . -280) 59700) ((-288 . -1192) T) ((-1035 . -600) 59662) ((-1035 . -601) 59623) ((-1006 . -1091) T) ((-166 . -101) T) ((-269 . -833) T) ((-1144 . -1079) T) ((-804 . -600) 59605) ((-1092 . -282) 59582) ((-1081 . -224) 59566) ((-985 . -301) T) ((-785 . -703) 59550) ((-353 . -1037) 59502) ((-348 . -1091) T) ((-347 . -1037) 59454) ((-408 . -600) 59436) ((-379 . -600) 59418) ((-339 . -1037) 59370) ((-222 . -600) 59302) ((-1059 . -110) 59198) ((-1006 . -23) T) ((-107 . -1037) 59148) ((-880 . -101) T) ((-824 . -101) T) ((-794 . -101) T) ((-755 . -101) T) ((-662 . -101) T) ((-467 . -445) 59127) ((-412 . -169) T) ((-353 . -110) 59065) ((-347 . -110) 59003) ((-339 . -110) 58941) ((-245 . -226) 58910) ((-244 . -226) 58879) ((-348 . -23) T) ((-70 . -1192) T) ((-220 . -38) 58844) ((-107 . -110) 58778) ((-40 . -25) T) ((-40 . -21) T) ((-655 . -706) T) ((-166 . -278) 58756) ((-48 . -1091) T) ((-903 . -25) T) ((-757 . -25) T) ((-1129 . -482) 58693) ((-478 . -1079) T) ((-1262 . -633) 58667) ((-1211 . -101) T) ((-838 . -101) T) ((-235 . -1038) 58597) ((-1042 . -1130) T) ((-946 . -778) 58550) ((-375 . -633) 58534) ((-48 . -23) T) ((-946 . -781) 58487) ((-801 . -781) 58438) ((-801 . -778) 58389) ((-289 . -591) 58368) ((-470 . -712) T) ((-560 . -101) T) ((-1059 . -603) 58186) ((-853 . -303) 58143) ((-638 . -280) 58122) ((-111 . -646) T) ((-353 . -603) 58059) ((-347 . -603) 57996) ((-339 . -603) 57933) ((-75 . -1192) T) ((-107 . -603) 57883) ((-1042 . -38) 57870) ((-649 . -368) 57849) ((-934 . -38) 57698) ((-717 . -1079) T) ((-474 . -38) 57547) ((-85 . -1192) T) ((-580 . -483) 57528) ((-560 . -278) T) ((-1202 . -831) NIL) ((-580 . -600) 57494) ((-1153 . -1079) T) ((-1152 . -1079) T) ((-1059 . -1031) T) ((-345 . -1020) 57471) ((-803 . -483) 57455) ((-986 . -1038) T) ((-45 . -600) 57437) ((-45 . -601) NIL) ((-896 . -1038) T) ((-803 . -600) 57406) ((-1146 . -1079) T) ((-1126 . -101) 57384) ((-1059 . -238) 57335) ((-421 . -1038) T) ((-353 . -1031) T) ((-359 . -358) 57312) ((-347 . -1031) T) ((-339 . -1031) T) ((-245 . -233) 57291) ((-244 . -233) 57270) ((-1059 . -228) 57195) ((-1105 . -1079) T) ((-288 . -882) 57154) ((-107 . -1031) T) ((-679 . -129) T) ((-412 . -507) 56996) ((-353 . -228) 56975) ((-353 . -238) T) ((-44 . -706) T) ((-347 . -228) 56954) ((-347 . -238) T) ((-339 . -228) 56933) ((-339 . -238) T) ((-1145 . -603) 56914) ((-166 . -303) 56879) ((-107 . -238) T) ((-107 . -228) T) ((-976 . -603) 56860) ((-313 . -778) T) ((-852 . -21) T) ((-852 . -25) T) ((-401 . -301) T) ((-493 . -34) T) ((-109 . -282) 56835) ((-1092 . -1037) 56732) ((-853 . -1130) NIL) ((-324 . -600) 56714) ((-401 . -1004) 56692) ((-1092 . -110) 56582) ((-676 . -1233) T) ((-430 . -1079) T) ((-1262 . -712) T) ((-62 . -600) 56564) ((-853 . -38) 56509) ((-516 . -1192) T) ((-589 . -148) 56493) ((-505 . -600) 56475) ((-1211 . -303) 56462) ((-717 . -703) 56311) ((-524 . -779) T) ((-524 . -780) T) ((-553 . -626) 56293) ((-488 . -626) 56253) ((-349 . -445) T) ((-346 . -445) T) ((-338 . -445) T) ((-258 . -445) 56204) ((-518 . -1079) T) ((-513 . -1079) 56154) ((-242 . -445) 56105) ((-1129 . -280) 56084) ((-1157 . -600) 56066) ((-674 . -507) 55999) ((-945 . -284) 55978) ((-539 . -507) 55770) ((-1250 . -600) 55739) ((-1151 . -226) 55723) ((-1092 . -603) 55453) ((-166 . -1130) 55432) ((-1250 . -483) 55416) ((-1153 . -703) 55313) ((-1152 . -703) 55154) ((-874 . -101) T) ((-1146 . -703) 54950) ((-1105 . -703) 54847) ((-1135 . -659) 54831) ((-349 . -396) 54782) ((-346 . -396) 54733) ((-338 . -396) 54684) ((-1006 . -129) T) ((-785 . -507) 54596) ((-289 . -601) NIL) ((-289 . -600) 54578) ((-892 . -445) T) ((-946 . -362) 54531) ((-801 . -362) 54510) ((-503 . -502) 54489) ((-501 . -502) 54468) ((-480 . -280) NIL) ((-475 . -282) 54445) ((-412 . -284) T) ((-348 . -129) T) ((-212 . -280) NIL) ((-679 . -486) NIL) ((-98 . -1091) T) ((-166 . -38) 54273) ((-1222 . -955) 54235) ((-1126 . -303) 54173) ((-1201 . -955) 54142) ((-892 . -396) T) ((-1092 . -1031) 54072) ((-1224 . -545) T) ((-1129 . -591) 54051) ((-111 . -833) T) ((-1043 . -482) 53982) ((-569 . -21) T) ((-569 . -25) T) ((-553 . -21) T) ((-553 . -25) T) ((-488 . -25) T) ((-488 . -21) T) ((-1211 . -1130) 53960) ((-1092 . -228) 53912) ((-48 . -129) T) ((-1173 . -101) T) ((-235 . -1079) 53702) ((-853 . -394) 53679) ((-1067 . -101) T) ((-1055 . -101) T) ((-595 . -101) T) ((-468 . -101) T) ((-1211 . -38) 53508) ((-838 . -38) 53478) ((-717 . -169) 53389) ((-638 . -600) 53371) ((-631 . -1062) T) ((-560 . -38) 53358) ((-952 . -483) 53339) ((-952 . -600) 53305) ((-940 . -101) 53255) ((-847 . -600) 53237) ((-847 . -601) 53159) ((-581 . -507) NIL) ((-1230 . -1038) T) ((-1223 . -1038) T) ((-1202 . -1038) T) ((-584 . -1038) T) ((-583 . -1038) T) ((-1266 . -1091) T) ((-1153 . -169) 53110) ((-1152 . -169) 53041) ((-1146 . -169) 52972) ((-1105 . -169) 52923) ((-986 . -1079) T) ((-953 . -1079) T) ((-896 . -1079) T) ((-1186 . -144) 52902) ((-785 . -783) 52886) ((-684 . -25) T) ((-684 . -21) T) ((-116 . -626) 52863) ((-686 . -868) 52845) ((-421 . -1079) T) ((-310 . -1196) 52824) ((-307 . -1196) T) ((-166 . -394) 52808) ((-1186 . -142) 52787) ((-467 . -955) 52749) ((-127 . -101) T) ((-71 . -600) 52731) ((-107 . -781) T) ((-107 . -778) T) ((-686 . -1020) 52713) ((-310 . -545) 52692) ((-307 . -545) T) ((-1266 . -23) T) ((-132 . -1020) 52674) ((-95 . -603) 52655) ((-475 . -1037) 52552) ((-45 . -282) 52477) ((-235 . -703) 52419) ((-510 . -101) T) ((-475 . -110) 52309) ((-1071 . -101) 52287) ((-1016 . -101) T) ((-630 . -814) 52266) ((-717 . -507) 52209) ((-1035 . -1037) 52193) ((-1114 . -92) T) ((-1043 . -280) 52168) ((-610 . -21) T) ((-610 . -25) T) ((-517 . -1079) T) ((-355 . -101) T) ((-316 . -101) T) ((-655 . -633) 52142) ((-379 . -1037) 52126) ((-1035 . -110) 52105) ((-802 . -405) 52089) ((-116 . -25) T) ((-88 . -600) 52071) ((-116 . -21) T) ((-595 . -303) 51866) ((-468 . -303) 51670) ((-1129 . -601) NIL) ((-379 . -110) 51649) ((-373 . -101) T) ((-209 . -600) 51631) ((-1129 . -600) 51613) ((-1146 . -507) 51382) ((-986 . -703) 51332) ((-1105 . -507) 51302) ((-896 . -703) 51254) ((-475 . -603) 50984) ((-345 . -301) T) ((-1165 . -148) 50934) ((-940 . -303) 50872) ((-820 . -101) T) ((-421 . -703) 50856) ((-220 . -814) T) ((-813 . -101) T) ((-811 . -101) T) ((-472 . -148) 50806) ((-1222 . -1221) 50785) ((-1099 . -1196) T) ((-333 . -1020) 50752) ((-1222 . -1216) 50722) ((-1222 . -1219) 50706) ((-1201 . -1200) 50685) ((-79 . -600) 50667) ((-887 . -600) 50649) ((-1201 . -1216) 50626) ((-1099 . -545) T) ((-903 . -833) T) ((-757 . -833) T) ((-480 . -601) 50556) ((-480 . -600) 50498) ((-373 . -278) T) ((-657 . -833) T) ((-1201 . -1198) 50482) ((-1224 . -1091) T) ((-212 . -601) 50412) ((-212 . -600) 50354) ((-1260 . -633) 50328) ((-1043 . -591) 50303) ((-804 . -603) 50287) ((-58 . -148) 50271) ((-509 . -148) 50255) ((-489 . -148) 50239) ((-353 . -1257) 50223) ((-347 . -1257) 50207) ((-339 . -1257) 50191) ((-310 . -357) 50170) ((-307 . -357) T) ((-475 . -1031) 50100) ((-679 . -626) 50082) ((-1258 . -633) 50056) ((-127 . -303) NIL) ((-1224 . -23) T) ((-674 . -482) 50040) ((-63 . -600) 50022) ((-1092 . -781) 49973) ((-1092 . -778) 49924) ((-539 . -482) 49861) ((-655 . -34) T) ((-475 . -228) 49813) ((-289 . -282) 49792) ((-235 . -169) 49771) ((-802 . -1038) T) ((-44 . -633) 49729) ((-1059 . -362) 49680) ((-717 . -284) 49611) ((-513 . -507) 49544) ((-803 . -1037) 49495) ((-1066 . -142) 49474) ((-353 . -362) 49453) ((-347 . -362) 49432) ((-339 . -362) 49411) ((-1066 . -144) 49390) ((-853 . -226) 49367) ((-803 . -110) 49309) ((-768 . -142) 49288) ((-768 . -144) 49267) ((-258 . -931) 49234) ((-245 . -831) 49213) ((-242 . -931) 49158) ((-244 . -831) 49137) ((-766 . -142) 49116) ((-766 . -144) 49095) ((-149 . -633) 49069) ((-568 . -1079) T) ((-447 . -144) 49048) ((-447 . -142) 49027) ((-655 . -712) T) ((-809 . -600) 49009) ((-1230 . -1079) T) ((-1223 . -1079) T) ((-1202 . -1079) T) ((-1186 . -1180) 48975) ((-1186 . -1177) 48941) ((-1153 . -284) 48920) ((-1152 . -284) 48871) ((-1146 . -284) 48822) ((-1105 . -284) 48801) ((-333 . -882) 48782) ((-986 . -169) T) ((-896 . -169) T) ((-584 . -1079) T) ((-583 . -1079) T) ((-679 . -21) T) ((-679 . -25) T) ((-467 . -1219) 48766) ((-467 . -1216) 48736) ((-412 . -280) 48664) ((-310 . -1091) 48513) ((-307 . -1091) T) ((-1186 . -35) 48479) ((-1186 . -94) 48445) ((-83 . -600) 48427) ((-90 . -101) 48405) ((-1266 . -129) T) ((-580 . -603) 48386) ((-570 . -142) T) ((-570 . -144) 48368) ((-511 . -144) 48350) ((-511 . -142) T) ((-310 . -23) 48202) ((-40 . -336) 48176) ((-307 . -23) T) ((-803 . -603) 48090) ((-1137 . -636) 48072) ((-1253 . -1038) T) ((-1137 . -367) 48054) ((-801 . -633) 47902) ((-1075 . -101) T) ((-1069 . -101) T) ((-1053 . -101) T) ((-166 . -226) 47886) ((-1046 . -101) T) ((-1018 . -101) T) ((-1001 . -101) T) ((-581 . -482) 47868) ((-613 . -101) T) ((-235 . -507) 47801) ((-476 . -101) T) ((-1260 . -712) T) ((-1258 . -712) T) ((-213 . -101) T) ((-1157 . -1037) 47684) ((-1157 . -110) 47553) ((-844 . -170) T) ((-803 . -1031) T) ((-666 . -1062) T) ((-661 . -1062) T) ((-508 . -101) T) ((-503 . -101) T) ((-48 . -626) 47513) ((-501 . -101) T) ((-471 . -1062) T) ((-1250 . -1037) 47483) ((-136 . -1062) T) ((-135 . -1062) T) ((-131 . -1062) T) ((-1016 . -38) 47467) ((-803 . -228) T) ((-803 . -238) 47446) ((-1250 . -110) 47411) ((-1230 . -703) 47308) ((-1223 . -703) 47149) ((-539 . -280) 47128) ((-1211 . -226) 47112) ((-1043 . -601) NIL) ((-593 . -92) T) ((-1043 . -600) 47094) ((-688 . -483) 47078) ((-656 . -92) T) ((-177 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-151 . -92) T) ((-1202 . -703) 46874) ((-985 . -902) T) ((-688 . -600) 46843) ((-149 . -712) T) ((-1092 . -362) 46822) ((-986 . -507) NIL) ((-245 . -405) 46791) ((-244 . -405) 46760) ((-1006 . -25) T) ((-1006 . -21) T) ((-584 . -703) 46733) ((-583 . -703) 46630) ((-785 . -280) 46588) ((-125 . -101) 46566) ((-819 . -1020) 46462) ((-166 . -814) 46441) ((-313 . -633) 46338) ((-801 . -34) T) ((-700 . -101) T) ((-1157 . -603) 46191) ((-1099 . -1091) T) ((-1008 . -1192) T) ((-373 . -38) 46156) ((-348 . -25) T) ((-348 . -21) T) ((-182 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-349 . -1245) 46140) ((-346 . -1245) 46124) ((-338 . -1245) 46108) ((-166 . -343) 46087) ((-553 . -833) T) ((-488 . -833) T) ((-1099 . -23) T) ((-86 . -600) 46069) ((-686 . -301) T) ((-820 . -38) 46039) ((-813 . -38) 46009) ((-1250 . -603) 45951) ((-1224 . -129) T) ((-1129 . -282) 45930) ((-946 . -779) 45883) ((-946 . -780) 45836) ((-801 . -777) 45815) ((-115 . -301) T) ((-90 . -303) 45753) ((-660 . -34) T) ((-539 . -591) 45732) ((-48 . -25) T) ((-48 . -21) T) ((-801 . -780) 45683) ((-801 . -779) 45662) ((-686 . -1004) T) ((-638 . -1037) 45646) ((-946 . -712) 45545) ((-801 . -712) 45455) ((-946 . -466) 45408) ((-475 . -781) 45359) ((-475 . -778) 45310) ((-892 . -1245) 45297) ((-1157 . -1031) T) ((-638 . -110) 45276) ((-1157 . -320) 45253) ((-1178 . -101) 45231) ((-1080 . -600) 45213) ((-686 . -538) T) ((-802 . -1079) T) ((-1114 . -483) 45194) ((-1250 . -1031) T) ((-407 . -1079) T) ((-1114 . -600) 45160) ((-245 . -1038) 45090) ((-244 . -1038) 45020) ((-283 . -633) 45007) ((-581 . -280) 44982) ((-674 . -672) 44940) ((-945 . -600) 44922) ((-854 . -101) T) ((-721 . -600) 44904) ((-701 . -600) 44886) ((-1230 . -169) 44837) ((-1223 . -169) 44768) ((-1202 . -169) 44699) ((-684 . -833) T) ((-986 . -284) T) ((-446 . -600) 44681) ((-614 . -712) T) ((-59 . -1079) 44659) ((-240 . -148) 44643) ((-896 . -284) T) ((-1006 . -994) T) ((-614 . -466) T) ((-698 . -1196) 44622) ((-638 . -603) 44540) ((-584 . -169) 44519) ((-583 . -169) 44470) ((-1238 . -833) 44449) ((-698 . -545) 44360) ((-401 . -902) T) ((-401 . -806) 44339) ((-313 . -780) T) ((-952 . -603) 44320) ((-313 . -712) T) ((-412 . -600) 44302) ((-412 . -601) 44209) ((-630 . -1128) 44193) ((-109 . -636) 44175) ((-171 . -301) T) ((-125 . -303) 44113) ((-109 . -367) 44095) ((-392 . -1192) T) ((-310 . -129) 43966) ((-307 . -129) T) ((-68 . -389) T) ((-109 . -122) T) ((-513 . -482) 43950) ((-639 . -1091) T) ((-581 . -19) 43932) ((-60 . -434) T) ((-60 . -389) T) ((-810 . -1079) T) ((-581 . -591) 43907) ((-470 . -1020) 43867) ((-638 . -1031) T) ((-639 . -23) T) ((-1253 . -1079) T) ((-31 . -101) T) ((-802 . -703) 43716) ((-566 . -843) T) ((-116 . -833) NIL) ((-1151 . -405) 43700) ((-1104 . -405) 43684) ((-837 . -405) 43668) ((-855 . -101) 43619) ((-1222 . -101) T) ((-1202 . -507) 43388) ((-1201 . -101) T) ((-1178 . -303) 43326) ((-518 . -92) T) ((-1153 . -280) 43311) ((-306 . -600) 43293) ((-1152 . -280) 43278) ((-1081 . -1079) T) ((-1059 . -633) 43188) ((-674 . -600) 43120) ((-283 . -712) T) ((-107 . -891) NIL) ((-674 . -601) 43081) ((-588 . -600) 43063) ((-566 . -600) 43045) ((-539 . -601) NIL) ((-539 . -600) 43027) ((-522 . -600) 43009) ((-1146 . -280) 42857) ((-480 . -1037) 42807) ((-697 . -445) T) ((-504 . -502) 42786) ((-500 . -502) 42765) ((-212 . -1037) 42715) ((-353 . -633) 42667) ((-347 . -633) 42619) ((-220 . -831) T) ((-339 . -633) 42571) ((-589 . -101) 42521) ((-475 . -362) 42500) ((-107 . -633) 42450) ((-480 . -110) 42384) ((-235 . -482) 42368) ((-337 . -144) 42350) ((-337 . -142) T) ((-166 . -364) 42321) ((-925 . -1236) 42305) ((-212 . -110) 42239) ((-854 . -303) 42204) ((-925 . -1079) 42154) ((-785 . -601) 42115) ((-785 . -600) 42097) ((-704 . -101) T) ((-325 . -1079) T) ((-209 . -603) 42074) ((-1099 . -129) T) ((-700 . -38) 42044) ((-310 . -486) 42023) ((-493 . -1192) T) ((-1222 . -278) 41989) ((-1201 . -278) 41955) ((-321 . -148) 41939) ((-1043 . -282) 41914) ((-1253 . -703) 41884) ((-1138 . -34) T) ((-1262 . -1020) 41861) ((-461 . -600) 41843) ((-477 . -34) T) ((-375 . -1020) 41827) ((-1151 . -1038) T) ((-1104 . -1038) T) ((-837 . -1038) T) ((-1042 . -831) T) ((-480 . -603) 41777) ((-212 . -603) 41727) ((-802 . -169) 41638) ((-513 . -280) 41615) ((-1230 . -284) 41594) ((-1173 . -358) 41568) ((-1067 . -260) 41552) ((-656 . -483) 41533) ((-656 . -600) 41499) ((-593 . -483) 41480) ((-116 . -974) 41457) ((-593 . -600) 41407) ((-467 . -101) T) ((-177 . -483) 41388) ((-177 . -600) 41354) ((-158 . -483) 41335) ((-153 . -483) 41316) ((-151 . -483) 41297) ((-158 . -600) 41263) ((-153 . -600) 41229) ((-359 . -1079) T) ((-245 . -1079) T) ((-244 . -1079) T) ((-151 . -600) 41195) ((-1223 . -284) 41146) ((-1202 . -284) 41097) ((-854 . -1130) 41075) ((-1153 . -984) 41041) ((-595 . -358) 40981) ((-1152 . -984) 40947) ((-595 . -224) 40894) ((-581 . -600) 40876) ((-581 . -601) NIL) ((-679 . -833) T) ((-468 . -224) 40826) ((-480 . -1031) T) ((-1146 . -984) 40792) ((-87 . -433) T) ((-87 . -389) T) ((-212 . -1031) T) ((-1105 . -984) 40758) ((-1059 . -712) T) ((-698 . -1091) T) ((-584 . -284) 40737) ((-583 . -284) 40716) ((-480 . -238) T) ((-480 . -228) T) ((-212 . -238) T) ((-212 . -228) T) ((-1144 . -600) 40698) ((-854 . -38) 40650) ((-353 . -712) T) ((-347 . -712) T) ((-339 . -712) T) ((-107 . -780) T) ((-107 . -777) T) ((-698 . -23) T) ((-107 . -712) T) ((-513 . -1226) 40634) ((-1266 . -25) T) ((-467 . -278) 40600) ((-1266 . -21) T) ((-1201 . -303) 40539) ((-1155 . -101) T) ((-40 . -142) 40511) ((-40 . -144) 40483) ((-513 . -591) 40460) ((-1092 . -633) 40308) ((-589 . -303) 40246) ((-45 . -636) 40196) ((-45 . -651) 40146) ((-45 . -367) 40096) ((-1137 . -34) T) ((-853 . -831) NIL) ((-639 . -129) T) ((-478 . -600) 40078) ((-235 . -280) 40055) ((-181 . -1079) T) ((-632 . -34) T) ((-619 . -34) T) ((-1066 . -445) 40006) ((-802 . -507) 39880) ((-768 . -445) 39811) ((-766 . -445) 39762) ((-447 . -445) 39713) ((-934 . -405) 39697) ((-717 . -600) 39679) ((-245 . -703) 39621) ((-244 . -703) 39563) ((-717 . -601) 39424) ((-474 . -405) 39408) ((-333 . -296) T) ((-517 . -92) T) ((-345 . -902) T) ((-982 . -101) 39386) ((-1006 . -833) T) ((-59 . -507) 39319) ((-1201 . -1130) 39271) ((-986 . -280) NIL) ((-220 . -1038) T) ((-373 . -814) T) ((-1092 . -34) T) ((-570 . -445) T) ((-511 . -445) T) ((-1205 . -1072) 39255) ((-1205 . -1079) 39233) ((-235 . -591) 39210) ((-1205 . -1074) 39167) ((-1153 . -600) 39149) ((-1152 . -600) 39131) ((-1146 . -600) 39113) ((-1146 . -601) NIL) ((-1105 . -600) 39095) ((-854 . -394) 39079) ((-529 . -101) T) ((-1222 . -38) 38920) ((-1201 . -38) 38734) ((-852 . -144) T) ((-688 . -603) 38718) ((-570 . -396) T) ((-48 . -833) T) ((-511 . -396) T) ((-1234 . -101) T) ((-1224 . -21) T) ((-1224 . -25) T) ((-1092 . -777) 38697) ((-1092 . -780) 38648) ((-1092 . -779) 38627) ((-975 . -1079) T) ((-1009 . -34) T) ((-845 . -1079) T) ((-1092 . -712) 38537) ((-649 . -101) T) ((-631 . -101) T) ((-539 . -282) 38516) ((-1165 . -101) T) ((-469 . -34) T) ((-456 . -34) T) ((-349 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-258 . -101) T) ((-242 . -101) T) ((-470 . -301) T) ((-1042 . -1038) T) ((-934 . -1038) T) ((-310 . -626) 38422) ((-307 . -626) 38383) ((-474 . -1038) T) ((-472 . -101) T) ((-430 . -600) 38365) ((-1151 . -1079) T) ((-1104 . -1079) T) ((-837 . -1079) T) ((-1120 . -101) T) ((-802 . -284) 38296) ((-945 . -1037) 38179) ((-470 . -1004) T) ((-721 . -1037) 38149) ((-446 . -1037) 38119) ((-1126 . -1100) 38103) ((-1081 . -507) 38036) ((-945 . -110) 37905) ((-892 . -101) T) ((-721 . -110) 37870) ((-518 . -483) 37851) ((-518 . -600) 37817) ((-58 . -101) 37767) ((-513 . -601) 37728) ((-513 . -600) 37640) ((-512 . -101) 37618) ((-509 . -101) 37568) ((-490 . -101) 37546) ((-489 . -101) 37496) ((-446 . -110) 37459) ((-245 . -169) 37438) ((-244 . -169) 37417) ((-412 . -1037) 37391) ((-1186 . -955) 37353) ((-981 . -1091) T) ((-1114 . -603) 37334) ((-925 . -507) 37267) ((-480 . -781) T) ((-467 . -38) 37108) ((-412 . -110) 37075) ((-480 . -778) T) ((-982 . -303) 37013) ((-212 . -781) T) ((-212 . -778) T) ((-981 . -23) T) ((-698 . -129) T) ((-1201 . -394) 36983) ((-310 . -25) 36835) ((-166 . -405) 36819) ((-310 . -21) 36690) ((-307 . -25) T) ((-307 . -21) T) ((-847 . -362) T) ((-945 . -603) 36543) ((-109 . -34) T) ((-721 . -603) 36499) ((-701 . -603) 36481) ((-475 . -633) 36329) ((-853 . -1038) T) ((-581 . -282) 36304) ((-569 . -144) T) ((-553 . -144) T) ((-488 . -144) T) ((-1151 . -703) 36133) ((-1104 . -703) 35982) ((-1099 . -626) 35964) ((-837 . -703) 35934) ((-655 . -1192) T) ((-1 . -101) T) ((-412 . -603) 35842) ((-235 . -600) 35573) ((-1094 . -1079) T) ((-1211 . -405) 35557) ((-1165 . -303) 35361) ((-945 . -1031) T) ((-721 . -1031) T) ((-701 . -1031) T) ((-630 . -1079) 35311) ((-1035 . -633) 35295) ((-838 . -405) 35279) ((-504 . -101) T) ((-500 . -101) T) ((-242 . -303) 35266) ((-258 . -303) 35253) ((-945 . -320) 35232) ((-379 . -633) 35216) ((-472 . -303) 35020) ((-245 . -507) 34953) ((-655 . -1020) 34849) ((-244 . -507) 34782) ((-1120 . -303) 34708) ((-805 . -1079) T) ((-785 . -1037) 34692) ((-1230 . -280) 34677) ((-1223 . -280) 34662) ((-1202 . -280) 34510) ((-380 . -1079) T) ((-318 . -1079) T) ((-412 . -1031) T) ((-166 . -1038) T) ((-58 . -303) 34448) ((-785 . -110) 34427) ((-583 . -280) 34412) ((-512 . -303) 34350) ((-509 . -303) 34288) ((-490 . -303) 34226) ((-489 . -303) 34164) ((-412 . -228) 34143) ((-475 . -34) T) ((-986 . -601) 34073) ((-220 . -1079) T) ((-986 . -600) 34033) ((-953 . -600) 33993) ((-953 . -601) 33968) ((-896 . -600) 33950) ((-684 . -144) T) ((-686 . -902) T) ((-686 . -806) T) ((-421 . -600) 33932) ((-1099 . -21) T) ((-1099 . -25) T) ((-655 . -371) 33916) ((-115 . -902) T) ((-854 . -226) 33900) ((-77 . -1192) T) ((-125 . -124) 33884) ((-1035 . -34) T) ((-1260 . -1020) 33858) ((-1258 . -1020) 33815) ((-1211 . -1038) T) ((-838 . -1038) T) ((-475 . -777) 33794) ((-349 . -1130) 33773) ((-346 . -1130) 33752) ((-338 . -1130) 33731) ((-475 . -780) 33682) ((-475 . -779) 33661) ((-222 . -34) T) ((-475 . -712) 33571) ((-785 . -603) 33419) ((-59 . -482) 33403) ((-560 . -1038) T) ((-1151 . -169) 33294) ((-1104 . -169) 33205) ((-1042 . -1079) T) ((-1066 . -931) 33150) ((-934 . -1079) T) ((-803 . -633) 33101) ((-768 . -931) 33070) ((-699 . -1079) T) ((-766 . -931) 33037) ((-509 . -276) 33021) ((-655 . -882) 32980) ((-474 . -1079) T) ((-447 . -931) 32947) ((-78 . -1192) T) ((-349 . -38) 32912) ((-346 . -38) 32877) ((-338 . -38) 32842) ((-258 . -38) 32691) ((-242 . -38) 32540) ((-892 . -1130) T) ((-517 . -483) 32521) ((-610 . -144) 32500) ((-610 . -142) 32479) ((-517 . -600) 32445) ((-116 . -144) T) ((-116 . -142) NIL) ((-408 . -712) T) ((-785 . -1031) T) ((-337 . -445) T) ((-1230 . -984) 32411) ((-1223 . -984) 32377) ((-1202 . -984) 32343) ((-892 . -38) 32308) ((-220 . -703) 32273) ((-313 . -47) 32243) ((-40 . -403) 32215) ((-137 . -600) 32197) ((-981 . -129) T) ((-801 . -1192) T) ((-171 . -902) T) ((-593 . -603) 32178) ((-337 . -396) T) ((-656 . -603) 32159) ((-177 . -603) 32140) ((-151 . -603) 32121) ((-158 . -603) 32102) ((-153 . -603) 32083) ((-513 . -282) 32060) ((-801 . -1020) 31887) ((-45 . -34) T) ((-666 . -101) T) ((-661 . -101) T) ((-647 . -101) T) ((-639 . -21) T) ((-639 . -25) T) ((-1201 . -226) 31857) ((-1081 . -482) 31841) ((-471 . -101) T) ((-660 . -1192) T) ((-240 . -101) 31791) ((-136 . -101) T) ((-135 . -101) T) ((-131 . -101) T) ((-853 . -1079) T) ((-1157 . -633) 31716) ((-1042 . -703) 31703) ((-717 . -1037) 31546) ((-1151 . -507) 31493) ((-934 . -703) 31342) ((-1104 . -507) 31294) ((-1249 . -1079) T) ((-1248 . -1079) T) ((-474 . -703) 31143) ((-66 . -600) 31125) ((-717 . -110) 30954) ((-925 . -482) 30938) ((-1250 . -633) 30898) ((-803 . -712) T) ((-1153 . -1037) 30781) ((-1152 . -1037) 30616) ((-1146 . -1037) 30406) ((-1105 . -1037) 30289) ((-985 . -1196) T) ((-1073 . -101) 30267) ((-801 . -371) 30236) ((-568 . -600) 30218) ((-985 . -545) T) ((-1153 . -110) 30087) ((-1152 . -110) 29908) ((-1146 . -110) 29677) ((-1105 . -110) 29546) ((-1084 . -1082) 29510) ((-373 . -831) T) ((-1230 . -600) 29492) ((-1223 . -600) 29474) ((-1202 . -600) 29456) ((-1202 . -601) NIL) ((-235 . -282) 29433) ((-40 . -445) T) ((-220 . -169) T) ((-166 . -1079) T) ((-717 . -603) 29218) ((-679 . -144) T) ((-679 . -142) NIL) ((-584 . -600) 29200) ((-583 . -600) 29182) ((-880 . -1079) T) ((-824 . -1079) T) ((-794 . -1079) T) ((-755 . -1079) T) ((-643 . -835) 29166) ((-662 . -1079) T) ((-801 . -882) 29098) ((-40 . -396) NIL) ((-1153 . -603) 28980) ((-1099 . -646) T) ((-853 . -703) 28925) ((-245 . -482) 28909) ((-244 . -482) 28893) ((-1152 . -603) 28636) ((-1146 . -603) 28431) ((-698 . -626) 28379) ((-638 . -633) 28353) ((-1105 . -603) 28235) ((-289 . -34) T) ((-717 . -1031) T) ((-570 . -1245) 28222) ((-511 . -1245) 28199) ((-1211 . -1079) T) ((-1151 . -284) 28110) ((-1104 . -284) 28041) ((-1042 . -169) T) ((-838 . -1079) T) ((-934 . -169) 27952) ((-768 . -1214) 27936) ((-630 . -507) 27869) ((-76 . -600) 27851) ((-717 . -320) 27816) ((-1157 . -712) T) ((-560 . -1079) T) ((-474 . -169) 27727) ((-240 . -303) 27665) ((-1121 . -1091) T) ((-69 . -600) 27647) ((-1250 . -712) T) ((-1153 . -1031) T) ((-1152 . -1031) T) ((-321 . -101) 27597) ((-1146 . -1031) T) ((-1121 . -23) T) ((-1105 . -1031) T) ((-90 . -1100) 27581) ((-848 . -1091) T) ((-1153 . -228) 27540) ((-1152 . -238) 27519) ((-1152 . -228) 27471) ((-1146 . -228) 27358) ((-1146 . -238) 27337) ((-313 . -882) 27243) ((-848 . -23) T) ((-166 . -703) 27071) ((-401 . -1196) T) ((-1080 . -362) T) ((-1006 . -144) T) ((-985 . -357) T) ((-852 . -445) T) ((-925 . -280) 27048) ((-310 . -833) T) ((-307 . -833) NIL) ((-856 . -101) T) ((-698 . -25) T) ((-401 . -545) T) ((-698 . -21) T) ((-518 . -603) 27029) ((-348 . -144) 27011) ((-348 . -142) T) ((-1126 . -1079) 26989) ((-446 . -706) T) ((-74 . -600) 26971) ((-113 . -833) T) ((-240 . -276) 26955) ((-235 . -1037) 26852) ((-80 . -600) 26834) ((-721 . -362) 26787) ((-1155 . -814) T) ((-723 . -230) 26771) ((-1138 . -1192) T) ((-138 . -230) 26753) ((-235 . -110) 26643) ((-1211 . -703) 26472) ((-48 . -144) T) ((-853 . -169) T) ((-838 . -703) 26442) ((-477 . -1192) T) ((-934 . -507) 26389) ((-638 . -712) T) ((-560 . -703) 26376) ((-1016 . -1038) T) ((-474 . -507) 26319) ((-925 . -19) 26303) ((-925 . -591) 26280) ((-802 . -601) NIL) ((-802 . -600) 26262) ((-986 . -1037) 26212) ((-407 . -600) 26194) ((-245 . -280) 26171) ((-244 . -280) 26148) ((-480 . -891) NIL) ((-310 . -29) 26118) ((-107 . -1192) T) ((-985 . -1091) T) ((-212 . -891) NIL) ((-896 . -1037) 26070) ((-1059 . -1020) 25966) ((-986 . -110) 25900) ((-985 . -23) T) ((-723 . -680) 25884) ((-258 . -226) 25868) ((-421 . -1037) 25852) ((-373 . -1038) T) ((-235 . -603) 25582) ((-896 . -110) 25520) ((-679 . -1180) NIL) ((-480 . -633) 25470) ((-107 . -866) 25452) ((-107 . -868) 25434) ((-679 . -1177) NIL) ((-212 . -633) 25384) ((-353 . -1020) 25368) ((-347 . -1020) 25352) ((-321 . -303) 25290) ((-339 . -1020) 25274) ((-220 . -284) T) ((-421 . -110) 25253) ((-59 . -600) 25185) ((-166 . -169) T) ((-1099 . -833) T) ((-107 . -1020) 25145) ((-874 . -1079) T) ((-820 . -1038) T) ((-813 . -1038) T) ((-679 . -35) NIL) ((-679 . -94) NIL) ((-307 . -974) 25106) ((-180 . -101) T) ((-569 . -445) T) ((-553 . -445) T) ((-488 . -445) T) ((-401 . -357) T) ((-235 . -1031) 25036) ((-1129 . -34) T) ((-470 . -902) T) ((-981 . -626) 24984) ((-245 . -591) 24961) ((-244 . -591) 24938) ((-1059 . -371) 24922) ((-853 . -507) 24830) ((-235 . -228) 24782) ((-1137 . -1192) T) ((-986 . -603) 24732) ((-896 . -603) 24669) ((-810 . -600) 24651) ((-1261 . -1091) T) ((-1253 . -600) 24633) ((-1211 . -169) 24524) ((-421 . -603) 24493) ((-107 . -371) 24475) ((-107 . -332) 24457) ((-1042 . -284) T) ((-934 . -284) 24388) ((-785 . -362) 24367) ((-632 . -1192) T) ((-619 . -1192) T) ((-474 . -284) 24298) ((-560 . -169) T) ((-321 . -276) 24282) ((-1261 . -23) T) ((-1186 . -101) T) ((-1173 . -1079) T) ((-1067 . -1079) T) ((-1055 . -1079) T) ((-82 . -600) 24264) ((-697 . -101) T) ((-349 . -343) 24243) ((-595 . -1079) T) ((-346 . -343) 24222) ((-338 . -343) 24201) ((-468 . -1079) T) ((-1165 . -224) 24151) ((-258 . -247) 24113) ((-1121 . -129) T) ((-595 . -597) 24089) ((-1059 . -882) 24022) ((-986 . -1031) T) ((-896 . -1031) T) ((-468 . -597) 24001) ((-1146 . -778) NIL) ((-1146 . -781) NIL) ((-1081 . -601) 23962) ((-472 . -224) 23912) ((-1081 . -600) 23894) ((-986 . -238) T) ((-986 . -228) T) ((-421 . -1031) T) ((-940 . -1079) 23844) ((-896 . -238) T) ((-848 . -129) T) ((-684 . -445) T) ((-826 . -1091) 23823) ((-107 . -882) NIL) ((-1186 . -278) 23789) ((-854 . -831) 23768) ((-1092 . -1192) T) ((-887 . -712) T) ((-166 . -507) 23680) ((-981 . -25) T) ((-887 . -466) T) ((-401 . -1091) T) ((-480 . -780) T) ((-480 . -777) T) ((-892 . -343) T) ((-480 . -712) T) ((-212 . -780) T) ((-212 . -777) T) ((-981 . -21) T) ((-212 . -712) T) ((-826 . -23) 23632) ((-517 . -603) 23613) ((-313 . -301) 23592) ((-1017 . -230) 23538) ((-401 . -23) T) ((-925 . -601) 23499) ((-925 . -600) 23411) ((-630 . -482) 23395) ((-45 . -992) 23345) ((-604 . -949) T) ((-484 . -101) T) ((-325 . -600) 23327) ((-1092 . -1020) 23154) ((-581 . -636) 23136) ((-127 . -1079) T) ((-581 . -367) 23118) ((-337 . -1245) 23095) ((-1009 . -1192) T) ((-853 . -284) T) ((-1211 . -507) 23042) ((-469 . -1192) T) ((-456 . -1192) T) ((-574 . -101) T) ((-1151 . -280) 22969) ((-610 . -445) 22948) ((-982 . -977) 22932) ((-1253 . -376) 22904) ((-510 . -1079) T) ((-116 . -445) T) ((-1172 . -101) T) ((-1071 . -1079) 22882) ((-1016 . -1079) T) ((-1094 . -92) T) ((-875 . -833) T) ((-345 . -1196) T) ((-1230 . -1037) 22765) ((-1092 . -371) 22734) ((-1223 . -1037) 22569) ((-1202 . -1037) 22359) ((-1230 . -110) 22228) ((-1223 . -110) 22049) ((-1202 . -110) 21818) ((-1186 . -303) 21805) ((-345 . -545) T) ((-359 . -600) 21787) ((-283 . -301) T) ((-584 . -1037) 21760) ((-583 . -1037) 21643) ((-355 . -1079) T) ((-316 . -1079) T) ((-245 . -600) 21604) ((-244 . -600) 21565) ((-985 . -129) T) ((-622 . -23) T) ((-679 . -403) 21532) ((-594 . -23) T) ((-643 . -101) T) ((-584 . -110) 21503) ((-583 . -110) 21372) ((-373 . -1079) T) ((-330 . -101) T) ((-166 . -284) 21283) ((-1201 . -831) 21236) ((-700 . -1038) T) ((-1126 . -507) 21169) ((-1092 . -882) 21101) ((-820 . -1079) T) ((-813 . -1079) T) ((-811 . -1079) T) ((-96 . -101) T) ((-141 . -833) T) ((-599 . -866) 21085) ((-109 . -1192) T) ((-1066 . -101) T) ((-1043 . -34) T) ((-768 . -101) T) ((-766 . -101) T) ((-1230 . -603) 20967) ((-1223 . -603) 20710) ((-454 . -101) T) ((-447 . -101) T) ((-1202 . -603) 20505) ((-235 . -781) 20456) ((-235 . -778) 20407) ((-634 . -101) T) ((-584 . -603) 20365) ((-583 . -603) 20247) ((-1211 . -284) 20158) ((-649 . -621) 20142) ((-181 . -600) 20124) ((-630 . -280) 20101) ((-1016 . -703) 20085) ((-560 . -284) T) ((-945 . -633) 20010) ((-1261 . -129) T) ((-721 . -633) 19970) ((-701 . -633) 19957) ((-269 . -101) T) ((-446 . -633) 19887) ((-50 . -101) T) ((-570 . -101) T) ((-511 . -101) T) ((-1230 . -1031) T) ((-1223 . -1031) T) ((-1202 . -1031) T) ((-1230 . -228) 19846) ((-316 . -703) 19828) ((-1223 . -238) 19807) ((-1223 . -228) 19759) ((-1202 . -228) 19646) ((-1202 . -238) 19625) ((-1186 . -38) 19522) ((-986 . -781) T) ((-584 . -1031) T) ((-583 . -1031) T) ((-986 . -778) T) ((-953 . -781) T) ((-953 . -778) T) ((-854 . -1038) T) ((-852 . -851) 19506) ((-108 . -600) 19488) ((-679 . -445) T) ((-373 . -703) 19453) ((-412 . -633) 19427) ((-698 . -833) 19406) ((-697 . -38) 19371) ((-583 . -228) 19330) ((-40 . -710) 19302) ((-345 . -323) 19279) ((-345 . -357) T) ((-1059 . -301) 19230) ((-288 . -1091) 19111) ((-1085 . -1192) T) ((-168 . -101) T) ((-1205 . -600) 19078) ((-826 . -129) 19030) ((-630 . -1226) 19014) ((-820 . -703) 18984) ((-813 . -703) 18954) ((-475 . -1192) T) ((-353 . -301) T) ((-347 . -301) T) ((-339 . -301) T) ((-630 . -591) 18931) ((-401 . -129) T) ((-513 . -651) 18915) ((-107 . -301) T) ((-288 . -23) 18798) ((-513 . -636) 18782) ((-679 . -396) NIL) ((-513 . -367) 18766) ((-285 . -600) 18748) ((-90 . -1079) 18726) ((-107 . -1004) T) ((-553 . -140) T) ((-1238 . -148) 18710) ((-475 . -1020) 18537) ((-1224 . -142) 18498) ((-1224 . -144) 18459) ((-1035 . -1192) T) ((-975 . -600) 18441) ((-845 . -600) 18423) ((-802 . -1037) 18266) ((-1249 . -92) T) ((-1248 . -92) T) ((-1151 . -601) NIL) ((-1075 . -1079) T) ((-1069 . -1079) T) ((-1066 . -303) 18253) ((-1053 . -1079) T) ((-222 . -1192) T) ((-1046 . -1079) T) ((-1018 . -1079) T) ((-1001 . -1079) T) ((-768 . -303) 18240) ((-766 . -303) 18227) ((-1151 . -600) 18209) ((-802 . -110) 18038) ((-1104 . -600) 18020) ((-613 . -1079) T) ((-566 . -170) T) ((-522 . -170) T) ((-447 . -303) 18007) ((-476 . -1079) T) ((-1104 . -601) 17755) ((-1016 . -169) T) ((-925 . -282) 17732) ((-213 . -1079) T) ((-837 . -600) 17714) ((-595 . -507) 17497) ((-80 . -603) 17438) ((-804 . -1020) 17422) ((-468 . -507) 17214) ((-945 . -712) T) ((-721 . -712) T) ((-701 . -712) T) ((-345 . -1091) T) ((-1158 . -600) 17196) ((-218 . -101) T) ((-475 . -371) 17165) ((-508 . -1079) T) ((-503 . -1079) T) ((-501 . -1079) T) ((-785 . -633) 17139) ((-1006 . -445) T) ((-940 . -507) 17072) ((-345 . -23) T) ((-622 . -129) T) ((-594 . -129) T) ((-348 . -445) T) ((-235 . -362) 17051) ((-373 . -169) T) ((-1222 . -1038) T) ((-1201 . -1038) T) ((-220 . -984) T) ((-802 . -603) 16788) ((-684 . -381) T) ((-412 . -712) T) ((-686 . -1196) T) ((-1121 . -626) 16736) ((-569 . -851) 16720) ((-1138 . -1168) 16696) ((-686 . -545) T) ((-125 . -1079) 16674) ((-1253 . -1037) 16658) ((-700 . -1079) T) ((-475 . -882) 16590) ((-182 . -1079) T) ((-643 . -38) 16560) ((-348 . -396) T) ((-310 . -144) 16539) ((-310 . -142) 16518) ((-127 . -507) NIL) ((-115 . -545) T) ((-307 . -144) 16474) ((-307 . -142) 16430) ((-48 . -445) T) ((-159 . -1079) T) ((-154 . -1079) T) ((-1138 . -106) 16377) ((-768 . -1130) 16355) ((-674 . -34) T) ((-1253 . -110) 16334) ((-539 . -34) T) ((-477 . -106) 16318) ((-245 . -282) 16295) ((-244 . -282) 16272) ((-853 . -280) 16223) ((-45 . -1192) T) ((-802 . -1031) T) ((-1157 . -47) 16200) ((-802 . -320) 16162) ((-1066 . -38) 16011) ((-802 . -228) 15990) ((-768 . -38) 15819) ((-766 . -38) 15668) ((-1094 . -483) 15649) ((-447 . -38) 15498) ((-1094 . -600) 15464) ((-1097 . -101) T) ((-630 . -601) 15425) ((-630 . -600) 15337) ((-570 . -1130) T) ((-511 . -1130) T) ((-1126 . -482) 15321) ((-1178 . -1079) 15299) ((-1121 . -25) T) ((-1121 . -21) T) ((-1253 . -603) 15248) ((-467 . -1038) T) ((-1202 . -778) NIL) ((-1202 . -781) NIL) ((-981 . -833) 15227) ((-805 . -600) 15209) ((-848 . -21) T) ((-848 . -25) T) ((-785 . -712) T) ((-171 . -1196) T) ((-570 . -38) 15174) ((-511 . -38) 15139) ((-380 . -600) 15121) ((-318 . -600) 15103) ((-166 . -280) 15061) ((-62 . -1192) T) ((-111 . -101) T) ((-854 . -1079) T) ((-171 . -545) T) ((-700 . -703) 15031) ((-288 . -129) 14914) ((-220 . -600) 14896) ((-220 . -601) 14826) ((-985 . -626) 14765) ((-1253 . -1031) T) ((-1099 . -144) T) ((-619 . -1168) 14740) ((-717 . -891) 14719) ((-581 . -34) T) ((-632 . -106) 14703) ((-619 . -106) 14649) ((-1211 . -280) 14576) ((-717 . -633) 14501) ((-289 . -1192) T) ((-1157 . -1020) 14397) ((-925 . -605) 14374) ((-566 . -565) T) ((-566 . -520) T) ((-522 . -520) T) ((-1146 . -891) NIL) ((-1042 . -601) 14289) ((-1042 . -600) 14271) ((-934 . -600) 14253) ((-699 . -483) 14203) ((-337 . -101) T) ((-244 . -1037) 14100) ((-245 . -1037) 13997) ((-388 . -101) T) ((-31 . -1079) T) ((-934 . -601) 13858) ((-699 . -600) 13793) ((-1251 . -1185) 13762) ((-474 . -600) 13744) ((-474 . -601) 13605) ((-242 . -405) 13589) ((-258 . -405) 13573) ((-245 . -110) 13463) ((-244 . -110) 13353) ((-1153 . -633) 13278) ((-1152 . -633) 13175) ((-1146 . -633) 13027) ((-1105 . -633) 12952) ((-345 . -129) T) ((-81 . -434) T) ((-81 . -389) T) ((-985 . -25) T) ((-985 . -21) T) ((-855 . -1079) 12903) ((-854 . -703) 12855) ((-373 . -284) T) ((-166 . -984) 12807) ((-679 . -381) T) ((-981 . -979) 12791) ((-686 . -1091) T) ((-679 . -163) 12773) ((-1222 . -1079) T) ((-1201 . -1079) T) ((-310 . -1177) 12752) ((-310 . -1180) 12731) ((-1143 . -101) T) ((-310 . -941) 12710) ((-132 . -1091) T) ((-115 . -1091) T) ((-589 . -1236) 12694) ((-686 . -23) T) ((-589 . -1079) 12644) ((-310 . -94) 12623) ((-90 . -507) 12556) ((-171 . -357) T) ((-245 . -603) 12286) ((-244 . -603) 12016) ((-310 . -35) 11995) ((-595 . -482) 11929) ((-132 . -23) T) ((-115 . -23) T) ((-948 . -101) T) ((-704 . -1079) T) ((-468 . -482) 11866) ((-401 . -626) 11814) ((-638 . -1020) 11710) ((-940 . -482) 11694) ((-349 . -1038) T) ((-346 . -1038) T) ((-338 . -1038) T) ((-258 . -1038) T) ((-242 . -1038) T) ((-853 . -601) NIL) ((-853 . -600) 11676) ((-1249 . -483) 11657) ((-1248 . -483) 11638) ((-1261 . -21) T) ((-1249 . -600) 11604) ((-1248 . -600) 11570) ((-560 . -984) T) ((-717 . -712) T) ((-1261 . -25) T) ((-245 . -1031) 11500) ((-244 . -1031) 11430) ((-71 . -1192) T) ((-245 . -228) 11382) ((-244 . -228) 11334) ((-40 . -101) T) ((-892 . -1038) T) ((-127 . -482) 11316) ((-1160 . -101) T) ((-1153 . -712) T) ((-1152 . -712) T) ((-1146 . -712) T) ((-1146 . -777) NIL) ((-1146 . -780) NIL) ((-936 . -101) T) ((-903 . -101) T) ((-1105 . -712) T) ((-757 . -101) T) ((-657 . -101) T) ((-467 . -1079) T) ((-333 . -1091) T) ((-171 . -1091) T) ((-313 . -902) 11295) ((-1222 . -703) 11136) ((-854 . -169) T) ((-1201 . -703) 10950) ((-826 . -21) 10902) ((-826 . -25) 10854) ((-240 . -1128) 10838) ((-125 . -507) 10771) ((-401 . -25) T) ((-401 . -21) T) ((-333 . -23) T) ((-166 . -601) 10537) ((-166 . -600) 10519) ((-171 . -23) T) ((-630 . -282) 10496) ((-513 . -34) T) ((-880 . -600) 10478) ((-88 . -1192) T) ((-824 . -600) 10460) ((-794 . -600) 10442) ((-755 . -600) 10424) ((-662 . -600) 10406) ((-235 . -633) 10254) ((-1155 . -1079) T) ((-1151 . -1037) 10077) ((-1129 . -1192) T) ((-1104 . -1037) 9920) ((-837 . -1037) 9904) ((-1205 . -605) 9888) ((-1151 . -110) 9697) ((-1104 . -110) 9526) ((-837 . -110) 9505) ((-1211 . -601) NIL) ((-1211 . -600) 9487) ((-337 . -1130) T) ((-838 . -600) 9469) ((-1055 . -280) 9448) ((-79 . -1192) T) ((-986 . -891) NIL) ((-595 . -280) 9424) ((-1178 . -507) 9357) ((-480 . -1192) T) ((-560 . -600) 9339) ((-468 . -280) 9318) ((-510 . -92) T) ((-212 . -1192) T) ((-1066 . -226) 9302) ((-283 . -902) T) ((-803 . -301) 9281) ((-852 . -101) T) ((-768 . -226) 9265) ((-986 . -633) 9215) ((-940 . -280) 9192) ((-896 . -633) 9144) ((-622 . -21) T) ((-622 . -25) T) ((-594 . -21) T) ((-337 . -38) 9109) ((-679 . -710) 9076) ((-480 . -866) 9058) ((-480 . -868) 9040) ((-467 . -703) 8881) ((-212 . -866) 8863) ((-63 . -1192) T) ((-212 . -868) 8845) ((-594 . -25) T) ((-421 . -633) 8819) ((-1151 . -603) 8588) ((-480 . -1020) 8548) ((-854 . -507) 8460) ((-1104 . -603) 8252) ((-837 . -603) 8170) ((-212 . -1020) 8130) ((-235 . -34) T) ((-982 . -1079) 8108) ((-1222 . -169) 8039) ((-1201 . -169) 7970) ((-698 . -142) 7949) ((-698 . -144) 7928) ((-686 . -129) T) ((-134 . -458) 7905) ((-1126 . -600) 7837) ((-643 . -641) 7821) ((-127 . -280) 7796) ((-115 . -129) T) ((-470 . -1196) T) ((-595 . -591) 7772) ((-468 . -591) 7751) ((-330 . -329) 7720) ((-529 . -1079) T) ((-470 . -545) T) ((-1151 . -1031) T) ((-1104 . -1031) T) ((-837 . -1031) T) ((-235 . -777) 7699) ((-235 . -780) 7650) ((-235 . -779) 7629) ((-1151 . -320) 7606) ((-235 . -712) 7516) ((-940 . -19) 7500) ((-480 . -371) 7482) ((-480 . -332) 7464) ((-1104 . -320) 7436) ((-348 . -1245) 7413) ((-212 . -371) 7395) ((-212 . -332) 7377) ((-940 . -591) 7354) ((-1151 . -228) T) ((-649 . -1079) T) ((-631 . -1079) T) ((-1234 . -1079) T) ((-1165 . -1079) T) ((-1066 . -247) 7291) ((-349 . -1079) T) ((-346 . -1079) T) ((-338 . -1079) T) ((-258 . -1079) T) ((-242 . -1079) T) ((-83 . -1192) T) ((-126 . -101) 7269) ((-120 . -101) 7247) ((-1165 . -597) 7226) ((-472 . -1079) T) ((-1120 . -1079) T) ((-472 . -597) 7205) ((-245 . -781) 7156) ((-245 . -778) 7107) ((-244 . -781) 7058) ((-40 . -1130) NIL) ((-244 . -778) 7009) ((-1094 . -603) 6990) ((-127 . -19) 6972) ((-1059 . -902) 6923) ((-986 . -780) T) ((-986 . -777) T) ((-986 . -712) T) ((-953 . -780) T) ((-127 . -591) 6898) ((-896 . -712) T) ((-90 . -482) 6882) ((-480 . -882) NIL) ((-892 . -1079) T) ((-220 . -1037) 6847) ((-854 . -284) T) ((-212 . -882) NIL) ((-819 . -1091) 6826) ((-58 . -1079) 6776) ((-512 . -1079) 6754) ((-509 . -1079) 6704) ((-490 . -1079) 6682) ((-489 . -1079) 6632) ((-569 . -101) T) ((-553 . -101) T) ((-488 . -101) T) ((-467 . -169) 6563) ((-353 . -902) T) ((-347 . -902) T) ((-339 . -902) T) ((-220 . -110) 6519) ((-819 . -23) 6471) ((-421 . -712) T) ((-107 . -902) T) ((-40 . -38) 6416) ((-107 . -806) T) ((-570 . -343) T) ((-511 . -343) T) ((-1201 . -507) 6276) ((-310 . -445) 6255) ((-307 . -445) T) ((-820 . -280) 6234) ((-333 . -129) T) ((-171 . -129) T) ((-288 . -25) 6098) ((-288 . -21) 5981) ((-45 . -1168) 5960) ((-65 . -600) 5942) ((-874 . -600) 5924) ((-589 . -507) 5857) ((-45 . -106) 5807) ((-805 . -603) 5791) ((-1081 . -419) 5775) ((-1081 . -362) 5754) ((-380 . -603) 5738) ((-318 . -603) 5722) ((-1043 . -1192) T) ((-1042 . -1037) 5709) ((-934 . -1037) 5552) ((-1239 . -101) T) ((-1238 . -101) 5502) ((-1042 . -110) 5487) ((-474 . -1037) 5330) ((-649 . -703) 5314) ((-934 . -110) 5143) ((-220 . -603) 5093) ((-470 . -357) T) ((-349 . -703) 5045) ((-346 . -703) 4997) ((-338 . -703) 4949) ((-258 . -703) 4798) ((-242 . -703) 4647) ((-1230 . -633) 4572) ((-1202 . -891) NIL) ((-1075 . -92) T) ((-1069 . -92) T) ((-925 . -636) 4556) ((-1053 . -92) T) ((-474 . -110) 4385) ((-1046 . -92) T) ((-1018 . -92) T) ((-925 . -367) 4369) ((-243 . -101) T) ((-1001 . -92) T) ((-73 . -600) 4351) ((-945 . -47) 4330) ((-696 . -101) T) ((-608 . -1091) T) ((-1 . -1079) T) ((-684 . -101) T) ((-1223 . -633) 4227) ((-613 . -92) T) ((-1173 . -600) 4209) ((-1067 . -600) 4191) ((-125 . -482) 4175) ((-476 . -92) T) ((-1055 . -600) 4157) ((-384 . -23) T) ((-86 . -1192) T) ((-213 . -92) T) ((-1202 . -633) 4009) ((-892 . -703) 3974) ((-608 . -23) T) ((-595 . -600) 3956) ((-595 . -601) NIL) ((-468 . -601) NIL) ((-468 . -600) 3938) ((-504 . -1079) T) ((-500 . -1079) T) ((-345 . -25) T) ((-345 . -21) T) ((-126 . -303) 3876) ((-120 . -303) 3814) ((-584 . -633) 3801) ((-220 . -1031) T) ((-583 . -633) 3726) ((-373 . -984) T) ((-220 . -238) T) ((-220 . -228) T) ((-1042 . -603) 3698) ((-1042 . -605) 3679) ((-940 . -601) 3640) ((-940 . -600) 3552) ((-934 . -603) 3341) ((-852 . -38) 3328) ((-699 . -603) 3278) ((-1222 . -284) 3229) ((-1201 . -284) 3180) ((-474 . -603) 2965) ((-1099 . -445) T) ((-495 . -833) T) ((-310 . -1118) 2944) ((-981 . -144) 2923) ((-981 . -142) 2902) ((-488 . -303) 2889) ((-289 . -1168) 2868) ((-470 . -1091) T) ((-853 . -1037) 2813) ((-610 . -101) T) ((-1178 . -482) 2797) ((-245 . -362) 2776) ((-244 . -362) 2755) ((-1042 . -1031) T) ((-289 . -106) 2705) ((-127 . -601) NIL) ((-127 . -600) 2671) ((-116 . -101) T) ((-934 . -1031) T) ((-853 . -110) 2600) ((-470 . -23) T) ((-474 . -1031) T) ((-1042 . -228) T) ((-934 . -320) 2569) ((-474 . -320) 2526) ((-349 . -169) T) ((-346 . -169) T) ((-338 . -169) T) ((-258 . -169) 2437) ((-242 . -169) 2348) ((-945 . -1020) 2244) ((-510 . -483) 2225) ((-721 . -1020) 2196) ((-510 . -600) 2162) ((-1084 . -101) T) ((-1071 . -600) 2129) ((-1016 . -600) 2111) ((-1251 . -148) 2095) ((-1249 . -603) 2076) ((-1243 . -600) 2058) ((-1230 . -712) T) ((-1223 . -712) T) ((-1202 . -777) NIL) ((-1202 . -780) NIL) ((-166 . -1037) 1968) ((-892 . -169) T) ((-853 . -603) 1898) ((-1202 . -712) T) ((-1248 . -603) 1879) ((-985 . -336) 1853) ((-982 . -507) 1786) ((-826 . -833) 1765) ((-553 . -1130) T) ((-467 . -284) 1716) ((-584 . -712) T) ((-355 . -600) 1698) ((-316 . -600) 1680) ((-412 . -1020) 1576) ((-583 . -712) T) ((-401 . -833) 1527) ((-166 . -110) 1423) ((-819 . -129) 1375) ((-723 . -148) 1359) ((-1238 . -303) 1297) ((-480 . -301) T) ((-373 . -600) 1264) ((-513 . -992) 1248) ((-373 . -601) 1162) ((-212 . -301) T) ((-138 . -148) 1144) ((-700 . -280) 1123) ((-480 . -1004) T) ((-569 . -38) 1110) ((-553 . -38) 1097) ((-488 . -38) 1062) ((-212 . -1004) T) ((-853 . -1031) T) ((-820 . -600) 1044) ((-813 . -600) 1026) ((-811 . -600) 1008) ((-802 . -891) 987) ((-1262 . -1091) T) ((-1211 . -1037) 810) ((-838 . -1037) 794) ((-853 . -238) T) ((-853 . -228) NIL) ((-674 . -1192) T) ((-1262 . -23) T) ((-802 . -633) 719) ((-539 . -1192) T) ((-412 . -332) 703) ((-560 . -1037) 690) ((-1211 . -110) 499) ((-686 . -626) 481) ((-838 . -110) 460) ((-375 . -23) T) ((-166 . -603) 238) ((-1165 . -507) 30) ((-647 . -1079) T) ((-666 . -1079) T) ((-661 . -1079) T))
\ No newline at end of file +(-3994 (|has| |#1| (-836)) (|has| |#1| (-1082))) +((($ $) . T) ((#0=(-850 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-229)) ((|#2| |#1|) |has| |#1| (-229)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-472 . -1082) T) ((-259 . -508) 161647) ((-243 . -508) 161590) ((-241 . -1082) 161540) ((-561 . -111) 161525) ((-525 . -23) T) ((-137 . -1082) T) ((-136 . -1082) T) ((-117 . -304) 161482) ((-132 . -1082) T) ((-473 . -508) 161274) ((-663 . -604) 161258) ((-680 . -102) T) ((-1123 . -508) 161177) ((-385 . -130) T) ((-1254 . -961) 161146) ((-31 . -93) T) ((-590 . -483) 161130) ((-609 . -130) T) ((-806 . -832) T) ((-517 . -57) 161080) ((-59 . -508) 161013) ((-513 . -508) 160946) ((-413 . -885) 160905) ((-167 . -1034) T) ((-510 . -508) 160838) ((-491 . -508) 160771) ((-490 . -508) 160704) ((-786 . -1023) 160487) ((-685 . -38) 160452) ((-1214 . -604) 160200) ((-338 . -344) T) ((-1076 . -1075) 160184) ((-1076 . -1082) 160162) ((-841 . -604) 160059) ((-167 . -239) 160010) ((-167 . -229) 159961) ((-1076 . -1077) 159919) ((-857 . -281) 159877) ((-221 . -782) T) ((-221 . -779) T) ((-680 . -279) NIL) ((-561 . -604) 159849) ((-1132 . -1171) 159828) ((-402 . -977) 159812) ((-687 . -21) T) ((-687 . -25) T) ((-1256 . -634) 159786) ((-311 . -158) 159765) ((-311 . -141) 159744) ((-1132 . -107) 159694) ((-133 . -25) T) ((-40 . -227) 159671) ((-116 . -21) T) ((-116 . -25) T) ((-596 . -283) 159647) ((-469 . -283) 159626) ((-1214 . -321) 159603) ((-1214 . -1034) T) ((-841 . -1034) T) ((-786 . -333) 159587) ((-117 . -1133) NIL) ((-91 . -601) 159519) ((-471 . -130) T) ((-1214 . -229) T) ((-1078 . -484) 159500) ((-1078 . -601) 159466) ((-1072 . -484) 159447) ((-1072 . -601) 159413) ((-582 . -1195) T) ((-1056 . -484) 159394) ((-561 . -1034) T) ((-1056 . -601) 159360) ((-648 . -704) 159344) ((-1049 . -484) 159325) ((-1049 . -601) 159291) ((-943 . -283) 159268) ((-60 . -34) T) ((-1045 . -782) T) ((-1045 . -779) T) ((-1021 . -484) 159249) ((-1004 . -484) 159230) ((-803 . -713) T) ((-718 . -47) 159195) ((-611 . -38) 159182) ((-350 . -285) T) ((-347 . -285) T) ((-339 . -285) T) ((-259 . -285) 159113) ((-243 . -285) 159044) ((-1021 . -601) 159010) ((-1009 . -102) T) ((-1004 . -601) 158976) ((-614 . -484) 158957) ((-408 . -713) T) ((-117 . -38) 158902) ((-477 . -484) 158883) ((-614 . -601) 158849) ((-408 . -467) T) ((-214 . -484) 158830) ((-477 . -601) 158796) ((-349 . -102) T) ((-214 . -601) 158762) ((-1189 . -1041) T) ((-698 . -1041) T) ((-1156 . -47) 158739) ((-1155 . -47) 158709) ((-1149 . -47) 158686) ((-128 . -283) 158661) ((-1020 . -149) 158607) ((-895 . -285) T) ((-1108 . -47) 158579) ((-680 . -304) NIL) ((-509 . -601) 158561) ((-504 . -601) 158543) ((-502 . -601) 158525) ((-322 . -1082) 158475) ((-699 . -446) 158406) ((-48 . -102) T) ((-1225 . -281) 158391) ((-1204 . -281) 158311) ((-631 . -652) 158295) ((-631 . -637) 158279) ((-334 . -21) T) ((-334 . -25) T) ((-40 . -344) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-631 . -368) 158263) ((-593 . -484) 158245) ((-590 . -281) 158222) ((-593 . -601) 158189) ((-383 . -102) T) ((-1102 . -141) T) ((-126 . -601) 158121) ((-859 . -1082) T) ((-644 . -406) 158105) ((-701 . -601) 158087) ((-183 . -601) 158069) ((-160 . -601) 158051) ((-155 . -601) 158033) ((-1256 . -713) T) ((-1084 . -34) T) ((-856 . -782) NIL) ((-856 . -779) NIL) ((-844 . -836) T) ((-718 . -871) NIL) ((-1265 . -130) T) ((-376 . -130) T) ((-877 . -604) 158001) ((-889 . -102) T) ((-718 . -1023) 157877) ((-525 . -130) T) ((-1069 . -406) 157861) ((-985 . -483) 157845) ((-117 . -395) 157822) ((-1149 . -1195) 157801) ((-769 . -406) 157785) ((-767 . -406) 157769) ((-928 . -34) T) ((-680 . -1133) NIL) ((-246 . -634) 157604) ((-245 . -634) 157426) ((-804 . -905) 157405) ((-448 . -406) 157389) ((-590 . -19) 157373) ((-1128 . -1188) 157342) ((-1149 . -871) NIL) ((-1149 . -869) 157294) ((-590 . -592) 157271) ((-1181 . -601) 157203) ((-1157 . -601) 157185) ((-62 . -390) T) ((-1155 . -1023) 157120) ((-1149 . -1023) 157086) ((-680 . -38) 157036) ((-468 . -281) 157021) ((-718 . -372) 157005) ((-644 . -1041) T) ((-1225 . -987) 156971) ((-1204 . -987) 156937) ((-1070 . -604) 156921) ((-1046 . -1171) 156896) ((-1058 . -604) 156873) ((-857 . -602) 156680) ((-857 . -601) 156662) ((-1168 . -483) 156599) ((-413 . -1007) 156577) ((-48 . -304) 156564) ((-1046 . -107) 156510) ((-473 . -483) 156447) ((-514 . -1195) T) ((-1149 . -333) 156399) ((-1123 . -483) 156370) ((-1149 . -372) 156322) ((-1069 . -1041) T) ((-432 . -102) T) ((-181 . -1082) T) ((-246 . -34) T) ((-245 . -34) T) ((-769 . -1041) T) ((-767 . -1041) T) ((-718 . -885) 156299) ((-448 . -1041) T) ((-59 . -483) 156283) ((-1019 . -1040) 156257) ((-513 . -483) 156241) ((-510 . -483) 156225) ((-491 . -483) 156209) ((-490 . -483) 156193) ((-241 . -508) 156126) ((-1019 . -111) 156093) ((-1156 . -885) 156006) ((-1155 . -885) 155912) ((-1149 . -885) 155745) ((-1108 . -885) 155729) ((-656 . -1094) T) ((-349 . -1133) T) ((-632 . -93) T) ((-317 . -1040) 155711) ((-246 . -778) 155690) ((-246 . -781) 155641) ((-31 . -484) 155622) ((-246 . -780) 155601) ((-245 . -778) 155580) ((-245 . -781) 155531) ((-245 . -780) 155510) ((-31 . -601) 155476) ((-50 . -1041) T) ((-246 . -713) 155386) ((-245 . -713) 155296) ((-1189 . -1082) T) ((-656 . -23) T) ((-571 . -1041) T) ((-512 . -1041) T) ((-374 . -1040) 155261) ((-317 . -111) 155236) ((-73 . -378) T) ((-73 . -390) T) ((-1009 . -38) 155173) ((-680 . -395) 155155) ((-99 . -102) T) ((-698 . -1082) T) ((-988 . -143) 155127) ((-988 . -145) 155099) ((-374 . -111) 155055) ((-314 . -1199) 155034) ((-468 . -987) 155000) ((-349 . -38) 154965) ((-40 . -365) 154937) ((-858 . -601) 154809) ((-127 . -125) 154793) ((-121 . -125) 154777) ((-823 . -1040) 154747) ((-820 . -21) 154699) ((-814 . -1040) 154683) ((-820 . -25) 154635) ((-314 . -546) 154586) ((-511 . -604) 154567) ((-554 . -815) T) ((-236 . -1195) T) ((-1019 . -604) 154536) ((-823 . -111) 154501) ((-814 . -111) 154480) ((-1225 . -601) 154462) ((-1204 . -601) 154444) ((-1204 . -602) 154115) ((-1154 . -894) 154094) ((-1107 . -894) 154073) ((-48 . -38) 154038) ((-1263 . -1094) T) ((-590 . -601) 153950) ((-590 . -602) 153911) ((-1261 . -1094) T) ((-356 . -604) 153895) ((-317 . -604) 153879) ((-236 . -1023) 153706) ((-1154 . -634) 153631) ((-1107 . -634) 153556) ((-705 . -601) 153538) ((-840 . -634) 153512) ((-1263 . -23) T) ((-1261 . -23) T) ((-485 . -1082) T) ((-374 . -604) 153462) ((-374 . -606) 153444) ((-1019 . -1034) T) ((-1168 . -281) 153423) ((-167 . -363) 153374) ((-989 . -1195) T) ((-823 . -604) 153328) ((-814 . -604) 153283) ((-44 . -23) T) ((-473 . -281) 153262) ((-575 . -1082) T) ((-1128 . -1091) 153231) ((-1086 . -1085) 153183) ((-385 . -21) T) ((-385 . -25) T) ((-150 . -1094) T) ((-1269 . -102) T) ((-989 . -869) 153165) ((-989 . -871) 153147) ((-1189 . -704) 153044) ((-611 . -227) 153028) ((-609 . -21) T) ((-284 . -546) T) ((-609 . -25) T) ((-1175 . -1082) T) ((-698 . -704) 152993) ((-236 . -372) 152962) ((-989 . -1023) 152922) ((-374 . -1034) T) ((-219 . -1041) T) ((-117 . -227) 152899) ((-59 . -281) 152876) ((-150 . -23) T) ((-510 . -281) 152853) ((-322 . -508) 152786) ((-490 . -281) 152763) ((-374 . -239) T) ((-374 . -229) T) ((-823 . -1034) T) ((-814 . -1034) T) ((-699 . -934) 152732) ((-687 . -836) T) ((-468 . -601) 152714) ((-814 . -229) 152693) ((-133 . -836) T) ((-644 . -1082) T) ((-1168 . -592) 152672) ((-540 . -1171) 152651) ((-331 . -1082) T) ((-314 . -358) 152630) ((-402 . -145) 152609) ((-402 . -143) 152588) ((-949 . -1094) 152487) ((-236 . -885) 152419) ((-802 . -1094) 152329) ((-640 . -838) 152313) ((-473 . -592) 152292) ((-540 . -107) 152242) ((-989 . -372) 152224) ((-989 . -333) 152206) ((-97 . -1082) T) ((-949 . -23) 152017) ((-471 . -21) T) ((-471 . -25) T) ((-802 . -23) 151887) ((-1158 . -601) 151869) ((-59 . -19) 151853) ((-1158 . -602) 151775) ((-1154 . -713) T) ((-1107 . -713) T) ((-510 . -19) 151759) ((-490 . -19) 151743) ((-59 . -592) 151720) ((-1069 . -1082) T) ((-886 . -102) 151698) ((-840 . -713) T) ((-769 . -1082) T) ((-510 . -592) 151675) ((-490 . -592) 151652) ((-767 . -1082) T) ((-767 . -1048) 151619) ((-455 . -1082) T) ((-448 . -1082) T) ((-575 . -704) 151594) ((-635 . -1082) T) ((-1233 . -47) 151571) ((-1227 . -102) T) ((-1226 . -47) 151541) ((-1205 . -47) 151518) ((-1189 . -170) 151469) ((-1155 . -302) 151448) ((-989 . -885) NIL) ((-1149 . -302) 151427) ((-615 . -1094) T) ((-656 . -130) T) ((-1078 . -604) 151408) ((-1072 . -604) 151389) ((-1062 . -546) 151340) ((-1062 . -1199) 151291) ((-1056 . -604) 151272) ((-270 . -1082) T) ((-85 . -435) T) ((-85 . -390) T) ((-1049 . -604) 151253) ((-1021 . -604) 151234) ((-50 . -1082) T) ((-1004 . -604) 151215) ((-698 . -170) T) ((-584 . -47) 151192) ((-221 . -634) 151157) ((-571 . -1082) T) ((-512 . -1082) T) ((-354 . -1199) T) ((-348 . -1199) T) ((-340 . -1199) T) ((-481 . -807) T) ((-481 . -905) T) ((-314 . -1094) T) ((-108 . -1199) T) ((-701 . -1040) 151127) ((-334 . -836) T) ((-213 . -905) T) ((-213 . -807) T) ((-614 . -604) 151108) ((-354 . -546) T) ((-348 . -546) T) ((-340 . -546) T) ((-477 . -604) 151089) ((-108 . -546) T) ((-644 . -704) 151059) ((-1149 . -1007) NIL) ((-214 . -604) 151040) ((-314 . -23) T) ((-67 . -1195) T) ((-985 . -601) 150972) ((-680 . -227) 150954) ((-701 . -111) 150919) ((-631 . -34) T) ((-241 . -483) 150903) ((-1084 . -1080) 150887) ((-169 . -1082) T) ((-937 . -894) 150866) ((-509 . -604) 150850) ((-1269 . -1133) T) ((-1265 . -21) T) ((-475 . -894) 150829) ((-1265 . -25) T) ((-1263 . -130) T) ((-1261 . -130) T) ((-1254 . -102) T) ((-1237 . -601) 150795) ((-1226 . -1023) 150730) ((-1069 . -704) 150579) ((-1045 . -634) 150566) ((-937 . -634) 150491) ((-769 . -704) 150320) ((-530 . -601) 150302) ((-530 . -602) 150283) ((-767 . -704) 150132) ((-1205 . -1195) 150111) ((-1059 . -102) T) ((-376 . -25) T) ((-376 . -21) T) ((-475 . -634) 150036) ((-455 . -704) 150007) ((-448 . -704) 149856) ((-972 . -102) T) ((-1205 . -871) NIL) ((-1205 . -869) 149808) ((-1168 . -602) NIL) ((-724 . -102) T) ((-1168 . -601) 149790) ((-593 . -604) 149772) ((-1124 . -1105) 149717) ((-1031 . -1188) 149646) ((-525 . -25) T) ((-886 . -304) 149584) ((-701 . -604) 149538) ((-338 . -1041) T) ((-632 . -484) 149519) ((-139 . -102) T) ((-44 . -130) T) ((-284 . -1094) T) ((-667 . -93) T) ((-662 . -93) T) ((-650 . -601) 149501) ((-632 . -601) 149454) ((-472 . -93) T) ((-350 . -601) 149436) ((-347 . -601) 149418) ((-339 . -601) 149400) ((-259 . -602) 149148) ((-259 . -601) 149130) ((-243 . -601) 149112) ((-243 . -602) 148973) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1205 . -1023) 148939) ((-1189 . -508) 148906) ((-1123 . -601) 148888) ((-806 . -843) T) ((-806 . -713) T) ((-590 . -283) 148865) ((-571 . -704) 148830) ((-473 . -602) NIL) ((-473 . -601) 148812) ((-512 . -704) 148757) ((-311 . -102) T) ((-308 . -102) T) ((-284 . -23) T) ((-150 . -130) T) ((-381 . -713) T) ((-857 . -1040) 148709) ((-895 . -601) 148691) ((-895 . -602) 148673) ((-857 . -111) 148611) ((-701 . -1034) T) ((-699 . -1217) 148595) ((-135 . -102) T) ((-114 . -102) T) ((-680 . -344) NIL) ((-513 . -601) 148527) ((-374 . -782) T) ((-219 . -1082) T) ((-374 . -779) T) ((-221 . -781) T) ((-221 . -778) T) ((-59 . -602) 148488) ((-59 . -601) 148400) ((-221 . -713) T) ((-510 . -602) 148361) ((-510 . -601) 148273) ((-491 . -601) 148205) ((-490 . -602) 148166) ((-490 . -601) 148078) ((-1062 . -358) 148029) ((-40 . -406) 148006) ((-77 . -1195) T) ((-856 . -894) NIL) ((-354 . -324) 147990) ((-354 . -358) T) ((-348 . -324) 147974) ((-348 . -358) T) ((-340 . -324) 147958) ((-340 . -358) T) ((-311 . -279) 147937) ((-108 . -358) T) ((-70 . -1195) T) ((-1205 . -333) 147889) ((-856 . -634) 147834) ((-1205 . -372) 147786) ((-949 . -130) 147641) ((-802 . -130) 147511) ((-943 . -637) 147495) ((-1069 . -170) 147406) ((-943 . -368) 147390) ((-1045 . -781) T) ((-1045 . -778) T) ((-857 . -604) 147288) ((-769 . -170) 147179) ((-767 . -170) 147090) ((-803 . -47) 147052) ((-1045 . -713) T) ((-322 . -483) 147036) ((-937 . -713) T) ((-448 . -170) 146947) ((-241 . -281) 146924) ((-475 . -713) T) ((-1254 . -304) 146862) ((-1233 . -885) 146775) ((-1226 . -885) 146681) ((-1225 . -1040) 146516) ((-1205 . -885) 146349) ((-1204 . -1040) 146157) ((-1189 . -285) 146136) ((-1128 . -149) 146120) ((-1102 . -102) T) ((-1100 . -1082) T) ((-1062 . -23) T) ((-1057 . -102) T) ((-912 . -940) T) ((-724 . -304) 146058) ((-75 . -1195) T) ((-30 . -940) T) ((-167 . -894) 146011) ((-650 . -377) 145983) ((-112 . -830) T) ((-1 . -601) 145965) ((-1062 . -1094) T) ((-128 . -637) 145947) ((-50 . -608) 145931) ((-988 . -404) 145903) ((-584 . -885) 145816) ((-433 . -102) T) ((-139 . -304) NIL) ((-128 . -368) 145798) ((-857 . -1034) T) ((-820 . -836) 145777) ((-81 . -1195) T) ((-698 . -285) T) ((-40 . -1041) T) ((-571 . -170) T) ((-512 . -170) T) ((-505 . -601) 145759) ((-167 . -634) 145669) ((-501 . -601) 145651) ((-346 . -145) 145633) ((-346 . -143) T) ((-354 . -1094) T) ((-348 . -1094) T) ((-340 . -1094) T) ((-989 . -302) T) ((-899 . -302) T) ((-857 . -239) T) ((-108 . -1094) T) ((-857 . -229) 145612) ((-1225 . -111) 145433) ((-1204 . -111) 145222) ((-241 . -1229) 145206) ((-554 . -834) T) ((-354 . -23) T) ((-349 . -344) T) ((-311 . -304) 145193) ((-308 . -304) 145134) ((-348 . -23) T) ((-314 . -130) T) ((-340 . -23) T) ((-989 . -1007) T) ((-31 . -604) 145115) ((-108 . -23) T) ((-241 . -592) 145092) ((-1227 . -38) 144984) ((-1214 . -894) 144963) ((-112 . -1082) T) ((-1020 . -102) T) ((-1214 . -634) 144888) ((-856 . -781) NIL) ((-841 . -634) 144862) ((-856 . -778) NIL) ((-803 . -871) NIL) ((-856 . -713) T) ((-1069 . -508) 144735) ((-769 . -508) 144682) ((-767 . -508) 144634) ((-561 . -634) 144621) ((-803 . -1023) 144449) ((-448 . -508) 144392) ((-383 . -384) T) ((-1225 . -604) 144205) ((-1204 . -604) 143953) ((-60 . -1195) T) ((-609 . -836) 143932) ((-494 . -647) T) ((-1128 . -961) 143901) ((-988 . -446) T) ((-685 . -834) T) ((-504 . -779) T) ((-468 . -1040) 143736) ((-338 . -1082) T) ((-308 . -1133) NIL) ((-284 . -130) T) ((-389 . -1082) T) ((-680 . -365) 143703) ((-855 . -1041) T) ((-219 . -608) 143680) ((-322 . -281) 143657) ((-468 . -111) 143478) ((-1225 . -1034) T) ((-1204 . -1034) T) ((-803 . -372) 143462) ((-167 . -713) T) ((-640 . -102) T) ((-1225 . -239) 143441) ((-1225 . -229) 143393) ((-1204 . -229) 143298) ((-1204 . -239) 143277) ((-988 . -397) NIL) ((-656 . -627) 143225) ((-311 . -38) 143135) ((-308 . -38) 143064) ((-69 . -601) 143046) ((-314 . -487) 143012) ((-1168 . -283) 142991) ((-1095 . -1094) 142901) ((-83 . -1195) T) ((-61 . -601) 142883) ((-473 . -283) 142862) ((-1256 . -1023) 142839) ((-1146 . -1082) T) ((-1095 . -23) 142709) ((-803 . -885) 142645) ((-1214 . -713) T) ((-1084 . -1195) T) ((-468 . -604) 142471) ((-1069 . -285) 142402) ((-951 . -1082) T) ((-878 . -102) T) ((-769 . -285) 142313) ((-322 . -19) 142297) ((-59 . -283) 142274) ((-767 . -285) 142205) ((-841 . -713) T) ((-117 . -834) NIL) ((-510 . -283) 142182) ((-322 . -592) 142159) ((-490 . -283) 142136) ((-448 . -285) 142067) ((-1020 . -304) 141918) ((-667 . -484) 141899) ((-561 . -713) T) ((-662 . -484) 141880) ((-667 . -601) 141830) ((-662 . -601) 141796) ((-648 . -601) 141778) ((-472 . -484) 141759) ((-472 . -601) 141725) ((-241 . -602) 141686) ((-241 . -484) 141663) ((-137 . -484) 141644) ((-136 . -484) 141625) ((-132 . -484) 141606) ((-241 . -601) 141498) ((-209 . -102) T) ((-137 . -601) 141464) ((-136 . -601) 141430) ((-132 . -601) 141396) ((-1129 . -34) T) ((-928 . -1195) T) ((-338 . -704) 141341) ((-656 . -25) T) ((-656 . -21) T) ((-1158 . -604) 141322) ((-468 . -1034) T) ((-623 . -412) 141287) ((-595 . -412) 141252) ((-1102 . -1133) T) ((-571 . -285) T) ((-512 . -285) T) ((-1226 . -302) 141231) ((-468 . -229) 141183) ((-468 . -239) 141162) ((-1205 . -302) 141141) ((-1205 . -1007) NIL) ((-1062 . -130) T) ((-857 . -782) 141120) ((-142 . -102) T) ((-40 . -1082) T) ((-857 . -779) 141099) ((-631 . -995) 141083) ((-570 . -1041) T) ((-554 . -1041) T) ((-489 . -1041) T) ((-402 . -446) T) ((-354 . -130) T) ((-311 . -395) 141067) ((-308 . -395) 141028) ((-348 . -130) T) ((-340 . -130) T) ((-1163 . -1082) T) ((-1102 . -38) 141015) ((-1076 . -601) 140982) ((-108 . -130) T) ((-939 . -1082) T) ((-906 . -1082) T) ((-758 . -1082) T) ((-658 . -1082) T) ((-500 . -1065) T) ((-687 . -145) T) ((-116 . -145) T) ((-1263 . -21) T) ((-1263 . -25) T) ((-1261 . -21) T) ((-1261 . -25) T) ((-650 . -1040) 140966) ((-525 . -836) T) ((-494 . -836) T) ((-350 . -1040) 140918) ((-347 . -1040) 140870) ((-339 . -1040) 140822) ((-246 . -1195) T) ((-245 . -1195) T) ((-259 . -1040) 140665) ((-243 . -1040) 140508) ((-650 . -111) 140487) ((-350 . -111) 140425) ((-347 . -111) 140363) ((-339 . -111) 140301) ((-259 . -111) 140130) ((-243 . -111) 139959) ((-804 . -1199) 139938) ((-611 . -406) 139922) ((-44 . -21) T) ((-44 . -25) T) ((-802 . -627) 139828) ((-804 . -546) 139807) ((-246 . -1023) 139634) ((-245 . -1023) 139461) ((-126 . -119) 139445) ((-895 . -1040) 139410) ((-699 . -102) T) ((-685 . -1041) T) ((-530 . -606) 139313) ((-338 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-88 . -601) 139295) ((-895 . -111) 139251) ((-40 . -704) 139196) ((-855 . -1082) T) ((-650 . -604) 139173) ((-632 . -604) 139154) ((-350 . -604) 139091) ((-347 . -604) 139028) ((-339 . -604) 138965) ((-322 . -602) 138926) ((-322 . -601) 138838) ((-259 . -604) 138591) ((-243 . -604) 138376) ((-1204 . -779) 138329) ((-1204 . -782) 138282) ((-246 . -372) 138251) ((-245 . -372) 138220) ((-640 . -38) 138190) ((-596 . -34) T) ((-476 . -1094) 138100) ((-469 . -34) T) ((-1095 . -130) 137970) ((-949 . -25) 137781) ((-895 . -604) 137731) ((-859 . -601) 137713) ((-949 . -21) 137668) ((-802 . -21) 137578) ((-802 . -25) 137429) ((-611 . -1041) T) ((-1160 . -546) 137408) ((-1154 . -47) 137385) ((-350 . -1034) T) ((-347 . -1034) T) ((-476 . -23) 137255) ((-339 . -1034) T) ((-243 . -1034) T) ((-259 . -1034) T) ((-1107 . -47) 137227) ((-117 . -1041) T) ((-1019 . -634) 137201) ((-943 . -34) T) ((-350 . -229) 137180) ((-350 . -239) T) ((-347 . -229) 137159) ((-347 . -239) T) ((-339 . -229) 137138) ((-339 . -239) T) ((-243 . -321) 137095) ((-259 . -321) 137067) ((-259 . -229) 137046) ((-1138 . -149) 137030) ((-246 . -885) 136962) ((-245 . -885) 136894) ((-1064 . -836) T) ((-409 . -1094) T) ((-1038 . -23) T) ((-895 . -1034) T) ((-317 . -634) 136876) ((-1009 . -834) T) ((-1189 . -987) 136842) ((-1155 . -905) 136821) ((-1149 . -905) 136800) ((-1149 . -807) NIL) ((-895 . -239) T) ((-804 . -358) 136779) ((-380 . -23) T) ((-127 . -1082) 136757) ((-121 . -1082) 136735) ((-895 . -229) T) ((-128 . -34) T) ((-374 . -634) 136700) ((-855 . -704) 136687) ((-1031 . -149) 136652) ((-40 . -170) T) ((-680 . -406) 136634) ((-699 . -304) 136621) ((-823 . -634) 136581) ((-814 . -634) 136555) ((-314 . -25) T) ((-314 . -21) T) ((-644 . -281) 136534) ((-570 . -1082) T) ((-554 . -1082) T) ((-489 . -1082) T) ((-241 . -283) 136511) ((-308 . -227) 136472) ((-1154 . -871) NIL) ((-55 . -1082) T) ((-1107 . -871) 136331) ((-129 . -836) T) ((-1154 . -1023) 136211) ((-1107 . -1023) 136094) ((-181 . -601) 136076) ((-840 . -1023) 135972) ((-769 . -281) 135899) ((-804 . -1094) T) ((-1019 . -713) T) ((-590 . -637) 135883) ((-1031 . -961) 135812) ((-984 . -102) T) ((-804 . -23) T) ((-699 . -1133) 135790) ((-680 . -1041) T) ((-590 . -368) 135774) ((-346 . -446) T) ((-338 . -285) T) ((-1242 . -1082) T) ((-244 . -1082) T) ((-394 . -102) T) ((-284 . -21) T) ((-284 . -25) T) ((-356 . -713) T) ((-697 . -1082) T) ((-685 . -1082) T) ((-356 . -467) T) ((-1189 . -601) 135756) ((-1154 . -372) 135740) ((-1107 . -372) 135724) ((-1009 . -406) 135686) ((-139 . -225) 135668) ((-374 . -781) T) ((-374 . -778) T) ((-855 . -170) T) ((-374 . -713) T) ((-698 . -601) 135650) ((-699 . -38) 135479) ((-1241 . -1239) 135463) ((-346 . -397) T) ((-1241 . -1082) 135413) ((-570 . -704) 135400) ((-554 . -704) 135387) ((-489 . -704) 135352) ((-311 . -617) 135331) ((-823 . -713) T) ((-814 . -713) T) ((-631 . -1195) T) ((-1062 . -627) 135279) ((-1154 . -885) 135222) ((-1107 . -885) 135206) ((-648 . -1040) 135190) ((-108 . -627) 135172) ((-476 . -130) 135042) ((-1160 . -1094) T) ((-937 . -47) 135011) ((-611 . -1082) T) ((-648 . -111) 134990) ((-485 . -601) 134956) ((-322 . -283) 134933) ((-475 . -47) 134890) ((-1160 . -23) T) ((-117 . -1082) T) ((-103 . -102) 134868) ((-1253 . -1094) T) ((-1038 . -130) T) ((-1009 . -1041) T) ((-806 . -1023) 134852) ((-988 . -711) 134824) ((-1253 . -23) T) ((-685 . -704) 134789) ((-575 . -601) 134771) ((-381 . -1023) 134755) ((-349 . -1041) T) ((-380 . -130) T) ((-319 . -1023) 134739) ((-221 . -871) 134721) ((-989 . -905) T) ((-91 . -34) T) ((-989 . -807) T) ((-899 . -905) T) ((-1175 . -601) 134703) ((-1102 . -815) T) ((-481 . -1199) T) ((-1087 . -1082) T) ((-1062 . -21) T) ((-1062 . -25) T) ((-213 . -1199) T) ((-984 . -304) 134668) ((-221 . -1023) 134628) ((-40 . -285) T) ((-701 . -634) 134588) ((-667 . -604) 134569) ((-662 . -604) 134550) ((-481 . -546) T) ((-472 . -604) 134531) ((-354 . -25) T) ((-354 . -21) T) ((-348 . -25) T) ((-213 . -546) T) ((-348 . -21) T) ((-340 . -25) T) ((-340 . -21) T) ((-241 . -604) 134508) ((-137 . -604) 134489) ((-136 . -604) 134470) ((-132 . -604) 134451) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1041) T) ((-570 . -170) T) ((-554 . -170) T) ((-489 . -170) T) ((-644 . -601) 134433) ((-724 . -723) 134417) ((-331 . -601) 134399) ((-68 . -378) T) ((-68 . -390) T) ((-1084 . -107) 134383) ((-1045 . -871) 134365) ((-937 . -871) 134290) ((-639 . -1094) T) ((-611 . -704) 134277) ((-475 . -871) NIL) ((-1128 . -102) T) ((-1076 . -606) 134261) ((-1045 . -1023) 134243) ((-97 . -601) 134225) ((-471 . -145) T) ((-937 . -1023) 134105) ((-117 . -704) 134050) ((-639 . -23) T) ((-475 . -1023) 133926) ((-1069 . -602) NIL) ((-1069 . -601) 133908) ((-769 . -602) NIL) ((-769 . -601) 133869) ((-767 . -602) 133503) ((-767 . -601) 133417) ((-1095 . -627) 133323) ((-455 . -601) 133305) ((-448 . -601) 133287) ((-448 . -602) 133148) ((-1020 . -225) 133094) ((-857 . -894) 133073) ((-126 . -34) T) ((-804 . -130) T) ((-635 . -601) 133055) ((-568 . -102) T) ((-350 . -1260) 133039) ((-347 . -1260) 133023) ((-339 . -1260) 133007) ((-127 . -508) 132940) ((-121 . -508) 132873) ((-505 . -779) T) ((-505 . -782) T) ((-504 . -781) T) ((-103 . -304) 132811) ((-218 . -102) 132789) ((-680 . -1082) T) ((-685 . -170) T) ((-857 . -634) 132741) ((-65 . -379) T) ((-270 . -601) 132723) ((-65 . -390) T) ((-937 . -372) 132707) ((-855 . -285) T) ((-50 . -601) 132689) ((-984 . -38) 132637) ((-571 . -601) 132619) ((-475 . -372) 132603) ((-571 . -602) 132585) ((-512 . -601) 132567) ((-895 . -1260) 132554) ((-856 . -1195) T) ((-687 . -446) T) ((-489 . -508) 132520) ((-481 . -358) T) ((-350 . -363) 132499) ((-347 . -363) 132478) ((-339 . -363) 132457) ((-701 . -713) T) ((-213 . -358) T) ((-116 . -446) T) ((-1264 . -1255) 132441) ((-856 . -869) 132418) ((-856 . -871) NIL) ((-949 . -836) 132317) ((-802 . -836) 132268) ((-640 . -642) 132252) ((-1181 . -34) T) ((-169 . -601) 132234) ((-1095 . -21) 132144) ((-1095 . -25) 131995) ((-856 . -1023) 131972) ((-937 . -885) 131953) ((-1214 . -47) 131930) ((-895 . -363) T) ((-59 . -637) 131914) ((-510 . -637) 131898) ((-475 . -885) 131875) ((-71 . -435) T) ((-71 . -390) T) ((-490 . -637) 131859) ((-59 . -368) 131843) ((-611 . -170) T) ((-510 . -368) 131827) ((-490 . -368) 131811) ((-814 . -695) 131795) ((-1154 . -302) 131774) ((-1160 . -130) T) ((-117 . -170) T) ((-1128 . -304) 131712) ((-167 . -1195) T) ((-623 . -731) 131696) ((-595 . -731) 131680) ((-1253 . -130) T) ((-1226 . -905) 131659) ((-1205 . -905) 131638) ((-1205 . -807) NIL) ((-680 . -704) 131588) ((-1204 . -894) 131541) ((-1009 . -1082) T) ((-856 . -372) 131518) ((-856 . -333) 131495) ((-890 . -1094) T) ((-167 . -869) 131479) ((-167 . -871) 131404) ((-481 . -1094) T) ((-349 . -1082) T) ((-213 . -1094) T) ((-76 . -435) T) ((-76 . -390) T) ((-167 . -1023) 131300) ((-314 . -836) T) ((-1241 . -508) 131233) ((-1225 . -634) 131130) ((-1204 . -634) 131000) ((-857 . -781) 130979) ((-857 . -778) 130958) ((-857 . -713) T) ((-481 . -23) T) ((-219 . -601) 130940) ((-172 . -446) T) ((-218 . -304) 130878) ((-86 . -435) T) ((-86 . -390) T) ((-213 . -23) T) ((-1265 . -1258) 130857) ((-570 . -285) T) ((-554 . -285) T) ((-663 . -1023) 130841) ((-489 . -285) T) ((-135 . -464) 130796) ((-48 . -1082) T) ((-699 . -227) 130780) ((-856 . -885) NIL) ((-1214 . -871) NIL) ((-874 . -102) T) ((-870 . -102) T) ((-383 . -1082) T) ((-167 . -372) 130764) ((-167 . -333) 130748) ((-1214 . -1023) 130628) ((-841 . -1023) 130524) ((-1124 . -102) T) ((-639 . -130) T) ((-117 . -508) 130432) ((-648 . -779) 130411) ((-648 . -782) 130390) ((-561 . -1023) 130372) ((-289 . -1248) 130342) ((-851 . -102) T) ((-948 . -546) 130321) ((-1189 . -1040) 130204) ((-476 . -627) 130110) ((-889 . -1082) T) ((-1009 . -704) 130047) ((-698 . -1040) 130012) ((-605 . -102) T) ((-590 . -34) T) ((-1129 . -1195) T) ((-1189 . -111) 129881) ((-468 . -634) 129778) ((-349 . -704) 129723) ((-167 . -885) 129682) ((-685 . -285) T) ((-680 . -170) T) ((-698 . -111) 129638) ((-1269 . -1041) T) ((-1214 . -372) 129622) ((-413 . -1199) 129600) ((-1100 . -601) 129582) ((-308 . -834) NIL) ((-413 . -546) T) ((-221 . -302) T) ((-1204 . -778) 129535) ((-1204 . -781) 129488) ((-1225 . -713) T) ((-1204 . -713) T) ((-48 . -704) 129453) ((-221 . -1007) T) ((-346 . -1248) 129430) ((-1227 . -406) 129396) ((-705 . -713) T) ((-1214 . -885) 129339) ((-1189 . -604) 129221) ((-112 . -601) 129203) ((-112 . -602) 129185) ((-705 . -467) T) ((-698 . -604) 129135) ((-476 . -21) 129045) ((-127 . -483) 129029) ((-121 . -483) 129013) ((-476 . -25) 128864) ((-611 . -285) T) ((-575 . -1040) 128839) ((-432 . -1082) T) ((-1045 . -302) T) ((-117 . -285) T) ((-1086 . -102) T) ((-988 . -102) T) ((-575 . -111) 128807) ((-1124 . -304) 128745) ((-1189 . -1034) T) ((-1045 . -1007) T) ((-66 . -1195) T) ((-1038 . -25) T) ((-1038 . -21) T) ((-698 . -1034) T) ((-380 . -21) T) ((-380 . -25) T) ((-680 . -508) NIL) ((-1009 . -170) T) ((-698 . -239) T) ((-1045 . -539) T) ((-500 . -102) T) ((-496 . -102) T) ((-349 . -170) T) ((-338 . -601) 128727) ((-389 . -601) 128709) ((-468 . -713) T) ((-1102 . -834) T) ((-877 . -1023) 128677) ((-108 . -836) T) ((-644 . -1040) 128661) ((-481 . -130) T) ((-1227 . -1041) T) ((-213 . -130) T) ((-1138 . -102) 128639) ((-99 . -1082) T) ((-241 . -652) 128623) ((-241 . -637) 128607) ((-644 . -111) 128586) ((-575 . -604) 128570) ((-311 . -406) 128554) ((-241 . -368) 128538) ((-1141 . -231) 128485) ((-984 . -227) 128469) ((-74 . -1195) T) ((-48 . -170) T) ((-687 . -382) T) ((-687 . -141) T) ((-1264 . -102) T) ((-1175 . -604) 128451) ((-1069 . -1040) 128294) ((-259 . -894) 128273) ((-243 . -894) 128252) ((-769 . -1040) 128075) ((-767 . -1040) 127918) ((-596 . -1195) T) ((-1146 . -601) 127900) ((-1069 . -111) 127729) ((-1031 . -102) T) ((-469 . -1195) T) ((-455 . -1040) 127700) ((-448 . -1040) 127543) ((-650 . -634) 127527) ((-856 . -302) T) ((-769 . -111) 127336) ((-767 . -111) 127165) ((-350 . -634) 127117) ((-347 . -634) 127069) ((-339 . -634) 127021) ((-259 . -634) 126946) ((-243 . -634) 126871) ((-1140 . -836) T) ((-1070 . -1023) 126855) ((-455 . -111) 126816) ((-448 . -111) 126645) ((-1058 . -1023) 126622) ((-985 . -34) T) ((-951 . -601) 126604) ((-943 . -1195) T) ((-126 . -995) 126588) ((-948 . -1094) T) ((-856 . -1007) NIL) ((-722 . -1094) T) ((-702 . -1094) T) ((-644 . -604) 126506) ((-1241 . -483) 126490) ((-1124 . -38) 126450) ((-948 . -23) T) ((-829 . -102) T) ((-804 . -21) T) ((-804 . -25) T) ((-722 . -23) T) ((-702 . -23) T) ((-110 . -647) T) ((-895 . -634) 126415) ((-571 . -1040) 126380) ((-512 . -1040) 126325) ((-223 . -57) 126283) ((-447 . -23) T) ((-402 . -102) T) ((-258 . -102) T) ((-680 . -285) T) ((-851 . -38) 126253) ((-571 . -111) 126209) ((-512 . -111) 126138) ((-1069 . -604) 125874) ((-413 . -1094) T) ((-311 . -1041) 125764) ((-308 . -1041) T) ((-128 . -1195) T) ((-769 . -604) 125512) ((-767 . -604) 125278) ((-644 . -1034) T) ((-1269 . -1082) T) ((-448 . -604) 125063) ((-167 . -302) 124994) ((-413 . -23) T) ((-40 . -601) 124976) ((-40 . -602) 124960) ((-108 . -977) 124942) ((-116 . -854) 124926) ((-635 . -604) 124910) ((-48 . -508) 124876) ((-1181 . -995) 124860) ((-1163 . -601) 124842) ((-1168 . -34) T) ((-939 . -601) 124808) ((-906 . -601) 124790) ((-1095 . -836) 124741) ((-758 . -601) 124723) ((-658 . -601) 124705) ((-1138 . -304) 124643) ((-473 . -34) T) ((-1074 . -1195) T) ((-471 . -446) T) ((-1123 . -34) T) ((-1069 . -1034) T) ((-50 . -604) 124612) ((-769 . -1034) T) ((-767 . -1034) T) ((-633 . -231) 124596) ((-620 . -231) 124542) ((-571 . -604) 124492) ((-512 . -604) 124422) ((-1214 . -302) 124401) ((-1069 . -321) 124362) ((-448 . -1034) T) ((-1160 . -21) T) ((-1069 . -229) 124341) ((-769 . -321) 124318) ((-769 . -229) T) ((-767 . -321) 124290) ((-718 . -1199) 124269) ((-322 . -637) 124253) ((-1160 . -25) T) ((-59 . -34) T) ((-513 . -34) T) ((-510 . -34) T) ((-448 . -321) 124232) ((-322 . -368) 124216) ((-491 . -34) T) ((-490 . -34) T) ((-988 . -1133) NIL) ((-718 . -546) 124147) ((-623 . -102) T) ((-595 . -102) T) ((-350 . -713) T) ((-347 . -713) T) ((-339 . -713) T) ((-259 . -713) T) ((-243 . -713) T) ((-1031 . -304) 124055) ((-886 . -1082) 124033) ((-50 . -1034) T) ((-1253 . -21) T) ((-1253 . -25) T) ((-1156 . -546) 124012) ((-1155 . -1199) 123991) ((-571 . -1034) T) ((-512 . -1034) T) ((-1149 . -1199) 123970) ((-356 . -1023) 123954) ((-317 . -1023) 123938) ((-1009 . -285) T) ((-374 . -871) 123920) ((-1155 . -546) 123871) ((-1149 . -546) 123822) ((-988 . -38) 123767) ((-786 . -1094) T) ((-895 . -713) T) ((-571 . -239) T) ((-571 . -229) T) ((-512 . -229) T) ((-512 . -239) T) ((-1108 . -546) 123746) ((-349 . -285) T) ((-633 . -681) 123730) ((-374 . -1023) 123690) ((-1102 . -1041) T) ((-103 . -125) 123674) ((-786 . -23) T) ((-1241 . -281) 123651) ((-402 . -304) 123616) ((-1263 . -1258) 123592) ((-1261 . -1258) 123571) ((-1227 . -1082) T) ((-855 . -601) 123553) ((-823 . -1023) 123522) ((-199 . -774) T) ((-198 . -774) T) ((-197 . -774) T) ((-196 . -774) T) ((-195 . -774) T) ((-194 . -774) T) ((-193 . -774) T) ((-192 . -774) T) ((-191 . -774) T) ((-190 . -774) T) ((-489 . -987) T) ((-269 . -825) T) ((-268 . -825) T) ((-267 . -825) T) ((-266 . -825) T) ((-48 . -285) T) ((-265 . -825) T) ((-264 . -825) T) ((-263 . -825) T) ((-189 . -774) T) ((-600 . -836) T) ((-640 . -406) 123506) ((-219 . -604) 123468) ((-110 . -836) T) ((-639 . -21) T) ((-639 . -25) T) ((-1264 . -38) 123438) ((-117 . -281) 123389) ((-1241 . -19) 123373) ((-1241 . -592) 123350) ((-1254 . -1082) T) ((-1059 . -1082) T) ((-972 . -1082) T) ((-948 . -130) T) ((-724 . -1082) T) ((-722 . -130) T) ((-702 . -130) T) ((-505 . -780) T) ((-402 . -1133) 123328) ((-447 . -130) T) ((-505 . -781) T) ((-219 . -1034) T) ((-289 . -102) 123110) ((-139 . -1082) T) ((-685 . -987) T) ((-91 . -1195) T) ((-127 . -601) 123042) ((-121 . -601) 122974) ((-1269 . -170) T) ((-1155 . -358) 122953) ((-1149 . -358) 122932) ((-311 . -1082) T) ((-413 . -130) T) ((-308 . -1082) T) ((-402 . -38) 122884) ((-1115 . -102) T) ((-1227 . -704) 122776) ((-640 . -1041) T) ((-1117 . -1236) T) ((-314 . -143) 122755) ((-314 . -145) 122734) ((-135 . -1082) T) ((-114 . -1082) T) ((-844 . -102) T) ((-570 . -601) 122716) ((-554 . -602) 122615) ((-554 . -601) 122597) ((-489 . -601) 122579) ((-489 . -602) 122524) ((-479 . -23) T) ((-476 . -836) 122475) ((-481 . -627) 122457) ((-950 . -601) 122439) ((-213 . -627) 122421) ((-221 . -399) T) ((-648 . -634) 122405) ((-55 . -601) 122387) ((-1154 . -905) 122366) ((-718 . -1094) T) ((-346 . -102) T) ((-1194 . -1065) T) ((-805 . -836) T) ((-718 . -23) T) ((-338 . -1040) 122311) ((-1140 . -1139) T) ((-1129 . -107) 122295) ((-1156 . -1094) T) ((-1155 . -1094) T) ((-509 . -1023) 122279) ((-1149 . -1094) T) ((-1108 . -1094) T) ((-338 . -111) 122208) ((-989 . -1199) T) ((-126 . -1195) T) ((-899 . -1199) T) ((-680 . -281) NIL) ((-1242 . -601) 122190) ((-1156 . -23) T) ((-1155 . -23) T) ((-1149 . -23) T) ((-989 . -546) T) ((-1124 . -227) 122174) ((-899 . -546) T) ((-1108 . -23) T) ((-244 . -601) 122156) ((-1057 . -1082) T) ((-786 . -130) T) ((-697 . -601) 122138) ((-311 . -704) 122048) ((-308 . -704) 121977) ((-685 . -601) 121959) ((-685 . -602) 121904) ((-402 . -395) 121888) ((-433 . -1082) T) ((-481 . -25) T) ((-481 . -21) T) ((-1102 . -1082) T) ((-213 . -25) T) ((-213 . -21) T) ((-699 . -406) 121872) ((-701 . -1023) 121841) ((-1241 . -601) 121753) ((-1241 . -602) 121714) ((-1227 . -170) T) ((-241 . -34) T) ((-338 . -604) 121644) ((-389 . -604) 121626) ((-911 . -959) T) ((-1181 . -1195) T) ((-648 . -778) 121605) ((-648 . -781) 121584) ((-393 . -390) T) ((-517 . -102) 121562) ((-1020 . -1082) T) ((-218 . -980) 121546) ((-498 . -102) T) ((-611 . -601) 121528) ((-45 . -836) NIL) ((-611 . -602) 121505) ((-1020 . -598) 121480) ((-886 . -508) 121413) ((-338 . -1034) T) ((-117 . -602) NIL) ((-117 . -601) 121395) ((-857 . -1195) T) ((-656 . -412) 121379) ((-656 . -1105) 121324) ((-494 . -149) 121306) ((-338 . -229) T) ((-338 . -239) T) ((-40 . -1040) 121251) ((-857 . -869) 121235) ((-857 . -871) 121160) ((-699 . -1041) T) ((-680 . -987) NIL) ((-3 . |UnionCategory|) T) ((-1225 . -47) 121130) ((-1204 . -47) 121107) ((-1123 . -995) 121078) ((-221 . -905) T) ((-40 . -111) 121007) ((-857 . -1023) 120871) ((-1102 . -704) 120858) ((-1087 . -601) 120840) ((-1062 . -145) 120819) ((-1062 . -143) 120770) ((-989 . -358) T) ((-314 . -1183) 120736) ((-374 . -302) T) ((-314 . -1180) 120702) ((-311 . -170) 120681) ((-308 . -170) T) ((-988 . -227) 120658) ((-899 . -358) T) ((-571 . -1260) 120645) ((-512 . -1260) 120622) ((-354 . -145) 120601) ((-354 . -143) 120552) ((-348 . -145) 120531) ((-348 . -143) 120482) ((-596 . -1171) 120458) ((-340 . -145) 120437) ((-340 . -143) 120388) ((-314 . -35) 120354) ((-469 . -1171) 120333) ((0 . |EnumerationCategory|) T) ((-314 . -95) 120299) ((-374 . -1007) T) ((-108 . -145) T) ((-108 . -143) NIL) ((-45 . -231) 120249) ((-640 . -1082) T) ((-596 . -107) 120196) ((-479 . -130) T) ((-469 . -107) 120146) ((-236 . -1094) 120056) ((-857 . -372) 120040) ((-857 . -333) 120024) ((-236 . -23) 119894) ((-40 . -604) 119824) ((-1045 . -905) T) ((-1045 . -807) T) ((-571 . -363) T) ((-512 . -363) T) ((-346 . -1133) T) ((-322 . -34) T) ((-44 . -412) 119808) ((-1163 . -604) 119743) ((-858 . -1195) T) ((-385 . -731) 119727) ((-1254 . -508) 119660) ((-718 . -130) T) ((-658 . -604) 119644) ((-1233 . -546) 119623) ((-1226 . -1199) 119602) ((-1226 . -546) 119553) ((-1205 . -1199) 119532) ((-306 . -1065) T) ((-1205 . -546) 119483) ((-724 . -508) 119416) ((-1204 . -1195) 119395) ((-1204 . -871) 119268) ((-878 . -1082) T) ((-142 . -830) T) ((-1204 . -869) 119238) ((-677 . -601) 119220) ((-1156 . -130) T) ((-517 . -304) 119158) ((-1155 . -130) T) ((-139 . -508) NIL) ((-1149 . -130) T) ((-1108 . -130) T) ((-1009 . -987) T) ((-989 . -23) T) ((-346 . -38) 119123) ((-989 . -1094) T) ((-899 . -1094) T) ((-82 . -601) 119105) ((-40 . -1034) T) ((-855 . -1040) 119092) ((-988 . -344) NIL) ((-857 . -885) 119051) ((-687 . -102) T) ((-956 . -23) T) ((-590 . -1195) T) ((-899 . -23) T) ((-855 . -111) 119036) ((-422 . -1094) T) ((-209 . -1082) T) ((-468 . -47) 119006) ((-133 . -102) T) ((-40 . -229) 118978) ((-40 . -239) T) ((-116 . -102) T) ((-585 . -546) 118957) ((-584 . -546) 118936) ((-680 . -601) 118918) ((-680 . -602) 118826) ((-311 . -508) 118792) ((-308 . -508) 118684) ((-1225 . -1023) 118668) ((-1204 . -1023) 118454) ((-984 . -406) 118438) ((-422 . -23) T) ((-1102 . -170) T) ((-1227 . -285) T) ((-640 . -704) 118408) ((-142 . -1082) T) ((-48 . -987) T) ((-402 . -227) 118392) ((-290 . -231) 118342) ((-856 . -905) T) ((-856 . -807) NIL) ((-855 . -604) 118314) ((-850 . -836) T) ((-1204 . -333) 118284) ((-1204 . -372) 118254) ((-218 . -1103) 118238) ((-1241 . -283) 118215) ((-1189 . -634) 118140) ((-948 . -21) T) ((-948 . -25) T) ((-722 . -21) T) ((-722 . -25) T) ((-702 . -21) T) ((-702 . -25) T) ((-698 . -634) 118105) ((-447 . -21) T) ((-447 . -25) T) ((-334 . -102) T) ((-172 . -102) T) ((-984 . -1041) T) ((-855 . -1034) T) ((-761 . -102) T) ((-1226 . -358) 118084) ((-1225 . -885) 117990) ((-1205 . -358) 117969) ((-1204 . -885) 117820) ((-1009 . -601) 117802) ((-402 . -815) 117755) ((-1156 . -487) 117721) ((-167 . -905) 117652) ((-1155 . -487) 117618) ((-1149 . -487) 117584) ((-699 . -1082) T) ((-1108 . -487) 117550) ((-570 . -1040) 117537) ((-554 . -1040) 117524) ((-489 . -1040) 117489) ((-311 . -285) 117468) ((-308 . -285) T) ((-349 . -601) 117450) ((-413 . -25) T) ((-413 . -21) T) ((-99 . -281) 117429) ((-570 . -111) 117414) ((-554 . -111) 117399) ((-489 . -111) 117355) ((-1158 . -871) 117322) ((-886 . -483) 117306) ((-48 . -601) 117288) ((-48 . -602) 117233) ((-236 . -130) 117103) ((-1214 . -905) 117082) ((-803 . -1199) 117061) ((-383 . -484) 117042) ((-1020 . -508) 116886) ((-383 . -601) 116852) ((-803 . -546) 116783) ((-575 . -634) 116758) ((-259 . -47) 116730) ((-243 . -47) 116687) ((-525 . -503) 116664) ((-570 . -604) 116636) ((-554 . -604) 116608) ((-489 . -604) 116541) ((-985 . -1195) T) ((-685 . -1040) 116506) ((-1233 . -23) T) ((-1233 . -1094) T) ((-1226 . -1094) T) ((-1205 . -1094) T) ((-988 . -365) 116478) ((-112 . -363) T) ((-468 . -885) 116384) ((-1226 . -23) T) ((-889 . -601) 116366) ((-55 . -604) 116348) ((-91 . -107) 116332) ((-1189 . -713) T) ((-890 . -836) 116283) ((-687 . -1133) T) ((-685 . -111) 116239) ((-1205 . -23) T) ((-585 . -1094) T) ((-584 . -1094) T) ((-699 . -704) 116068) ((-698 . -713) T) ((-1102 . -285) T) ((-989 . -130) T) ((-481 . -836) T) ((-956 . -130) T) ((-899 . -130) T) ((-786 . -25) T) ((-213 . -836) T) ((-786 . -21) T) ((-570 . -1034) T) ((-554 . -1034) T) ((-489 . -1034) T) ((-585 . -23) T) ((-338 . -1260) 116045) ((-314 . -446) 116024) ((-334 . -304) 116011) ((-584 . -23) T) ((-422 . -130) T) ((-644 . -634) 115985) ((-241 . -995) 115969) ((-857 . -302) T) ((-1265 . -1255) 115953) ((-758 . -779) T) ((-758 . -782) T) ((-687 . -38) 115940) ((-554 . -229) T) ((-489 . -239) T) ((-489 . -229) T) ((-1132 . -231) 115890) ((-1069 . -894) 115869) ((-116 . -38) 115856) ((-205 . -787) T) ((-204 . -787) T) ((-203 . -787) T) ((-202 . -787) T) ((-857 . -1007) 115834) ((-1254 . -483) 115818) ((-769 . -894) 115797) ((-767 . -894) 115776) ((-1168 . -1195) T) ((-448 . -894) 115755) ((-724 . -483) 115739) ((-1069 . -634) 115664) ((-685 . -604) 115599) ((-769 . -634) 115524) ((-611 . -1040) 115511) ((-473 . -1195) T) ((-338 . -363) T) ((-139 . -483) 115493) ((-767 . -634) 115418) ((-1123 . -1195) T) ((-455 . -634) 115389) ((-259 . -871) 115248) ((-243 . -871) NIL) ((-117 . -1040) 115193) ((-448 . -634) 115118) ((-650 . -1023) 115095) ((-611 . -111) 115080) ((-350 . -1023) 115064) ((-347 . -1023) 115048) ((-339 . -1023) 115032) ((-259 . -1023) 114876) ((-243 . -1023) 114752) ((-117 . -111) 114681) ((-59 . -1195) T) ((-513 . -1195) T) ((-510 . -1195) T) ((-491 . -1195) T) ((-490 . -1195) T) ((-432 . -601) 114663) ((-429 . -601) 114645) ((-3 . -102) T) ((-1012 . -1188) 114614) ((-820 . -102) T) ((-675 . -57) 114572) ((-685 . -1034) T) ((-50 . -634) 114546) ((-284 . -446) T) ((-470 . -1188) 114515) ((0 . -102) T) ((-571 . -634) 114480) ((-512 . -634) 114425) ((-49 . -102) T) ((-895 . -1023) 114412) ((-685 . -239) T) ((-1062 . -404) 114391) ((-718 . -627) 114339) ((-984 . -1082) T) ((-699 . -170) 114230) ((-611 . -604) 114125) ((-481 . -977) 114107) ((-259 . -372) 114091) ((-243 . -372) 114075) ((-394 . -1082) T) ((-1011 . -102) 114053) ((-334 . -38) 114037) ((-213 . -977) 114019) ((-117 . -604) 113949) ((-172 . -38) 113881) ((-1225 . -302) 113860) ((-1204 . -302) 113839) ((-644 . -713) T) ((-99 . -601) 113821) ((-1149 . -627) 113773) ((-479 . -25) T) ((-479 . -21) T) ((-1204 . -1007) 113725) ((-611 . -1034) T) ((-374 . -399) T) ((-385 . -102) T) ((-1087 . -606) 113640) ((-259 . -885) 113586) ((-243 . -885) 113563) ((-117 . -1034) T) ((-803 . -1094) T) ((-1069 . -713) T) ((-611 . -229) 113542) ((-609 . -102) T) ((-769 . -713) T) ((-767 . -713) T) ((-408 . -1094) T) ((-117 . -239) T) ((-40 . -363) NIL) ((-117 . -229) NIL) ((-448 . -713) T) ((-803 . -23) T) ((-718 . -25) T) ((-718 . -21) T) ((-689 . -836) T) ((-1059 . -281) 113521) ((-78 . -391) T) ((-78 . -390) T) ((-527 . -754) 113503) ((-680 . -1040) 113453) ((-1233 . -130) T) ((-1226 . -130) T) ((-1205 . -130) T) ((-1124 . -406) 113437) ((-623 . -362) 113369) ((-595 . -362) 113301) ((-1138 . -1131) 113285) ((-103 . -1082) 113263) ((-1156 . -25) T) ((-1156 . -21) T) ((-1155 . -21) T) ((-984 . -704) 113211) ((-219 . -634) 113178) ((-680 . -111) 113112) ((-50 . -713) T) ((-1155 . -25) T) ((-346 . -344) T) ((-1149 . -21) T) ((-1062 . -446) 113063) ((-1149 . -25) T) ((-699 . -508) 113010) ((-571 . -713) T) ((-512 . -713) T) ((-1108 . -21) T) ((-1108 . -25) T) ((-585 . -130) T) ((-584 . -130) T) ((-354 . -446) T) ((-348 . -446) T) ((-340 . -446) T) ((-468 . -302) 112989) ((-308 . -281) 112924) ((-108 . -446) T) ((-79 . -435) T) ((-79 . -390) T) ((-471 . -102) T) ((-1269 . -601) 112906) ((-1269 . -602) 112888) ((-1062 . -397) 112867) ((-1020 . -483) 112798) ((-554 . -782) T) ((-554 . -779) T) ((-1046 . -231) 112744) ((-354 . -397) 112695) ((-348 . -397) 112646) ((-340 . -397) 112597) ((-1256 . -1094) T) ((-680 . -604) 112532) ((-1256 . -23) T) ((-1243 . -102) T) ((-173 . -601) 112514) ((-1124 . -1041) T) ((-656 . -731) 112498) ((-1160 . -143) 112477) ((-1160 . -145) 112456) ((-1128 . -1082) T) ((-1128 . -1054) 112425) ((-69 . -1195) T) ((-1009 . -1040) 112362) ((-851 . -1041) T) ((-236 . -627) 112268) ((-680 . -1034) T) ((-349 . -1040) 112213) ((-61 . -1195) T) ((-1009 . -111) 112129) ((-886 . -601) 112040) ((-680 . -239) T) ((-680 . -229) NIL) ((-829 . -834) 112019) ((-685 . -782) T) ((-685 . -779) T) ((-988 . -406) 111996) ((-349 . -111) 111925) ((-374 . -905) T) ((-402 . -834) 111904) ((-699 . -285) 111815) ((-219 . -713) T) ((-1233 . -487) 111781) ((-1226 . -487) 111747) ((-1205 . -487) 111713) ((-568 . -1082) T) ((-311 . -987) 111692) ((-218 . -1082) 111670) ((-314 . -958) 111632) ((-105 . -102) T) ((-48 . -1040) 111597) ((-1265 . -102) T) ((-376 . -102) T) ((-48 . -111) 111553) ((-989 . -627) 111535) ((-1227 . -601) 111517) ((-525 . -102) T) ((-494 . -102) T) ((-1115 . -1116) 111501) ((-150 . -1248) 111485) ((-241 . -1195) T) ((-1194 . -102) T) ((-1009 . -604) 111422) ((-1154 . -1199) 111401) ((-349 . -604) 111331) ((-1107 . -1199) 111310) ((-236 . -21) 111220) ((-236 . -25) 111071) ((-127 . -119) 111055) ((-121 . -119) 111039) ((-44 . -731) 111023) ((-1154 . -546) 110934) ((-1107 . -546) 110865) ((-1020 . -281) 110840) ((-1148 . -1065) T) ((-979 . -1065) T) ((-803 . -130) T) ((-117 . -782) NIL) ((-117 . -779) NIL) ((-350 . -302) T) ((-347 . -302) T) ((-339 . -302) T) ((-246 . -1094) 110750) ((-245 . -1094) 110660) ((-1009 . -1034) T) ((-988 . -1041) T) ((-48 . -604) 110593) ((-338 . -634) 110538) ((-609 . -38) 110522) ((-1254 . -601) 110484) ((-1254 . -602) 110445) ((-1059 . -601) 110427) ((-1009 . -239) T) ((-349 . -1034) T) ((-802 . -1248) 110397) ((-246 . -23) T) ((-245 . -23) T) ((-972 . -601) 110379) ((-724 . -602) 110340) ((-724 . -601) 110322) ((-786 . -836) 110301) ((-1141 . -149) 110248) ((-984 . -508) 110160) ((-349 . -229) T) ((-349 . -239) T) ((-383 . -604) 110141) ((-989 . -25) T) ((-139 . -601) 110123) ((-139 . -602) 110082) ((-895 . -302) T) ((-989 . -21) T) ((-956 . -25) T) ((-899 . -21) T) ((-899 . -25) T) ((-422 . -21) T) ((-422 . -25) T) ((-829 . -406) 110066) ((-48 . -1034) T) ((-1263 . -1255) 110050) ((-1261 . -1255) 110034) ((-1020 . -592) 110009) ((-311 . -602) 109870) ((-311 . -601) 109852) ((-308 . -602) NIL) ((-308 . -601) 109834) ((-48 . -239) T) ((-48 . -229) T) ((-640 . -281) 109795) ((-540 . -231) 109745) ((-135 . -601) 109727) ((-114 . -601) 109709) ((-471 . -38) 109674) ((-1265 . -1262) 109653) ((-1256 . -130) T) ((-1264 . -1041) T) ((-1064 . -102) T) ((-88 . -1195) T) ((-494 . -304) NIL) ((-985 . -107) 109637) ((-874 . -1082) T) ((-870 . -1082) T) ((-1241 . -637) 109621) ((-1241 . -368) 109605) ((-322 . -1195) T) ((-582 . -836) T) ((-1124 . -1082) T) ((-1124 . -1037) 109545) ((-103 . -508) 109478) ((-912 . -601) 109460) ((-338 . -713) T) ((-30 . -601) 109442) ((-851 . -1082) T) ((-829 . -1041) 109421) ((-40 . -634) 109366) ((-221 . -1199) T) ((-402 . -1041) T) ((-1140 . -149) 109348) ((-984 . -285) 109299) ((-605 . -1082) T) ((-221 . -546) T) ((-314 . -1222) 109283) ((-314 . -1219) 109253) ((-1168 . -1171) 109232) ((-1057 . -601) 109214) ((-633 . -149) 109198) ((-620 . -149) 109144) ((-1168 . -107) 109094) ((-473 . -1171) 109073) ((-481 . -145) T) ((-481 . -143) NIL) ((-1102 . -602) 108988) ((-433 . -601) 108970) ((-213 . -145) T) ((-213 . -143) NIL) ((-1102 . -601) 108952) ((-129 . -102) T) ((-52 . -102) T) ((-1205 . -627) 108904) ((-473 . -107) 108854) ((-978 . -23) T) ((-1265 . -38) 108824) ((-1154 . -1094) T) ((-1107 . -1094) T) ((-1045 . -1199) T) ((-306 . -102) T) ((-840 . -1094) T) ((-937 . -1199) 108803) ((-475 . -1199) 108782) ((-718 . -836) 108761) ((-1045 . -546) T) ((-937 . -546) 108692) ((-1154 . -23) T) ((-1107 . -23) T) ((-840 . -23) T) ((-475 . -546) 108623) ((-1124 . -704) 108555) ((-1128 . -508) 108488) ((-1020 . -602) NIL) ((-1020 . -601) 108470) ((-96 . -1065) T) ((-851 . -704) 108440) ((-1189 . -47) 108409) ((-245 . -130) T) ((-246 . -130) T) ((-1086 . -1082) T) ((-988 . -1082) T) ((-62 . -601) 108391) ((-1149 . -836) NIL) ((-1009 . -779) T) ((-1009 . -782) T) ((-1269 . -1040) 108378) ((-1269 . -111) 108363) ((-855 . -634) 108350) ((-1233 . -25) T) ((-1233 . -21) T) ((-1226 . -21) T) ((-1226 . -25) T) ((-1205 . -21) T) ((-1205 . -25) T) ((-1012 . -149) 108334) ((-857 . -807) 108313) ((-857 . -905) T) ((-699 . -281) 108240) ((-585 . -21) T) ((-585 . -25) T) ((-584 . -21) T) ((-40 . -713) T) ((-218 . -508) 108173) ((-584 . -25) T) ((-470 . -149) 108157) ((-457 . -149) 108141) ((-906 . -781) T) ((-906 . -713) T) ((-758 . -780) T) ((-758 . -781) T) ((-500 . -1082) T) ((-496 . -1082) T) ((-758 . -713) T) ((-221 . -358) T) ((-1138 . -1082) 108119) ((-856 . -1199) T) ((-640 . -601) 108101) ((-856 . -546) T) ((-680 . -363) NIL) ((-1269 . -604) 108083) ((-354 . -1248) 108067) ((-656 . -102) T) ((-348 . -1248) 108051) ((-340 . -1248) 108035) ((-1264 . -1082) T) ((-514 . -836) 108014) ((-804 . -446) 107993) ((-1031 . -1082) T) ((-1031 . -1054) 107922) ((-1012 . -961) 107891) ((-806 . -1094) T) ((-988 . -704) 107836) ((-381 . -1094) T) ((-470 . -961) 107805) ((-457 . -961) 107774) ((-110 . -149) 107756) ((-73 . -601) 107738) ((-878 . -601) 107720) ((-1062 . -711) 107699) ((-1269 . -1034) T) ((-803 . -627) 107647) ((-289 . -1041) 107589) ((-167 . -1199) 107494) ((-221 . -1094) T) ((-319 . -23) T) ((-1149 . -977) 107446) ((-829 . -1082) T) ((-1227 . -1040) 107351) ((-1108 . -727) 107330) ((-1225 . -905) 107309) ((-1204 . -905) 107288) ((-855 . -713) T) ((-167 . -546) 107199) ((-570 . -634) 107186) ((-554 . -634) 107173) ((-402 . -1082) T) ((-258 . -1082) T) ((-209 . -601) 107155) ((-489 . -634) 107120) ((-221 . -23) T) ((-1204 . -807) 107073) ((-1263 . -102) T) ((-349 . -1260) 107050) ((-1261 . -102) T) ((-1227 . -111) 106942) ((-142 . -601) 106924) ((-978 . -130) T) ((-44 . -102) T) ((-236 . -836) 106875) ((-1214 . -1199) 106854) ((-103 . -483) 106838) ((-1264 . -704) 106808) ((-1069 . -47) 106769) ((-1045 . -1094) T) ((-937 . -1094) T) ((-127 . -34) T) ((-121 . -34) T) ((-769 . -47) 106746) ((-767 . -47) 106718) ((-1214 . -546) 106629) ((-349 . -363) T) ((-475 . -1094) T) ((-1154 . -130) T) ((-1107 . -130) T) ((-448 . -47) 106608) ((-856 . -358) T) ((-840 . -130) T) ((-150 . -102) T) ((-1045 . -23) T) ((-937 . -23) T) ((-561 . -546) T) ((-803 . -25) T) ((-803 . -21) T) ((-1124 . -508) 106541) ((-581 . -1065) T) ((-575 . -1023) 106525) ((-1227 . -604) 106399) ((-475 . -23) T) ((-346 . -1041) T) ((-1189 . -885) 106380) ((-656 . -304) 106318) ((-1095 . -1248) 106288) ((-685 . -634) 106253) ((-988 . -170) T) ((-948 . -143) 106232) ((-623 . -1082) T) ((-595 . -1082) T) ((-948 . -145) 106211) ((-989 . -836) T) ((-722 . -145) 106190) ((-722 . -143) 106169) ((-956 . -836) T) ((-468 . -905) 106148) ((-311 . -1040) 106058) ((-308 . -1040) 105987) ((-984 . -281) 105945) ((-402 . -704) 105897) ((-687 . -834) T) ((-1227 . -1034) T) ((-311 . -111) 105793) ((-308 . -111) 105706) ((-949 . -102) T) ((-802 . -102) 105496) ((-699 . -602) NIL) ((-699 . -601) 105478) ((-644 . -1023) 105374) ((-1227 . -321) 105318) ((-1020 . -283) 105293) ((-570 . -713) T) ((-554 . -781) T) ((-167 . -358) 105244) ((-554 . -778) T) ((-554 . -713) T) ((-489 . -713) T) ((-1128 . -483) 105228) ((-1069 . -871) NIL) ((-856 . -1094) T) ((-117 . -894) NIL) ((-1263 . -1262) 105204) ((-1261 . -1262) 105183) ((-769 . -871) NIL) ((-767 . -871) 105042) ((-1256 . -25) T) ((-1256 . -21) T) ((-1192 . -102) 105020) ((-1088 . -390) T) ((-611 . -634) 105007) ((-448 . -871) NIL) ((-661 . -102) 104985) ((-1069 . -1023) 104812) ((-856 . -23) T) ((-769 . -1023) 104671) ((-767 . -1023) 104528) ((-117 . -634) 104473) ((-448 . -1023) 104349) ((-311 . -604) 103913) ((-308 . -604) 103796) ((-635 . -1023) 103780) ((-615 . -102) T) ((-218 . -483) 103764) ((-1241 . -34) T) ((-135 . -604) 103748) ((-623 . -704) 103732) ((-595 . -704) 103716) ((-656 . -38) 103676) ((-314 . -102) T) ((-85 . -601) 103658) ((-50 . -1023) 103642) ((-1102 . -1040) 103629) ((-1069 . -372) 103613) ((-769 . -372) 103597) ((-60 . -57) 103559) ((-685 . -781) T) ((-685 . -778) T) ((-571 . -1023) 103546) ((-512 . -1023) 103523) ((-685 . -713) T) ((-319 . -130) T) ((-311 . -1034) 103413) ((-308 . -1034) T) ((-167 . -1094) T) ((-767 . -372) 103397) ((-45 . -149) 103347) ((-989 . -977) 103329) ((-448 . -372) 103313) ((-402 . -170) T) ((-311 . -239) 103292) ((-308 . -239) T) ((-308 . -229) NIL) ((-289 . -1082) 103074) ((-221 . -130) T) ((-1102 . -111) 103059) ((-167 . -23) T) ((-786 . -145) 103038) ((-786 . -143) 103017) ((-246 . -627) 102923) ((-245 . -627) 102829) ((-314 . -279) 102795) ((-1138 . -508) 102728) ((-1115 . -1082) T) ((-221 . -1043) T) ((-802 . -304) 102666) ((-1069 . -885) 102601) ((-769 . -885) 102544) ((-767 . -885) 102528) ((-1263 . -38) 102498) ((-1261 . -38) 102468) ((-1214 . -1094) T) ((-841 . -1094) T) ((-448 . -885) 102445) ((-844 . -1082) T) ((-1214 . -23) T) ((-1102 . -604) 102417) ((-561 . -1094) T) ((-841 . -23) T) ((-611 . -713) T) ((-350 . -905) T) ((-347 . -905) T) ((-284 . -102) T) ((-339 . -905) T) ((-1045 . -130) T) ((-955 . -1065) T) ((-937 . -130) T) ((-117 . -781) NIL) ((-117 . -778) NIL) ((-117 . -713) T) ((-680 . -894) NIL) ((-1031 . -508) 102318) ((-475 . -130) T) ((-561 . -23) T) ((-661 . -304) 102256) ((-623 . -748) T) ((-595 . -748) T) ((-1205 . -836) NIL) ((-988 . -285) T) ((-246 . -21) T) ((-680 . -634) 102206) ((-346 . -1082) T) ((-246 . -25) T) ((-245 . -21) T) ((-245 . -25) T) ((-150 . -38) 102190) ((-2 . -102) T) ((-895 . -905) T) ((-476 . -1248) 102160) ((-219 . -1023) 102137) ((-1102 . -1034) T) ((-698 . -302) T) ((-289 . -704) 102079) ((-687 . -1041) T) ((-481 . -446) T) ((-402 . -508) 101991) ((-213 . -446) T) ((-1102 . -229) T) ((-290 . -149) 101941) ((-984 . -602) 101902) ((-984 . -601) 101884) ((-974 . -601) 101866) ((-116 . -1041) T) ((-640 . -1040) 101850) ((-221 . -487) T) ((-394 . -601) 101832) ((-394 . -602) 101809) ((-1038 . -1248) 101779) ((-640 . -111) 101758) ((-1124 . -483) 101742) ((-802 . -38) 101712) ((-63 . -435) T) ((-63 . -390) T) ((-1141 . -102) T) ((-856 . -130) T) ((-478 . -102) 101690) ((-1269 . -363) T) ((-1062 . -102) T) ((-1044 . -102) T) ((-346 . -704) 101635) ((-718 . -145) 101614) ((-718 . -143) 101593) ((-640 . -604) 101511) ((-1009 . -634) 101448) ((-517 . -1082) 101426) ((-354 . -102) T) ((-348 . -102) T) ((-340 . -102) T) ((-108 . -102) T) ((-498 . -1082) T) ((-349 . -634) 101371) ((-1154 . -627) 101319) ((-1107 . -627) 101267) ((-380 . -503) 101246) ((-820 . -834) 101225) ((-374 . -1199) T) ((-680 . -713) T) ((-334 . -1041) T) ((-1205 . -977) 101177) ((-172 . -1041) T) ((-103 . -601) 101109) ((-1156 . -143) 101088) ((-1156 . -145) 101067) ((-374 . -546) T) ((-1155 . -145) 101046) ((-1155 . -143) 101025) ((-1149 . -143) 100932) ((-402 . -285) T) ((-1149 . -145) 100839) ((-1108 . -145) 100818) ((-1108 . -143) 100797) ((-314 . -38) 100638) ((-167 . -130) T) ((-308 . -782) NIL) ((-308 . -779) NIL) ((-640 . -1034) T) ((-48 . -634) 100603) ((-878 . -604) 100580) ((-1148 . -102) T) ((-979 . -102) T) ((-978 . -21) T) ((-127 . -995) 100564) ((-121 . -995) 100548) ((-978 . -25) T) ((-886 . -119) 100532) ((-1140 . -102) T) ((-803 . -836) 100511) ((-1214 . -130) T) ((-1154 . -25) T) ((-1154 . -21) T) ((-841 . -130) T) ((-1107 . -25) T) ((-1107 . -21) T) ((-840 . -25) T) ((-840 . -21) T) ((-769 . -302) 100490) ((-633 . -102) 100468) ((-620 . -102) T) ((-1141 . -304) 100263) ((-561 . -130) T) ((-609 . -834) 100242) ((-1138 . -483) 100226) ((-1132 . -149) 100176) ((-1128 . -601) 100138) ((-1128 . -602) 100099) ((-1009 . -778) T) ((-1009 . -781) T) ((-1009 . -713) T) ((-699 . -1040) 99922) ((-478 . -304) 99860) ((-447 . -412) 99830) ((-346 . -170) T) ((-284 . -38) 99817) ((-269 . -102) T) ((-268 . -102) T) ((-267 . -102) T) ((-266 . -102) T) ((-265 . -102) T) ((-264 . -102) T) ((-338 . -1023) 99794) ((-263 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-191 . -102) T) ((-190 . -102) T) ((-189 . -102) T) ((-349 . -713) T) ((-699 . -111) 99603) ((-656 . -227) 99587) ((-571 . -302) T) ((-512 . -302) T) ((-289 . -508) 99536) ((-108 . -304) NIL) ((-72 . -390) T) ((-1095 . -102) 99326) ((-820 . -406) 99310) ((-1102 . -782) T) ((-1102 . -779) T) ((-687 . -1082) T) ((-568 . -601) 99292) ((-374 . -358) T) ((-167 . -487) 99270) ((-218 . -601) 99202) ((-133 . -1082) T) ((-116 . -1082) T) ((-48 . -713) T) ((-1031 . -483) 99167) ((-500 . -93) T) ((-139 . -420) 99149) ((-139 . -363) T) ((-1012 . -102) T) ((-506 . -503) 99128) ((-699 . -604) 98884) ((-470 . -102) T) ((-457 . -102) T) ((-1019 . -1094) T) ((-1163 . -1023) 98819) ((-1156 . -35) 98785) ((-1156 . -95) 98751) ((-1156 . -1183) 98717) ((-1156 . -1180) 98683) ((-1140 . -304) NIL) ((-89 . -391) T) ((-89 . -390) T) ((-1062 . -1133) 98662) ((-1155 . -1180) 98628) ((-1155 . -1183) 98594) ((-1019 . -23) T) ((-1155 . -95) 98560) ((-561 . -487) T) ((-1155 . -35) 98526) ((-1149 . -1180) 98492) ((-1149 . -1183) 98458) ((-1149 . -95) 98424) ((-356 . -1094) T) ((-354 . -1133) 98403) ((-348 . -1133) 98382) ((-340 . -1133) 98361) ((-1149 . -35) 98327) ((-1108 . -35) 98293) ((-1108 . -95) 98259) ((-108 . -1133) T) ((-1108 . -1183) 98225) ((-820 . -1041) 98204) ((-633 . -304) 98142) ((-620 . -304) 97993) ((-1108 . -1180) 97959) ((-699 . -1034) T) ((-1045 . -627) 97941) ((-1062 . -38) 97809) ((-937 . -627) 97757) ((-989 . -145) T) ((-989 . -143) NIL) ((-374 . -1094) T) ((-319 . -25) T) ((-317 . -23) T) ((-928 . -836) 97736) ((-699 . -321) 97713) ((-475 . -627) 97661) ((-40 . -1023) 97549) ((-699 . -229) T) ((-687 . -704) 97536) ((-334 . -1082) T) ((-172 . -1082) T) ((-326 . -836) T) ((-413 . -446) 97486) ((-374 . -23) T) ((-354 . -38) 97451) ((-348 . -38) 97416) ((-340 . -38) 97381) ((-80 . -435) T) ((-80 . -390) T) ((-221 . -25) T) ((-221 . -21) T) ((-823 . -1094) T) ((-108 . -38) 97331) ((-814 . -1094) T) ((-761 . -1082) T) ((-116 . -704) 97318) ((-658 . -1023) 97302) ((-600 . -102) T) ((-823 . -23) T) ((-814 . -23) T) ((-1138 . -281) 97279) ((-1095 . -304) 97217) ((-1084 . -231) 97201) ((-64 . -391) T) ((-64 . -390) T) ((-110 . -102) T) ((-40 . -372) 97178) ((-96 . -102) T) ((-639 . -838) 97162) ((-1117 . -1065) T) ((-1045 . -21) T) ((-1045 . -25) T) ((-802 . -227) 97131) ((-937 . -25) T) ((-937 . -21) T) ((-609 . -1041) T) ((-475 . -25) T) ((-475 . -21) T) ((-1012 . -304) 97069) ((-874 . -601) 97051) ((-870 . -601) 97033) ((-246 . -836) 96984) ((-245 . -836) 96935) ((-517 . -508) 96868) ((-856 . -627) 96845) ((-470 . -304) 96783) ((-457 . -304) 96721) ((-346 . -285) T) ((-1138 . -1229) 96705) ((-1124 . -601) 96667) ((-1124 . -602) 96628) ((-1122 . -102) T) ((-984 . -1040) 96524) ((-40 . -885) 96476) ((-1138 . -592) 96453) ((-1269 . -634) 96440) ((-851 . -484) 96417) ((-1046 . -149) 96363) ((-857 . -1199) T) ((-984 . -111) 96245) ((-334 . -704) 96229) ((-851 . -601) 96191) ((-172 . -704) 96123) ((-402 . -281) 96081) ((-857 . -546) T) ((-108 . -395) 96063) ((-84 . -379) T) ((-84 . -390) T) ((-687 . -170) T) ((-605 . -601) 96045) ((-99 . -713) T) ((-476 . -102) 95835) ((-99 . -467) T) ((-116 . -170) T) ((-1095 . -38) 95805) ((-167 . -627) 95753) ((-1038 . -102) T) ((-984 . -604) 95643) ((-856 . -25) T) ((-802 . -234) 95622) ((-856 . -21) T) ((-805 . -102) T) ((-409 . -102) T) ((-380 . -102) T) ((-110 . -304) NIL) ((-223 . -102) 95600) ((-127 . -1195) T) ((-121 . -1195) T) ((-1019 . -130) T) ((-656 . -362) 95584) ((-984 . -1034) T) ((-1214 . -627) 95532) ((-1086 . -601) 95514) ((-988 . -601) 95496) ((-509 . -23) T) ((-504 . -23) T) ((-338 . -302) T) ((-502 . -23) T) ((-317 . -130) T) ((-3 . -1082) T) ((-988 . -602) 95480) ((-984 . -239) 95459) ((-984 . -229) 95438) ((-1269 . -713) T) ((-1233 . -143) 95417) ((-820 . -1082) T) ((-1233 . -145) 95396) ((-1226 . -145) 95375) ((-1226 . -143) 95354) ((-1225 . -1199) 95333) ((-1205 . -143) 95240) ((-1205 . -145) 95147) ((-1204 . -1199) 95126) ((-374 . -130) T) ((-554 . -871) 95108) ((0 . -1082) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1082) T) ((-1227 . -634) 95013) ((-1225 . -546) 94964) ((-701 . -1094) T) ((-1204 . -546) 94915) ((-554 . -1023) 94897) ((-584 . -145) 94876) ((-584 . -143) 94855) ((-489 . -1023) 94798) ((-1117 . -1119) T) ((-87 . -379) T) ((-87 . -390) T) ((-857 . -358) T) ((-823 . -130) T) ((-814 . -130) T) ((-500 . -484) 94779) ((-701 . -23) T) ((-500 . -601) 94729) ((-496 . -601) 94711) ((-1265 . -1041) T) ((-374 . -1043) T) ((-1011 . -1082) 94689) ((-55 . -1023) 94671) ((-886 . -34) T) ((-476 . -304) 94609) ((-581 . -102) T) ((-1138 . -602) 94570) ((-1138 . -601) 94502) ((-1154 . -836) 94481) ((-45 . -102) T) ((-1107 . -836) 94460) ((-804 . -102) T) ((-1214 . -25) T) ((-1214 . -21) T) ((-841 . -25) T) ((-44 . -362) 94444) ((-841 . -21) T) ((-718 . -446) 94395) ((-1264 . -601) 94377) ((-1038 . -304) 94315) ((-657 . -1065) T) ((-594 . -1065) T) ((-385 . -1082) T) ((-561 . -25) T) ((-561 . -21) T) ((-178 . -1065) T) ((-159 . -1065) T) ((-154 . -1065) T) ((-152 . -1065) T) ((-609 . -1082) T) ((-685 . -871) 94297) ((-1241 . -1195) T) ((-223 . -304) 94235) ((-142 . -363) T) ((-1031 . -602) 94177) ((-1031 . -601) 94120) ((-308 . -894) NIL) ((-685 . -1023) 94065) ((-698 . -905) T) ((-468 . -1199) 94044) ((-1155 . -446) 94023) ((-1149 . -446) 94002) ((-325 . -102) T) ((-857 . -1094) T) ((-311 . -634) 93823) ((-308 . -634) 93752) ((-468 . -546) 93703) ((-334 . -508) 93669) ((-540 . -149) 93619) ((-40 . -302) T) ((-829 . -601) 93601) ((-687 . -285) T) ((-857 . -23) T) ((-374 . -487) T) ((-1062 . -227) 93571) ((-506 . -102) T) ((-402 . -602) 93378) ((-402 . -601) 93360) ((-258 . -601) 93342) ((-116 . -285) T) ((-1227 . -713) T) ((-1225 . -358) 93321) ((-1204 . -358) 93300) ((-1254 . -34) T) ((-117 . -1195) T) ((-108 . -227) 93282) ((-1160 . -102) T) ((-471 . -1082) T) ((-517 . -483) 93266) ((-724 . -34) T) ((-476 . -38) 93236) ((-139 . -34) T) ((-117 . -869) 93213) ((-117 . -871) NIL) ((-611 . -1023) 93096) ((-631 . -836) 93075) ((-1253 . -102) T) ((-290 . -102) T) ((-699 . -363) 93054) ((-117 . -1023) 93031) ((-385 . -704) 93015) ((-609 . -704) 92999) ((-45 . -304) 92803) ((-803 . -143) 92782) ((-803 . -145) 92761) ((-1264 . -377) 92740) ((-806 . -836) T) ((-1243 . -1082) T) ((-1141 . -225) 92687) ((-381 . -836) 92666) ((-1233 . -1183) 92632) ((-1233 . -1180) 92598) ((-1226 . -1180) 92564) ((-509 . -130) T) ((-1226 . -1183) 92530) ((-1205 . -1180) 92496) ((-1205 . -1183) 92462) ((-1233 . -35) 92428) ((-1233 . -95) 92394) ((-623 . -601) 92363) ((-595 . -601) 92332) ((-221 . -836) T) ((-1226 . -95) 92298) ((-1226 . -35) 92264) ((-1225 . -1094) T) ((-1102 . -634) 92251) ((-1205 . -95) 92217) ((-1204 . -1094) T) ((-582 . -149) 92199) ((-1062 . -344) 92178) ((-172 . -285) T) ((-117 . -372) 92155) ((-117 . -333) 92132) ((-1205 . -35) 92098) ((-855 . -302) T) ((-308 . -781) NIL) ((-308 . -778) NIL) ((-311 . -713) 91947) ((-308 . -713) T) ((-468 . -358) 91926) ((-354 . -344) 91905) ((-348 . -344) 91884) ((-340 . -344) 91863) ((-311 . -467) 91842) ((-1225 . -23) T) ((-1204 . -23) T) ((-705 . -1094) T) ((-701 . -130) T) ((-639 . -102) T) ((-471 . -704) 91807) ((-45 . -277) 91757) ((-105 . -1082) T) ((-68 . -601) 91739) ((-955 . -102) T) ((-850 . -102) T) ((-611 . -885) 91698) ((-1265 . -1082) T) ((-376 . -1082) T) ((-1194 . -1082) T) ((-1095 . -227) 91667) ((-82 . -1195) T) ((-1045 . -836) T) ((-937 . -836) 91646) ((-117 . -885) NIL) ((-769 . -905) 91625) ((-700 . -836) T) ((-525 . -1082) T) ((-494 . -1082) T) ((-350 . -1199) T) ((-347 . -1199) T) ((-339 . -1199) T) ((-259 . -1199) 91604) ((-243 . -1199) 91583) ((-527 . -846) T) ((-475 . -836) 91562) ((-1124 . -1040) 91546) ((-385 . -748) T) ((-1140 . -815) T) ((-680 . -1195) T) ((-350 . -546) T) ((-347 . -546) T) ((-339 . -546) T) ((-259 . -546) 91477) ((-243 . -546) 91408) ((-519 . -1065) T) ((-1124 . -111) 91387) ((-447 . -731) 91357) ((-851 . -1040) 91327) ((-804 . -38) 91269) ((-680 . -869) 91251) ((-680 . -871) 91233) ((-290 . -304) 91037) ((-895 . -1199) T) ((-656 . -406) 91021) ((-851 . -111) 90986) ((-680 . -1023) 90931) ((-989 . -446) T) ((-895 . -546) T) ((-527 . -601) 90913) ((-571 . -905) T) ((-468 . -1094) T) ((-512 . -905) T) ((-1138 . -283) 90890) ((-899 . -446) T) ((-65 . -601) 90872) ((-620 . -225) 90818) ((-468 . -23) T) ((-1102 . -781) T) ((-857 . -130) T) ((-1102 . -778) T) ((-1256 . -1258) 90797) ((-1102 . -713) T) ((-640 . -634) 90771) ((-289 . -601) 90512) ((-1124 . -604) 90430) ((-1020 . -34) T) ((-802 . -834) 90409) ((-570 . -302) T) ((-554 . -302) T) ((-489 . -302) T) ((-1265 . -704) 90379) ((-680 . -372) 90361) ((-680 . -333) 90343) ((-471 . -170) T) ((-376 . -704) 90313) ((-851 . -604) 90248) ((-856 . -836) NIL) ((-554 . -1007) T) ((-489 . -1007) T) ((-1115 . -601) 90230) ((-1095 . -234) 90209) ((-210 . -102) T) ((-1132 . -102) T) ((-71 . -601) 90191) ((-1124 . -1034) T) ((-1160 . -38) 90088) ((-844 . -601) 90070) ((-554 . -539) T) ((-656 . -1041) T) ((-718 . -934) 90023) ((-1124 . -229) 90002) ((-1064 . -1082) T) ((-1019 . -25) T) ((-1019 . -21) T) ((-988 . -1040) 89947) ((-890 . -102) T) ((-851 . -1034) T) ((-680 . -885) NIL) ((-350 . -324) 89931) ((-350 . -358) T) ((-347 . -324) 89915) ((-347 . -358) T) ((-339 . -324) 89899) ((-339 . -358) T) ((-481 . -102) T) ((-1253 . -38) 89869) ((-517 . -673) 89819) ((-213 . -102) T) ((-1009 . -1023) 89699) ((-988 . -111) 89628) ((-1156 . -958) 89597) ((-1155 . -958) 89559) ((-514 . -149) 89543) ((-1062 . -365) 89522) ((-346 . -601) 89504) ((-317 . -21) T) ((-349 . -1023) 89481) ((-317 . -25) T) ((-1149 . -958) 89450) ((-1108 . -958) 89417) ((-76 . -601) 89399) ((-685 . -302) T) ((-167 . -836) 89378) ((-895 . -358) T) ((-374 . -25) T) ((-374 . -21) T) ((-895 . -324) 89365) ((-86 . -601) 89347) ((-685 . -1007) T) ((-663 . -836) T) ((-1225 . -130) T) ((-1204 . -130) T) ((-886 . -995) 89331) ((-823 . -21) T) ((-48 . -1023) 89274) ((-823 . -25) T) ((-814 . -25) T) ((-814 . -21) T) ((-1263 . -1041) T) ((-1261 . -1041) T) ((-640 . -713) T) ((-1086 . -606) 89177) ((-988 . -604) 89107) ((-1264 . -1040) 89091) ((-1214 . -836) 89070) ((-802 . -406) 89039) ((-103 . -119) 89023) ((-129 . -1082) T) ((-52 . -1082) T) ((-911 . -601) 89005) ((-856 . -977) 88982) ((-810 . -102) T) ((-1264 . -111) 88961) ((-639 . -38) 88931) ((-561 . -836) T) ((-350 . -1094) T) ((-347 . -1094) T) ((-339 . -1094) T) ((-259 . -1094) T) ((-243 . -1094) T) ((-1132 . -304) 88735) ((-611 . -302) 88714) ((-518 . -1065) T) ((-306 . -1082) T) ((-650 . -23) T) ((-500 . -604) 88695) ((-476 . -227) 88664) ((-150 . -1041) T) ((-350 . -23) T) ((-347 . -23) T) ((-339 . -23) T) ((-117 . -302) T) ((-259 . -23) T) ((-243 . -23) T) ((-988 . -1034) T) ((-699 . -894) 88643) ((-1138 . -604) 88620) ((-988 . -229) 88592) ((-988 . -239) T) ((-117 . -1007) NIL) ((-895 . -1094) T) ((-1226 . -446) 88571) ((-1205 . -446) 88550) ((-517 . -601) 88482) ((-699 . -634) 88407) ((-402 . -1040) 88359) ((-498 . -601) 88341) ((-895 . -23) T) ((-481 . -304) NIL) ((-1264 . -604) 88297) ((-468 . -130) T) ((-213 . -304) NIL) ((-402 . -111) 88235) ((-802 . -1041) 88165) ((-724 . -1080) 88149) ((-1225 . -487) 88115) ((-1204 . -487) 88081) ((-139 . -1080) 88063) ((-471 . -285) T) ((-1264 . -1034) T) ((-1046 . -102) T) ((-829 . -604) 87931) ((-494 . -508) NIL) ((-689 . -102) T) ((-476 . -234) 87910) ((-402 . -604) 87808) ((-1154 . -143) 87787) ((-1154 . -145) 87766) ((-1107 . -145) 87745) ((-1107 . -143) 87724) ((-623 . -1040) 87708) ((-595 . -1040) 87692) ((-656 . -1082) T) ((-656 . -1037) 87632) ((-1156 . -1232) 87616) ((-1156 . -1219) 87593) ((-481 . -1133) T) ((-1155 . -1224) 87554) ((-1155 . -1219) 87524) ((-1155 . -1222) 87508) ((-213 . -1133) T) ((-338 . -905) T) ((-805 . -261) 87492) ((-623 . -111) 87471) ((-595 . -111) 87450) ((-1149 . -1203) 87411) ((-829 . -1034) 87390) ((-1149 . -1219) 87367) ((-509 . -25) T) ((-489 . -297) T) ((-505 . -23) T) ((-504 . -25) T) ((-502 . -25) T) ((-501 . -23) T) ((-1149 . -1201) 87351) ((-402 . -1034) T) ((-314 . -1041) T) ((-680 . -302) T) ((-108 . -834) T) ((-699 . -713) T) ((-402 . -239) T) ((-402 . -229) 87330) ((-481 . -38) 87280) ((-213 . -38) 87230) ((-468 . -487) 87196) ((-1140 . -1126) T) ((-1083 . -102) T) ((-687 . -601) 87178) ((-687 . -602) 87093) ((-701 . -21) T) ((-701 . -25) T) ((-1117 . -102) T) ((-133 . -601) 87075) ((-116 . -601) 87057) ((-155 . -25) T) ((-1263 . -1082) T) ((-857 . -627) 87005) ((-1261 . -1082) T) ((-948 . -102) T) ((-722 . -102) T) ((-702 . -102) T) ((-447 . -102) T) ((-803 . -446) 86956) ((-44 . -1082) T) ((-1070 . -836) T) ((-650 . -130) T) ((-1046 . -304) 86807) ((-656 . -704) 86791) ((-284 . -1041) T) ((-350 . -130) T) ((-347 . -130) T) ((-339 . -130) T) ((-259 . -130) T) ((-243 . -130) T) ((-413 . -102) T) ((-150 . -1082) T) ((-45 . -225) 86741) ((-943 . -836) 86720) ((-984 . -634) 86658) ((-236 . -1248) 86628) ((-1009 . -302) T) ((-289 . -1040) 86549) ((-895 . -130) T) ((-40 . -905) T) ((-481 . -395) 86531) ((-349 . -302) T) ((-213 . -395) 86513) ((-1062 . -406) 86497) ((-289 . -111) 86413) ((-857 . -25) T) ((-857 . -21) T) ((-334 . -601) 86395) ((-1227 . -47) 86339) ((-221 . -145) T) ((-172 . -601) 86321) ((-1095 . -834) 86300) ((-761 . -601) 86282) ((-128 . -836) T) ((-596 . -231) 86229) ((-469 . -231) 86179) ((-1263 . -704) 86149) ((-48 . -302) T) ((-1261 . -704) 86119) ((-65 . -604) 86048) ((-949 . -1082) T) ((-802 . -1082) 85838) ((-307 . -102) T) ((-886 . -1195) T) ((-48 . -1007) T) ((-1204 . -627) 85746) ((-675 . -102) 85724) ((-44 . -704) 85708) ((-540 . -102) T) ((-289 . -604) 85639) ((-67 . -378) T) ((-67 . -390) T) ((-648 . -23) T) ((-656 . -748) T) ((-1192 . -1082) 85617) ((-346 . -1040) 85562) ((-661 . -1082) 85540) ((-1045 . -145) T) ((-937 . -145) 85519) ((-937 . -143) 85498) ((-786 . -102) T) ((-150 . -704) 85482) ((-475 . -145) 85461) ((-475 . -143) 85440) ((-346 . -111) 85369) ((-1062 . -1041) T) ((-317 . -836) 85348) ((-1233 . -958) 85317) ((-615 . -1082) T) ((-1226 . -958) 85279) ((-505 . -130) T) ((-501 . -130) T) ((-290 . -225) 85229) ((-354 . -1041) T) ((-348 . -1041) T) ((-340 . -1041) T) ((-289 . -1034) 85171) ((-1205 . -958) 85140) ((-374 . -836) T) ((-108 . -1041) T) ((-984 . -713) T) ((-855 . -905) T) ((-829 . -782) 85119) ((-829 . -779) 85098) ((-413 . -304) 85037) ((-462 . -102) T) ((-584 . -958) 85006) ((-314 . -1082) T) ((-402 . -782) 84985) ((-402 . -779) 84964) ((-494 . -483) 84946) ((-1227 . -1023) 84912) ((-1225 . -21) T) ((-1225 . -25) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-802 . -704) 84854) ((-346 . -604) 84784) ((-685 . -399) T) ((-1254 . -1195) T) ((-594 . -102) T) ((-1095 . -406) 84753) ((-988 . -363) NIL) ((-657 . -102) T) ((-178 . -102) T) ((-159 . -102) T) ((-154 . -102) T) ((-152 . -102) T) ((-103 . -34) T) ((-724 . -1195) T) ((-44 . -748) T) ((-582 . -102) T) ((-77 . -391) T) ((-77 . -390) T) ((-639 . -642) 84737) ((-139 . -1195) T) ((-856 . -145) T) ((-856 . -143) NIL) ((-1194 . -93) T) ((-346 . -1034) T) ((-70 . -378) T) ((-70 . -390) T) ((-1147 . -102) T) ((-656 . -508) 84670) ((-675 . -304) 84608) ((-948 . -38) 84505) ((-722 . -38) 84475) ((-540 . -304) 84279) ((-311 . -1195) T) ((-346 . -229) T) ((-346 . -239) T) ((-308 . -1195) T) ((-284 . -1082) T) ((-1162 . -601) 84261) ((-698 . -1199) T) ((-1138 . -637) 84245) ((-1189 . -546) 84224) ((-698 . -546) T) ((-311 . -869) 84208) ((-311 . -871) 84133) ((-308 . -869) 84094) ((-308 . -871) NIL) ((-786 . -304) 84059) ((-314 . -704) 83900) ((-319 . -318) 83877) ((-479 . -102) T) ((-468 . -25) T) ((-468 . -21) T) ((-413 . -38) 83851) ((-311 . -1023) 83514) ((-221 . -1180) T) ((-221 . -1183) T) ((-3 . -601) 83496) ((-308 . -1023) 83426) ((-2 . -1082) T) ((-2 . |RecordCategory|) T) ((-820 . -601) 83408) ((-1095 . -1041) 83338) ((-570 . -905) T) ((-554 . -807) T) ((-554 . -905) T) ((-489 . -905) T) ((-135 . -1023) 83322) ((-221 . -95) T) ((-75 . -435) T) ((-75 . -390) T) ((0 . -601) 83304) ((-167 . -145) 83283) ((-167 . -143) 83234) ((-221 . -35) T) ((-49 . -601) 83216) ((-471 . -1041) T) ((-481 . -227) 83198) ((-478 . -953) 83182) ((-476 . -834) 83161) ((-213 . -227) 83143) ((-81 . -435) T) ((-81 . -390) T) ((-1128 . -34) T) ((-802 . -170) 83122) ((-718 . -102) T) ((-1011 . -601) 83089) ((-494 . -281) 83064) ((-311 . -372) 83033) ((-308 . -372) 82994) ((-308 . -333) 82955) ((-1067 . -601) 82937) ((-803 . -934) 82884) ((-648 . -130) T) ((-1214 . -143) 82863) ((-1214 . -145) 82842) ((-1156 . -102) T) ((-1155 . -102) T) ((-1149 . -102) T) ((-1141 . -1082) T) ((-1108 . -102) T) ((-218 . -34) T) ((-284 . -704) 82829) ((-1141 . -598) 82805) ((-582 . -304) NIL) ((-478 . -1082) 82783) ((-385 . -601) 82765) ((-504 . -836) T) ((-1132 . -225) 82715) ((-1233 . -1232) 82699) ((-1233 . -1219) 82676) ((-1226 . -1224) 82637) ((-1226 . -1219) 82607) ((-1226 . -1222) 82591) ((-1205 . -1203) 82552) ((-1205 . -1219) 82529) ((-609 . -601) 82511) ((-1205 . -1201) 82495) ((-685 . -905) T) ((-1156 . -279) 82461) ((-1155 . -279) 82427) ((-1149 . -279) 82393) ((-1062 . -1082) T) ((-1044 . -1082) T) ((-48 . -297) T) ((-311 . -885) 82359) ((-308 . -885) NIL) ((-1044 . -1051) 82338) ((-1102 . -871) 82320) ((-786 . -38) 82304) ((-259 . -627) 82252) ((-243 . -627) 82200) ((-687 . -1040) 82187) ((-584 . -1219) 82164) ((-1108 . -279) 82130) ((-314 . -170) 82061) ((-354 . -1082) T) ((-348 . -1082) T) ((-340 . -1082) T) ((-494 . -19) 82043) ((-1102 . -1023) 82025) ((-1084 . -149) 82009) ((-108 . -1082) T) ((-116 . -1040) 81996) ((-698 . -358) T) ((-494 . -592) 81971) ((-687 . -111) 81956) ((-431 . -102) T) ((-45 . -1131) 81906) ((-116 . -111) 81891) ((-623 . -707) T) ((-595 . -707) T) ((-802 . -508) 81824) ((-1020 . -1195) T) ((-928 . -149) 81808) ((-1154 . -446) 81739) ((-1148 . -1082) T) ((-1140 . -1082) T) ((-519 . -102) T) ((-514 . -102) 81689) ((-1124 . -634) 81663) ((-1107 . -446) 81614) ((-1069 . -1199) 81593) ((-769 . -1199) 81572) ((-767 . -1199) 81551) ((-62 . -1195) T) ((-471 . -601) 81503) ((-471 . -602) 81425) ((-1069 . -546) 81356) ((-979 . -1082) T) ((-769 . -546) 81267) ((-767 . -546) 81198) ((-476 . -406) 81167) ((-611 . -905) 81146) ((-448 . -1199) 81125) ((-718 . -304) 81112) ((-687 . -604) 81084) ((-393 . -601) 81066) ((-661 . -508) 80999) ((-650 . -25) T) ((-650 . -21) T) ((-448 . -546) 80930) ((-350 . -25) T) ((-350 . -21) T) ((-117 . -905) T) ((-117 . -807) NIL) ((-347 . -25) T) ((-347 . -21) T) ((-339 . -25) T) ((-339 . -21) T) ((-259 . -25) T) ((-259 . -21) T) ((-243 . -25) T) ((-243 . -21) T) ((-83 . -379) T) ((-83 . -390) T) ((-133 . -604) 80912) ((-116 . -604) 80884) ((-1243 . -601) 80866) ((-1189 . -1094) T) ((-1189 . -23) T) ((-1149 . -304) 80751) ((-1108 . -304) 80738) ((-1062 . -704) 80606) ((-851 . -634) 80566) ((-928 . -965) 80550) ((-895 . -21) T) ((-284 . -170) T) ((-895 . -25) T) ((-306 . -93) T) ((-857 . -836) 80501) ((-698 . -1094) T) ((-698 . -23) T) ((-687 . -1034) T) ((-633 . -1082) 80479) ((-620 . -1082) T) ((-571 . -1199) T) ((-512 . -1199) T) ((-620 . -598) 80454) ((-571 . -546) T) ((-512 . -546) T) ((-354 . -704) 80406) ((-348 . -704) 80358) ((-334 . -1040) 80342) ((-340 . -704) 80294) ((-172 . -111) 80205) ((-172 . -1040) 80137) ((-108 . -704) 80087) ((-334 . -111) 80066) ((-269 . -1082) T) ((-268 . -1082) T) ((-267 . -1082) T) ((-266 . -1082) T) ((-265 . -1082) T) ((-264 . -1082) T) ((-263 . -1082) T) ((-208 . -1082) T) ((-207 . -1082) T) ((-205 . -1082) T) ((-167 . -1183) 80044) ((-167 . -1180) 80022) ((-204 . -1082) T) ((-203 . -1082) T) ((-116 . -1034) T) ((-202 . -1082) T) ((-199 . -1082) T) ((-687 . -229) T) ((-198 . -1082) T) ((-197 . -1082) T) ((-196 . -1082) T) ((-195 . -1082) T) ((-194 . -1082) T) ((-193 . -1082) T) ((-192 . -1082) T) ((-191 . -1082) T) ((-190 . -1082) T) ((-189 . -1082) T) ((-236 . -102) 79812) ((-167 . -35) 79790) ((-167 . -95) 79768) ((-640 . -1023) 79664) ((-476 . -1041) 79594) ((-1095 . -1082) 79384) ((-1124 . -34) T) ((-656 . -483) 79368) ((-73 . -1195) T) ((-105 . -601) 79350) ((-1265 . -601) 79332) ((-376 . -601) 79314) ((-334 . -604) 79266) ((-172 . -604) 79183) ((-1194 . -484) 79164) ((-718 . -38) 79013) ((-561 . -1183) T) ((-561 . -1180) T) ((-525 . -601) 78995) ((-514 . -304) 78933) ((-494 . -601) 78915) ((-494 . -602) 78897) ((-1194 . -601) 78863) ((-1149 . -1133) NIL) ((-1012 . -1054) 78832) ((-1012 . -1082) T) ((-989 . -102) T) ((-956 . -102) T) ((-899 . -102) T) ((-878 . -1023) 78809) ((-1124 . -713) T) ((-988 . -634) 78754) ((-470 . -1082) T) ((-457 . -1082) T) ((-575 . -23) T) ((-561 . -35) T) ((-561 . -95) T) ((-422 . -102) T) ((-1046 . -225) 78700) ((-1156 . -38) 78597) ((-851 . -713) T) ((-680 . -905) T) ((-505 . -25) T) ((-501 . -21) T) ((-501 . -25) T) ((-1155 . -38) 78438) ((-334 . -1034) T) ((-1149 . -38) 78234) ((-1062 . -170) T) ((-172 . -1034) T) ((-1108 . -38) 78131) ((-699 . -47) 78108) ((-354 . -170) T) ((-348 . -170) T) ((-513 . -57) 78082) ((-491 . -57) 78032) ((-346 . -1260) 78009) ((-221 . -446) T) ((-314 . -285) 77960) ((-340 . -170) T) ((-172 . -239) T) ((-1204 . -836) 77859) ((-108 . -170) T) ((-857 . -977) 77843) ((-644 . -1094) T) ((-571 . -358) T) ((-571 . -324) 77830) ((-512 . -324) 77807) ((-512 . -358) T) ((-311 . -302) 77786) ((-308 . -302) T) ((-590 . -836) 77765) ((-1095 . -704) 77707) ((-514 . -277) 77691) ((-644 . -23) T) ((-413 . -227) 77675) ((-308 . -1007) NIL) ((-331 . -23) T) ((-103 . -995) 77659) ((-45 . -36) 77638) ((-600 . -1082) T) ((-346 . -363) T) ((-518 . -102) T) ((-489 . -27) T) ((-236 . -304) 77576) ((-1069 . -1094) T) ((-1264 . -634) 77550) ((-769 . -1094) T) ((-767 . -1094) T) ((-448 . -1094) T) ((-1045 . -446) T) ((-937 . -446) 77501) ((-1097 . -1065) T) ((-110 . -1082) T) ((-1069 . -23) T) ((-804 . -1041) T) ((-769 . -23) T) ((-767 . -23) T) ((-475 . -446) 77452) ((-1141 . -508) 77235) ((-376 . -377) 77214) ((-1160 . -406) 77198) ((-455 . -23) T) ((-448 . -23) T) ((-96 . -1082) T) ((-478 . -508) 77131) ((-284 . -285) T) ((-1064 . -601) 77113) ((-1064 . -602) 77094) ((-402 . -894) 77073) ((-50 . -1094) T) ((-1009 . -905) T) ((-988 . -713) T) ((-699 . -871) NIL) ((-571 . -1094) T) ((-512 . -1094) T) ((-829 . -634) 77046) ((-1189 . -130) T) ((-1149 . -395) 76998) ((-989 . -304) NIL) ((-802 . -483) 76982) ((-349 . -905) T) ((-1138 . -34) T) ((-402 . -634) 76934) ((-50 . -23) T) ((-698 . -130) T) ((-699 . -1023) 76814) ((-571 . -23) T) ((-108 . -508) NIL) ((-512 . -23) T) ((-167 . -404) 76785) ((-1122 . -1082) T) ((-1256 . -1255) 76769) ((-687 . -782) T) ((-687 . -779) T) ((-1102 . -302) T) ((-374 . -145) T) ((-275 . -601) 76751) ((-1204 . -977) 76721) ((-48 . -905) T) ((-661 . -483) 76705) ((-246 . -1248) 76675) ((-245 . -1248) 76645) ((-1158 . -836) T) ((-1095 . -170) 76624) ((-1102 . -1007) T) ((-1031 . -34) T) ((-823 . -145) 76603) ((-823 . -143) 76582) ((-724 . -107) 76566) ((-600 . -131) T) ((-476 . -1082) 76356) ((-1160 . -1041) T) ((-856 . -446) T) ((-85 . -1195) T) ((-236 . -38) 76326) ((-139 . -107) 76308) ((-699 . -372) 76292) ((-820 . -604) 76160) ((-1102 . -539) T) ((-569 . -102) T) ((-129 . -484) 76142) ((-385 . -1040) 76126) ((-1264 . -713) T) ((-1154 . -934) 76095) ((-129 . -601) 76047) ((-52 . -601) 76029) ((-1107 . -934) 75996) ((-639 . -406) 75980) ((-1253 . -1041) T) ((-609 . -1040) 75964) ((-648 . -25) T) ((-648 . -21) T) ((-1140 . -508) NIL) ((-1233 . -102) T) ((-1226 . -102) T) ((-385 . -111) 75943) ((-218 . -249) 75927) ((-1205 . -102) T) ((-1038 . -1082) T) ((-989 . -1133) T) ((-1038 . -1037) 75867) ((-805 . -1082) T) ((-338 . -1199) T) ((-623 . -634) 75851) ((-609 . -111) 75830) ((-595 . -634) 75814) ((-585 . -102) T) ((-306 . -484) 75795) ((-575 . -130) T) ((-584 . -102) T) ((-409 . -1082) T) ((-380 . -1082) T) ((-306 . -601) 75761) ((-223 . -1082) 75739) ((-633 . -508) 75672) ((-620 . -508) 75516) ((-820 . -1034) 75495) ((-631 . -149) 75479) ((-338 . -546) T) ((-699 . -885) 75422) ((-540 . -225) 75372) ((-1233 . -279) 75338) ((-1062 . -285) 75289) ((-481 . -834) T) ((-219 . -1094) T) ((-1226 . -279) 75255) ((-1205 . -279) 75221) ((-989 . -38) 75171) ((-213 . -834) T) ((-1189 . -487) 75137) ((-899 . -38) 75089) ((-829 . -781) 75068) ((-829 . -778) 75047) ((-829 . -713) 75026) ((-354 . -285) T) ((-348 . -285) T) ((-340 . -285) T) ((-167 . -446) 74957) ((-422 . -38) 74941) ((-108 . -285) T) ((-219 . -23) T) ((-402 . -781) 74920) ((-402 . -778) 74899) ((-402 . -713) T) ((-494 . -283) 74874) ((-471 . -1040) 74839) ((-644 . -130) T) ((-609 . -604) 74808) ((-1095 . -508) 74741) ((-331 . -130) T) ((-167 . -397) 74720) ((-476 . -704) 74662) ((-802 . -281) 74639) ((-471 . -111) 74595) ((-639 . -1041) T) ((-1214 . -446) 74526) ((-1252 . -1065) T) ((-1251 . -1065) T) ((-1069 . -130) T) ((-1038 . -704) 74468) ((-259 . -836) 74447) ((-243 . -836) 74426) ((-769 . -130) T) ((-767 . -130) T) ((-561 . -446) T) ((-1012 . -508) 74359) ((-609 . -1034) T) ((-581 . -1082) T) ((-527 . -171) T) ((-455 . -130) T) ((-448 . -130) T) ((-45 . -1082) T) ((-380 . -704) 74329) ((-804 . -1082) T) ((-470 . -508) 74262) ((-457 . -508) 74195) ((-447 . -362) 74165) ((-45 . -598) 74144) ((-311 . -297) T) ((-471 . -604) 74094) ((-656 . -601) 74056) ((-59 . -836) 74035) ((-1205 . -304) 73920) ((-989 . -395) 73902) ((-802 . -592) 73879) ((-510 . -836) 73858) ((-490 . -836) 73837) ((-40 . -1199) T) ((-984 . -1023) 73733) ((-50 . -130) T) ((-571 . -130) T) ((-512 . -130) T) ((-289 . -634) 73593) ((-338 . -324) 73570) ((-338 . -358) T) ((-317 . -318) 73547) ((-314 . -281) 73532) ((-40 . -546) T) ((-374 . -1180) T) ((-374 . -1183) T) ((-1020 . -1171) 73507) ((-1168 . -231) 73457) ((-1149 . -227) 73409) ((-325 . -1082) T) ((-374 . -95) T) ((-374 . -35) T) ((-1020 . -107) 73355) ((-471 . -1034) T) ((-473 . -231) 73305) ((-1141 . -483) 73239) ((-1265 . -1040) 73223) ((-376 . -1040) 73207) ((-471 . -239) T) ((-803 . -102) T) ((-701 . -145) 73186) ((-701 . -143) 73165) ((-478 . -483) 73149) ((-479 . -330) 73118) ((-1265 . -111) 73097) ((-506 . -1082) T) ((-476 . -170) 73076) ((-984 . -372) 73060) ((-408 . -102) T) ((-376 . -111) 73039) ((-984 . -333) 73023) ((-274 . -968) 73007) ((-273 . -968) 72991) ((-1263 . -601) 72973) ((-1261 . -601) 72955) ((-110 . -508) NIL) ((-1154 . -1217) 72939) ((-840 . -838) 72923) ((-1160 . -1082) T) ((-103 . -1195) T) ((-937 . -934) 72884) ((-804 . -704) 72826) ((-1205 . -1133) NIL) ((-475 . -934) 72771) ((-1045 . -141) T) ((-60 . -102) 72749) ((-44 . -601) 72731) ((-78 . -601) 72713) ((-346 . -634) 72658) ((-1253 . -1082) T) ((-505 . -836) T) ((-338 . -1094) T) ((-290 . -1082) T) ((-984 . -885) 72617) ((-290 . -598) 72596) ((-1265 . -604) 72545) ((-1233 . -38) 72442) ((-1226 . -38) 72283) ((-1205 . -38) 72079) ((-481 . -1041) T) ((-376 . -604) 72063) ((-213 . -1041) T) ((-338 . -23) T) ((-150 . -601) 72045) ((-820 . -782) 72024) ((-820 . -779) 72003) ((-1194 . -604) 71984) ((-585 . -38) 71957) ((-584 . -38) 71854) ((-855 . -546) T) ((-219 . -130) T) ((-314 . -987) 71820) ((-79 . -601) 71802) ((-699 . -302) 71781) ((-289 . -713) 71683) ((-811 . -102) T) ((-850 . -830) T) ((-289 . -467) 71662) ((-1256 . -102) T) ((-40 . -358) T) ((-857 . -145) 71641) ((-857 . -143) 71620) ((-1140 . -483) 71602) ((-1265 . -1034) T) ((-476 . -508) 71535) ((-1128 . -1195) T) ((-949 . -601) 71517) ((-633 . -483) 71501) ((-620 . -483) 71432) ((-802 . -601) 71163) ((-48 . -27) T) ((-1160 . -704) 71060) ((-639 . -1082) T) ((-847 . -846) T) ((-431 . -359) 71034) ((-1084 . -102) T) ((-955 . -1082) T) ((-850 . -1082) T) ((-803 . -304) 71021) ((-527 . -521) T) ((-527 . -566) T) ((-1261 . -377) 70993) ((-1038 . -508) 70926) ((-1141 . -281) 70902) ((-236 . -227) 70871) ((-1253 . -704) 70841) ((-1148 . -93) T) ((-979 . -93) T) ((-804 . -170) 70820) ((-1192 . -484) 70797) ((-223 . -508) 70730) ((-609 . -782) 70709) ((-609 . -779) 70688) ((-1192 . -601) 70600) ((-218 . -1195) T) ((-661 . -601) 70532) ((-1138 . -995) 70516) ((-928 . -102) 70466) ((-346 . -713) T) ((-847 . -601) 70448) ((-1205 . -395) 70400) ((-1095 . -483) 70384) ((-60 . -304) 70322) ((-326 . -102) T) ((-1189 . -21) T) ((-1189 . -25) T) ((-40 . -1094) T) ((-698 . -21) T) ((-615 . -601) 70304) ((-509 . -318) 70283) ((-698 . -25) T) ((-108 . -281) NIL) ((-906 . -1094) T) ((-40 . -23) T) ((-758 . -1094) T) ((-554 . -1199) T) ((-489 . -1199) T) ((-314 . -601) 70265) ((-989 . -227) 70247) ((-167 . -164) 70231) ((-570 . -546) T) ((-554 . -546) T) ((-489 . -546) T) ((-758 . -23) T) ((-1225 . -145) 70210) ((-1141 . -592) 70186) ((-1225 . -143) 70165) ((-1012 . -483) 70149) ((-1204 . -143) 70074) ((-1204 . -145) 69999) ((-1256 . -1262) 69978) ((-470 . -483) 69962) ((-457 . -483) 69946) ((-517 . -34) T) ((-639 . -704) 69916) ((-112 . -952) T) ((-648 . -836) 69895) ((-1160 . -170) 69846) ((-360 . -102) T) ((-236 . -234) 69825) ((-246 . -102) T) ((-245 . -102) T) ((-1214 . -934) 69794) ((-241 . -836) 69773) ((-803 . -38) 69622) ((-45 . -508) 69414) ((-1140 . -281) 69389) ((-210 . -1082) T) ((-1132 . -1082) T) ((-1132 . -598) 69368) ((-575 . -25) T) ((-575 . -21) T) ((-1084 . -304) 69306) ((-948 . -406) 69290) ((-685 . -1199) T) ((-620 . -281) 69265) ((-1069 . -627) 69213) ((-769 . -627) 69161) ((-767 . -627) 69109) ((-338 . -130) T) ((-284 . -601) 69091) ((-890 . -1082) T) ((-685 . -546) T) ((-129 . -604) 69073) ((-855 . -1094) T) ((-448 . -627) 69021) ((-890 . -888) 69005) ((-374 . -446) T) ((-481 . -1082) T) ((-687 . -634) 68992) ((-928 . -304) 68930) ((-213 . -1082) T) ((-311 . -905) 68909) ((-308 . -905) T) ((-308 . -807) NIL) ((-385 . -707) T) ((-855 . -23) T) ((-116 . -634) 68896) ((-468 . -143) 68875) ((-413 . -406) 68859) ((-468 . -145) 68838) ((-110 . -483) 68820) ((-306 . -604) 68801) ((-2 . -601) 68783) ((-182 . -102) T) ((-1140 . -19) 68765) ((-1140 . -592) 68740) ((-644 . -21) T) ((-644 . -25) T) ((-582 . -1126) T) ((-1095 . -281) 68717) ((-331 . -25) T) ((-331 . -21) T) ((-489 . -358) T) ((-1256 . -38) 68687) ((-1124 . -1195) T) ((-620 . -592) 68662) ((-1069 . -25) T) ((-1069 . -21) T) ((-525 . -779) T) ((-525 . -782) T) ((-117 . -1199) T) ((-948 . -1041) T) ((-611 . -546) T) ((-769 . -25) T) ((-769 . -21) T) ((-767 . -21) T) ((-767 . -25) T) ((-722 . -1041) T) ((-702 . -1041) T) ((-656 . -1040) 68646) ((-511 . -1065) T) ((-455 . -25) T) ((-117 . -546) T) ((-455 . -21) T) ((-448 . -25) T) ((-448 . -21) T) ((-1124 . -1023) 68542) ((-804 . -285) 68521) ((-810 . -1082) T) ((-1263 . -1040) 68505) ((-951 . -952) T) ((-656 . -111) 68484) ((-290 . -508) 68276) ((-1261 . -1040) 68260) ((-1225 . -1180) 68226) ((-1225 . -1183) 68192) ((-246 . -304) 68130) ((-245 . -304) 68068) ((-1208 . -102) 68046) ((-1141 . -602) NIL) ((-1141 . -601) 68028) ((-1225 . -95) 67994) ((-1205 . -227) 67946) ((-1204 . -1180) 67912) ((-96 . -93) T) ((-1204 . -1183) 67878) ((-1124 . -372) 67862) ((-1102 . -807) T) ((-1102 . -905) T) ((-1095 . -592) 67839) ((-1062 . -602) 67823) ((-478 . -601) 67755) ((-802 . -283) 67732) ((-596 . -149) 67679) ((-413 . -1041) T) ((-481 . -704) 67629) ((-476 . -483) 67613) ((-322 . -836) 67592) ((-334 . -634) 67566) ((-50 . -21) T) ((-50 . -25) T) ((-213 . -704) 67516) ((-167 . -711) 67487) ((-172 . -634) 67419) ((-571 . -21) T) ((-571 . -25) T) ((-512 . -25) T) ((-512 . -21) T) ((-469 . -149) 67369) ((-1062 . -601) 67351) ((-1044 . -601) 67333) ((-978 . -102) T) ((-848 . -102) T) ((-786 . -406) 67297) ((-40 . -130) T) ((-685 . -358) T) ((-687 . -713) T) ((-208 . -880) T) ((-687 . -781) T) ((-687 . -778) T) ((-570 . -1094) T) ((-554 . -1094) T) ((-489 . -1094) T) ((-354 . -601) 67279) ((-348 . -601) 67261) ((-340 . -601) 67243) ((-66 . -391) T) ((-66 . -390) T) ((-108 . -602) 67173) ((-108 . -601) 67116) ((-207 . -880) T) ((-943 . -149) 67100) ((-758 . -130) T) ((-656 . -604) 67018) ((-133 . -713) T) ((-116 . -713) T) ((-1225 . -35) 66984) ((-1038 . -483) 66968) ((-570 . -23) T) ((-554 . -23) T) ((-489 . -23) T) ((-1204 . -95) 66934) ((-1204 . -35) 66900) ((-1154 . -102) T) ((-1107 . -102) T) ((-840 . -102) T) ((-223 . -483) 66884) ((-1263 . -111) 66863) ((-1261 . -111) 66842) ((-44 . -1040) 66826) ((-1214 . -1217) 66810) ((-841 . -838) 66794) ((-1160 . -285) 66773) ((-110 . -281) 66748) ((-1263 . -604) 66694) ((-128 . -149) 66676) ((-1124 . -885) 66635) ((-44 . -111) 66614) ((-1163 . -1236) T) ((-1148 . -484) 66595) ((-1148 . -601) 66561) ((-1140 . -602) NIL) ((-656 . -1034) T) ((-1140 . -601) 66543) ((-1046 . -598) 66518) ((-1046 . -1082) T) ((-979 . -484) 66499) ((-979 . -601) 66465) ((-74 . -435) T) ((-74 . -390) T) ((-689 . -1082) T) ((-150 . -1040) 66449) ((-656 . -229) 66428) ((-561 . -544) 66412) ((-350 . -145) 66391) ((-350 . -143) 66342) ((-347 . -145) 66321) ((-347 . -143) 66272) ((-339 . -145) 66251) ((-339 . -143) 66202) ((-259 . -143) 66181) ((-259 . -145) 66160) ((-246 . -38) 66130) ((-243 . -145) 66109) ((-117 . -358) T) ((-243 . -143) 66088) ((-245 . -38) 66058) ((-150 . -111) 66037) ((-988 . -1023) 65925) ((-1149 . -834) NIL) ((-680 . -1199) T) ((-786 . -1041) T) ((-685 . -1094) T) ((-1263 . -1034) T) ((-1261 . -604) 65854) ((-1261 . -1034) T) ((-1138 . -1195) T) ((-988 . -372) 65831) ((-895 . -143) T) ((-895 . -145) 65813) ((-855 . -130) T) ((-802 . -1040) 65710) ((-680 . -546) T) ((-685 . -23) T) ((-633 . -601) 65642) ((-633 . -602) 65603) ((-620 . -602) NIL) ((-620 . -601) 65585) ((-481 . -170) T) ((-219 . -21) T) ((-213 . -170) T) ((-219 . -25) T) ((-468 . -1183) 65551) ((-468 . -1180) 65517) ((-269 . -601) 65499) ((-268 . -601) 65481) ((-267 . -601) 65463) ((-266 . -601) 65445) ((-265 . -601) 65427) ((-494 . -637) 65409) ((-264 . -601) 65391) ((-334 . -713) T) ((-263 . -601) 65373) ((-110 . -19) 65355) ((-172 . -713) T) ((-494 . -368) 65337) ((-208 . -601) 65319) ((-514 . -1131) 65303) ((-494 . -123) T) ((-110 . -592) 65278) ((-207 . -601) 65260) ((-468 . -35) 65226) ((-468 . -95) 65192) ((-205 . -601) 65174) ((-204 . -601) 65156) ((-203 . -601) 65138) ((-202 . -601) 65120) ((-199 . -601) 65102) ((-198 . -601) 65084) ((-197 . -601) 65066) ((-196 . -601) 65048) ((-195 . -601) 65030) ((-194 . -601) 65012) ((-193 . -601) 64994) ((-530 . -1085) 64946) ((-192 . -601) 64928) ((-191 . -601) 64910) ((-45 . -483) 64847) ((-190 . -601) 64829) ((-189 . -601) 64811) ((-150 . -604) 64780) ((-1097 . -102) T) ((-802 . -111) 64670) ((-631 . -102) 64620) ((-476 . -281) 64597) ((-1095 . -601) 64328) ((-1083 . -1082) T) ((-1031 . -1195) T) ((-1264 . -1023) 64312) ((-611 . -1094) T) ((-1154 . -304) 64299) ((-1117 . -1082) T) ((-1107 . -304) 64286) ((-1078 . -1065) T) ((-1072 . -1065) T) ((-1056 . -1065) T) ((-1049 . -1065) T) ((-1021 . -1065) T) ((-1004 . -1065) T) ((-117 . -1094) T) ((-806 . -102) T) ((-614 . -1065) T) ((-611 . -23) T) ((-1132 . -508) 64078) ((-477 . -1065) T) ((-988 . -885) 64030) ((-381 . -102) T) ((-319 . -102) T) ((-214 . -1065) T) ((-948 . -1082) T) ((-150 . -1034) T) ((-718 . -406) 64014) ((-117 . -23) T) ((-722 . -1082) T) ((-702 . -1082) T) ((-689 . -131) T) ((-447 . -1082) T) ((-402 . -1195) T) ((-311 . -425) 63998) ((-581 . -93) T) ((-1012 . -602) 63959) ((-1009 . -1199) T) ((-221 . -102) T) ((-1012 . -601) 63921) ((-803 . -227) 63905) ((-802 . -604) 63635) ((-1009 . -546) T) ((-820 . -634) 63608) ((-349 . -1199) T) ((-470 . -601) 63570) ((-470 . -602) 63531) ((-457 . -602) 63492) ((-457 . -601) 63454) ((-402 . -869) 63438) ((-314 . -1040) 63273) ((-402 . -871) 63198) ((-829 . -1023) 63094) ((-481 . -508) NIL) ((-476 . -592) 63071) ((-349 . -546) T) ((-213 . -508) NIL) ((-857 . -446) T) ((-413 . -1082) T) ((-402 . -1023) 62935) ((-314 . -111) 62756) ((-680 . -358) T) ((-221 . -279) T) ((-1192 . -604) 62733) ((-48 . -1199) T) ((-802 . -1034) 62663) ((-570 . -130) T) ((-554 . -130) T) ((-489 . -130) T) ((-48 . -546) T) ((-1141 . -283) 62639) ((-1154 . -1133) 62617) ((-311 . -27) 62596) ((-1045 . -102) T) ((-802 . -229) 62548) ((-236 . -834) 62527) ((-937 . -102) T) ((-700 . -102) T) ((-290 . -483) 62464) ((-475 . -102) T) ((-718 . -1041) T) ((-600 . -601) 62446) ((-600 . -602) 62307) ((-402 . -372) 62291) ((-402 . -333) 62275) ((-314 . -604) 62101) ((-1154 . -38) 61930) ((-1107 . -38) 61779) ((-840 . -38) 61749) ((-385 . -634) 61733) ((-631 . -304) 61671) ((-948 . -704) 61568) ((-722 . -704) 61538) ((-218 . -107) 61522) ((-45 . -281) 61447) ((-609 . -634) 61421) ((-307 . -1082) T) ((-284 . -1040) 61408) ((-110 . -601) 61390) ((-110 . -602) 61372) ((-447 . -704) 61342) ((-803 . -248) 61281) ((-675 . -1082) 61259) ((-540 . -1082) T) ((-1156 . -1041) T) ((-1155 . -1041) T) ((-96 . -484) 61240) ((-1149 . -1041) T) ((-284 . -111) 61225) ((-1108 . -1041) T) ((-540 . -598) 61204) ((-96 . -601) 61170) ((-989 . -834) T) ((-223 . -673) 61128) ((-680 . -1094) T) ((-1189 . -727) 61104) ((-314 . -1034) T) ((-338 . -25) T) ((-338 . -21) T) ((-402 . -885) 61063) ((-68 . -1195) T) ((-820 . -781) 61042) ((-413 . -704) 61016) ((-786 . -1082) T) ((-820 . -778) 60995) ((-685 . -130) T) ((-699 . -905) 60974) ((-680 . -23) T) ((-481 . -285) T) ((-820 . -713) 60953) ((-314 . -229) 60905) ((-314 . -239) 60884) ((-213 . -285) T) ((-1009 . -358) T) ((-1225 . -446) 60863) ((-1204 . -446) 60842) ((-349 . -324) 60819) ((-349 . -358) T) ((-1122 . -601) 60801) ((-45 . -1229) 60751) ((-856 . -102) T) ((-631 . -277) 60735) ((-685 . -1043) T) ((-1252 . -102) T) ((-1251 . -102) T) ((-471 . -634) 60700) ((-462 . -1082) T) ((-45 . -592) 60625) ((-1140 . -283) 60600) ((-284 . -604) 60572) ((-40 . -627) 60511) ((-48 . -358) T) ((-1088 . -601) 60493) ((-1069 . -836) 60472) ((-620 . -283) 60447) ((-769 . -836) 60426) ((-767 . -836) 60405) ((-476 . -601) 60136) ((-236 . -406) 60105) ((-937 . -304) 60092) ((-448 . -836) 60071) ((-65 . -1195) T) ((-1046 . -508) 59915) ((-611 . -130) T) ((-475 . -304) 59902) ((-594 . -1082) T) ((-117 . -130) T) ((-657 . -1082) T) ((-284 . -1034) T) ((-178 . -1082) T) ((-159 . -1082) T) ((-154 . -1082) T) ((-152 . -1082) T) ((-447 . -748) T) ((-31 . -1065) T) ((-948 . -170) 59853) ((-955 . -93) T) ((-1062 . -1040) 59763) ((-609 . -781) 59742) ((-582 . -1082) T) ((-609 . -778) 59721) ((-609 . -713) T) ((-290 . -281) 59700) ((-289 . -1195) T) ((-1038 . -601) 59662) ((-1038 . -602) 59623) ((-1009 . -1094) T) ((-167 . -102) T) ((-270 . -836) T) ((-1147 . -1082) T) ((-805 . -601) 59605) ((-1095 . -283) 59582) ((-1084 . -225) 59566) ((-988 . -302) T) ((-786 . -704) 59550) ((-354 . -1040) 59502) ((-349 . -1094) T) ((-348 . -1040) 59454) ((-409 . -601) 59436) ((-380 . -601) 59418) ((-340 . -1040) 59370) ((-223 . -601) 59302) ((-1062 . -111) 59198) ((-1009 . -23) T) ((-108 . -1040) 59148) ((-883 . -102) T) ((-827 . -102) T) ((-795 . -102) T) ((-756 . -102) T) ((-663 . -102) T) ((-468 . -446) 59127) ((-413 . -170) T) ((-354 . -111) 59065) ((-348 . -111) 59003) ((-340 . -111) 58941) ((-246 . -227) 58910) ((-245 . -227) 58879) ((-349 . -23) T) ((-71 . -1195) T) ((-221 . -38) 58844) ((-108 . -111) 58778) ((-40 . -25) T) ((-40 . -21) T) ((-656 . -707) T) ((-167 . -279) 58756) ((-48 . -1094) T) ((-906 . -25) T) ((-758 . -25) T) ((-1132 . -483) 58693) ((-479 . -1082) T) ((-1265 . -634) 58667) ((-1214 . -102) T) ((-841 . -102) T) ((-236 . -1041) 58597) ((-1045 . -1133) T) ((-949 . -779) 58550) ((-376 . -634) 58534) ((-48 . -23) T) ((-949 . -782) 58487) ((-802 . -782) 58438) ((-802 . -779) 58389) ((-290 . -592) 58368) ((-471 . -713) T) ((-561 . -102) T) ((-1062 . -604) 58186) ((-856 . -304) 58143) ((-639 . -281) 58122) ((-112 . -647) T) ((-354 . -604) 58059) ((-348 . -604) 57996) ((-340 . -604) 57933) ((-76 . -1195) T) ((-108 . -604) 57883) ((-1045 . -38) 57870) ((-650 . -369) 57849) ((-937 . -38) 57698) ((-718 . -1082) T) ((-475 . -38) 57547) ((-86 . -1195) T) ((-581 . -484) 57528) ((-561 . -279) T) ((-1205 . -834) NIL) ((-581 . -601) 57494) ((-1156 . -1082) T) ((-1155 . -1082) T) ((-1062 . -1034) T) ((-346 . -1023) 57471) ((-804 . -484) 57455) ((-989 . -1041) T) ((-45 . -601) 57437) ((-45 . -602) NIL) ((-899 . -1041) T) ((-804 . -601) 57406) ((-1149 . -1082) T) ((-1129 . -102) 57384) ((-1062 . -239) 57335) ((-422 . -1041) T) ((-354 . -1034) T) ((-360 . -359) 57312) ((-348 . -1034) T) ((-340 . -1034) T) ((-246 . -234) 57291) ((-245 . -234) 57270) ((-1062 . -229) 57195) ((-1108 . -1082) T) ((-289 . -885) 57154) ((-108 . -1034) T) ((-680 . -130) T) ((-413 . -508) 56996) ((-354 . -229) 56975) ((-354 . -239) T) ((-44 . -707) T) ((-348 . -229) 56954) ((-348 . -239) T) ((-340 . -229) 56933) ((-340 . -239) T) ((-1148 . -604) 56914) ((-167 . -304) 56879) ((-108 . -239) T) ((-108 . -229) T) ((-979 . -604) 56860) ((-314 . -779) T) ((-855 . -21) T) ((-855 . -25) T) ((-402 . -302) T) ((-494 . -34) T) ((-110 . -283) 56835) ((-1095 . -1040) 56732) ((-856 . -1133) NIL) ((-325 . -601) 56714) ((-402 . -1007) 56692) ((-1095 . -111) 56582) ((-677 . -1236) T) ((-431 . -1082) T) ((-1265 . -713) T) ((-63 . -601) 56564) ((-856 . -38) 56509) ((-517 . -1195) T) ((-590 . -149) 56493) ((-506 . -601) 56475) ((-1214 . -304) 56462) ((-718 . -704) 56311) ((-525 . -780) T) ((-525 . -781) T) ((-554 . -627) 56293) ((-489 . -627) 56253) ((-350 . -446) T) ((-347 . -446) T) ((-339 . -446) T) ((-259 . -446) 56204) ((-519 . -1082) T) ((-514 . -1082) 56154) ((-243 . -446) 56105) ((-1132 . -281) 56084) ((-1160 . -601) 56066) ((-675 . -508) 55999) ((-948 . -285) 55978) ((-540 . -508) 55770) ((-1253 . -601) 55739) ((-1154 . -227) 55723) ((-1095 . -604) 55453) ((-167 . -1133) 55432) ((-1253 . -484) 55416) ((-1156 . -704) 55313) ((-1155 . -704) 55154) ((-877 . -102) T) ((-1149 . -704) 54950) ((-1108 . -704) 54847) ((-1138 . -660) 54831) ((-350 . -397) 54782) ((-347 . -397) 54733) ((-339 . -397) 54684) ((-1009 . -130) T) ((-786 . -508) 54596) ((-290 . -602) NIL) ((-290 . -601) 54578) ((-895 . -446) T) ((-949 . -363) 54531) ((-802 . -363) 54510) ((-504 . -503) 54489) ((-502 . -503) 54468) ((-481 . -281) NIL) ((-476 . -283) 54445) ((-413 . -285) T) ((-349 . -130) T) ((-213 . -281) NIL) ((-680 . -487) NIL) ((-99 . -1094) T) ((-167 . -38) 54273) ((-1225 . -958) 54235) ((-1129 . -304) 54173) ((-1204 . -958) 54142) ((-895 . -397) T) ((-1095 . -1034) 54072) ((-1227 . -546) T) ((-1132 . -592) 54051) ((-112 . -836) T) ((-1046 . -483) 53982) ((-570 . -21) T) ((-570 . -25) T) ((-554 . -21) T) ((-554 . -25) T) ((-489 . -25) T) ((-489 . -21) T) ((-1214 . -1133) 53960) ((-1095 . -229) 53912) ((-48 . -130) T) ((-1176 . -102) T) ((-236 . -1082) 53702) ((-856 . -395) 53679) ((-1070 . -102) T) ((-1058 . -102) T) ((-596 . -102) T) ((-469 . -102) T) ((-1214 . -38) 53508) ((-841 . -38) 53478) ((-718 . -170) 53389) ((-639 . -601) 53371) ((-632 . -1065) T) ((-561 . -38) 53358) ((-955 . -484) 53339) ((-955 . -601) 53305) ((-943 . -102) 53255) ((-850 . -601) 53237) ((-850 . -602) 53159) ((-582 . -508) NIL) ((-1233 . -1041) T) ((-1226 . -1041) T) ((-1205 . -1041) T) ((-585 . -1041) T) ((-584 . -1041) T) ((-1269 . -1094) T) ((-1156 . -170) 53110) ((-1155 . -170) 53041) ((-1149 . -170) 52972) ((-1108 . -170) 52923) ((-989 . -1082) T) ((-956 . -1082) T) ((-899 . -1082) T) ((-1189 . -145) 52902) ((-786 . -784) 52886) ((-685 . -25) T) ((-685 . -21) T) ((-117 . -627) 52863) ((-687 . -871) 52845) ((-422 . -1082) T) ((-311 . -1199) 52824) ((-308 . -1199) T) ((-167 . -395) 52808) ((-1189 . -143) 52787) ((-468 . -958) 52749) ((-128 . -102) T) ((-72 . -601) 52731) ((-108 . -782) T) ((-108 . -779) T) ((-687 . -1023) 52713) ((-311 . -546) 52692) ((-308 . -546) T) ((-1269 . -23) T) ((-133 . -1023) 52674) ((-96 . -604) 52655) ((-476 . -1040) 52552) ((-45 . -283) 52477) ((-236 . -704) 52419) ((-511 . -102) T) ((-476 . -111) 52309) ((-1074 . -102) 52287) ((-1019 . -102) T) ((-631 . -815) 52266) ((-718 . -508) 52209) ((-1038 . -1040) 52193) ((-1117 . -93) T) ((-1046 . -281) 52168) ((-611 . -21) T) ((-611 . -25) T) ((-518 . -1082) T) ((-356 . -102) T) ((-317 . -102) T) ((-656 . -634) 52142) ((-380 . -1040) 52126) ((-1038 . -111) 52105) ((-803 . -406) 52089) ((-117 . -25) T) ((-89 . -601) 52071) ((-117 . -21) T) ((-596 . -304) 51866) ((-469 . -304) 51670) ((-1132 . -602) NIL) ((-380 . -111) 51649) ((-374 . -102) T) ((-210 . -601) 51631) ((-1132 . -601) 51613) ((-1149 . -508) 51382) ((-989 . -704) 51332) ((-1108 . -508) 51302) ((-899 . -704) 51254) ((-476 . -604) 50984) ((-346 . -302) T) ((-1168 . -149) 50934) ((-943 . -304) 50872) ((-823 . -102) T) ((-422 . -704) 50856) ((-221 . -815) T) ((-814 . -102) T) ((-812 . -102) T) ((-473 . -149) 50806) ((-1225 . -1224) 50785) ((-1102 . -1199) T) ((-334 . -1023) 50752) ((-1225 . -1219) 50722) ((-1225 . -1222) 50706) ((-1204 . -1203) 50685) ((-80 . -601) 50667) ((-890 . -601) 50649) ((-1204 . -1219) 50626) ((-1102 . -546) T) ((-906 . -836) T) ((-758 . -836) T) ((-481 . -602) 50556) ((-481 . -601) 50498) ((-374 . -279) T) ((-658 . -836) T) ((-1204 . -1201) 50482) ((-1227 . -1094) T) ((-213 . -602) 50412) ((-213 . -601) 50354) ((-1263 . -634) 50328) ((-1046 . -592) 50303) ((-805 . -604) 50287) ((-59 . -149) 50271) ((-510 . -149) 50255) ((-490 . -149) 50239) ((-354 . -1260) 50223) ((-348 . -1260) 50207) ((-340 . -1260) 50191) ((-311 . -358) 50170) ((-308 . -358) T) ((-476 . -1034) 50100) ((-680 . -627) 50082) ((-1261 . -634) 50056) ((-128 . -304) NIL) ((-1227 . -23) T) ((-675 . -483) 50040) ((-64 . -601) 50022) ((-1095 . -782) 49973) ((-1095 . -779) 49924) ((-540 . -483) 49861) ((-656 . -34) T) ((-476 . -229) 49813) ((-290 . -283) 49792) ((-236 . -170) 49771) ((-803 . -1041) T) ((-44 . -634) 49729) ((-1062 . -363) 49680) ((-718 . -285) 49611) ((-514 . -508) 49544) ((-804 . -1040) 49495) ((-1069 . -143) 49474) ((-354 . -363) 49453) ((-348 . -363) 49432) ((-340 . -363) 49411) ((-1069 . -145) 49390) ((-856 . -227) 49367) ((-804 . -111) 49309) ((-769 . -143) 49288) ((-769 . -145) 49267) ((-259 . -934) 49234) ((-246 . -834) 49213) ((-243 . -934) 49158) ((-245 . -834) 49137) ((-767 . -143) 49116) ((-767 . -145) 49095) ((-150 . -634) 49069) ((-569 . -1082) T) ((-448 . -145) 49048) ((-448 . -143) 49027) ((-656 . -713) T) ((-810 . -601) 49009) ((-1233 . -1082) T) ((-1226 . -1082) T) ((-1205 . -1082) T) ((-1189 . -1183) 48975) ((-1189 . -1180) 48941) ((-1156 . -285) 48920) ((-1155 . -285) 48871) ((-1149 . -285) 48822) ((-1108 . -285) 48801) ((-334 . -885) 48782) ((-989 . -170) T) ((-899 . -170) T) ((-585 . -1082) T) ((-584 . -1082) T) ((-680 . -21) T) ((-680 . -25) T) ((-468 . -1222) 48766) ((-468 . -1219) 48736) ((-413 . -281) 48664) ((-311 . -1094) 48513) ((-308 . -1094) T) ((-1189 . -35) 48479) ((-1189 . -95) 48445) ((-84 . -601) 48427) ((-91 . -102) 48405) ((-1269 . -130) T) ((-581 . -604) 48386) ((-571 . -143) T) ((-571 . -145) 48368) ((-512 . -145) 48350) ((-512 . -143) T) ((-311 . -23) 48202) ((-40 . -337) 48176) ((-308 . -23) T) ((-804 . -604) 48090) ((-1140 . -637) 48072) ((-1256 . -1041) T) ((-1140 . -368) 48054) ((-802 . -634) 47902) ((-1078 . -102) T) ((-1072 . -102) T) ((-1056 . -102) T) ((-167 . -227) 47886) ((-1049 . -102) T) ((-1021 . -102) T) ((-1004 . -102) T) ((-582 . -483) 47868) ((-614 . -102) T) ((-236 . -508) 47801) ((-477 . -102) T) ((-1263 . -713) T) ((-1261 . -713) T) ((-214 . -102) T) ((-1160 . -1040) 47684) ((-1160 . -111) 47553) ((-847 . -171) T) ((-804 . -1034) T) ((-667 . -1065) T) ((-662 . -1065) T) ((-509 . -102) T) ((-504 . -102) T) ((-48 . -627) 47513) ((-502 . -102) T) ((-472 . -1065) T) ((-1253 . -1040) 47483) ((-137 . -1065) T) ((-136 . -1065) T) ((-132 . -1065) T) ((-1019 . -38) 47467) ((-804 . -229) T) ((-804 . -239) 47446) ((-1253 . -111) 47411) ((-1233 . -704) 47308) ((-1226 . -704) 47149) ((-540 . -281) 47128) ((-1214 . -227) 47112) ((-1046 . -602) NIL) ((-594 . -93) T) ((-1046 . -601) 47094) ((-689 . -484) 47078) ((-657 . -93) T) ((-178 . -93) T) ((-159 . -93) T) ((-154 . -93) T) ((-152 . -93) T) ((-1205 . -704) 46874) ((-988 . -905) T) ((-689 . -601) 46843) ((-150 . -713) T) ((-1095 . -363) 46822) ((-989 . -508) NIL) ((-246 . -406) 46791) ((-245 . -406) 46760) ((-1009 . -25) T) ((-1009 . -21) T) ((-585 . -704) 46733) ((-584 . -704) 46630) ((-786 . -281) 46588) ((-126 . -102) 46566) ((-820 . -1023) 46462) ((-167 . -815) 46441) ((-314 . -634) 46338) ((-802 . -34) T) ((-701 . -102) T) ((-1160 . -604) 46191) ((-1102 . -1094) T) ((-1011 . -1195) T) ((-374 . -38) 46156) ((-349 . -25) T) ((-349 . -21) T) ((-183 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-350 . -1248) 46140) ((-347 . -1248) 46124) ((-339 . -1248) 46108) ((-167 . -344) 46087) ((-554 . -836) T) ((-489 . -836) T) ((-1102 . -23) T) ((-87 . -601) 46069) ((-687 . -302) T) ((-823 . -38) 46039) ((-814 . -38) 46009) ((-1253 . -604) 45951) ((-1227 . -130) T) ((-1132 . -283) 45930) ((-949 . -780) 45883) ((-949 . -781) 45836) ((-802 . -778) 45815) ((-116 . -302) T) ((-91 . -304) 45753) ((-661 . -34) T) ((-540 . -592) 45732) ((-48 . -25) T) ((-48 . -21) T) ((-802 . -781) 45683) ((-802 . -780) 45662) ((-687 . -1007) T) ((-639 . -1040) 45646) ((-949 . -713) 45545) ((-802 . -713) 45455) ((-949 . -467) 45408) ((-476 . -782) 45359) ((-476 . -779) 45310) ((-895 . -1248) 45297) ((-1160 . -1034) T) ((-639 . -111) 45276) ((-1160 . -321) 45253) ((-1181 . -102) 45231) ((-1083 . -601) 45213) ((-687 . -539) T) ((-803 . -1082) T) ((-1117 . -484) 45194) ((-1253 . -1034) T) ((-408 . -1082) T) ((-1117 . -601) 45160) ((-246 . -1041) 45090) ((-245 . -1041) 45020) ((-284 . -634) 45007) ((-582 . -281) 44982) ((-675 . -673) 44940) ((-948 . -601) 44922) ((-857 . -102) T) ((-722 . -601) 44904) ((-702 . -601) 44886) ((-1233 . -170) 44837) ((-1226 . -170) 44768) ((-1205 . -170) 44699) ((-685 . -836) T) ((-989 . -285) T) ((-447 . -601) 44681) ((-615 . -713) T) ((-60 . -1082) 44659) ((-241 . -149) 44643) ((-899 . -285) T) ((-1009 . -997) T) ((-615 . -467) T) ((-699 . -1199) 44622) ((-639 . -604) 44540) ((-585 . -170) 44519) ((-584 . -170) 44470) ((-1241 . -836) 44449) ((-699 . -546) 44360) ((-402 . -905) T) ((-402 . -807) 44339) ((-314 . -781) T) ((-955 . -604) 44320) ((-314 . -713) T) ((-413 . -601) 44302) ((-413 . -602) 44209) ((-631 . -1131) 44193) ((-110 . -637) 44175) ((-172 . -302) T) ((-126 . -304) 44113) ((-110 . -368) 44095) ((-393 . -1195) T) ((-311 . -130) 43966) ((-308 . -130) T) ((-69 . -390) T) ((-110 . -123) T) ((-514 . -483) 43950) ((-640 . -1094) T) ((-582 . -19) 43932) ((-61 . -435) T) ((-61 . -390) T) ((-811 . -1082) T) ((-582 . -592) 43907) ((-471 . -1023) 43867) ((-639 . -1034) T) ((-640 . -23) T) ((-1256 . -1082) T) ((-31 . -102) T) ((-803 . -704) 43716) ((-567 . -846) T) ((-117 . -836) NIL) ((-1154 . -406) 43700) ((-1107 . -406) 43684) ((-840 . -406) 43668) ((-858 . -102) 43619) ((-1225 . -102) T) ((-1205 . -508) 43388) ((-1204 . -102) T) ((-1181 . -304) 43326) ((-519 . -93) T) ((-1156 . -281) 43311) ((-307 . -601) 43293) ((-1155 . -281) 43278) ((-1084 . -1082) T) ((-1062 . -634) 43188) ((-675 . -601) 43120) ((-284 . -713) T) ((-108 . -894) NIL) ((-675 . -602) 43081) ((-589 . -601) 43063) ((-567 . -601) 43045) ((-540 . -602) NIL) ((-540 . -601) 43027) ((-523 . -601) 43009) ((-1149 . -281) 42857) ((-481 . -1040) 42807) ((-698 . -446) T) ((-505 . -503) 42786) ((-501 . -503) 42765) ((-213 . -1040) 42715) ((-354 . -634) 42667) ((-348 . -634) 42619) ((-221 . -834) T) ((-340 . -634) 42571) ((-590 . -102) 42521) ((-476 . -363) 42500) ((-108 . -634) 42450) ((-481 . -111) 42384) ((-236 . -483) 42368) ((-338 . -145) 42350) ((-338 . -143) T) ((-167 . -365) 42321) ((-928 . -1239) 42305) ((-213 . -111) 42239) ((-857 . -304) 42204) ((-928 . -1082) 42154) ((-786 . -602) 42115) ((-786 . -601) 42097) ((-705 . -102) T) ((-326 . -1082) T) ((-210 . -604) 42074) ((-1102 . -130) T) ((-701 . -38) 42044) ((-311 . -487) 42023) ((-494 . -1195) T) ((-1225 . -279) 41989) ((-1204 . -279) 41955) ((-322 . -149) 41939) ((-1046 . -283) 41914) ((-1256 . -704) 41884) ((-1141 . -34) T) ((-1265 . -1023) 41861) ((-462 . -601) 41843) ((-478 . -34) T) ((-376 . -1023) 41827) ((-1154 . -1041) T) ((-1107 . -1041) T) ((-840 . -1041) T) ((-1045 . -834) T) ((-481 . -604) 41777) ((-213 . -604) 41727) ((-803 . -170) 41638) ((-514 . -281) 41615) ((-1233 . -285) 41594) ((-1176 . -359) 41568) ((-1070 . -261) 41552) ((-657 . -484) 41533) ((-657 . -601) 41499) ((-594 . -484) 41480) ((-117 . -977) 41457) ((-594 . -601) 41407) ((-468 . -102) T) ((-178 . -484) 41388) ((-178 . -601) 41354) ((-159 . -484) 41335) ((-154 . -484) 41316) ((-152 . -484) 41297) ((-159 . -601) 41263) ((-154 . -601) 41229) ((-360 . -1082) T) ((-246 . -1082) T) ((-245 . -1082) T) ((-152 . -601) 41195) ((-1226 . -285) 41146) ((-1205 . -285) 41097) ((-857 . -1133) 41075) ((-1156 . -987) 41041) ((-596 . -359) 40981) ((-1155 . -987) 40947) ((-596 . -225) 40894) ((-582 . -601) 40876) ((-582 . -602) NIL) ((-680 . -836) T) ((-469 . -225) 40826) ((-481 . -1034) T) ((-1149 . -987) 40792) ((-88 . -434) T) ((-88 . -390) T) ((-213 . -1034) T) ((-1108 . -987) 40758) ((-1062 . -713) T) ((-699 . -1094) T) ((-585 . -285) 40737) ((-584 . -285) 40716) ((-481 . -239) T) ((-481 . -229) T) ((-213 . -239) T) ((-213 . -229) T) ((-1147 . -601) 40698) ((-857 . -38) 40650) ((-354 . -713) T) ((-348 . -713) T) ((-340 . -713) T) ((-108 . -781) T) ((-108 . -778) T) ((-699 . -23) T) ((-108 . -713) T) ((-514 . -1229) 40634) ((-1269 . -25) T) ((-468 . -279) 40600) ((-1269 . -21) T) ((-1204 . -304) 40539) ((-1158 . -102) T) ((-40 . -143) 40511) ((-40 . -145) 40483) ((-514 . -592) 40460) ((-1095 . -634) 40308) ((-590 . -304) 40246) ((-45 . -637) 40196) ((-45 . -652) 40146) ((-45 . -368) 40096) ((-1140 . -34) T) ((-856 . -834) NIL) ((-640 . -130) T) ((-479 . -601) 40078) ((-236 . -281) 40055) ((-182 . -1082) T) ((-633 . -34) T) ((-620 . -34) T) ((-1069 . -446) 40006) ((-803 . -508) 39880) ((-769 . -446) 39811) ((-767 . -446) 39762) ((-448 . -446) 39713) ((-937 . -406) 39697) ((-718 . -601) 39679) ((-246 . -704) 39621) ((-245 . -704) 39563) ((-718 . -602) 39424) ((-475 . -406) 39408) ((-334 . -297) T) ((-518 . -93) T) ((-346 . -905) T) ((-985 . -102) 39386) ((-1009 . -836) T) ((-60 . -508) 39319) ((-1204 . -1133) 39271) ((-989 . -281) NIL) ((-221 . -1041) T) ((-374 . -815) T) ((-1095 . -34) T) ((-571 . -446) T) ((-512 . -446) T) ((-1208 . -1075) 39255) ((-1208 . -1082) 39233) ((-236 . -592) 39210) ((-1208 . -1077) 39167) ((-1156 . -601) 39149) ((-1155 . -601) 39131) ((-1149 . -601) 39113) ((-1149 . -602) NIL) ((-1108 . -601) 39095) ((-857 . -395) 39079) ((-530 . -102) T) ((-1225 . -38) 38920) ((-1204 . -38) 38734) ((-855 . -145) T) ((-689 . -604) 38718) ((-571 . -397) T) ((-48 . -836) T) ((-512 . -397) T) ((-1237 . -102) T) ((-1227 . -21) T) ((-1227 . -25) T) ((-1095 . -778) 38697) ((-1095 . -781) 38648) ((-1095 . -780) 38627) ((-978 . -1082) T) ((-1012 . -34) T) ((-848 . -1082) T) ((-1095 . -713) 38537) ((-650 . -102) T) ((-632 . -102) T) ((-540 . -283) 38516) ((-1168 . -102) T) ((-470 . -34) T) ((-457 . -34) T) ((-350 . -102) T) ((-347 . -102) T) ((-339 . -102) T) ((-259 . -102) T) ((-243 . -102) T) ((-471 . -302) T) ((-1045 . -1041) T) ((-937 . -1041) T) ((-311 . -627) 38422) ((-308 . -627) 38383) ((-475 . -1041) T) ((-473 . -102) T) ((-431 . -601) 38365) ((-1154 . -1082) T) ((-1107 . -1082) T) ((-840 . -1082) T) ((-1123 . -102) T) ((-803 . -285) 38296) ((-948 . -1040) 38179) ((-471 . -1007) T) ((-722 . -1040) 38149) ((-447 . -1040) 38119) ((-1129 . -1103) 38103) ((-1084 . -508) 38036) ((-948 . -111) 37905) ((-895 . -102) T) ((-722 . -111) 37870) ((-519 . -484) 37851) ((-519 . -601) 37817) ((-59 . -102) 37767) ((-514 . -602) 37728) ((-514 . -601) 37640) ((-513 . -102) 37618) ((-510 . -102) 37568) ((-491 . -102) 37546) ((-490 . -102) 37496) ((-447 . -111) 37459) ((-246 . -170) 37438) ((-245 . -170) 37417) ((-413 . -1040) 37391) ((-1189 . -958) 37353) ((-984 . -1094) T) ((-1117 . -604) 37334) ((-928 . -508) 37267) ((-481 . -782) T) ((-468 . -38) 37108) ((-413 . -111) 37075) ((-481 . -779) T) ((-985 . -304) 37013) ((-213 . -782) T) ((-213 . -779) T) ((-984 . -23) T) ((-699 . -130) T) ((-1204 . -395) 36983) ((-311 . -25) 36835) ((-167 . -406) 36819) ((-311 . -21) 36690) ((-308 . -25) T) ((-308 . -21) T) ((-850 . -363) T) ((-948 . -604) 36543) ((-110 . -34) T) ((-722 . -604) 36499) ((-702 . -604) 36481) ((-476 . -634) 36329) ((-856 . -1041) T) ((-582 . -283) 36304) ((-570 . -145) T) ((-554 . -145) T) ((-489 . -145) T) ((-1154 . -704) 36133) ((-1107 . -704) 35982) ((-1102 . -627) 35964) ((-840 . -704) 35934) ((-656 . -1195) T) ((-1 . -102) T) ((-413 . -604) 35842) ((-236 . -601) 35573) ((-1097 . -1082) T) ((-1214 . -406) 35557) ((-1168 . -304) 35361) ((-948 . -1034) T) ((-722 . -1034) T) ((-702 . -1034) T) ((-631 . -1082) 35311) ((-1038 . -634) 35295) ((-841 . -406) 35279) ((-505 . -102) T) ((-501 . -102) T) ((-243 . -304) 35266) ((-259 . -304) 35253) ((-948 . -321) 35232) ((-380 . -634) 35216) ((-473 . -304) 35020) ((-246 . -508) 34953) ((-656 . -1023) 34849) ((-245 . -508) 34782) ((-1123 . -304) 34708) ((-806 . -1082) T) ((-786 . -1040) 34692) ((-1233 . -281) 34677) ((-1226 . -281) 34662) ((-1205 . -281) 34510) ((-381 . -1082) T) ((-319 . -1082) T) ((-413 . -1034) T) ((-167 . -1041) T) ((-59 . -304) 34448) ((-786 . -111) 34427) ((-584 . -281) 34412) ((-513 . -304) 34350) ((-510 . -304) 34288) ((-491 . -304) 34226) ((-490 . -304) 34164) ((-413 . -229) 34143) ((-476 . -34) T) ((-989 . -602) 34073) ((-221 . -1082) T) ((-989 . -601) 34033) ((-956 . -601) 33993) ((-956 . -602) 33968) ((-899 . -601) 33950) ((-685 . -145) T) ((-687 . -905) T) ((-687 . -807) T) ((-422 . -601) 33932) ((-1102 . -21) T) ((-1102 . -25) T) ((-656 . -372) 33916) ((-116 . -905) T) ((-857 . -227) 33900) ((-78 . -1195) T) ((-126 . -125) 33884) ((-1038 . -34) T) ((-1263 . -1023) 33858) ((-1261 . -1023) 33815) ((-1214 . -1041) T) ((-841 . -1041) T) ((-476 . -778) 33794) ((-350 . -1133) 33773) ((-347 . -1133) 33752) ((-339 . -1133) 33731) ((-476 . -781) 33682) ((-476 . -780) 33661) ((-223 . -34) T) ((-476 . -713) 33571) ((-786 . -604) 33419) ((-60 . -483) 33403) ((-561 . -1041) T) ((-1154 . -170) 33294) ((-1107 . -170) 33205) ((-1045 . -1082) T) ((-1069 . -934) 33150) ((-937 . -1082) T) ((-804 . -634) 33101) ((-769 . -934) 33070) ((-700 . -1082) T) ((-767 . -934) 33037) ((-510 . -277) 33021) ((-656 . -885) 32980) ((-475 . -1082) T) ((-448 . -934) 32947) ((-79 . -1195) T) ((-350 . -38) 32912) ((-347 . -38) 32877) ((-339 . -38) 32842) ((-259 . -38) 32691) ((-243 . -38) 32540) ((-895 . -1133) T) ((-518 . -484) 32521) ((-611 . -145) 32500) ((-611 . -143) 32479) ((-518 . -601) 32445) ((-117 . -145) T) ((-117 . -143) NIL) ((-409 . -713) T) ((-786 . -1034) T) ((-338 . -446) T) ((-1233 . -987) 32411) ((-1226 . -987) 32377) ((-1205 . -987) 32343) ((-895 . -38) 32308) ((-221 . -704) 32273) ((-314 . -47) 32243) ((-40 . -404) 32215) ((-138 . -601) 32197) ((-984 . -130) T) ((-802 . -1195) T) ((-172 . -905) T) ((-594 . -604) 32178) ((-338 . -397) T) ((-657 . -604) 32159) ((-178 . -604) 32140) ((-152 . -604) 32121) ((-159 . -604) 32102) ((-154 . -604) 32083) ((-514 . -283) 32060) ((-802 . -1023) 31887) ((-45 . -34) T) ((-667 . -102) T) ((-662 . -102) T) ((-648 . -102) T) ((-640 . -21) T) ((-640 . -25) T) ((-1204 . -227) 31857) ((-1084 . -483) 31841) ((-472 . -102) T) ((-661 . -1195) T) ((-241 . -102) 31791) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-856 . -1082) T) ((-1160 . -634) 31716) ((-1045 . -704) 31703) ((-718 . -1040) 31546) ((-1154 . -508) 31493) ((-937 . -704) 31342) ((-1107 . -508) 31294) ((-1252 . -1082) T) ((-1251 . -1082) T) ((-475 . -704) 31143) ((-67 . -601) 31125) ((-718 . -111) 30954) ((-928 . -483) 30938) ((-1253 . -634) 30898) ((-804 . -713) T) ((-1156 . -1040) 30781) ((-1155 . -1040) 30616) ((-1149 . -1040) 30406) ((-1108 . -1040) 30289) ((-988 . -1199) T) ((-1076 . -102) 30267) ((-802 . -372) 30236) ((-569 . -601) 30218) ((-988 . -546) T) ((-1156 . -111) 30087) ((-1155 . -111) 29908) ((-1149 . -111) 29677) ((-1108 . -111) 29546) ((-1087 . -1085) 29510) ((-374 . -834) T) ((-1233 . -601) 29492) ((-1226 . -601) 29474) ((-1205 . -601) 29456) ((-1205 . -602) NIL) ((-236 . -283) 29433) ((-40 . -446) T) ((-221 . -170) T) ((-167 . -1082) T) ((-718 . -604) 29218) ((-680 . -145) T) ((-680 . -143) NIL) ((-585 . -601) 29200) ((-584 . -601) 29182) ((-883 . -1082) T) ((-827 . -1082) T) ((-795 . -1082) T) ((-756 . -1082) T) ((-644 . -838) 29166) ((-663 . -1082) T) ((-802 . -885) 29098) ((-40 . -397) NIL) ((-1156 . -604) 28980) ((-1102 . -647) T) ((-856 . -704) 28925) ((-246 . -483) 28909) ((-245 . -483) 28893) ((-1155 . -604) 28636) ((-1149 . -604) 28431) ((-699 . -627) 28379) ((-639 . -634) 28353) ((-1108 . -604) 28235) ((-290 . -34) T) ((-718 . -1034) T) ((-571 . -1248) 28222) ((-512 . -1248) 28199) ((-1214 . -1082) T) ((-1154 . -285) 28110) ((-1107 . -285) 28041) ((-1045 . -170) T) ((-841 . -1082) T) ((-937 . -170) 27952) ((-769 . -1217) 27936) ((-631 . -508) 27869) ((-77 . -601) 27851) ((-718 . -321) 27816) ((-1160 . -713) T) ((-561 . -1082) T) ((-475 . -170) 27727) ((-241 . -304) 27665) ((-1124 . -1094) T) ((-70 . -601) 27647) ((-1253 . -713) T) ((-1156 . -1034) T) ((-1155 . -1034) T) ((-322 . -102) 27597) ((-1149 . -1034) T) ((-1124 . -23) T) ((-1108 . -1034) T) ((-91 . -1103) 27581) ((-851 . -1094) T) ((-1156 . -229) 27540) ((-1155 . -239) 27519) ((-1155 . -229) 27471) ((-1149 . -229) 27358) ((-1149 . -239) 27337) ((-314 . -885) 27243) ((-851 . -23) T) ((-167 . -704) 27071) ((-402 . -1199) T) ((-1083 . -363) T) ((-1009 . -145) T) ((-988 . -358) T) ((-855 . -446) T) ((-928 . -281) 27048) ((-311 . -836) T) ((-308 . -836) NIL) ((-859 . -102) T) ((-699 . -25) T) ((-402 . -546) T) ((-699 . -21) T) ((-519 . -604) 27029) ((-349 . -145) 27011) ((-349 . -143) T) ((-1129 . -1082) 26989) ((-447 . -707) T) ((-75 . -601) 26971) ((-114 . -836) T) ((-241 . -277) 26955) ((-236 . -1040) 26852) ((-81 . -601) 26834) ((-722 . -363) 26787) ((-1158 . -815) T) ((-724 . -231) 26771) ((-1141 . -1195) T) ((-139 . -231) 26753) ((-236 . -111) 26643) ((-1214 . -704) 26472) ((-48 . -145) T) ((-856 . -170) T) ((-841 . -704) 26442) ((-478 . -1195) T) ((-937 . -508) 26389) ((-639 . -713) T) ((-561 . -704) 26376) ((-1019 . -1041) T) ((-475 . -508) 26319) ((-928 . -19) 26303) ((-928 . -592) 26280) ((-803 . -602) NIL) ((-803 . -601) 26262) ((-989 . -1040) 26212) ((-408 . -601) 26194) ((-246 . -281) 26171) ((-245 . -281) 26148) ((-481 . -894) NIL) ((-311 . -29) 26118) ((-108 . -1195) T) ((-988 . -1094) T) ((-213 . -894) NIL) ((-899 . -1040) 26070) ((-1062 . -1023) 25966) ((-989 . -111) 25900) ((-988 . -23) T) ((-724 . -681) 25884) ((-259 . -227) 25868) ((-422 . -1040) 25852) ((-374 . -1041) T) ((-236 . -604) 25582) ((-899 . -111) 25520) ((-680 . -1183) NIL) ((-481 . -634) 25470) ((-108 . -869) 25452) ((-108 . -871) 25434) ((-680 . -1180) NIL) ((-213 . -634) 25384) ((-354 . -1023) 25368) ((-348 . -1023) 25352) ((-322 . -304) 25290) ((-340 . -1023) 25274) ((-221 . -285) T) ((-422 . -111) 25253) ((-60 . -601) 25185) ((-167 . -170) T) ((-1102 . -836) T) ((-108 . -1023) 25145) ((-877 . -1082) T) ((-823 . -1041) T) ((-814 . -1041) T) ((-680 . -35) NIL) ((-680 . -95) NIL) ((-308 . -977) 25106) ((-181 . -102) T) ((-570 . -446) T) ((-554 . -446) T) ((-489 . -446) T) ((-402 . -358) T) ((-236 . -1034) 25036) ((-1132 . -34) T) ((-471 . -905) T) ((-984 . -627) 24984) ((-246 . -592) 24961) ((-245 . -592) 24938) ((-1062 . -372) 24922) ((-856 . -508) 24830) ((-236 . -229) 24782) ((-1140 . -1195) T) ((-989 . -604) 24732) ((-899 . -604) 24669) ((-811 . -601) 24651) ((-1264 . -1094) T) ((-1256 . -601) 24633) ((-1214 . -170) 24524) ((-422 . -604) 24493) ((-108 . -372) 24475) ((-108 . -333) 24457) ((-1045 . -285) T) ((-937 . -285) 24388) ((-786 . -363) 24367) ((-633 . -1195) T) ((-620 . -1195) T) ((-475 . -285) 24298) ((-561 . -170) T) ((-322 . -277) 24282) ((-1264 . -23) T) ((-1189 . -102) T) ((-1176 . -1082) T) ((-1070 . -1082) T) ((-1058 . -1082) T) ((-83 . -601) 24264) ((-698 . -102) T) ((-350 . -344) 24243) ((-596 . -1082) T) ((-347 . -344) 24222) ((-339 . -344) 24201) ((-469 . -1082) T) ((-1168 . -225) 24151) ((-259 . -248) 24113) ((-1124 . -130) T) ((-596 . -598) 24089) ((-1062 . -885) 24022) ((-989 . -1034) T) ((-899 . -1034) T) ((-469 . -598) 24001) ((-1149 . -779) NIL) ((-1149 . -782) NIL) ((-1084 . -602) 23962) ((-473 . -225) 23912) ((-1084 . -601) 23894) ((-989 . -239) T) ((-989 . -229) T) ((-422 . -1034) T) ((-943 . -1082) 23844) ((-899 . -239) T) ((-851 . -130) T) ((-685 . -446) T) ((-829 . -1094) 23823) ((-108 . -885) NIL) ((-1189 . -279) 23789) ((-857 . -834) 23768) ((-1095 . -1195) T) ((-890 . -713) T) ((-167 . -508) 23680) ((-984 . -25) T) ((-890 . -467) T) ((-402 . -1094) T) ((-481 . -781) T) ((-481 . -778) T) ((-895 . -344) T) ((-481 . -713) T) ((-213 . -781) T) ((-213 . -778) T) ((-984 . -21) T) ((-213 . -713) T) ((-829 . -23) 23632) ((-518 . -604) 23613) ((-314 . -302) 23592) ((-1020 . -231) 23538) ((-402 . -23) T) ((-928 . -602) 23499) ((-928 . -601) 23411) ((-631 . -483) 23395) ((-45 . -995) 23345) ((-605 . -952) T) ((-485 . -102) T) ((-326 . -601) 23327) ((-1095 . -1023) 23154) ((-582 . -637) 23136) ((-128 . -1082) T) ((-582 . -368) 23118) ((-338 . -1248) 23095) ((-1012 . -1195) T) ((-856 . -285) T) ((-1214 . -508) 23042) ((-470 . -1195) T) ((-457 . -1195) T) ((-575 . -102) T) ((-1154 . -281) 22969) ((-611 . -446) 22948) ((-985 . -980) 22932) ((-1256 . -377) 22904) ((-511 . -1082) T) ((-117 . -446) T) ((-1175 . -102) T) ((-1074 . -1082) 22882) ((-1019 . -1082) T) ((-1097 . -93) T) ((-878 . -836) T) ((-346 . -1199) T) ((-1233 . -1040) 22765) ((-1095 . -372) 22734) ((-1226 . -1040) 22569) ((-1205 . -1040) 22359) ((-1233 . -111) 22228) ((-1226 . -111) 22049) ((-1205 . -111) 21818) ((-1189 . -304) 21805) ((-346 . -546) T) ((-360 . -601) 21787) ((-284 . -302) T) ((-585 . -1040) 21760) ((-584 . -1040) 21643) ((-356 . -1082) T) ((-317 . -1082) T) ((-246 . -601) 21604) ((-245 . -601) 21565) ((-988 . -130) T) ((-623 . -23) T) ((-680 . -404) 21532) ((-595 . -23) T) ((-644 . -102) T) ((-585 . -111) 21503) ((-584 . -111) 21372) ((-374 . -1082) T) ((-331 . -102) T) ((-167 . -285) 21283) ((-1204 . -834) 21236) ((-701 . -1041) T) ((-1129 . -508) 21169) ((-1095 . -885) 21101) ((-823 . -1082) T) ((-814 . -1082) T) ((-812 . -1082) T) ((-97 . -102) T) ((-142 . -836) T) ((-600 . -869) 21085) ((-110 . -1195) T) ((-1069 . -102) T) ((-1046 . -34) T) ((-769 . -102) T) ((-767 . -102) T) ((-1233 . -604) 20967) ((-1226 . -604) 20710) ((-455 . -102) T) ((-448 . -102) T) ((-1205 . -604) 20505) ((-236 . -782) 20456) ((-236 . -779) 20407) ((-635 . -102) T) ((-585 . -604) 20365) ((-584 . -604) 20247) ((-1214 . -285) 20158) ((-650 . -622) 20142) ((-182 . -601) 20124) ((-631 . -281) 20101) ((-1019 . -704) 20085) ((-561 . -285) T) ((-948 . -634) 20010) ((-1264 . -130) T) ((-722 . -634) 19970) ((-702 . -634) 19957) ((-270 . -102) T) ((-447 . -634) 19887) ((-50 . -102) T) ((-571 . -102) T) ((-512 . -102) T) ((-1233 . -1034) T) ((-1226 . -1034) T) ((-1205 . -1034) T) ((-1233 . -229) 19846) ((-317 . -704) 19828) ((-1226 . -239) 19807) ((-1226 . -229) 19759) ((-1205 . -229) 19646) ((-1205 . -239) 19625) ((-1189 . -38) 19522) ((-989 . -782) T) ((-585 . -1034) T) ((-584 . -1034) T) ((-989 . -779) T) ((-956 . -782) T) ((-956 . -779) T) ((-857 . -1041) T) ((-855 . -854) 19506) ((-109 . -601) 19488) ((-680 . -446) T) ((-374 . -704) 19453) ((-413 . -634) 19427) ((-699 . -836) 19406) ((-698 . -38) 19371) ((-584 . -229) 19330) ((-40 . -711) 19302) ((-346 . -324) 19279) ((-346 . -358) T) ((-1062 . -302) 19230) ((-289 . -1094) 19111) ((-1088 . -1195) T) ((-169 . -102) T) ((-1208 . -601) 19078) ((-829 . -130) 19030) ((-631 . -1229) 19014) ((-823 . -704) 18984) ((-814 . -704) 18954) ((-476 . -1195) T) ((-354 . -302) T) ((-348 . -302) T) ((-340 . -302) T) ((-631 . -592) 18931) ((-402 . -130) T) ((-514 . -652) 18915) ((-108 . -302) T) ((-289 . -23) 18798) ((-514 . -637) 18782) ((-680 . -397) NIL) ((-514 . -368) 18766) ((-286 . -601) 18748) ((-91 . -1082) 18726) ((-108 . -1007) T) ((-554 . -141) T) ((-1241 . -149) 18710) ((-476 . -1023) 18537) ((-1227 . -143) 18498) ((-1227 . -145) 18459) ((-1038 . -1195) T) ((-978 . -601) 18441) ((-848 . -601) 18423) ((-803 . -1040) 18266) ((-1252 . -93) T) ((-1251 . -93) T) ((-1154 . -602) NIL) ((-1078 . -1082) T) ((-1072 . -1082) T) ((-1069 . -304) 18253) ((-1056 . -1082) T) ((-223 . -1195) T) ((-1049 . -1082) T) ((-1021 . -1082) T) ((-1004 . -1082) T) ((-769 . -304) 18240) ((-767 . -304) 18227) ((-1154 . -601) 18209) ((-803 . -111) 18038) ((-1107 . -601) 18020) ((-614 . -1082) T) ((-567 . -171) T) ((-523 . -171) T) ((-448 . -304) 18007) ((-477 . -1082) T) ((-1107 . -602) 17755) ((-1019 . -170) T) ((-928 . -283) 17732) ((-214 . -1082) T) ((-840 . -601) 17714) ((-596 . -508) 17497) ((-81 . -604) 17438) ((-805 . -1023) 17422) ((-469 . -508) 17214) ((-948 . -713) T) ((-722 . -713) T) ((-702 . -713) T) ((-346 . -1094) T) ((-1161 . -601) 17196) ((-219 . -102) T) ((-476 . -372) 17165) ((-509 . -1082) T) ((-504 . -1082) T) ((-502 . -1082) T) ((-786 . -634) 17139) ((-1009 . -446) T) ((-943 . -508) 17072) ((-346 . -23) T) ((-623 . -130) T) ((-595 . -130) T) ((-349 . -446) T) ((-236 . -363) 17051) ((-374 . -170) T) ((-1225 . -1041) T) ((-1204 . -1041) T) ((-221 . -987) T) ((-803 . -604) 16788) ((-685 . -382) T) ((-413 . -713) T) ((-687 . -1199) T) ((-1124 . -627) 16736) ((-570 . -854) 16720) ((-1141 . -1171) 16696) ((-687 . -546) T) ((-126 . -1082) 16674) ((-1256 . -1040) 16658) ((-701 . -1082) T) ((-476 . -885) 16590) ((-183 . -1082) T) ((-644 . -38) 16560) ((-349 . -397) T) ((-311 . -145) 16539) ((-311 . -143) 16518) ((-128 . -508) NIL) ((-116 . -546) T) ((-308 . -145) 16474) ((-308 . -143) 16430) ((-48 . -446) T) ((-160 . -1082) T) ((-155 . -1082) T) ((-1141 . -107) 16377) ((-769 . -1133) 16355) ((-675 . -34) T) ((-1256 . -111) 16334) ((-540 . -34) T) ((-478 . -107) 16318) ((-246 . -283) 16295) ((-245 . -283) 16272) ((-856 . -281) 16223) ((-45 . -1195) T) ((-803 . -1034) T) ((-1160 . -47) 16200) ((-803 . -321) 16162) ((-1069 . -38) 16011) ((-803 . -229) 15990) ((-769 . -38) 15819) ((-767 . -38) 15668) ((-1097 . -484) 15649) ((-448 . -38) 15498) ((-1097 . -601) 15464) ((-1100 . -102) T) ((-631 . -602) 15425) ((-631 . -601) 15337) ((-571 . -1133) T) ((-512 . -1133) T) ((-1129 . -483) 15321) ((-1181 . -1082) 15299) ((-1124 . -25) T) ((-1124 . -21) T) ((-1256 . -604) 15248) ((-468 . -1041) T) ((-1205 . -779) NIL) ((-1205 . -782) NIL) ((-984 . -836) 15227) ((-806 . -601) 15209) ((-851 . -21) T) ((-851 . -25) T) ((-786 . -713) T) ((-172 . -1199) T) ((-571 . -38) 15174) ((-512 . -38) 15139) ((-381 . -601) 15121) ((-319 . -601) 15103) ((-167 . -281) 15061) ((-63 . -1195) T) ((-112 . -102) T) ((-857 . -1082) T) ((-172 . -546) T) ((-701 . -704) 15031) ((-289 . -130) 14914) ((-221 . -601) 14896) ((-221 . -602) 14826) ((-988 . -627) 14765) ((-1256 . -1034) T) ((-1102 . -145) T) ((-620 . -1171) 14740) ((-718 . -894) 14719) ((-582 . -34) T) ((-633 . -107) 14703) ((-620 . -107) 14649) ((-1214 . -281) 14576) ((-718 . -634) 14501) ((-290 . -1195) T) ((-1160 . -1023) 14397) ((-928 . -606) 14374) ((-567 . -566) T) ((-567 . -521) T) ((-523 . -521) T) ((-1149 . -894) NIL) ((-1045 . -602) 14289) ((-1045 . -601) 14271) ((-937 . -601) 14253) ((-700 . -484) 14203) ((-338 . -102) T) ((-246 . -1040) 14100) ((-245 . -1040) 13997) ((-389 . -102) T) ((-31 . -1082) T) ((-937 . -602) 13858) ((-700 . -601) 13793) ((-1254 . -1188) 13762) ((-475 . -601) 13744) ((-475 . -602) 13605) ((-243 . -406) 13589) ((-259 . -406) 13573) ((-246 . -111) 13463) ((-245 . -111) 13353) ((-1156 . -634) 13278) ((-1155 . -634) 13175) ((-1149 . -634) 13027) ((-1108 . -634) 12952) ((-346 . -130) T) ((-82 . -435) T) ((-82 . -390) T) ((-988 . -25) T) ((-988 . -21) T) ((-858 . -1082) 12903) ((-857 . -704) 12855) ((-374 . -285) T) ((-167 . -987) 12807) ((-680 . -382) T) ((-984 . -982) 12791) ((-687 . -1094) T) ((-680 . -164) 12773) ((-1225 . -1082) T) ((-1204 . -1082) T) ((-311 . -1180) 12752) ((-311 . -1183) 12731) ((-1146 . -102) T) ((-311 . -944) 12710) ((-133 . -1094) T) ((-116 . -1094) T) ((-590 . -1239) 12694) ((-687 . -23) T) ((-590 . -1082) 12644) ((-311 . -95) 12623) ((-91 . -508) 12556) ((-172 . -358) T) ((-246 . -604) 12286) ((-245 . -604) 12016) ((-311 . -35) 11995) ((-596 . -483) 11929) ((-133 . -23) T) ((-116 . -23) T) ((-951 . -102) T) ((-705 . -1082) T) ((-469 . -483) 11866) ((-402 . -627) 11814) ((-639 . -1023) 11710) ((-943 . -483) 11694) ((-350 . -1041) T) ((-347 . -1041) T) ((-339 . -1041) T) ((-259 . -1041) T) ((-243 . -1041) T) ((-856 . -602) NIL) ((-856 . -601) 11676) ((-1252 . -484) 11657) ((-1251 . -484) 11638) ((-1264 . -21) T) ((-1252 . -601) 11604) ((-1251 . -601) 11570) ((-561 . -987) T) ((-718 . -713) T) ((-1264 . -25) T) ((-246 . -1034) 11500) ((-245 . -1034) 11430) ((-72 . -1195) T) ((-246 . -229) 11382) ((-245 . -229) 11334) ((-40 . -102) T) ((-895 . -1041) T) ((-128 . -483) 11316) ((-1163 . -102) T) ((-1156 . -713) T) ((-1155 . -713) T) ((-1149 . -713) T) ((-1149 . -778) NIL) ((-1149 . -781) NIL) ((-939 . -102) T) ((-906 . -102) T) ((-1108 . -713) T) ((-758 . -102) T) ((-658 . -102) T) ((-468 . -1082) T) ((-334 . -1094) T) ((-172 . -1094) T) ((-314 . -905) 11295) ((-1225 . -704) 11136) ((-857 . -170) T) ((-1204 . -704) 10950) ((-829 . -21) 10902) ((-829 . -25) 10854) ((-241 . -1131) 10838) ((-126 . -508) 10771) ((-402 . -25) T) ((-402 . -21) T) ((-334 . -23) T) ((-167 . -602) 10537) ((-167 . -601) 10519) ((-172 . -23) T) ((-631 . -283) 10496) ((-514 . -34) T) ((-883 . -601) 10478) ((-89 . -1195) T) ((-827 . -601) 10460) ((-795 . -601) 10442) ((-756 . -601) 10424) ((-663 . -601) 10406) ((-236 . -634) 10254) ((-1158 . -1082) T) ((-1154 . -1040) 10077) ((-1132 . -1195) T) ((-1107 . -1040) 9920) ((-840 . -1040) 9904) ((-1208 . -606) 9888) ((-1154 . -111) 9697) ((-1107 . -111) 9526) ((-840 . -111) 9505) ((-1214 . -602) NIL) ((-1214 . -601) 9487) ((-338 . -1133) T) ((-841 . -601) 9469) ((-1058 . -281) 9448) ((-80 . -1195) T) ((-989 . -894) NIL) ((-596 . -281) 9424) ((-1181 . -508) 9357) ((-481 . -1195) T) ((-561 . -601) 9339) ((-469 . -281) 9318) ((-511 . -93) T) ((-213 . -1195) T) ((-1069 . -227) 9302) ((-284 . -905) T) ((-804 . -302) 9281) ((-855 . -102) T) ((-769 . -227) 9265) ((-989 . -634) 9215) ((-943 . -281) 9192) ((-899 . -634) 9144) ((-623 . -21) T) ((-623 . -25) T) ((-595 . -21) T) ((-338 . -38) 9109) ((-680 . -711) 9076) ((-481 . -869) 9058) ((-481 . -871) 9040) ((-468 . -704) 8881) ((-213 . -869) 8863) ((-64 . -1195) T) ((-213 . -871) 8845) ((-595 . -25) T) ((-422 . -634) 8819) ((-1154 . -604) 8588) ((-481 . -1023) 8548) ((-857 . -508) 8460) ((-1107 . -604) 8252) ((-840 . -604) 8170) ((-213 . -1023) 8130) ((-236 . -34) T) ((-985 . -1082) 8108) ((-1225 . -170) 8039) ((-1204 . -170) 7970) ((-699 . -143) 7949) ((-699 . -145) 7928) ((-687 . -130) T) ((-135 . -459) 7905) ((-1129 . -601) 7837) ((-644 . -642) 7821) ((-128 . -281) 7796) ((-116 . -130) T) ((-471 . -1199) T) ((-596 . -592) 7772) ((-469 . -592) 7751) ((-331 . -330) 7720) ((-530 . -1082) T) ((-471 . -546) T) ((-1154 . -1034) T) ((-1107 . -1034) T) ((-840 . -1034) T) ((-236 . -778) 7699) ((-236 . -781) 7650) ((-236 . -780) 7629) ((-1154 . -321) 7606) ((-236 . -713) 7516) ((-943 . -19) 7500) ((-481 . -372) 7482) ((-481 . -333) 7464) ((-1107 . -321) 7436) ((-349 . -1248) 7413) ((-213 . -372) 7395) ((-213 . -333) 7377) ((-943 . -592) 7354) ((-1154 . -229) T) ((-650 . -1082) T) ((-632 . -1082) T) ((-1237 . -1082) T) ((-1168 . -1082) T) ((-1069 . -248) 7291) ((-350 . -1082) T) ((-347 . -1082) T) ((-339 . -1082) T) ((-259 . -1082) T) ((-243 . -1082) T) ((-84 . -1195) T) ((-127 . -102) 7269) ((-121 . -102) 7247) ((-1168 . -598) 7226) ((-473 . -1082) T) ((-1123 . -1082) T) ((-473 . -598) 7205) ((-246 . -782) 7156) ((-246 . -779) 7107) ((-245 . -782) 7058) ((-40 . -1133) NIL) ((-245 . -779) 7009) ((-1097 . -604) 6990) ((-128 . -19) 6972) ((-1062 . -905) 6923) ((-989 . -781) T) ((-989 . -778) T) ((-989 . -713) T) ((-956 . -781) T) ((-128 . -592) 6898) ((-899 . -713) T) ((-91 . -483) 6882) ((-481 . -885) NIL) ((-895 . -1082) T) ((-221 . -1040) 6847) ((-857 . -285) T) ((-213 . -885) NIL) ((-820 . -1094) 6826) ((-59 . -1082) 6776) ((-513 . -1082) 6754) ((-510 . -1082) 6704) ((-491 . -1082) 6682) ((-490 . -1082) 6632) ((-570 . -102) T) ((-554 . -102) T) ((-489 . -102) T) ((-468 . -170) 6563) ((-354 . -905) T) ((-348 . -905) T) ((-340 . -905) T) ((-221 . -111) 6519) ((-820 . -23) 6471) ((-422 . -713) T) ((-108 . -905) T) ((-40 . -38) 6416) ((-108 . -807) T) ((-571 . -344) T) ((-512 . -344) T) ((-1204 . -508) 6276) ((-311 . -446) 6255) ((-308 . -446) T) ((-877 . -601) 6237) ((-823 . -281) 6216) ((-334 . -130) T) ((-172 . -130) T) ((-289 . -25) 6080) ((-289 . -21) 5963) ((-45 . -1171) 5942) ((-66 . -601) 5924) ((-55 . -102) T) ((-590 . -508) 5857) ((-45 . -107) 5807) ((-806 . -604) 5791) ((-1084 . -420) 5775) ((-1084 . -363) 5754) ((-381 . -604) 5738) ((-319 . -604) 5722) ((-1046 . -1195) T) ((-1045 . -1040) 5709) ((-937 . -1040) 5552) ((-1242 . -102) T) ((-1241 . -102) 5502) ((-1045 . -111) 5487) ((-475 . -1040) 5330) ((-650 . -704) 5314) ((-937 . -111) 5143) ((-221 . -604) 5093) ((-471 . -358) T) ((-350 . -704) 5045) ((-347 . -704) 4997) ((-339 . -704) 4949) ((-259 . -704) 4798) ((-243 . -704) 4647) ((-1233 . -634) 4572) ((-1205 . -894) NIL) ((-1078 . -93) T) ((-1072 . -93) T) ((-928 . -637) 4556) ((-1056 . -93) T) ((-475 . -111) 4385) ((-1049 . -93) T) ((-1021 . -93) T) ((-928 . -368) 4369) ((-244 . -102) T) ((-1004 . -93) T) ((-74 . -601) 4351) ((-948 . -47) 4330) ((-697 . -102) T) ((-609 . -1094) T) ((-1 . -1082) T) ((-685 . -102) T) ((-1226 . -634) 4227) ((-614 . -93) T) ((-1176 . -601) 4209) ((-1070 . -601) 4191) ((-126 . -483) 4175) ((-477 . -93) T) ((-1058 . -601) 4157) ((-385 . -23) T) ((-87 . -1195) T) ((-214 . -93) T) ((-1205 . -634) 4009) ((-895 . -704) 3974) ((-609 . -23) T) ((-596 . -601) 3956) ((-596 . -602) NIL) ((-469 . -602) NIL) ((-469 . -601) 3938) ((-505 . -1082) T) ((-501 . -1082) T) ((-346 . -25) T) ((-346 . -21) T) ((-127 . -304) 3876) ((-121 . -304) 3814) ((-585 . -634) 3801) ((-221 . -1034) T) ((-584 . -634) 3726) ((-374 . -987) T) ((-221 . -239) T) ((-221 . -229) T) ((-1045 . -604) 3698) ((-1045 . -606) 3679) ((-943 . -602) 3640) ((-943 . -601) 3552) ((-937 . -604) 3341) ((-855 . -38) 3328) ((-700 . -604) 3278) ((-1225 . -285) 3229) ((-1204 . -285) 3180) ((-475 . -604) 2965) ((-1102 . -446) T) ((-496 . -836) T) ((-311 . -1121) 2944) ((-984 . -145) 2923) ((-984 . -143) 2902) ((-489 . -304) 2889) ((-290 . -1171) 2868) ((-471 . -1094) T) ((-856 . -1040) 2813) ((-611 . -102) T) ((-1181 . -483) 2797) ((-246 . -363) 2776) ((-245 . -363) 2755) ((-1045 . -1034) T) ((-290 . -107) 2705) ((-128 . -602) NIL) ((-128 . -601) 2671) ((-117 . -102) T) ((-937 . -1034) T) ((-856 . -111) 2600) ((-471 . -23) T) ((-475 . -1034) T) ((-1045 . -229) T) ((-937 . -321) 2569) ((-475 . -321) 2526) ((-350 . -170) T) ((-347 . -170) T) ((-339 . -170) T) ((-259 . -170) 2437) ((-243 . -170) 2348) ((-948 . -1023) 2244) ((-511 . -484) 2225) ((-722 . -1023) 2196) ((-511 . -601) 2162) ((-1087 . -102) T) ((-1074 . -601) 2129) ((-1019 . -601) 2111) ((-1254 . -149) 2095) ((-1252 . -604) 2076) ((-1246 . -601) 2058) ((-1233 . -713) T) ((-1226 . -713) T) ((-1205 . -778) NIL) ((-1205 . -781) NIL) ((-167 . -1040) 1968) ((-895 . -170) T) ((-856 . -604) 1898) ((-1205 . -713) T) ((-1251 . -604) 1879) ((-988 . -337) 1853) ((-985 . -508) 1786) ((-829 . -836) 1765) ((-554 . -1133) T) ((-468 . -285) 1716) ((-585 . -713) T) ((-356 . -601) 1698) ((-317 . -601) 1680) ((-413 . -1023) 1576) ((-584 . -713) T) ((-402 . -836) 1527) ((-167 . -111) 1423) ((-820 . -130) 1375) ((-724 . -149) 1359) ((-1241 . -304) 1297) ((-481 . -302) T) ((-374 . -601) 1264) ((-514 . -995) 1248) ((-374 . -602) 1162) ((-213 . -302) T) ((-139 . -149) 1144) ((-701 . -281) 1123) ((-481 . -1007) T) ((-570 . -38) 1110) ((-554 . -38) 1097) ((-489 . -38) 1062) ((-213 . -1007) T) ((-856 . -1034) T) ((-823 . -601) 1044) ((-814 . -601) 1026) ((-812 . -601) 1008) ((-803 . -894) 987) ((-1265 . -1094) T) ((-1214 . -1040) 810) ((-841 . -1040) 794) ((-856 . -239) T) ((-856 . -229) NIL) ((-675 . -1195) T) ((-1265 . -23) T) ((-803 . -634) 719) ((-540 . -1195) T) ((-413 . -333) 703) ((-561 . -1040) 690) ((-1214 . -111) 499) ((-687 . -627) 481) ((-841 . -111) 460) ((-376 . -23) T) ((-167 . -604) 238) ((-1168 . -508) 30) ((-648 . -1082) T) ((-667 . -1082) T) ((-662 . -1082) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 625ea913..9f3d3473 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3437447578) -(4372 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3437790953) +(4376 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -15,7 +15,7 @@ |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| - |ApplyUnivariateSkewPolynomial| |ApplyRules| + |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| @@ -298,12 +298,13 @@ |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| - |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| - |OperationsQuery| |NumericalOptimizationCategory| - |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| - |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| + |OnePointCompletionFunctions2| |OnePointCompletion| + |OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery| + |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| + |NumericalOptimizationProblem| |OrderedCompletionFunctions2| + |OrderedCompletion| |OrderedFinite| |OrderingFunctions| + |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| + |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| @@ -471,657 +472,655 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |permutationRepresentation| |suffix?| |prinshINFO| - |setFieldInfo| |LyndonWordsList1| Y |leadingSupport| |addPoint2| - |fintegrate| |argscript| |superscript| |mergeFactors| |setProperty!| - |result| |green| |pushNewContour| |extendedint| |is?| |wrregime| - |sinhcosh| |df2ef| |cycle| |solveRetract| |prefix?| |properties| - |groebner| |schwerpunkt| |monomial?| |zeroOf| |shiftLeft| |lhs| - |univariate?| |LazardQuotient2| |complex?| |numberOfChildren| - |printStatement| |vector| |rCoord| |measure| |translate| - |outlineRender| |approxSqrt| |screenResolution3D| |rhs| |OMsend| - |splitLinear| |getConstant| |oddintegers| |primextendedint| - |principalIdeal| |symbolIfCan| |removeCosSq| |numeric| - |antisymmetricTensors| |diagonalMatrix| |lex| |fprindINFO| |cosh2sech| - |intChoose| |differentiate| |BasicMethod| |mainVariable| - |zeroDimensional?| |nthFractionalTerm| |mainKernel| |radical| - |dimension| |toScale| |commutative?| |recolor| |leftPower| - |bezoutMatrix| |KrullNumber| |sortConstraints| |reduceByQuasiMonic| - |edf2df| |rewriteSetByReducingWithParticularGenerators| |s17akf| - |double| |e01baf| |laguerreL| |asimpson| |monomialIntPoly| - |lfextendedint| |column| |signature| |romberg| |messagePrint| - |semiResultantReduitEuclidean| |nthExpon| |whitePoint| - |halfExtendedResultant2| |totolex| |zeroMatrix| |preprocess| |edf2ef| - |addBadValue| |uncouplingMatrices| |ref| |constantToUnaryFunction| - |exprHasLogarithmicWeights| |OMreadFile| |cAcosh| |hexDigit| - |firstDenom| |inspect| |evenlambert| |target| |mix| |isList| - |returnTypeOf| |lifting1| |separateDegrees| |quasiMonic?| - |fillPascalTriangle| |elRow2!| |operation| |taylorIfCan| - |irreducible?| |polCase| |space| |acotIfCan| |squareFreePolynomial| - |definingPolynomial| |binding| |selectfirst| |algebraicCoefficients?| - |semiSubResultantGcdEuclidean1| |retractIfCan| |byte| |quadraticForm| - |polyred| |minPoints3D| |tValues| |setnext!| |stopTable!| |coerceP| - |parts| |idealiserMatrix| |declare!| |explicitlyFinite?| |B1solve| - |userOrdered?| |sayLength| |extendedResultant| |iFTable| - |associatorDependence| |subMatrix| |errorKind| |leftMult| - |torsionIfCan| |expandPower| |leftFactorIfCan| |binary| |input| - |simpson| |setScreenResolution| |aQuadratic| |rquo| |OMgetAttr| - |update| |iiacsch| |moebius| |library| |getGraph| BY - |supDimElseRittWu?| |mapmult| |appendPoint| |qPot| |root?| |ldf2vmf| - |parent| |ipow| |cAtan| |transcendent?| |checkForZero| |leastMonomial| - |dot| |euclideanNormalForm| |implies| |critpOrder| |kind| - |tryFunctionalDecomposition| |UpTriBddDenomInv| |dequeue!| |range| - |getDatabase| |f07fdf| |distribute| |invertible?| |cond| |op| - |resultantEuclidean| |mesh| |integralLastSubResultant| |reverse!| - |quotedOperators| |createPrimitiveElement| |mvar| |set| |constantLeft| - |expr| |segment| |intersect| |graphCurves| |leftZero| |position| - |cSec| |over| |connect| |map| |unparse| |stronglyReduce| |call| - |updatF| |selectFiniteRoutines| |leadingIdeal| |splitSquarefree| - |setelt| |f01bsf| |hermite| |zeroDimPrime?| |e01daf| |radix| - |complexEigenvectors| |purelyAlgebraic?| |infieldint| - |numericalOptimization| |isPower| |nextNormalPrimitivePoly| - |blankSeparate| |iiperm| |makeSUP| |viewDefaults| |dioSolve| - |getGoodPrime| |copy| |variable| |cyclic?| |size?| |topPredicate| - |outputAsTex| |retractable?| |quasiAlgebraicSet| |leftAlternative?| - |iterators| |closed?| |triangSolve| |indicialEquations| |iifact| - |cotIfCan| |leftScalarTimes!| |convert| |extractBottom!| |distFact| - |log2| |selectsecond| |match?| |distdfact| |ratDenom| |wreath| - |multiple?| |autoCoerce| |noKaratsuba| |squareFreePart| - |virtualDegree| |removeSinSq| |fortranInteger| |zeroDim?| - |normFactors| |symmetricTensors| |curve| |BumInSepFFE| |realZeros| - |putGraph| |randnum| |oneDimensionalArray| |returnType!| - |squareFreeFactors| |rotatex| |tubePoints| |divisorCascade| - |varselect| |cyclotomic| |pushucoef| |presuper| |components| |show| - |genericLeftNorm| |unitVector| |setright!| |perfectSquare?| - |diagonal?| |fortranReal| |cycleSplit!| |parametric?| - |partialDenominators| |ListOfTerms| |key?| |remainder| - |expressIdealMember| |sizeMultiplication| |realEigenvectors| - |flexibleArray| |trace| |OMgetFloat| |minPoints| |lowerPolynomial| - |OMputEndBVar| |iiasech| |basisOfNucleus| |createZechTable| - |numberOfDivisors| |identity| |changeNameToObjf| |sort!| |cCsc| - |areEquivalent?| |getMultiplicationMatrix| |leftNorm| - |stronglyReduced?| |stopMusserTrials| |mathieu12| |hexDigit?| - |unitNormalize| |indiceSubResultant| |cyclic| |digamma| - |taylorQuoByVar| |linGenPos| |argumentList!| |makeResult| |compose| - |transpose| |yCoord| |positiveSolve| |shift| |bombieriNorm| - |defineProperty| |rationalPower| |ODESolve| |partialFraction| - |inverse| |setProperties| |reciprocalPolynomial| = |weighted| - |genericRightTraceForm| |LowTriBddDenomInv| |unitsColorDefault| - |monicModulo| |clearDenominator| |coefficient| |rightOne| |credPol| - |cAtanh| |postfix| |minPoly| |jacobi| |genericLeftTraceForm| - |hasPredicate?| |minPol| |antiCommutator| |bernoulli| < - |possiblyNewVariety?| |solve| |associates?| |generalSqFr| |bothWays| - |maxPoints3D| |airyAi| |linearPolynomials| |asinhIfCan| - |shanksDiscLogAlgorithm| |sizePascalTriangle| > - |unrankImproperPartitions1| |stack| |seriesToOutputForm| |e04gcf| - |linSolve| |systemCommand| |primitivePart| |laurentRep| - |inGroundField?| |rightPower| <= |setFormula!| |imagI| - |normInvertible?| |removeRoughlyRedundantFactorsInPol| |plusInfinity| - |collect| |d01aqf| |dominantTerm| |viewPhiDefault| >= |permutations| - |OMencodingBinary| |rational| |queue| |minusInfinity| |RittWuCompare| - |complexNormalize| |times| |polarCoordinates| |useSingleFactorBound?| - |badValues| |removeRedundantFactorsInContents| |iicos| |swap!| |getlo| - |normalized?| |normal| |infiniteProduct| |patternMatchTimes| - |lazyIrreducibleFactors| |subResultantGcd| |skewSFunction| |e02ahf| - |functionIsFracPolynomial?| |OMgetEndBind| |bsolve| |htrigs| - |resetAttributeButtons| |mkcomm| |charpol| + - |selectSumOfSquaresRoutines| |numberOfComposites| |nextPrimitivePoly| - |inputOutputBinaryFile| |exprHasAlgebraicWeight| |acosIfCan| - |clearCache| |lyndonIfCan| |LyndonBasis| |insertMatch| - |chebyshevU| - |nonQsign| |stosePrepareSubResAlgo| |weierstrass| |exponentialOrder| - |leftRemainder| |monom| |iisin| |setMinPoints3D| |chebyshevT| - |leadingBasisTerm| / |factorset| |diff| |OMencodingSGML| |changeBase| - |truncate| |expenseOfEvaluation| |singleFactorBound| |scale| - |listOfMonoms| |laurentIfCan| |type| |latex| |df2mf| |binomial| - |rangePascalTriangle| |setCondition!| |linearlyDependent?| |Ei| - |trivialIdeal?| |point| |atrapezoidal| |primintegrate| |mpsode| |arg1| - |d01amf| |s17def| |merge!| |common| |sts2stst| |singularAtInfinity?| - |lquo| |block| |squareTop| |nonLinearPart| |arg2| |e01sef| - |continuedFraction| |clearTable!| |multisect| |moreAlgebraic?| |cTanh| - |meshPar2Var| |rightRecip| |expIfCan| |debug| |fTable| |c06gbf| - |viewDeltaXDefault| |nor| |ideal| |insert| |cSin| |rootBound| - |mightHaveRoots| |d01gaf| |series| D |e02aef| |compactFraction| - |screenResolution| |conditions| |brillhartTrials| |compdegd| |tail| - |henselFact| |morphism| |startTableInvSet!| - |rightRegularRepresentation| |sn| |showFortranOutputStack| |match| - |symFunc| |basisOfCentroid| |acscIfCan| |horizConcat| |rule| - |outputList| |reducedDiscriminant| |rotate| |flatten| |divergence| - |vconcat| |integral?| |critMonD1| |primeFrobenius| |nextColeman| - |OMconnOutDevice| |parabolicCylindrical| |getMatch| |superHeight| - |aQuartic| |modularGcd| |rightRemainder| |addMatch| |bat1| |float?| - |componentUpperBound| |qqq| |mr| |singularitiesOf| |min| |OMserve| - |leftOne| |intPatternMatch| |dimensionOfIrreducibleRepresentation| - |OMputEndObject| |coerceImages| |basisOfRightNucleus| |member?| - |error| |factorPolynomial| |monomRDEsys| |conditionsForIdempotents| - |transform| |OMsupportsSymbol?| |untab| |ddFact| |binaryFunction| - |createThreeSpace| |assert| |divisors| |list?| |exprToGenUPS| - |outputAsScript| |one?| |firstNumer| |odd?| |ellipticCylindrical| - |prologue| |nil?| |numberOfIrreduciblePoly| |chiSquare1| |repeating?| - |socf2socdf| |OMopenFile| |midpoint| |e01sbf| |setPredicates| - |OMgetEndBVar| |euclideanGroebner| |toroidal| |writeByteIfCan!| - |OMlistSymbols| |coleman| |f01qcf| |f04maf| |algebraicDecompose| - |previous| |invertIfCan| |print| |f02ajf| |void| |primlimintfrac| - |tensorProduct| |rk4| |contractSolve| |omError| |jacobiIdentity?| - |tRange| |mantissa| |resolve| |f04axf| |inR?| |iiatanh| |nullSpace| - |capacity| |leadingTerm| |semiResultantEuclidean1| |integerIfCan| - |bounds| |systemSizeIF| |probablyZeroDim?| |ridHack1| - |fortranLiteralLine| |inverseColeman| |length| |typeLists| |indices| - |evenInfiniteProduct| |outerProduct| |makeTerm| |findBinding| - |integers| |commutativeEquality| |redpps| |palgLODE| |scripts| |tanQ| - |entries| |zeroSquareMatrix| |usingTable?| |evaluateInverse| |failed?| - |printHeader| |tanh2coth| |stoseInvertible?reg| |s17aff| |roughBase?| - |representationType| |bitTruth| |getCurve| |myDegree| - |numberOfImproperPartitions| |tanAn| |OMgetInteger| |randomLC| - |OMputSymbol| |checkPrecision| |maxdeg| |iidprod| |showSummary| - |safeFloor| |rightExactQuotient| |notOperand| |determinant| - |subHeight| |bright| |Hausdorff| |listYoungTableaus| |d02kef| - |asinIfCan| |init| |leftGcd| |definingEquations| |removeSinhSq| - |padicFraction| |Frobenius| |wordInGenerators| |ffactor| |slex| - |vertConcat| |printInfo| |showAttributes| |commutator| - |particularSolution| |ksec| |rightLcm| |var2StepsDefault| - |unprotectedRemoveRedundantFactors| |open?| |increment| - |stoseInvertible?sqfreg| |besselK| |currentSubProgram| |unitCanonical| - |sec2cos| |e02gaf| |backOldPos| |identityMatrix| |parseString| |fmecg| - |max| |nlde| |bumptab| |numFunEvals3D| |ode1| |rarrow| |doubleDisc| - |xCoord| |stiffnessAndStabilityOfODEIF| |numberOfMonomials| - |generalizedEigenvectors| |figureUnits| |removeConstantTerm| |Zero| - |nextLatticePermutation| |infRittWu?| |fortranDouble| |bracket| - |taylorRep| |e02bdf| |inconsistent?| |/\\| |One| |removeSquaresIfCan| - |characteristic| |closedCurve?| |cyclicEntries| |basisOfCenter| - |raisePolynomial| |whileLoop| |delete| |OMReadError?| |\\/| - |coercePreimagesImages| |trim| |lowerCase?| |setProperties!| - |constructorName| |qualifier| |blue| |numberOfComponents| |nullity| - |setsubMatrix!| |PDESolve| |newSubProgram| |unitNormal| |sin?| - |sin2csc| |janko2| |part?| |lastSubResultantElseSplit| |dim| |f02akf| - |unit?| |Ci| |symmetricProduct| |startPolynomial| |roughSubIdeal?| - |binaryTournament| |tanintegrate| |insertionSort!| |btwFact| |s15aef| - |direction| |property| |unexpand| |critM| |s01eaf| |equivOperands| - |deepCopy| |transcendentalDecompose| |elt| |cCot| - |basisOfMiddleNucleus| |incrementKthElement| |genericRightTrace| - |compiledFunction| |quadratic?| |entry?| |computeBasis| |label| - |extractIndex| |sumSquares| |internalDecompose| |patternMatch| |int| - |topFortranOutputStack| |flagFactor| |stoseInvertibleSet| |units| - |pile| |eigenvectors| |outputMeasure| |cubic| |epilogue| - |mapMatrixIfCan| |getRef| |getMeasure| |gethi| - |removeRoughlyRedundantFactorsInContents| |decompose| - |monomialIntegrate| |reducedSystem| |bivariatePolynomials| |moduleSum| - |asechIfCan| |s17acf| |indicialEquation| |leftMinimalPolynomial| - |positiveRemainder| |totalDegree| |square?| |mesh?| - |multiEuclideanTree| |pascalTriangle| |fortranCarriageReturn| - |sequences| |scaleRoots| |monomRDE| |quasiMonicPolynomials| |d01akf| - |monomials| |next| |clipParametric| |useEisensteinCriterion| |orbits| - |eigenvalues| |Is| |largest| |GospersMethod| |primitivePart!| |code| - |safetyMargin| |exptMod| |c05pbf| |someBasis| |times!| |charClass| - |optAttributes| |normalDenom| |mapdiv| |graphStates| |head| - |OMputEndError| |conditionP| |overbar| |dmpToHdmp| |jordanAdmissible?| - |second| |rightTrace| |sign| |saturate| |startTableGcd!| F2FG - |invertibleSet| |karatsuba| |anticoord| |s19aaf| |ptree| |resultant| - |third| |shiftRoots| |dAndcExp| |toseInvertible?| GE |terms| - |createLowComplexityNormalBasis| |OMgetVariable| |maxint| - |createRandomElement| |factorOfDegree| |leftTrace| |imagE| - |colorFunction| GT |option| |lazy?| |fortranComplex| |c06fqf| - |explogs2trigs| |f04atf| |rightExtendedGcd| |normalElement| |lyndon?| - |outputArgs| |stirling1| LE |iiatan| |selectPolynomials| |repeating| - |generic?| |multiplyExponents| |sturmVariationsOf| |rightTrim| - |complexIntegrate| |f02bbf| |subNodeOf?| LT |hostPlatform| - |sparsityIF| |perspective| |octon| |primes| |computeInt| |leftTrim| - |convergents| |numerator| |lSpaceBasis| |erf| |pushdterm| - |symmetricPower| |showAll?| |iiabs| |resetNew| |algebraicSort| - |OMputVariable| |setEpilogue!| |aspFilename| |karatsubaOnce| - |inRadical?| |members| |parabolic| |startStats!| |minset| |swapRows!| - |f01rcf| |isPlus| |OMunhandledSymbol| |jacobian| |f07fef| |baseRDE| - |bipolarCylindrical| |integralRepresents| |accuracyIF| |lp| |exists?| - |derivative| |f01brf| |pointSizeDefault| |dilog| |listLoops| - |bezoutDiscriminant| |toseInvertibleSet| |trigs2explogs| - |semiResultantEuclideannaif| |quotientByP| |host| - |radicalEigenvectors| |resize| |sin| |iitan| |imaginary| |character?| - |edf2fi| |genericPosition| LODO2FUN |getIdentifier| |anfactor| - |ignore?| |cos| |stop| |OMputFloat| |bytes| |and?| |cylindrical| - |choosemon| |mapExponents| |nextPrime| |csubst| |OMgetType| |delta| - |tan| |zero| |eyeDistance| |domainOf| |ord| |complexNumericIfCan| - |getBadValues| |modularFactor| |bandedHessian| |composite| - |numberOfComputedEntries| |cot| |printCode| |makeSeries| |push!| - |numberOfHues| |countRealRootsMultiple| |s21bbf| - |rationalApproximation| |OMUnknownSymbol?| |f04mcf| |And| |sec| - |concat!| |divisor| |showTheRoutinesTable| |approximants| |e01bef| - |belong?| |toseLastSubResultant| |transcendenceDegree| |zeroVector| - |Or| |csc| |permanent| |redPo| |quasiComponent| |f01ref| |node?| - |localReal?| |var2Steps| |iiacot| |getMultiplicationTable| |pattern| - |Not| |asin| |clearFortranOutputStack| |setValue!| |tan2trig| - |binarySearchTree| |isobaric?| |derivationCoordinates| - |removeIrreducibleRedundantFactors| |complexElementary| |groebner?| - |physicalLength!| |acos| |setMaxPoints3D| |height| |enterInCache| - |tanh2trigh| |factorSFBRlcUnit| |loadNativeModule| |conjug| - |deepExpand| |shade| |rightDivide| |atan| |setrest!| |bat| - |collectQuasiMonic| |getProperty| |mainContent| |ranges| |ratPoly| - |boundOfCauchy| |lambda| |squareMatrix| |acot| |functionIsOscillatory| - |modulus| |graphState| |mergeDifference| |closedCurve| |drawStyle| - |inverseLaplace| |selectAndPolynomials| |function| |floor| |message| - |asec| |wholeRadix| |integralBasisAtInfinity| |integer?| |permutation| - |multiplyCoefficients| |weight| |basisOfRightAnnihilator| - |rowEchLocal| |sup| |acsc| |rootRadius| |fractRagits| - |monicRightFactorIfCan| |d02gbf| |mainVariable?| |typeList| - |integerBound| |prepareSubResAlgo| |trailingCoefficient| |eval| |sinh| - |consnewpol| |setColumn!| |tanNa| |frst| |addPointLast| |yellow| - |normalizedDivide| |addiag| |log| |cAcoth| |cosh| |deepestTail| |xor| - |overset?| |radicalRoots| |rootOfIrreduciblePoly| |abelianGroup| - |OMputBVar| |innerSolve1| |cTan| |infix| |setAttributeButtonStep| - |tanh| |dn| |supersub| |cycleTail| |listOfLists| |viewpoint| |cons| - |separant| |ratpart| |reduceLODE| |callForm?| |polygamma| |coth| - |OMputEndAttr| |combineFeatureCompatibility| |loopPoints| |innerSolve| - |curve?| |logical?| |mapDown!| |s14baf| |inf| |level| |sech| - |doubleComplex?| |rightRank| |nthRoot| |close!| |fullPartialFraction| - |rank| |exactQuotient| |isTimes| |findCycle| |reverseLex| |csch| - |leader| |cardinality| |nullary| |c06ebf| |f04mbf| |moduloP| - |diagonal| |createLowComplexityTable| |minimumDegree| |printTypes| - |asinh| |setStatus| |makeop| |updateStatus!| |listConjugateBases| - |crest| |extractIfCan| |conical| |hspace| |c06fuf| |acosh| |separate| - |leftDivide| |generalLambert| |leastPower| |c05nbf| |qelt| - |simpleBounds?| |semiDegreeSubResultantEuclidean| |var1StepsDefault| - |li| |bernoulliB| |atanh| |rootProduct| |c05adf| |iiacsc| |corrPoly| - |palginfieldint| |e04ycf| |qsetelt| |source| |prem| |central?| - |exprToUPS| |pr2dmp| |highCommonTerms| |genericRightMinimalPolynomial| - |hyperelliptic| |wholeRagits| |submod| |isOpen?| |xRange| - |doubleResultant| |iisinh| |logGamma| |f04arf| |lcm| |completeSmith| - |baseRDEsys| |knownInfBasis| |extractTop!| |finiteBasis| |lowerCase!| - |lists| |yRange| |list| |f01rdf| |dfRange| |deleteRoutine!| - |primitiveElement| |subPolSet?| |f02axf| |pointData| |alternative?| - |palglimint0| |zRange| |car| |bottom!| |makeUnit| |triangularSystems| - |append| |routines| |top!| |close| |viewWriteDefault| - |viewWriteAvailable| |clipPointsDefault| |nextItem| |map!| |cdr| - |removeSuperfluousCases| |lastSubResultantEuclidean| |difference| - |gcd| |SturmHabichtCoefficients| |expintegrate| |elementary| - |primeFactor| |OMlistCDs| |pade| |qsetelt!| |setDifference| |ravel| - |OMputEndAtp| |vspace| |internalAugment| |operators| |false| |critT| - |display| |s18def| |interpolate| |pointPlot| |subresultantVector| - |setIntersection| |copyInto!| |reshape| |minimumExponent| |cross| - |besselJ| |oddlambert| |multinomial| |harmonic| |balancedBinaryTree| - |pseudoRemainder| |setUnion| |pmComplexintegrate| |hMonic| - |univariatePolynomials| |prod| |decrease| |enterPointData| - |firstSubsetGray| |e02ddf| |apply| |e01sff| |eq?| |dmpToP| |imagk| - |clipWithRanges| |leftCharacteristicPolynomial| |d02cjf| - |cyclotomicFactorization| UTS2UP |schema| |element?| |limitPlus| - |semiDiscriminantEuclidean| |#| |initials| |test| |makeGraphImage| - |middle| |tubePlot| |f04jgf| |acsch| |size| |alphabetic?| - |nthRootIfCan| |normal?| |remove| |shrinkable| |unravel| |key| - |coth2trigh| |divideExponents| |gramschmidt| |ceiling| - |leftExtendedGcd| |randomR| |cothIfCan| |cycleLength| |objectOf| - |standardBasisOfCyclicSubmodule| |primlimitedint| |viewPosDefault| - |showRegion| |nand| |leftTraceMatrix| |last| |perfectNthRoot| - |filename| |position!| |iitanh| |binomThmExpt| |extendedIntegrate| - |intcompBasis| |fullDisplay| |first| |assoc| |palgextint0| |moebiusMu| - |assign| |prefix| |satisfy?| |not?| |trapezoidal| |iteratedInitials| - |s20acf| |symmetricGroup| |att2Result| |rest| |f01mcf| |OMreadStr| - |cosSinInfo| |equiv?| |parse| |internalIntegrate| |roughUnitIdeal?| - |besselY| |decimal| |substitute| |curveColorPalette| |Nul| |iroot| - |externalList| |leviCivitaSymbol| |primPartElseUnitCanonical!| |box| - |showClipRegion| |setleft!| |insert!| |coerceS| |removeDuplicates| - |selectPDERoutines| |f04faf| |round| |stiffnessAndStabilityFactor| - |lift| |fortranCharacter| |forLoop| |selectOrPolynomials| |rspace| - |bumprow| |iiacos| |drawComplexVectorField| |cSinh| |extractClosed| - |e02akf| |reduce| |recur| |partialNumerators| |complementaryBasis| - |returns| |readable?| |hasSolution?| |euler| |eq| |acschIfCan| - |semiIndiceSubResultantEuclidean| |mapUp!| |quotient| |factorList| - |coHeight| |iter| |irreducibleFactors| |lazyVariations| |rules| - |physicalLength| |mainPrimitivePart| |extendedSubResultantGcd| - |unknown| |lagrange| |packageCall| |LagrangeInterpolation| - |setButtonValue| |qroot| |generic| |rootSimp| |setErrorBound| - |insertBottom!| |pomopo!| |leadingCoefficientRicDE| |iicoth| - |generalizedInverse| |spherical| |replace| |exponent| |alphabetic| - |varList| |f02adf| |variable?| |internalSubPolSet?| |infinityNorm| - |toseSquareFreePart| |powern| |getOperator| |sturmSequence| |iiGamma| - |univariatePolynomial| |realElementary| |reseed| |retract| - |squareFree| |outputSpacing| |pointColorDefault| |bag| |quadratic| - |goto| |curry| |c02agf| |identitySquareMatrix| |sh| |rotatez| |module| - |s18aff| |dequeue| |sincos| |points| |showAllElements| - |fortranCompilerName| |localAbs| |imagK| |reducedContinuedFraction| - |e04mbf| |categoryFrame| |expint| |iicot| |f2df| |validExponential| - |index| |discriminantEuclidean| |precision| |implies?| - |balancedFactorisation| |setOrder| |diagonals| |OMgetApp| |exp| - |iipow| |symmetricDifference| |comparison| |e02dcf| |f01maf| - |optimize| |createPrimitivePoly| |wholePart| |lazyPseudoRemainder| - |sinhIfCan| |e02ajf| |dmp2rfi| |algSplitSimple| |leftUnit| - |powerAssociative?| |argumentListOf| |denominators| |extendIfCan| - |diag| |colorDef| |rightNorm| |compile| |f04asf| |associatedEquations| - |sorted?| |interReduce| |e04jaf| |signatureAst| |pair| |tanhIfCan| - |noLinearFactor?| |rombergo| |nthCoef| |fixedPoints| |readBytes!| - |seriesSolve| |groebnerIdeal| |e04naf| |s15adf| |clip| |minimize| - |mathieu24| |hash| |critB| |tan2cot| |hessian| - |genericLeftDiscriminant| |eulerE| |readIfCan!| |tubePointsDefault| - |numberOfPrimitivePoly| |HenselLift| |count| |negative?| - |subscriptedVariables| |overlabel| |minIndex| |d01bbf| |sqfree| - |sumOfSquares| |characteristicSerie| |constantOperator| - |basisOfCommutingElements| |iiasec| |e02bbf| |sechIfCan| |bitCoef| - |e01bff| |trapezoidalo| |twist| |characteristicSet| |currentScope| - |nthFlag| |component| |f02wef| |evaluate| |yCoordinates| |value| - |selectOptimizationRoutines| |aLinear| |unary?| |tanIfCan| |not| - |integralBasis| |c06frf| |setMinPoints| |linearPart| |minGbasis| - |plus| |OMencodingXML| |twoFactor| |monicCompleteDecompose| - |rightUnit| |An| |integralMatrix| - |generalizedContinuumHypothesisAssumed?| |associator| |universe| - |stoseLastSubResultant| |explimitedint| |bivariateSLPEBR| |Lazard| - |multiset| |slash| |resetVariableOrder| |cLog| |setAdaptive| |rootsOf| - |s17aef| |badNum| |alphanumeric?| |coordinates| |neglist| |s14aaf| - |fill!| |double?| |children| |printingInfo?| |vectorise| |divideIfCan| - |useEisensteinCriterion?| |enqueue!| |s18dcf| |collectUpper| |sum| - |cRationalPower| |sPol| |inputBinaryFile| |rightZero| - |removeDuplicates!| |light| |OMsupportsCD?| |recoverAfterFail| - |writable?| |makeViewport2D| |any| |OMread| |quadraticNorm| |expt| - |gcdcofact| |setvalue!| |subst| |hitherPlane| |lazyPquo| - |nextPartition| |Vectorise| |e04dgf| |iisqrt3| |matrixDimensions| - |OMgetEndError| |mapCoef| |basicSet| |totalfract| - |setScreenResolution3D| |move| |OMputInteger| |prefixRagits| |initial| - |powers| |selectODEIVPRoutines| |numberOfVariables| |infinite?| - |bivariate?| |partitions| |constDsolve| |setchildren!| |subtractIfCan| - |antiCommutative?| |tube| |digit| |oblateSpheroidal| |check| - |scripted?| |gderiv| |scalarTypeOf| |OMopenString| |trace2PowMod| - |lifting| |rootKerSimp| |normalise| |lowerCase| |legendre| - |removeCoshSq| |datalist| |setLabelValue| |nextNormalPoly| - |fortranLiteral| |option?| |finiteBound| |f02agf| |bipolar| - |mainMonomials| |extendedEuclidean| |clearTheSymbolTable| - |clipSurface| |OMbindTCP| |fixedDivisor| |charthRoot| - |createGenericMatrix| |nthExponent| |generalizedEigenvector| - |singular?| |constantIfCan| |mainValue| |objects| |extract!| - |getButtonValue| |s13aaf| |OMputEndBind| |generators| - |nonSingularModel| |select!| |testDim| |basisOfRightNucloid| - |maxIndex| |base| |expenseOfEvaluationIF| |rootNormalize| - |univariatePolynomialsGcds| |color| |front| ~ |red| |setprevious!| - |order| |stirling2| |elseBranch| |escape| |search| |parametersOf| - |coerceListOfPairs| |acoshIfCan| |rischDE| |imagi| |minus!| - |factorSquareFreePolynomial| |complete| |expextendedint| |recip| - |createIrreduciblePoly| |open| |paren| |symmetric?| |coth2tanh| - |withPredicates| |digits| |sort| |weights| |rightAlternative?| - |f02fjf| |presub| |symbolTableOf| |leadingExponent| - |intermediateResultsIF| |shiftRight| - |removeSuperfluousQuasiComponents| |discriminant| |interpretString| - |reify| |nativeModuleExtension| |iiasinh| |imagJ| |orOperands| - |d01fcf| |subResultantChain| |expintfldpoly| |LiePolyIfCan| - |leftRecip| |generalizedContinuumHypothesisAssumed| - |solveLinearPolynomialEquation| |f02bjf| |showScalarValues| |find| - |factorials| |uniform| |headAst| |tableau| |selectIntegrationRoutines| - |getZechTable| |cCsch| |copies| |cyclicCopy| |OMputBind| - |generateIrredPoly| |completeEchelonBasis| |shuffle| |bubbleSort!| - |random| |s18aef| |OMgetEndAtp| |real?| |perfectNthPower?| - |explicitEntries?| |integralMatrixAtInfinity| |froot| |besselI| - |beauzamyBound| |c06fpf| |completeEval| |psolve| |computePowers| - |tree| |multiEuclidean| |repeatUntilLoop| |getSyntaxFormsFromFile| - |zCoord| |changeThreshhold| |e04ucf| |hdmpToDmp| |readLine!| - |groebSolve| |cCosh| |directSum| |partition| |bindings| - |factorSquareFreeByRecursion| |midpoints| |shallowCopy| |sub| |or| - |semicolonSeparate| |leftQuotient| |univariateSolve| - |limitedIntegrate| |fixedPoint| |eigenvector| |setleaves!| - |rationalPoints| |totalDifferential| |viewSizeDefault| |comp| |mkPrim| - |rischNormalize| |purelyAlgebraicLeadingMonomial?| |insertRoot!| - |atanhIfCan| |tab| |isConnected?| |nodeOf?| |iprint| |roman| - |mkAnswer| |elColumn2!| |product| |newTypeLists| |extend| |depth| - |cschIfCan| |changeName| |dictionary| |iterationVar| |legendreP| ~= - |exactQuotient!| |decreasePrecision| |e02zaf| |push| |OMconnInDevice| - |nextPrimitiveNormalPoly| |lllip| |mappingAst| F |style| |isExpt| - |numerators| |lazyIntegrate| |coerce| |nthFactor| - |wordInStrongGenerators| |eigenMatrix| |reset| |symbol?| |testModulus| - |rectangularMatrix| |genus| |prime?| |byteBuffer| |construct| - |discreteLog| |makeYoungTableau| |const| |polygon?| |unvectorise| - |cycles| |lazyPremWithDefault| |basisOfLeftNucloid| |viewport2D| - |read!| |matrixGcd| |primaryDecomp| |OMencodingUnknown| - |getExplanations| |write| |cSech| |headReduce| |subspace| |getCode| - |dimensionsOf| |save| |sylvesterSequence| |integral| - |possiblyInfinite?| |changeVar| |patternVariable| - |fortranDoubleComplex| |normalizeAtInfinity| - |rewriteIdealWithQuasiMonicGenerators| |linears| |expandLog| - |rightDiscriminant| |totalLex| |closeComponent| |d02raf| |sinIfCan| - |halfExtendedResultant1| |aromberg| |merge| |denominator| |low| |dec| - |modularGcdPrimitive| |prime| |pushuconst| |nodes| |id| |alternating| - |rootPoly| |pointColorPalette| |write!| |e02adf| |OMclose| - |denomRicDE| |semiSubResultantGcdEuclidean2| - |tryFunctionalDecomposition?| |d01anf| |dihedral| |null| |vedf2vef| - |lazyGintegrate| |leftFactor| |invertibleElseSplit?| |cCos| - |irreducibleFactor| |s18adf| |stopTableGcd!| |mirror| |table| |pdf2ef| - |case| |differentialVariables| |linearAssociatedOrder| - |useSingleFactorBound| |pop!| |atom?| |mapBivariate| |conjugate| - |prevPrime| |monicDivide| |new| |rightRankPolynomial| |OMmakeConn| - |OMwrite| |child| |rangeIsFinite| |normalize| |nextSublist| - |singRicDE| |intensity| |inverseIntegralMatrixAtInfinity| |overlap| ** - |scan| |OMgetEndAttr| |purelyTranscendental?| |setStatus!| - |createMultiplicationMatrix| |pow| |endSubProgram| |empty| - |maxColIndex| |SturmHabichtSequence| |viewDeltaYDefault| |sdf2lst| - |mindeg| |traverse| FG2F |decomposeFunc| |delete!| |acothIfCan| - |tower| |subresultantSequence| |char| |leftDiscriminant| - |gcdPolynomial| |term| |reverse| |s13acf| |setClipValue| - |setImagSteps| |e01saf| EQ |trunc| |rename!| |zeroSetSplit| - |genericLeftMinimalPolynomial| |upDateBranches| |FormatRoman| - |indiceSubResultantEuclidean| |cAsin| |OMputObject| |andOperands| - |makeViewport3D| |entry| |oddInfiniteProduct| |showTypeInOutput| - |f01qdf| |iiasin| |rightMinimalPolynomial| |quoByVar| |mathieu23| - |nextsubResultant2| |cAcos| |trigs| |monicLeftDivide| - |impliesOperands| |term?| |halfExtendedSubResultantGcd1| - |axesColorDefault| |pointLists| |outputFixed| |cPower| - |associatedSystem| |headReduced?| |companionBlocks| |category| - |complexExpand| |headRemainder| |cup| |smith| |autoReduced?| - |genericLeftTrace| |qinterval| |reindex| |complexNumeric| |pointColor| - |lflimitedint| |domain| |f04qaf| |orthonormalBasis| |float| |lprop| - |modTree| |any?| |partialQuotients| |setVariableOrder| - |mainExpression| |numberOfFractionalTerms| |pseudoQuotient| |package| - |reduceBasisAtInfinity| |relativeApprox| |fglmIfCan| |elliptic| - |noncommutativeJordanAlgebra?| |tablePow| |ScanArabic| |kernels| - |comment| |magnitude| |left| |df2st| |e02def| - |wordsForStrongGenerators| |coshIfCan| |ptFunc| |factorFraction| - |monicDecomposeIfCan| |rightQuotient| |univariate| |right| - |showArrayValues| |point?| |qfactor| |Si| |exponents| |zerosOf| - |extractSplittingLeaf| |lexTriangular| |mainSquareFreePart| - |showTheSymbolTable| |s21bcf| |leftLcm| |e02agf| |splitNodeOf!| - |palgLODE0| |lexGroebner| |solveLinearlyOverQ| |every?| |reduced?| - |top| |mat| |finite?| UP2UTS |elRow1!| |e02bef| |pToHdmp| |groebgen| - |linearlyDependentOverZ?| |constantCoefficientRicDE| |quatern| - |matrixConcat3D| |factor| |dihedralGroup| |setlast!| |totalGroebner| - |basisOfLeftAnnihilator| |f01qef| |setRealSteps| - |semiResultantEuclidean2| |innerint| |clearTheIFTable| |sqrt| - |safeCeiling| |d02ejf| |union| |create3Space| |arity| |redmat| - |initTable!| |groebnerFactorize| |getOrder| |real| |unmakeSUP| |isOp| - |or?| |c06ecf| |internalZeroSetSplit| |modifyPoint| - |exprHasWeightCosWXorSinWX| |ip4Address| |euclideanSize| |lexico| - |kmax| |imag| |clipBoolean| |rightFactorCandidate| |duplicates| |hclf| - |copy!| |hasoln| |matrix| |karatsubaDivide| |exprex| |solveInField| - |directProduct| |viewThetaDefault| |palgintegrate| |duplicates?| - |kovacic| |normalForm| |isAbsolutelyIrreducible?| |powmod| |integrate| - |createNormalElement| |allRootsOf| |pleskenSplit| - |irreducibleRepresentation| |deriv| |powerSum| |chiSquare| |iilog| - |contract| |permutationGroup| |newReduc| |plenaryPower| - |fortranLinkerArgs| |brace| |plus!| |rightScalarTimes!| - |restorePrecision| |mdeg| |paraboloidal| |polynomialZeros| |quartic| - |bumptab1| |heap| |rowEch| |destruct| |branchIfCan| |cAsec| |rk4a| - |reflect| |f02awf| |numberOfFactors| |ScanRoman| |prinb| |regime| - |e02bcf| |OMgetBind| |certainlySubVariety?| |symbol| |thenBranch| - |split| |radicalSimplify| |radicalSolve| |mkIntegral| |rightUnits| - |asecIfCan| |linearDependenceOverZ| |palgextint| |mainCoefficients| - |enumerate| |expression| |removeRoughlyRedundantFactorsInPols| - |rationalIfCan| |perfectSqrt| |OMgetString| |represents| |leftUnits| - |cos2sec| |pseudoDivide| |radicalEigenvector| |abs| |d01apf| |integer| - |cartesian| |setAdaptive3D| |processTemplate| |setTopPredicate| - |solid?| |leftExactQuotient| |repSq| |stoseInternalLastSubResultant| - |roughBasicSet| |hue| |directory| |cyclicGroup| |monomial| |d02bbf| - |changeMeasure| |factorsOfCyclicGroupSize| |pack!| |cap| |f2st| - |approxNthRoot| |hasHi| |factorGroebnerBasis| |solveid| |newLine| - |multivariate| |cExp| |removeRedundantFactors| |increasePrecision| - |lazyPseudoQuotient| |principal?| |degreePartition| |s17adf| |pastel| - |isQuotient| |polyRDE| |crushedSet| |indicialEquationAtInfinity| - |variables| |rroot| |zeroSetSplitIntoTriangularSystems| - |measure2Result| |minRowIndex| |rootPower| |s17dhf| - |innerEigenvectors| |degreeSubResultant| |subNode?| |simpsono| - |generalPosition| |quickSort| |factorSquareFree| |constantKernel| - |complexLimit| |setLegalFortranSourceExtensions| |signAround| - |checkRur| |thetaCoord| |maxPoints| |whatInfinity| - |removeRedundantFactorsInPols| |listexp| |setref| |drawComplex| - |leadingIndex| |computeCycleLength| |commaSeparate| |d03edf| |Beta| - |OMputEndApp| |triangular?| |rationalFunction| |linearAssociatedLog| - |adaptive?| |outputFloating| |startTable!| |equality| |chvar| |updatD| - |characteristicPolynomial| |scanOneDimSubspaces| |axes| |upperCase?| - |cscIfCan| |composites| |makeVariable| |HermiteIntegrate| - |tableForDiscreteLogarithm| |bits| |f02aff| |distance| - |roughEqualIdeals?| |norm| |makeprod| |taylor| |invmod| - |sumOfDivisors| |squareFreeLexTriangular| |OMgetEndApp| |doubleRank| - |minimalPolynomial| |s19adf| |resultantEuclideannaif| |controlPanel| - |ricDsolve| |digit?| |leftRankPolynomial| |laurent| |OMputString| - RF2UTS |c06ekf| |f04adf| |tubeRadius| |ode2| |UnVectorise| - |FormatArabic| |mathieu11| |deref| |empty?| |puiseux| - |sumOfKthPowerDivisors| |mapGen| |setClosed| |revert| |nullary?| - |algintegrate| |index?| |Gamma| |maxrow| |printStats!| |obj| |stFunc2| - |iCompose| |s18acf| |identification| |equiv| |hypergeometric0F1| - |errorInfo| |drawCurves| |cAcsch| |ParCondList| - |inverseIntegralMatrix| |inv| |modifyPointData| |redPol| - |exponential1| |factor1| |cache| |normalizeIfCan| |countable?| - |printInfo!| |resultantnaif| |lambert| |nothing| |curveColor| - |ground?| |prinpolINFO| |denomLODE| |primextintfrac| |surface| - |cAsech| |lepol| |lazyPseudoDivide| |prepareDecompose| - |commonDenominator| |ground| |rdregime| |fi2df| |hdmpToP| |primitive?| - |leastAffineMultiple| |rowEchelon| |high| |constant?| |hex| |c06eaf| - |leadingMonomial| |llprop| |getProperties| |unrankImproperPartitions0| - |isMult| |viewZoomDefault| |bandedJacobian| |alphanumeric| |po| - |doublyTransitive?| |youngGroup| |leadingCoefficient| - |stoseIntegralLastSubResultant| |trueEqual| |SturmHabichtMultiple| - |aCubic| |airyBi| |elements| |power!| |internalSubQuasiComponent?| - |iicsch| |symmetricSquare| |rubiksGroup| |primitiveMonomials| - |reduction| |resetBadValues| |generalTwoFactor| |RemainderList| - |bezoutResultant| |mapUnivariateIfCan| |resultantReduit| |curryRight| - |s17dcf| |PollardSmallFactor| |reductum| |d02bhf| |secIfCan| - |complexSolve| |setOfMinN| |reorder| |palgint0| |OMgetAtp| |df2fi| - |palgRDE0| |writeBytes!| |e02dff| |logIfCan| |mainDefiningPolynomial| - |lineColorDefault| |cot2tan| |bit?| |outputBinaryFile| |critMTonD1| - |mapSolve| |leaves| |homogeneous?| |goodPoint| |subResultantsChain| - |s21bdf| |more?| |fortranTypeOf| |lllp| |output| |tab1| |dflist| - |palgint| |say| |setLength!| |movedPoints| |factors| |minordet| |true| - |quasiRegular?| |radPoly| |cAcsc| |OMgetError| GF2FG |collectUnder| - |branchPoint?| |meatAxe| |pmintegrate| |hermiteH| |and| - |stoseInvertibleSetreg| |OMputError| |keys| |minrank| |lighting| - |back| |simplify| |replaceKthElement| |opeval| |conjugates| |critBonD| - |sech2cosh| |expPot| |number?| |e02baf| |ParCond| |child?| |var1Steps| - |nextSubsetGray| |currentEnv| |scalarMatrix| |swap| |triangulate| - |f07aef| |ScanFloatIgnoreSpacesIfCan| |cyclicSubmodule| |contains?| - |pToDmp| |iisqrt2| |lieAdmissible?| |factorial| |squareFreePrim| - |iflist2Result| |rootDirectory| |heapSort| |solveLinear| - |gcdcofactprim| |solveLinearPolynomialEquationByFractions| - |lfextlimint| |buildSyntax| |linearDependence| |normDeriv2| |zero?| - |d02gaf| |realEigenvalues| |iiacoth| |numericalIntegration| |pdf2df| - |notelem| |makeFloatFunction| |f02abf| |e01bgf| |mainMonomial| |acoth| - |even?| |ratDsolve| |outputForm| |relationsIdeal| |fractionPart| - |less?| |simplifyPower| |lazyPrem| |createNormalPoly| |setMaxPoints| - |asech| |listBranches| |iiexp| |branchPointAtInfinity?| |summation| - |lookup| |gcdPrimitive| |c06gsf| |setEmpty!| |torsion?| |clikeUniv| - |inc| |complexRoots| |OMcloseConn| |laguerre| |nextIrreduciblePoly| - |s14abf| |rischDEsys| |extractPoint| |exprToXXP| |external?| - |multiple| |drawToScale| |divideIfCan!| |region| |s19abf| - |stoseInvertible?| |cot2trig| |definingInequation| |sample| |mapExpon| - |lazyEvaluate| |applyQuote| |iExquo| |diophantineSystem| - |normalizedAssociate| |OMputApp| |tanSum| |script| |completeHensel| - |infLex?| |port| |addPoint| |rightCharacteristicPolynomial| - |predicates| |structuralConstants| |csch2sinh| |algebraicVariables| - |s19acf| |rk4qc| |bitLength| |imagj| |quoted?| |rur| |complement| - |polyRicDE| |OMgetObject| |supRittWu?| |laplacian| |setfirst!| - |string?| |OMconnectTCP| |currentCategoryFrame| |numberOfOperations| - |getVariableOrder| |incrementBy| |ruleset| |infix?| |makingStats?| - |exteriorDifferential| |calcRanges| |leaf?| |alternatingGroup| |tex| - |iicosh| |iisech| |ef2edf| |c06gcf| |factorsOfDegree| |condition| - |mask| |degree| |expand| |rightTraceMatrix| |rightGcd| - |prolateSpheroidal| |csc2sin| |integralDerivationMatrix| |constant| - |e02daf| |expandTrigProducts| |quote| |radicalEigenvalues| |relerror| - |filterWhile| |d01alf| |simplifyExp| |extension| |cAsinh| |seed| - |idealiser| |listRepresentation| |suchThat| |row| |filterUntil| - |radicalOfLeftTraceForm| |separateFactors| |OMputAttr| |polygon| - |atoms| |exponential| |rk4f| |primPartElseUnitCanonical| |rootSplit| - |select| |rootOf| |stripCommentsAndBlanks| |unit| |create| - |countRealRoots| |getPickedPoints| |elliptic?| |upperCase| |s17agf| - |bfKeys| |stoseSquareFreePart| |OMParseError?| |Lazard2| |options| - |nary?| |compBound| |constantOpIfCan| |writeLine!| |setRow!| - |ramifiedAtInfinity?| |ReduceOrder| |predicate| |argument| |exquo| - |exQuo| |readByteIfCan!| |e04fdf| |dom| |rightFactorIfCan| - |mainVariables| |delay| |basisOfLeftNucleus| |useNagFunctions| - |monic?| |symbolTable| |div| |invmultisect| |ran| |coerceL| |split!| - |biRank| |functionIsContinuousAtEndPoints| |brillhartIrreducible?| - |antiAssociative?| |string| |createNormalPrimitivePoly| |quo| - |wronskianMatrix| |goodnessOfFit| |phiCoord| |eof?| |shallowExpand| - |f07adf| |lfinfieldint| |numericIfCan| |pushFortranOutputStack| - |LyndonCoordinates| |numer| |resultantReduitEuclidean| |setPosition| - |makeRecord| |rationalPoint?| |upperCase!| |makeSketch| - |popFortranOutputStack| |stopTableInvSet!| |limitedint| |rem| |denom| - |showIntensityFunctions| |s17ahf| |adjoint| NOT |iidsum| |polyPart| - |subTriSet?| |fortranLogical| |lyndon| |cyclicParents| |reopen!| - |remove!| |coefficients| OR |traceMatrix| |title| |nilFactor| - |constantRight| |palglimint| |atanIfCan| |makeCrit| |pi| - |strongGenerators| |ldf2lst| |ramified?| AND |iisec| |deepestInitial| - |cfirst| |algebraicOf| |outputAsFortran| |freeOf?| |infinity| |pole?| - |localIntegralBasis| |center| |outputGeneral| |leftRank| - |problemPoints| |absolutelyIrreducible?| |hconcat| |parameters| - |s17dgf| |status| |Aleph| |integralAtInfinity?| |compound?| |e| - |cAcot| |coefChoose| |fixedPointExquo| |has?| |f02aaf| |addmod| - |bringDown| |width| |putColorInfo| |divide| - |createMultiplicationTable| |linearMatrix| |OMsetEncoding| - |linearAssociatedExp| |exp1| |explicitlyEmpty?| |shellSort| |kernel| - |LiePoly| |readLineIfCan!| |extensionDegree| |palgRDE| |pushup| - |complexZeros| |inHallBasis?| |subset?| |deleteProperty!| - |subResultantGcdEuclidean| |draw| |adaptive3D?| |categories| - |padicallyExpand| |log10| |sequence| |clearTheFTable| |birth| - |primintfldpoly| |d01ajf| |tracePowMod| |c06gqf| - |rewriteIdealWithRemainder| |solve1| |cCoth| |bitand| |musserTrials| - |gcdprim| |complexForm| |interval| |subQuasiComponent?| |d01asf| - |linear?| |setelt!| |s17dlf| |continue| |bitior| |pushdown| |gradient| - |initiallyReduce| |dimensions| |changeWeightLevel| |d03eef| - |integralCoordinates| |sinh2csch| |iomode| |optional?| - |numberOfCycles| |lintgcd| |s17ajf| |makeFR| |poisson| |generator| - |plotPolar| |extractProperty| |makeObject| |setTex!| |insertTop!| - |null?| * |interpret| |lazyResidueClass| |f02xef| |mathieu22| - |algDsolve| |removeZeroes| |firstUncouplingMatrix| |lieAlgebra?| - |optional| |eisensteinIrreducible?| |graphs| |arguments| |sqfrFactor| - |arrayStack| |stFunc1| |minColIndex| |completeHermite| |fracPart| - |splitConstant| |coef| |stFuncN| |e01bhf| |connectTo| |basis| |refine| - |tubeRadiusDefault| |iibinom| |leftRegularRepresentation| - |factorAndSplit| |augment| |setPoly| |coord| - |initializeGroupForWordProblem| |getOperands| |coordinate| - |setPrologue!| |hasTopPredicate?| |nthr| |jordanAlgebra?| |failed| - |reducedForm| |orbit| |quasiRegular| |bfEntry| |makeSin| |vark| - |c02aff| |OMgetBVar| |s20adf| |internal?| |specialTrigs| |endOfFile?| - |node| |makeMulti| |ScanFloatIgnoreSpaces| |ode| - |solveLinearPolynomialEquationByRecursion| |fractRadix| |geometric| - |complexEigenvalues| |linkToFortran| |rewriteIdealWithHeadRemainder| - |d03faf| |idealSimplify| |nsqfree| |pureLex| |meshPar1Var| - |generalInfiniteProduct| |monicRightDivide| |optpair| |rotate!| - |antisymmetric?| |reducedQPowers| |limit| |numFunEvals| - |chainSubResultants| |edf2efi| |pair?| |lo| |operator| - |LazardQuotient| |sncndn| |mapUnivariate| |makeEq| |kroneckerDelta| - |graeffe| |genericRightNorm| |fibonacci| |incr| |factorByRecursion| - |internalLastSubResultant| |pdct| |diagonalProduct| |cn| - |internalIntegrate0| |linear| |makeCos| |content| |rightMult| |se2rfi| - |hi| |d01gbf| |rdHack1| |droot| |imports| |lfintegrate| - |rowEchelonLocal| |numberOfNormalPoly| |subSet| |subCase?| - |cyclicEqual?| |formula| |variationOfParameters| |SturmHabicht| - |associative?| |mainForm| |realSolve| |createPrimitiveNormalPoly| - |polynomial| |binaryTree| |medialSet| |applyRules| |algebraic?| - |s21baf| |SFunction| |localUnquote| |symmetricRemainder| - |chineseRemainder| |iicsc| |build| |realRoots| |regularRepresentation| - |laplace| |plot| |cosIfCan| |univcase| |rename| |dark| |swapColumns!| - |maxrank| |eulerPhi| |rst| |ocf2ocdf| |selectNonFiniteRoutines| - |uniform01| |logpart| |lastSubResultant| |increase| |solid| - |OMgetSymbol| |cycleElt| |pol| |nrows| |cyclotomicDecomposition| - |stoseInvertibleSetsqfreg| |scopes| |root| |addMatchRestricted| - |npcoef| SEGMENT |zeroDimPrimary?| |nextsousResultant2| |cycleRagits| - |halfExtendedSubResultantGcd2| |ncols| |normalDeriv| - |selectMultiDimensionalRoutines| |maximumExponent| |debug3D| - |positive?| |fortran| |padecf| |curryLeft| |power| |maxRowIndex| - |simplifyLog| |algint| |viewport3D| |cyclePartition| |getStream| - |subscript| |f02aef| |polar| |prindINFO| |fractionFreeGauss!| - |meshFun2Var| |setProperty| |s13adf| |nil| |removeZero| - |degreeSubResultantEuclidean| |semiLastSubResultantEuclidean| - |declare| |fixPredicate| |OMputAtp| |OMUnknownCD?| |mindegTerm| |name| - |initiallyReduced?| |inrootof| |weakBiRank| |pquo| - |internalInfRittWu?| |equation| |sylvesterMatrix| |multMonom| - |infieldIntegrate| |hcrf| |LyndonWordsList| |body| |flexible?| |xn| - |super| |adaptive| |showTheFTable| |genericRightDiscriminant| - |doubleFloatFormat| |graphImage| |in?| |splitDenominator| |cycleEntry| - |mulmod| |rational?| |substring?| |concat| |rotatey| |approximate| - |iiacosh| |showTheIFTable| |unaryFunction| |zag| |frobenius| - |mainCharacterization| |t| |contours| |elem?| |generate| |OMreceive| - |complex| |gbasis| |lfunc| |zoom| |normal01| |OMgetEndObject| - |rewriteSetWithReduction| |UP2ifCan| |shufflein| |computeCycleEntry| - |sizeLess?| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| + |Record| |Union| |hermiteH| |PDESolve| |LagrangeInterpolation| Y + |resetAttributeButtons| |integralBasisAtInfinity| |rightScalarTimes!| + |semiSubResultantGcdEuclidean1| |setButtonValue| |newSubProgram| + |stoseInvertibleSetreg| ~ |byte| |mkcomm| |restorePrecision| + |integer?| |factorSquareFreePolynomial| |adaptive3D?| |unitNormal| + |OMputError| |qroot| |permutation| |charpol| |leftPower| + |padicallyExpand| |mdeg| |complete| |quadraticForm| |sin?| |open| + |generic| |minrank| |bezoutMatrix| |paraboloidal| + |selectSumOfSquaresRoutines| |sequence| |multiplyCoefficients| + |expextendedint| |polyred| |sin2csc| |rootSimp| |lighting| |weight| + |numberOfComposites| |polynomialZeros| |clearTheFTable| |recip| + |minPoints3D| |parameters| |janko2| |setErrorBound| |back| + |basisOfRightAnnihilator| |arbitrary| |nextPrimitivePoly| + |createIrreduciblePoly| |quartic| |birth| |tValues| |exp| |part?| + |insertBottom!| |simplify| |setnext!| |inputOutputBinaryFile| + |rowEchLocal| |bumptab1| |primintfldpoly| |paren| + |lastSubResultantElseSplit| |pomopo!| |replaceKthElement| + |exprHasAlgebraicWeight| |heap| |d01ajf| |sup| |symmetric?| + |stopTable!| |f02akf| |leadingCoefficientRicDE| |opeval| |rootRadius| + |compile| |acosIfCan| |coerceP| |rowEch| |tracePowMod| |coth2tanh| + |target| |unit?| |symbolTable| |iicoth| |conjugates| |idealiserMatrix| + |lyndonIfCan| |fractRagits| |branchIfCan| |c06gqf| |withPredicates| + |Ci| |critBonD| |generalizedInverse| |cAsec| |LyndonBasis| |digits| + |monicRightFactorIfCan| |rewriteIdealWithRemainder| + |explicitlyFinite?| |pushFortranOutputStack| |symmetricProduct| + |spherical| |sech2cosh| |weights| |insertMatch| |d02gbf| |rk4a| + |solve1| |B1solve| |startPolynomial| |popFortranOutputStack| |expPot| + |replace| |reflect| |rightAlternative?| |chebyshevU| |cCoth| + |mainVariable?| |equation| |userOrdered?| |romberg| |roughSubIdeal?| + |outputAsFortran| |number?| |exponent| |kernel| |sayLength| |nonQsign| + |f02awf| |typeList| |musserTrials| |f02fjf| |messagePrint| |list| + |binaryTournament| |alphabetic| |e02baf| |draw| |integerBound| + |stosePrepareSubResAlgo| |numberOfFactors| |gcdprim| + |extendedResultant| |presub| |car| |tanintegrate| |f02adf| |ParCond| + |input| |ScanRoman| |weierstrass| |symbolTableOf| |prepareSubResAlgo| + |complexForm| |iFTable| |cdr| |insertionSort!| |variable?| |child?| + |exponentialOrder| |library| |associatorDependence| |prinb| + |trailingCoefficient| BY |leadingExponent| |interval| |setDifference| + |btwFact| |var1Steps| |internalSubPolSet?| |intermediateResultsIF| + |leftRemainder| |consnewpol| |regime| |subMatrix| |subQuasiComponent?| + |setIntersection| |s15aef| |infinityNorm| |nextSubsetGray| + |setColumn!| |makeObject| |kind| |iisin| |d01asf| |e02bcf| + |shiftRight| |errorKind| |setUnion| |direction| |toseSquareFreePart| + |scalarMatrix| |leftMult| |setMinPoints3D| |linear?| |OMgetBind| + |tanNa| |removeSuperfluousQuasiComponents| |op| |currentEnv| + |position| |apply| |unexpand| |swap| |powern| |set| |coef| |frst| + |chebyshevT| |setelt!| |certainlySubVariety?| |discriminant| + |torsionIfCan| |critM| |triangulate| |getOperator| |leadingBasisTerm| + |setelt| |initial| |thenBranch| |s17dlf| |addPointLast| + |interpretString| |expandPower| |size| |s01eaf| |f07aef| + |sturmSequence| |yellow| |factorset| |reify| |split| |pushdown| + |leftFactorIfCan| |equivOperands| |iiGamma| + |ScanFloatIgnoreSpacesIfCan| |copy| |binary| |diff| |normalizedDivide| + |radicalSimplify| |gradient| |nativeModuleExtension| |deepCopy| + |cyclicSubmodule| |univariatePolynomial| |iiasinh| |OMencodingSGML| + |expr| |radicalSolve| |addiag| |initiallyReduce| |simpson| |delta| + |first| |transcendentalDecompose| |vector| |realElementary| + |contains?| |constructorName| |changeBase| |mkIntegral| |cAcoth| + |imagJ| |dimensions| |match?| |rest| |cCot| |differentiate| |pToDmp| + |reseed| |autoCoerce| |truncate| |rightUnits| |deepestTail| + |orOperands| |changeWeightLevel| |substitute| |basisOfMiddleNucleus| + |iisqrt2| |squareFree| |expenseOfEvaluation| |overset?| |asecIfCan| + |d01fcf| |d03eef| |removeDuplicates| |incrementKthElement| + |lieAdmissible?| |outputSpacing| |singleFactorBound| |variable| + |radicalRoots| |linearDependenceOverZ| |integralCoordinates| + |subResultantChain| |genericRightTrace| |factorial| + |pointColorDefault| |iterators| |scale| |rootOfIrreduciblePoly| + |palgextint| |expintfldpoly| |sinh2csch| |compiledFunction| |bag| + |squareFreePrim| |show| |listOfMonoms| |abelianGroup| + |mainCoefficients| |iomode| |LiePolyIfCan| |quadratic?| + |iflist2Result| |quadratic| |laurentIfCan| |OMputBVar| |enumerate| + |leftRecip| |optional?| |lambda| |center| |entry?| |goto| + |rootDirectory| |trace| |latex| |innerSolve1| + |removeRoughlyRedundantFactorsInPols| + |generalizedContinuumHypothesisAssumed| |numberOfCycles| + |computeBasis| |heapSort| |curry| |df2mf| |cTan| |rationalIfCan| + |lintgcd| |solveLinearPolynomialEquation| |extractIndex| |solveLinear| + |c02agf| |binomial| |perfectSqrt| |infix| |f02bjf| |s17ajf| |next| + |sumSquares| |identitySquareMatrix| |gcdcofactprim| |unknown| + |rangePascalTriangle| |setAttributeButtonStep| |OMgetString| |makeFR| + |showScalarValues| |rules| |internalDecompose| + |solveLinearPolynomialEquationByFractions| |sh| |shift| + |setCondition!| |dn| |represents| |find| |poisson| |varList| + |patternMatch| |rotatez| |lfextlimint| = |linearlyDependent?| + |leftUnits| |supersub| |factorials| |plotPolar| |int| |module| + |buildSyntax| |Ei| |retract| |cos2sec| |cycleTail| |uniform| + |extractProperty| |topFortranOutputStack| |linearDependence| |s18aff| + < |result| |trivialIdeal?| |listOfLists| |pseudoDivide| |headAst| + |setTex!| |flagFactor| |dequeue| |normDeriv2| > |atrapezoidal| |sum| + |reset| |radicalEigenvector| |viewpoint| |insertTop!| |tableau| + |stoseInvertibleSet| |zero?| |sincos| <= |separant| |primintegrate| + |abs| |plusInfinity| |selectIntegrationRoutines| |null?| |pile| |lp| + |d02gaf| |points| >= |ratpart| |mpsode| |write| |d01apf| + |minusInfinity| |getZechTable| |lazyResidueClass| |eigenvectors| + |realEigenvalues| |showAllElements| |cartesian| |reduceLODE| |cCsch| + |f02xef| |outputMeasure| |iiacoth| |fortranCompilerName| |weighted| + |copies| |callForm?| |setAdaptive3D| |mathieu22| |clearCache| |cubic| + |localAbs| |numericalIntegration| + |genericRightTraceForm| + |processTemplate| |polygamma| |algDsolve| |cyclicCopy| |epilogue| + |pdf2df| |imagK| - |LowTriBddDenomInv| |OMputEndAttr| + |setTopPredicate| |OMputBind| |removeZeroes| + |reducedContinuedFraction| |notelem| / |unitsColorDefault| |solid?| + |combineFeatureCompatibility| |generateIrredPoly| + |firstUncouplingMatrix| |d02kef| |makeFloatFunction| |e04mbf| + |monicModulo| |type| |leftExactQuotient| |loopPoints| |lieAlgebra?| + |completeEchelonBasis| |asinIfCan| |categoryFrame| |f02abf| + |clearDenominator| |repSq| |innerSolve| |eisensteinIrreducible?| + |shuffle| |leftGcd| |e01bgf| |expint| |debug| |coefficient| + |bubbleSort!| |graphs| |insert| |definingEquations| |iicot| + |mainMonomial| |inc| D |rightOne| |constantCoefficientRicDE| |push!| + |sqfrFactor| |s18aef| |removeSinhSq| |f2df| |even?| |numberOfHues| + |credPol| |asimpson| |quatern| |arrayStack| |OMgetEndAtp| + |padicFraction| |validExponential| |ratDsolve| |monomialIntPoly| + |cAtanh| |matrixConcat3D| |countRealRootsMultiple| |real?| |stFunc1| + |Frobenius| |s21bbf| |postfix| |generate| |dihedralGroup| + |perfectNthPower?| |minColIndex| |wordInGenerators| |satisfy?| + |elements| |mr| |outputList| |minPoly| |rationalApproximation| + |setlast!| |explicitEntries?| |completeHermite| |ffactor| |power!| + |trapezoidal| |incrementBy| |jacobi| |OMUnknownSymbol?| + |totalGroebner| |integralMatrixAtInfinity| |fracPart| |mantissa| + |slex| |iteratedInitials| |internalSubQuasiComponent?| |error| + |basisOfLeftAnnihilator| |genericLeftTraceForm| |f04mcf| |expand| + |vertConcat| |iicsch| |s20acf| |assert| |f01qef| |hasPredicate?| + |filterWhile| |concat!| |scalarTypeOf| |lyndon| |commutator| + |symmetricSquare| |symmetricGroup| |setRealSteps| |minPol| |divisor| + |filterUntil| |OMopenString| |cyclicParents| |particularSolution| + |att2Result| |rubiksGroup| |categories| |print| |antiCommutator| + |select| |semiResultantEuclidean2| |showTheRoutinesTable| + |trace2PowMod| |reopen!| |ksec| |reduction| |f01mcf| |resolve| + |bernoulli| |approximants| |innerint| |lifting| |remove!| |rightLcm| + |OMreadStr| |resetBadValues| |sylvesterMatrix| |possiblyNewVariety?| + |e01bef| |clearTheIFTable| |rootKerSimp| |coefficients| + |var2StepsDefault| |cosSinInfo| |generalTwoFactor| |leader| + |multMonom| |matrix| |solve| |safeCeiling| |belong?| |traceMatrix| + |normalise| |unprotectedRemoveRedundantFactors| |equiv?| + |RemainderList| |infieldIntegrate| |associates?| |d02ejf| + |toseLastSubResultant| |nilFactor| |lowerCase| |double| |open?| + |permutationRepresentation| |bezoutResultant| |internalIntegrate| + |hcrf| |operation| |fillPascalTriangle| |generalSqFr| |create3Space| + |transcendenceDegree| |constantRight| |legendre| |prinshINFO| + |increment| |mapUnivariateIfCan| |roughUnitIdeal?| |LyndonWordsList| + |showSummary| |zeroVector| |bothWays| |elRow2!| |makeRecord| |arity| + |palglimint| |removeCoshSq| |setFieldInfo| |stoseInvertible?sqfreg| + |resultantReduit| |besselY| |flexible?| |setLabelValue| |permanent| + |maxPoints3D| |redmat| |taylorIfCan| |atanIfCan| |bright| |besselK| + |decimal| |curryRight| |xn| |irreducible?| |checkPrecision| + |nextNormalPoly| |airyAi| |redPo| |initTable!| |makeCrit| + |showAttributes| |LyndonWordsList1| |currentSubProgram| + |curveColorPalette| |s17dcf| |super| |groebnerFactorize| + |linearPolynomials| |quasiComponent| |tree| |fortranLiteral| + |strongGenerators| |leadingSupport| |unitCanonical| |Nul| + |PollardSmallFactor| |adaptive| |asinhIfCan| |f01ref| |getOrder| + |option?| |ldf2lst| |sec2cos| |iroot| |d02bhf| |showTheFTable| + |shanksDiscLogAlgorithm| |node?| |unmakeSUP| |finiteBound| |ramified?| + |declare!| |e02gaf| |secIfCan| |externalList| + |genericRightDiscriminant| |sizePascalTriangle| |localReal?| |isOp| + |iisec| |f02agf| |Zero| |backOldPos| |leviCivitaSymbol| |complexSolve| + |doubleFloatFormat| |unrankImproperPartitions1| |var2Steps| |or?| + |bipolar| |deepestInitial| |One| |identityMatrix| + |primPartElseUnitCanonical!| |setOfMinN| |graphImage| |iiacot| + |seriesToOutputForm| |delete| |c06ecf| |mainMonomials| |cfirst| + |parseString| |reorder| |showClipRegion| |in?| |e04gcf| + |getMultiplicationTable| |internalZeroSetSplit| |extendedEuclidean| + |algebraicOf| |fmecg| |setleft!| |palgint0| |splitDenominator| + |linSolve| |clearFortranOutputStack| |modifyPoint| |freeOf?| + |clearTheSymbolTable| |nlde| |OMgetAtp| |insert!| |cycleEntry| + |property| |primitivePart| |exprHasWeightCosWXorSinWX| |setValue!| + |pole?| |clipSurface| |void| |bumptab| |df2fi| |coerceS| |mulmod| + |laurentRep| |ip4Address| |tan2trig| |OMbindTCP| |localIntegralBasis| + |segment| |elt| |numFunEvals3D| |palgRDE0| |selectPDERoutines| |label| + |rational?| |inGroundField?| |binarySearchTree| |euclideanSize| + |outputGeneral| |fixedDivisor| |ode1| |f04faf| |writeBytes!| |rotatey| + |units| |rightPower| |isobaric?| |lexico| |leftRank| |charthRoot| + |rarrow| |e02dff| |round| |iiacosh| |problemPoints| |setFormula!| + |kmax| |derivationCoordinates| |createGenericMatrix| |fortran| + |doubleDisc| |stiffnessAndStabilityFactor| |logIfCan| |showTheIFTable| + |imagI| |clipBoolean| |removeIrreducibleRedundantFactors| + |absolutelyIrreducible?| |nthExponent| |xCoord| |fortranCharacter| + |mainDefiningPolynomial| |unaryFunction| |normInvertible?| + |rightFactorCandidate| |complexElementary| |generalizedEigenvector| + |hconcat| |stiffnessAndStabilityOfODEIF| |forLoop| |lineColorDefault| + |zag| |removeRoughlyRedundantFactorsInPol| |groebner?| |duplicates| + |singular?| |s17dgf| |numberOfMonomials| |selectOrPolynomials| + |cot2tan| |frobenius| |code| |physicalLength!| |collect| |hclf| |/\\| + |Aleph| |constantIfCan| |generalizedEigenvectors| |bit?| |rspace| + |mainCharacterization| |copy!| |d01aqf| |setMaxPoints3D| |\\/| + |integralAtInfinity?| |mainValue| |tower| |figureUnits| + |outputBinaryFile| |bumprow| |contours| |mergeFactors| |dominantTerm| + |hasoln| |enterInCache| |extract!| |compound?| |declare| + |removeConstantTerm| |iiacos| |critMTonD1| |elem?| |setProperty!| + |viewPhiDefault| |tanh2trigh| |karatsubaDivide| |getButtonValue| + |cAcot| |drawComplexVectorField| |nextLatticePermutation| GE + |mapSolve| |option| |OMreceive| |properties| |permutations| |exprex| + |factorSFBRlcUnit| |coefChoose| |s13aaf| |homogeneous?| |infRittWu?| + |cSinh| GT |gbasis| |output| |translate| |solveInField| + |OMencodingBinary| |conjug| |addPoint2| |OMputEndBind| + |fixedPointExquo| |rightTrim| |goodPoint| |fortranDouble| LE + |extractClosed| |lfunc| |deepExpand| |rational| |viewThetaDefault| + |fintegrate| |has?| |generators| |complexNumeric| |leftTrim| |e02akf| + |bracket| |subResultantsChain| LT |zoom| |directory| |palgintegrate| + |queue| |shade| |argscript| |nonSingularModel| |f02aaf| |taylorRep| + |recur| |s21bdf| |normal01| |select!| |duplicates?| |RittWuCompare| + |rightDivide| |superscript| |addmod| |script| |kernels| |e02bdf| + |partialNumerators| |more?| |OMgetEndObject| |complexNormalize| + |kovacic| |setrest!| |bringDown| |testDim| |univariate| + |inconsistent?| |complementaryBasis| |fortranTypeOf| + |exprHasLogarithmicWeights| |rewriteSetWithReduction| + |basisOfRightNucloid| |polarCoordinates| |say| |normalForm| |bat| + |putColorInfo| |flatten| |removeSquaresIfCan| |returns| |lllp| + |UP2ifCan| |OMreadFile| |useSingleFactorBound?| |maxIndex| + |isAbsolutelyIrreducible?| |collectQuasiMonic| |divide| |tex| + |characteristic| |readable?| |tab1| |shufflein| |badValues| + |getProperty| |powmod| |expenseOfEvaluationIF| + |createMultiplicationTable| |factor| |closedCurve?| |dflist| + |hasSolution?| |computeCycleEntry| |zero| |precision| + |removeRedundantFactorsInContents| |mainContent| |integrate| + |linearMatrix| |rootNormalize| |sqrt| |cyclicEntries| |palgint| + |euler| |sizeLess?| |iicos| |createNormalElement| |ranges| + |OMsetEncoding| |univariatePolynomialsGcds| |top| |real| + |basisOfCenter| |setLength!| |acschIfCan| |And| |ratPoly| |allRootsOf| + |linearAssociatedExp| |color| |imag| |raisePolynomial| |movedPoints| + |semiIndiceSubResultantEuclidean| |leaves| |Or| |components| + |pleskenSplit| |boundOfCauchy| |exp1| |front| |directProduct| + |whileLoop| |mapUp!| |factors| |pattern| |Not| |genericLeftNorm| + |irreducibleRepresentation| |squareMatrix| |explicitlyEmpty?| |red| + |OMReadError?| |quotient| |minordet| |unitVector| + |functionIsOscillatory| |deriv| |setprevious!| |shellSort| |brace| + |factorList| |quasiRegular?| |cAcosh| |setright!| |second| |powerSum| + |loadNativeModule| |modulus| |LiePoly| |order| |contractSolve| + |destruct| |radPoly| |separateDegrees| |coHeight| |hexDigit| + |perfectSquare?| |third| |stirling2| |chiSquare| |graphState| + |readLineIfCan!| |outerProduct| |omError| |cAcsc| |irreducibleFactors| + |semiResultantReduitEuclidean| |message| |diagonal?| |iilog| + |mergeDifference| |elseBranch| |extensionDegree| |jacobiIdentity?| + |function| |OMgetError| |lazyVariations| |nthExpon| |fortranReal| + |escape| |palgRDE| |tRange| |physicalLength| GF2FG |cycleSplit!| + |reindex| |members| |pushup| |parametersOf| |f04axf| |monomial| + |collectUnder| |mainPrimitivePart| |eval| |parametric?| |parabolic| + |pointColor| |complexZeros| |coerceListOfPairs| |inR?| |multivariate| + |branchPoint?| |log| |extendedSubResultantGcd| |constant| + |partialDenominators| |lflimitedint| |startStats!| |inHallBasis?| + |acoshIfCan| |cons| |iiatanh| |variables| |any| |ListOfTerms| |f04qaf| + |minset| |rischDE| |subset?| |nullSpace| |pmComplexintegrate| + |printStats!| |key?| |swapRows!| |orthonormalBasis| |deleteProperty!| + |imagi| |capacity| |hMonic| |stFunc2| |remainder| |f01rcf| |lprop| + |minus!| |subResultantGcdEuclidean| |leadingTerm| |iCompose| + |univariatePolynomials| |expressIdealMember| |modTree| |isPlus| + |semiResultantEuclidean1| |s18acf| |prod| |sizeMultiplication| |any?| + |OMunhandledSymbol| |elliptic?| |fill!| |decrease| |integerIfCan| + |taylor| |identification| |printInfo| |realEigenvectors| + |partialQuotients| |jacobian| |double?| |upperCase| |source| |bounds| + |laurent| |equiv| |enterPointData| |flexibleArray| |f07fef| + |setVariableOrder| |s17agf| |children| |systemSizeIF| |puiseux| + |hypergeometric0F1| |firstSubsetGray| |parts| |OMgetFloat| |baseRDE| + |mainExpression| |bfKeys| |printingInfo?| |probablyZeroDim?| |e02ddf| + |errorInfo| |lcm| |eulerPhi| |minPoints| |bipolarCylindrical| + |numberOfFractionalTerms| |stoseSquareFreePart| |vectorise| |ridHack1| + |inv| |e01sff| |drawCurves| |rst| |lowerPolynomial| + |integralRepresents| |pseudoQuotient| |OMParseError?| |divideIfCan| + |ground?| |fortranLiteralLine| |eq?| |cAcsch| |ocf2ocdf| |append| + |close| |OMputEndBVar| |accuracyIF| |reduceBasisAtInfinity| + |useEisensteinCriterion?| |Lazard2| |ravel| |ground| |inverseColeman| + |ParCondList| |dmpToP| |selectNonFiniteRoutines| |gcd| |iiasech| + |exists?| |relativeApprox| |nary?| |enqueue!| |reshape| |typeLists| + |leadingMonomial| |inverseIntegralMatrix| |imagk| |false| |uniform01| + |basisOfNucleus| |display| |derivative| |fglmIfCan| |compBound| + |s18dcf| |indices| |leadingCoefficient| |clipWithRanges| + |modifyPointData| |logpart| |createZechTable| |elliptic| |f01brf| + |constantOpIfCan| |collectUpper| |evenInfiniteProduct| + |primitiveMonomials| |leftCharacteristicPolynomial| |redPol| + |lastSubResultant| |numberOfDivisors| |noncommutativeJordanAlgebra?| + |pointSizeDefault| |cRationalPower| |writeLine!| |makeTerm| |reductum| + |d02cjf| |exponential1| |increase| |identity| |tablePow| |listLoops| + |setRow!| |sPol| |findBinding| |cyclotomicFactorization| |factor1| + |solid| |#| |key| |changeNameToObjf| |bezoutDiscriminant| |ScanArabic| + |ramifiedAtInfinity?| |inputBinaryFile| |normalizeIfCan| |integers| + |update| UTS2UP |remove| |OMgetSymbol| |sort!| |length| + |toseInvertibleSet| |magnitude| |rightZero| |ReduceOrder| |countable?| + |commutativeEquality| |ptree| |schema| |cycleElt| |filename| |df2st| + |cCsc| |trigs2explogs| |scripts| |argument| |removeDuplicates!| + |element?| |redpps| |printInfo!| |last| |pol| |not?| |areEquivalent?| + |e02def| |semiResultantEuclideannaif| |exQuo| |light| |assoc| + |palgLODE| |resultantnaif| |limitPlus| |cyclotomicDecomposition| + |parse| |getMultiplicationMatrix| |quotientByP| + |wordsForStrongGenerators| |readByteIfCan!| |OMsupportsCD?| |tanQ| + |semiDiscriminantEuclidean| |lambert| |stoseInvertibleSetsqfreg| + |leftNorm| |host| |coshIfCan| |e04fdf| |recoverAfterFail| |entries| + |curveColor| |initials| |scopes| |writable?| |stronglyReduced?| + |ptFunc| |radicalEigenvectors| |extendedint| |rightFactorIfCan| + |zeroSquareMatrix| |prinpolINFO| |makeGraphImage| |root| + |stopMusserTrials| |is?| |factorFraction| |resize| |mainVariables| + |makeViewport2D| |usingTable?| |denomLODE| |middle| + |addMatchRestricted| |mathieu12| |iitan| |monicDecomposeIfCan| + |OMread| |delay| |evaluateInverse| |tubePlot| |primextintfrac| + |npcoef| |hexDigit?| |imaginary| |rightQuotient| |quasiMonic?| + |basisOfLeftNucleus| |quadraticNorm| |failed?| |f04jgf| |surface| + |zeroDimPrimary?| |unitNormalize| |character?| |showArrayValues| + |useNagFunctions| |expt| |printHeader| |alphabetic?| |cAsech| + |nextsousResultant2| |edf2fi| |indiceSubResultant| |stop| |point?| + |gcdcofact| |monic?| |tanh2coth| |lepol| |nthRootIfCan| |cycleRagits| + |cyclic| |qfactor| |genericPosition| |setvalue!| |invmultisect| + |stoseInvertible?reg| |normal?| |lazyPseudoDivide| + |halfExtendedSubResultantGcd2| |digamma| |Si| LODO2FUN |ran| + |hitherPlane| |entry| |s17aff| |shrinkable| |prepareDecompose| + |normalDeriv| |max| |taylorQuoByVar| |exponents| |getIdentifier| + |coerceL| |lazyPquo| |comment| |roughBase?| |unravel| + |commonDenominator| |selectMultiDimensionalRoutines| |index| + |linGenPos| |zerosOf| |anfactor| |nextPartition| |split!| + |representationType| |rdregime| |coth2trigh| |maximumExponent| + |argumentList!| |ignore?| |extractSplittingLeaf| |biRank| |Vectorise| + |bitTruth| |fi2df| |divideExponents| |debug3D| |optimize| |makeResult| + |lexTriangular| |OMputFloat| |functionIsContinuousAtEndPoints| + |e04dgf| |getCurve| |hdmpToP| |gramschmidt| |positive?| |pair| |rule| + |compose| |bytes| |mainSquareFreePart| |brillhartIrreducible?| + |iisqrt3| |myDegree| |primitive?| |ceiling| |padecf| |transpose| + |and?| |showTheSymbolTable| |antiAssociative?| |matrixDimensions| + |numberOfImproperPartitions| |depth| |leastAffineMultiple| + |leftExtendedGcd| |curryLeft| |yCoord| |hash| |cylindrical| |s21bcf| + |createNormalPrimitivePoly| |OMgetEndError| |tanAn| |randomR| + |rowEchelon| |power| |count| |positiveSolve| |choosemon| |leftLcm| + |mapCoef| |wronskianMatrix| |OMgetInteger| |retractIfCan| |cothIfCan| + |high| |maxRowIndex| |bombieriNorm| |mapExponents| |e02agf| + |goodnessOfFit| |basicSet| |arguments| |value| |randomLC| |qelt| + |cycleLength| |constant?| |simplifyLog| |defineProperty| |nextPrime| + |splitNodeOf!| |totalfract| |phiCoord| |objectOf| |OMputSymbol| + |qsetelt| |hex| |algint| |numer| |rationalPower| |palgLODE0| |csubst| + |eof?| |setScreenResolution3D| |c06eaf| |maxdeg| |xRange| + |standardBasisOfCyclicSubmodule| |viewport3D| |ODESolve| |denom| + |OMgetType| |lexGroebner| |shallowExpand| |move| |iidprod| + |primlimitedint| |yRange| |llprop| |cyclePartition| |partialFraction| + |eyeDistance| |solveLinearlyOverQ| |f07adf| |OMputInteger| + |getProperties| |safeFloor| |zRange| |viewPosDefault| |getStream| + |domainOf| |inverse| |pi| |every?| |lfinfieldint| |prefixRagits| + |level| |map!| |rightExactQuotient| |unrankImproperPartitions0| + |showRegion| |subscript| |setProperties| |infinity| |ord| |reduced?| + |numericIfCan| |powers| |nand| |notOperand| |qsetelt!| |isMult| + |f02aef| |reciprocalPolynomial| |mat| |complexNumericIfCan| + |LyndonCoordinates| |selectODEIVPRoutines| |determinant| + |leftTraceMatrix| |viewZoomDefault| |polar| |finite?| |getBadValues| + |resultantReduitEuclidean| |numberOfVariables| |subHeight| |map| + |perfectNthRoot| |bandedJacobian| |prindINFO| |complexEigenvectors| + |modularFactor| UP2UTS |setPosition| |infinite?| |Hausdorff| + |alphanumeric| |position!| |fractionFreeGauss!| |purelyAlgebraic?| + |elRow1!| |bandedHessian| |rationalPoint?| |bivariate?| + |listYoungTableaus| |iitanh| |po| |meshFun2Var| |infieldint| |e02bef| + |composite| |partitions| |upperCase!| |doublyTransitive?| + |binomThmExpt| |acsch| |setProperty| |numericalOptimization| + |numberOfComputedEntries| |pToHdmp| |makeSketch| |constDsolve| + |rightRemainder| |sec| |extendedIntegrate| |youngGroup| |s13adf| + |isPower| |printCode| |groebgen| |setchildren!| |stopTableInvSet!| + |addMatch| |csc| |convert| |intcompBasis| + |stoseIntegralLastSubResultant| |removeZero| |nextNormalPrimitivePoly| + |makeSeries| |linearlyDependentOverZ?| |subtractIfCan| |limitedint| + |interpret| |search| |asin| |bat1| |trueEqual| |fullDisplay| + |degreeSubResultantEuclidean| |blankSeparate| |keys| + |antiCommutative?| |showIntensityFunctions| |float?| |acos| + |palgextint0| |SturmHabichtMultiple| |semiLastSubResultantEuclidean| + |iiperm| |invertibleSet| |SturmHabichtSequence| |s17ahf| |tube| |test| + |componentUpperBound| |atan| |moebiusMu| |aCubic| |fixPredicate| |cn| + |makeSUP| |karatsuba| |viewDeltaYDefault| |digit| |adjoint| |acot| + |qqq| |univariate?| |assign| |airyBi| |OMputAtp| |viewDefaults| + |sdf2lst| |anticoord| |iidsum| |oblateSpheroidal| |singularitiesOf| + |asec| |LazardQuotient2| |OMUnknownCD?| |dioSolve| |s19aaf| |mindeg| + |node| |polyPart| |check| |OMserve| |acsc| |OMputEndApp| |isOpen?| + |complex?| |mindegTerm| |getGoodPrime| |prefix| |traverse| |resultant| + |subTriSet?| |scripted?| |leftOne| |sinh| |doubleResultant| + |triangular?| |numberOfChildren| |initiallyReduced?| |cyclic?| + |shiftRoots| FG2F |fortranLogical| |gderiv| |intPatternMatch| |cosh| + |iisinh| |rationalFunction| |printStatement| |inrootof| |size?| + |dAndcExp| |decomposeFunc| |dimensionOfIrreducibleRepresentation| + |tanh| |logGamma| |linearAssociatedLog| |rCoord| |weakBiRank| + |topPredicate| |delete!| |toseInvertible?| |overlabel| |rur| + |OMputEndObject| |coth| |f04arf| |adaptive?| |measure| |or| |pquo| + |outputAsTex| |acothIfCan| |terms| |complement| |minIndex| + |coerceImages| |sech| |outputFloating| |completeSmith| |outlineRender| + |internalInfRittWu?| |retractable?| |createLowComplexityNormalBasis| + |subresultantSequence| |d01bbf| |polyRicDE| |basisOfRightNucleus| + |csch| |baseRDEsys| |startTable!| |approxSqrt| |quasiAlgebraicSet| ~= + |leftDiscriminant| |OMgetVariable| |OMgetObject| |sqfree| + |knownInfBasis| |member?| |asinh| |equality| |e02zaf| |pair?| + |screenResolution3D| |leftAlternative?| |coerce| |maxint| + |gcdPolynomial| |sumOfSquares| |supRittWu?| |chvar| |push| + |factorPolynomial| |acosh| |extractTop!| F |operator| |OMsend| + |closed?| |construct| |term| |createRandomElement| |laplacian| + |characteristicSerie| |splitLinear| |monomRDEsys| |atanh| + |finiteBasis| |updatD| |OMconnInDevice| |LazardQuotient| |triangSolve| + |factorOfDegree| |s13acf| |constantOperator| |setfirst!| |getConstant| + |conditionsForIdempotents| |acoth| |characteristicPolynomial| + |lowerCase!| |sncndn| |nextPrimitiveNormalPoly| |indicialEquations| + |setClipValue| |leftTrace| |basisOfCommutingElements| |string?| + |mapUnivariate| |transform| |asech| |f01rdf| |scanOneDimSubspaces| + |lllip| |oddintegers| |iifact| |setImagSteps| |imagE| |iiasec| + |OMconnectTCP| |dfRange| |OMsupportsSymbol?| |makeEq| |axes| + |primextendedint| |mappingAst| |cotIfCan| |colorFunction| |e01saf| + |e02bbf| |currentCategoryFrame| |kroneckerDelta| |id| |multiple| + |untab| |upperCase?| |deleteRoutine!| |style| |principalIdeal| + |leftScalarTimes!| |lazy?| |trunc| |numberOfOperations| |sechIfCan| + |graeffe| |applyQuote| |ddFact| |primitiveElement| |cscIfCan| + |symbolIfCan| |isExpt| |extractBottom!| |fortranComplex| |rename!| + |bitCoef| |getVariableOrder| |numerators| |table| |null| + |binaryFunction| |subPolSet?| |composites| |genericRightNorm| + |removeCosSq| |distFact| |c06fqf| |zeroSetSplit| |e01bff| + |makingStats?| |makeVariable| |new| |createThreeSpace| |case| + |fibonacci| |f02axf| |lazyIntegrate| |antisymmetricTensors| |log2| + |genericLeftMinimalPolynomial| |explogs2trigs| |exteriorDifferential| + |trapezoidalo| |divisors| |HermiteIntegrate| |ruleset| |nthFactor| + |pointData| |factorByRecursion| |diagonalMatrix| |mix| |selectsecond| + |f04atf| |upDateBranches| |twist| |calcRanges| + |tableForDiscreteLogarithm| |alternative?| |list?| + |wordInStrongGenerators| ** |internalLastSubResultant| |lex| |isList| + |distdfact| |FormatRoman| |rightExtendedGcd| |leaf?| + |characteristicSet| |continue| |bits| |exprToGenUPS| |fprindINFO| + |palglimint0| |rewriteSetByReducingWithParticularGenerators| |pdct| + |eigenMatrix| |ratDenom| |normalElement| |indiceSubResultantEuclidean| + |alternatingGroup| |currentScope| |char| |bottom!| |f02aff| |suchThat| + |outputAsScript| |s17akf| |symbol?| |diagonalProduct| |cosh2sech| + |wreath| |iicosh| |cAsin| |lyndon?| |nthFlag| EQ |lfextendedint| + |internalIntegrate0| |one?| |makeUnit| |distance| |testModulus| + |intChoose| |multiple?| |outputArgs| |OMputObject| |iisech| + |component| |isQuotient| |column| |makeCos| |firstNumer| + |roughEqualIdeals?| |triangularSystems| |BasicMethod| + |rectangularMatrix| |noKaratsuba| |stirling1| |andOperands| |ef2edf| + |f02wef| |genus| |systemCommand| |odd?| |norm| |routines| |content| + |mainVariable| |squareFreePart| |iiatan| |makeViewport3D| |c06gcf| + |evaluate| |ellipticCylindrical| |category| |top!| |zeroDimensional?| + |makeprod| |rightMult| |prime?| |virtualDegree| |selectPolynomials| + |oddInfiniteProduct| |yCoordinates| |factorsOfDegree| |byteBuffer| + |domain| |invmod| |prologue| |se2rfi| |viewWriteDefault| + |nthFractionalTerm| |float| |sort| |removeSinSq| |showTypeInOutput| + |repeating| |selectOptimizationRoutines| |degree| |package| + |mainKernel| |left| |normal| |nil?| |sumOfDivisors| + |viewWriteAvailable| |discreteLog| |d01gbf| |fortranInteger| |f01qdf| + |generic?| |rightTraceMatrix| |aLinear| |height| |right| + |numberOfIrreduciblePoly| |clipPointsDefault| + |squareFreeLexTriangular| |rdHack1| |makeYoungTableau| |dimension| + |zeroDim?| |iiasin| |multiplyExponents| |unary?| |rightGcd| |droot| + |chiSquare1| |OMgetEndApp| |nextItem| |toScale| |const| |normFactors| + |rightMinimalPolynomial| |sturmVariationsOf| |prolateSpheroidal| + |tanIfCan| |doubleRank| |repeating?| |commutative?| + |removeSuperfluousCases| |imports| |polygon?| |random| + |symmetricTensors| |complexIntegrate| |quoByVar| |csc2sin| + |integralBasis| |recolor| |socf2socdf| |minimalPolynomial| + |lastSubResultantEuclidean| |lfintegrate| |unvectorise| |curve| + |f02bbf| |mathieu23| |integralDerivationMatrix| |c06frf| |OMopenFile| + |s19adf| |difference| |rowEchelonLocal| |cycles| |BumInSepFFE| + |nextsubResultant2| |subNodeOf?| |e02daf| |setMinPoints| |subst| + |midpoint| |union| |resultantEuclideannaif| |SturmHabichtCoefficients| + |numberOfNormalPoly| |lazyPremWithDefault| |tail| |realZeros| |cAcos| + |hostPlatform| |linearPart| |expandTrigProducts| |e01sbf| + |expintegrate| |controlPanel| |basisOfLeftNucloid| |subSet| |putGraph| + |sparsityIF| |trigs| |minGbasis| |quote| |setPredicates| |elementary| + |ricDsolve| |subCase?| |viewport2D| |randnum| |monicLeftDivide| + |perspective| |OMencodingXML| |radicalEigenvalues| |OMgetEndBVar| + |primeFactor| |leftRankPolynomial| |read!| |cyclicEqual?| + |oneDimensionalArray| |relerror| |octon| |impliesOperands| |status| + |wrregime| |twoFactor| |euclideanGroebner| |OMputString| |OMlistCDs| + |matrixGcd| |variationOfParameters| |d01alf| |primes| |returnType!| + |term?| |whitePoint| |sinhcosh| |monicCompleteDecompose| |toroidal| + |pade| RF2UTS |primaryDecomp| |SturmHabicht| |computeInt| |df2ef| + |squareFreeFactors| |halfExtendedResultant2| + |halfExtendedSubResultantGcd1| |rightUnit| |simplifyExp| |objects| + |symbol| |writeByteIfCan!| |c06ekf| |OMputEndAtp| |associative?| + |OMencodingUnknown| |convergents| |rotatex| |extension| + |axesColorDefault| |An| |cycle| |base| |expression| |OMlistSymbols| + |f04adf| |vspace| |mainForm| |getExplanations| |tubePoints| + |integralMatrix| |pointLists| |numerator| |linear| |cAsinh| + |solveRetract| |integer| |coleman| |tubeRadius| |internalAugment| + |cSech| |realSolve| |generalizedContinuumHypothesisAssumed?| + |divisorCascade| |lSpaceBasis| |outputFixed| |groebner| |seed| + |f01qcf| |operators| |ode2| |createPrimitiveNormalPoly| |headReduce| + |returnTypeOf| |varselect| |cPower| |pushdterm| |polynomial| + |idealiser| |associator| |f04maf| |critT| |UnVectorise| |binaryTree| + |subspace| |lifting1| |cyclotomic| |associatedSystem| |symmetricPower| + |universe| |listRepresentation| |algebraicDecompose| |s18def| + |FormatArabic| |getCode| |medialSet| |pushucoef| |showAll?| + |headReduced?| |row| |stoseLastSubResultant| |invertIfCan| |mathieu11| + |interpolate| |applyRules| |dimensionsOf| |presuper| |iiabs| + |companionBlocks| |radicalOfLeftTraceForm| |explimitedint| |e01baf| + |f02ajf| |pointPlot| |deref| |sylvesterSequence| |algebraic?| + |complexExpand| |resetNew| |separateFactors| |bivariateSLPEBR| + |primlimintfrac| |laguerreL| |empty?| |subresultantVector| |s21baf| + |integral| |setScreenResolution| |headRemainder| |algebraicSort| + |OMputAttr| |Lazard| |tensorProduct| |copyInto!| + |sumOfKthPowerDivisors| |SFunction| |possiblyInfinite?| |aQuadratic| + |cup| |OMputVariable| |multiset| |polygon| |rk4| |mapGen| + |minimumExponent| |localUnquote| |changeVar| |rquo| |schwerpunkt| + |smith| |setEpilogue!| |slash| |atoms| |setClosed| |cross| + |symmetricRemainder| |patternVariable| |OMgetAttr| |aspFilename| + |autoReduced?| |monomial?| |exponential| |resetVariableOrder| + |previous| |save| |d01amf| |besselJ| |revert| |fortranDoubleComplex| + |chineseRemainder| |iiacsch| |genericLeftTrace| |karatsubaOnce| |cLog| + |rk4f| |s17def| |obj| |nullary?| |oddlambert| |iicsc| + |normalizeAtInfinity| |moebius| |inRadical?| |qinterval| |setAdaptive| + |primPartElseUnitCanonical| |merge!| |multinomial| |algintegrate| + |cache| |build| |rewriteIdealWithQuasiMonicGenerators| |getGraph| + |rootsOf| |rootSplit| |nothing| |sts2stst| |harmonic| |index?| + |realRoots| |linears| |supDimElseRittWu?| |mapMatrixIfCan| + |denominator| |s17aef| |rootOf| |singularAtInfinity?| + |balancedBinaryTree| |Gamma| |regularRepresentation| |expandLog| + |mapmult| |getRef| |low| |badNum| |stripCommentsAndBlanks| |ref| + |lquo| |maxrow| |pseudoRemainder| |rightDiscriminant| |laplace| + |appendPoint| |modularGcdPrimitive| |getMeasure| |alphanumeric?| + |unit| |constantToUnaryFunction| |block| |totalLex| |plot| |qPot| + |plus| |gethi| |prime| |create| |coordinates| |squareTop| + |stoseInternalLastSubResultant| |curve?| |cosIfCan| |closeComponent| + |lift| |root?| |pushuconst| |removeRoughlyRedundantFactorsInContents| + |numeric| |neglist| |countRealRoots| |nonLinearPart| |stack| + |logical?| |roughBasicSet| |univcase| |d02raf| |ldf2vmf| |reduce| + |nodes| |decompose| |radical| |s14aaf| |getPickedPoints| |e01sef| + |mapDown!| |hue| |sinIfCan| |rename| |parent| |alternating| + |monomialIntegrate| |dec| |continuedFraction| |s14baf| |cyclicGroup| + |halfExtendedResultant1| |dark| |ipow| |times| |rootPoly| + |reducedSystem| |discriminantEuclidean| |outputForm| |clearTable!| + |inf| |d02bbf| |swapColumns!| |aromberg| |cAtan| |pointColorPalette| + |bivariatePolynomials| |relationsIdeal| |implies?| |multisect| + |doubleComplex?| |changeMeasure| |true| |maxrank| |merge| + |transcendent?| |write!| |moduleSum| |balancedFactorisation| + |fractionPart| |moreAlgebraic?| |rightRank| |factorsOfCyclicGroupSize| + |and| |checkForZero| |e02adf| |asechIfCan| |setOrder| |less?| |cTanh| + |pack!| |nthRoot| |splitConstant| |froot| |leastMonomial| |monom| + |s17acf| |OMclose| |simplifyPower| |diagonals| |meshPar2Var| |cap| + |close!| |besselI| |stFuncN| |dot| |indicialEquation| |denomRicDE| + |OMgetApp| |lazyPrem| |f2st| |rightRecip| |fullPartialFraction| + |substring?| |beauzamyBound| |e01bhf| |euclideanNormalForm| + |leftMinimalPolynomial| |semiSubResultantGcdEuclidean2| |iipow| + |createNormalPoly| |approxNthRoot| |expIfCan| |arg1| |exactQuotient| + |c06fpf| |connectTo| |common| |implies| |tryFunctionalDecomposition?| + |positiveRemainder| |setMaxPoints| |symmetricDifference| |fTable| + |arg2| |isTimes| |suffix?| |hasHi| |completeEval| |basis| |critpOrder| + |d01anf| |totalDegree| |comparison| |listBranches| |c06gbf| + |factorGroebnerBasis| |findCycle| |psolve| |refine| + |tryFunctionalDecomposition| |dihedral| |square?| |iiexp| |e02dcf| + |solveid| |reverse| |reverseLex| |viewDeltaXDefault| |prefix?| + |conditions| |computePowers| |tubeRadiusDefault| |UpTriBddDenomInv| + |vedf2vef| |mesh?| |branchPointAtInfinity?| |f01maf| |nor| |newLine| + |cardinality| |match| |iibinom| |multiEuclidean| |dequeue!| + |multiEuclideanTree| |lazyGintegrate| |summation| + |createPrimitivePoly| |ideal| |cExp| |nullary| |repeatUntilLoop| + |leftRegularRepresentation| |range| |pascalTriangle| |leftFactor| + |lookup| |wholePart| |cSin| |c06ebf| |init| |removeRedundantFactors| + |lhs| |factorAndSplit| |getSyntaxFormsFromFile| |getDatabase| + |fortranCarriageReturn| |invertibleElseSplit?| |lazyPseudoRemainder| + |gcdPrimitive| |comp| |increasePrecision| |rootBound| |f04mbf| |rhs| + |zCoord| |augment| |f07fdf| |cCos| |sequences| |c06gsf| |sinhIfCan| + |zeroOf| |mightHaveRoots| |lazyPseudoQuotient| |moduloP| |setPoly| + |changeThreshhold| |distribute| |irreducibleFactor| |scaleRoots| + |e02ajf| |setEmpty!| |shiftLeft| |principal?| |d01gaf| |infix?| + |diagonal| |coord| |e04ucf| |invertible?| |s18adf| |monomRDE| + |torsion?| |dmp2rfi| |createLowComplexityTable| |degreePartition| + |e02aef| |mask| |initializeGroupForWordProblem| |hdmpToDmp| + |signature| |resultantEuclidean| |quasiMonicPolynomials| + |stopTableGcd!| |algSplitSimple| |clikeUniv| |compactFraction| + |s17adf| |minimumDegree| |getOperands| |readLine!| |mesh| |d01akf| + |mirror| |leftUnit| |complexRoots| |groebSolve| |screenResolution| + |pastel| |printTypes| |coordinate| |options| |totolex| + |integralLastSubResultant| |pdf2ef| |monomials| |powerAssociative?| + |OMcloseConn| |brillhartTrials| |setStatus| |polyRDE| |cCosh| + |setPrologue!| |zeroMatrix| |exquo| |reverse!| |clipParametric| + |differentialVariables| |laguerre| |argumentListOf| |dom| |compdegd| + |makeop| |crushedSet| |directSum| |hasTopPredicate?| |div| + |quotedOperators| |linearAssociatedOrder| |useEisensteinCriterion| + |denominators| |nextIrreduciblePoly| |indicialEquationAtInfinity| + |henselFact| |updateStatus!| |nthr| |partition| |string| |quo| + |createPrimitiveElement| |useSingleFactorBound| |orbits| |s14abf| + |extendIfCan| |morphism| |listConjugateBases| |rroot| |bindings| + |jordanAlgebra?| |mvar| |eigenvalues| |pop!| |diag| |rischDEsys| + |startTableInvSet!| |zeroSetSplitIntoTriangularSystems| |crest| + |reducedForm| |factorSquareFreeByRecursion| |rem| |constantLeft| |Is| + |atom?| |extractPoint| |colorDef| |rightRegularRepresentation| + |measure2Result| |extractIfCan| |orbit| |midpoints| |preprocess| + |rightNorm| |intersect| |mapBivariate| |largest| |exprToXXP| NOT + |title| |sn| |conical| |minRowIndex| |shallowCopy| |quasiRegular| + |edf2ef| |external?| |graphCurves| |GospersMethod| |conjugate| + |f04asf| OR |showFortranOutputStack| |rootPower| |hspace| |bfEntry| + |sub| |associatedEquations| |leftZero| |prevPrime| |primitivePart!| + |drawToScale| AND |green| |symFunc| |c06fuf| |s17dhf| |makeSin| + |semicolonSeparate| |cSec| |safetyMargin| |monicDivide| |sorted?| + |divideIfCan!| |e| |pushNewContour| |basisOfCentroid| |cond| + |innerEigenvectors| |separate| |vark| |leftQuotient| |over| |width| + |rightRankPolynomial| |exptMod| |interReduce| |region| |acscIfCan| + |leftDivide| |degreeSubResultant| |c02aff| |univariateSolve| |connect| + |c05pbf| |OMmakeConn| |e04jaf| |s19abf| |horizConcat| |subNode?| + |generalLambert| |limitedIntegrate| |OMgetBVar| |unparse| |someBasis| + |OMwrite| |stoseInvertible?| |signatureAst| |call| + |reducedDiscriminant| |leastPower| |simpsono| |fixedPoint| |s20adf| + |stronglyReduce| |times!| |child| |tanhIfCan| |cot2trig| |log10| + |generalPosition| |rotate| |c05nbf| |xor| |eigenvector| |internal?| + |updatF| |charClass| |rangeIsFinite| |noLinearFactor?| + |definingInequation| |bitand| |divergence| |simpleBounds?| |quickSort| + |setleaves!| |specialTrigs| |formula| |not| |dim| + |selectFiniteRoutines| |optAttributes| |normalize| |rombergo| |sample| + |bitior| |vconcat| |semiDegreeSubResultantEuclidean| + |factorSquareFree| |rationalPoints| |endOfFile?| |leadingIdeal| + |normalDenom| |nextSublist| |nthCoef| |mapExpon| |integral?| + |constantKernel| |var1StepsDefault| |totalDifferential| |makeMulti| + |lazyEvaluate| |splitSquarefree| |optional| |singRicDE| |mapdiv| + |fixedPoints| * |datalist| |critMonD1| |complexLimit| |bernoulliB| + |ScanFloatIgnoreSpaces| |viewSizeDefault| |f01bsf| |graphStates| + |intensity| |readBytes!| |iExquo| |primeFrobenius| |firstDenom| |erf| + |box| |rootProduct| |setLegalFortranSourceExtensions| |mkPrim| |ode| + |nrows| |hermite| |inverseIntegralMatrixAtInfinity| |head| + |seriesSolve| |diophantineSystem| |point| |generator| |nextColeman| + |signAround| |c05adf| |rischNormalize| + |solveLinearPolynomialEquationByRecursion| |ncols| |zeroDimPrime?| + |li| |overlap| |OMputEndError| |groebnerIdeal| |normalizedAssociate| + |inspect| |OMconnOutDevice| |iiacsc| |checkRur| |fractRadix| + |purelyAlgebraicLeadingMonomial?| |failed| |e01daf| |conditionP| + |scan| |e04naf| |OMputApp| |evenlambert| |parabolicCylindrical| + |dilog| |corrPoly| |thetaCoord| |insertRoot!| |geometric| |s15adf| + |radix| |OMgetEndAttr| |overbar| |lo| |tanSum| |series| |getMatch| + |sin| |palginfieldint| |maxPoints| |complexEigenvalues| |atanhIfCan| + |dmpToHdmp| |purelyTranscendental?| |clip| |completeHensel| |rank| + |superHeight| |cos| |e04ycf| |whatInfinity| |linkToFortran| |tab| + |jordanAdmissible?| |minimize| |setStatus!| |incr| |infLex?| + |KrullNumber| |aQuartic| |tan| |removeRedundantFactorsInPols| |prem| + |isConnected?| |rewriteIdealWithHeadRemainder| + |createMultiplicationMatrix| |rightTrace| |mathieu24| |port| |hi| + |reduceByQuasiMonic| |sortConstraints| |modularGcd| |cot| |central?| + |listexp| |d03faf| |nodeOf?| |pow| |sign| |critB| |addPoint| |edf2df| + |min| |exprToUPS| |setref| |iprint| |idealSimplify| |addBadValue| + |saturate| |endSubProgram| |rightCharacteristicPolynomial| |tan2cot| + |swap!| |drawComplex| |pr2dmp| |nsqfree| |roman| |uncouplingMatrices| + |startTableGcd!| |empty| |hessian| |predicates| |getlo| + |highCommonTerms| |leadingIndex| |mkAnswer| |pureLex| F2FG + |maxColIndex| |genericLeftDiscriminant| |structuralConstants| |lists| + |normalized?| |computeCycleLength| |genericRightMinimalPolynomial| + |elColumn2!| |meshPar1Var| |eulerE| |csch2sinh| |infiniteProduct| + |hyperelliptic| |commaSeparate| |generalInfiniteProduct| |product| + |coercePreimagesImages| |readIfCan!| |algebraicVariables| SEGMENT + |patternMatchTimes| |d03edf| |wholeRagits| |monicRightDivide| + |newTypeLists| |trim| |s19acf| |tubePointsDefault| + |lazyIrreducibleFactors| |submod| |polCase| |Beta| |optpair| |extend| + |lowerCase?| |numberOfPrimitivePoly| |rk4qc| |subResultantGcd| |space| + |cschIfCan| |rotate!| |setProperties!| |HenselLift| |bitLength| + |skewSFunction| |condition| |contract| |closedCurve| |acotIfCan| + |changeName| |antisymmetric?| |digit?| |nil| |qualifier| |imagj| + |negative?| |e02ahf| |permutationGroup| |drawStyle| + |squareFreePolynomial| |name| |dictionary| |reducedQPowers| |blue| + |subscriptedVariables| |quoted?| |functionIsFracPolynomial?| + |newReduc| |inverseLaplace| |definingPolynomial| |body| |iterationVar| + |limit| |predicate| |concat| |numberOfComponents| |OMgetEndBind| + |plenaryPower| |selectAndPolynomials| |binding| |eq| |legendreP| + |numFunEvals| |nullity| |approximate| |meatAxe| |lagrange| |iter| + |bsolve| |fortranLinkerArgs| |floor| |selectfirst| |t| + |chainSubResultants| |exactQuotient!| |complex| |setsubMatrix!| + |packageCall| |pmintegrate| |htrigs| |plus!| |wholeRadix| + |algebraicCoefficients?| |edf2efi| |decreasePrecision| |nil| + |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 34575478..063f1f2e 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5209 +1,5222 @@ -(3180799 . 3437447602) -((-2768 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-1587 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-1490 ((|#2| $ (-553) |#2|) NIL) ((|#2| $ (-1205 (-553)) |#2|) 34)) (-1467 (($ $) 59)) (-2654 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1478 (((-553) (-1 (-111) |#2|) $) 22) (((-553) |#2| $) NIL) (((-553) |#2| $ (-553)) 73)) (-1408 (((-630 |#2|) $) 13)) (-3160 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2503 (($ (-1 |#2| |#2|) $) 29)) (-1482 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1774 (($ |#2| $ (-553)) NIL) (($ $ $ (-553)) 50)) (-3016 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-3341 (((-111) (-1 (-111) |#2|) $) 21)) (-2046 ((|#2| $ (-553) |#2|) NIL) ((|#2| $ (-553)) NIL) (($ $ (-1205 (-553))) 49)) (-2005 (($ $ (-553)) 56) (($ $ (-1205 (-553))) 55)) (-2796 (((-757) (-1 (-111) |#2|) $) 26) (((-757) |#2| $) NIL)) (-2530 (($ $ $ (-553)) 52)) (-1508 (($ $) 51)) (-3121 (($ (-630 |#2|)) 53)) (-4325 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-630 $)) 62)) (-3110 (((-845) $) 69)) (-3296 (((-111) (-1 (-111) |#2|) $) 20)) (-1617 (((-111) $ $) 72)) (-1636 (((-111) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -1617 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1587 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -2530 (|#1| |#1| |#1| (-553))) (-15 -2768 ((-111) |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -1478 ((-553) |#2| |#1| (-553))) (-15 -1478 ((-553) |#2| |#1|)) (-15 -1478 ((-553) (-1 (-111) |#2|) |#1|)) (-15 -2768 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3160 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1490 (|#2| |#1| (-1205 (-553)) |#2|)) (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -2005 (|#1| |#1| (-1205 (-553)))) (-15 -2005 (|#1| |#1| (-553))) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4325 (|#1| (-630 |#1|))) (-15 -4325 (|#1| |#1| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -3016 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2046 (|#2| |#1| (-553))) (-15 -2046 (|#2| |#1| (-553) |#2|)) (-15 -1490 (|#2| |#1| (-553) |#2|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -1408 ((-630 |#2|) |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1508 (|#1| |#1|))) (-19 |#2|) (-1192)) (T -18)) -NIL -(-10 -8 (-15 -1617 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1587 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -2530 (|#1| |#1| |#1| (-553))) (-15 -2768 ((-111) |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -1478 ((-553) |#2| |#1| (-553))) (-15 -1478 ((-553) |#2| |#1|)) (-15 -1478 ((-553) (-1 (-111) |#2|) |#1|)) (-15 -2768 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3160 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1490 (|#2| |#1| (-1205 (-553)) |#2|)) (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -2005 (|#1| |#1| (-1205 (-553)))) (-15 -2005 (|#1| |#1| (-553))) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4325 (|#1| (-630 |#1|))) (-15 -4325 (|#1| |#1| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -3016 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2046 (|#2| |#1| (-553))) (-15 -2046 (|#2| |#1| (-553) |#2|)) (-15 -1490 (|#2| |#1| (-553) |#2|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -1408 ((-630 |#2|) |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1508 (|#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4370))) (($ $) 88 (-12 (|has| |#1| (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) |#1|) 52 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-1467 (($ $) 90 (|has| $ (-6 -4370)))) (-3239 (($ $) 100)) (-2638 (($ $) 78 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 77 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 51)) (-1478 (((-553) (-1 (-111) |#1|) $) 97) (((-553) |#1| $) 96 (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) 95 (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 87 (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 86 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 42 (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2858 (($ $ |#1|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) |#1|) 50) ((|#1| $ (-553)) 49) (($ $ (-1205 (-553))) 63)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 91 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 70)) (-4325 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 84 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 83 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-1659 (((-111) $ $) 85 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 82 (|has| |#1| (-833)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-19 |#1|) (-137) (-1192)) (T -19)) -NIL -(-13 (-367 |t#1|) (-10 -7 (-6 -4370))) -(((-34) . T) ((-101) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-833) |has| |#1| (-833)) ((-1079) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-1192) . T)) -((-2910 (((-3 $ "failed") $ $) 12)) (-1711 (($ $) NIL) (($ $ $) 9)) (* (($ (-903) $) NIL) (($ (-757) $) 16) (($ (-553) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2910 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2910 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20))) -(((-21) (-137)) (T -21)) -((-1711 (*1 *1 *1) (-4 *1 (-21))) (-1711 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-553))))) -(-13 (-129) (-10 -8 (-15 -1711 ($ $)) (-15 -1711 ($ $ $)) (-15 * ($ (-553) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3769 (((-111) $) 10)) (-3820 (($) 15)) (* (($ (-903) $) 14) (($ (-757) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-757) |#1|)) (-15 -3769 ((-111) |#1|)) (-15 -3820 (|#1|)) (-15 * (|#1| (-903) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-757) |#1|)) (-15 -3769 ((-111) |#1|)) (-15 -3820 (|#1|)) (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15))) -(((-23) (-137)) (T -23)) -((-1988 (*1 *1) (-4 *1 (-23))) (-3820 (*1 *1) (-4 *1 (-23))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-757))))) -(-13 (-25) (-10 -8 (-15 (-1988) ($) -3879) (-15 -3820 ($) -3879) (-15 -3769 ((-111) $)) (-15 * ($ (-757) $)))) -(((-25) . T) ((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((* (($ (-903) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-903) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13))) -(((-25) (-137)) (T -25)) -((-1700 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-903))))) -(-13 (-1079) (-10 -8 (-15 -1700 ($ $ $)) (-15 * ($ (-903) $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3329 (((-630 $) (-934 $)) 29) (((-630 $) (-1151 $)) 16) (((-630 $) (-1151 $) (-1155)) 20)) (-1299 (($ (-934 $)) 27) (($ (-1151 $)) 11) (($ (-1151 $) (-1155)) 54)) (-2851 (((-630 $) (-934 $)) 30) (((-630 $) (-1151 $)) 18) (((-630 $) (-1151 $) (-1155)) 19)) (-3906 (($ (-934 $)) 28) (($ (-1151 $)) 13) (($ (-1151 $) (-1155)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3329 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -3329 ((-630 |#1|) (-1151 |#1|))) (-15 -3329 ((-630 |#1|) (-934 |#1|))) (-15 -1299 (|#1| (-1151 |#1|) (-1155))) (-15 -1299 (|#1| (-1151 |#1|))) (-15 -1299 (|#1| (-934 |#1|))) (-15 -2851 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -2851 ((-630 |#1|) (-1151 |#1|))) (-15 -2851 ((-630 |#1|) (-934 |#1|))) (-15 -3906 (|#1| (-1151 |#1|) (-1155))) (-15 -3906 (|#1| (-1151 |#1|))) (-15 -3906 (|#1| (-934 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3329 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -3329 ((-630 |#1|) (-1151 |#1|))) (-15 -3329 ((-630 |#1|) (-934 |#1|))) (-15 -1299 (|#1| (-1151 |#1|) (-1155))) (-15 -1299 (|#1| (-1151 |#1|))) (-15 -1299 (|#1| (-934 |#1|))) (-15 -2851 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -2851 ((-630 |#1|) (-1151 |#1|))) (-15 -2851 ((-630 |#1|) (-934 |#1|))) (-15 -3906 (|#1| (-1151 |#1|) (-1155))) (-15 -3906 (|#1| (-1151 |#1|))) (-15 -3906 (|#1| (-934 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3329 (((-630 $) (-934 $)) 81) (((-630 $) (-1151 $)) 80) (((-630 $) (-1151 $) (-1155)) 79)) (-1299 (($ (-934 $)) 84) (($ (-1151 $)) 83) (($ (-1151 $) (-1155)) 82)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-3365 (($ $) 93)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-2851 (((-630 $) (-934 $)) 87) (((-630 $) (-1151 $)) 86) (((-630 $) (-1151 $) (-1155)) 85)) (-3906 (($ (-934 $)) 90) (($ (-1151 $)) 89) (($ (-1151 $) (-1155)) 88)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-3119 (((-111) $) 72)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 92)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 66)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70) (($ $ (-401 (-553))) 91)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68))) -(((-27) (-137)) (T -27)) -((-3906 (*1 *1 *2) (-12 (-5 *2 (-934 *1)) (-4 *1 (-27)))) (-3906 (*1 *1 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-27)))) (-3906 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 *1)) (-5 *3 (-1155)) (-4 *1 (-27)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-934 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-1151 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *1)) (-5 *4 (-1155)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) (-1299 (*1 *1 *2) (-12 (-5 *2 (-934 *1)) (-4 *1 (-27)))) (-1299 (*1 *1 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-27)))) (-1299 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 *1)) (-5 *3 (-1155)) (-4 *1 (-27)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-934 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-1151 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *1)) (-5 *4 (-1155)) (-4 *1 (-27)) (-5 *2 (-630 *1))))) -(-13 (-357) (-984) (-10 -8 (-15 -3906 ($ (-934 $))) (-15 -3906 ($ (-1151 $))) (-15 -3906 ($ (-1151 $) (-1155))) (-15 -2851 ((-630 $) (-934 $))) (-15 -2851 ((-630 $) (-1151 $))) (-15 -2851 ((-630 $) (-1151 $) (-1155))) (-15 -1299 ($ (-934 $))) (-15 -1299 ($ (-1151 $))) (-15 -1299 ($ (-1151 $) (-1155))) (-15 -3329 ((-630 $) (-934 $))) (-15 -3329 ((-630 $) (-1151 $))) (-15 -3329 ((-630 $) (-1151 $) (-1155))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-984) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-3329 (((-630 $) (-934 $)) NIL) (((-630 $) (-1151 $)) NIL) (((-630 $) (-1151 $) (-1155)) 50) (((-630 $) $) 19) (((-630 $) $ (-1155)) 41)) (-1299 (($ (-934 $)) NIL) (($ (-1151 $)) NIL) (($ (-1151 $) (-1155)) 52) (($ $) 17) (($ $ (-1155)) 37)) (-2851 (((-630 $) (-934 $)) NIL) (((-630 $) (-1151 $)) NIL) (((-630 $) (-1151 $) (-1155)) 48) (((-630 $) $) 15) (((-630 $) $ (-1155)) 43)) (-3906 (($ (-934 $)) NIL) (($ (-1151 $)) NIL) (($ (-1151 $) (-1155)) NIL) (($ $) 12) (($ $ (-1155)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3329 ((-630 |#1|) |#1| (-1155))) (-15 -1299 (|#1| |#1| (-1155))) (-15 -3329 ((-630 |#1|) |#1|)) (-15 -1299 (|#1| |#1|)) (-15 -2851 ((-630 |#1|) |#1| (-1155))) (-15 -3906 (|#1| |#1| (-1155))) (-15 -2851 ((-630 |#1|) |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3329 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -3329 ((-630 |#1|) (-1151 |#1|))) (-15 -3329 ((-630 |#1|) (-934 |#1|))) (-15 -1299 (|#1| (-1151 |#1|) (-1155))) (-15 -1299 (|#1| (-1151 |#1|))) (-15 -1299 (|#1| (-934 |#1|))) (-15 -2851 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -2851 ((-630 |#1|) (-1151 |#1|))) (-15 -2851 ((-630 |#1|) (-934 |#1|))) (-15 -3906 (|#1| (-1151 |#1|) (-1155))) (-15 -3906 (|#1| (-1151 |#1|))) (-15 -3906 (|#1| (-934 |#1|)))) (-29 |#2|) (-13 (-833) (-545))) (T -28)) -NIL -(-10 -8 (-15 -3329 ((-630 |#1|) |#1| (-1155))) (-15 -1299 (|#1| |#1| (-1155))) (-15 -3329 ((-630 |#1|) |#1|)) (-15 -1299 (|#1| |#1|)) (-15 -2851 ((-630 |#1|) |#1| (-1155))) (-15 -3906 (|#1| |#1| (-1155))) (-15 -2851 ((-630 |#1|) |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3329 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -3329 ((-630 |#1|) (-1151 |#1|))) (-15 -3329 ((-630 |#1|) (-934 |#1|))) (-15 -1299 (|#1| (-1151 |#1|) (-1155))) (-15 -1299 (|#1| (-1151 |#1|))) (-15 -1299 (|#1| (-934 |#1|))) (-15 -2851 ((-630 |#1|) (-1151 |#1|) (-1155))) (-15 -2851 ((-630 |#1|) (-1151 |#1|))) (-15 -2851 ((-630 |#1|) (-934 |#1|))) (-15 -3906 (|#1| (-1151 |#1|) (-1155))) (-15 -3906 (|#1| (-1151 |#1|))) (-15 -3906 (|#1| (-934 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3329 (((-630 $) (-934 $)) 81) (((-630 $) (-1151 $)) 80) (((-630 $) (-1151 $) (-1155)) 79) (((-630 $) $) 125) (((-630 $) $ (-1155)) 123)) (-1299 (($ (-934 $)) 84) (($ (-1151 $)) 83) (($ (-1151 $) (-1155)) 82) (($ $) 126) (($ $ (-1155)) 124)) (-3769 (((-111) $) 16)) (-3506 (((-630 (-1155)) $) 200)) (-3322 (((-401 (-1151 $)) $ (-599 $)) 232 (|has| |#1| (-545)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-3233 (((-630 (-599 $)) $) 163)) (-2910 (((-3 $ "failed") $ $) 19)) (-2885 (($ $ (-630 (-599 $)) (-630 $)) 153) (($ $ (-630 (-288 $))) 152) (($ $ (-288 $)) 151)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-3365 (($ $) 93)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-2851 (((-630 $) (-934 $)) 87) (((-630 $) (-1151 $)) 86) (((-630 $) (-1151 $) (-1155)) 85) (((-630 $) $) 129) (((-630 $) $ (-1155)) 127)) (-3906 (($ (-934 $)) 90) (($ (-1151 $)) 89) (($ (-1151 $) (-1155)) 88) (($ $) 130) (($ $ (-1155)) 128)) (-1399 (((-3 (-934 |#1|) "failed") $) 250 (|has| |#1| (-1031))) (((-3 (-401 (-934 |#1|)) "failed") $) 234 (|has| |#1| (-545))) (((-3 |#1| "failed") $) 196) (((-3 (-553) "failed") $) 193 (|has| |#1| (-1020 (-553)))) (((-3 (-1155) "failed") $) 187) (((-3 (-599 $) "failed") $) 138) (((-3 (-401 (-553)) "failed") $) 121 (-3988 (-12 (|has| |#1| (-1020 (-553))) (|has| |#1| (-545))) (|has| |#1| (-1020 (-401 (-553))))))) (-2707 (((-934 |#1|) $) 249 (|has| |#1| (-1031))) (((-401 (-934 |#1|)) $) 233 (|has| |#1| (-545))) ((|#1| $) 195) (((-553) $) 194 (|has| |#1| (-1020 (-553)))) (((-1155) $) 186) (((-599 $) $) 137) (((-401 (-553)) $) 122 (-3988 (-12 (|has| |#1| (-1020 (-553))) (|has| |#1| (-545))) (|has| |#1| (-1020 (-401 (-553))))))) (-3973 (($ $ $) 56)) (-2077 (((-674 |#1|) (-674 $)) 240 (|has| |#1| (-1031))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 239 (|has| |#1| (-1031))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 120 (-3988 (-3726 (|has| |#1| (-1031)) (|has| |#1| (-626 (-553)))) (-3726 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))))) (((-674 (-553)) (-674 $)) 119 (-3988 (-3726 (|has| |#1| (-1031)) (|has| |#1| (-626 (-553)))) (-3726 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))))) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-3119 (((-111) $) 72)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 192 (|has| |#1| (-868 (-373)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 191 (|has| |#1| (-868 (-553))))) (-2985 (($ (-630 $)) 157) (($ $) 156)) (-2521 (((-630 (-113)) $) 164)) (-4180 (((-113) (-113)) 165)) (-1848 (((-111) $) 31)) (-1850 (((-111) $) 185 (|has| $ (-1020 (-553))))) (-2181 (($ $) 217 (|has| |#1| (-1031)))) (-3963 (((-1104 |#1| (-599 $)) $) 216 (|has| |#1| (-1031)))) (-2406 (($ $ (-553)) 92)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-1629 (((-1151 $) (-599 $)) 182 (|has| $ (-1031)))) (-1824 (($ $ $) 136)) (-1975 (($ $ $) 135)) (-1482 (($ (-1 $ $) (-599 $)) 171)) (-1335 (((-3 (-599 $) "failed") $) 161)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3310 (((-630 (-599 $)) $) 162)) (-4040 (($ (-113) (-630 $)) 170) (($ (-113) $) 169)) (-2411 (((-3 (-630 $) "failed") $) 211 (|has| |#1| (-1091)))) (-1500 (((-3 (-2 (|:| |val| $) (|:| -2692 (-553))) "failed") $) 220 (|has| |#1| (-1031)))) (-2201 (((-3 (-630 $) "failed") $) 213 (|has| |#1| (-25)))) (-3648 (((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3107 (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-1155)) 219 (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-113)) 218 (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $) 212 (|has| |#1| (-1091)))) (-1288 (((-111) $ (-1155)) 168) (((-111) $ (-113)) 167)) (-3610 (($ $) 71)) (-2304 (((-757) $) 160)) (-2786 (((-1099) $) 10)) (-3623 (((-111) $) 198)) (-3633 ((|#1| $) 199)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-4006 (((-111) $ (-1155)) 173) (((-111) $ $) 172)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3781 (((-111) $) 184 (|has| $ (-1020 (-553))))) (-2356 (($ $ (-1155) (-757) (-1 $ $)) 224 (|has| |#1| (-1031))) (($ $ (-1155) (-757) (-1 $ (-630 $))) 223 (|has| |#1| (-1031))) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ (-630 $)))) 222 (|has| |#1| (-1031))) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ $))) 221 (|has| |#1| (-1031))) (($ $ (-630 (-113)) (-630 $) (-1155)) 210 (|has| |#1| (-601 (-529)))) (($ $ (-113) $ (-1155)) 209 (|has| |#1| (-601 (-529)))) (($ $) 208 (|has| |#1| (-601 (-529)))) (($ $ (-630 (-1155))) 207 (|has| |#1| (-601 (-529)))) (($ $ (-1155)) 206 (|has| |#1| (-601 (-529)))) (($ $ (-113) (-1 $ $)) 181) (($ $ (-113) (-1 $ (-630 $))) 180) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) 179) (($ $ (-630 (-113)) (-630 (-1 $ $))) 178) (($ $ (-1155) (-1 $ $)) 177) (($ $ (-1155) (-1 $ (-630 $))) 176) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) 175) (($ $ (-630 (-1155)) (-630 (-1 $ $))) 174) (($ $ (-630 $) (-630 $)) 145) (($ $ $ $) 144) (($ $ (-288 $)) 143) (($ $ (-630 (-288 $))) 142) (($ $ (-630 (-599 $)) (-630 $)) 141) (($ $ (-599 $) $) 140)) (-3384 (((-757) $) 59)) (-2046 (($ (-113) (-630 $)) 150) (($ (-113) $ $ $ $) 149) (($ (-113) $ $ $) 148) (($ (-113) $ $) 147) (($ (-113) $) 146)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-1460 (($ $ $) 159) (($ $) 158)) (-1330 (($ $ (-1155)) 248 (|has| |#1| (-1031))) (($ $ (-630 (-1155))) 247 (|has| |#1| (-1031))) (($ $ (-1155) (-757)) 246 (|has| |#1| (-1031))) (($ $ (-630 (-1155)) (-630 (-757))) 245 (|has| |#1| (-1031)))) (-3161 (($ $) 227 (|has| |#1| (-545)))) (-3974 (((-1104 |#1| (-599 $)) $) 226 (|has| |#1| (-545)))) (-1394 (($ $) 183 (|has| $ (-1031)))) (-1524 (((-529) $) 254 (|has| |#1| (-601 (-529)))) (($ (-412 $)) 225 (|has| |#1| (-545))) (((-874 (-373)) $) 190 (|has| |#1| (-601 (-874 (-373))))) (((-874 (-553)) $) 189 (|has| |#1| (-601 (-874 (-553)))))) (-3199 (($ $ $) 253 (|has| |#1| (-466)))) (-1957 (($ $ $) 252 (|has| |#1| (-466)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67) (($ (-934 |#1|)) 251 (|has| |#1| (-1031))) (($ (-401 (-934 |#1|))) 235 (|has| |#1| (-545))) (($ (-401 (-934 (-401 |#1|)))) 231 (|has| |#1| (-545))) (($ (-934 (-401 |#1|))) 230 (|has| |#1| (-545))) (($ (-401 |#1|)) 229 (|has| |#1| (-545))) (($ (-1104 |#1| (-599 $))) 215 (|has| |#1| (-1031))) (($ |#1|) 197) (($ (-1155)) 188) (($ (-599 $)) 139)) (-2941 (((-3 $ "failed") $) 238 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-2633 (($ (-630 $)) 155) (($ $) 154)) (-2274 (((-111) (-113)) 166)) (-1639 (((-111) $ $) 40)) (-3823 (($ (-1155) (-630 $)) 205) (($ (-1155) $ $ $ $) 204) (($ (-1155) $ $ $) 203) (($ (-1155) $ $) 202) (($ (-1155) $) 201)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1155)) 244 (|has| |#1| (-1031))) (($ $ (-630 (-1155))) 243 (|has| |#1| (-1031))) (($ $ (-1155) (-757)) 242 (|has| |#1| (-1031))) (($ $ (-630 (-1155)) (-630 (-757))) 241 (|has| |#1| (-1031)))) (-1669 (((-111) $ $) 133)) (-1648 (((-111) $ $) 132)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 134)) (-1636 (((-111) $ $) 131)) (-1723 (($ $ $) 66) (($ (-1104 |#1| (-599 $)) (-1104 |#1| (-599 $))) 228 (|has| |#1| (-545)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70) (($ $ (-401 (-553))) 91)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-169))) (($ |#1| $) 236 (|has| |#1| (-169))))) -(((-29 |#1|) (-137) (-13 (-833) (-545))) (T -29)) -((-3906 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-833) (-545))))) (-2851 (*1 *2 *1) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *2 (-630 *1)) (-4 *1 (-29 *3)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-833) (-545))))) (-2851 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-630 *1)) (-4 *1 (-29 *4)))) (-1299 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-833) (-545))))) (-3329 (*1 *2 *1) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *2 (-630 *1)) (-4 *1 (-29 *3)))) (-1299 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-833) (-545))))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-630 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-424 |t#1|) (-10 -8 (-15 -3906 ($ $)) (-15 -2851 ((-630 $) $)) (-15 -3906 ($ $ (-1155))) (-15 -2851 ((-630 $) $ (-1155))) (-15 -1299 ($ $)) (-15 -3329 ((-630 $) $)) (-15 -1299 ($ $ (-1155))) (-15 -3329 ((-630 $) $ (-1155))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) . T) ((-603 #1=(-401 (-934 |#1|))) |has| |#1| (-545)) ((-603 (-553)) . T) ((-603 #2=(-599 $)) . T) ((-603 #3=(-934 |#1|)) |has| |#1| (-1031)) ((-603 #4=(-1155)) . T) ((-603 |#1|) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-601 (-874 (-373))) |has| |#1| (-601 (-874 (-373)))) ((-601 (-874 (-553))) |has| |#1| (-601 (-874 (-553)))) ((-238) . T) ((-284) . T) ((-301) . T) ((-303 $) . T) ((-296) . T) ((-357) . T) ((-371 |#1|) |has| |#1| (-1031)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-424 |#1|) . T) ((-445) . T) ((-466) |has| |#1| (-466)) ((-507 (-599 $) $) . T) ((-507 $ $) . T) ((-545) . T) ((-633 #0#) . T) ((-633 |#1|) |has| |#1| (-169)) ((-633 $) . T) ((-626 (-553)) -12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) ((-626 |#1|) |has| |#1| (-1031)) ((-703 #0#) . T) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) . T) ((-712) . T) ((-833) . T) ((-882 (-1155)) |has| |#1| (-1031)) ((-868 (-373)) |has| |#1| (-868 (-373))) ((-868 (-553)) |has| |#1| (-868 (-553))) ((-866 |#1|) . T) ((-902) . T) ((-984) . T) ((-1020 (-401 (-553))) -3988 (|has| |#1| (-1020 (-401 (-553)))) (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553))))) ((-1020 #1#) |has| |#1| (-545)) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 #2#) . T) ((-1020 #3#) |has| |#1| (-1031)) ((-1020 #4#) . T) ((-1020 |#1|) . T) ((-1037 #0#) . T) ((-1037 |#1|) |has| |#1| (-169)) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1192) . T) ((-1196) . T)) -((-2479 (((-1073 (-220)) $) NIL)) (-2466 (((-1073 (-220)) $) NIL)) (-4125 (($ $ (-220)) 125)) (-3969 (($ (-934 (-553)) (-1155) (-1155) (-1073 (-401 (-553))) (-1073 (-401 (-553)))) 83)) (-3792 (((-630 (-630 (-925 (-220)))) $) 137)) (-3110 (((-845) $) 149))) -(((-30) (-13 (-937) (-10 -8 (-15 -3969 ($ (-934 (-553)) (-1155) (-1155) (-1073 (-401 (-553))) (-1073 (-401 (-553))))) (-15 -4125 ($ $ (-220)))))) (T -30)) -((-3969 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-934 (-553))) (-5 *3 (-1155)) (-5 *4 (-1073 (-401 (-553)))) (-5 *1 (-30)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30))))) -(-13 (-937) (-10 -8 (-15 -3969 ($ (-934 (-553)) (-1155) (-1155) (-1073 (-401 (-553))) (-1073 (-401 (-553))))) (-15 -4125 ($ $ (-220))))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-1114) $) 11)) (-2959 (((-1114) $) 9)) (-1617 (((-111) $ $) NIL))) -(((-31) (-13 (-1062) (-10 -8 (-15 -2959 ((-1114) $)) (-15 -4310 ((-1114) $))))) (T -31)) -((-2959 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-31)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-31))))) -(-13 (-1062) (-10 -8 (-15 -2959 ((-1114) $)) (-15 -4310 ((-1114) $)))) -((-3906 ((|#2| (-1151 |#2|) (-1155)) 43)) (-4180 (((-113) (-113)) 56)) (-1629 (((-1151 |#2|) (-599 |#2|)) 133 (|has| |#1| (-1020 (-553))))) (-2629 ((|#2| |#1| (-553)) 123 (|has| |#1| (-1020 (-553))))) (-4300 ((|#2| (-1151 |#2|) |#2|) 30)) (-4204 (((-845) (-630 |#2|)) 85)) (-1394 ((|#2| |#2|) 129 (|has| |#1| (-1020 (-553))))) (-2274 (((-111) (-113)) 18)) (** ((|#2| |#2| (-401 (-553))) 96 (|has| |#1| (-1020 (-553)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3906 (|#2| (-1151 |#2|) (-1155))) (-15 -4180 ((-113) (-113))) (-15 -2274 ((-111) (-113))) (-15 -4300 (|#2| (-1151 |#2|) |#2|)) (-15 -4204 ((-845) (-630 |#2|))) (IF (|has| |#1| (-1020 (-553))) (PROGN (-15 ** (|#2| |#2| (-401 (-553)))) (-15 -1629 ((-1151 |#2|) (-599 |#2|))) (-15 -1394 (|#2| |#2|)) (-15 -2629 (|#2| |#1| (-553)))) |%noBranch|)) (-13 (-833) (-545)) (-424 |#1|)) (T -32)) -((-2629 (*1 *2 *3 *4) (-12 (-5 *4 (-553)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1020 *4)) (-4 *3 (-13 (-833) (-545))))) (-1394 (*1 *2 *2) (-12 (-4 *3 (-1020 (-553))) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1020 (-553))) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-1151 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-553))) (-4 *4 (-1020 (-553))) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-845)) (-5 *1 (-32 *4 *5)))) (-4300 (*1 *2 *3 *2) (-12 (-5 *3 (-1151 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-32 *4 *2)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) (-3906 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *2)) (-5 *4 (-1155)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-833) (-545)))))) -(-10 -7 (-15 -3906 (|#2| (-1151 |#2|) (-1155))) (-15 -4180 ((-113) (-113))) (-15 -2274 ((-111) (-113))) (-15 -4300 (|#2| (-1151 |#2|) |#2|)) (-15 -4204 ((-845) (-630 |#2|))) (IF (|has| |#1| (-1020 (-553))) (PROGN (-15 ** (|#2| |#2| (-401 (-553)))) (-15 -1629 ((-1151 |#2|) (-599 |#2|))) (-15 -1394 (|#2| |#2|)) (-15 -2629 (|#2| |#1| (-553)))) |%noBranch|)) -((-1511 (((-111) $ (-757)) 16)) (-3820 (($) 10)) (-3703 (((-111) $ (-757)) 15)) (-3786 (((-111) $ (-757)) 14)) (-2551 (((-111) $ $) 8)) (-3586 (((-111) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3820 (|#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757))) (-15 -3586 ((-111) |#1|)) (-15 -2551 ((-111) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3820 (|#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757))) (-15 -3586 ((-111) |#1|)) (-15 -2551 ((-111) |#1| |#1|))) -((-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-3703 (((-111) $ (-757)) 9)) (-3786 (((-111) $ (-757)) 10)) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-1508 (($ $) 13)) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-34) (-137)) (T -34)) -((-2551 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-1508 (*1 *1 *1) (-4 *1 (-34))) (-3222 (*1 *1) (-4 *1 (-34))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-3786 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-757)) (-5 *2 (-111)))) (-3703 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-757)) (-5 *2 (-111)))) (-1511 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-757)) (-5 *2 (-111)))) (-3820 (*1 *1) (-4 *1 (-34))) (-2563 (*1 *2 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-34)) (-5 *2 (-757))))) -(-13 (-1192) (-10 -8 (-15 -2551 ((-111) $ $)) (-15 -1508 ($ $)) (-15 -3222 ($)) (-15 -3586 ((-111) $)) (-15 -3786 ((-111) $ (-757))) (-15 -3703 ((-111) $ (-757))) (-15 -1511 ((-111) $ (-757))) (-15 -3820 ($) -3879) (IF (|has| $ (-6 -4369)) (-15 -2563 ((-757) $)) |%noBranch|))) -(((-1192) . T)) -((-2447 (($ $) 11)) (-2425 (($ $) 10)) (-3791 (($ $) 9)) (-2570 (($ $) 8)) (-3780 (($ $) 7)) (-2435 (($ $) 6))) -(((-35) (-137)) (T -35)) -((-2447 (*1 *1 *1) (-4 *1 (-35))) (-2425 (*1 *1 *1) (-4 *1 (-35))) (-3791 (*1 *1 *1) (-4 *1 (-35))) (-2570 (*1 *1 *1) (-4 *1 (-35))) (-3780 (*1 *1 *1) (-4 *1 (-35))) (-2435 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2435 ($ $)) (-15 -3780 ($ $)) (-15 -2570 ($ $)) (-15 -3791 ($ $)) (-15 -2425 ($ $)) (-15 -2447 ($ $)))) -((-3096 (((-111) $ $) 19 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2821 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 125)) (-2135 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 148)) (-1787 (($ $) 146)) (-3190 (($) 72) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 71)) (-1683 (((-1243) $ |#1| |#1|) 99 (|has| $ (-6 -4370))) (((-1243) $ (-553) (-553)) 178 (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) 159 (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1587 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 200 (|has| $ (-6 -4370))) (($ $) 199 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1511 (((-111) $ (-757)) 8)) (-2884 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 134 (|has| $ (-6 -4370)))) (-2314 (($ $ $) 155 (|has| $ (-6 -4370)))) (-3357 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 157 (|has| $ (-6 -4370)))) (-3850 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 153 (|has| $ (-6 -4370)))) (-1490 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 189 (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-1205 (-553)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 160 (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "last" (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 158 (|has| $ (-6 -4370))) (($ $ "rest" $) 156 (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "first" (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 154 (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "value" (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 133 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 132 (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 45 (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 216)) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 55 (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 175 (|has| $ (-6 -4369)))) (-2123 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 147)) (-2972 (((-3 |#2| "failed") |#1| $) 61)) (-3820 (($) 7 T CONST)) (-1467 (($ $) 201 (|has| $ (-6 -4370)))) (-3239 (($ $) 211)) (-2616 (($ $ (-757)) 142) (($ $) 140)) (-2873 (($ $) 214 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2638 (($ $) 58 (-3988 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369))) (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 46 (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 220) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 215 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 54 (|has| $ (-6 -4369))) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 174 (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 56 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 53 (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 52 (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 176 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 173 (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 172 (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 190 (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) 88) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) 188)) (-3145 (((-111) $) 192)) (-1478 (((-553) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 208) (((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 207 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) (((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) 206 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 30 (|has| $ (-6 -4369))) (((-630 |#2|) $) 79 (|has| $ (-6 -4369))) (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 114 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 123)) (-2284 (((-111) $ $) 131 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-3202 (($ (-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 169)) (-3703 (((-111) $ (-757)) 9)) (-2800 ((|#1| $) 96 (|has| |#1| (-833))) (((-553) $) 180 (|has| (-553) (-833)))) (-1824 (($ $ $) 198 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1750 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-3160 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 29 (|has| $ (-6 -4369))) (((-630 |#2|) $) 80 (|has| $ (-6 -4369))) (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 115 (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369)))) (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369))))) (-2958 ((|#1| $) 95 (|has| |#1| (-833))) (((-553) $) 181 (|has| (-553) (-833)))) (-1975 (($ $ $) 197 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 34 (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4370))) (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 110 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 109)) (-2480 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 225)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 128)) (-3862 (((-111) $) 124)) (-1735 (((-1137) $) 22 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2594 (($ $ (-757)) 145) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 143)) (-3729 (((-630 |#1|) $) 63)) (-1570 (((-111) |#1| $) 64)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 39)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 40) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) 219) (($ $ $ (-553)) 218)) (-1774 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) 162) (($ $ $ (-553)) 161)) (-1901 (((-630 |#1|) $) 93) (((-630 (-553)) $) 183)) (-3594 (((-111) |#1| $) 92) (((-111) (-553) $) 184)) (-2786 (((-1099) $) 21 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2603 ((|#2| $) 97 (|has| |#1| (-833))) (($ $ (-757)) 139) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 137)) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 51) (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 171)) (-2858 (($ $ |#2|) 98 (|has| $ (-6 -4370))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 179 (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 41)) (-1411 (((-111) $) 191)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 32 (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 112 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) 26 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 25 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 24 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 23 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 121 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 120 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 119 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) 118 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 182 (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-1912 (((-630 |#2|) $) 91) (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 185)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 187) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) 186) (($ $ (-1205 (-553))) 165) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "first") 138) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "value") 126)) (-3558 (((-553) $ $) 129)) (-3093 (($) 49) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 48)) (-3231 (($ $ (-553)) 222) (($ $ (-1205 (-553))) 221)) (-2005 (($ $ (-553)) 164) (($ $ (-1205 (-553))) 163)) (-1510 (((-111) $) 127)) (-2383 (($ $) 151)) (-1566 (($ $) 152 (|has| $ (-6 -4370)))) (-2586 (((-757) $) 150)) (-4321 (($ $) 149)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 31 (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-757) |#2| $) 81 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 113 (|has| $ (-6 -4369)))) (-2530 (($ $ $ (-553)) 202 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529)))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 50) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 170)) (-2269 (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 224) (($ $ $) 223)) (-4325 (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 168) (($ (-630 $)) 167) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 136) (($ $ $) 135)) (-3110 (((-845) $) 18 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845)))))) (-2860 (((-630 $) $) 122)) (-3743 (((-111) $ $) 130 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 42)) (-2604 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") |#1| $) 108)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 33 (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 111 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 195 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1648 (((-111) $ $) 194 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1617 (((-111) $ $) 20 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-1659 (((-111) $ $) 196 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1636 (((-111) $ $) 193 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-36 |#1| |#2|) (-137) (-1079) (-1079)) (T -36)) -((-2604 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -2578 *3) (|:| -3256 *4)))))) -(-13 (-1168 |t#1| |t#2|) (-651 (-2 (|:| -2578 |t#1|) (|:| -3256 |t#2|))) (-10 -8 (-15 -2604 ((-3 (-2 (|:| -2578 |t#1|) (|:| -3256 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((-101) -3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833))) ((-600 (-845)) -3988 (|has| |#2| (-1079)) (|has| |#2| (-600 (-845))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845)))) ((-148 #1=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((-601 (-529)) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 #2=(-553) #1#) . T) ((-280 |#1| |#2|) . T) ((-282 #2# #1#) . T) ((-282 |#1| |#2|) . T) ((-303 #1#) -12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-276 #1#) . T) ((-367 #1#) . T) ((-482 #1#) . T) ((-482 |#2|) . T) ((-591 #2# #1#) . T) ((-591 |#1| |#2|) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-507 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-597 |#1| |#2|) . T) ((-636 #1#) . T) ((-651 #1#) . T) ((-833) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)) ((-992 #1#) . T) ((-1079) -3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833))) ((-1128 #1#) . T) ((-1168 |#1| |#2|) . T) ((-1192) . T) ((-1226 #1#) . T)) -((-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-38 |#2|) (-169)) (T -37)) -NIL -(-10 -8 (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-38 |#1|) (-137) (-169)) (T -38)) -NIL -(-13 (-1031) (-703 |t#1|) (-603 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) . T) ((-712) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3446 (((-412 |#1|) |#1|) 41)) (-3355 (((-412 |#1|) |#1|) 30) (((-412 |#1|) |#1| (-630 (-48))) 33)) (-3653 (((-111) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -3355 ((-412 |#1|) |#1| (-630 (-48)))) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3446 ((-412 |#1|) |#1|)) (-15 -3653 ((-111) |#1|))) (-1214 (-48))) (T -39)) -((-3653 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48))))) (-3446 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48))))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48))))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48)))))) -(-10 -7 (-15 -3355 ((-412 |#1|) |#1| (-630 (-48)))) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3446 ((-412 |#1|) |#1|)) (-15 -3653 ((-111) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2820 (((-2 (|:| |num| (-1238 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-1968 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2028 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-3989 (((-674 (-401 |#2|)) (-1238 $)) NIL) (((-674 (-401 |#2|))) NIL)) (-1576 (((-401 |#2|) $) NIL)) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-401 |#2|) (-343)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2708 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4349 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2571 (((-757)) NIL (|has| (-401 |#2|) (-362)))) (-1753 (((-111)) NIL)) (-2945 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| (-401 |#2|) (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-401 |#2|) (-1020 (-401 (-553))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| (-401 |#2|) (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| (-401 |#2|) (-1020 (-401 (-553))))) (((-401 |#2|) $) NIL)) (-3461 (($ (-1238 (-401 |#2|)) (-1238 $)) NIL) (($ (-1238 (-401 |#2|))) 57) (($ (-1238 |#2|) |#2|) 125)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-3973 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4232 (((-674 (-401 |#2|)) $ (-1238 $)) NIL) (((-674 (-401 |#2|)) $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-401 |#2|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-401 |#2|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-401 |#2|))) (|:| |vec| (-1238 (-401 |#2|)))) (-674 $) (-1238 $)) NIL) (((-674 (-401 |#2|)) (-674 $)) NIL)) (-3303 (((-1238 $) (-1238 $)) NIL)) (-2654 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-2982 (((-3 $ "failed") $) NIL)) (-3071 (((-630 (-630 |#1|))) NIL (|has| |#1| (-362)))) (-3967 (((-111) |#1| |#1|) NIL)) (-2409 (((-903)) NIL)) (-3031 (($) NIL (|has| (-401 |#2|) (-362)))) (-3925 (((-111)) NIL)) (-3999 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3952 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| (-401 |#2|) (-357)))) (-1655 (($ $) NIL)) (-2484 (($) NIL (|has| (-401 |#2|) (-343)))) (-3637 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-1808 (($ $ (-757)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-3119 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2968 (((-903) $) NIL (|has| (-401 |#2|) (-343))) (((-819 (-903)) $) NIL (|has| (-401 |#2|) (-343)))) (-1848 (((-111) $) NIL)) (-2015 (((-757)) NIL)) (-3149 (((-1238 $) (-1238 $)) 102)) (-3560 (((-401 |#2|) $) NIL)) (-2954 (((-630 (-934 |#1|)) (-1155)) NIL (|has| |#1| (-357)))) (-2502 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3568 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-3796 (((-903) $) NIL (|has| (-401 |#2|) (-362)))) (-2643 ((|#3| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1735 (((-1137) $) NIL)) (-2474 (((-1243) (-757)) 79)) (-3212 (((-674 (-401 |#2|))) 51)) (-3609 (((-674 (-401 |#2|))) 44)) (-3610 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2207 (($ (-1238 |#2|) |#2|) 126)) (-3037 (((-674 (-401 |#2|))) 45)) (-2838 (((-674 (-401 |#2|))) 43)) (-3878 (((-2 (|:| |num| (-674 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-4084 (((-2 (|:| |num| (-1238 |#2|)) (|:| |den| |#2|)) $) 64)) (-2338 (((-1238 $)) 42)) (-2827 (((-1238 $)) 41)) (-4020 (((-111) $) NIL)) (-1806 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-1945 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-2735 (($ (-903)) NIL (|has| (-401 |#2|) (-362)))) (-2462 (((-3 |#2| "failed")) NIL)) (-2786 (((-1099) $) NIL)) (-3118 (((-757)) NIL)) (-4093 (($) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| (-401 |#2|) (-357)))) (-2508 (($ (-630 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-401 |#2|) (-343)))) (-3355 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3929 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3384 (((-757) $) NIL (|has| (-401 |#2|) (-357)))) (-2046 ((|#1| $ |#1| |#1|) NIL)) (-3306 (((-3 |#2| "failed")) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3000 (((-401 |#2|) (-1238 $)) NIL) (((-401 |#2|)) 39)) (-3122 (((-757) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-757) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-1330 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-757)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-757)) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2297 (((-674 (-401 |#2|)) (-1238 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-1394 ((|#3|) 50)) (-1469 (($) NIL (|has| (-401 |#2|) (-343)))) (-2855 (((-1238 (-401 |#2|)) $ (-1238 $)) NIL) (((-674 (-401 |#2|)) (-1238 $) (-1238 $)) NIL) (((-1238 (-401 |#2|)) $) 58) (((-674 (-401 |#2|)) (-1238 $)) 103)) (-1524 (((-1238 (-401 |#2|)) $) NIL) (($ (-1238 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| (-401 |#2|) (-343)))) (-2657 (((-1238 $) (-1238 $)) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-553))) NIL (-3988 (|has| (-401 |#2|) (-1020 (-401 (-553)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2941 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-3547 ((|#3| $) NIL)) (-1999 (((-757)) NIL)) (-3794 (((-111)) 37)) (-3722 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-4124 (((-1238 $)) 93)) (-1639 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2756 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4014 (((-111)) NIL)) (-1988 (($) 16 T CONST)) (-1997 (($) 26 T CONST)) (-1780 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-757)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-757)) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-553)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-553))) NIL (|has| (-401 |#2|) (-357))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -2474 ((-1243) (-757))))) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) |#3|) (T -40)) -((-2474 (*1 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-357)) (-4 *5 (-1214 *4)) (-5 *2 (-1243)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1214 (-401 *5))) (-14 *7 *6)))) -(-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -2474 ((-1243) (-757))))) -((-3904 ((|#2| |#2|) 48)) (-2683 ((|#2| |#2|) 120 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-833)) (|has| |#1| (-1020 (-553)))))) (-2448 ((|#2| |#2|) 87 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-833)) (|has| |#1| (-1020 (-553)))))) (-3511 ((|#2| |#2|) 88 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-833)) (|has| |#1| (-1020 (-553)))))) (-2922 ((|#2| (-113) |#2| (-757)) 116 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-833)) (|has| |#1| (-1020 (-553)))))) (-2320 (((-1151 |#2|) |#2|) 45)) (-1531 ((|#2| |#2| (-630 (-599 |#2|))) 18) ((|#2| |#2| (-630 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3904 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1531 (|#2| |#2| |#2|)) (-15 -1531 (|#2| |#2| (-630 |#2|))) (-15 -1531 (|#2| |#2| (-630 (-599 |#2|)))) (-15 -2320 ((-1151 |#2|) |#2|)) (IF (|has| |#1| (-833)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1020 (-553))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -3511 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -2922 (|#2| (-113) |#2| (-757)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-545) (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 |#1| (-599 $)) $)) (-15 -3974 ((-1104 |#1| (-599 $)) $)) (-15 -3110 ($ (-1104 |#1| (-599 $))))))) (T -41)) -((-2922 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-757)) (-4 *5 (-445)) (-4 *5 (-833)) (-4 *5 (-1020 (-553))) (-4 *5 (-545)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *5 (-599 $)) $)) (-15 -3974 ((-1104 *5 (-599 $)) $)) (-15 -3110 ($ (-1104 *5 (-599 $))))))))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-833)) (-4 *3 (-1020 (-553))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) (-15 -3974 ((-1104 *3 (-599 $)) $)) (-15 -3110 ($ (-1104 *3 (-599 $))))))))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-833)) (-4 *3 (-1020 (-553))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) (-15 -3974 ((-1104 *3 (-599 $)) $)) (-15 -3110 ($ (-1104 *3 (-599 $))))))))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-833)) (-4 *3 (-1020 (-553))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) (-15 -3974 ((-1104 *3 (-599 $)) $)) (-15 -3110 ($ (-1104 *3 (-599 $))))))))) (-2320 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-1151 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *4 (-599 $)) $)) (-15 -3974 ((-1104 *4 (-599 $)) $)) (-15 -3110 ($ (-1104 *4 (-599 $))))))))) (-1531 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-599 *2))) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *4 (-599 $)) $)) (-15 -3974 ((-1104 *4 (-599 $)) $)) (-15 -3110 ($ (-1104 *4 (-599 $))))))) (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) (-1531 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *4 (-599 $)) $)) (-15 -3974 ((-1104 *4 (-599 $)) $)) (-15 -3110 ($ (-1104 *4 (-599 $))))))) (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) (-1531 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) (-15 -3974 ((-1104 *3 (-599 $)) $)) (-15 -3110 ($ (-1104 *3 (-599 $))))))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) (-15 -3974 ((-1104 *3 (-599 $)) $)) (-15 -3110 ($ (-1104 *3 (-599 $))))))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) (-15 -3974 ((-1104 *3 (-599 $)) $)) (-15 -3110 ($ (-1104 *3 (-599 $)))))))))) -(-10 -7 (-15 -3904 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1531 (|#2| |#2| |#2|)) (-15 -1531 (|#2| |#2| (-630 |#2|))) (-15 -1531 (|#2| |#2| (-630 (-599 |#2|)))) (-15 -2320 ((-1151 |#2|) |#2|)) (IF (|has| |#1| (-833)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1020 (-553))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -3511 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -2922 (|#2| (-113) |#2| (-757)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3355 (((-412 (-1151 |#3|)) (-1151 |#3|) (-630 (-48))) 23) (((-412 |#3|) |#3| (-630 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3355 ((-412 |#3|) |#3| (-630 (-48)))) (-15 -3355 ((-412 (-1151 |#3|)) (-1151 |#3|) (-630 (-48))))) (-833) (-779) (-931 (-48) |#2| |#1|)) (T -42)) -((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-48))) (-4 *5 (-833)) (-4 *6 (-779)) (-4 *7 (-931 (-48) *6 *5)) (-5 *2 (-412 (-1151 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1151 *7)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-48))) (-4 *5 (-833)) (-4 *6 (-779)) (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-931 (-48) *6 *5))))) -(-10 -7 (-15 -3355 ((-412 |#3|) |#3| (-630 (-48)))) (-15 -3355 ((-412 (-1151 |#3|)) (-1151 |#3|) (-630 (-48))))) -((-4301 (((-757) |#2|) 65)) (-2405 (((-757) |#2|) 68)) (-3896 (((-630 |#2|)) 33)) (-4012 (((-757) |#2|) 67)) (-3567 (((-757) |#2|) 64)) (-3946 (((-757) |#2|) 66)) (-2957 (((-630 (-674 |#1|))) 60)) (-1831 (((-630 |#2|)) 55)) (-2343 (((-630 |#2|) |#2|) 43)) (-1582 (((-630 |#2|)) 57)) (-2048 (((-630 |#2|)) 56)) (-3129 (((-630 (-674 |#1|))) 48)) (-3937 (((-630 |#2|)) 54)) (-3359 (((-630 |#2|) |#2|) 42)) (-2806 (((-630 |#2|)) 50)) (-1796 (((-630 (-674 |#1|))) 61)) (-2002 (((-630 |#2|)) 59)) (-4124 (((-1238 |#2|) (-1238 |#2|)) 84 (|has| |#1| (-301))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -4012 ((-757) |#2|)) (-15 -2405 ((-757) |#2|)) (-15 -3567 ((-757) |#2|)) (-15 -4301 ((-757) |#2|)) (-15 -3946 ((-757) |#2|)) (-15 -2806 ((-630 |#2|))) (-15 -3359 ((-630 |#2|) |#2|)) (-15 -2343 ((-630 |#2|) |#2|)) (-15 -3937 ((-630 |#2|))) (-15 -1831 ((-630 |#2|))) (-15 -2048 ((-630 |#2|))) (-15 -1582 ((-630 |#2|))) (-15 -2002 ((-630 |#2|))) (-15 -3129 ((-630 (-674 |#1|)))) (-15 -2957 ((-630 (-674 |#1|)))) (-15 -1796 ((-630 (-674 |#1|)))) (-15 -3896 ((-630 |#2|))) (IF (|has| |#1| (-301)) (-15 -4124 ((-1238 |#2|) (-1238 |#2|))) |%noBranch|)) (-545) (-411 |#1|)) (T -43)) -((-4124 (*1 *2 *2) (-12 (-5 *2 (-1238 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) (-4 *3 (-545)) (-5 *1 (-43 *3 *4)))) (-3896 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1796 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 (-674 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2957 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 (-674 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3129 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 (-674 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2002 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1582 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2048 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1831 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3937 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2343 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-3359 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-2806 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4301 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-2405 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) -(-10 -7 (-15 -4012 ((-757) |#2|)) (-15 -2405 ((-757) |#2|)) (-15 -3567 ((-757) |#2|)) (-15 -4301 ((-757) |#2|)) (-15 -3946 ((-757) |#2|)) (-15 -2806 ((-630 |#2|))) (-15 -3359 ((-630 |#2|) |#2|)) (-15 -2343 ((-630 |#2|) |#2|)) (-15 -3937 ((-630 |#2|))) (-15 -1831 ((-630 |#2|))) (-15 -2048 ((-630 |#2|))) (-15 -1582 ((-630 |#2|))) (-15 -2002 ((-630 |#2|))) (-15 -3129 ((-630 (-674 |#1|)))) (-15 -2957 ((-630 (-674 |#1|)))) (-15 -1796 ((-630 (-674 |#1|)))) (-15 -3896 ((-630 |#2|))) (IF (|has| |#1| (-301)) (-15 -4124 ((-1238 |#2|) (-1238 |#2|))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3908 (((-3 $ "failed")) NIL (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3836 (((-1238 (-674 |#1|)) (-1238 $)) NIL) (((-1238 (-674 |#1|))) 24)) (-2110 (((-1238 $)) 51)) (-3820 (($) NIL T CONST)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (|has| |#1| (-545)))) (-2836 (((-3 $ "failed")) NIL (|has| |#1| (-545)))) (-3874 (((-674 |#1|) (-1238 $)) NIL) (((-674 |#1|)) NIL)) (-2124 ((|#1| $) NIL)) (-1791 (((-674 |#1|) $ (-1238 $)) NIL) (((-674 |#1|) $) NIL)) (-1766 (((-3 $ "failed") $) NIL (|has| |#1| (-545)))) (-3203 (((-1151 (-934 |#1|))) NIL (|has| |#1| (-357)))) (-1658 (($ $ (-903)) NIL)) (-2764 ((|#1| $) NIL)) (-3261 (((-1151 |#1|) $) NIL (|has| |#1| (-545)))) (-3153 ((|#1| (-1238 $)) NIL) ((|#1|) NIL)) (-3834 (((-1151 |#1|) $) NIL)) (-2992 (((-111)) 87)) (-3461 (($ (-1238 |#1|) (-1238 $)) NIL) (($ (-1238 |#1|)) NIL)) (-2982 (((-3 $ "failed") $) 14 (|has| |#1| (-545)))) (-2409 (((-903)) 52)) (-2758 (((-111)) NIL)) (-3418 (($ $ (-903)) NIL)) (-3307 (((-111)) NIL)) (-4108 (((-111)) NIL)) (-3756 (((-111)) 89)) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (|has| |#1| (-545)))) (-2757 (((-3 $ "failed")) NIL (|has| |#1| (-545)))) (-2593 (((-674 |#1|) (-1238 $)) NIL) (((-674 |#1|)) NIL)) (-2146 ((|#1| $) NIL)) (-4128 (((-674 |#1|) $ (-1238 $)) NIL) (((-674 |#1|) $) NIL)) (-3011 (((-3 $ "failed") $) NIL (|has| |#1| (-545)))) (-3574 (((-1151 (-934 |#1|))) NIL (|has| |#1| (-357)))) (-1341 (($ $ (-903)) NIL)) (-1591 ((|#1| $) NIL)) (-2083 (((-1151 |#1|) $) NIL (|has| |#1| (-545)))) (-3236 ((|#1| (-1238 $)) NIL) ((|#1|) NIL)) (-2555 (((-1151 |#1|) $) NIL)) (-1516 (((-111)) 86)) (-1735 (((-1137) $) NIL)) (-4139 (((-111)) 93)) (-2122 (((-111)) 92)) (-1881 (((-111)) 94)) (-2786 (((-1099) $) NIL)) (-4311 (((-111)) 88)) (-2046 ((|#1| $ (-553)) 54)) (-2855 (((-1238 |#1|) $ (-1238 $)) 48) (((-674 |#1|) (-1238 $) (-1238 $)) NIL) (((-1238 |#1|) $) 28) (((-674 |#1|) (-1238 $)) NIL)) (-1524 (((-1238 |#1|) $) NIL) (($ (-1238 |#1|)) NIL)) (-1836 (((-630 (-934 |#1|)) (-1238 $)) NIL) (((-630 (-934 |#1|))) NIL)) (-1957 (($ $ $) NIL)) (-1339 (((-111)) 84)) (-3110 (((-845) $) 69) (($ (-1238 |#1|)) 22)) (-4124 (((-1238 $)) 45)) (-1417 (((-630 (-1238 |#1|))) NIL (|has| |#1| (-545)))) (-2840 (($ $ $ $) NIL)) (-4215 (((-111)) 82)) (-2549 (($ (-674 |#1|) $) 18)) (-1634 (($ $ $) NIL)) (-2911 (((-111)) 85)) (-3949 (((-111)) 83)) (-2488 (((-111)) 81)) (-1988 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1121 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-633 (-1121 |#2| |#1|)) (-10 -8 (-15 -3110 ($ (-1238 |#1|))))) (-357) (-903) (-630 (-1155)) (-1238 (-674 |#1|))) (T -44)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-357)) (-14 *6 (-1238 (-674 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-903)) (-14 *5 (-630 (-1155)))))) -(-13 (-411 |#1|) (-633 (-1121 |#2| |#1|)) (-10 -8 (-15 -3110 ($ (-1238 |#1|))))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2821 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2135 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1787 (($ $) NIL)) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370))) (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1587 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833))))) (-2990 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-2884 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370)))) (-2314 (($ $ $) 27 (|has| $ (-6 -4370)))) (-3357 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370)))) (-3850 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 29 (|has| $ (-6 -4370)))) (-1490 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-1205 (-553)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "last" (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370))) (($ $ "rest" $) NIL (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "first" (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "value" (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2123 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2972 (((-3 |#2| "failed") |#1| $) 37)) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2616 (($ $ (-757)) NIL) (($ $) 24)) (-2873 (($ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) NIL)) (-3145 (((-111) $) NIL)) (-1478 (((-553) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) (((-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 18 (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369))) (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 18 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-3202 (($ (-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833))) (((-553) $) 32 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1750 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-3160 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369))) (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833))) (((-553) $) 34 (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370))) (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2480 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3698 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-3862 (((-111) $) NIL)) (-1735 (((-1137) $) 42 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2594 (($ $ (-757)) NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3729 (((-630 |#1|) $) 20)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1774 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 |#1|) $) NIL) (((-630 (-553)) $) NIL)) (-3594 (((-111) |#1| $) NIL) (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833))) (($ $ (-757)) NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 23)) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1411 (((-111) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-1912 (((-630 |#2|) $) NIL) (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 17)) (-3586 (((-111) $) 16)) (-3222 (($) 13)) (-2046 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ (-553)) NIL) (($ $ (-1205 (-553))) NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "first") NIL) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $ "value") NIL)) (-3558 (((-553) $ $) NIL)) (-3093 (($) 12) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3231 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-1510 (((-111) $) NIL)) (-2383 (($ $) NIL)) (-1566 (($ $) NIL (|has| $ (-6 -4370)))) (-2586 (((-757) $) NIL)) (-4321 (($ $) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2269 (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL) (($ $ $) NIL)) (-4325 (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL) (($ (-630 $)) NIL) (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 25) (($ $ $) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2604 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") |#1| $) 44)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-1659 (((-111) $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-833)))) (-2563 (((-757) $) 22 (|has| $ (-6 -4369))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1079) (-1079)) (T -45)) +(3182066 . 3437790975) +((-4015 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2576 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1501 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-1208 (-554)) |#2|) 34)) (-3920 (($ $) 59)) (-3676 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1484 (((-554) (-1 (-112) |#2|) $) 22) (((-554) |#2| $) NIL) (((-554) |#2| $ (-554)) 73)) (-2466 (((-631 |#2|) $) 13)) (-3717 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2849 (($ (-1 |#2| |#2|) $) 29)) (-2879 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1782 (($ |#2| $ (-554)) NIL) (($ $ $ (-554)) 50)) (-1652 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2845 (((-112) (-1 (-112) |#2|) $) 21)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) NIL) (($ $ (-1208 (-554))) 49)) (-2021 (($ $ (-554)) 56) (($ $ (-1208 (-554))) 55)) (-2777 (((-758) (-1 (-112) |#2|) $) 26) (((-758) |#2| $) NIL)) (-3553 (($ $ $ (-554)) 52)) (-1521 (($ $) 51)) (-3089 (($ (-631 |#2|)) 53)) (-4323 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-631 $)) 62)) (-3075 (((-848) $) 69)) (-2438 (((-112) (-1 (-112) |#2|) $) 20)) (-1658 (((-112) $ $) 72)) (-1676 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -4015 ((-112) |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|))) (-19 |#2|) (-1195)) (T -18)) +NIL +(-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -4015 ((-112) |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-19 |#1|) (-138) (-1195)) (T -19)) +NIL +(-13 (-368 |t#1|) (-10 -7 (-6 -4374))) +(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T)) +((-2934 (((-3 $ "failed") $ $) 12)) (-1744 (($ $) NIL) (($ $ $) 9)) (* (($ (-906) $) NIL) (($ (-758) $) 16) (($ (-554) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2934 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20))) +(((-21) (-138)) (T -21)) +((-1744 (*1 *1 *1) (-4 *1 (-21))) (-1744 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-554))))) +(-13 (-130) (-10 -8 (-15 -1744 ($ $)) (-15 -1744 ($ $ $)) (-15 * ($ (-554) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-1695 (((-112) $) 10)) (-4087 (($) 15)) (* (($ (-906) $) 14) (($ (-758) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 * (|#1| (-906) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15))) +(((-23) (-138)) (T -23)) +((-2004 (*1 *1) (-4 *1 (-23))) (-4087 (*1 *1) (-4 *1 (-23))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-758))))) +(-13 (-25) (-10 -8 (-15 (-2004) ($) -2397) (-15 -4087 ($) -2397) (-15 -1695 ((-112) $)) (-15 * ($ (-758) $)))) +(((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((* (($ (-906) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-906) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13))) +(((-25) (-138)) (T -25)) +((-1735 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-906))))) +(-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ (-906) $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2719 (((-631 $) (-937 $)) 29) (((-631 $) (-1154 $)) 16) (((-631 $) (-1154 $) (-1158)) 20)) (-3856 (($ (-937 $)) 27) (($ (-1154 $)) 11) (($ (-1154 $) (-1158)) 54)) (-3613 (((-631 $) (-937 $)) 30) (((-631 $) (-1154 $)) 18) (((-631 $) (-1154 $) (-1158)) 19)) (-3625 (($ (-937 $)) 28) (($ (-1154 $)) 13) (($ (-1154 $) (-1158)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|)))) +((-3062 (((-112) $ $) 7)) (-2719 (((-631 $) (-937 $)) 81) (((-631 $) (-1154 $)) 80) (((-631 $) (-1154 $) (-1158)) 79)) (-3856 (($ (-937 $)) 84) (($ (-1154 $)) 83) (($ (-1154 $) (-1158)) 82)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 93)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3613 (((-631 $) (-937 $)) 87) (((-631 $) (-1154 $)) 86) (((-631 $) (-1154 $) (-1158)) 85)) (-3625 (($ (-937 $)) 90) (($ (-1154 $)) 89) (($ (-1154 $) (-1158)) 88)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 92)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 91)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68))) +(((-27) (-138)) (T -27)) +((-3625 (*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27)))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27)))) (-3625 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27)) (-5 *2 (-631 *1))))) +(-13 (-358) (-987) (-10 -8 (-15 -3625 ($ (-937 $))) (-15 -3625 ($ (-1154 $))) (-15 -3625 ($ (-1154 $) (-1158))) (-15 -3613 ((-631 $) (-937 $))) (-15 -3613 ((-631 $) (-1154 $))) (-15 -3613 ((-631 $) (-1154 $) (-1158))) (-15 -3856 ($ (-937 $))) (-15 -3856 ($ (-1154 $))) (-15 -3856 ($ (-1154 $) (-1158))) (-15 -2719 ((-631 $) (-937 $))) (-15 -2719 ((-631 $) (-1154 $))) (-15 -2719 ((-631 $) (-1154 $) (-1158))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-987) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-2719 (((-631 $) (-937 $)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-1154 $) (-1158)) 50) (((-631 $) $) 19) (((-631 $) $ (-1158)) 41)) (-3856 (($ (-937 $)) NIL) (($ (-1154 $)) NIL) (($ (-1154 $) (-1158)) 52) (($ $) 17) (($ $ (-1158)) 37)) (-3613 (((-631 $) (-937 $)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-1154 $) (-1158)) 48) (((-631 $) $) 15) (((-631 $) $ (-1158)) 43)) (-3625 (($ (-937 $)) NIL) (($ (-1154 $)) NIL) (($ (-1154 $) (-1158)) NIL) (($ $) 12) (($ $ (-1158)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2719 ((-631 |#1|) |#1| (-1158))) (-15 -3856 (|#1| |#1| (-1158))) (-15 -2719 ((-631 |#1|) |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3613 ((-631 |#1|) |#1| (-1158))) (-15 -3625 (|#1| |#1| (-1158))) (-15 -3613 ((-631 |#1|) |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|)))) (-29 |#2|) (-13 (-836) (-546))) (T -28)) +NIL +(-10 -8 (-15 -2719 ((-631 |#1|) |#1| (-1158))) (-15 -3856 (|#1| |#1| (-1158))) (-15 -2719 ((-631 |#1|) |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -3613 ((-631 |#1|) |#1| (-1158))) (-15 -3625 (|#1| |#1| (-1158))) (-15 -3613 ((-631 |#1|) |#1|)) (-15 -3625 (|#1| |#1|)) (-15 -2719 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -2719 ((-631 |#1|) (-1154 |#1|))) (-15 -2719 ((-631 |#1|) (-937 |#1|))) (-15 -3856 (|#1| (-1154 |#1|) (-1158))) (-15 -3856 (|#1| (-1154 |#1|))) (-15 -3856 (|#1| (-937 |#1|))) (-15 -3613 ((-631 |#1|) (-1154 |#1|) (-1158))) (-15 -3613 ((-631 |#1|) (-1154 |#1|))) (-15 -3613 ((-631 |#1|) (-937 |#1|))) (-15 -3625 (|#1| (-1154 |#1|) (-1158))) (-15 -3625 (|#1| (-1154 |#1|))) (-15 -3625 (|#1| (-937 |#1|)))) +((-3062 (((-112) $ $) 7)) (-2719 (((-631 $) (-937 $)) 81) (((-631 $) (-1154 $)) 80) (((-631 $) (-1154 $) (-1158)) 79) (((-631 $) $) 125) (((-631 $) $ (-1158)) 123)) (-3856 (($ (-937 $)) 84) (($ (-1154 $)) 83) (($ (-1154 $) (-1158)) 82) (($ $) 126) (($ $ (-1158)) 124)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1158)) $) 200)) (-2237 (((-402 (-1154 $)) $ (-600 $)) 232 (|has| |#1| (-546)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2143 (((-631 (-600 $)) $) 163)) (-2934 (((-3 $ "failed") $ $) 19)) (-3380 (($ $ (-631 (-600 $)) (-631 $)) 153) (($ $ (-631 (-289 $))) 152) (($ $ (-289 $)) 151)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 93)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3613 (((-631 $) (-937 $)) 87) (((-631 $) (-1154 $)) 86) (((-631 $) (-1154 $) (-1158)) 85) (((-631 $) $) 129) (((-631 $) $ (-1158)) 127)) (-3625 (($ (-937 $)) 90) (($ (-1154 $)) 89) (($ (-1154 $) (-1158)) 88) (($ $) 130) (($ $ (-1158)) 128)) (-2784 (((-3 (-937 |#1|) "failed") $) 250 (|has| |#1| (-1034))) (((-3 (-402 (-937 |#1|)) "failed") $) 234 (|has| |#1| (-546))) (((-3 |#1| "failed") $) 196) (((-3 (-554) "failed") $) 193 (|has| |#1| (-1023 (-554)))) (((-3 (-1158) "failed") $) 187) (((-3 (-600 $) "failed") $) 138) (((-3 (-402 (-554)) "failed") $) 121 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 (((-937 |#1|) $) 249 (|has| |#1| (-1034))) (((-402 (-937 |#1|)) $) 233 (|has| |#1| (-546))) ((|#1| $) 195) (((-554) $) 194 (|has| |#1| (-1023 (-554)))) (((-1158) $) 186) (((-600 $) $) 137) (((-402 (-554)) $) 122 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-3964 (($ $ $) 56)) (-3699 (((-675 |#1|) (-675 $)) 240 (|has| |#1| (-1034))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 239 (|has| |#1| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 120 (-3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (((-675 (-554)) (-675 $)) 119 (-3994 (-3726 (|has| |#1| (-1034)) (|has| |#1| (-627 (-554)))) (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 192 (|has| |#1| (-871 (-374)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 191 (|has| |#1| (-871 (-554))))) (-1342 (($ (-631 $)) 157) (($ $) 156)) (-3489 (((-631 (-114)) $) 164)) (-3086 (((-114) (-114)) 165)) (-3248 (((-112) $) 31)) (-3273 (((-112) $) 185 (|has| $ (-1023 (-554))))) (-3472 (($ $) 217 (|has| |#1| (-1034)))) (-2810 (((-1107 |#1| (-600 $)) $) 216 (|has| |#1| (-1034)))) (-3734 (($ $ (-554)) 92)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-1823 (((-1154 $) (-600 $)) 182 (|has| $ (-1034)))) (-4223 (($ $ $) 136)) (-2706 (($ $ $) 135)) (-2879 (($ (-1 $ $) (-600 $)) 171)) (-3310 (((-3 (-600 $) "failed") $) 161)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2227 (((-631 (-600 $)) $) 162)) (-1408 (($ (-114) (-631 $)) 170) (($ (-114) $) 169)) (-3778 (((-3 (-631 $) "failed") $) 211 (|has| |#1| (-1094)))) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) 220 (|has| |#1| (-1034)))) (-2433 (((-3 (-631 $) "failed") $) 213 (|has| |#1| (-25)))) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) 219 (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) 218 (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) 212 (|has| |#1| (-1094)))) (-2640 (((-112) $ (-1158)) 168) (((-112) $ (-114)) 167)) (-2483 (($ $) 71)) (-3323 (((-758) $) 160)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 198)) (-2505 ((|#1| $) 199)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2041 (((-112) $ (-1158)) 173) (((-112) $ $) 172)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-1795 (((-112) $) 184 (|has| $ (-1023 (-554))))) (-2386 (($ $ (-1158) (-758) (-1 $ $)) 224 (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ (-631 $))) 223 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) 222 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) 221 (|has| |#1| (-1034))) (($ $ (-631 (-114)) (-631 $) (-1158)) 210 (|has| |#1| (-602 (-530)))) (($ $ (-114) $ (-1158)) 209 (|has| |#1| (-602 (-530)))) (($ $) 208 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158))) 207 (|has| |#1| (-602 (-530)))) (($ $ (-1158)) 206 (|has| |#1| (-602 (-530)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-631 $))) 180) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 179) (($ $ (-631 (-114)) (-631 (-1 $ $))) 178) (($ $ (-1158) (-1 $ $)) 177) (($ $ (-1158) (-1 $ (-631 $))) 176) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 175) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 174) (($ $ (-631 $) (-631 $)) 145) (($ $ $ $) 144) (($ $ (-289 $)) 143) (($ $ (-631 (-289 $))) 142) (($ $ (-631 (-600 $)) (-631 $)) 141) (($ $ (-600 $) $) 140)) (-2072 (((-758) $) 59)) (-2064 (($ (-114) (-631 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3862 (($ $ $) 159) (($ $) 158)) (-1553 (($ $ (-1158)) 248 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 247 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 246 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) 245 (|has| |#1| (-1034)))) (-3623 (($ $) 227 (|has| |#1| (-546)))) (-2822 (((-1107 |#1| (-600 $)) $) 226 (|has| |#1| (-546)))) (-4318 (($ $) 183 (|has| $ (-1034)))) (-2927 (((-530) $) 254 (|has| |#1| (-602 (-530)))) (($ (-413 $)) 225 (|has| |#1| (-546))) (((-877 (-374)) $) 190 (|has| |#1| (-602 (-877 (-374))))) (((-877 (-554)) $) 189 (|has| |#1| (-602 (-877 (-554)))))) (-3992 (($ $ $) 253 (|has| |#1| (-467)))) (-1856 (($ $ $) 252 (|has| |#1| (-467)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ (-937 |#1|)) 251 (|has| |#1| (-1034))) (($ (-402 (-937 |#1|))) 235 (|has| |#1| (-546))) (($ (-402 (-937 (-402 |#1|)))) 231 (|has| |#1| (-546))) (($ (-937 (-402 |#1|))) 230 (|has| |#1| (-546))) (($ (-402 |#1|)) 229 (|has| |#1| (-546))) (($ (-1107 |#1| (-600 $))) 215 (|has| |#1| (-1034))) (($ |#1|) 197) (($ (-1158)) 188) (($ (-600 $)) 139)) (-2084 (((-3 $ "failed") $) 238 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-4125 (($ (-631 $)) 155) (($ $) 154)) (-1902 (((-112) (-114)) 166)) (-1909 (((-112) $ $) 40)) (-3155 (($ (-1158) (-631 $)) 205) (($ (-1158) $ $ $ $) 204) (($ (-1158) $ $ $) 203) (($ (-1158) $ $) 202) (($ (-1158) $) 201)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1158)) 244 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 243 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 242 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) 241 (|has| |#1| (-1034)))) (-1708 (((-112) $ $) 133)) (-1686 (((-112) $ $) 132)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 134)) (-1676 (((-112) $ $) 131)) (-1752 (($ $ $) 66) (($ (-1107 |#1| (-600 $)) (-1107 |#1| (-600 $))) 228 (|has| |#1| (-546)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 91)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-170))) (($ |#1| $) 236 (|has| |#1| (-170))))) +(((-29 |#1|) (-138) (-13 (-836) (-546))) (T -29)) +((-3625 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546))))) (-3613 (*1 *2 *1) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3)))) (-3625 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546))))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *4)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546))))) (-2719 (*1 *2 *1) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546))))) (-2719 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-425 |t#1|) (-10 -8 (-15 -3625 ($ $)) (-15 -3613 ((-631 $) $)) (-15 -3625 ($ $ (-1158))) (-15 -3613 ((-631 $) $ (-1158))) (-15 -3856 ($ $)) (-15 -2719 ((-631 $) $)) (-15 -3856 ($ $ (-1158))) (-15 -2719 ((-631 $) $ (-1158))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 #1=(-402 (-937 |#1|))) |has| |#1| (-546)) ((-604 (-554)) . T) ((-604 #2=(-600 $)) . T) ((-604 #3=(-937 |#1|)) |has| |#1| (-1034)) ((-604 #4=(-1158)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-239) . T) ((-285) . T) ((-302) . T) ((-304 $) . T) ((-297) . T) ((-358) . T) ((-372 |#1|) |has| |#1| (-1034)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-425 |#1|) . T) ((-446) . T) ((-467) |has| |#1| (-467)) ((-508 (-600 $) $) . T) ((-508 $ $) . T) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) |has| |#1| (-170)) ((-634 $) . T) ((-627 (-554)) -12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) ((-627 |#1|) |has| |#1| (-1034)) ((-704 #0#) . T) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) . T) ((-713) . T) ((-836) . T) ((-885 (-1158)) |has| |#1| (-1034)) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-905) . T) ((-987) . T) ((-1023 (-402 (-554))) -3994 (|has| |#1| (-1023 (-402 (-554)))) (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) ((-1023 #1#) |has| |#1| (-546)) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #2#) . T) ((-1023 #3#) |has| |#1| (-1034)) ((-1023 #4#) . T) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) |has| |#1| (-170)) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1195) . T) ((-1199) . T)) +((-2829 (((-1076 (-221)) $) NIL)) (-2818 (((-1076 (-221)) $) NIL)) (-3792 (($ $ (-221)) 125)) (-2913 (($ (-937 (-554)) (-1158) (-1158) (-1076 (-402 (-554))) (-1076 (-402 (-554)))) 83)) (-3787 (((-631 (-631 (-928 (-221)))) $) 137)) (-3075 (((-848) $) 149))) +(((-30) (-13 (-940) (-10 -8 (-15 -2913 ($ (-937 (-554)) (-1158) (-1158) (-1076 (-402 (-554))) (-1076 (-402 (-554))))) (-15 -3792 ($ $ (-221)))))) (T -30)) +((-2913 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-937 (-554))) (-5 *3 (-1158)) (-5 *4 (-1076 (-402 (-554)))) (-5 *1 (-30)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30))))) +(-13 (-940) (-10 -8 (-15 -2913 ($ (-937 (-554)) (-1158) (-1158) (-1076 (-402 (-554))) (-1076 (-402 (-554))))) (-15 -3792 ($ $ (-221))))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 11)) (-3462 (((-1117) $) 9)) (-1658 (((-112) $ $) NIL))) +(((-31) (-13 (-1065) (-10 -8 (-15 -3462 ((-1117) $)) (-15 -4319 ((-1117) $))))) (T -31)) +((-3462 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31))))) +(-13 (-1065) (-10 -8 (-15 -3462 ((-1117) $)) (-15 -4319 ((-1117) $)))) +((-3625 ((|#2| (-1154 |#2|) (-1158)) 43)) (-3086 (((-114) (-114)) 56)) (-1823 (((-1154 |#2|) (-600 |#2|)) 133 (|has| |#1| (-1023 (-554))))) (-1986 ((|#2| |#1| (-554)) 123 (|has| |#1| (-1023 (-554))))) (-3018 ((|#2| (-1154 |#2|) |#2|) 30)) (-3336 (((-848) (-631 |#2|)) 85)) (-4318 ((|#2| |#2|) 129 (|has| |#1| (-1023 (-554))))) (-1902 (((-112) (-114)) 18)) (** ((|#2| |#2| (-402 (-554))) 96 (|has| |#1| (-1023 (-554)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3625 (|#2| (-1154 |#2|) (-1158))) (-15 -3086 ((-114) (-114))) (-15 -1902 ((-112) (-114))) (-15 -3018 (|#2| (-1154 |#2|) |#2|)) (-15 -3336 ((-848) (-631 |#2|))) (IF (|has| |#1| (-1023 (-554))) (PROGN (-15 ** (|#2| |#2| (-402 (-554)))) (-15 -1823 ((-1154 |#2|) (-600 |#2|))) (-15 -4318 (|#2| |#2|)) (-15 -1986 (|#2| |#1| (-554)))) |%noBranch|)) (-13 (-836) (-546)) (-425 |#1|)) (T -32)) +((-1986 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1023 *4)) (-4 *3 (-13 (-836) (-546))))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-1023 (-554))) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-600 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1023 (-554))) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-1154 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-1023 (-554))) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-848)) (-5 *1 (-32 *4 *5)))) (-3018 (*1 *2 *3 *2) (-12 (-5 *3 (-1154 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-32 *4 *2)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-32 *3 *4)) (-4 *4 (-425 *3)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *2)) (-5 *4 (-1158)) (-4 *2 (-425 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-836) (-546)))))) +(-10 -7 (-15 -3625 (|#2| (-1154 |#2|) (-1158))) (-15 -3086 ((-114) (-114))) (-15 -1902 ((-112) (-114))) (-15 -3018 (|#2| (-1154 |#2|) |#2|)) (-15 -3336 ((-848) (-631 |#2|))) (IF (|has| |#1| (-1023 (-554))) (PROGN (-15 ** (|#2| |#2| (-402 (-554)))) (-15 -1823 ((-1154 |#2|) (-600 |#2|))) (-15 -4318 (|#2| |#2|)) (-15 -1986 (|#2| |#1| (-554)))) |%noBranch|)) +((-3019 (((-112) $ (-758)) 16)) (-4087 (($) 10)) (-2230 (((-112) $ (-758)) 15)) (-3731 (((-112) $ (-758)) 14)) (-2494 (((-112) $ $) 8)) (-3543 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -4087 (|#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -3543 ((-112) |#1|)) (-15 -2494 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -4087 (|#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -3543 ((-112) |#1|)) (-15 -2494 ((-112) |#1| |#1|))) +((-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2230 (((-112) $ (-758)) 9)) (-3731 (((-112) $ (-758)) 10)) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-1521 (($ $) 13)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-34) (-138)) (T -34)) +((-2494 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1521 (*1 *1 *1) (-4 *1 (-34))) (-4240 (*1 *1) (-4 *1 (-34))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3731 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) (-2230 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) (-3019 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) (-4087 (*1 *1) (-4 *1 (-34))) (-2563 (*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-34)) (-5 *2 (-758))))) +(-13 (-1195) (-10 -8 (-15 -2494 ((-112) $ $)) (-15 -1521 ($ $)) (-15 -4240 ($)) (-15 -3543 ((-112) $)) (-15 -3731 ((-112) $ (-758))) (-15 -2230 ((-112) $ (-758))) (-15 -3019 ((-112) $ (-758))) (-15 -4087 ($) -2397) (IF (|has| $ (-6 -4373)) (-15 -2563 ((-758) $)) |%noBranch|))) +(((-1195) . T)) +((-3096 (($ $) 11)) (-3069 (($ $) 10)) (-3120 (($ $) 9)) (-2908 (($ $) 8)) (-3108 (($ $) 7)) (-3083 (($ $) 6))) +(((-35) (-138)) (T -35)) +((-3096 (*1 *1 *1) (-4 *1 (-35))) (-3069 (*1 *1 *1) (-4 *1 (-35))) (-3120 (*1 *1 *1) (-4 *1 (-35))) (-2908 (*1 *1 *1) (-4 *1 (-35))) (-3108 (*1 *1 *1) (-4 *1 (-35))) (-3083 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3083 ($ $)) (-15 -3108 ($ $)) (-15 -2908 ($ $)) (-15 -3120 ($ $)) (-15 -3069 ($ $)) (-15 -3096 ($ $)))) +((-3062 (((-112) $ $) 19 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2794 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 125)) (-2350 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 148)) (-3387 (($ $) 146)) (-3167 (($) 72) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 71)) (-4233 (((-1246) $ |#1| |#1|) 99 (|has| $ (-6 -4374))) (((-1246) $ (-554) (-554)) 178 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 159 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2576 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 200 (|has| $ (-6 -4374))) (($ $) 199 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3019 (((-112) $ (-758)) 8)) (-2690 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 134 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 155 (|has| $ (-6 -4374)))) (-1825 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 157 (|has| $ (-6 -4374)))) (-3105 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 153 (|has| $ (-6 -4374)))) (-1501 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 189 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-1208 (-554)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 160 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 158 (|has| $ (-6 -4374))) (($ $ "rest" $) 156 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 154 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 133 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 132 (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 45 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 216)) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 55 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 175 (|has| $ (-6 -4373)))) (-2337 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 147)) (-2937 (((-3 |#2| "failed") |#1| $) 61)) (-4087 (($) 7 T CONST)) (-3920 (($ $) 201 (|has| $ (-6 -4374)))) (-3799 (($ $) 211)) (-1551 (($ $ (-758)) 142) (($ $) 140)) (-2593 (($ $) 214 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1571 (($ $) 58 (-3994 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))) (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 46 (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 220) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 215 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 54 (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 174 (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 56 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 53 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 52 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 176 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 173 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 172 (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 190 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 88) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 188)) (-3556 (((-112) $) 192)) (-1484 (((-554) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 208) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 207 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 206 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 30 (|has| $ (-6 -4373))) (((-631 |#2|) $) 79 (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 114 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 123)) (-1990 (((-112) $ $) 131 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-3180 (($ (-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 169)) (-2230 (((-112) $ (-758)) 9)) (-3044 ((|#1| $) 96 (|has| |#1| (-836))) (((-554) $) 180 (|has| (-554) (-836)))) (-4223 (($ $ $) 198 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3606 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3717 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 29 (|has| $ (-6 -4373))) (((-631 |#2|) $) 80 (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 115 (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-2256 ((|#1| $) 95 (|has| |#1| (-836))) (((-554) $) 181 (|has| (-554) (-836)))) (-2706 (($ $ $) 197 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 34 (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4374))) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 110 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 109)) (-1416 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 225)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 128)) (-3216 (((-112) $) 124)) (-1613 (((-1140) $) 22 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2597 (($ $ (-758)) 145) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 143)) (-2944 (((-631 |#1|) $) 63)) (-2415 (((-112) |#1| $) 64)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 39)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 40) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 219) (($ $ $ (-554)) 218)) (-1782 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 162) (($ $ $ (-554)) 161)) (-2529 (((-631 |#1|) $) 93) (((-631 (-554)) $) 183)) (-3618 (((-112) |#1| $) 92) (((-112) (-554) $) 184)) (-2768 (((-1102) $) 21 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1539 ((|#2| $) 97 (|has| |#1| (-836))) (($ $ (-758)) 139) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 137)) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 51) (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 171)) (-2441 (($ $ |#2|) 98 (|has| $ (-6 -4374))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 179 (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 41)) (-1381 (((-112) $) 191)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 32 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 112 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 26 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 25 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 24 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 23 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 121 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 120 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 119 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 118 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 182 (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2625 (((-631 |#2|) $) 91) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 185)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 187) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) 186) (($ $ (-1208 (-554))) 165) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first") 138) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value") 126)) (-3250 (((-554) $ $) 129)) (-4310 (($) 49) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 48)) (-3029 (($ $ (-554)) 222) (($ $ (-1208 (-554))) 221)) (-2021 (($ $ (-554)) 164) (($ $ (-1208 (-554))) 163)) (-3008 (((-112) $) 127)) (-1670 (($ $) 151)) (-2377 (($ $) 152 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 150)) (-2046 (($ $) 149)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 31 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-758) |#2| $) 81 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 113 (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) 202 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530)))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 50) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 170)) (-1853 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 224) (($ $ $) 223)) (-4323 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 168) (($ (-631 $)) 167) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 136) (($ $ $) 135)) (-3075 (((-848) $) 18 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))))) (-2461 (((-631 $) $) 122)) (-1441 (((-112) $ $) 130 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 42)) (-2605 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") |#1| $) 108)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 33 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 111 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 195 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1686 (((-112) $ $) 194 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1658 (((-112) $ $) 20 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1697 (((-112) $ $) 196 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1676 (((-112) $ $) 193 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-36 |#1| |#2|) (-138) (-1082) (-1082)) (T -36)) +((-2605 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| -2564 *3) (|:| -2701 *4)))))) +(-13 (-1171 |t#1| |t#2|) (-652 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|))) (-10 -8 (-15 -2605 ((-3 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-102) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836))) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))) ((-149 #1=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-602 (-530)) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 #2=(-554) #1#) . T) ((-281 |#1| |#2|) . T) ((-283 #2# #1#) . T) ((-283 |#1| |#2|) . T) ((-304 #1#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-277 #1#) . T) ((-368 #1#) . T) ((-483 #1#) . T) ((-483 |#2|) . T) ((-592 #2# #1#) . T) ((-592 |#1| |#2|) . T) ((-508 #1# #1#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-598 |#1| |#2|) . T) ((-637 #1#) . T) ((-652 #1#) . T) ((-836) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)) ((-995 #1#) . T) ((-1082) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836))) ((-1131 #1#) . T) ((-1171 |#1| |#2|) . T) ((-1195) . T) ((-1229 #1#) . T)) +((-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-38 |#2|) (-170)) (T -37)) +NIL +(-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-38 |#1|) (-138) (-170)) (T -38)) +NIL +(-13 (-1034) (-704 |t#1|) (-604 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-1515 (((-413 |#1|) |#1|) 41)) (-2270 (((-413 |#1|) |#1|) 30) (((-413 |#1|) |#1| (-631 (-48))) 33)) (-2906 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1| (-631 (-48)))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1515 ((-413 |#1|) |#1|)) (-15 -2906 ((-112) |#1|))) (-1217 (-48))) (T -39)) +((-2906 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48)))))) +(-10 -7 (-15 -2270 ((-413 |#1|) |#1| (-631 (-48)))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1515 ((-413 |#1|) |#1|)) (-15 -2906 ((-112) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3293 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-1976 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1363 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1903 (((-675 (-402 |#2|)) (-1241 $)) NIL) (((-675 (-402 |#2|))) NIL)) (-1612 (((-402 |#2|) $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-402 |#2|) (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1565 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2286 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1508 (((-758)) NIL (|has| (-402 |#2|) (-363)))) (-3626 (((-112)) NIL)) (-2120 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-402 |#2|) $) NIL)) (-1651 (($ (-1241 (-402 |#2|)) (-1241 $)) NIL) (($ (-1241 (-402 |#2|))) 57) (($ (-1241 |#2|) |#2|) 125)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-3964 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3629 (((-675 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-402 |#2|))) (|:| |vec| (-1241 (-402 |#2|)))) (-675 $) (-1241 $)) NIL) (((-675 (-402 |#2|)) (-675 $)) NIL)) (-2501 (((-1241 $) (-1241 $)) NIL)) (-3676 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-4092 (((-631 (-631 |#1|))) NIL (|has| |#1| (-363)))) (-2895 (((-112) |#1| |#1|) NIL)) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| (-402 |#2|) (-363)))) (-2568 (((-112)) NIL)) (-1993 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3943 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| (-402 |#2|) (-358)))) (-2048 (($ $) NIL)) (-3157 (($) NIL (|has| (-402 |#2|) (-344)))) (-2754 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-4122 (($ $ (-758)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-3289 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2342 (((-906) $) NIL (|has| (-402 |#2|) (-344))) (((-820 (-906)) $) NIL (|has| (-402 |#2|) (-344)))) (-3248 (((-112) $) NIL)) (-4324 (((-758)) NIL)) (-3600 (((-1241 $) (-1241 $)) 102)) (-3274 (((-402 |#2|) $) NIL)) (-2214 (((-631 (-937 |#1|)) (-1158)) NIL (|has| |#1| (-358)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-3361 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-3830 (((-906) $) NIL (|has| (-402 |#2|) (-363)))) (-3662 ((|#3| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1613 (((-1140) $) NIL)) (-3067 (((-1246) (-758)) 79)) (-4132 (((-675 (-402 |#2|))) 51)) (-2519 (((-675 (-402 |#2|))) 44)) (-2483 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2488 (($ (-1241 |#2|) |#2|) 126)) (-1835 (((-675 (-402 |#2|))) 45)) (-3470 (((-675 (-402 |#2|))) 43)) (-3368 (((-2 (|:| |num| (-675 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1579 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 64)) (-1279 (((-1241 $)) 42)) (-3358 (((-1241 $)) 41)) (-2141 (((-112) $) NIL)) (-4099 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3834 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| (-402 |#2|) (-363)))) (-4261 (((-3 |#2| "failed")) NIL)) (-2768 (((-1102) $) NIL)) (-3271 (((-758)) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| (-402 |#2|) (-358)))) (-2510 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-402 |#2|) (-344)))) (-2270 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2072 (((-758) $) NIL (|has| (-402 |#2|) (-358)))) (-2064 ((|#1| $ |#1| |#1|) NIL)) (-2535 (((-3 |#2| "failed")) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1495 (((-402 |#2|) (-1241 $)) NIL) (((-402 |#2|)) 39)) (-3316 (((-758) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-758) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-1553 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2092 (((-675 (-402 |#2|)) (-1241 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-4318 ((|#3|) 50)) (-3944 (($) NIL (|has| (-402 |#2|) (-344)))) (-3656 (((-1241 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) (-1241 $) (-1241 $)) NIL) (((-1241 (-402 |#2|)) $) 58) (((-675 (-402 |#2|)) (-1241 $)) 103)) (-2927 (((-1241 (-402 |#2|)) $) NIL) (($ (-1241 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-402 |#2|) (-344)))) (-2239 (((-1241 $) (-1241 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| (-402 |#2|) (-1023 (-402 (-554)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2084 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3109 ((|#3| $) NIL)) (-2261 (((-758)) NIL)) (-3809 (((-112)) 37)) (-2394 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-3782 (((-1241 $)) 93)) (-1909 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3889 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2102 (((-112)) NIL)) (-2004 (($) 16 T CONST)) (-2014 (($) 26 T CONST)) (-1787 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-554)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-554))) NIL (|has| (-402 |#2|) (-358))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3067 ((-1246) (-758))))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) |#3|) (T -40)) +((-3067 (*1 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *2 (-1246)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1217 (-402 *5))) (-14 *7 *6)))) +(-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3067 ((-1246) (-758))))) +((-3614 ((|#2| |#2|) 48)) (-1314 ((|#2| |#2|) 120 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-4126 ((|#2| |#2|) 87 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-3996 ((|#2| |#2|) 88 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-1892 ((|#2| (-114) |#2| (-758)) 116 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-836)) (|has| |#1| (-1023 (-554)))))) (-2298 (((-1154 |#2|) |#2|) 45)) (-3226 ((|#2| |#2| (-631 (-600 |#2|))) 18) ((|#2| |#2| (-631 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3226 (|#2| |#2| (-631 |#2|))) (-15 -3226 (|#2| |#2| (-631 (-600 |#2|)))) (-15 -2298 ((-1154 |#2|) |#2|)) (IF (|has| |#1| (-836)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1023 (-554))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3996 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1892 (|#2| (-114) |#2| (-758)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-546) (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 |#1| (-600 $)) $)) (-15 -2822 ((-1107 |#1| (-600 $)) $)) (-15 -3075 ($ (-1107 |#1| (-600 $))))))) (T -41)) +((-1892 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-758)) (-4 *5 (-446)) (-4 *5 (-836)) (-4 *5 (-1023 (-554))) (-4 *5 (-546)) (-5 *1 (-41 *5 *2)) (-4 *2 (-425 *5)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *5 (-600 $)) $)) (-15 -2822 ((-1107 *5 (-600 $)) $)) (-15 -3075 ($ (-1107 *5 (-600 $))))))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-1154 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) (-15 -2822 ((-1107 *4 (-600 $)) $)) (-15 -3075 ($ (-1107 *4 (-600 $))))))))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-600 *2))) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) (-15 -2822 ((-1107 *4 (-600 $)) $)) (-15 -3075 ($ (-1107 *4 (-600 $))))))) (-4 *4 (-546)) (-5 *1 (-41 *4 *2)))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) (-15 -2822 ((-1107 *4 (-600 $)) $)) (-15 -3075 ($ (-1107 *4 (-600 $))))))) (-4 *4 (-546)) (-5 *1 (-41 *4 *2)))) (-3226 (*1 *2 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $))))))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) (-15 -2822 ((-1107 *3 (-600 $)) $)) (-15 -3075 ($ (-1107 *3 (-600 $)))))))))) +(-10 -7 (-15 -3614 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3226 (|#2| |#2| (-631 |#2|))) (-15 -3226 (|#2| |#2| (-631 (-600 |#2|)))) (-15 -2298 ((-1154 |#2|) |#2|)) (IF (|has| |#1| (-836)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1023 (-554))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3996 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1892 (|#2| (-114) |#2| (-758)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2270 (((-413 (-1154 |#3|)) (-1154 |#3|) (-631 (-48))) 23) (((-413 |#3|) |#3| (-631 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-413 |#3|) |#3| (-631 (-48)))) (-15 -2270 ((-413 (-1154 |#3|)) (-1154 |#3|) (-631 (-48))))) (-836) (-780) (-934 (-48) |#2| |#1|)) (T -42)) +((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *7 (-934 (-48) *6 *5)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780)) (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-934 (-48) *6 *5))))) +(-10 -7 (-15 -2270 ((-413 |#3|) |#3| (-631 (-48)))) (-15 -2270 ((-413 (-1154 |#3|)) (-1154 |#3|) (-631 (-48))))) +((-3027 (((-758) |#2|) 65)) (-3724 (((-758) |#2|) 68)) (-3529 (((-631 |#2|)) 33)) (-2083 (((-758) |#2|) 67)) (-3347 (((-758) |#2|) 64)) (-2730 (((-758) |#2|) 66)) (-2243 (((-631 (-675 |#1|))) 60)) (-3056 (((-631 |#2|)) 55)) (-1326 (((-631 |#2|) |#2|) 43)) (-2523 (((-631 |#2|)) 57)) (-1563 (((-631 |#2|)) 56)) (-3396 (((-631 (-675 |#1|))) 48)) (-2662 (((-631 |#2|)) 54)) (-1842 (((-631 |#2|) |#2|) 42)) (-3116 (((-631 |#2|)) 50)) (-4019 (((-631 (-675 |#1|))) 61)) (-2294 (((-631 |#2|)) 59)) (-3782 (((-1241 |#2|) (-1241 |#2|)) 84 (|has| |#1| (-302))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2083 ((-758) |#2|)) (-15 -3724 ((-758) |#2|)) (-15 -3347 ((-758) |#2|)) (-15 -3027 ((-758) |#2|)) (-15 -2730 ((-758) |#2|)) (-15 -3116 ((-631 |#2|))) (-15 -1842 ((-631 |#2|) |#2|)) (-15 -1326 ((-631 |#2|) |#2|)) (-15 -2662 ((-631 |#2|))) (-15 -3056 ((-631 |#2|))) (-15 -1563 ((-631 |#2|))) (-15 -2523 ((-631 |#2|))) (-15 -2294 ((-631 |#2|))) (-15 -3396 ((-631 (-675 |#1|)))) (-15 -2243 ((-631 (-675 |#1|)))) (-15 -4019 ((-631 (-675 |#1|)))) (-15 -3529 ((-631 |#2|))) (IF (|has| |#1| (-302)) (-15 -3782 ((-1241 |#2|) (-1241 |#2|))) |%noBranch|)) (-546) (-412 |#1|)) (T -43)) +((-3782 (*1 *2 *2) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302)) (-4 *3 (-546)) (-5 *1 (-43 *3 *4)))) (-3529 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-4019 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2243 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-3396 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2294 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2523 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-1563 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-3056 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2662 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3116 (*1 *2) (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2730 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2083 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4))))) +(-10 -7 (-15 -2083 ((-758) |#2|)) (-15 -3724 ((-758) |#2|)) (-15 -3347 ((-758) |#2|)) (-15 -3027 ((-758) |#2|)) (-15 -2730 ((-758) |#2|)) (-15 -3116 ((-631 |#2|))) (-15 -1842 ((-631 |#2|) |#2|)) (-15 -1326 ((-631 |#2|) |#2|)) (-15 -2662 ((-631 |#2|))) (-15 -3056 ((-631 |#2|))) (-15 -1563 ((-631 |#2|))) (-15 -2523 ((-631 |#2|))) (-15 -2294 ((-631 |#2|))) (-15 -3396 ((-631 (-675 |#1|)))) (-15 -2243 ((-631 (-675 |#1|)))) (-15 -4019 ((-631 (-675 |#1|)))) (-15 -3529 ((-631 |#2|))) (IF (|has| |#1| (-302)) (-15 -3782 ((-1241 |#2|) (-1241 |#2|))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#1|)) (-1241 $)) NIL) (((-1241 (-675 |#1|))) 24)) (-4047 (((-1241 $)) 51)) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#1| (-546)))) (-3447 (((-3 $ "failed")) NIL (|has| |#1| (-546)))) (-3321 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) NIL)) (-4206 ((|#1| $) NIL)) (-3970 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-3754 (((-3 $ "failed") $) NIL (|has| |#1| (-546)))) (-4027 (((-1154 (-937 |#1|))) NIL (|has| |#1| (-358)))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#1| $) NIL)) (-3343 (((-1154 |#1|) $) NIL (|has| |#1| (-546)))) (-3640 ((|#1| (-1241 $)) NIL) ((|#1|) NIL)) (-4231 (((-1154 |#1|) $) NIL)) (-1397 (((-112)) 87)) (-1651 (($ (-1241 |#1|) (-1241 $)) NIL) (($ (-1241 |#1|)) NIL)) (-1320 (((-3 $ "failed") $) 14 (|has| |#1| (-546)))) (-4186 (((-906)) 52)) (-3911 (((-112)) NIL)) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL)) (-1765 (((-112)) NIL)) (-1573 (((-112)) 89)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#1| (-546)))) (-3899 (((-3 $ "failed")) NIL (|has| |#1| (-546)))) (-2871 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) NIL)) (-3115 ((|#1| $) NIL)) (-3826 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-1605 (((-3 $ "failed") $) NIL (|has| |#1| (-546)))) (-3415 (((-1154 (-937 |#1|))) NIL (|has| |#1| (-358)))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#1| $) NIL)) (-3760 (((-1154 |#1|) $) NIL (|has| |#1| (-546)))) (-3063 ((|#1| (-1241 $)) NIL) ((|#1|) NIL)) (-2541 (((-1154 |#1|) $) NIL)) (-3074 (((-112)) 86)) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) 93)) (-4193 (((-112)) 92)) (-2366 (((-112)) 94)) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) 88)) (-2064 ((|#1| $ (-554)) 54)) (-3656 (((-1241 |#1|) $ (-1241 $)) 48) (((-675 |#1|) (-1241 $) (-1241 $)) NIL) (((-1241 |#1|) $) 28) (((-675 |#1|) (-1241 $)) NIL)) (-2927 (((-1241 |#1|) $) NIL) (($ (-1241 |#1|)) NIL)) (-3107 (((-631 (-937 |#1|)) (-1241 $)) NIL) (((-631 (-937 |#1|))) NIL)) (-1856 (($ $ $) NIL)) (-3349 (((-112)) 84)) (-3075 (((-848) $) 69) (($ (-1241 |#1|)) 22)) (-3782 (((-1241 $)) 45)) (-1444 (((-631 (-1241 |#1|))) NIL (|has| |#1| (-546)))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) 82)) (-1485 (($ (-675 |#1|) $) 18)) (-1870 (($ $ $) NIL)) (-2945 (((-112)) 85)) (-2760 (((-112)) 83)) (-3206 (((-112)) 81)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1124 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-412 |#1|) (-634 (-1124 |#2| |#1|)) (-10 -8 (-15 -3075 ($ (-1241 |#1|))))) (-358) (-906) (-631 (-1158)) (-1241 (-675 |#1|))) (T -44)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-14 *6 (-1241 (-675 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-906)) (-14 *5 (-631 (-1158)))))) +(-13 (-412 |#1|) (-634 (-1124 |#2| |#1|)) (-10 -8 (-15 -3075 ($ (-1241 |#1|))))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2794 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2350 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-3387 (($ $) NIL)) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374))) (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2576 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836))))) (-3303 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-2690 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) 27 (|has| $ (-6 -4374)))) (-1825 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-3105 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 29 (|has| $ (-6 -4374)))) (-1501 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-1208 (-554)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (($ $ "rest" $) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value" (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2337 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2937 (((-3 |#2| "failed") |#1| $) 37)) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1551 (($ $ (-758)) NIL) (($ $) 24)) (-2593 (($ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) (((-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 18 (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 18 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-3180 (($ (-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836))) (((-554) $) 32 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3606 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-3717 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836))) (((-554) $) 34 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-1416 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) 42 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2597 (($ $ (-758)) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2944 (((-631 |#1|) $) 20)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-1782 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 |#1|) $) NIL) (((-631 (-554)) $) NIL)) (-3618 (((-112) |#1| $) NIL) (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836))) (($ $ (-758)) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 23)) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2625 (((-631 |#2|) $) NIL) (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 17)) (-3543 (((-112) $) 16)) (-4240 (($) 13)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ (-554)) NIL) (($ $ (-1208 (-554))) NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "first") NIL) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $ "value") NIL)) (-3250 (((-554) $ $) NIL)) (-4310 (($) 12) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3029 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3008 (((-112) $) NIL)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-1853 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL) (($ $ $) NIL)) (-4323 (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL) (($ (-631 $)) NIL) (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 25) (($ $ $) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2605 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") |#1| $) 44)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1697 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-836)))) (-2563 (((-758) $) 22 (|has| $ (-6 -4373))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1082) (-1082)) (T -45)) NIL (-36 |#1| |#2|) -((-1298 (((-111) $) 12)) (-1482 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-401 (-553)) $) 25) (($ $ (-401 (-553))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -1298 ((-111) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) (-47 |#2| |#3|) (-1031) (-778)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -1298 ((-111) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1298 (((-111) $) 65)) (-3481 (($ |#1| |#2|) 64)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-3872 ((|#2| $) 67)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545))) (($ |#1|) 50 (|has| |#1| (-169)))) (-1624 ((|#1| $ |#2|) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-47 |#1| |#2|) (-137) (-1031) (-778)) (T -47)) -((-3655 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) (-3644 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-5 *2 (-111)))) (-3481 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) (-1624 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) (-1723 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)) (-4 *2 (-357))))) -(-13 (-1031) (-110 |t#1| |t#1|) (-10 -8 (-15 -3655 (|t#1| $)) (-15 -3644 ($ $)) (-15 -3872 (|t#2| $)) (-15 -1482 ($ (-1 |t#1| |t#1|) $)) (-15 -1298 ((-111) $)) (-15 -3481 ($ |t#1| |t#2|)) (-15 -3678 ($ $)) (-15 -1624 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-357)) (-15 -1723 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-545)) (-6 (-545)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-553)))) (-6 (-38 (-401 (-553)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) |has| |#1| (-38 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-284) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3329 (((-630 $) (-1151 $) (-1155)) NIL) (((-630 $) (-1151 $)) NIL) (((-630 $) (-934 $)) NIL)) (-1299 (($ (-1151 $) (-1155)) NIL) (($ (-1151 $)) NIL) (($ (-934 $)) NIL)) (-3769 (((-111) $) 11)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-3233 (((-630 (-599 $)) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $ (-288 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3365 (($ $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-2851 (((-630 $) (-1151 $) (-1155)) NIL) (((-630 $) (-1151 $)) NIL) (((-630 $) (-934 $)) NIL)) (-3906 (($ (-1151 $) (-1155)) NIL) (($ (-1151 $)) NIL) (($ (-934 $)) NIL)) (-1399 (((-3 (-599 $) "failed") $) NIL) (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL)) (-2707 (((-599 $) $) NIL) (((-553) $) NIL) (((-401 (-553)) $) NIL)) (-3973 (($ $ $) NIL)) (-2077 (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-401 (-553)))) (|:| |vec| (-1238 (-401 (-553))))) (-674 $) (-1238 $)) NIL) (((-674 (-401 (-553))) (-674 $)) NIL)) (-2654 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-2985 (($ $) NIL) (($ (-630 $)) NIL)) (-2521 (((-630 (-113)) $) NIL)) (-4180 (((-113) (-113)) NIL)) (-1848 (((-111) $) 14)) (-1850 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-3963 (((-1104 (-553) (-599 $)) $) NIL)) (-2406 (($ $ (-553)) NIL)) (-3560 (((-1151 $) (-1151 $) (-599 $)) NIL) (((-1151 $) (-1151 $) (-630 (-599 $))) NIL) (($ $ (-599 $)) NIL) (($ $ (-630 (-599 $))) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1629 (((-1151 $) (-599 $)) NIL (|has| $ (-1031)))) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 $ $) (-599 $)) NIL)) (-1335 (((-3 (-599 $) "failed") $) NIL)) (-2471 (($ (-630 $)) NIL) (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-3310 (((-630 (-599 $)) $) NIL)) (-4040 (($ (-113) $) NIL) (($ (-113) (-630 $)) NIL)) (-1288 (((-111) $ (-113)) NIL) (((-111) $ (-1155)) NIL)) (-3610 (($ $) NIL)) (-2304 (((-757) $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ (-630 $)) NIL) (($ $ $) NIL)) (-4006 (((-111) $ $) NIL) (((-111) $ (-1155)) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3781 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-2356 (($ $ (-599 $) $) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-1155) (-1 $ (-630 $))) NIL) (($ $ (-1155) (-1 $ $)) NIL) (($ $ (-630 (-113)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-113) (-1 $ (-630 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-3384 (((-757) $) NIL)) (-2046 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-630 $)) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1460 (($ $) NIL) (($ $ $) NIL)) (-1330 (($ $ (-757)) NIL) (($ $) NIL)) (-3974 (((-1104 (-553) (-599 $)) $) NIL)) (-1394 (($ $) NIL (|has| $ (-1031)))) (-1524 (((-373) $) NIL) (((-220) $) NIL) (((-166 (-373)) $) NIL)) (-3110 (((-845) $) NIL) (($ (-599 $)) NIL) (($ (-401 (-553))) NIL) (($ $) NIL) (($ (-553)) NIL) (($ (-1104 (-553) (-599 $))) NIL)) (-1999 (((-757)) NIL)) (-2633 (($ $) NIL) (($ (-630 $)) NIL)) (-2274 (((-111) (-113)) NIL)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 7 T CONST)) (-1997 (($) 12 T CONST)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 16)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL)) (-1711 (($ $ $) 15) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-401 (-553))) NIL) (($ $ (-553)) NIL) (($ $ (-757)) NIL) (($ $ (-903)) NIL)) (* (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL) (($ $ $) NIL) (($ (-553) $) NIL) (($ (-757) $) NIL) (($ (-903) $) NIL))) -(((-48) (-13 (-296) (-27) (-1020 (-553)) (-1020 (-401 (-553))) (-626 (-553)) (-1004) (-626 (-401 (-553))) (-144) (-601 (-166 (-373))) (-228) (-10 -8 (-15 -3110 ($ (-1104 (-553) (-599 $)))) (-15 -3963 ((-1104 (-553) (-599 $)) $)) (-15 -3974 ((-1104 (-553) (-599 $)) $)) (-15 -2654 ($ $)) (-15 -3560 ((-1151 $) (-1151 $) (-599 $))) (-15 -3560 ((-1151 $) (-1151 $) (-630 (-599 $)))) (-15 -3560 ($ $ (-599 $))) (-15 -3560 ($ $ (-630 (-599 $))))))) (T -48)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1104 (-553) (-599 (-48)))) (-5 *1 (-48)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-48)))) (-5 *1 (-48)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-48)))) (-5 *1 (-48)))) (-2654 (*1 *1 *1) (-5 *1 (-48))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-1151 (-48))) (-5 *3 (-599 (-48))) (-5 *1 (-48)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-1151 (-48))) (-5 *3 (-630 (-599 (-48)))) (-5 *1 (-48)))) (-3560 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-48))) (-5 *1 (-48)))) (-3560 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-599 (-48)))) (-5 *1 (-48))))) -(-13 (-296) (-27) (-1020 (-553)) (-1020 (-401 (-553))) (-626 (-553)) (-1004) (-626 (-401 (-553))) (-144) (-601 (-166 (-373))) (-228) (-10 -8 (-15 -3110 ($ (-1104 (-553) (-599 $)))) (-15 -3963 ((-1104 (-553) (-599 $)) $)) (-15 -3974 ((-1104 (-553) (-599 $)) $)) (-15 -2654 ($ $)) (-15 -3560 ((-1151 $) (-1151 $) (-599 $))) (-15 -3560 ((-1151 $) (-1151 $) (-630 (-599 $)))) (-15 -3560 ($ $ (-599 $))) (-15 -3560 ($ $ (-630 (-599 $)))))) -((-3096 (((-111) $ $) NIL)) (-4016 (((-630 (-1155)) $) 17)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 7)) (-4310 (((-1160) $) 18)) (-1617 (((-111) $ $) NIL))) -(((-49) (-13 (-1079) (-10 -8 (-15 -4016 ((-630 (-1155)) $)) (-15 -4310 ((-1160) $))))) (T -49)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-49)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-49))))) -(-13 (-1079) (-10 -8 (-15 -4016 ((-630 (-1155)) $)) (-15 -4310 ((-1160) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 61)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1514 (((-111) $) 20)) (-1399 (((-3 |#1| "failed") $) 23)) (-2707 ((|#1| $) 24)) (-3678 (($ $) 28)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3655 ((|#1| $) 21)) (-1722 (($ $) 50)) (-1735 (((-1137) $) NIL)) (-3699 (((-111) $) 30)) (-2786 (((-1099) $) NIL)) (-4093 (($ (-757)) 48)) (-2743 (($ (-630 (-553))) 49)) (-3872 (((-757) $) 31)) (-3110 (((-845) $) 64) (($ (-553)) 45) (($ |#1|) 43)) (-1624 ((|#1| $ $) 19)) (-1999 (((-757)) 47)) (-1988 (($) 32 T CONST)) (-1997 (($) 14 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 40)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-607 |#1|) (-1020 |#1|) (-10 -8 (-15 -3655 (|#1| $)) (-15 -1722 ($ $)) (-15 -3678 ($ $)) (-15 -1624 (|#1| $ $)) (-15 -4093 ($ (-757))) (-15 -2743 ($ (-630 (-553)))) (-15 -3699 ((-111) $)) (-15 -1514 ((-111) $)) (-15 -3872 ((-757) $)) (-15 -1482 ($ (-1 |#1| |#1|) $)))) (-1031) (-630 (-1155))) (T -50)) -((-3655 (*1 *2 *1) (-12 (-4 *2 (-1031)) (-5 *1 (-50 *2 *3)) (-14 *3 (-630 (-1155))))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1031)) (-14 *3 (-630 (-1155))))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1031)) (-14 *3 (-630 (-1155))))) (-1624 (*1 *2 *1 *1) (-12 (-4 *2 (-1031)) (-5 *1 (-50 *2 *3)) (-14 *3 (-630 (-1155))))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) (-14 *4 (-630 (-1155))))) (-2743 (*1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) (-14 *4 (-630 (-1155))))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) (-14 *4 (-630 (-1155))))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) (-14 *4 (-630 (-1155))))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) (-14 *4 (-630 (-1155))))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-50 *3 *4)) (-14 *4 (-630 (-1155)))))) -(-13 (-607 |#1|) (-1020 |#1|) (-10 -8 (-15 -3655 (|#1| $)) (-15 -1722 ($ $)) (-15 -3678 ($ $)) (-15 -1624 (|#1| $ $)) (-15 -4093 ($ (-757))) (-15 -2743 ($ (-630 (-553)))) (-15 -3699 ((-111) $)) (-15 -1514 ((-111) $)) (-15 -3872 ((-757) $)) (-15 -1482 ($ (-1 |#1| |#1|) $)))) -((-1514 (((-111) (-52)) 13)) (-1399 (((-3 |#1| "failed") (-52)) 21)) (-2707 ((|#1| (-52)) 22)) (-3110 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -3110 ((-52) |#1|)) (-15 -1399 ((-3 |#1| "failed") (-52))) (-15 -1514 ((-111) (-52))) (-15 -2707 (|#1| (-52)))) (-1192)) (T -51)) -((-2707 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1192)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1192)))) (-1399 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1192)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1192))))) -(-10 -7 (-15 -3110 ((-52) |#1|)) (-15 -1399 ((-3 |#1| "failed") (-52))) (-15 -1514 ((-111) (-52))) (-15 -2707 (|#1| (-52)))) -((-3096 (((-111) $ $) NIL)) (-3258 (((-1137) (-111)) 25)) (-2587 (((-845) $) 24)) (-3598 (((-760) $) 12)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2249 (((-845) $) 16)) (-3933 (((-1083) $) 14)) (-3110 (((-845) $) 32)) (-2879 (($ (-1083) (-760)) 33)) (-1617 (((-111) $ $) 18))) -(((-52) (-13 (-1079) (-10 -8 (-15 -2879 ($ (-1083) (-760))) (-15 -2249 ((-845) $)) (-15 -2587 ((-845) $)) (-15 -3933 ((-1083) $)) (-15 -3598 ((-760) $)) (-15 -3258 ((-1137) (-111)))))) (T -52)) -((-2879 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-760)) (-5 *1 (-52)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-52)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-52)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-52)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-760)) (-5 *1 (-52)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1137)) (-5 *1 (-52))))) -(-13 (-1079) (-10 -8 (-15 -2879 ($ (-1083) (-760))) (-15 -2249 ((-845) $)) (-15 -2587 ((-845) $)) (-15 -3933 ((-1083) $)) (-15 -3598 ((-760) $)) (-15 -3258 ((-1137) (-111))))) -((-2549 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2549 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1031) (-633 |#1|) (-835 |#1|)) (T -53)) -((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-633 *5)) (-4 *5 (-1031)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-835 *5))))) -(-10 -7 (-15 -2549 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-4226 ((|#3| |#3| (-630 (-1155))) 35)) (-4222 ((|#3| (-630 (-1055 |#1| |#2| |#3|)) |#3| (-903)) 22) ((|#3| (-630 (-1055 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4222 (|#3| (-630 (-1055 |#1| |#2| |#3|)) |#3|)) (-15 -4222 (|#3| (-630 (-1055 |#1| |#2| |#3|)) |#3| (-903))) (-15 -4226 (|#3| |#3| (-630 (-1155))))) (-1079) (-13 (-1031) (-868 |#1|) (-833) (-601 (-874 |#1|))) (-13 (-424 |#2|) (-868 |#1|) (-601 (-874 |#1|)))) (T -54)) -((-4226 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-1155))) (-4 *4 (-1079)) (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))))) (-4222 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 (-1055 *5 *6 *2))) (-5 *4 (-903)) (-4 *5 (-1079)) (-4 *6 (-13 (-1031) (-868 *5) (-833) (-601 (-874 *5)))) (-4 *2 (-13 (-424 *6) (-868 *5) (-601 (-874 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4222 (*1 *2 *3 *2) (-12 (-5 *3 (-630 (-1055 *4 *5 *2))) (-4 *4 (-1079)) (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4222 (|#3| (-630 (-1055 |#1| |#2| |#3|)) |#3|)) (-15 -4222 (|#3| (-630 (-1055 |#1| |#2| |#3|)) |#3| (-903))) (-15 -4226 (|#3| |#3| (-630 (-1155))))) -((-1511 (((-111) $ (-757)) 23)) (-3924 (($ $ (-553) |#3|) 47)) (-2359 (($ $ (-553) |#4|) 51)) (-3894 ((|#3| $ (-553)) 60)) (-1408 (((-630 |#2|) $) 30)) (-3703 (((-111) $ (-757)) 25)) (-1832 (((-111) |#2| $) 55)) (-2503 (($ (-1 |#2| |#2|) $) 38)) (-1482 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3786 (((-111) $ (-757)) 24)) (-2858 (($ $ |#2|) 35)) (-3341 (((-111) (-1 (-111) |#2|) $) 19)) (-2046 ((|#2| $ (-553) (-553)) NIL) ((|#2| $ (-553) (-553) |#2|) 27)) (-2796 (((-757) (-1 (-111) |#2|) $) 28) (((-757) |#2| $) 57)) (-1508 (($ $) 34)) (-1355 ((|#4| $ (-553)) 63)) (-3110 (((-845) $) 69)) (-3296 (((-111) (-1 (-111) |#2|) $) 18)) (-1617 (((-111) $ $) 54)) (-2563 (((-757) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2359 (|#1| |#1| (-553) |#4|)) (-15 -3924 (|#1| |#1| (-553) |#3|)) (-15 -1408 ((-630 |#2|) |#1|)) (-15 -1355 (|#4| |#1| (-553))) (-15 -3894 (|#3| |#1| (-553))) (-15 -2046 (|#2| |#1| (-553) (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) (-553))) (-15 -2858 (|#1| |#1| |#2|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -1832 ((-111) |#2| |#1|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757))) (-15 -1508 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1192) (-367 |#2|) (-367 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2359 (|#1| |#1| (-553) |#4|)) (-15 -3924 (|#1| |#1| (-553) |#3|)) (-15 -1408 ((-630 |#2|) |#1|)) (-15 -1355 (|#4| |#1| (-553))) (-15 -3894 (|#3| |#1| (-553))) (-15 -2046 (|#2| |#1| (-553) (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) (-553))) (-15 -2858 (|#1| |#1| |#2|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -1832 ((-111) |#2| |#1|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757))) (-15 -1508 (|#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) (-553) |#1|) 44)) (-3924 (($ $ (-553) |#2|) 42)) (-2359 (($ $ (-553) |#3|) 41)) (-3820 (($) 7 T CONST)) (-3894 ((|#2| $ (-553)) 46)) (-2515 ((|#1| $ (-553) (-553) |#1|) 43)) (-2441 ((|#1| $ (-553) (-553)) 48)) (-1408 (((-630 |#1|) $) 30)) (-4253 (((-757) $) 51)) (-3202 (($ (-757) (-757) |#1|) 57)) (-4265 (((-757) $) 50)) (-3703 (((-111) $ (-757)) 9)) (-3510 (((-553) $) 55)) (-4116 (((-553) $) 53)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-4275 (((-553) $) 54)) (-3223 (((-553) $) 52)) (-2503 (($ (-1 |#1| |#1|) $) 34)) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) 56)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) (-553)) 49) ((|#1| $ (-553) (-553) |#1|) 47)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1355 ((|#3| $ (-553)) 45)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-56 |#1| |#2| |#3|) (-137) (-1192) (-367 |t#1|) (-367 |t#1|)) (T -56)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3202 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-757)) (-4 *3 (-1192)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2858 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1192)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-553)))) (-4275 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-553)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-553)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-553)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-757)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-757)))) (-2046 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1192)))) (-2441 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1192)))) (-2046 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1192)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1192)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-1355 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1192)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-630 *3)))) (-1490 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1192)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-2515 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1192)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3924 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-553)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1192)) (-4 *3 (-367 *4)) (-4 *5 (-367 *4)))) (-2359 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-553)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1192)) (-4 *5 (-367 *4)) (-4 *3 (-367 *4)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1482 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1482 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(-13 (-482 |t#1|) (-10 -8 (-6 -4370) (-6 -4369) (-15 -3202 ($ (-757) (-757) |t#1|)) (-15 -2858 ($ $ |t#1|)) (-15 -3510 ((-553) $)) (-15 -4275 ((-553) $)) (-15 -4116 ((-553) $)) (-15 -3223 ((-553) $)) (-15 -4253 ((-757) $)) (-15 -4265 ((-757) $)) (-15 -2046 (|t#1| $ (-553) (-553))) (-15 -2441 (|t#1| $ (-553) (-553))) (-15 -2046 (|t#1| $ (-553) (-553) |t#1|)) (-15 -3894 (|t#2| $ (-553))) (-15 -1355 (|t#3| $ (-553))) (-15 -1408 ((-630 |t#1|) $)) (-15 -1490 (|t#1| $ (-553) (-553) |t#1|)) (-15 -2515 (|t#1| $ (-553) (-553) |t#1|)) (-15 -3924 ($ $ (-553) |t#2|)) (-15 -2359 ($ $ (-553) |t#3|)) (-15 -1482 ($ (-1 |t#1| |t#1|) $)) (-15 -2503 ($ (-1 |t#1| |t#1|) $)) (-15 -1482 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1482 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3215 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2654 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-1482 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -3215 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1482 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1192) (-1192)) (T -57)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1192)) (-4 *2 (-1192)) (-5 *1 (-57 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1192)) (-4 *5 (-1192)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -3215 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1482 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) |#1|) 11 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1548 (($ (-630 |#1|)) 13) (($ (-757) |#1|) 14)) (-3202 (($ (-757) |#1|) 9)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 7)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1548 ($ (-630 |#1|))) (-15 -1548 ($ (-757) |#1|)))) (-1192)) (T -58)) -((-1548 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-58 *3)))) (-1548 (*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-58 *3)) (-4 *3 (-1192))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1548 ($ (-630 |#1|))) (-15 -1548 ($ (-757) |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) (-553) |#1|) NIL)) (-3924 (($ $ (-553) (-58 |#1|)) NIL)) (-2359 (($ $ (-553) (-58 |#1|)) NIL)) (-3820 (($) NIL T CONST)) (-3894 (((-58 |#1|) $ (-553)) NIL)) (-2515 ((|#1| $ (-553) (-553) |#1|) NIL)) (-2441 ((|#1| $ (-553) (-553)) NIL)) (-1408 (((-630 |#1|) $) NIL)) (-4253 (((-757) $) NIL)) (-3202 (($ (-757) (-757) |#1|) NIL)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3510 (((-553) $) NIL)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-4275 (((-553) $) NIL)) (-3223 (((-553) $) NIL)) (-2503 (($ (-1 |#1| |#1|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) (-553)) NIL) ((|#1| $ (-553) (-553) |#1|) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-1355 (((-58 |#1|) $ (-553)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4370))) (-1192)) (T -59)) -NIL -(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4370))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 74) (((-3 $ "failed") (-1238 (-310 (-553)))) 63) (((-3 $ "failed") (-1238 (-934 (-373)))) 94) (((-3 $ "failed") (-1238 (-934 (-553)))) 84) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 52) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 39)) (-2707 (($ (-1238 (-310 (-373)))) 70) (($ (-1238 (-310 (-553)))) 59) (($ (-1238 (-934 (-373)))) 90) (($ (-1238 (-934 (-553)))) 80) (($ (-1238 (-401 (-934 (-373))))) 48) (($ (-1238 (-401 (-934 (-553))))) 32)) (-4005 (((-1243) $) 120)) (-3110 (((-845) $) 113) (($ (-630 (-324))) 103) (($ (-324)) 97) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 101) (($ (-1238 (-333 (-3121 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3121) (-684)))) 31))) -(((-60 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3121) (-684))))))) (-1155)) (T -60)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3121) (-684)))) (-5 *1 (-60 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3121) (-684))))))) -((-4005 (((-1243) $) 53) (((-1243)) 54)) (-3110 (((-845) $) 50))) -(((-61 |#1|) (-13 (-389) (-10 -7 (-15 -4005 ((-1243))))) (-1155)) (T -61)) -((-4005 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-61 *3)) (-14 *3 (-1155))))) -(-13 (-389) (-10 -7 (-15 -4005 ((-1243))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 144) (((-3 $ "failed") (-1238 (-310 (-553)))) 134) (((-3 $ "failed") (-1238 (-934 (-373)))) 164) (((-3 $ "failed") (-1238 (-934 (-553)))) 154) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 123) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 111)) (-2707 (($ (-1238 (-310 (-373)))) 140) (($ (-1238 (-310 (-553)))) 130) (($ (-1238 (-934 (-373)))) 160) (($ (-1238 (-934 (-553)))) 150) (($ (-1238 (-401 (-934 (-373))))) 119) (($ (-1238 (-401 (-934 (-553))))) 104)) (-4005 (((-1243) $) 97)) (-3110 (((-845) $) 91) (($ (-630 (-324))) 29) (($ (-324)) 34) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 32) (($ (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684)))) 89))) -(((-62 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684))))))) (-1155)) (T -62)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684)))) (-5 *1 (-62 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684))))))) -((-1399 (((-3 $ "failed") (-310 (-373))) 41) (((-3 $ "failed") (-310 (-553))) 46) (((-3 $ "failed") (-934 (-373))) 50) (((-3 $ "failed") (-934 (-553))) 54) (((-3 $ "failed") (-401 (-934 (-373)))) 36) (((-3 $ "failed") (-401 (-934 (-553)))) 29)) (-2707 (($ (-310 (-373))) 39) (($ (-310 (-553))) 44) (($ (-934 (-373))) 48) (($ (-934 (-553))) 52) (($ (-401 (-934 (-373)))) 34) (($ (-401 (-934 (-553)))) 26)) (-4005 (((-1243) $) 76)) (-3110 (((-845) $) 69) (($ (-630 (-324))) 61) (($ (-324)) 66) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 64) (($ (-333 (-3121 (QUOTE X)) (-3121) (-684))) 25))) -(((-63 |#1|) (-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121 (QUOTE X)) (-3121) (-684)))))) (-1155)) (T -63)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-333 (-3121 (QUOTE X)) (-3121) (-684))) (-5 *1 (-63 *3)) (-14 *3 (-1155))))) -(-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121 (QUOTE X)) (-3121) (-684)))))) -((-1399 (((-3 $ "failed") (-674 (-310 (-373)))) 109) (((-3 $ "failed") (-674 (-310 (-553)))) 97) (((-3 $ "failed") (-674 (-934 (-373)))) 131) (((-3 $ "failed") (-674 (-934 (-553)))) 120) (((-3 $ "failed") (-674 (-401 (-934 (-373))))) 85) (((-3 $ "failed") (-674 (-401 (-934 (-553))))) 71)) (-2707 (($ (-674 (-310 (-373)))) 105) (($ (-674 (-310 (-553)))) 93) (($ (-674 (-934 (-373)))) 127) (($ (-674 (-934 (-553)))) 116) (($ (-674 (-401 (-934 (-373))))) 81) (($ (-674 (-401 (-934 (-553))))) 64)) (-4005 (((-1243) $) 139)) (-3110 (((-845) $) 133) (($ (-630 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 31) (($ (-674 (-333 (-3121) (-3121 (QUOTE X) (QUOTE HESS)) (-684)))) 54))) -(((-64 |#1|) (-13 (-378) (-603 (-674 (-333 (-3121) (-3121 (QUOTE X) (QUOTE HESS)) (-684))))) (-1155)) (T -64)) -NIL -(-13 (-378) (-603 (-674 (-333 (-3121) (-3121 (QUOTE X) (QUOTE HESS)) (-684))))) -((-1399 (((-3 $ "failed") (-310 (-373))) 59) (((-3 $ "failed") (-310 (-553))) 64) (((-3 $ "failed") (-934 (-373))) 68) (((-3 $ "failed") (-934 (-553))) 72) (((-3 $ "failed") (-401 (-934 (-373)))) 54) (((-3 $ "failed") (-401 (-934 (-553)))) 47)) (-2707 (($ (-310 (-373))) 57) (($ (-310 (-553))) 62) (($ (-934 (-373))) 66) (($ (-934 (-553))) 70) (($ (-401 (-934 (-373)))) 52) (($ (-401 (-934 (-553)))) 44)) (-4005 (((-1243) $) 81)) (-3110 (((-845) $) 75) (($ (-630 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 31) (($ (-333 (-3121) (-3121 (QUOTE XC)) (-684))) 39))) -(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121) (-3121 (QUOTE XC)) (-684)))))) (-1155)) (T -65)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-333 (-3121) (-3121 (QUOTE XC)) (-684))) (-5 *1 (-65 *3)) (-14 *3 (-1155))))) -(-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121) (-3121 (QUOTE XC)) (-684)))))) -((-4005 (((-1243) $) 63)) (-3110 (((-845) $) 57) (($ (-674 (-684))) 49) (($ (-630 (-324))) 48) (($ (-324)) 55) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 53))) -(((-66 |#1|) (-377) (-1155)) (T -66)) -NIL -(-377) -((-4005 (((-1243) $) 64)) (-3110 (((-845) $) 58) (($ (-674 (-684))) 50) (($ (-630 (-324))) 49) (($ (-324)) 52) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 55))) -(((-67 |#1|) (-377) (-1155)) (T -67)) -NIL -(-377) -((-4005 (((-1243) $) NIL) (((-1243)) 32)) (-3110 (((-845) $) NIL))) -(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -4005 ((-1243))))) (-1155)) (T -68)) -((-4005 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-68 *3)) (-14 *3 (-1155))))) -(-13 (-389) (-10 -7 (-15 -4005 ((-1243))))) -((-4005 (((-1243) $) 73)) (-3110 (((-845) $) 67) (($ (-674 (-684))) 59) (($ (-630 (-324))) 61) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 58))) -(((-69 |#1|) (-377) (-1155)) (T -69)) -NIL -(-377) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 103) (((-3 $ "failed") (-1238 (-310 (-553)))) 92) (((-3 $ "failed") (-1238 (-934 (-373)))) 123) (((-3 $ "failed") (-1238 (-934 (-553)))) 113) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 81) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 68)) (-2707 (($ (-1238 (-310 (-373)))) 99) (($ (-1238 (-310 (-553)))) 88) (($ (-1238 (-934 (-373)))) 119) (($ (-1238 (-934 (-553)))) 109) (($ (-1238 (-401 (-934 (-373))))) 77) (($ (-1238 (-401 (-934 (-553))))) 61)) (-4005 (((-1243) $) 136)) (-3110 (((-845) $) 130) (($ (-630 (-324))) 125) (($ (-324)) 128) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 53) (($ (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684)))) 54))) -(((-70 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684))))))) (-1155)) (T -70)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684)))) (-5 *1 (-70 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684))))))) -((-4005 (((-1243) $) 32) (((-1243)) 31)) (-3110 (((-845) $) 35))) -(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -4005 ((-1243))))) (-1155)) (T -71)) -((-4005 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-71 *3)) (-14 *3 (-1155))))) -(-13 (-389) (-10 -7 (-15 -4005 ((-1243))))) -((-4005 (((-1243) $) 63)) (-3110 (((-845) $) 57) (($ (-674 (-684))) 49) (($ (-630 (-324))) 51) (($ (-324)) 54) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 48))) -(((-72 |#1|) (-377) (-1155)) (T -72)) -NIL -(-377) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 125) (((-3 $ "failed") (-1238 (-310 (-553)))) 115) (((-3 $ "failed") (-1238 (-934 (-373)))) 145) (((-3 $ "failed") (-1238 (-934 (-553)))) 135) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 105) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 93)) (-2707 (($ (-1238 (-310 (-373)))) 121) (($ (-1238 (-310 (-553)))) 111) (($ (-1238 (-934 (-373)))) 141) (($ (-1238 (-934 (-553)))) 131) (($ (-1238 (-401 (-934 (-373))))) 101) (($ (-1238 (-401 (-934 (-553))))) 86)) (-4005 (((-1243) $) 78)) (-3110 (((-845) $) 27) (($ (-630 (-324))) 68) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 71) (($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684)))) 65))) -(((-73 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684))))))) (-1155)) (T -73)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684)))) (-5 *1 (-73 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684))))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 130) (((-3 $ "failed") (-1238 (-310 (-553)))) 119) (((-3 $ "failed") (-1238 (-934 (-373)))) 150) (((-3 $ "failed") (-1238 (-934 (-553)))) 140) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 108) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 95)) (-2707 (($ (-1238 (-310 (-373)))) 126) (($ (-1238 (-310 (-553)))) 115) (($ (-1238 (-934 (-373)))) 146) (($ (-1238 (-934 (-553)))) 136) (($ (-1238 (-401 (-934 (-373))))) 104) (($ (-1238 (-401 (-934 (-553))))) 88)) (-4005 (((-1243) $) 79)) (-3110 (((-845) $) 71) (($ (-630 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) NIL) (($ (-1238 (-333 (-3121 (QUOTE X) (QUOTE EPS)) (-3121 (QUOTE -1276)) (-684)))) 66))) -(((-74 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X) (QUOTE EPS)) (-3121 (QUOTE -1276)) (-684))))))) (-1155) (-1155) (-1155)) (T -74)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE X) (QUOTE EPS)) (-3121 (QUOTE -1276)) (-684)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1155)) (-14 *4 (-1155)) (-14 *5 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X) (QUOTE EPS)) (-3121 (QUOTE -1276)) (-684))))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 134) (((-3 $ "failed") (-1238 (-310 (-553)))) 123) (((-3 $ "failed") (-1238 (-934 (-373)))) 154) (((-3 $ "failed") (-1238 (-934 (-553)))) 144) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 112) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 99)) (-2707 (($ (-1238 (-310 (-373)))) 130) (($ (-1238 (-310 (-553)))) 119) (($ (-1238 (-934 (-373)))) 150) (($ (-1238 (-934 (-553)))) 140) (($ (-1238 (-401 (-934 (-373))))) 108) (($ (-1238 (-401 (-934 (-553))))) 92)) (-4005 (((-1243) $) 83)) (-3110 (((-845) $) 75) (($ (-630 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) NIL) (($ (-1238 (-333 (-3121 (QUOTE EPS)) (-3121 (QUOTE YA) (QUOTE YB)) (-684)))) 70))) -(((-75 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE EPS)) (-3121 (QUOTE YA) (QUOTE YB)) (-684))))))) (-1155) (-1155) (-1155)) (T -75)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE EPS)) (-3121 (QUOTE YA) (QUOTE YB)) (-684)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1155)) (-14 *4 (-1155)) (-14 *5 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE EPS)) (-3121 (QUOTE YA) (QUOTE YB)) (-684))))))) -((-1399 (((-3 $ "failed") (-310 (-373))) 82) (((-3 $ "failed") (-310 (-553))) 87) (((-3 $ "failed") (-934 (-373))) 91) (((-3 $ "failed") (-934 (-553))) 95) (((-3 $ "failed") (-401 (-934 (-373)))) 77) (((-3 $ "failed") (-401 (-934 (-553)))) 70)) (-2707 (($ (-310 (-373))) 80) (($ (-310 (-553))) 85) (($ (-934 (-373))) 89) (($ (-934 (-553))) 93) (($ (-401 (-934 (-373)))) 75) (($ (-401 (-934 (-553)))) 67)) (-4005 (((-1243) $) 62)) (-3110 (((-845) $) 50) (($ (-630 (-324))) 46) (($ (-324)) 56) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 54) (($ (-333 (-3121) (-3121 (QUOTE X)) (-684))) 47))) -(((-76 |#1|) (-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121) (-3121 (QUOTE X)) (-684)))))) (-1155)) (T -76)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-333 (-3121) (-3121 (QUOTE X)) (-684))) (-5 *1 (-76 *3)) (-14 *3 (-1155))))) -(-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121) (-3121 (QUOTE X)) (-684)))))) -((-1399 (((-3 $ "failed") (-310 (-373))) 46) (((-3 $ "failed") (-310 (-553))) 51) (((-3 $ "failed") (-934 (-373))) 55) (((-3 $ "failed") (-934 (-553))) 59) (((-3 $ "failed") (-401 (-934 (-373)))) 41) (((-3 $ "failed") (-401 (-934 (-553)))) 34)) (-2707 (($ (-310 (-373))) 44) (($ (-310 (-553))) 49) (($ (-934 (-373))) 53) (($ (-934 (-553))) 57) (($ (-401 (-934 (-373)))) 39) (($ (-401 (-934 (-553)))) 31)) (-4005 (((-1243) $) 80)) (-3110 (((-845) $) 74) (($ (-630 (-324))) 66) (($ (-324)) 71) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 69) (($ (-333 (-3121) (-3121 (QUOTE X)) (-684))) 30))) -(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121) (-3121 (QUOTE X)) (-684)))))) (-1155)) (T -77)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-333 (-3121) (-3121 (QUOTE X)) (-684))) (-5 *1 (-77 *3)) (-14 *3 (-1155))))) -(-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121) (-3121 (QUOTE X)) (-684)))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 89) (((-3 $ "failed") (-1238 (-310 (-553)))) 78) (((-3 $ "failed") (-1238 (-934 (-373)))) 109) (((-3 $ "failed") (-1238 (-934 (-553)))) 99) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 67) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 54)) (-2707 (($ (-1238 (-310 (-373)))) 85) (($ (-1238 (-310 (-553)))) 74) (($ (-1238 (-934 (-373)))) 105) (($ (-1238 (-934 (-553)))) 95) (($ (-1238 (-401 (-934 (-373))))) 63) (($ (-1238 (-401 (-934 (-553))))) 47)) (-4005 (((-1243) $) 125)) (-3110 (((-845) $) 119) (($ (-630 (-324))) 112) (($ (-324)) 37) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 115) (($ (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684)))) 38))) -(((-78 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684))))))) (-1155)) (T -78)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684)))) (-5 *1 (-78 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE XC)) (-684))))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 142) (((-3 $ "failed") (-1238 (-310 (-553)))) 132) (((-3 $ "failed") (-1238 (-934 (-373)))) 162) (((-3 $ "failed") (-1238 (-934 (-553)))) 152) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 122) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 110)) (-2707 (($ (-1238 (-310 (-373)))) 138) (($ (-1238 (-310 (-553)))) 128) (($ (-1238 (-934 (-373)))) 158) (($ (-1238 (-934 (-553)))) 148) (($ (-1238 (-401 (-934 (-373))))) 118) (($ (-1238 (-401 (-934 (-553))))) 103)) (-4005 (((-1243) $) 96)) (-3110 (((-845) $) 90) (($ (-630 (-324))) 81) (($ (-324)) 88) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 86) (($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684)))) 82))) -(((-79 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684))))))) (-1155)) (T -79)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684)))) (-5 *1 (-79 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684))))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 78) (((-3 $ "failed") (-1238 (-310 (-553)))) 67) (((-3 $ "failed") (-1238 (-934 (-373)))) 98) (((-3 $ "failed") (-1238 (-934 (-553)))) 88) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 56) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 43)) (-2707 (($ (-1238 (-310 (-373)))) 74) (($ (-1238 (-310 (-553)))) 63) (($ (-1238 (-934 (-373)))) 94) (($ (-1238 (-934 (-553)))) 84) (($ (-1238 (-401 (-934 (-373))))) 52) (($ (-1238 (-401 (-934 (-553))))) 36)) (-4005 (((-1243) $) 124)) (-3110 (((-845) $) 118) (($ (-630 (-324))) 109) (($ (-324)) 115) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 113) (($ (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684)))) 35))) -(((-80 |#1|) (-13 (-434) (-603 (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684))))) (-1155)) (T -80)) -NIL -(-13 (-434) (-603 (-1238 (-333 (-3121) (-3121 (QUOTE X)) (-684))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 95) (((-3 $ "failed") (-1238 (-310 (-553)))) 84) (((-3 $ "failed") (-1238 (-934 (-373)))) 115) (((-3 $ "failed") (-1238 (-934 (-553)))) 105) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 73) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 60)) (-2707 (($ (-1238 (-310 (-373)))) 91) (($ (-1238 (-310 (-553)))) 80) (($ (-1238 (-934 (-373)))) 111) (($ (-1238 (-934 (-553)))) 101) (($ (-1238 (-401 (-934 (-373))))) 69) (($ (-1238 (-401 (-934 (-553))))) 53)) (-4005 (((-1243) $) 45)) (-3110 (((-845) $) 39) (($ (-630 (-324))) 29) (($ (-324)) 32) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 35) (($ (-1238 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684)))) 30))) -(((-81 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684))))))) (-1155)) (T -81)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684)))) (-5 *1 (-81 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684))))))) -((-1399 (((-3 $ "failed") (-674 (-310 (-373)))) 115) (((-3 $ "failed") (-674 (-310 (-553)))) 104) (((-3 $ "failed") (-674 (-934 (-373)))) 137) (((-3 $ "failed") (-674 (-934 (-553)))) 126) (((-3 $ "failed") (-674 (-401 (-934 (-373))))) 93) (((-3 $ "failed") (-674 (-401 (-934 (-553))))) 80)) (-2707 (($ (-674 (-310 (-373)))) 111) (($ (-674 (-310 (-553)))) 100) (($ (-674 (-934 (-373)))) 133) (($ (-674 (-934 (-553)))) 122) (($ (-674 (-401 (-934 (-373))))) 89) (($ (-674 (-401 (-934 (-553))))) 73)) (-4005 (((-1243) $) 63)) (-3110 (((-845) $) 50) (($ (-630 (-324))) 57) (($ (-324)) 46) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 55) (($ (-674 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684)))) 47))) -(((-82 |#1|) (-13 (-378) (-10 -8 (-15 -3110 ($ (-674 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684))))))) (-1155)) (T -82)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-674 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684)))) (-5 *1 (-82 *3)) (-14 *3 (-1155))))) -(-13 (-378) (-10 -8 (-15 -3110 ($ (-674 (-333 (-3121 (QUOTE X) (QUOTE -1276)) (-3121) (-684))))))) -((-1399 (((-3 $ "failed") (-674 (-310 (-373)))) 112) (((-3 $ "failed") (-674 (-310 (-553)))) 100) (((-3 $ "failed") (-674 (-934 (-373)))) 134) (((-3 $ "failed") (-674 (-934 (-553)))) 123) (((-3 $ "failed") (-674 (-401 (-934 (-373))))) 88) (((-3 $ "failed") (-674 (-401 (-934 (-553))))) 74)) (-2707 (($ (-674 (-310 (-373)))) 108) (($ (-674 (-310 (-553)))) 96) (($ (-674 (-934 (-373)))) 130) (($ (-674 (-934 (-553)))) 119) (($ (-674 (-401 (-934 (-373))))) 84) (($ (-674 (-401 (-934 (-553))))) 67)) (-4005 (((-1243) $) 59)) (-3110 (((-845) $) 53) (($ (-630 (-324))) 47) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 44) (($ (-674 (-333 (-3121 (QUOTE X)) (-3121) (-684)))) 45))) -(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -3110 ($ (-674 (-333 (-3121 (QUOTE X)) (-3121) (-684))))))) (-1155)) (T -83)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-674 (-333 (-3121 (QUOTE X)) (-3121) (-684)))) (-5 *1 (-83 *3)) (-14 *3 (-1155))))) -(-13 (-378) (-10 -8 (-15 -3110 ($ (-674 (-333 (-3121 (QUOTE X)) (-3121) (-684))))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 104) (((-3 $ "failed") (-1238 (-310 (-553)))) 93) (((-3 $ "failed") (-1238 (-934 (-373)))) 124) (((-3 $ "failed") (-1238 (-934 (-553)))) 114) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 82) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 69)) (-2707 (($ (-1238 (-310 (-373)))) 100) (($ (-1238 (-310 (-553)))) 89) (($ (-1238 (-934 (-373)))) 120) (($ (-1238 (-934 (-553)))) 110) (($ (-1238 (-401 (-934 (-373))))) 78) (($ (-1238 (-401 (-934 (-553))))) 62)) (-4005 (((-1243) $) 46)) (-3110 (((-845) $) 40) (($ (-630 (-324))) 49) (($ (-324)) 36) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 52) (($ (-1238 (-333 (-3121 (QUOTE X)) (-3121) (-684)))) 37))) -(((-84 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X)) (-3121) (-684))))))) (-1155)) (T -84)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE X)) (-3121) (-684)))) (-5 *1 (-84 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X)) (-3121) (-684))))))) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 79) (((-3 $ "failed") (-1238 (-310 (-553)))) 68) (((-3 $ "failed") (-1238 (-934 (-373)))) 99) (((-3 $ "failed") (-1238 (-934 (-553)))) 89) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 57) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 44)) (-2707 (($ (-1238 (-310 (-373)))) 75) (($ (-1238 (-310 (-553)))) 64) (($ (-1238 (-934 (-373)))) 95) (($ (-1238 (-934 (-553)))) 85) (($ (-1238 (-401 (-934 (-373))))) 53) (($ (-1238 (-401 (-934 (-553))))) 37)) (-4005 (((-1243) $) 125)) (-3110 (((-845) $) 119) (($ (-630 (-324))) 110) (($ (-324)) 116) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 114) (($ (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684)))) 36))) -(((-85 |#1|) (-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684))))))) (-1155)) (T -85)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684)))) (-5 *1 (-85 *3)) (-14 *3 (-1155))))) -(-13 (-434) (-10 -8 (-15 -3110 ($ (-1238 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684))))))) -((-1399 (((-3 $ "failed") (-674 (-310 (-373)))) 113) (((-3 $ "failed") (-674 (-310 (-553)))) 101) (((-3 $ "failed") (-674 (-934 (-373)))) 135) (((-3 $ "failed") (-674 (-934 (-553)))) 124) (((-3 $ "failed") (-674 (-401 (-934 (-373))))) 89) (((-3 $ "failed") (-674 (-401 (-934 (-553))))) 75)) (-2707 (($ (-674 (-310 (-373)))) 109) (($ (-674 (-310 (-553)))) 97) (($ (-674 (-934 (-373)))) 131) (($ (-674 (-934 (-553)))) 120) (($ (-674 (-401 (-934 (-373))))) 85) (($ (-674 (-401 (-934 (-553))))) 68)) (-4005 (((-1243) $) 59)) (-3110 (((-845) $) 53) (($ (-630 (-324))) 43) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 48) (($ (-674 (-333 (-3121 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3121) (-684)))) 44))) -(((-86 |#1|) (-13 (-378) (-10 -8 (-15 -3110 ($ (-674 (-333 (-3121 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3121) (-684))))))) (-1155)) (T -86)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-674 (-333 (-3121 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3121) (-684)))) (-5 *1 (-86 *3)) (-14 *3 (-1155))))) -(-13 (-378) (-10 -8 (-15 -3110 ($ (-674 (-333 (-3121 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3121) (-684))))))) -((-4005 (((-1243) $) 44)) (-3110 (((-845) $) 38) (($ (-1238 (-684))) 92) (($ (-630 (-324))) 30) (($ (-324)) 35) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 33))) -(((-87 |#1|) (-433) (-1155)) (T -87)) -NIL -(-433) -((-1399 (((-3 $ "failed") (-310 (-373))) 47) (((-3 $ "failed") (-310 (-553))) 52) (((-3 $ "failed") (-934 (-373))) 56) (((-3 $ "failed") (-934 (-553))) 60) (((-3 $ "failed") (-401 (-934 (-373)))) 42) (((-3 $ "failed") (-401 (-934 (-553)))) 35)) (-2707 (($ (-310 (-373))) 45) (($ (-310 (-553))) 50) (($ (-934 (-373))) 54) (($ (-934 (-553))) 58) (($ (-401 (-934 (-373)))) 40) (($ (-401 (-934 (-553)))) 32)) (-4005 (((-1243) $) 90)) (-3110 (((-845) $) 84) (($ (-630 (-324))) 78) (($ (-324)) 81) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 76) (($ (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684))) 31))) -(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684)))))) (-1155)) (T -88)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684))) (-5 *1 (-88 *3)) (-14 *3 (-1155))))) -(-13 (-390) (-10 -8 (-15 -3110 ($ (-333 (-3121 (QUOTE X)) (-3121 (QUOTE -1276)) (-684)))))) -((-1368 (((-1238 (-674 |#1|)) (-674 |#1|)) 54)) (-3275 (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 (-630 (-903))))) |#2| (-903)) 44)) (-2767 (((-2 (|:| |minor| (-630 (-903))) (|:| -2662 |#2|) (|:| |minors| (-630 (-630 (-903)))) (|:| |ops| (-630 |#2|))) |#2| (-903)) 65 (|has| |#1| (-357))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -3275 ((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 (-630 (-903))))) |#2| (-903))) (-15 -1368 ((-1238 (-674 |#1|)) (-674 |#1|))) (IF (|has| |#1| (-357)) (-15 -2767 ((-2 (|:| |minor| (-630 (-903))) (|:| -2662 |#2|) (|:| |minors| (-630 (-630 (-903)))) (|:| |ops| (-630 |#2|))) |#2| (-903))) |%noBranch|)) (-545) (-641 |#1|)) (T -89)) -((-2767 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |minor| (-630 (-903))) (|:| -2662 *3) (|:| |minors| (-630 (-630 (-903)))) (|:| |ops| (-630 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-903)) (-4 *3 (-641 *5)))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-1238 (-674 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-674 *4)) (-4 *5 (-641 *4)))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-545)) (-5 *2 (-2 (|:| -3344 (-674 *5)) (|:| |vec| (-1238 (-630 (-903)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-903)) (-4 *3 (-641 *5))))) -(-10 -7 (-15 -3275 ((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 (-630 (-903))))) |#2| (-903))) (-15 -1368 ((-1238 (-674 |#1|)) (-674 |#1|))) (IF (|has| |#1| (-357)) (-15 -2767 ((-2 (|:| |minor| (-630 (-903))) (|:| -2662 |#2|) (|:| |minors| (-630 (-630 (-903)))) (|:| |ops| (-630 |#2|))) |#2| (-903))) |%noBranch|)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3343 ((|#1| $) 35)) (-1511 (((-111) $ (-757)) NIL)) (-3820 (($) NIL T CONST)) (-2260 ((|#1| |#1| $) 30)) (-3196 ((|#1| $) 28)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1376 ((|#1| $) NIL)) (-2636 (($ |#1| $) 31)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2949 ((|#1| $) 29)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 16)) (-3222 (($) 39)) (-3090 (((-757) $) 26)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 15)) (-3110 (((-845) $) 25 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) NIL)) (-4114 (($ (-630 |#1|)) 37)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 13 (|has| |#1| (-1079)))) (-2563 (((-757) $) 10 (|has| $ (-6 -4369))))) -(((-90 |#1|) (-13 (-1100 |#1|) (-10 -8 (-15 -4114 ($ (-630 |#1|))))) (-1079)) (T -90)) -((-4114 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-90 *3))))) -(-13 (-1100 |#1|) (-10 -8 (-15 -4114 ($ (-630 |#1|))))) -((-3110 (((-845) $) 13) (($ (-1160)) 9) (((-1160) $) 8))) -(((-91 |#1|) (-10 -8 (-15 -3110 ((-1160) |#1|)) (-15 -3110 (|#1| (-1160))) (-15 -3110 ((-845) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -3110 ((-1160) |#1|)) (-15 -3110 (|#1| (-1160))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-1160)) 16) (((-1160) $) 15)) (-1617 (((-111) $ $) 6))) -(((-92) (-137)) (T -92)) -NIL -(-13 (-1079) (-483 (-1160))) -(((-101) . T) ((-603 #0=(-1160)) . T) ((-600 (-845)) . T) ((-600 #0#) . T) ((-483 #0#) . T) ((-1079) . T)) -((-2336 (($ $) 10)) (-2346 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -2346 (|#1| |#1|)) (-15 -2336 (|#1| |#1|))) (-94)) (T -93)) -NIL -(-10 -8 (-15 -2346 (|#1| |#1|)) (-15 -2336 (|#1| |#1|))) -((-2313 (($ $) 11)) (-2291 (($ $) 10)) (-2336 (($ $) 9)) (-2346 (($ $) 8)) (-2324 (($ $) 7)) (-2302 (($ $) 6))) -(((-94) (-137)) (T -94)) -((-2313 (*1 *1 *1) (-4 *1 (-94))) (-2291 (*1 *1 *1) (-4 *1 (-94))) (-2336 (*1 *1 *1) (-4 *1 (-94))) (-2346 (*1 *1 *1) (-4 *1 (-94))) (-2324 (*1 *1 *1) (-4 *1 (-94))) (-2302 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -2302 ($ $)) (-15 -2324 ($ $)) (-15 -2346 ($ $)) (-15 -2336 ($ $)) (-15 -2291 ($ $)) (-15 -2313 ($ $)))) -((-3096 (((-111) $ $) NIL)) (-4298 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-95) (-13 (-1062) (-10 -8 (-15 -4298 ((-1114) $))))) (T -95)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-95))))) -(-13 (-1062) (-10 -8 (-15 -4298 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-2680 (((-373) (-1137) (-373)) 42) (((-373) (-1137) (-1137) (-373)) 41)) (-2379 (((-373) (-373)) 33)) (-1697 (((-1243)) 36)) (-1735 (((-1137) $) NIL)) (-4248 (((-373) (-1137) (-1137)) 46) (((-373) (-1137)) 48)) (-2786 (((-1099) $) NIL)) (-2950 (((-373) (-1137) (-1137)) 47)) (-2545 (((-373) (-1137) (-1137)) 49) (((-373) (-1137)) 50)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-96) (-13 (-1079) (-10 -7 (-15 -4248 ((-373) (-1137) (-1137))) (-15 -4248 ((-373) (-1137))) (-15 -2545 ((-373) (-1137) (-1137))) (-15 -2545 ((-373) (-1137))) (-15 -2950 ((-373) (-1137) (-1137))) (-15 -1697 ((-1243))) (-15 -2379 ((-373) (-373))) (-15 -2680 ((-373) (-1137) (-373))) (-15 -2680 ((-373) (-1137) (-1137) (-373))) (-6 -4369)))) (T -96)) -((-4248 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2545 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1697 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-96)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))) (-2680 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1137)) (-5 *1 (-96)))) (-2680 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1137)) (-5 *1 (-96))))) -(-13 (-1079) (-10 -7 (-15 -4248 ((-373) (-1137) (-1137))) (-15 -4248 ((-373) (-1137))) (-15 -2545 ((-373) (-1137) (-1137))) (-15 -2545 ((-373) (-1137))) (-15 -2950 ((-373) (-1137) (-1137))) (-15 -1697 ((-1243))) (-15 -2379 ((-373) (-373))) (-15 -2680 ((-373) (-1137) (-373))) (-15 -2680 ((-373) (-1137) (-1137) (-373))) (-6 -4369))) -NIL -(((-97) (-137)) (T -97)) -NIL -(-13 (-10 -7 (-6 -4369) (-6 (-4371 "*")) (-6 -4370) (-6 -4366) (-6 -4364) (-6 -4363) (-6 -4362) (-6 -4367) (-6 -4361) (-6 -4360) (-6 -4359) (-6 -4358) (-6 -4357) (-6 -4365) (-6 -4368) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4356))) -((-3096 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1789 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-553))) 22)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 14)) (-2786 (((-1099) $) NIL)) (-2046 ((|#1| $ |#1|) 11)) (-3199 (($ $ $) NIL)) (-1957 (($ $ $) NIL)) (-3110 (((-845) $) 20)) (-1997 (($) 8 T CONST)) (-1617 (((-111) $ $) 10)) (-1723 (($ $ $) NIL)) (** (($ $ (-903)) 27) (($ $ (-757)) NIL) (($ $ (-553)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -1789 ($ (-1 |#1| |#1|))) (-15 -1789 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1789 ($ (-1 |#1| |#1| (-553)))))) (-1031)) (T -98)) -((-1789 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-98 *3)))) (-1789 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-98 *3)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-553))) (-4 *3 (-1031)) (-5 *1 (-98 *3))))) -(-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -1789 ($ (-1 |#1| |#1|))) (-15 -1789 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1789 ($ (-1 |#1| |#1| (-553)))))) -((-2739 (((-412 |#2|) |#2| (-630 |#2|)) 10) (((-412 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -2739 ((-412 |#2|) |#2| |#2|)) (-15 -2739 ((-412 |#2|) |#2| (-630 |#2|)))) (-13 (-445) (-144)) (-1214 |#1|)) (T -99)) -((-2739 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3)))) (-2739 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -2739 ((-412 |#2|) |#2| |#2|)) (-15 -2739 ((-412 |#2|) |#2| (-630 |#2|)))) -((-3096 (((-111) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -3096 ((-111) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -3096 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-1617 (((-111) $ $) 6))) -(((-101) (-137)) (T -101)) -((-3096 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) (-1617 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111))))) -(-13 (-10 -8 (-15 -1617 ((-111) $ $)) (-15 -3096 ((-111) $ $)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) 13 (|has| $ (-6 -4370)))) (-1562 (($ $ $) NIL (|has| $ (-6 -4370)))) (-2635 (($ $ $) NIL (|has| $ (-6 -4370)))) (-3070 (($ $ (-630 |#1|)) 15)) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "left" $) NIL (|has| $ (-6 -4370))) (($ $ "right" $) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-3323 (($ $) 11)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-4153 (($ $ |#1| $) 17)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2665 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2399 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-630 |#1|) |#1| |#1| |#1|)) 35)) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3313 (($ $) 10)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) 12)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 9)) (-3222 (($) 16)) (-2046 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3558 (((-553) $ $) NIL)) (-1510 (((-111) $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2538 (($ (-757) |#1|) 19)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-102 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -2538 ($ (-757) |#1|)) (-15 -3070 ($ $ (-630 |#1|))) (-15 -2665 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2665 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2399 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2399 ($ $ |#1| (-1 (-630 |#1|) |#1| |#1| |#1|))))) (-1079)) (T -102)) -((-2538 (*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-102 *3)) (-4 *3 (-1079)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-102 *3)))) (-2665 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1079)))) (-2665 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-102 *3)))) (-2399 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-102 *2)))) (-2399 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-630 *2) *2 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-102 *2))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -2538 ($ (-757) |#1|)) (-15 -3070 ($ $ (-630 |#1|))) (-15 -2665 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2665 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2399 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2399 ($ $ |#1| (-1 (-630 |#1|) |#1| |#1| |#1|))))) -((-4305 ((|#3| |#2| |#2|) 29)) (-3672 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4371 "*"))))) (-1342 ((|#3| |#2| |#2|) 30)) (-2216 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4371 "*")))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4305 (|#3| |#2| |#2|)) (-15 -1342 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4371 "*"))) (PROGN (-15 -3672 (|#1| |#2| |#2|)) (-15 -2216 (|#1| |#2|))) |%noBranch|)) (-1031) (-1214 |#1|) (-672 |#1| |#4| |#5|) (-367 |#1|) (-367 |#1|)) (T -103)) -((-2216 (*1 *2 *3) (-12 (|has| *2 (-6 (-4371 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1031)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1214 *2)) (-4 *4 (-672 *2 *5 *6)))) (-3672 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4371 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1031)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1214 *2)) (-4 *4 (-672 *2 *5 *6)))) (-1342 (*1 *2 *3 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-672 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1214 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))) (-4305 (*1 *2 *3 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-672 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1214 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) -(-10 -7 (-15 -4305 (|#3| |#2| |#2|)) (-15 -1342 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4371 "*"))) (PROGN (-15 -3672 (|#1| |#2| |#2|)) (-15 -2216 (|#1| |#2|))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-3915 (((-630 (-1155))) 33)) (-4144 (((-2 (|:| |zeros| (-1135 (-220))) (|:| |ones| (-1135 (-220))) (|:| |singularities| (-1135 (-220)))) (-1155)) 35)) (-1617 (((-111) $ $) NIL))) -(((-104) (-13 (-1079) (-10 -7 (-15 -3915 ((-630 (-1155)))) (-15 -4144 ((-2 (|:| |zeros| (-1135 (-220))) (|:| |ones| (-1135 (-220))) (|:| |singularities| (-1135 (-220)))) (-1155))) (-6 -4369)))) (T -104)) -((-3915 (*1 *2) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-104)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-2 (|:| |zeros| (-1135 (-220))) (|:| |ones| (-1135 (-220))) (|:| |singularities| (-1135 (-220))))) (-5 *1 (-104))))) -(-13 (-1079) (-10 -7 (-15 -3915 ((-630 (-1155)))) (-15 -4144 ((-2 (|:| |zeros| (-1135 (-220))) (|:| |ones| (-1135 (-220))) (|:| |singularities| (-1135 (-220)))) (-1155))) (-6 -4369))) -((-2711 (($ (-630 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -2711 (|#1| (-630 |#2|)))) (-106 |#2|) (-1192)) (T -105)) -NIL -(-10 -8 (-15 -2711 (|#1| (-630 |#2|)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-106 |#1|) (-137) (-1192)) (T -106)) -((-2711 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-4 *1 (-106 *3)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1192)))) (-2636 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1192)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1192))))) -(-13 (-482 |t#1|) (-10 -8 (-6 -4370) (-15 -2711 ($ (-630 |t#1|))) (-15 -2949 (|t#1| $)) (-15 -2636 ($ |t#1| $)) (-15 -1376 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-553) $) NIL (|has| (-553) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-553) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| (-553) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-553) (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| (-553) (-1020 (-553))))) (-2707 (((-553) $) NIL) (((-1155) $) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-553) (-1020 (-553)))) (((-553) $) NIL (|has| (-553) (-1020 (-553))))) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-553) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| (-553) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-553) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-553) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-553) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| (-553) (-1130)))) (-2797 (((-111) $) NIL (|has| (-553) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-553) (-833)))) (-1482 (($ (-1 (-553) (-553)) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-553) (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-553) (-301))) (((-401 (-553)) $) NIL)) (-2334 (((-553) $) NIL (|has| (-553) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-553)) (-630 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-553) (-553)) NIL (|has| (-553) (-303 (-553)))) (($ $ (-288 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-288 (-553)))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-1155)) (-630 (-553))) NIL (|has| (-553) (-507 (-1155) (-553)))) (($ $ (-1155) (-553)) NIL (|has| (-553) (-507 (-1155) (-553))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-553)) NIL (|has| (-553) (-280 (-553) (-553))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-553) $) NIL)) (-1524 (((-874 (-553)) $) NIL (|has| (-553) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-553) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-553) (-601 (-529)))) (((-373) $) NIL (|has| (-553) (-1004))) (((-220) $) NIL (|has| (-553) (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-553) (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) 8) (($ (-553)) NIL) (($ (-1155)) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL) (((-986 2) $) 10)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-553) (-891))) (|has| (-553) (-142))))) (-1999 (((-757)) NIL)) (-2582 (((-553) $) NIL (|has| (-553) (-538)))) (-1424 (($ (-401 (-553))) 9)) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL (|has| (-553) (-806)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1723 (($ $ $) NIL) (($ (-553) (-553)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-553) $) NIL) (($ $ (-553)) NIL))) -(((-107) (-13 (-974 (-553)) (-600 (-401 (-553))) (-600 (-986 2)) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -1424 ($ (-401 (-553))))))) (T -107)) -((-3785 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-107)))) (-1424 (*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-107))))) -(-13 (-974 (-553)) (-600 (-401 (-553))) (-600 (-986 2)) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -1424 ($ (-401 (-553)))))) -((-1295 (((-630 (-947)) $) 14)) (-4298 (((-1155) $) 10)) (-3110 (((-845) $) 23)) (-1395 (($ (-1155) (-630 (-947))) 15))) -(((-108) (-13 (-600 (-845)) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -1295 ((-630 (-947)) $)) (-15 -1395 ($ (-1155) (-630 (-947))))))) (T -108)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-108)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-630 (-947))) (-5 *1 (-108)))) (-1395 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-947))) (-5 *1 (-108))))) -(-13 (-600 (-845)) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -1295 ((-630 (-947)) $)) (-15 -1395 ($ (-1155) (-630 (-947)))))) -((-3096 (((-111) $ $) NIL)) (-2965 (($ $) NIL)) (-2370 (($ $ $) NIL)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) $) NIL (|has| (-111) (-833))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1587 (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| (-111) (-833)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4370)))) (-2990 (($ $) NIL (|has| (-111) (-833))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-1490 (((-111) $ (-1205 (-553)) (-111)) NIL (|has| $ (-6 -4370))) (((-111) $ (-553) (-111)) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2575 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2654 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2515 (((-111) $ (-553) (-111)) NIL (|has| $ (-6 -4370)))) (-2441 (((-111) $ (-553)) NIL)) (-1478 (((-553) (-111) $ (-553)) NIL (|has| (-111) (-1079))) (((-553) (-111) $) NIL (|has| (-111) (-1079))) (((-553) (-1 (-111) (-111)) $) NIL)) (-1408 (((-630 (-111)) $) NIL (|has| $ (-6 -4369)))) (-3063 (($ $ $) NIL)) (-2826 (($ $) NIL)) (-1772 (($ $ $) NIL)) (-3202 (($ (-757) (-111)) 8)) (-2592 (($ $ $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL)) (-3160 (($ $ $) NIL (|has| (-111) (-833))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-2195 (((-630 (-111)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL)) (-2503 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1774 (($ $ $ (-553)) NIL) (($ (-111) $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-111) $) NIL (|has| (-553) (-833)))) (-3016 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-2858 (($ $ (-111)) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-111)) (-630 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-630 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-1912 (((-630 (-111)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 (($ $ (-1205 (-553))) NIL) (((-111) $ (-553)) NIL) (((-111) $ (-553) (-111)) NIL)) (-2005 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2796 (((-757) (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079)))) (((-757) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-111) (-601 (-529))))) (-3121 (($ (-630 (-111))) NIL)) (-4325 (($ (-630 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-3110 (((-845) $) NIL)) (-3556 (($ (-757) (-111)) 9)) (-3296 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-3726 (($ $ $) NIL)) (-2007 (($ $ $) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1996 (($ $ $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-109) (-13 (-122) (-10 -8 (-15 -3556 ($ (-757) (-111)))))) (T -109)) -((-3556 (*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *3 (-111)) (-5 *1 (-109))))) -(-13 (-122) (-10 -8 (-15 -3556 ($ (-757) (-111))))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-110 |#1| |#2|) (-137) (-1031) (-1031)) (T -110)) -NIL -(-13 (-633 |t#1|) (-1037 |t#2|) (-10 -7 (-6 -4364) (-6 -4363))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-1037 |#2|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-2965 (($ $) 10)) (-2370 (($ $ $) 15)) (-3715 (($) 7 T CONST)) (-2565 (($ $) 6)) (-2571 (((-757)) 24)) (-3031 (($) 30)) (-3063 (($ $ $) 13)) (-2826 (($ $) 9)) (-1772 (($ $ $) 16)) (-2592 (($ $ $) 17)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-3796 (((-903) $) 29)) (-1735 (((-1137) $) NIL)) (-2735 (($ (-903)) 28)) (-1451 (($ $ $) 20)) (-2786 (((-1099) $) NIL)) (-2522 (($) 8 T CONST)) (-3603 (($ $ $) 21)) (-1524 (((-529) $) 36)) (-3110 (((-845) $) 39)) (-3726 (($ $ $) 11)) (-2007 (($ $ $) 14)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 19)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 22)) (-1996 (($ $ $) 12))) -(((-111) (-13 (-827) (-646) (-949) (-601 (-529)) (-10 -8 (-15 -3715 ($) -3879) (-15 -2522 ($) -3879) (-15 -2370 ($ $ $)) (-15 -2592 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -2565 ($ $))))) (T -111)) -((-3715 (*1 *1) (-5 *1 (-111))) (-2522 (*1 *1) (-5 *1 (-111))) (-2370 (*1 *1 *1 *1) (-5 *1 (-111))) (-2592 (*1 *1 *1 *1) (-5 *1 (-111))) (-1772 (*1 *1 *1 *1) (-5 *1 (-111))) (-2565 (*1 *1 *1) (-5 *1 (-111)))) -(-13 (-827) (-646) (-949) (-601 (-529)) (-10 -8 (-15 -3715 ($) -3879) (-15 -2522 ($) -3879) (-15 -2370 ($ $ $)) (-15 -2592 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -2565 ($ $)))) -((-2819 (((-3 (-1 |#1| (-630 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-630 |#1|))) 11) (((-3 |#1| "failed") (-113) (-630 |#1|)) 21)) (-2211 (((-3 (-630 (-1 |#1| (-630 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-630 (-1 |#1| (-630 |#1|)))) 26)) (-2805 (((-113) |#1|) 56 (|has| |#1| (-833)))) (-3922 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-833))))) -(((-112 |#1|) (-10 -7 (-15 -2819 ((-3 |#1| "failed") (-113) (-630 |#1|))) (-15 -2819 ((-113) (-113) (-1 |#1| (-630 |#1|)))) (-15 -2819 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2819 ((-3 (-1 |#1| (-630 |#1|)) "failed") (-113))) (-15 -2211 ((-113) (-113) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2211 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2211 ((-3 (-630 (-1 |#1| (-630 |#1|))) "failed") (-113))) (IF (|has| |#1| (-833)) (PROGN (-15 -2805 ((-113) |#1|)) (-15 -3922 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1079)) (T -112)) -((-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1079)) (-4 *2 (-833)) (-5 *1 (-112 *2)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-833)) (-4 *3 (-1079)))) (-2211 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-630 (-1 *4 (-630 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1079)))) (-2211 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1079)) (-5 *1 (-112 *4)))) (-2211 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-630 (-1 *4 (-630 *4)))) (-4 *4 (-1079)) (-5 *1 (-112 *4)))) (-2819 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-630 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1079)))) (-2819 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1079)) (-5 *1 (-112 *4)))) (-2819 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-630 *4))) (-4 *4 (-1079)) (-5 *1 (-112 *4)))) (-2819 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-630 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1079))))) -(-10 -7 (-15 -2819 ((-3 |#1| "failed") (-113) (-630 |#1|))) (-15 -2819 ((-113) (-113) (-1 |#1| (-630 |#1|)))) (-15 -2819 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2819 ((-3 (-1 |#1| (-630 |#1|)) "failed") (-113))) (-15 -2211 ((-113) (-113) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2211 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2211 ((-3 (-630 (-1 |#1| (-630 |#1|))) "failed") (-113))) (IF (|has| |#1| (-833)) (PROGN (-15 -2805 ((-113) |#1|)) (-15 -3922 ((-3 |#1| "failed") (-113)))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-2342 (((-757) $) 72) (($ $ (-757)) 30)) (-2824 (((-111) $) 32)) (-4287 (($ $ (-1137) (-760)) 26)) (-1615 (($ $ (-45 (-1137) (-760))) 15)) (-2039 (((-3 (-760) "failed") $ (-1137)) 25)) (-1295 (((-45 (-1137) (-760)) $) 14)) (-4180 (($ (-1155)) 17) (($ (-1155) (-757)) 22)) (-3592 (((-111) $) 31)) (-3920 (((-111) $) 33)) (-4298 (((-1155) $) 8)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-1288 (((-111) $ (-1155)) 10)) (-1425 (($ $ (-1 (-529) (-630 (-529)))) 52) (((-3 (-1 (-529) (-630 (-529))) "failed") $) 56)) (-2786 (((-1099) $) NIL)) (-4026 (((-111) $ (-1137)) 29)) (-3544 (($ $ (-1 (-111) $ $)) 35)) (-2524 (((-3 (-1 (-845) (-630 (-845))) "failed") $) 54) (($ $ (-1 (-845) (-630 (-845)))) 41) (($ $ (-1 (-845) (-845))) 43)) (-4049 (($ $ (-1137)) 45)) (-1508 (($ $) 63)) (-2746 (($ $ (-1 (-111) $ $)) 36)) (-3110 (((-845) $) 48)) (-1843 (($ $ (-1137)) 27)) (-3370 (((-3 (-757) "failed") $) 58)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 71)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 79))) -(((-113) (-13 (-833) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -1295 ((-45 (-1137) (-760)) $)) (-15 -1508 ($ $)) (-15 -4180 ($ (-1155))) (-15 -4180 ($ (-1155) (-757))) (-15 -3370 ((-3 (-757) "failed") $)) (-15 -3592 ((-111) $)) (-15 -2824 ((-111) $)) (-15 -3920 ((-111) $)) (-15 -2342 ((-757) $)) (-15 -2342 ($ $ (-757))) (-15 -3544 ($ $ (-1 (-111) $ $))) (-15 -2746 ($ $ (-1 (-111) $ $))) (-15 -2524 ((-3 (-1 (-845) (-630 (-845))) "failed") $)) (-15 -2524 ($ $ (-1 (-845) (-630 (-845))))) (-15 -2524 ($ $ (-1 (-845) (-845)))) (-15 -1425 ($ $ (-1 (-529) (-630 (-529))))) (-15 -1425 ((-3 (-1 (-529) (-630 (-529))) "failed") $)) (-15 -1288 ((-111) $ (-1155))) (-15 -4026 ((-111) $ (-1137))) (-15 -1843 ($ $ (-1137))) (-15 -4049 ($ $ (-1137))) (-15 -2039 ((-3 (-760) "failed") $ (-1137))) (-15 -4287 ($ $ (-1137) (-760))) (-15 -1615 ($ $ (-45 (-1137) (-760))))))) (T -113)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-113)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-45 (-1137) (-760))) (-5 *1 (-113)))) (-1508 (*1 *1 *1) (-5 *1 (-113))) (-4180 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-113)))) (-4180 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-757)) (-5 *1 (-113)))) (-3370 (*1 *2 *1) (|partial| -12 (-5 *2 (-757)) (-5 *1 (-113)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-113)))) (-2342 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-113)))) (-3544 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-2746 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-2524 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-845) (-630 (-845)))) (-5 *1 (-113)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-845) (-630 (-845)))) (-5 *1 (-113)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-845) (-845))) (-5 *1 (-113)))) (-1425 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-529) (-630 (-529)))) (-5 *1 (-113)))) (-1425 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-529) (-630 (-529)))) (-5 *1 (-113)))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-111)) (-5 *1 (-113)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-111)) (-5 *1 (-113)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-113)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-113)))) (-2039 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1137)) (-5 *2 (-760)) (-5 *1 (-113)))) (-4287 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *3 (-760)) (-5 *1 (-113)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1137) (-760))) (-5 *1 (-113))))) -(-13 (-833) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -1295 ((-45 (-1137) (-760)) $)) (-15 -1508 ($ $)) (-15 -4180 ($ (-1155))) (-15 -4180 ($ (-1155) (-757))) (-15 -3370 ((-3 (-757) "failed") $)) (-15 -3592 ((-111) $)) (-15 -2824 ((-111) $)) (-15 -3920 ((-111) $)) (-15 -2342 ((-757) $)) (-15 -2342 ($ $ (-757))) (-15 -3544 ($ $ (-1 (-111) $ $))) (-15 -2746 ($ $ (-1 (-111) $ $))) (-15 -2524 ((-3 (-1 (-845) (-630 (-845))) "failed") $)) (-15 -2524 ($ $ (-1 (-845) (-630 (-845))))) (-15 -2524 ($ $ (-1 (-845) (-845)))) (-15 -1425 ($ $ (-1 (-529) (-630 (-529))))) (-15 -1425 ((-3 (-1 (-529) (-630 (-529))) "failed") $)) (-15 -1288 ((-111) $ (-1155))) (-15 -4026 ((-111) $ (-1137))) (-15 -1843 ($ $ (-1137))) (-15 -4049 ($ $ (-1137))) (-15 -2039 ((-3 (-760) "failed") $ (-1137))) (-15 -4287 ($ $ (-1137) (-760))) (-15 -1615 ($ $ (-45 (-1137) (-760)))))) -((-2353 (((-553) |#2|) 37))) -(((-114 |#1| |#2|) (-10 -7 (-15 -2353 ((-553) |#2|))) (-13 (-357) (-1020 (-401 (-553)))) (-1214 |#1|)) (T -114)) -((-2353 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-1020 (-401 *2)))) (-5 *2 (-553)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -2353 ((-553) |#2|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-553)) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-4257 (($ (-1151 (-553)) (-553)) NIL)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2220 (($ $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2968 (((-757) $) NIL)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2326 (((-553)) NIL)) (-2420 (((-553) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3089 (($ $ (-553)) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2989 (((-1135 (-553)) $) NIL)) (-2980 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL)) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL)) (-4327 (((-553) $ (-553)) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL))) -(((-115 |#1|) (-851 |#1|) (-553)) (T -115)) -NIL -(-851 |#1|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-115 |#1|) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-115 |#1|) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-115 |#1|) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-115 |#1|) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| (-115 |#1|) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-115 |#1|) (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| (-115 |#1|) (-1020 (-553))))) (-2707 (((-115 |#1|) $) NIL) (((-1155) $) NIL (|has| (-115 |#1|) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-115 |#1|) (-1020 (-553)))) (((-553) $) NIL (|has| (-115 |#1|) (-1020 (-553))))) (-4106 (($ $) NIL) (($ (-553) $) NIL)) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-115 |#1|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-115 |#1|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-115 |#1|))) (|:| |vec| (-1238 (-115 |#1|)))) (-674 $) (-1238 $)) NIL) (((-674 (-115 |#1|)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-115 |#1|) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| (-115 |#1|) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-115 |#1|) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-115 |#1|) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-115 |#1|) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1130)))) (-2797 (((-111) $) NIL (|has| (-115 |#1|) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-115 |#1|) (-833)))) (-1975 (($ $ $) NIL (|has| (-115 |#1|) (-833)))) (-1482 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-115 |#1|) (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-115 |#1|) (-301)))) (-2334 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-115 |#1|) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-115 |#1|) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-115 |#1|)) (-630 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-288 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-630 (-288 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-630 (-1155)) (-630 (-115 |#1|))) NIL (|has| (-115 |#1|) (-507 (-1155) (-115 |#1|)))) (($ $ (-1155) (-115 |#1|)) NIL (|has| (-115 |#1|) (-507 (-1155) (-115 |#1|))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-280 (-115 |#1|) (-115 |#1|))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-757)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1155)) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-757)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-115 |#1|) $) NIL)) (-1524 (((-874 (-553)) $) NIL (|has| (-115 |#1|) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-115 |#1|) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-115 |#1|) (-601 (-529)))) (((-373) $) NIL (|has| (-115 |#1|) (-1004))) (((-220) $) NIL (|has| (-115 |#1|) (-1004)))) (-1760 (((-171 (-401 (-553))) $) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-115 |#1|)) NIL) (($ (-1155)) NIL (|has| (-115 |#1|) (-1020 (-1155))))) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-891))) (|has| (-115 |#1|) (-142))))) (-1999 (((-757)) NIL)) (-2582 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-538)))) (-1639 (((-111) $ $) NIL)) (-4327 (((-401 (-553)) $ (-553)) NIL)) (-3466 (($ $) NIL (|has| (-115 |#1|) (-806)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-757)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1155)) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-115 |#1|) (-882 (-1155)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-757)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-115 |#1|) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-115 |#1|) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-115 |#1|) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-115 |#1|) (-833)))) (-1723 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) -(((-116 |#1|) (-13 (-974 (-115 |#1|)) (-10 -8 (-15 -4327 ((-401 (-553)) $ (-553))) (-15 -1760 ((-171 (-401 (-553))) $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)))) (-553)) (T -116)) -((-4327 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-553)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-553)))) (-5 *1 (-116 *3)) (-14 *3 (-553)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-553)))) (-4106 (*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-116 *3)) (-14 *3 *2)))) -(-13 (-974 (-115 |#1|)) (-10 -8 (-15 -4327 ((-401 (-553)) $ (-553))) (-15 -1760 ((-171 (-401 (-553))) $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)))) -((-1490 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3167 (((-630 $) $) 27)) (-2284 (((-111) $ $) 32)) (-1832 (((-111) |#2| $) 36)) (-3698 (((-630 |#2|) $) 22)) (-3862 (((-111) $) 16)) (-2046 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1510 (((-111) $) 45)) (-3110 (((-845) $) 41)) (-2860 (((-630 $) $) 28)) (-1617 (((-111) $ $) 34)) (-2563 (((-757) $) 43))) -(((-117 |#1| |#2|) (-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -1490 (|#1| |#1| "right" |#1|)) (-15 -1490 (|#1| |#1| "left" |#1|)) (-15 -2046 (|#1| |#1| "right")) (-15 -2046 (|#1| |#1| "left")) (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -2284 ((-111) |#1| |#1|)) (-15 -3698 ((-630 |#2|) |#1|)) (-15 -1510 ((-111) |#1|)) (-15 -2046 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -3167 ((-630 |#1|) |#1|)) (-15 -2860 ((-630 |#1|) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -1832 ((-111) |#2| |#1|)) (-15 -2563 ((-757) |#1|))) (-118 |#2|) (-1192)) (T -117)) -NIL -(-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -1490 (|#1| |#1| "right" |#1|)) (-15 -1490 (|#1| |#1| "left" |#1|)) (-15 -2046 (|#1| |#1| "right")) (-15 -2046 (|#1| |#1| "left")) (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -2284 ((-111) |#1| |#1|)) (-15 -3698 ((-630 |#2|) |#1|)) (-15 -1510 ((-111) |#1|)) (-15 -2046 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -3167 ((-630 |#1|) |#1|)) (-15 -2860 ((-630 |#1|) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -1832 ((-111) |#2| |#1|)) (-15 -2563 ((-757) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-1562 (($ $ $) 52 (|has| $ (-6 -4370)))) (-2635 (($ $ $) 54 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370))) (($ $ "left" $) 55 (|has| $ (-6 -4370))) (($ $ "right" $) 53 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3820 (($) 7 T CONST)) (-3323 (($ $) 57)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-3313 (($ $) 59)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3558 (((-553) $ $) 44)) (-1510 (((-111) $) 46)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-118 |#1|) (-137) (-1192)) (T -118)) -((-3313 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1192)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1192)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1192)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1192)))) (-1490 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4370)) (-4 *1 (-118 *3)) (-4 *3 (-1192)))) (-2635 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-118 *2)) (-4 *2 (-1192)))) (-1490 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4370)) (-4 *1 (-118 *3)) (-4 *3 (-1192)))) (-1562 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-118 *2)) (-4 *2 (-1192))))) -(-13 (-992 |t#1|) (-10 -8 (-15 -3313 ($ $)) (-15 -2046 ($ $ "left")) (-15 -3323 ($ $)) (-15 -2046 ($ $ "right")) (IF (|has| $ (-6 -4370)) (PROGN (-15 -1490 ($ $ "left" $)) (-15 -2635 ($ $ $)) (-15 -1490 ($ $ "right" $)) (-15 -1562 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-992 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-2774 (((-111) |#1|) 24)) (-1785 (((-757) (-757)) 23) (((-757)) 22)) (-3948 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) -(((-119 |#1|) (-10 -7 (-15 -3948 ((-111) |#1|)) (-15 -3948 ((-111) |#1| (-111))) (-15 -1785 ((-757))) (-15 -1785 ((-757) (-757))) (-15 -2774 ((-111) |#1|))) (-1214 (-553))) (T -119)) -((-2774 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553))))) (-1785 (*1 *2 *2) (-12 (-5 *2 (-757)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553))))) (-1785 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553))))) (-3948 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553))))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553)))))) -(-10 -7 (-15 -3948 ((-111) |#1|)) (-15 -3948 ((-111) |#1| (-111))) (-15 -1785 ((-757))) (-15 -1785 ((-757) (-757))) (-15 -2774 ((-111) |#1|))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) 15)) (-3446 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-1562 (($ $ $) 18 (|has| $ (-6 -4370)))) (-2635 (($ $ $) 20 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "left" $) NIL (|has| $ (-6 -4370))) (($ $ "right" $) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-3323 (($ $) 17)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-4153 (($ $ |#1| $) 23)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3313 (($ $) 19)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-3078 (($ |#1| $) 24)) (-2636 (($ |#1| $) 10)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 14)) (-3222 (($) 8)) (-2046 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3558 (((-553) $ $) NIL)) (-1510 (((-111) $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2295 (($ (-630 |#1|)) 12)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4370) (-6 -4369) (-15 -2295 ($ (-630 |#1|))) (-15 -2636 ($ |#1| $)) (-15 -3078 ($ |#1| $)) (-15 -3446 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-833)) (T -120)) -((-2295 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-120 *3)))) (-2636 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-833)))) (-3078 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-833)))) (-3446 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-833))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4370) (-6 -4369) (-15 -2295 ($ (-630 |#1|))) (-15 -2636 ($ |#1| $)) (-15 -3078 ($ |#1| $)) (-15 -3446 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2965 (($ $) 13)) (-2826 (($ $) 11)) (-1772 (($ $ $) 23)) (-2592 (($ $ $) 21)) (-2007 (($ $ $) 19)) (-1996 (($ $ $) 17))) -(((-121 |#1|) (-10 -8 (-15 -1772 (|#1| |#1| |#1|)) (-15 -2592 (|#1| |#1| |#1|)) (-15 -2826 (|#1| |#1|)) (-15 -2965 (|#1| |#1|)) (-15 -1996 (|#1| |#1| |#1|)) (-15 -2007 (|#1| |#1| |#1|))) (-122)) (T -121)) -NIL -(-10 -8 (-15 -1772 (|#1| |#1| |#1|)) (-15 -2592 (|#1| |#1| |#1|)) (-15 -2826 (|#1| |#1|)) (-15 -2965 (|#1| |#1|)) (-15 -1996 (|#1| |#1| |#1|)) (-15 -2007 (|#1| |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-2965 (($ $) 103)) (-2370 (($ $ $) 25)) (-1683 (((-1243) $ (-553) (-553)) 66 (|has| $ (-6 -4370)))) (-2768 (((-111) $) 98 (|has| (-111) (-833))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-1587 (($ $) 102 (-12 (|has| (-111) (-833)) (|has| $ (-6 -4370)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4370)))) (-2990 (($ $) 97 (|has| (-111) (-833))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-1511 (((-111) $ (-757)) 37)) (-1490 (((-111) $ (-1205 (-553)) (-111)) 88 (|has| $ (-6 -4370))) (((-111) $ (-553) (-111)) 54 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4369)))) (-3820 (($) 38 T CONST)) (-1467 (($ $) 100 (|has| $ (-6 -4370)))) (-3239 (($ $) 90)) (-2638 (($ $) 68 (-12 (|has| (-111) (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4369))) (($ (-111) $) 69 (-12 (|has| (-111) (-1079)) (|has| $ (-6 -4369))))) (-2654 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1079)) (|has| $ (-6 -4369))))) (-2515 (((-111) $ (-553) (-111)) 53 (|has| $ (-6 -4370)))) (-2441 (((-111) $ (-553)) 55)) (-1478 (((-553) (-111) $ (-553)) 95 (|has| (-111) (-1079))) (((-553) (-111) $) 94 (|has| (-111) (-1079))) (((-553) (-1 (-111) (-111)) $) 93)) (-1408 (((-630 (-111)) $) 45 (|has| $ (-6 -4369)))) (-3063 (($ $ $) 26)) (-2826 (($ $) 30)) (-1772 (($ $ $) 28)) (-3202 (($ (-757) (-111)) 77)) (-2592 (($ $ $) 29)) (-3703 (((-111) $ (-757)) 36)) (-2800 (((-553) $) 63 (|has| (-553) (-833)))) (-1824 (($ $ $) 13)) (-3160 (($ $ $) 96 (|has| (-111) (-833))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-2195 (((-630 (-111)) $) 46 (|has| $ (-6 -4369)))) (-1832 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 62 (|has| (-553) (-833)))) (-1975 (($ $ $) 14)) (-2503 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-3786 (((-111) $ (-757)) 35)) (-1735 (((-1137) $) 9)) (-1774 (($ $ $ (-553)) 87) (($ (-111) $ (-553)) 86)) (-1901 (((-630 (-553)) $) 60)) (-3594 (((-111) (-553) $) 59)) (-2786 (((-1099) $) 10)) (-2603 (((-111) $) 64 (|has| (-553) (-833)))) (-3016 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-2858 (($ $ (-111)) 65 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-111)) (-630 (-111))) 52 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-288 (-111))) 50 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-630 (-288 (-111)))) 49 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079))))) (-2551 (((-111) $ $) 31)) (-2053 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-1912 (((-630 (-111)) $) 58)) (-3586 (((-111) $) 34)) (-3222 (($) 33)) (-2046 (($ $ (-1205 (-553))) 83) (((-111) $ (-553)) 57) (((-111) $ (-553) (-111)) 56)) (-2005 (($ $ (-1205 (-553))) 85) (($ $ (-553)) 84)) (-2796 (((-757) (-111) $) 47 (-12 (|has| (-111) (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4369)))) (-2530 (($ $ $ (-553)) 99 (|has| $ (-6 -4370)))) (-1508 (($ $) 32)) (-1524 (((-529) $) 67 (|has| (-111) (-601 (-529))))) (-3121 (($ (-630 (-111))) 76)) (-4325 (($ (-630 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-3110 (((-845) $) 11)) (-3296 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4369)))) (-3726 (($ $ $) 27)) (-2007 (($ $ $) 105)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1996 (($ $ $) 104)) (-2563 (((-757) $) 39 (|has| $ (-6 -4369))))) -(((-122) (-137)) (T -122)) -((-2826 (*1 *1 *1) (-4 *1 (-122))) (-2592 (*1 *1 *1 *1) (-4 *1 (-122))) (-1772 (*1 *1 *1 *1) (-4 *1 (-122))) (-3726 (*1 *1 *1 *1) (-4 *1 (-122))) (-3063 (*1 *1 *1 *1) (-4 *1 (-122))) (-2370 (*1 *1 *1 *1) (-4 *1 (-122)))) -(-13 (-833) (-646) (-19 (-111)) (-10 -8 (-15 -2826 ($ $)) (-15 -2592 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -2370 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-600 (-845)) . T) ((-148 #0=(-111)) . T) ((-601 (-529)) |has| (-111) (-601 (-529))) ((-280 #1=(-553) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079))) ((-367 #0#) . T) ((-482 #0#) . T) ((-591 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079))) ((-636 #0#) . T) ((-646) . T) ((-19 #0#) . T) ((-833) . T) ((-1079) . T) ((-1192) . T)) -((-2503 (($ (-1 |#2| |#2|) $) 22)) (-1508 (($ $) 16)) (-2563 (((-757) $) 24))) -(((-123 |#1| |#2|) (-10 -8 (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1508 (|#1| |#1|))) (-124 |#2|) (-1079)) (T -123)) -NIL -(-10 -8 (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1508 (|#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-1562 (($ $ $) 52 (|has| $ (-6 -4370)))) (-2635 (($ $ $) 54 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370))) (($ $ "left" $) 55 (|has| $ (-6 -4370))) (($ $ "right" $) 53 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3820 (($) 7 T CONST)) (-3323 (($ $) 57)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-4153 (($ $ |#1| $) 60)) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-3313 (($ $) 59)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3558 (((-553) $ $) 44)) (-1510 (((-111) $) 46)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-124 |#1|) (-137) (-1079)) (T -124)) -((-4153 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1079))))) -(-13 (-118 |t#1|) (-10 -8 (-6 -4370) (-6 -4369) (-15 -4153 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-118 |#1|) . T) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-992 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) 15)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) 19 (|has| $ (-6 -4370)))) (-1562 (($ $ $) 20 (|has| $ (-6 -4370)))) (-2635 (($ $ $) 18 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "left" $) NIL (|has| $ (-6 -4370))) (($ $ "right" $) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-3323 (($ $) 21)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-4153 (($ $ |#1| $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3313 (($ $) NIL)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2636 (($ |#1| $) 10)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 14)) (-3222 (($) 8)) (-2046 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3558 (((-553) $ $) NIL)) (-1510 (((-111) $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 17)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2033 (($ (-630 |#1|)) 12)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4370) (-15 -2033 ($ (-630 |#1|))) (-15 -2636 ($ |#1| $)))) (-833)) (T -125)) -((-2033 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-125 *3)))) (-2636 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-833))))) -(-13 (-124 |#1|) (-10 -8 (-6 -4370) (-15 -2033 ($ (-630 |#1|))) (-15 -2636 ($ |#1| $)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) 24)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) 26 (|has| $ (-6 -4370)))) (-1562 (($ $ $) 30 (|has| $ (-6 -4370)))) (-2635 (($ $ $) 28 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "left" $) NIL (|has| $ (-6 -4370))) (($ $ "right" $) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-3323 (($ $) 20)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-4153 (($ $ |#1| $) 15)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3313 (($ $) 19)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) 21)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 18)) (-3222 (($) 11)) (-2046 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3558 (((-553) $ $) NIL)) (-1510 (((-111) $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-4220 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 10 (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -4220 ($ |#1|)) (-15 -4220 ($ $ |#1| $)))) (-1079)) (T -126)) -((-4220 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1079)))) (-4220 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1079))))) -(-13 (-124 |#1|) (-10 -8 (-15 -4220 ($ |#1|)) (-15 -4220 ($ $ |#1| $)))) -((-3096 (((-111) $ $) NIL (|has| (-128) (-1079)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) (-128) (-128)) $) NIL) (((-111) $) NIL (|has| (-128) (-833)))) (-1587 (($ (-1 (-111) (-128) (-128)) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| (-128) (-833))))) (-2990 (($ (-1 (-111) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 (((-128) $ (-553) (-128)) 17 (|has| $ (-6 -4370))) (((-128) $ (-1205 (-553)) (-128)) NIL (|has| $ (-6 -4370)))) (-3711 (((-757) $ (-757)) 7)) (-3905 (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-1079))))) (-2575 (($ (-128) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-1079)))) (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-1079)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4369))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4369)))) (-2515 (((-128) $ (-553) (-128)) 16 (|has| $ (-6 -4370)))) (-2441 (((-128) $ (-553)) 13)) (-1478 (((-553) (-1 (-111) (-128)) $) NIL) (((-553) (-128) $) NIL (|has| (-128) (-1079))) (((-553) (-128) $ (-553)) NIL (|has| (-128) (-1079)))) (-1408 (((-630 (-128)) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) (-128)) 11)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 18 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| (-128) (-833)))) (-3160 (($ (-1 (-111) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-833)))) (-2195 (((-630 (-128)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-1079))))) (-2958 (((-553) $) 19 (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-128) (-833)))) (-2503 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| (-128) (-1079)))) (-1774 (($ (-128) $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| (-128) (-1079)))) (-2603 (((-128) $) NIL (|has| (-553) (-833)))) (-3016 (((-3 (-128) "failed") (-1 (-111) (-128)) $) NIL)) (-2858 (($ $ (-128)) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-128)))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1079)))) (($ $ (-288 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1079)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1079)))) (($ $ (-630 (-128)) (-630 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-1079))))) (-1912 (((-630 (-128)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 9)) (-2046 (((-128) $ (-553) (-128)) NIL) (((-128) $ (-553)) 15) (($ $ (-1205 (-553))) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4369))) (((-757) (-128) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-128) (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-128) (-601 (-529))))) (-3121 (($ (-630 (-128))) 29)) (-4325 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 30) (($ (-630 $)) NIL)) (-3110 (((-1137) $) 27) (((-845) $) NIL (|has| (-128) (-600 (-845))))) (-1889 (((-757) $) 14)) (-3120 (($ (-757)) 8)) (-3296 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| (-128) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-128) (-833)))) (-1617 (((-111) $ $) 22 (|has| (-128) (-1079)))) (-1659 (((-111) $ $) NIL (|has| (-128) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-128) (-833)))) (-2563 (((-757) $) 20))) -(((-127) (-13 (-19 (-128)) (-600 (-1137)) (-10 -8 (-15 -3120 ($ (-757))) (-15 -2563 ((-757) $)) (-15 -1889 ((-757) $)) (-15 -3711 ((-757) $ (-757)))))) (T -127)) -((-3120 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-127)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-127)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-127)))) (-3711 (*1 *2 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-127))))) -(-13 (-19 (-128)) (-600 (-1137)) (-10 -8 (-15 -3120 ($ (-757))) (-15 -2563 ((-757) $)) (-15 -1889 ((-757) $)) (-15 -3711 ((-757) $ (-757))))) -((-3096 (((-111) $ $) NIL)) (-3820 (($) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) 9)) (-3110 (((-845) $) 19) (((-757) $) 11) (($ (-141)) 14) (((-141) $) 16) (($ (-757)) 10)) (-1400 (($ (-757)) 7)) (-4077 (($ $ $) 24)) (-4066 (($ $ $) 23)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 21)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 22))) -(((-128) (-13 (-833) (-600 (-757)) (-483 (-141)) (-10 -8 (-15 -1400 ($ (-757))) (-15 -3110 ($ (-757))) (-15 -4066 ($ $ $)) (-15 -4077 ($ $ $)) (-15 -3820 ($))))) (T -128)) -((-1400 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-128)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-128)))) (-4066 (*1 *1 *1 *1) (-5 *1 (-128))) (-4077 (*1 *1 *1 *1) (-5 *1 (-128))) (-3820 (*1 *1) (-5 *1 (-128)))) -(-13 (-833) (-600 (-757)) (-483 (-141)) (-10 -8 (-15 -1400 ($ (-757))) (-15 -3110 ($ (-757))) (-15 -4066 ($ $ $)) (-15 -4077 ($ $ $)) (-15 -3820 ($)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15))) -(((-129) (-137)) (T -129)) -((-2910 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(-13 (-23) (-10 -8 (-15 -2910 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-3965 (((-1243) $ (-757)) 19)) (-1478 (((-757) $) 20)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18))) -(((-130) (-137)) (T -130)) -((-1478 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-757)))) (-3965 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-757)) (-5 *2 (-1243))))) -(-13 (-833) (-10 -8 (-15 -1478 ((-757) $)) (-15 -3965 ((-1243) $ (-757))))) -(((-101) . T) ((-600 (-845)) . T) ((-833) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 18) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-630 (-1114)) $) 10)) (-1617 (((-111) $ $) NIL))) -(((-131) (-13 (-1062) (-10 -8 (-15 -4310 ((-630 (-1114)) $))))) (T -131)) -((-4310 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-131))))) -(-13 (-1062) (-10 -8 (-15 -4310 ((-630 (-1114)) $)))) -((-3096 (((-111) $ $) 34)) (-3769 (((-111) $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-757) "failed") $) 40)) (-2707 (((-757) $) 38)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) 27)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2839 (((-111)) 41)) (-3012 (((-111) (-111)) 43)) (-3345 (((-111) $) 24)) (-3617 (((-111) $) 37)) (-3110 (((-845) $) 22) (($ (-757)) 14)) (-1988 (($) 11 T CONST)) (-1997 (($) 12 T CONST)) (-4019 (($ (-757)) 15)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 25)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 26)) (-1711 (((-3 $ "failed") $ $) 30)) (-1700 (($ $ $) 28)) (** (($ $ (-757)) NIL) (($ $ (-903)) NIL) (($ $ $) 36)) (* (($ (-757) $) 33) (($ (-903) $) NIL) (($ $ $) 31))) -(((-132) (-13 (-833) (-23) (-712) (-1020 (-757)) (-10 -8 (-6 (-4371 "*")) (-15 -1711 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4019 ($ (-757))) (-15 -3345 ((-111) $)) (-15 -3617 ((-111) $)) (-15 -2839 ((-111))) (-15 -3012 ((-111) (-111)))))) (T -132)) -((-1711 (*1 *1 *1 *1) (|partial| -5 *1 (-132))) (** (*1 *1 *1 *1) (-5 *1 (-132))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-132)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-2839 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(-13 (-833) (-23) (-712) (-1020 (-757)) (-10 -8 (-6 (-4371 "*")) (-15 -1711 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4019 ($ (-757))) (-15 -3345 ((-111) $)) (-15 -3617 ((-111) $)) (-15 -2839 ((-111))) (-15 -3012 ((-111) (-111))))) -((-2531 (((-134 |#1| |#2| |#4|) (-630 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-1482 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) -(((-133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2531 ((-134 |#1| |#2| |#4|) (-630 |#4|) (-134 |#1| |#2| |#3|))) (-15 -1482 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-553) (-757) (-169) (-169)) (T -133)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-553)) (-14 *6 (-757)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-553)) (-14 *6 (-757)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8))))) -(-10 -7 (-15 -2531 ((-134 |#1| |#2| |#4|) (-630 |#4|) (-134 |#1| |#2| |#3|))) (-15 -1482 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) -((-3096 (((-111) $ $) NIL)) (-2577 (($ (-630 |#3|)) 40)) (-1605 (($ $) 99) (($ $ (-553) (-553)) 98)) (-3820 (($) 17)) (-1399 (((-3 |#3| "failed") $) 60)) (-2707 ((|#3| $) NIL)) (-3286 (($ $ (-630 (-553))) 100)) (-2517 (((-630 |#3|) $) 36)) (-2409 (((-757) $) 44)) (-3087 (($ $ $) 93)) (-2631 (($) 43)) (-1735 (((-1137) $) NIL)) (-4185 (($) 16)) (-2786 (((-1099) $) NIL)) (-2046 ((|#3| $) 46) ((|#3| $ (-553)) 47) ((|#3| $ (-553) (-553)) 48) ((|#3| $ (-553) (-553) (-553)) 49) ((|#3| $ (-553) (-553) (-553) (-553)) 50) ((|#3| $ (-630 (-553))) 52)) (-3872 (((-757) $) 45)) (-3415 (($ $ (-553) $ (-553)) 94) (($ $ (-553) (-553)) 96)) (-3110 (((-845) $) 67) (($ |#3|) 68) (($ (-235 |#2| |#3|)) 75) (($ (-1121 |#2| |#3|)) 78) (($ (-630 |#3|)) 53) (($ (-630 $)) 58)) (-1988 (($) 69 T CONST)) (-1997 (($) 70 T CONST)) (-1617 (((-111) $ $) 80)) (-1711 (($ $) 86) (($ $ $) 84)) (-1700 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-553)) 89) (($ (-553) $) 88) (($ $ $) 95))) -(((-134 |#1| |#2| |#3|) (-13 (-458 |#3| (-757)) (-463 (-553) (-757)) (-10 -8 (-15 -3110 ($ (-235 |#2| |#3|))) (-15 -3110 ($ (-1121 |#2| |#3|))) (-15 -3110 ($ (-630 |#3|))) (-15 -3110 ($ (-630 $))) (-15 -2409 ((-757) $)) (-15 -2046 (|#3| $)) (-15 -2046 (|#3| $ (-553))) (-15 -2046 (|#3| $ (-553) (-553))) (-15 -2046 (|#3| $ (-553) (-553) (-553))) (-15 -2046 (|#3| $ (-553) (-553) (-553) (-553))) (-15 -2046 (|#3| $ (-630 (-553)))) (-15 -3087 ($ $ $)) (-15 * ($ $ $)) (-15 -3415 ($ $ (-553) $ (-553))) (-15 -3415 ($ $ (-553) (-553))) (-15 -1605 ($ $)) (-15 -1605 ($ $ (-553) (-553))) (-15 -3286 ($ $ (-630 (-553)))) (-15 -4185 ($)) (-15 -2631 ($)) (-15 -2517 ((-630 |#3|) $)) (-15 -2577 ($ (-630 |#3|))) (-15 -3820 ($)))) (-553) (-757) (-169)) (T -134)) -((-3087 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) (-4 *4 (-169)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-757)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1121 *4 *5)) (-14 *4 (-757)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) (-14 *4 (-757)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) (-14 *4 (-757)) (-4 *5 (-169)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) (-14 *4 *2) (-4 *5 (-169)))) (-2046 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-553)) (-14 *4 (-757)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-757)))) (-2046 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-757)))) (-2046 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-757)))) (-2046 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-757)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-630 (-553))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-553)) (-14 *5 (-757)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) (-4 *4 (-169)))) (-3415 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-757)) (-4 *5 (-169)))) (-3415 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-757)) (-4 *5 (-169)))) (-1605 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) (-4 *4 (-169)))) (-1605 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-757)) (-4 *5 (-169)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) (-14 *4 (-757)) (-4 *5 (-169)))) (-4185 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) (-4 *4 (-169)))) (-2631 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) (-4 *4 (-169)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-630 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) (-14 *4 (-757)) (-4 *5 (-169)))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) (-14 *4 (-757)))) (-3820 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) (-4 *4 (-169))))) -(-13 (-458 |#3| (-757)) (-463 (-553) (-757)) (-10 -8 (-15 -3110 ($ (-235 |#2| |#3|))) (-15 -3110 ($ (-1121 |#2| |#3|))) (-15 -3110 ($ (-630 |#3|))) (-15 -3110 ($ (-630 $))) (-15 -2409 ((-757) $)) (-15 -2046 (|#3| $)) (-15 -2046 (|#3| $ (-553))) (-15 -2046 (|#3| $ (-553) (-553))) (-15 -2046 (|#3| $ (-553) (-553) (-553))) (-15 -2046 (|#3| $ (-553) (-553) (-553) (-553))) (-15 -2046 (|#3| $ (-630 (-553)))) (-15 -3087 ($ $ $)) (-15 * ($ $ $)) (-15 -3415 ($ $ (-553) $ (-553))) (-15 -3415 ($ $ (-553) (-553))) (-15 -1605 ($ $)) (-15 -1605 ($ $ (-553) (-553))) (-15 -3286 ($ $ (-630 (-553)))) (-15 -4185 ($)) (-15 -2631 ($)) (-15 -2517 ((-630 |#3|) $)) (-15 -2577 ($ (-630 |#3|))) (-15 -3820 ($)))) -((-3096 (((-111) $ $) NIL)) (-1314 (((-1114) $) 11)) (-1301 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-135) (-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $))))) (T -135)) -((-1301 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-135)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-135))))) -(-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-1453 (((-1155) $) 10)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-630 (-1114)) $) 12)) (-1617 (((-111) $ $) NIL))) -(((-136) (-13 (-1062) (-10 -8 (-15 -1453 ((-1155) $)) (-15 -4310 ((-630 (-1114)) $))))) (T -136)) -((-1453 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-136)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-136))))) -(-13 (-1062) (-10 -8 (-15 -1453 ((-1155) $)) (-15 -4310 ((-630 (-1114)) $)))) -((-3110 (((-845) $) 7))) -(((-137) (-600 (-845))) (T -137)) -NIL -(-600 (-845)) -((-3096 (((-111) $ $) NIL)) (-3913 (($) 15 T CONST)) (-2841 (($) NIL (|has| (-141) (-362)))) (-3368 (($ $ $) 17) (($ $ (-141)) NIL) (($ (-141) $) NIL)) (-2745 (($ $ $) NIL)) (-4048 (((-111) $ $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| (-141) (-362)))) (-1471 (($) NIL) (($ (-630 (-141))) NIL)) (-2955 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-3986 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369))) (($ (-141) $) 51 (|has| $ (-6 -4369)))) (-2575 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369))) (($ (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2654 (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4369))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4369))) (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-3031 (($) NIL (|has| (-141) (-362)))) (-1408 (((-630 (-141)) $) 60 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-1824 (((-141) $) NIL (|has| (-141) (-833)))) (-2195 (((-630 (-141)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-141) $) 26 (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-1975 (((-141) $) NIL (|has| (-141) (-833)))) (-2503 (($ (-1 (-141) (-141)) $) 59 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-141) (-141)) $) 55)) (-2924 (($) 16 T CONST)) (-3796 (((-903) $) NIL (|has| (-141) (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1475 (($ $ $) 29)) (-1376 (((-141) $) 52)) (-2636 (($ (-141) $) 50)) (-2735 (($ (-903)) NIL (|has| (-141) (-362)))) (-1374 (($) 14 T CONST)) (-2786 (((-1099) $) NIL)) (-3016 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-2949 (((-141) $) 53)) (-3341 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-141)) (-630 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-630 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 48)) (-2913 (($) 13 T CONST)) (-2507 (($ $ $) 31) (($ $ (-141)) NIL)) (-3093 (($ (-630 (-141))) NIL) (($) NIL)) (-2796 (((-757) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079)))) (((-757) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-1137) $) 36) (((-529) $) NIL (|has| (-141) (-601 (-529)))) (((-630 (-141)) $) 34)) (-3121 (($ (-630 (-141))) NIL)) (-3845 (($ $) 32 (|has| (-141) (-362)))) (-3110 (((-845) $) 46)) (-2112 (($ (-1137)) 12) (($ (-630 (-141))) 43)) (-2416 (((-757) $) NIL)) (-3420 (($) 49) (($ (-630 (-141))) NIL)) (-2711 (($ (-630 (-141))) NIL)) (-3296 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-3651 (($) 19 T CONST)) (-2693 (($) 18 T CONST)) (-1617 (((-111) $ $) 22)) (-2563 (((-757) $) 47 (|has| $ (-6 -4369))))) -(((-138) (-13 (-1079) (-601 (-1137)) (-419 (-141)) (-601 (-630 (-141))) (-10 -8 (-15 -2112 ($ (-1137))) (-15 -2112 ($ (-630 (-141)))) (-15 -2913 ($) -3879) (-15 -1374 ($) -3879) (-15 -3913 ($) -3879) (-15 -2924 ($) -3879) (-15 -2693 ($) -3879) (-15 -3651 ($) -3879)))) (T -138)) -((-2112 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-138)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-630 (-141))) (-5 *1 (-138)))) (-2913 (*1 *1) (-5 *1 (-138))) (-1374 (*1 *1) (-5 *1 (-138))) (-3913 (*1 *1) (-5 *1 (-138))) (-2924 (*1 *1) (-5 *1 (-138))) (-2693 (*1 *1) (-5 *1 (-138))) (-3651 (*1 *1) (-5 *1 (-138)))) -(-13 (-1079) (-601 (-1137)) (-419 (-141)) (-601 (-630 (-141))) (-10 -8 (-15 -2112 ($ (-1137))) (-15 -2112 ($ (-630 (-141)))) (-15 -2913 ($) -3879) (-15 -1374 ($) -3879) (-15 -3913 ($) -3879) (-15 -2924 ($) -3879) (-15 -2693 ($) -3879) (-15 -3651 ($) -3879))) -((-4320 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3632 ((|#1| |#3|) 9)) (-1623 ((|#3| |#3|) 15))) -(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -1623 (|#3| |#3|)) (-15 -4320 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-545) (-974 |#1|) (-367 |#2|)) (T -139)) -((-4320 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-367 *5)))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *4 (-974 *3)) (-5 *1 (-139 *3 *4 *2)) (-4 *2 (-367 *4)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-367 *4))))) -(-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -1623 (|#3| |#3|)) (-15 -4320 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2340 (($ $ $) 8)) (-3757 (($ $) 7)) (-1737 (($ $ $) 6))) -(((-140) (-137)) (T -140)) -((-2340 (*1 *1 *1 *1) (-4 *1 (-140))) (-3757 (*1 *1 *1) (-4 *1 (-140))) (-1737 (*1 *1 *1 *1) (-4 *1 (-140)))) -(-13 (-10 -8 (-15 -1737 ($ $ $)) (-15 -3757 ($ $)) (-15 -2340 ($ $ $)))) -((-3096 (((-111) $ $) NIL)) (-3550 (((-111) $) 30)) (-3913 (($ $) 43)) (-1391 (($) 17)) (-2571 (((-757)) 10)) (-3031 (($) 16)) (-3882 (($) 18)) (-2250 (((-757) $) 14)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-2010 (((-111) $) 32)) (-2924 (($ $) 44)) (-3796 (((-903) $) 15)) (-1735 (((-1137) $) 38)) (-2735 (($ (-903)) 13)) (-1595 (((-111) $) 28)) (-2786 (((-1099) $) NIL)) (-2971 (($) 19)) (-3573 (((-111) $) 26)) (-3110 (((-845) $) 21)) (-3235 (($ (-757)) 11) (($ (-1137)) 42)) (-2854 (((-111) $) 36)) (-2572 (((-111) $) 34)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 7)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 8))) -(((-141) (-13 (-827) (-10 -8 (-15 -2250 ((-757) $)) (-15 -3235 ($ (-757))) (-15 -3235 ($ (-1137))) (-15 -1391 ($)) (-15 -3882 ($)) (-15 -2971 ($)) (-15 -3913 ($ $)) (-15 -2924 ($ $)) (-15 -3573 ((-111) $)) (-15 -1595 ((-111) $)) (-15 -2572 ((-111) $)) (-15 -3550 ((-111) $)) (-15 -2010 ((-111) $)) (-15 -2854 ((-111) $))))) (T -141)) -((-2250 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-141)))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-141)))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-141)))) (-1391 (*1 *1) (-5 *1 (-141))) (-3882 (*1 *1) (-5 *1 (-141))) (-2971 (*1 *1) (-5 *1 (-141))) (-3913 (*1 *1 *1) (-5 *1 (-141))) (-2924 (*1 *1 *1) (-5 *1 (-141))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(-13 (-827) (-10 -8 (-15 -2250 ((-757) $)) (-15 -3235 ($ (-757))) (-15 -3235 ($ (-1137))) (-15 -1391 ($)) (-15 -3882 ($)) (-15 -2971 ($)) (-15 -3913 ($ $)) (-15 -2924 ($ $)) (-15 -3573 ((-111) $)) (-15 -1595 ((-111) $)) (-15 -2572 ((-111) $)) (-15 -3550 ((-111) $)) (-15 -2010 ((-111) $)) (-15 -2854 ((-111) $)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-2941 (((-3 $ "failed") $) 35)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-142) (-137)) (T -142)) -((-2941 (*1 *1 *1) (|partial| -4 *1 (-142)))) -(-13 (-1031) (-10 -8 (-15 -2941 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3547 ((|#1| (-674 |#1|) |#1|) 19))) -(((-143 |#1|) (-10 -7 (-15 -3547 (|#1| (-674 |#1|) |#1|))) (-169)) (T -143)) -((-3547 (*1 *2 *3 *2) (-12 (-5 *3 (-674 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2))))) -(-10 -7 (-15 -3547 (|#1| (-674 |#1|) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-144) (-137)) (T -144)) -NIL -(-13 (-1031)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3170 (((-2 (|:| -2692 (-757)) (|:| -4120 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-757)) 70)) (-3717 (((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-757))) "failed") |#3|) 52)) (-3449 (((-2 (|:| -4120 (-401 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3700 ((|#1| |#3| |#3|) 40)) (-2356 ((|#3| |#3| (-401 |#2|) (-401 |#2|)) 19)) (-3545 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-757))) |#3| |#3|) 49))) -(((-145 |#1| |#2| |#3|) (-10 -7 (-15 -3449 ((-2 (|:| -4120 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3717 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-757))) "failed") |#3|)) (-15 -3170 ((-2 (|:| -2692 (-757)) (|:| -4120 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-757))) (-15 -3700 (|#1| |#3| |#3|)) (-15 -2356 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -3545 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-757))) |#3| |#3|))) (-1196) (-1214 |#1|) (-1214 (-401 |#2|))) (T -145)) -((-3545 (*1 *2 *3 *3) (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) (|:| |c2| (-401 *5)) (|:| |deg| (-757)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1214 (-401 *5))))) (-2356 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1214 *3)))) (-3700 (*1 *2 *3 *3) (-12 (-4 *4 (-1214 *2)) (-4 *2 (-1196)) (-5 *1 (-145 *2 *4 *3)) (-4 *3 (-1214 (-401 *4))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *6)) (-4 *5 (-1196)) (-4 *6 (-1214 *5)) (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *3) (|:| |radicand| *6))) (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-757)) (-4 *7 (-1214 *3)))) (-3717 (*1 *2 *3) (|partial| -12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-757)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1214 (-401 *5))))) (-3449 (*1 *2 *3) (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| -4120 (-401 *5)) (|:| |poly| *3))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1214 (-401 *5)))))) -(-10 -7 (-15 -3449 ((-2 (|:| -4120 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3717 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-757))) "failed") |#3|)) (-15 -3170 ((-2 (|:| -2692 (-757)) (|:| -4120 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-757))) (-15 -3700 (|#1| |#3| |#3|)) (-15 -2356 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -3545 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-757))) |#3| |#3|))) -((-3013 (((-3 (-630 (-1151 |#2|)) "failed") (-630 (-1151 |#2|)) (-1151 |#2|)) 32))) -(((-146 |#1| |#2|) (-10 -7 (-15 -3013 ((-3 (-630 (-1151 |#2|)) "failed") (-630 (-1151 |#2|)) (-1151 |#2|)))) (-538) (-163 |#1|)) (T -146)) -((-3013 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-1151 *5))) (-5 *3 (-1151 *5)) (-4 *5 (-163 *4)) (-4 *4 (-538)) (-5 *1 (-146 *4 *5))))) -(-10 -7 (-15 -3013 ((-3 (-630 (-1151 |#2|)) "failed") (-630 (-1151 |#2|)) (-1151 |#2|)))) -((-3905 (($ (-1 (-111) |#2|) $) 29)) (-2638 (($ $) 36)) (-2575 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-2654 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3016 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-3341 (((-111) (-1 (-111) |#2|) $) 16)) (-2796 (((-757) (-1 (-111) |#2|) $) 14) (((-757) |#2| $) NIL)) (-3296 (((-111) (-1 (-111) |#2|) $) 15)) (-2563 (((-757) $) 11))) -(((-147 |#1| |#2|) (-10 -8 (-15 -2638 (|#1| |#1|)) (-15 -2575 (|#1| |#2| |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3905 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2575 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3016 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2563 ((-757) |#1|))) (-148 |#2|) (-1192)) (T -147)) -NIL -(-10 -8 (-15 -2638 (|#1| |#1|)) (-15 -2575 (|#1| |#2| |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3905 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2575 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3016 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2563 ((-757) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-3905 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2638 (($ $) 41 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369))) (($ |#1| $) 42 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 40 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 49)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-148 |#1|) (-137) (-1192)) (T -148)) -((-3121 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-4 *1 (-148 *3)))) (-3016 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) (-4 *2 (-1192)))) (-2654 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)))) (-2654 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)))) (-2575 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *3)) (-4 *3 (-1192)))) (-3905 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *3)) (-4 *3 (-1192)))) (-2654 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1079)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)))) (-2575 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)) (-4 *2 (-1079)))) (-2638 (*1 *1 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)) (-4 *2 (-1079))))) -(-13 (-482 |t#1|) (-10 -8 (-15 -3121 ($ (-630 |t#1|))) (-15 -3016 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4369)) (PROGN (-15 -2654 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2654 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2575 ($ (-1 (-111) |t#1|) $)) (-15 -3905 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -2654 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2575 ($ |t#1| $)) (-15 -2638 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 86)) (-1848 (((-111) $) NIL)) (-3481 (($ |#2| (-630 (-903))) 56)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-4022 (($ (-903)) 47)) (-1337 (((-132)) 23)) (-3110 (((-845) $) 69) (($ (-553)) 45) (($ |#2|) 46)) (-1624 ((|#2| $ (-630 (-903))) 59)) (-1999 (((-757)) 20)) (-1988 (($) 40 T CONST)) (-1997 (($) 43 T CONST)) (-1617 (((-111) $ $) 26)) (-1723 (($ $ |#2|) NIL)) (-1711 (($ $) 34) (($ $ $) 32)) (-1700 (($ $ $) 30)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-149 |#1| |#2| |#3|) (-13 (-1031) (-38 |#2|) (-1245 |#2|) (-10 -8 (-15 -4022 ($ (-903))) (-15 -3481 ($ |#2| (-630 (-903)))) (-15 -1624 (|#2| $ (-630 (-903)))) (-15 -2982 ((-3 $ "failed") $)))) (-903) (-357) (-975 |#1| |#2|)) (T -149)) -((-2982 (*1 *1 *1) (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-903)) (-4 *3 (-357)) (-14 *4 (-975 *2 *3)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-357)) (-14 *5 (-975 *3 *4)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *3 (-630 (-903))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-903)) (-4 *2 (-357)) (-14 *5 (-975 *4 *2)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-630 (-903))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-903)) (-14 *5 (-975 *4 *2))))) -(-13 (-1031) (-38 |#2|) (-1245 |#2|) (-10 -8 (-15 -4022 ($ (-903))) (-15 -3481 ($ |#2| (-630 (-903)))) (-15 -1624 (|#2| $ (-630 (-903)))) (-15 -2982 ((-3 $ "failed") $)))) -((-2554 (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-630 (-925 (-220)))) (-220) (-220) (-220) (-220)) 38)) (-2098 (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909) (-401 (-553)) (-401 (-553))) 63) (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909)) 64)) (-2783 (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-630 (-925 (-220))))) 67) (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-925 (-220)))) 66) (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909) (-401 (-553)) (-401 (-553))) 58) (((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909)) 59))) -(((-150) (-10 -7 (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909))) (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909) (-401 (-553)) (-401 (-553)))) (-15 -2098 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909))) (-15 -2098 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909) (-401 (-553)) (-401 (-553)))) (-15 -2554 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-630 (-925 (-220)))) (-220) (-220) (-220) (-220))) (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-925 (-220))))) (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-630 (-925 (-220)))))))) (T -150)) -((-2783 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) (-5 *1 (-150)) (-5 *3 (-630 (-630 (-925 (-220))))))) (-2783 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) (-5 *1 (-150)) (-5 *3 (-630 (-925 (-220)))))) (-2554 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-220)) (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 *4)))) (|:| |xValues| (-1073 *4)) (|:| |yValues| (-1073 *4)))) (-5 *1 (-150)) (-5 *3 (-630 (-630 (-925 *4)))))) (-2098 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-909)) (-5 *4 (-401 (-553))) (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) (-5 *1 (-150)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) (-5 *1 (-150)))) (-2783 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-909)) (-5 *4 (-401 (-553))) (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) (-5 *1 (-150)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) (-5 *1 (-150))))) -(-10 -7 (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909))) (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909) (-401 (-553)) (-401 (-553)))) (-15 -2098 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909))) (-15 -2098 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-909) (-401 (-553)) (-401 (-553)))) (-15 -2554 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-630 (-925 (-220)))) (-220) (-220) (-220) (-220))) (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-925 (-220))))) (-15 -2783 ((-2 (|:| |brans| (-630 (-630 (-925 (-220))))) (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220)))) (-630 (-630 (-925 (-220))))))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-1517 (((-630 (-1114)) $) 15)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 24) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-1114) $) 9)) (-1617 (((-111) $ $) NIL))) -(((-151) (-13 (-1062) (-10 -8 (-15 -1517 ((-630 (-1114)) $)) (-15 -4310 ((-1114) $))))) (T -151)) -((-1517 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-151)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-151))))) -(-13 (-1062) (-10 -8 (-15 -1517 ((-630 (-1114)) $)) (-15 -4310 ((-1114) $)))) -((-4046 (((-630 (-166 |#2|)) |#1| |#2|) 45))) -(((-152 |#1| |#2|) (-10 -7 (-15 -4046 ((-630 (-166 |#2|)) |#1| |#2|))) (-1214 (-166 (-553))) (-13 (-357) (-831))) (T -152)) -((-4046 (*1 *2 *3 *4) (-12 (-5 *2 (-630 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1214 (-166 (-553)))) (-4 *4 (-13 (-357) (-831)))))) -(-10 -7 (-15 -4046 ((-630 (-166 |#2|)) |#1| |#2|))) -((-3096 (((-111) $ $) NIL)) (-1314 (((-1191) $) 12)) (-1301 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 21) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-153) (-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1191) $))))) (T -153)) -((-1301 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-153)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-153))))) -(-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1191) $)))) -((-3096 (((-111) $ $) NIL)) (-2363 (($) 15)) (-2966 (($) 14)) (-2261 (((-903)) 22)) (-1735 (((-1137) $) NIL)) (-3478 (((-553) $) 19)) (-2786 (((-1099) $) NIL)) (-1285 (($) 16)) (-2963 (($ (-553)) 23)) (-3110 (((-845) $) 29)) (-2014 (($) 17)) (-1617 (((-111) $ $) 13)) (-1700 (($ $ $) 11)) (* (($ (-903) $) 21) (($ (-220) $) 8))) -(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-903) $)) (-15 * ($ (-220) $)) (-15 -1700 ($ $ $)) (-15 -2966 ($)) (-15 -2363 ($)) (-15 -1285 ($)) (-15 -2014 ($)) (-15 -3478 ((-553) $)) (-15 -2261 ((-903))) (-15 -2963 ($ (-553)))))) (T -154)) -((-1700 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) (-2966 (*1 *1) (-5 *1 (-154))) (-2363 (*1 *1) (-5 *1 (-154))) (-1285 (*1 *1) (-5 *1 (-154))) (-2014 (*1 *1) (-5 *1 (-154))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-154)))) (-2261 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-154)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-154))))) -(-13 (-25) (-10 -8 (-15 * ($ (-903) $)) (-15 * ($ (-220) $)) (-15 -1700 ($ $ $)) (-15 -2966 ($)) (-15 -2363 ($)) (-15 -1285 ($)) (-15 -2014 ($)) (-15 -3478 ((-553) $)) (-15 -2261 ((-903))) (-15 -2963 ($ (-553))))) -((-3795 ((|#2| |#2| (-1071 |#2|)) 88) ((|#2| |#2| (-1155)) 68)) (-3087 ((|#2| |#2| (-1071 |#2|)) 87) ((|#2| |#2| (-1155)) 67)) (-2340 ((|#2| |#2| |#2|) 27)) (-4180 (((-113) (-113)) 99)) (-1444 ((|#2| (-630 |#2|)) 117)) (-2744 ((|#2| (-630 |#2|)) 135)) (-1503 ((|#2| (-630 |#2|)) 125)) (-1521 ((|#2| |#2|) 123)) (-3979 ((|#2| (-630 |#2|)) 111)) (-1933 ((|#2| (-630 |#2|)) 112)) (-4127 ((|#2| (-630 |#2|)) 133)) (-3017 ((|#2| |#2| (-1155)) 56) ((|#2| |#2|) 55)) (-3757 ((|#2| |#2|) 23)) (-1737 ((|#2| |#2| |#2|) 26)) (-2274 (((-111) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-155 |#1| |#2|) (-10 -7 (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -1737 (|#2| |#2| |#2|)) (-15 -2340 (|#2| |#2| |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -3017 (|#2| |#2| (-1155))) (-15 -3795 (|#2| |#2| (-1155))) (-15 -3795 (|#2| |#2| (-1071 |#2|))) (-15 -3087 (|#2| |#2| (-1155))) (-15 -3087 (|#2| |#2| (-1071 |#2|))) (-15 -1521 (|#2| |#2|)) (-15 -4127 (|#2| (-630 |#2|))) (-15 -1503 (|#2| (-630 |#2|))) (-15 -2744 (|#2| (-630 |#2|))) (-15 -3979 (|#2| (-630 |#2|))) (-15 -1933 (|#2| (-630 |#2|))) (-15 -1444 (|#2| (-630 |#2|)))) (-13 (-833) (-545)) (-424 |#1|)) (T -155)) -((-1444 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-833) (-545))))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-833) (-545))))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-833) (-545))))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-833) (-545))))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-833) (-545))))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-833) (-545))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3795 (*1 *2 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)))) (-3795 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3017 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2340 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-1737 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *4)) (-4 *4 (-424 *3)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4))))) -(-10 -7 (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -1737 (|#2| |#2| |#2|)) (-15 -2340 (|#2| |#2| |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -3017 (|#2| |#2| (-1155))) (-15 -3795 (|#2| |#2| (-1155))) (-15 -3795 (|#2| |#2| (-1071 |#2|))) (-15 -3087 (|#2| |#2| (-1155))) (-15 -3087 (|#2| |#2| (-1071 |#2|))) (-15 -1521 (|#2| |#2|)) (-15 -4127 (|#2| (-630 |#2|))) (-15 -1503 (|#2| (-630 |#2|))) (-15 -2744 (|#2| (-630 |#2|))) (-15 -3979 (|#2| (-630 |#2|))) (-15 -1933 (|#2| (-630 |#2|))) (-15 -1444 (|#2| (-630 |#2|)))) -((-2969 ((|#1| |#1| |#1|) 53)) (-2160 ((|#1| |#1| |#1|) 50)) (-2340 ((|#1| |#1| |#1|) 44)) (-3057 ((|#1| |#1|) 35)) (-2536 ((|#1| |#1| (-630 |#1|)) 43)) (-3757 ((|#1| |#1|) 37)) (-1737 ((|#1| |#1| |#1|) 40))) -(((-156 |#1|) (-10 -7 (-15 -1737 (|#1| |#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -2536 (|#1| |#1| (-630 |#1|))) (-15 -3057 (|#1| |#1|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -2969 (|#1| |#1| |#1|))) (-538)) (T -156)) -((-2969 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) (-2160 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) (-2340 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) (-3057 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) (-2536 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-538)) (-5 *1 (-156 *2)))) (-3757 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) (-1737 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538))))) -(-10 -7 (-15 -1737 (|#1| |#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -2536 (|#1| |#1| (-630 |#1|))) (-15 -3057 (|#1| |#1|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -2969 (|#1| |#1| |#1|))) -((-3795 (($ $ (-1155)) 12) (($ $ (-1071 $)) 11)) (-3087 (($ $ (-1155)) 10) (($ $ (-1071 $)) 9)) (-2340 (($ $ $) 8)) (-3017 (($ $) 14) (($ $ (-1155)) 13)) (-3757 (($ $) 7)) (-1737 (($ $ $) 6))) -(((-157) (-137)) (T -157)) -((-3017 (*1 *1 *1) (-4 *1 (-157))) (-3017 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1155)))) (-3795 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1155)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-157)))) (-3087 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1155)))) (-3087 (*1 *1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-157))))) -(-13 (-140) (-10 -8 (-15 -3017 ($ $)) (-15 -3017 ($ $ (-1155))) (-15 -3795 ($ $ (-1155))) (-15 -3795 ($ $ (-1071 $))) (-15 -3087 ($ $ (-1155))) (-15 -3087 ($ $ (-1071 $))))) -(((-140) . T)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-630 (-1114)) $) 9)) (-1617 (((-111) $ $) NIL))) -(((-158) (-13 (-1062) (-10 -8 (-15 -4310 ((-630 (-1114)) $))))) (T -158)) -((-4310 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-158))))) -(-13 (-1062) (-10 -8 (-15 -4310 ((-630 (-1114)) $)))) -((-3096 (((-111) $ $) NIL)) (-1698 (($ (-553)) 13) (($ $ $) 14)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 17)) (-1617 (((-111) $ $) 9))) -(((-159) (-13 (-1079) (-10 -8 (-15 -1698 ($ (-553))) (-15 -1698 ($ $ $))))) (T -159)) -((-1698 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-159)))) (-1698 (*1 *1 *1 *1) (-5 *1 (-159)))) -(-13 (-1079) (-10 -8 (-15 -1698 ($ (-553))) (-15 -1698 ($ $ $)))) -((-4180 (((-113) (-1155)) 97))) -(((-160) (-10 -7 (-15 -4180 ((-113) (-1155))))) (T -160)) -((-4180 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-113)) (-5 *1 (-160))))) -(-10 -7 (-15 -4180 ((-113) (-1155)))) -((-3748 ((|#3| |#3|) 19))) -(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -3748 (|#3| |#3|))) (-1031) (-1214 |#1|) (-1214 |#2|)) (T -161)) -((-3748 (*1 *2 *2) (-12 (-4 *3 (-1031)) (-4 *4 (-1214 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1214 *4))))) -(-10 -7 (-15 -3748 (|#3| |#3|))) -((-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 217)) (-1576 ((|#2| $) 96)) (-2380 (($ $) 247)) (-2246 (($ $) 241)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 40)) (-2357 (($ $) 245)) (-2224 (($ $) 239)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2707 (((-553) $) NIL) (((-401 (-553)) $) NIL) ((|#2| $) 139)) (-3973 (($ $ $) 222)) (-2077 (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) 155) (((-674 |#2|) (-674 $)) 149)) (-2654 (($ (-1151 |#2|)) 119) (((-3 $ "failed") (-401 (-1151 |#2|))) NIL)) (-2982 (((-3 $ "failed") $) 209)) (-3458 (((-3 (-401 (-553)) "failed") $) 199)) (-4323 (((-111) $) 194)) (-1672 (((-401 (-553)) $) 197)) (-2409 (((-903)) 89)) (-3952 (($ $ $) 224)) (-1678 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3996 (($) 236)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 186) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 191)) (-3560 ((|#2| $) 94)) (-3568 (((-1151 |#2|) $) 121)) (-1482 (($ (-1 |#2| |#2|) $) 102)) (-2366 (($ $) 238)) (-2643 (((-1151 |#2|) $) 120)) (-3610 (($ $) 202)) (-2226 (($) 97)) (-2979 (((-412 (-1151 $)) (-1151 $)) 88)) (-1834 (((-412 (-1151 $)) (-1151 $)) 57)) (-3929 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2743 (($ $) 237)) (-3384 (((-757) $) 219)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 229)) (-3000 ((|#2| (-1238 $)) NIL) ((|#2|) 91)) (-1330 (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL) (($ $ (-757)) NIL) (($ $) NIL)) (-1394 (((-1151 |#2|)) 114)) (-2368 (($ $) 246)) (-2234 (($ $) 240)) (-2855 (((-1238 |#2|) $ (-1238 $)) 128) (((-674 |#2|) (-1238 $) (-1238 $)) NIL) (((-1238 |#2|) $) 110) (((-674 |#2|) (-1238 $)) NIL)) (-1524 (((-1238 |#2|) $) NIL) (($ (-1238 |#2|)) NIL) (((-1151 |#2|) $) NIL) (($ (-1151 |#2|)) NIL) (((-874 (-553)) $) 177) (((-874 (-373)) $) 181) (((-166 (-373)) $) 167) (((-166 (-220)) $) 162) (((-529) $) 173)) (-3199 (($ $) 98)) (-3110 (((-845) $) 138) (($ (-553)) NIL) (($ |#2|) NIL) (($ (-401 (-553))) NIL) (($ $) NIL)) (-3547 (((-1151 |#2|) $) 23)) (-1999 (((-757)) 100)) (-2447 (($ $) 250)) (-2313 (($ $) 244)) (-2425 (($ $) 248)) (-2291 (($ $) 242)) (-3928 ((|#2| $) 233)) (-2435 (($ $) 249)) (-2302 (($ $) 243)) (-3466 (($ $) 157)) (-1617 (((-111) $ $) 104)) (-1636 (((-111) $ $) 193)) (-1711 (($ $) 106) (($ $ $) NIL)) (-1700 (($ $ $) 105)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-401 (-553))) 267) (($ $ $) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL))) -(((-162 |#1| |#2|) (-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -3110 (|#1| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2020 ((-2 (|:| -3908 |#1|) (|:| -4356 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -3384 ((-757) |#1|)) (-15 -4032 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1636 ((-111) |#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1524 ((-166 (-220)) |#1|)) (-15 -1524 ((-166 (-373)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2743 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3996 (|#1|)) (-15 ** (|#1| |#1| (-401 (-553)))) (-15 -1834 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -2979 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -1678 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3928 (|#2| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3199 (|#1| |#1|)) (-15 -2226 (|#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -2654 ((-3 |#1| "failed") (-401 (-1151 |#2|)))) (-15 -2643 ((-1151 |#2|) |#1|)) (-15 -1524 (|#1| (-1151 |#2|))) (-15 -2654 (|#1| (-1151 |#2|))) (-15 -1394 ((-1151 |#2|))) (-15 -2077 ((-674 |#2|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1524 ((-1151 |#2|) |#1|)) (-15 -3000 (|#2|)) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -3568 ((-1151 |#2|) |#1|)) (-15 -3547 ((-1151 |#2|) |#1|)) (-15 -3000 (|#2| (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -3560 (|#2| |#1|)) (-15 -1576 (|#2| |#1|)) (-15 -2409 ((-903))) (-15 -3110 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 ** (|#1| |#1| (-757))) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-903))) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) -((-1999 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-757)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-2409 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-903)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-3000 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-1394 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1151 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) -(-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -3110 (|#1| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2020 ((-2 (|:| -3908 |#1|) (|:| -4356 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -3384 ((-757) |#1|)) (-15 -4032 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1636 ((-111) |#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1524 ((-166 (-220)) |#1|)) (-15 -1524 ((-166 (-373)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2743 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3996 (|#1|)) (-15 ** (|#1| |#1| (-401 (-553)))) (-15 -1834 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -2979 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -1678 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3928 (|#2| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3199 (|#1| |#1|)) (-15 -2226 (|#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -2654 ((-3 |#1| "failed") (-401 (-1151 |#2|)))) (-15 -2643 ((-1151 |#2|) |#1|)) (-15 -1524 (|#1| (-1151 |#2|))) (-15 -2654 (|#1| (-1151 |#2|))) (-15 -1394 ((-1151 |#2|))) (-15 -2077 ((-674 |#2|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1524 ((-1151 |#2|) |#1|)) (-15 -3000 (|#2|)) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -3568 ((-1151 |#2|) |#1|)) (-15 -3547 ((-1151 |#2|) |#1|)) (-15 -3000 (|#2| (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -3560 (|#2| |#1|)) (-15 -1576 (|#2| |#1|)) (-15 -2409 ((-903))) (-15 -3110 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 ** (|#1| |#1| (-757))) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-903))) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 93 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-1968 (($ $) 94 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-2028 (((-111) $) 96 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-3989 (((-674 |#1|) (-1238 $)) 47) (((-674 |#1|)) 62)) (-1576 ((|#1| $) 53)) (-2380 (($ $) 227 (|has| |#1| (-1177)))) (-2246 (($ $) 210 (|has| |#1| (-1177)))) (-3555 (((-1165 (-903) (-757)) (-553)) 146 (|has| |#1| (-343)))) (-2910 (((-3 $ "failed") $ $) 19)) (-1393 (((-412 (-1151 $)) (-1151 $)) 241 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-1536 (($ $) 113 (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-2708 (((-412 $) $) 114 (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-3365 (($ $) 240 (-12 (|has| |#1| (-984)) (|has| |#1| (-1177))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 244 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-4349 (((-111) $ $) 104 (|has| |#1| (-301)))) (-2571 (((-757)) 87 (|has| |#1| (-362)))) (-2357 (($ $) 226 (|has| |#1| (-1177)))) (-2224 (($ $) 211 (|has| |#1| (-1177)))) (-2403 (($ $) 225 (|has| |#1| (-1177)))) (-2268 (($ $) 212 (|has| |#1| (-1177)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 169 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 167 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 164)) (-2707 (((-553) $) 168 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 166 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 165)) (-3461 (($ (-1238 |#1|) (-1238 $)) 49) (($ (-1238 |#1|)) 65)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-343)))) (-3973 (($ $ $) 108 (|has| |#1| (-301)))) (-4232 (((-674 |#1|) $ (-1238 $)) 54) (((-674 |#1|) $) 60)) (-2077 (((-674 (-553)) (-674 $)) 163 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 162 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 161) (((-674 |#1|) (-674 $)) 160)) (-2654 (($ (-1151 |#1|)) 157) (((-3 $ "failed") (-401 (-1151 |#1|))) 154 (|has| |#1| (-357)))) (-2982 (((-3 $ "failed") $) 33)) (-3375 ((|#1| $) 252)) (-3458 (((-3 (-401 (-553)) "failed") $) 245 (|has| |#1| (-538)))) (-4323 (((-111) $) 247 (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) 246 (|has| |#1| (-538)))) (-2409 (((-903)) 55)) (-3031 (($) 90 (|has| |#1| (-362)))) (-3952 (($ $ $) 107 (|has| |#1| (-301)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 102 (|has| |#1| (-301)))) (-2484 (($) 148 (|has| |#1| (-343)))) (-3637 (((-111) $) 149 (|has| |#1| (-343)))) (-1808 (($ $ (-757)) 140 (|has| |#1| (-343))) (($ $) 139 (|has| |#1| (-343)))) (-3119 (((-111) $) 115 (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-1678 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1040)) (|has| |#1| (-1177))))) (-3996 (($) 237 (|has| |#1| (-1177)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 260 (|has| |#1| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 259 (|has| |#1| (-868 (-373))))) (-2968 (((-903) $) 151 (|has| |#1| (-343))) (((-819 (-903)) $) 137 (|has| |#1| (-343)))) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 239 (-12 (|has| |#1| (-984)) (|has| |#1| (-1177))))) (-3560 ((|#1| $) 52)) (-2502 (((-3 $ "failed") $) 141 (|has| |#1| (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 111 (|has| |#1| (-301)))) (-3568 (((-1151 |#1|) $) 45 (|has| |#1| (-357)))) (-1824 (($ $ $) 206 (|has| |#1| (-833)))) (-1975 (($ $ $) 205 (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) 261)) (-3796 (((-903) $) 89 (|has| |#1| (-362)))) (-2366 (($ $) 234 (|has| |#1| (-1177)))) (-2643 (((-1151 |#1|) $) 155)) (-2471 (($ (-630 $)) 100 (-3988 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (($ $ $) 99 (-3988 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-1735 (((-1137) $) 9)) (-3610 (($ $) 116 (|has| |#1| (-357)))) (-1945 (($) 142 (|has| |#1| (-343)) CONST)) (-2735 (($ (-903)) 88 (|has| |#1| (-362)))) (-2226 (($) 256)) (-3387 ((|#1| $) 253)) (-2786 (((-1099) $) 10)) (-4093 (($) 159)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 101 (-3988 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-2508 (($ (-630 $)) 98 (-3988 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (($ $ $) 97 (-3988 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 145 (|has| |#1| (-343)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 243 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-1834 (((-412 (-1151 $)) (-1151 $)) 242 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-3355 (((-412 $) $) 112 (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 109 (|has| |#1| (-301)))) (-3929 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 92 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 103 (|has| |#1| (-301)))) (-2743 (($ $) 235 (|has| |#1| (-1177)))) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) 267 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 265 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) 264 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 263 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) 262 (|has| |#1| (-507 (-1155) |#1|)))) (-3384 (((-757) $) 105 (|has| |#1| (-301)))) (-2046 (($ $ |#1|) 268 (|has| |#1| (-280 |#1| |#1|)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 106 (|has| |#1| (-301)))) (-3000 ((|#1| (-1238 $)) 48) ((|#1|) 61)) (-3122 (((-757) $) 150 (|has| |#1| (-343))) (((-3 (-757) "failed") $ $) 138 (|has| |#1| (-343)))) (-1330 (($ $ (-1 |#1| |#1|) (-757)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-630 (-1155)) (-630 (-757))) 129 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 130 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 131 (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) 132 (|has| |#1| (-882 (-1155)))) (($ $ (-757)) 134 (-3988 (-3726 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3726 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 136 (-3988 (-3726 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3726 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-2297 (((-674 |#1|) (-1238 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-357)))) (-1394 (((-1151 |#1|)) 158)) (-2414 (($ $) 224 (|has| |#1| (-1177)))) (-2279 (($ $) 213 (|has| |#1| (-1177)))) (-1469 (($) 147 (|has| |#1| (-343)))) (-2392 (($ $) 223 (|has| |#1| (-1177)))) (-2257 (($ $) 214 (|has| |#1| (-1177)))) (-2368 (($ $) 222 (|has| |#1| (-1177)))) (-2234 (($ $) 215 (|has| |#1| (-1177)))) (-2855 (((-1238 |#1|) $ (-1238 $)) 51) (((-674 |#1|) (-1238 $) (-1238 $)) 50) (((-1238 |#1|) $) 67) (((-674 |#1|) (-1238 $)) 66)) (-1524 (((-1238 |#1|) $) 64) (($ (-1238 |#1|)) 63) (((-1151 |#1|) $) 170) (($ (-1151 |#1|)) 156) (((-874 (-553)) $) 258 (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) 257 (|has| |#1| (-601 (-874 (-373))))) (((-166 (-373)) $) 209 (|has| |#1| (-1004))) (((-166 (-220)) $) 208 (|has| |#1| (-1004))) (((-529) $) 207 (|has| |#1| (-601 (-529))))) (-3199 (($ $) 255)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 144 (-3988 (-3726 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))) (|has| |#1| (-343))))) (-4339 (($ |#1| |#1|) 254)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38) (($ (-401 (-553))) 86 (-3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) 91 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-2941 (($ $) 143 (|has| |#1| (-343))) (((-3 $ "failed") $) 44 (-3988 (-3726 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))) (|has| |#1| (-142))))) (-3547 (((-1151 |#1|) $) 46)) (-1999 (((-757)) 28)) (-4124 (((-1238 $)) 68)) (-2447 (($ $) 233 (|has| |#1| (-1177)))) (-2313 (($ $) 221 (|has| |#1| (-1177)))) (-1639 (((-111) $ $) 95 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891)))))) (-2425 (($ $) 232 (|has| |#1| (-1177)))) (-2291 (($ $) 220 (|has| |#1| (-1177)))) (-3791 (($ $) 231 (|has| |#1| (-1177)))) (-2336 (($ $) 219 (|has| |#1| (-1177)))) (-3928 ((|#1| $) 249 (|has| |#1| (-1177)))) (-2570 (($ $) 230 (|has| |#1| (-1177)))) (-2346 (($ $) 218 (|has| |#1| (-1177)))) (-3780 (($ $) 229 (|has| |#1| (-1177)))) (-2324 (($ $) 217 (|has| |#1| (-1177)))) (-2435 (($ $) 228 (|has| |#1| (-1177)))) (-2302 (($ $) 216 (|has| |#1| (-1177)))) (-3466 (($ $) 250 (|has| |#1| (-1040)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1 |#1| |#1|) (-757)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-630 (-1155)) (-630 (-757))) 125 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 126 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 127 (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) 128 (|has| |#1| (-882 (-1155)))) (($ $ (-757)) 133 (-3988 (-3726 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3726 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 135 (-3988 (-3726 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-3726 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-1669 (((-111) $ $) 203 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 202 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 204 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 201 (|has| |#1| (-833)))) (-1723 (($ $ $) 120 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-401 (-553))) 238 (-12 (|has| |#1| (-984)) (|has| |#1| (-1177)))) (($ $ $) 236 (|has| |#1| (-1177))) (($ $ (-553)) 117 (|has| |#1| (-357)))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-401 (-553)) $) 119 (|has| |#1| (-357))) (($ $ (-401 (-553))) 118 (|has| |#1| (-357))))) -(((-163 |#1|) (-137) (-169)) (T -163)) -((-3560 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2226 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3199 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-4339 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3929 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) (-3466 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1040)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1177)))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1040)) (-4 *3 (-1177)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-111)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-401 (-553))))) (-3458 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-401 (-553)))))) -(-13 (-710 |t#1| (-1151 |t#1|)) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-394 |t#1|) (-866 |t#1|) (-371 |t#1|) (-169) (-10 -8 (-15 -2226 ($)) (-15 -3199 ($ $)) (-15 -4339 ($ |t#1| |t#1|)) (-15 -3387 (|t#1| $)) (-15 -3375 (|t#1| $)) (-15 -3560 (|t#1| $)) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-545)) (-15 -3929 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-6 -4368)) (-6 -4368) |%noBranch|) (IF (|has| |t#1| (-6 -4365)) (-6 -4365) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|) (IF (|has| |t#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1004)) (PROGN (-6 (-601 (-166 (-220)))) (-6 (-601 (-166 (-373))))) |%noBranch|) (IF (|has| |t#1| (-1040)) (-15 -3466 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1177)) (PROGN (-6 (-1177)) (-15 -3928 (|t#1| $)) (IF (|has| |t#1| (-984)) (-6 (-984)) |%noBranch|) (IF (|has| |t#1| (-1040)) (-15 -1678 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-891)) (IF (|has| |t#1| (-301)) (-6 (-891)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-35) |has| |#1| (-1177)) ((-94) |has| |#1| (-1177)) ((-101) . T) ((-110 #0# #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -3988 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-343)) (|has| |#1| (-357))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-600 (-845)) . T) ((-169) . T) ((-601 (-166 (-220))) |has| |#1| (-1004)) ((-601 (-166 (-373))) |has| |#1| (-1004)) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-601 (-874 (-373))) |has| |#1| (-601 (-874 (-373)))) ((-601 (-874 (-553))) |has| |#1| (-601 (-874 (-553)))) ((-601 #1=(-1151 |#1|)) . T) ((-226 |#1|) . T) ((-228) -3988 (|has| |#1| (-343)) (|has| |#1| (-228))) ((-238) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-278) |has| |#1| (-1177)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -3988 (|has| |#1| (-545)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-301) -3988 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -3988 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| #1#) . T) ((-403 |#1| #1#) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) -3988 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-486) |has| |#1| (-1177)) ((-507 (-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-545) -3988 (|has| |#1| (-545)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-633 #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-703 |#1|) . T) ((-703 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-710 |#1| #1#) . T) ((-712) . T) ((-833) |has| |#1| (-833)) ((-882 (-1155)) |has| |#1| (-882 (-1155))) ((-868 (-373)) |has| |#1| (-868 (-373))) ((-868 (-553)) |has| |#1| (-868 (-553))) ((-866 |#1|) . T) ((-891) -12 (|has| |#1| (-301)) (|has| |#1| (-891))) ((-902) -3988 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-984) -12 (|has| |#1| (-984)) (|has| |#1| (-1177))) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1037 |#1|) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) |has| |#1| (-343)) ((-1177) |has| |#1| (-1177)) ((-1180) |has| |#1| (-1177)) ((-1192) . T) ((-1196) -3988 (|has| |#1| (-343)) (|has| |#1| (-357)) (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) -((-3355 (((-412 |#2|) |#2|) 63))) -(((-164 |#1| |#2|) (-10 -7 (-15 -3355 ((-412 |#2|) |#2|))) (-301) (-1214 (-166 |#1|))) (T -164)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1214 (-166 *4)))))) -(-10 -7 (-15 -3355 ((-412 |#2|) |#2|))) -((-1482 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) -(((-165 |#1| |#2|) (-10 -7 (-15 -1482 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) -(-10 -7 (-15 -1482 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 33)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-545))))) (-1968 (($ $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-545))))) (-2028 (((-111) $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-545))))) (-3989 (((-674 |#1|) (-1238 $)) NIL) (((-674 |#1|)) NIL)) (-1576 ((|#1| $) NIL)) (-2380 (($ $) NIL (|has| |#1| (-1177)))) (-2246 (($ $) NIL (|has| |#1| (-1177)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| |#1| (-343)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-1536 (($ $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-2708 (((-412 $) $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-3365 (($ $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1177))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-301)))) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-2357 (($ $) NIL (|has| |#1| (-1177)))) (-2224 (($ $) NIL (|has| |#1| (-1177)))) (-2403 (($ $) NIL (|has| |#1| (-1177)))) (-2268 (($ $) NIL (|has| |#1| (-1177)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3461 (($ (-1238 |#1|) (-1238 $)) NIL) (($ (-1238 |#1|)) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-3973 (($ $ $) NIL (|has| |#1| (-301)))) (-4232 (((-674 |#1|) $ (-1238 $)) NIL) (((-674 |#1|) $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2654 (($ (-1151 |#1|)) NIL) (((-3 $ "failed") (-401 (-1151 |#1|))) NIL (|has| |#1| (-357)))) (-2982 (((-3 $ "failed") $) NIL)) (-3375 ((|#1| $) 13)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-538)))) (-4323 (((-111) $) NIL (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) NIL (|has| |#1| (-538)))) (-2409 (((-903)) NIL)) (-3031 (($) NIL (|has| |#1| (-362)))) (-3952 (($ $ $) NIL (|has| |#1| (-301)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-301)))) (-2484 (($) NIL (|has| |#1| (-343)))) (-3637 (((-111) $) NIL (|has| |#1| (-343)))) (-1808 (($ $ (-757)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-3119 (((-111) $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-1678 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1040)) (|has| |#1| (-1177))))) (-3996 (($) NIL (|has| |#1| (-1177)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| |#1| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| |#1| (-868 (-373))))) (-2968 (((-903) $) NIL (|has| |#1| (-343))) (((-819 (-903)) $) NIL (|has| |#1| (-343)))) (-1848 (((-111) $) 35)) (-2406 (($ $ (-553)) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1177))))) (-3560 ((|#1| $) 46)) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-301)))) (-3568 (((-1151 |#1|) $) NIL (|has| |#1| (-357)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-2366 (($ $) NIL (|has| |#1| (-1177)))) (-2643 (((-1151 |#1|) $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-1945 (($) NIL (|has| |#1| (-343)) CONST)) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-2226 (($) NIL)) (-3387 ((|#1| $) 15)) (-2786 (((-1099) $) NIL)) (-4093 (($) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-301)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| |#1| (-343)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-891))))) (-3355 (((-412 $) $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-357))))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-301)))) (-3929 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 47 (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-545))))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-301)))) (-2743 (($ $) NIL (|has| |#1| (-1177)))) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) NIL (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-507 (-1155) |#1|)))) (-3384 (((-757) $) NIL (|has| |#1| (-301)))) (-2046 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-301)))) (-3000 ((|#1| (-1238 $)) NIL) ((|#1|) NIL)) (-3122 (((-757) $) NIL (|has| |#1| (-343))) (((-3 (-757) "failed") $ $) NIL (|has| |#1| (-343)))) (-1330 (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-2297 (((-674 |#1|) (-1238 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1394 (((-1151 |#1|)) NIL)) (-2414 (($ $) NIL (|has| |#1| (-1177)))) (-2279 (($ $) NIL (|has| |#1| (-1177)))) (-1469 (($) NIL (|has| |#1| (-343)))) (-2392 (($ $) NIL (|has| |#1| (-1177)))) (-2257 (($ $) NIL (|has| |#1| (-1177)))) (-2368 (($ $) NIL (|has| |#1| (-1177)))) (-2234 (($ $) NIL (|has| |#1| (-1177)))) (-2855 (((-1238 |#1|) $ (-1238 $)) NIL) (((-674 |#1|) (-1238 $) (-1238 $)) NIL) (((-1238 |#1|) $) NIL) (((-674 |#1|) (-1238 $)) NIL)) (-1524 (((-1238 |#1|) $) NIL) (($ (-1238 |#1|)) NIL) (((-1151 |#1|) $) NIL) (($ (-1151 |#1|)) NIL) (((-874 (-553)) $) NIL (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| |#1| (-601 (-874 (-373))))) (((-166 (-373)) $) NIL (|has| |#1| (-1004))) (((-166 (-220)) $) NIL (|has| |#1| (-1004))) (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3199 (($ $) 45)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-343))))) (-4339 (($ |#1| |#1|) 37)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) 36) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-545))))) (-2941 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-3547 (((-1151 |#1|) $) NIL)) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL)) (-2447 (($ $) NIL (|has| |#1| (-1177)))) (-2313 (($ $) NIL (|has| |#1| (-1177)))) (-1639 (((-111) $ $) NIL (-3988 (-12 (|has| |#1| (-301)) (|has| |#1| (-891))) (|has| |#1| (-545))))) (-2425 (($ $) NIL (|has| |#1| (-1177)))) (-2291 (($ $) NIL (|has| |#1| (-1177)))) (-3791 (($ $) NIL (|has| |#1| (-1177)))) (-2336 (($ $) NIL (|has| |#1| (-1177)))) (-3928 ((|#1| $) NIL (|has| |#1| (-1177)))) (-2570 (($ $) NIL (|has| |#1| (-1177)))) (-2346 (($ $) NIL (|has| |#1| (-1177)))) (-3780 (($ $) NIL (|has| |#1| (-1177)))) (-2324 (($ $) NIL (|has| |#1| (-1177)))) (-2435 (($ $) NIL (|has| |#1| (-1177)))) (-2302 (($ $) NIL (|has| |#1| (-1177)))) (-3466 (($ $) NIL (|has| |#1| (-1040)))) (-1988 (($) 28 T CONST)) (-1997 (($) 30 T CONST)) (-3205 (((-1137) $) 23 (|has| |#1| (-814))) (((-1137) $ (-111)) 25 (|has| |#1| (-814))) (((-1243) (-808) $) 26 (|has| |#1| (-814))) (((-1243) (-808) $ (-111)) 27 (|has| |#1| (-814)))) (-1780 (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 39)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-401 (-553))) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1177)))) (($ $ $) NIL (|has| |#1| (-1177))) (($ $ (-553)) NIL (|has| |#1| (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-553)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-553))) NIL (|has| |#1| (-357))))) -(((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|))) (-169)) (T -166)) -NIL -(-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|))) -((-1524 (((-874 |#1|) |#3|) 22))) -(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-874 |#1|) |#3|))) (-1079) (-13 (-601 (-874 |#1|)) (-169)) (-163 |#2|)) (T -167)) -((-1524 (*1 *2 *3) (-12 (-4 *5 (-13 (-601 *2) (-169))) (-5 *2 (-874 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1079)) (-4 *3 (-163 *5))))) -(-10 -7 (-15 -1524 ((-874 |#1|) |#3|))) -((-3096 (((-111) $ $) NIL)) (-3473 (((-111) $) 9)) (-4249 (((-111) $ (-111)) 11)) (-3202 (($) 12)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1508 (($ $) 13)) (-3110 (((-845) $) 17)) (-1518 (((-111) $) 8)) (-2498 (((-111) $ (-111)) 10)) (-1617 (((-111) $ $) NIL))) -(((-168) (-13 (-1079) (-10 -8 (-15 -3202 ($)) (-15 -1518 ((-111) $)) (-15 -3473 ((-111) $)) (-15 -2498 ((-111) $ (-111))) (-15 -4249 ((-111) $ (-111))) (-15 -1508 ($ $))))) (T -168)) -((-3202 (*1 *1) (-5 *1 (-168))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2498 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-4249 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-1508 (*1 *1 *1) (-5 *1 (-168)))) -(-13 (-1079) (-10 -8 (-15 -3202 ($)) (-15 -1518 ((-111) $)) (-15 -3473 ((-111) $)) (-15 -2498 ((-111) $ (-111))) (-15 -4249 ((-111) $ (-111))) (-15 -1508 ($ $)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-169) (-137)) (T -169)) -NIL -(-13 (-1031) (-110 $ $) (-10 -7 (-6 (-4371 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-2407 (($ $) 6))) -(((-170) (-137)) (T -170)) -((-2407 (*1 *1 *1) (-4 *1 (-170)))) -(-13 (-10 -8 (-15 -2407 ($ $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 ((|#1| $) 75)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL)) (-4141 (($ $) 19)) (-2728 (($ |#1| (-1135 |#1|)) 48)) (-2982 (((-3 $ "failed") $) 117)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-3297 (((-1135 |#1|) $) 82)) (-2656 (((-1135 |#1|) $) 79)) (-1568 (((-1135 |#1|) $) 80)) (-1848 (((-111) $) NIL)) (-3108 (((-1135 |#1|) $) 88)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2471 (($ (-630 $)) NIL) (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ (-630 $)) NIL) (($ $ $) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3089 (($ $ (-553)) 91)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2760 (((-1135 |#1|) $) 89)) (-2180 (((-1135 (-401 |#1|)) $) 14)) (-1760 (($ (-401 |#1|)) 17) (($ |#1| (-1135 |#1|) (-1135 |#1|)) 38)) (-2980 (($ $) 93)) (-3110 (((-845) $) 127) (($ (-553)) 51) (($ |#1|) 52) (($ (-401 |#1|)) 36) (($ (-401 (-553))) NIL) (($ $) NIL)) (-1999 (((-757)) 64)) (-1639 (((-111) $ $) NIL)) (-2272 (((-1135 (-401 |#1|)) $) 18)) (-1988 (($) 25 T CONST)) (-1997 (($) 28 T CONST)) (-1617 (((-111) $ $) 35)) (-1723 (($ $ $) 115)) (-1711 (($ $) 106) (($ $ $) 103)) (-1700 (($ $ $) 101)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-401 |#1|) $) 111) (($ $ (-401 |#1|)) NIL) (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL))) -(((-171 |#1|) (-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -1760 ($ (-401 |#1|))) (-15 -1760 ($ |#1| (-1135 |#1|) (-1135 |#1|))) (-15 -2728 ($ |#1| (-1135 |#1|))) (-15 -2656 ((-1135 |#1|) $)) (-15 -1568 ((-1135 |#1|) $)) (-15 -3297 ((-1135 |#1|) $)) (-15 -2751 (|#1| $)) (-15 -4141 ($ $)) (-15 -2272 ((-1135 (-401 |#1|)) $)) (-15 -2180 ((-1135 (-401 |#1|)) $)) (-15 -3108 ((-1135 |#1|) $)) (-15 -2760 ((-1135 |#1|) $)) (-15 -3089 ($ $ (-553))) (-15 -2980 ($ $)))) (-301)) (T -171)) -((-1760 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) (-1760 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1135 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-2728 (*1 *1 *2 *3) (-12 (-5 *3 (-1135 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2751 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-1135 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-1135 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2980 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) -(-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -1760 ($ (-401 |#1|))) (-15 -1760 ($ |#1| (-1135 |#1|) (-1135 |#1|))) (-15 -2728 ($ |#1| (-1135 |#1|))) (-15 -2656 ((-1135 |#1|) $)) (-15 -1568 ((-1135 |#1|) $)) (-15 -3297 ((-1135 |#1|) $)) (-15 -2751 (|#1| $)) (-15 -4141 ($ $)) (-15 -2272 ((-1135 (-401 |#1|)) $)) (-15 -2180 ((-1135 (-401 |#1|)) $)) (-15 -3108 ((-1135 |#1|) $)) (-15 -2760 ((-1135 |#1|) $)) (-15 -3089 ($ $ (-553))) (-15 -2980 ($ $)))) -((-3100 (($ (-108) $) 13)) (-1905 (((-3 (-108) "failed") (-1155) $) 12)) (-3110 (((-845) $) 16)) (-3058 (((-630 (-108)) $) 8))) -(((-172) (-13 (-600 (-845)) (-10 -8 (-15 -3058 ((-630 (-108)) $)) (-15 -3100 ($ (-108) $)) (-15 -1905 ((-3 (-108) "failed") (-1155) $))))) (T -172)) -((-3058 (*1 *2 *1) (-12 (-5 *2 (-630 (-108))) (-5 *1 (-172)))) (-3100 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-1905 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-108)) (-5 *1 (-172))))) -(-13 (-600 (-845)) (-10 -8 (-15 -3058 ((-630 (-108)) $)) (-15 -3100 ($ (-108) $)) (-15 -1905 ((-3 (-108) "failed") (-1155) $)))) -((-1864 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 40)) (-2690 (((-925 |#1|) (-925 |#1|)) 19)) (-3876 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 36)) (-4283 (((-925 |#1|) (-925 |#1|)) 17)) (-3425 (((-925 |#1|) (-925 |#1|)) 25)) (-1811 (((-925 |#1|) (-925 |#1|)) 24)) (-2196 (((-925 |#1|) (-925 |#1|)) 23)) (-2914 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 37)) (-1851 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 35)) (-3306 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 34)) (-2239 (((-925 |#1|) (-925 |#1|)) 18)) (-2432 (((-1 (-925 |#1|) (-925 |#1|)) |#1| |#1|) 43)) (-3469 (((-925 |#1|) (-925 |#1|)) 8)) (-2206 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 39)) (-2934 (((-1 (-925 |#1|) (-925 |#1|)) |#1|) 38))) -(((-173 |#1|) (-10 -7 (-15 -3469 ((-925 |#1|) (-925 |#1|))) (-15 -4283 ((-925 |#1|) (-925 |#1|))) (-15 -2239 ((-925 |#1|) (-925 |#1|))) (-15 -2690 ((-925 |#1|) (-925 |#1|))) (-15 -2196 ((-925 |#1|) (-925 |#1|))) (-15 -1811 ((-925 |#1|) (-925 |#1|))) (-15 -3425 ((-925 |#1|) (-925 |#1|))) (-15 -3306 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -1851 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -3876 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2914 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2934 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2206 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -1864 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2432 ((-1 (-925 |#1|) (-925 |#1|)) |#1| |#1|))) (-13 (-357) (-1177) (-984))) (T -173)) -((-2432 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-2206 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-2934 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-2914 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-3876 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-1851 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-3306 (*1 *2 *3) (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1177) (-984))))) (-3425 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3)))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) (-5 *1 (-173 *3))))) -(-10 -7 (-15 -3469 ((-925 |#1|) (-925 |#1|))) (-15 -4283 ((-925 |#1|) (-925 |#1|))) (-15 -2239 ((-925 |#1|) (-925 |#1|))) (-15 -2690 ((-925 |#1|) (-925 |#1|))) (-15 -2196 ((-925 |#1|) (-925 |#1|))) (-15 -1811 ((-925 |#1|) (-925 |#1|))) (-15 -3425 ((-925 |#1|) (-925 |#1|))) (-15 -3306 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -1851 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -3876 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2914 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2934 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2206 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -1864 ((-1 (-925 |#1|) (-925 |#1|)) |#1|)) (-15 -2432 ((-1 (-925 |#1|) (-925 |#1|)) |#1| |#1|))) -((-3547 ((|#2| |#3|) 27))) -(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -3547 (|#2| |#3|))) (-169) (-1214 |#1|) (-710 |#1| |#2|)) (T -174)) -((-3547 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1214 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-710 *4 *2))))) -(-10 -7 (-15 -3547 (|#2| |#3|))) -((-2059 (((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)) 47 (|has| (-934 |#2|) (-868 |#1|))))) -(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-934 |#2|) (-868 |#1|)) (-15 -2059 ((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|))) |%noBranch|)) (-1079) (-13 (-868 |#1|) (-169)) (-163 |#2|)) (T -175)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 *3)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-4 *3 (-163 *6)) (-4 (-934 *6) (-868 *5)) (-4 *6 (-13 (-868 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) -(-10 -7 (IF (|has| (-934 |#2|) (-868 |#1|)) (-15 -2059 ((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|))) |%noBranch|)) -((-2088 (((-630 |#1|) (-630 |#1|) |#1|) 38)) (-3295 (((-630 |#1|) |#1| (-630 |#1|)) 19)) (-4228 (((-630 |#1|) (-630 (-630 |#1|)) (-630 |#1|)) 33) ((|#1| (-630 |#1|) (-630 |#1|)) 31))) -(((-176 |#1|) (-10 -7 (-15 -3295 ((-630 |#1|) |#1| (-630 |#1|))) (-15 -4228 (|#1| (-630 |#1|) (-630 |#1|))) (-15 -4228 ((-630 |#1|) (-630 (-630 |#1|)) (-630 |#1|))) (-15 -2088 ((-630 |#1|) (-630 |#1|) |#1|))) (-301)) (T -176)) -((-2088 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3)))) (-4228 (*1 *2 *3 *2) (-12 (-5 *3 (-630 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-301)) (-5 *1 (-176 *4)))) (-4228 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) (-3295 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -3295 ((-630 |#1|) |#1| (-630 |#1|))) (-15 -4228 (|#1| (-630 |#1|) (-630 |#1|))) (-15 -4228 ((-630 |#1|) (-630 (-630 |#1|)) (-630 |#1|))) (-15 -2088 ((-630 |#1|) (-630 |#1|) |#1|))) -((-3096 (((-111) $ $) NIL)) (-1378 (((-1191) $) 13)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3456 (((-1114) $) 10)) (-3110 (((-845) $) 22) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-177) (-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -1378 ((-1191) $))))) (T -177)) -((-3456 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-177)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-177))))) -(-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -1378 ((-1191) $)))) -((-2031 (((-2 (|:| |start| |#2|) (|:| -3713 (-412 |#2|))) |#2|) 61)) (-2684 ((|#1| |#1|) 54)) (-1297 (((-166 |#1|) |#2|) 84)) (-2347 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1616 ((|#2| |#2|) 83)) (-3409 (((-412 |#2|) |#2| |#1|) 113) (((-412 |#2|) |#2| |#1| (-111)) 81)) (-3560 ((|#1| |#2|) 112)) (-4186 ((|#2| |#2|) 119)) (-3355 (((-412 |#2|) |#2|) 134) (((-412 |#2|) |#2| |#1|) 32) (((-412 |#2|) |#2| |#1| (-111)) 133)) (-1553 (((-630 (-2 (|:| -3713 (-630 |#2|)) (|:| -1833 |#1|))) |#2| |#2|) 132) (((-630 (-2 (|:| -3713 (-630 |#2|)) (|:| -1833 |#1|))) |#2| |#2| (-111)) 76)) (-4046 (((-630 (-166 |#1|)) |#2| |#1|) 40) (((-630 (-166 |#1|)) |#2|) 41))) -(((-178 |#1| |#2|) (-10 -7 (-15 -4046 ((-630 (-166 |#1|)) |#2|)) (-15 -4046 ((-630 (-166 |#1|)) |#2| |#1|)) (-15 -1553 ((-630 (-2 (|:| -3713 (-630 |#2|)) (|:| -1833 |#1|))) |#2| |#2| (-111))) (-15 -1553 ((-630 (-2 (|:| -3713 (-630 |#2|)) (|:| -1833 |#1|))) |#2| |#2|)) (-15 -3355 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3355 ((-412 |#2|) |#2| |#1|)) (-15 -3355 ((-412 |#2|) |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -3560 (|#1| |#2|)) (-15 -3409 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3409 ((-412 |#2|) |#2| |#1|)) (-15 -1616 (|#2| |#2|)) (-15 -2347 (|#1| |#2| |#1|)) (-15 -2347 (|#1| |#2|)) (-15 -1297 ((-166 |#1|) |#2|)) (-15 -2684 (|#1| |#1|)) (-15 -2031 ((-2 (|:| |start| |#2|) (|:| -3713 (-412 |#2|))) |#2|))) (-13 (-357) (-831)) (-1214 (-166 |#1|))) (T -178)) -((-2031 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-2 (|:| |start| *3) (|:| -3713 (-412 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-2684 (*1 *2 *2) (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1214 (-166 *2))))) (-1297 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-357) (-831))) (-4 *3 (-1214 *2)))) (-2347 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1214 (-166 *2))))) (-2347 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1214 (-166 *2))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-831))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1214 (-166 *3))))) (-3409 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-3560 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1214 (-166 *2))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-831))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1214 (-166 *3))))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-3355 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-3355 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-1553 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-630 (-2 (|:| -3713 (-630 *3)) (|:| -1833 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-1553 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-831))) (-5 *2 (-630 (-2 (|:| -3713 (-630 *3)) (|:| -1833 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1214 (-166 *5))))) (-4046 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-630 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-630 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4)))))) -(-10 -7 (-15 -4046 ((-630 (-166 |#1|)) |#2|)) (-15 -4046 ((-630 (-166 |#1|)) |#2| |#1|)) (-15 -1553 ((-630 (-2 (|:| -3713 (-630 |#2|)) (|:| -1833 |#1|))) |#2| |#2| (-111))) (-15 -1553 ((-630 (-2 (|:| -3713 (-630 |#2|)) (|:| -1833 |#1|))) |#2| |#2|)) (-15 -3355 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3355 ((-412 |#2|) |#2| |#1|)) (-15 -3355 ((-412 |#2|) |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -3560 (|#1| |#2|)) (-15 -3409 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3409 ((-412 |#2|) |#2| |#1|)) (-15 -1616 (|#2| |#2|)) (-15 -2347 (|#1| |#2| |#1|)) (-15 -2347 (|#1| |#2|)) (-15 -1297 ((-166 |#1|) |#2|)) (-15 -2684 (|#1| |#1|)) (-15 -2031 ((-2 (|:| |start| |#2|) (|:| -3713 (-412 |#2|))) |#2|))) -((-4251 (((-3 |#2| "failed") |#2|) 14)) (-3533 (((-757) |#2|) 16)) (-4348 ((|#2| |#2| |#2|) 18))) -(((-179 |#1| |#2|) (-10 -7 (-15 -4251 ((-3 |#2| "failed") |#2|)) (-15 -3533 ((-757) |#2|)) (-15 -4348 (|#2| |#2| |#2|))) (-1192) (-659 |#1|)) (T -179)) -((-4348 (*1 *2 *2 *2) (-12 (-4 *3 (-1192)) (-5 *1 (-179 *3 *2)) (-4 *2 (-659 *3)))) (-3533 (*1 *2 *3) (-12 (-4 *4 (-1192)) (-5 *2 (-757)) (-5 *1 (-179 *4 *3)) (-4 *3 (-659 *4)))) (-4251 (*1 *2 *2) (|partial| -12 (-4 *3 (-1192)) (-5 *1 (-179 *3 *2)) (-4 *2 (-659 *3))))) -(-10 -7 (-15 -4251 ((-3 |#2| "failed") |#2|)) (-15 -3533 ((-757) |#2|)) (-15 -4348 (|#2| |#2| |#2|))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2012 (((-1155) $) 10)) (-3110 (((-845) $) 17)) (-4112 (((-630 (-1160)) $) 12)) (-1617 (((-111) $ $) 15))) -(((-180) (-13 (-1079) (-10 -8 (-15 -2012 ((-1155) $)) (-15 -4112 ((-630 (-1160)) $))))) (T -180)) -((-2012 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-180)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-180))))) -(-13 (-1079) (-10 -8 (-15 -2012 ((-1155) $)) (-15 -4112 ((-630 (-1160)) $)))) -((-3096 (((-111) $ $) NIL)) (-7 (($) 8 T CONST)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-8 (($) 7 T CONST)) (-3110 (((-845) $) 14)) (-9 (($) 6 T CONST)) (-1617 (((-111) $ $) 10))) -(((-181) (-13 (-1079) (-10 -8 (-15 -9 ($) -3879) (-15 -8 ($) -3879) (-15 -7 ($) -3879)))) (T -181)) -((-9 (*1 *1) (-5 *1 (-181))) (-8 (*1 *1) (-5 *1 (-181))) (-7 (*1 *1) (-5 *1 (-181)))) -(-13 (-1079) (-10 -8 (-15 -9 ($) -3879) (-15 -8 ($) -3879) (-15 -7 ($) -3879))) -((-3096 (((-111) $ $) NIL)) (-4298 (((-499) $) 8)) (-1735 (((-1137) $) NIL)) (-1453 (((-181) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 14)) (-3370 (((-1099) $) NIL)) (-1617 (((-111) $ $) 11))) -(((-182) (-13 (-1079) (-10 -8 (-15 -4298 ((-499) $)) (-15 -1453 ((-181) $)) (-15 -3370 ((-1099) $))))) (T -182)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-182)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-182))))) -(-13 (-1079) (-10 -8 (-15 -4298 ((-499) $)) (-15 -1453 ((-181) $)) (-15 -3370 ((-1099) $)))) -((-3266 ((|#2| |#2|) 28)) (-3034 (((-111) |#2|) 19)) (-3375 (((-310 |#1|) |#2|) 12)) (-3387 (((-310 |#1|) |#2|) 14)) (-1676 ((|#2| |#2| (-1155)) 68) ((|#2| |#2|) 69)) (-4069 (((-166 (-310 |#1|)) |#2|) 10)) (-2299 ((|#2| |#2| (-1155)) 65) ((|#2| |#2|) 59))) -(((-183 |#1| |#2|) (-10 -7 (-15 -1676 (|#2| |#2|)) (-15 -1676 (|#2| |#2| (-1155))) (-15 -2299 (|#2| |#2|)) (-15 -2299 (|#2| |#2| (-1155))) (-15 -3375 ((-310 |#1|) |#2|)) (-15 -3387 ((-310 |#1|) |#2|)) (-15 -3034 ((-111) |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -4069 ((-166 (-310 |#1|)) |#2|))) (-13 (-545) (-833) (-1020 (-553))) (-13 (-27) (-1177) (-424 (-166 |#1|)))) (T -183)) -((-4069 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *3)))))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-111)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) (-3387 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) (-3375 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) (-2299 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *4)))))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *3)))))) (-1676 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *4)))))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *3))))))) -(-10 -7 (-15 -1676 (|#2| |#2|)) (-15 -1676 (|#2| |#2| (-1155))) (-15 -2299 (|#2| |#2|)) (-15 -2299 (|#2| |#2| (-1155))) (-15 -3375 ((-310 |#1|) |#2|)) (-15 -3387 ((-310 |#1|) |#2|)) (-15 -3034 ((-111) |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -4069 ((-166 (-310 |#1|)) |#2|))) -((-1407 (((-1238 (-674 (-934 |#1|))) (-1238 (-674 |#1|))) 24)) (-3110 (((-1238 (-674 (-401 (-934 |#1|)))) (-1238 (-674 |#1|))) 33))) -(((-184 |#1|) (-10 -7 (-15 -1407 ((-1238 (-674 (-934 |#1|))) (-1238 (-674 |#1|)))) (-15 -3110 ((-1238 (-674 (-401 (-934 |#1|)))) (-1238 (-674 |#1|))))) (-169)) (T -184)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-1238 (-674 *4))) (-4 *4 (-169)) (-5 *2 (-1238 (-674 (-401 (-934 *4))))) (-5 *1 (-184 *4)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-1238 (-674 *4))) (-4 *4 (-169)) (-5 *2 (-1238 (-674 (-934 *4)))) (-5 *1 (-184 *4))))) -(-10 -7 (-15 -1407 ((-1238 (-674 (-934 |#1|))) (-1238 (-674 |#1|)))) (-15 -3110 ((-1238 (-674 (-401 (-934 |#1|)))) (-1238 (-674 |#1|))))) -((-1532 (((-1157 (-401 (-553))) (-1157 (-401 (-553))) (-1157 (-401 (-553)))) 66)) (-1691 (((-1157 (-401 (-553))) (-630 (-553)) (-630 (-553))) 75)) (-3412 (((-1157 (-401 (-553))) (-553)) 40)) (-4111 (((-1157 (-401 (-553))) (-553)) 52)) (-2356 (((-401 (-553)) (-1157 (-401 (-553)))) 62)) (-2511 (((-1157 (-401 (-553))) (-553)) 32)) (-3179 (((-1157 (-401 (-553))) (-553)) 48)) (-1598 (((-1157 (-401 (-553))) (-553)) 46)) (-3281 (((-1157 (-401 (-553))) (-1157 (-401 (-553))) (-1157 (-401 (-553)))) 60)) (-2980 (((-1157 (-401 (-553))) (-553)) 25)) (-3486 (((-401 (-553)) (-1157 (-401 (-553))) (-1157 (-401 (-553)))) 64)) (-3169 (((-1157 (-401 (-553))) (-553)) 30)) (-4225 (((-1157 (-401 (-553))) (-630 (-553))) 72))) -(((-185) (-10 -7 (-15 -2980 ((-1157 (-401 (-553))) (-553))) (-15 -3412 ((-1157 (-401 (-553))) (-553))) (-15 -2511 ((-1157 (-401 (-553))) (-553))) (-15 -3169 ((-1157 (-401 (-553))) (-553))) (-15 -1598 ((-1157 (-401 (-553))) (-553))) (-15 -3179 ((-1157 (-401 (-553))) (-553))) (-15 -4111 ((-1157 (-401 (-553))) (-553))) (-15 -3486 ((-401 (-553)) (-1157 (-401 (-553))) (-1157 (-401 (-553))))) (-15 -3281 ((-1157 (-401 (-553))) (-1157 (-401 (-553))) (-1157 (-401 (-553))))) (-15 -2356 ((-401 (-553)) (-1157 (-401 (-553))))) (-15 -1532 ((-1157 (-401 (-553))) (-1157 (-401 (-553))) (-1157 (-401 (-553))))) (-15 -4225 ((-1157 (-401 (-553))) (-630 (-553)))) (-15 -1691 ((-1157 (-401 (-553))) (-630 (-553)) (-630 (-553)))))) (T -185)) -((-1691 (*1 *2 *3 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)))) (-1532 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1157 (-401 (-553)))) (-5 *2 (-401 (-553))) (-5 *1 (-185)))) (-3281 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)))) (-3486 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 (-401 (-553)))) (-5 *2 (-401 (-553))) (-5 *1 (-185)))) (-4111 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) (-3179 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) (-1598 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) (-3169 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) (-2511 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) (-3412 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) (-2980 (*1 *2 *3) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553))))) -(-10 -7 (-15 -2980 ((-1157 (-401 (-553))) (-553))) (-15 -3412 ((-1157 (-401 (-553))) (-553))) (-15 -2511 ((-1157 (-401 (-553))) (-553))) (-15 -3169 ((-1157 (-401 (-553))) (-553))) (-15 -1598 ((-1157 (-401 (-553))) (-553))) (-15 -3179 ((-1157 (-401 (-553))) (-553))) (-15 -4111 ((-1157 (-401 (-553))) (-553))) (-15 -3486 ((-401 (-553)) (-1157 (-401 (-553))) (-1157 (-401 (-553))))) (-15 -3281 ((-1157 (-401 (-553))) (-1157 (-401 (-553))) (-1157 (-401 (-553))))) (-15 -2356 ((-401 (-553)) (-1157 (-401 (-553))))) (-15 -1532 ((-1157 (-401 (-553))) (-1157 (-401 (-553))) (-1157 (-401 (-553))))) (-15 -4225 ((-1157 (-401 (-553))) (-630 (-553)))) (-15 -1691 ((-1157 (-401 (-553))) (-630 (-553)) (-630 (-553))))) -((-2557 (((-412 (-1151 (-553))) (-553)) 28)) (-4254 (((-630 (-1151 (-553))) (-553)) 23)) (-1555 (((-1151 (-553)) (-553)) 21))) -(((-186) (-10 -7 (-15 -4254 ((-630 (-1151 (-553))) (-553))) (-15 -1555 ((-1151 (-553)) (-553))) (-15 -2557 ((-412 (-1151 (-553))) (-553))))) (T -186)) -((-2557 (*1 *2 *3) (-12 (-5 *2 (-412 (-1151 (-553)))) (-5 *1 (-186)) (-5 *3 (-553)))) (-1555 (*1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-186)) (-5 *3 (-553)))) (-4254 (*1 *2 *3) (-12 (-5 *2 (-630 (-1151 (-553)))) (-5 *1 (-186)) (-5 *3 (-553))))) -(-10 -7 (-15 -4254 ((-630 (-1151 (-553))) (-553))) (-15 -1555 ((-1151 (-553)) (-553))) (-15 -2557 ((-412 (-1151 (-553))) (-553)))) -((-1823 (((-1135 (-220)) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 104)) (-3226 (((-630 (-1137)) (-1135 (-220))) NIL)) (-3207 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 80)) (-4013 (((-630 (-220)) (-310 (-220)) (-1155) (-1073 (-826 (-220)))) NIL)) (-3998 (((-630 (-1137)) (-630 (-220))) NIL)) (-1684 (((-220) (-1073 (-826 (-220)))) 24)) (-2073 (((-220) (-1073 (-826 (-220)))) 25)) (-2325 (((-373) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 97)) (-3947 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-3314 (((-1137) (-220)) NIL)) (-3534 (((-1137) (-630 (-1137))) 20)) (-3092 (((-1017) (-1155) (-1155) (-1017)) 13))) -(((-187) (-10 -7 (-15 -3207 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3947 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1684 ((-220) (-1073 (-826 (-220))))) (-15 -2073 ((-220) (-1073 (-826 (-220))))) (-15 -2325 ((-373) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -4013 ((-630 (-220)) (-310 (-220)) (-1155) (-1073 (-826 (-220))))) (-15 -1823 ((-1135 (-220)) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3314 ((-1137) (-220))) (-15 -3998 ((-630 (-1137)) (-630 (-220)))) (-15 -3226 ((-630 (-1137)) (-1135 (-220)))) (-15 -3534 ((-1137) (-630 (-1137)))) (-15 -3092 ((-1017) (-1155) (-1155) (-1017))))) (T -187)) -((-3092 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1017)) (-5 *3 (-1155)) (-5 *1 (-187)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1137)) (-5 *1 (-187)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1135 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-187)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-630 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-187)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1137)) (-5 *1 (-187)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-187)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1155)) (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-187)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-187)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-187)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-187))))) -(-10 -7 (-15 -3207 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3947 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1684 ((-220) (-1073 (-826 (-220))))) (-15 -2073 ((-220) (-1073 (-826 (-220))))) (-15 -2325 ((-373) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -4013 ((-630 (-220)) (-310 (-220)) (-1155) (-1073 (-826 (-220))))) (-15 -1823 ((-1135 (-220)) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3314 ((-1137) (-220))) (-15 -3998 ((-630 (-1137)) (-630 (-220)))) (-15 -3226 ((-630 (-1137)) (-1135 (-220)))) (-15 -3534 ((-1137) (-630 (-1137)))) (-15 -3092 ((-1017) (-1155) (-1155) (-1017)))) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 55) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-188) (-773)) (T -188)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 60) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-189) (-773)) (T -189)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 69) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-190) (-773)) (T -190)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 56) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-191) (-773)) (T -191)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 67) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 38) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-192) (-773)) (T -192)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 73) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-193) (-773)) (T -193)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 80) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 44) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-194) (-773)) (T -194)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 70) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-195) (-773)) (T -195)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 65)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-196) (-773)) (T -196)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 63)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-197) (-773)) (T -197)) -NIL -(-773) -((-3096 (((-111) $ $) NIL)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 90) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 78) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-198) (-773)) (T -198)) -NIL -(-773) -((-3382 (((-3 (-2 (|:| -1463 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 85)) (-1371 (((-553) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-1705 (((-3 (-630 (-220)) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 73))) -(((-199) (-10 -7 (-15 -3382 ((-3 (-2 (|:| -1463 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1705 ((-3 (-630 (-220)) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1371 ((-553) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -199)) -((-1371 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-553)) (-5 *1 (-199)))) (-1705 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-199)))) (-3382 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1463 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) -(-10 -7 (-15 -3382 ((-3 (-2 (|:| -1463 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1705 ((-3 (-630 (-220)) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1371 ((-553) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-1894 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-1983 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 129)) (-2642 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-674 (-310 (-220)))) 88)) (-2174 (((-373) (-674 (-310 (-220)))) 112)) (-2203 (((-674 (-310 (-220))) (-1238 (-310 (-220))) (-630 (-1155))) 109)) (-2997 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 30)) (-2960 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 43)) (-2356 (((-674 (-310 (-220))) (-674 (-310 (-220))) (-630 (-1155)) (-1238 (-310 (-220)))) 101)) (-2394 (((-373) (-373) (-630 (-373))) 106) (((-373) (-373) (-373)) 104)) (-2208 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36))) -(((-200) (-10 -7 (-15 -2394 ((-373) (-373) (-373))) (-15 -2394 ((-373) (-373) (-630 (-373)))) (-15 -2174 ((-373) (-674 (-310 (-220))))) (-15 -2203 ((-674 (-310 (-220))) (-1238 (-310 (-220))) (-630 (-1155)))) (-15 -2356 ((-674 (-310 (-220))) (-674 (-310 (-220))) (-630 (-1155)) (-1238 (-310 (-220))))) (-15 -2642 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-674 (-310 (-220))))) (-15 -1983 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1894 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2960 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2208 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2997 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -200)) -((-2997 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-674 (-310 (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-2356 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-674 (-310 (-220)))) (-5 *3 (-630 (-1155))) (-5 *4 (-1238 (-310 (-220)))) (-5 *1 (-200)))) (-2203 (*1 *2 *3 *4) (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *4 (-630 (-1155))) (-5 *2 (-674 (-310 (-220)))) (-5 *1 (-200)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-674 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2394 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-373))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2394 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200))))) -(-10 -7 (-15 -2394 ((-373) (-373) (-373))) (-15 -2394 ((-373) (-373) (-630 (-373)))) (-15 -2174 ((-373) (-674 (-310 (-220))))) (-15 -2203 ((-674 (-310 (-220))) (-1238 (-310 (-220))) (-630 (-1155)))) (-15 -2356 ((-674 (-310 (-220))) (-674 (-310 (-220))) (-630 (-1155)) (-1238 (-310 (-220))))) (-15 -2642 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-674 (-310 (-220))))) (-15 -1983 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1894 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2960 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2208 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2997 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-3096 (((-111) $ $) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1612 (((-1017) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 64)) (-1617 (((-111) $ $) NIL))) -(((-201) (-786)) (T -201)) -NIL -(-786) -((-3096 (((-111) $ $) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1612 (((-1017) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 62)) (-1617 (((-111) $ $) NIL))) -(((-202) (-786)) (T -202)) -NIL -(-786) -((-3096 (((-111) $ $) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1612 (((-1017) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 66)) (-1617 (((-111) $ $) NIL))) -(((-203) (-786)) (T -203)) -NIL -(-786) -((-3096 (((-111) $ $) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 46)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1612 (((-1017) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 75)) (-1617 (((-111) $ $) NIL))) -(((-204) (-786)) (T -204)) -NIL -(-786) -((-2694 (((-630 (-1155)) (-1155) (-757)) 23)) (-2798 (((-310 (-220)) (-310 (-220))) 31)) (-3912 (((-111) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 73)) (-2457 (((-111) (-220) (-220) (-630 (-310 (-220)))) 44))) -(((-205) (-10 -7 (-15 -2694 ((-630 (-1155)) (-1155) (-757))) (-15 -2798 ((-310 (-220)) (-310 (-220)))) (-15 -2457 ((-111) (-220) (-220) (-630 (-310 (-220))))) (-15 -3912 ((-111) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))))))) (T -205)) -((-3912 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) (-5 *2 (-111)) (-5 *1 (-205)))) (-2457 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-630 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-205)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-5 *2 (-630 (-1155))) (-5 *1 (-205)) (-5 *3 (-1155))))) -(-10 -7 (-15 -2694 ((-630 (-1155)) (-1155) (-757))) (-15 -2798 ((-310 (-220)) (-310 (-220)))) (-15 -2457 ((-111) (-220) (-220) (-630 (-310 (-220))))) (-15 -3912 ((-111) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))))) -((-3096 (((-111) $ $) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 26)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-2018 (((-1017) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 57)) (-1617 (((-111) $ $) NIL))) -(((-206) (-877)) (T -206)) -NIL -(-877) -((-3096 (((-111) $ $) NIL)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 21)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-2018 (((-1017) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) NIL)) (-1617 (((-111) $ $) NIL))) -(((-207) (-877)) (T -207)) -NIL -(-877) -((-3096 (((-111) $ $) NIL)) (-2454 ((|#2| $ (-757) |#2|) 11)) (-2441 ((|#2| $ (-757)) 10)) (-3202 (($) 8)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 18)) (-1617 (((-111) $ $) 13))) -(((-208 |#1| |#2|) (-13 (-1079) (-10 -8 (-15 -3202 ($)) (-15 -2441 (|#2| $ (-757))) (-15 -2454 (|#2| $ (-757) |#2|)))) (-903) (-1079)) (T -208)) -((-3202 (*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1079)))) (-2441 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *2 (-1079)) (-5 *1 (-208 *4 *2)) (-14 *4 (-903)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-208 *4 *2)) (-14 *4 (-903)) (-4 *2 (-1079))))) -(-13 (-1079) (-10 -8 (-15 -3202 ($)) (-15 -2441 (|#2| $ (-757))) (-15 -2454 (|#2| $ (-757) |#2|)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2602 (((-1243) $) 36) (((-1243) $ (-903) (-903)) 38)) (-2046 (($ $ (-971)) 19) (((-240 (-1137)) $ (-1155)) 15)) (-2524 (((-1243) $) 34)) (-3110 (((-845) $) 31) (($ (-630 |#1|)) 8)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $ $) 27)) (-1700 (($ $ $) 22))) -(((-209 |#1|) (-13 (-1079) (-603 (-630 |#1|)) (-10 -8 (-15 -2046 ($ $ (-971))) (-15 -2046 ((-240 (-1137)) $ (-1155))) (-15 -1700 ($ $ $)) (-15 -1711 ($ $ $)) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $)) (-15 -2602 ((-1243) $ (-903) (-903))))) (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $))))) (T -209)) -((-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-971)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $))))))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-240 (-1137))) (-5 *1 (-209 *4)) (-4 *4 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ *3)) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $))))))) (-1700 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $))))))) (-1711 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $))))))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 (*2 $)) (-15 -2602 (*2 $))))))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 (*2 $)) (-15 -2602 (*2 $))))))) (-2602 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1243)) (-5 *1 (-209 *4)) (-4 *4 (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 (*2 $)) (-15 -2602 (*2 $)))))))) -(-13 (-1079) (-603 (-630 |#1|)) (-10 -8 (-15 -2046 ($ $ (-971))) (-15 -2046 ((-240 (-1137)) $ (-1155))) (-15 -1700 ($ $ $)) (-15 -1711 ($ $ $)) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $)) (-15 -2602 ((-1243) $ (-903) (-903))))) -((-2467 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-210 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2467 (|#2| |#4| (-1 |#2| |#2|)))) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -210)) -((-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1214 (-401 *2))) (-4 *2 (-1214 *5)) (-5 *1 (-210 *5 *2 *6 *3)) (-4 *3 (-336 *5 *2 *6))))) -(-10 -7 (-15 -2467 (|#2| |#4| (-1 |#2| |#2|)))) -((-4061 ((|#2| |#2| (-757) |#2|) 42)) (-2920 ((|#2| |#2| (-757) |#2|) 38)) (-3897 (((-630 |#2|) (-630 (-2 (|:| |deg| (-757)) (|:| -2544 |#2|)))) 57)) (-1383 (((-630 (-2 (|:| |deg| (-757)) (|:| -2544 |#2|))) |#2|) 53)) (-1389 (((-111) |#2|) 50)) (-3519 (((-412 |#2|) |#2|) 77)) (-3355 (((-412 |#2|) |#2|) 76)) (-2108 ((|#2| |#2| (-757) |#2|) 36)) (-1530 (((-2 (|:| |cont| |#1|) (|:| -3713 (-630 (-2 (|:| |irr| |#2|) (|:| -3220 (-553)))))) |#2| (-111)) 69))) -(((-211 |#1| |#2|) (-10 -7 (-15 -3355 ((-412 |#2|) |#2|)) (-15 -3519 ((-412 |#2|) |#2|)) (-15 -1530 ((-2 (|:| |cont| |#1|) (|:| -3713 (-630 (-2 (|:| |irr| |#2|) (|:| -3220 (-553)))))) |#2| (-111))) (-15 -1383 ((-630 (-2 (|:| |deg| (-757)) (|:| -2544 |#2|))) |#2|)) (-15 -3897 ((-630 |#2|) (-630 (-2 (|:| |deg| (-757)) (|:| -2544 |#2|))))) (-15 -2108 (|#2| |#2| (-757) |#2|)) (-15 -2920 (|#2| |#2| (-757) |#2|)) (-15 -4061 (|#2| |#2| (-757) |#2|)) (-15 -1389 ((-111) |#2|))) (-343) (-1214 |#1|)) (T -211)) -((-1389 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1214 *4)))) (-4061 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1214 *4)))) (-2920 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1214 *4)))) (-2108 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1214 *4)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| |deg| (-757)) (|:| -2544 *5)))) (-4 *5 (-1214 *4)) (-4 *4 (-343)) (-5 *2 (-630 *5)) (-5 *1 (-211 *4 *5)))) (-1383 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-630 (-2 (|:| |deg| (-757)) (|:| -2544 *3)))) (-5 *1 (-211 *4 *3)) (-4 *3 (-1214 *4)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) (-5 *1 (-211 *5 *3)) (-4 *3 (-1214 *5)))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1214 *4)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -3355 ((-412 |#2|) |#2|)) (-15 -3519 ((-412 |#2|) |#2|)) (-15 -1530 ((-2 (|:| |cont| |#1|) (|:| -3713 (-630 (-2 (|:| |irr| |#2|) (|:| -3220 (-553)))))) |#2| (-111))) (-15 -1383 ((-630 (-2 (|:| |deg| (-757)) (|:| -2544 |#2|))) |#2|)) (-15 -3897 ((-630 |#2|) (-630 (-2 (|:| |deg| (-757)) (|:| -2544 |#2|))))) (-15 -2108 (|#2| |#2| (-757) |#2|)) (-15 -2920 (|#2| |#2| (-757) |#2|)) (-15 -4061 (|#2| |#2| (-757) |#2|)) (-15 -1389 ((-111) |#2|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-553) $) NIL (|has| (-553) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-553) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| (-553) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-553) (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| (-553) (-1020 (-553))))) (-2707 (((-553) $) NIL) (((-1155) $) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-553) (-1020 (-553)))) (((-553) $) NIL (|has| (-553) (-1020 (-553))))) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-553) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| (-553) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-553) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-553) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-553) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| (-553) (-1130)))) (-2797 (((-111) $) NIL (|has| (-553) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-553) (-833)))) (-1482 (($ (-1 (-553) (-553)) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-553) (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-553) (-301))) (((-401 (-553)) $) NIL)) (-2334 (((-553) $) NIL (|has| (-553) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-553)) (-630 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-553) (-553)) NIL (|has| (-553) (-303 (-553)))) (($ $ (-288 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-288 (-553)))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-1155)) (-630 (-553))) NIL (|has| (-553) (-507 (-1155) (-553)))) (($ $ (-1155) (-553)) NIL (|has| (-553) (-507 (-1155) (-553))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-553)) NIL (|has| (-553) (-280 (-553) (-553))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-553) $) NIL)) (-2625 (($ (-401 (-553))) 9)) (-1524 (((-874 (-553)) $) NIL (|has| (-553) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-553) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-553) (-601 (-529)))) (((-373) $) NIL (|has| (-553) (-1004))) (((-220) $) NIL (|has| (-553) (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-553) (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) 8) (($ (-553)) NIL) (($ (-1155)) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL) (((-986 10) $) 10)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-553) (-891))) (|has| (-553) (-142))))) (-1999 (((-757)) NIL)) (-2582 (((-553) $) NIL (|has| (-553) (-538)))) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL (|has| (-553) (-806)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1723 (($ $ $) NIL) (($ (-553) (-553)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-553) $) NIL) (($ $ (-553)) NIL))) -(((-212) (-13 (-974 (-553)) (-600 (-401 (-553))) (-600 (-986 10)) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -2625 ($ (-401 (-553))))))) (T -212)) -((-3785 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-212)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-212))))) -(-13 (-974 (-553)) (-600 (-401 (-553))) (-600 (-986 10)) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -2625 ($ (-401 (-553)))))) -((-3096 (((-111) $ $) NIL)) (-1356 (((-1097) $) 13)) (-1735 (((-1137) $) NIL)) (-2117 (((-476) $) 10)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 25) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-1114) $) 15)) (-1617 (((-111) $ $) NIL))) -(((-213) (-13 (-1062) (-10 -8 (-15 -2117 ((-476) $)) (-15 -1356 ((-1097) $)) (-15 -4310 ((-1114) $))))) (T -213)) -((-2117 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-213)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-213))))) -(-13 (-1062) (-10 -8 (-15 -2117 ((-476) $)) (-15 -1356 ((-1097) $)) (-15 -4310 ((-1114) $)))) -((-3406 (((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1071 (-826 |#2|)) (-1137)) 28) (((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1071 (-826 |#2|))) 24)) (-3363 (((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1155) (-826 |#2|) (-826 |#2|) (-111)) 17))) -(((-214 |#1| |#2|) (-10 -7 (-15 -3406 ((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1071 (-826 |#2|)))) (-15 -3406 ((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1071 (-826 |#2|)) (-1137))) (-15 -3363 ((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1155) (-826 |#2|) (-826 |#2|) (-111)))) (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-941) (-29 |#1|))) (T -214)) -((-3363 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1155)) (-5 *6 (-111)) (-4 *7 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-4 *3 (-13 (-1177) (-941) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-826 *3)) (|:| |f2| (-630 (-826 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *7 *3)) (-5 *5 (-826 *3)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1071 (-826 *3))) (-5 *5 (-1137)) (-4 *3 (-13 (-1177) (-941) (-29 *6))) (-4 *6 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |f1| (-826 *3)) (|:| |f2| (-630 (-826 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6 *3)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-1071 (-826 *3))) (-4 *3 (-13 (-1177) (-941) (-29 *5))) (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |f1| (-826 *3)) (|:| |f2| (-630 (-826 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5 *3))))) -(-10 -7 (-15 -3406 ((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1071 (-826 |#2|)))) (-15 -3406 ((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1071 (-826 |#2|)) (-1137))) (-15 -3363 ((-3 (|:| |f1| (-826 |#2|)) (|:| |f2| (-630 (-826 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1155) (-826 |#2|) (-826 |#2|) (-111)))) -((-3406 (((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-401 (-934 |#1|)))) (-1137)) 46) (((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-401 (-934 |#1|))))) 43) (((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-310 |#1|))) (-1137)) 47) (((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-310 |#1|)))) 20))) -(((-215 |#1|) (-10 -7 (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-310 |#1|))))) (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-310 |#1|))) (-1137))) (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-401 (-934 |#1|)))))) (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-401 (-934 |#1|)))) (-1137)))) (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (T -215)) -((-3406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1071 (-826 (-401 (-934 *6))))) (-5 *5 (-1137)) (-5 *3 (-401 (-934 *6))) (-4 *6 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |f1| (-826 (-310 *6))) (|:| |f2| (-630 (-826 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-1071 (-826 (-401 (-934 *5))))) (-5 *3 (-401 (-934 *5))) (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |f1| (-826 (-310 *5))) (|:| |f2| (-630 (-826 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-401 (-934 *6))) (-5 *4 (-1071 (-826 (-310 *6)))) (-5 *5 (-1137)) (-4 *6 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |f1| (-826 (-310 *6))) (|:| |f2| (-630 (-826 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1071 (-826 (-310 *5)))) (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |f1| (-826 (-310 *5))) (|:| |f2| (-630 (-826 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5))))) -(-10 -7 (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-310 |#1|))))) (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-310 |#1|))) (-1137))) (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-401 (-934 |#1|)))))) (-15 -3406 ((-3 (|:| |f1| (-826 (-310 |#1|))) (|:| |f2| (-630 (-826 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-934 |#1|)) (-1071 (-826 (-401 (-934 |#1|)))) (-1137)))) -((-2654 (((-2 (|:| -4252 (-1151 |#1|)) (|:| |deg| (-903))) (-1151 |#1|)) 21)) (-3873 (((-630 (-310 |#2|)) (-310 |#2|) (-903)) 42))) -(((-216 |#1| |#2|) (-10 -7 (-15 -2654 ((-2 (|:| -4252 (-1151 |#1|)) (|:| |deg| (-903))) (-1151 |#1|))) (-15 -3873 ((-630 (-310 |#2|)) (-310 |#2|) (-903)))) (-1031) (-13 (-545) (-833))) (T -216)) -((-3873 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-4 *6 (-13 (-545) (-833))) (-5 *2 (-630 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) (-4 *5 (-1031)))) (-2654 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-5 *2 (-2 (|:| -4252 (-1151 *4)) (|:| |deg| (-903)))) (-5 *1 (-216 *4 *5)) (-5 *3 (-1151 *4)) (-4 *5 (-13 (-545) (-833)))))) -(-10 -7 (-15 -2654 ((-2 (|:| -4252 (-1151 |#1|)) (|:| |deg| (-903))) (-1151 |#1|))) (-15 -3873 ((-630 (-310 |#2|)) (-310 |#2|) (-903)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2497 ((|#1| $) NIL)) (-3343 ((|#1| $) 25)) (-1511 (((-111) $ (-757)) NIL)) (-3820 (($) NIL T CONST)) (-4171 (($ $) NIL)) (-1467 (($ $) 31)) (-2260 ((|#1| |#1| $) NIL)) (-3196 ((|#1| $) NIL)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1899 (((-757) $) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1376 ((|#1| $) NIL)) (-4098 ((|#1| |#1| $) 28)) (-2685 ((|#1| |#1| $) 30)) (-2636 (($ |#1| $) NIL)) (-2304 (((-757) $) 27)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2964 ((|#1| $) NIL)) (-2475 ((|#1| $) 26)) (-1525 ((|#1| $) 24)) (-2949 ((|#1| $) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2865 ((|#1| |#1| $) NIL)) (-3586 (((-111) $) 9)) (-3222 (($) NIL)) (-1456 ((|#1| $) NIL)) (-2721 (($) NIL) (($ (-630 |#1|)) 16)) (-3090 (((-757) $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2492 ((|#1| $) 13)) (-2711 (($ (-630 |#1|)) NIL)) (-3732 ((|#1| $) NIL)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-217 |#1|) (-13 (-248 |#1|) (-10 -8 (-15 -2721 ($ (-630 |#1|))))) (-1079)) (T -217)) -((-2721 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-217 *3))))) -(-13 (-248 |#1|) (-10 -8 (-15 -2721 ($ (-630 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3072 (($ (-310 |#1|)) 23)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1514 (((-111) $) NIL)) (-1399 (((-3 (-310 |#1|) "failed") $) NIL)) (-2707 (((-310 |#1|) $) NIL)) (-3678 (($ $) 31)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1482 (($ (-1 (-310 |#1|) (-310 |#1|)) $) NIL)) (-3655 (((-310 |#1|) $) NIL)) (-1722 (($ $) 30)) (-1735 (((-1137) $) NIL)) (-3699 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-4093 (($ (-757)) NIL)) (-3860 (($ $) 32)) (-3872 (((-553) $) NIL)) (-3110 (((-845) $) 57) (($ (-553)) NIL) (($ (-310 |#1|)) NIL)) (-1624 (((-310 |#1|) $ $) NIL)) (-1999 (((-757)) NIL)) (-1988 (($) 25 T CONST)) (-1997 (($) 50 T CONST)) (-1617 (((-111) $ $) 28)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 19)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 24) (($ (-310 |#1|) $) 18))) -(((-218 |#1| |#2|) (-13 (-607 (-310 |#1|)) (-1020 (-310 |#1|)) (-10 -8 (-15 -3655 ((-310 |#1|) $)) (-15 -1722 ($ $)) (-15 -3678 ($ $)) (-15 -1624 ((-310 |#1|) $ $)) (-15 -4093 ($ (-757))) (-15 -3699 ((-111) $)) (-15 -1514 ((-111) $)) (-15 -3872 ((-553) $)) (-15 -1482 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -3072 ($ (-310 |#1|))) (-15 -3860 ($ $)))) (-13 (-1031) (-833)) (-630 (-1155))) (T -218)) -((-3655 (*1 *2 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1031) (-833))) (-14 *3 (-630 (-1155))))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1031) (-833))) (-14 *3 (-630 (-1155))))) (-1624 (*1 *2 *1 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1031) (-833))) (-5 *1 (-218 *3 *4)) (-14 *4 (-630 (-1155))))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1031) (-833))) (-5 *1 (-218 *3 *4)) (-14 *4 (-630 (-1155))))) (-3860 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1031) (-833))) (-14 *3 (-630 (-1155)))))) -(-13 (-607 (-310 |#1|)) (-1020 (-310 |#1|)) (-10 -8 (-15 -3655 ((-310 |#1|) $)) (-15 -1722 ($ $)) (-15 -3678 ($ $)) (-15 -1624 ((-310 |#1|) $ $)) (-15 -4093 ($ (-757))) (-15 -3699 ((-111) $)) (-15 -1514 ((-111) $)) (-15 -3872 ((-553) $)) (-15 -1482 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -3072 ($ (-310 |#1|))) (-15 -3860 ($ $)))) -((-2233 (((-111) (-1137)) 22)) (-2178 (((-3 (-826 |#2|) "failed") (-599 |#2|) |#2| (-826 |#2|) (-826 |#2|) (-111)) 32)) (-1447 (((-3 (-111) "failed") (-1151 |#2|) (-826 |#2|) (-826 |#2|) (-111)) 73) (((-3 (-111) "failed") (-934 |#1|) (-1155) (-826 |#2|) (-826 |#2|) (-111)) 74))) -(((-219 |#1| |#2|) (-10 -7 (-15 -2233 ((-111) (-1137))) (-15 -2178 ((-3 (-826 |#2|) "failed") (-599 |#2|) |#2| (-826 |#2|) (-826 |#2|) (-111))) (-15 -1447 ((-3 (-111) "failed") (-934 |#1|) (-1155) (-826 |#2|) (-826 |#2|) (-111))) (-15 -1447 ((-3 (-111) "failed") (-1151 |#2|) (-826 |#2|) (-826 |#2|) (-111)))) (-13 (-445) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-29 |#1|))) (T -219)) -((-1447 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1151 *6)) (-5 *4 (-826 *6)) (-4 *6 (-13 (-1177) (-29 *5))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-219 *5 *6)))) (-1447 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-934 *6)) (-5 *4 (-1155)) (-5 *5 (-826 *7)) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-4 *7 (-13 (-1177) (-29 *6))) (-5 *1 (-219 *6 *7)))) (-2178 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-826 *4)) (-5 *3 (-599 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1177) (-29 *6))) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-219 *6 *4)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1177) (-29 *4)))))) -(-10 -7 (-15 -2233 ((-111) (-1137))) (-15 -2178 ((-3 (-826 |#2|) "failed") (-599 |#2|) |#2| (-826 |#2|) (-826 |#2|) (-111))) (-15 -1447 ((-3 (-111) "failed") (-934 |#1|) (-1155) (-826 |#2|) (-826 |#2|) (-111))) (-15 -1447 ((-3 (-111) "failed") (-1151 |#2|) (-826 |#2|) (-826 |#2|) (-111)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 87)) (-2751 (((-553) $) 98)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1728 (($ $) NIL)) (-2380 (($ $) 75)) (-2246 (($ $) 63)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3365 (($ $) 54)) (-4349 (((-111) $ $) NIL)) (-2357 (($ $) 73)) (-2224 (($ $) 61)) (-2125 (((-553) $) 115)) (-2403 (($ $) 78)) (-2268 (($ $) 65)) (-3820 (($) NIL T CONST)) (-2641 (($ $) NIL)) (-1399 (((-3 (-553) "failed") $) 114) (((-3 (-401 (-553)) "failed") $) 111)) (-2707 (((-553) $) 112) (((-401 (-553)) $) 109)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 91)) (-2264 (((-401 (-553)) $ (-757)) 107) (((-401 (-553)) $ (-757) (-757)) 106)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-2737 (((-903)) 27) (((-903) (-903)) NIL (|has| $ (-6 -4360)))) (-4270 (((-111) $) NIL)) (-3996 (($) 37)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL)) (-2968 (((-553) $) 33)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL)) (-3560 (($ $) NIL)) (-2797 (((-111) $) 86)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) 51) (($) 32 (-12 (-2826 (|has| $ (-6 -4352))) (-2826 (|has| $ (-6 -4360)))))) (-1975 (($ $ $) 50) (($) 31 (-12 (-2826 (|has| $ (-6 -4352))) (-2826 (|has| $ (-6 -4360)))))) (-1883 (((-553) $) 25)) (-1527 (($ $) 28)) (-4055 (($ $) 55)) (-2366 (($ $) 60)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-3496 (((-903) (-553)) NIL (|has| $ (-6 -4360)))) (-2786 (((-1099) $) 89)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL)) (-2334 (($ $) NIL)) (-3293 (($ (-553) (-553)) NIL) (($ (-553) (-553) (-903)) 99)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2692 (((-553) $) 26)) (-4037 (($) 36)) (-2743 (($ $) 59)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2989 (((-903)) NIL) (((-903) (-903)) NIL (|has| $ (-6 -4360)))) (-1330 (($ $ (-757)) NIL) (($ $) 92)) (-3098 (((-903) (-553)) NIL (|has| $ (-6 -4360)))) (-2414 (($ $) 76)) (-2279 (($ $) 66)) (-2392 (($ $) 77)) (-2257 (($ $) 64)) (-2368 (($ $) 74)) (-2234 (($ $) 62)) (-1524 (((-373) $) 103) (((-220) $) 100) (((-874 (-373)) $) NIL) (((-529) $) 43)) (-3110 (((-845) $) 40) (($ (-553)) 58) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-553)) 58) (($ (-401 (-553))) NIL)) (-1999 (((-757)) NIL)) (-2582 (($ $) NIL)) (-3556 (((-903)) 30) (((-903) (-903)) NIL (|has| $ (-6 -4360)))) (-2959 (((-903)) 23)) (-2447 (($ $) 81)) (-2313 (($ $) 69) (($ $ $) 108)) (-1639 (((-111) $ $) NIL)) (-2425 (($ $) 79)) (-2291 (($ $) 67)) (-3791 (($ $) 84)) (-2336 (($ $) 72)) (-2570 (($ $) 82)) (-2346 (($ $) 70)) (-3780 (($ $) 83)) (-2324 (($ $) 71)) (-2435 (($ $) 80)) (-2302 (($ $) 68)) (-3466 (($ $) 116)) (-1988 (($) 34 T CONST)) (-1997 (($) 35 T CONST)) (-3205 (((-1137) $) 17) (((-1137) $ (-111)) 19) (((-1243) (-808) $) 20) (((-1243) (-808) $ (-111)) 21)) (-3595 (($ $) 95)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-3536 (($ $ $) 97)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 52)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 44)) (-1723 (($ $ $) 85) (($ $ (-553)) 53)) (-1711 (($ $) 45) (($ $ $) 47)) (-1700 (($ $ $) 46)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 56) (($ $ (-401 (-553))) 127) (($ $ $) 57)) (* (($ (-903) $) 29) (($ (-757) $) NIL) (($ (-553) $) 49) (($ $ $) 48) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-220) (-13 (-398) (-228) (-814) (-1177) (-601 (-529)) (-10 -8 (-15 -1723 ($ $ (-553))) (-15 ** ($ $ $)) (-15 -4037 ($)) (-15 -1527 ($ $)) (-15 -4055 ($ $)) (-15 -2313 ($ $ $)) (-15 -3595 ($ $)) (-15 -3536 ($ $ $)) (-15 -2264 ((-401 (-553)) $ (-757))) (-15 -2264 ((-401 (-553)) $ (-757) (-757)))))) (T -220)) -((** (*1 *1 *1 *1) (-5 *1 (-220))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-220)))) (-4037 (*1 *1) (-5 *1 (-220))) (-1527 (*1 *1 *1) (-5 *1 (-220))) (-4055 (*1 *1 *1) (-5 *1 (-220))) (-2313 (*1 *1 *1 *1) (-5 *1 (-220))) (-3595 (*1 *1 *1) (-5 *1 (-220))) (-3536 (*1 *1 *1 *1) (-5 *1 (-220))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-220)))) (-2264 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-220))))) -(-13 (-398) (-228) (-814) (-1177) (-601 (-529)) (-10 -8 (-15 -1723 ($ $ (-553))) (-15 ** ($ $ $)) (-15 -4037 ($)) (-15 -1527 ($ $)) (-15 -4055 ($ $)) (-15 -2313 ($ $ $)) (-15 -3595 ($ $)) (-15 -3536 ($ $ $)) (-15 -2264 ((-401 (-553)) $ (-757))) (-15 -2264 ((-401 (-553)) $ (-757) (-757))))) -((-2391 (((-166 (-220)) (-757) (-166 (-220))) 11) (((-220) (-757) (-220)) 12)) (-2469 (((-166 (-220)) (-166 (-220))) 13) (((-220) (-220)) 14)) (-3604 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 19) (((-220) (-220) (-220)) 22)) (-1599 (((-166 (-220)) (-166 (-220))) 25) (((-220) (-220)) 24)) (-2624 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 43) (((-220) (-220) (-220)) 35)) (-1966 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 48) (((-220) (-220) (-220)) 45)) (-2534 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 15) (((-220) (-220) (-220)) 16)) (-3039 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 17) (((-220) (-220) (-220)) 18)) (-3660 (((-166 (-220)) (-166 (-220))) 60) (((-220) (-220)) 59)) (-1643 (((-220) (-220)) 54) (((-166 (-220)) (-166 (-220))) 58)) (-3595 (((-166 (-220)) (-166 (-220))) 8) (((-220) (-220)) 9)) (-3536 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 30) (((-220) (-220) (-220)) 26))) -(((-221) (-10 -7 (-15 -3595 ((-220) (-220))) (-15 -3595 ((-166 (-220)) (-166 (-220)))) (-15 -3536 ((-220) (-220) (-220))) (-15 -3536 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2469 ((-220) (-220))) (-15 -2469 ((-166 (-220)) (-166 (-220)))) (-15 -1599 ((-220) (-220))) (-15 -1599 ((-166 (-220)) (-166 (-220)))) (-15 -2391 ((-220) (-757) (-220))) (-15 -2391 ((-166 (-220)) (-757) (-166 (-220)))) (-15 -2534 ((-220) (-220) (-220))) (-15 -2534 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2624 ((-220) (-220) (-220))) (-15 -2624 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3039 ((-220) (-220) (-220))) (-15 -3039 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1966 ((-220) (-220) (-220))) (-15 -1966 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1643 ((-166 (-220)) (-166 (-220)))) (-15 -1643 ((-220) (-220))) (-15 -3660 ((-220) (-220))) (-15 -3660 ((-166 (-220)) (-166 (-220)))) (-15 -3604 ((-220) (-220) (-220))) (-15 -3604 ((-166 (-220)) (-166 (-220)) (-166 (-220)))))) (T -221)) -((-3604 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3604 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3660 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3660 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1966 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1966 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3039 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3039 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2624 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2624 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2391 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-220))) (-5 *3 (-757)) (-5 *1 (-221)))) (-2391 (*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-757)) (-5 *1 (-221)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3536 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3536 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221))))) -(-10 -7 (-15 -3595 ((-220) (-220))) (-15 -3595 ((-166 (-220)) (-166 (-220)))) (-15 -3536 ((-220) (-220) (-220))) (-15 -3536 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2469 ((-220) (-220))) (-15 -2469 ((-166 (-220)) (-166 (-220)))) (-15 -1599 ((-220) (-220))) (-15 -1599 ((-166 (-220)) (-166 (-220)))) (-15 -2391 ((-220) (-757) (-220))) (-15 -2391 ((-166 (-220)) (-757) (-166 (-220)))) (-15 -2534 ((-220) (-220) (-220))) (-15 -2534 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2624 ((-220) (-220) (-220))) (-15 -2624 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3039 ((-220) (-220) (-220))) (-15 -3039 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1966 ((-220) (-220) (-220))) (-15 -1966 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1643 ((-166 (-220)) (-166 (-220)))) (-15 -1643 ((-220) (-220))) (-15 -3660 ((-220) (-220))) (-15 -3660 ((-166 (-220)) (-166 (-220)))) (-15 -3604 ((-220) (-220) (-220))) (-15 -3604 ((-166 (-220)) (-166 (-220)) (-166 (-220))))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2247 (($ (-757) (-757)) NIL)) (-1954 (($ $ $) NIL)) (-1605 (($ (-1238 |#1|)) NIL) (($ $) NIL)) (-1310 (($ |#1| |#1| |#1|) 32)) (-2986 (((-111) $) NIL)) (-2199 (($ $ (-553) (-553)) NIL)) (-4239 (($ $ (-553) (-553)) NIL)) (-1418 (($ $ (-553) (-553) (-553) (-553)) NIL)) (-1756 (($ $) NIL)) (-2086 (((-111) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2017 (($ $ (-553) (-553) $) NIL)) (-1490 ((|#1| $ (-553) (-553) |#1|) NIL) (($ $ (-630 (-553)) (-630 (-553)) $) NIL)) (-3924 (($ $ (-553) (-1238 |#1|)) NIL)) (-2359 (($ $ (-553) (-1238 |#1|)) NIL)) (-1731 (($ |#1| |#1| |#1|) 31)) (-3747 (($ (-757) |#1|) NIL)) (-3820 (($) NIL T CONST)) (-3639 (($ $) NIL (|has| |#1| (-301)))) (-3894 (((-1238 |#1|) $ (-553)) NIL)) (-2718 (($ |#1|) 30)) (-4326 (($ |#1|) 29)) (-1551 (($ |#1|) 28)) (-2409 (((-757) $) NIL (|has| |#1| (-545)))) (-2515 ((|#1| $ (-553) (-553) |#1|) NIL)) (-2441 ((|#1| $ (-553) (-553)) NIL)) (-1408 (((-630 |#1|) $) NIL)) (-2016 (((-757) $) NIL (|has| |#1| (-545)))) (-1888 (((-630 (-1238 |#1|)) $) NIL (|has| |#1| (-545)))) (-4253 (((-757) $) NIL)) (-3202 (($ (-757) (-757) |#1|) NIL)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3714 ((|#1| $) NIL (|has| |#1| (-6 (-4371 "*"))))) (-3510 (((-553) $) NIL)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-4275 (((-553) $) NIL)) (-3223 (((-553) $) NIL)) (-3394 (($ (-630 (-630 |#1|))) 11)) (-2503 (($ (-1 |#1| |#1|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2384 (((-630 (-630 |#1|)) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1614 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-1585 (($) 12)) (-1798 (($ $ $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) (-553)) NIL) ((|#1| $ (-553) (-553) |#1|) NIL) (($ $ (-630 (-553)) (-630 (-553))) NIL)) (-1325 (($ (-630 |#1|)) NIL) (($ (-630 $)) NIL)) (-1564 (((-111) $) NIL)) (-1938 ((|#1| $) NIL (|has| |#1| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-1355 (((-1238 |#1|) $ (-553)) NIL)) (-3110 (($ (-1238 |#1|)) NIL) (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-4172 (((-111) $) NIL)) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-553) $) NIL) (((-1238 |#1|) $ (-1238 |#1|)) 15) (((-1238 |#1|) (-1238 |#1|) $) NIL) (((-925 |#1|) $ (-925 |#1|)) 20)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-222 |#1|) (-13 (-672 |#1| (-1238 |#1|) (-1238 |#1|)) (-10 -8 (-15 * ((-925 |#1|) $ (-925 |#1|))) (-15 -1585 ($)) (-15 -1551 ($ |#1|)) (-15 -4326 ($ |#1|)) (-15 -2718 ($ |#1|)) (-15 -1731 ($ |#1| |#1| |#1|)) (-15 -1310 ($ |#1| |#1| |#1|)))) (-13 (-357) (-1177))) (T -222)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177))) (-5 *1 (-222 *3)))) (-1585 (*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) (-1551 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) (-4326 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) (-2718 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) (-1731 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) (-1310 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177)))))) -(-13 (-672 |#1| (-1238 |#1|) (-1238 |#1|)) (-10 -8 (-15 * ((-925 |#1|) $ (-925 |#1|))) (-15 -1585 ($)) (-15 -1551 ($ |#1|)) (-15 -4326 ($ |#1|)) (-15 -2718 ($ |#1|)) (-15 -1731 ($ |#1| |#1| |#1|)) (-15 -1310 ($ |#1| |#1| |#1|)))) -((-2955 (($ (-1 (-111) |#2|) $) 16)) (-3986 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-3093 (($) NIL) (($ (-630 |#2|)) 11)) (-1617 (((-111) $ $) 23))) -(((-223 |#1| |#2|) (-10 -8 (-15 -2955 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3986 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3986 (|#1| |#2| |#1|)) (-15 -3093 (|#1| (-630 |#2|))) (-15 -3093 (|#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-224 |#2|) (-1079)) (T -223)) -NIL -(-10 -8 (-15 -2955 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3986 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3986 (|#1| |#2| |#1|)) (-15 -3093 (|#1| (-630 |#2|))) (-15 -3093 (|#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-2955 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2638 (($ $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3093 (($) 49) (($ (-630 |#1|)) 48)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 50)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-224 |#1|) (-137) (-1079)) (T -224)) -NIL -(-13 (-230 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-1330 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-757)) 11) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) 19) (($ $ (-757)) NIL) (($ $) 16)) (-1780 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-757)) 14) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL) (($ $ (-757)) NIL) (($ $) NIL))) -(((-225 |#1| |#2|) (-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1780 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1780 (|#1| |#1| (-1155))) (-15 -1780 (|#1| |#1| (-630 (-1155)))) (-15 -1780 (|#1| |#1| (-1155) (-757))) (-15 -1780 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1780 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|)))) (-226 |#2|) (-1031)) (T -225)) -NIL -(-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1780 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1780 (|#1| |#1| (-1155))) (-15 -1780 (|#1| |#1| (-630 (-1155)))) (-15 -1780 (|#1| |#1| (-1155) (-757))) (-15 -1780 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1780 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1780 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1330 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-757)) 51) (($ $ (-630 (-1155)) (-630 (-757))) 44 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 43 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 42 (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) 41 (|has| |#1| (-882 (-1155)))) (($ $ (-757)) 39 (|has| |#1| (-228))) (($ $) 37 (|has| |#1| (-228)))) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-757)) 49) (($ $ (-630 (-1155)) (-630 (-757))) 48 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 47 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 46 (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) 45 (|has| |#1| (-882 (-1155)))) (($ $ (-757)) 40 (|has| |#1| (-228))) (($ $) 38 (|has| |#1| (-228)))) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-226 |#1|) (-137) (-1031)) (T -226)) -((-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1031)))) (-1330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-757)) (-4 *1 (-226 *4)) (-4 *4 (-1031)))) (-1780 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1031)))) (-1780 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-757)) (-4 *1 (-226 *4)) (-4 *4 (-1031))))) -(-13 (-1031) (-10 -8 (-15 -1330 ($ $ (-1 |t#1| |t#1|))) (-15 -1330 ($ $ (-1 |t#1| |t#1|) (-757))) (-15 -1780 ($ $ (-1 |t#1| |t#1|))) (-15 -1780 ($ $ (-1 |t#1| |t#1|) (-757))) (IF (|has| |t#1| (-228)) (-6 (-228)) |%noBranch|) (IF (|has| |t#1| (-882 (-1155))) (-6 (-882 (-1155))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-228) |has| |#1| (-228)) ((-633 $) . T) ((-712) . T) ((-882 (-1155)) |has| |#1| (-882 (-1155))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1330 (($ $) NIL) (($ $ (-757)) 10)) (-1780 (($ $) 8) (($ $ (-757)) 12))) -(((-227 |#1|) (-10 -8 (-15 -1780 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1780 (|#1| |#1|)) (-15 -1330 (|#1| |#1|))) (-228)) (T -227)) -NIL -(-10 -8 (-15 -1780 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1780 (|#1| |#1|)) (-15 -1330 (|#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1330 (($ $) 38) (($ $ (-757)) 36)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $) 37) (($ $ (-757)) 35)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-228) (-137)) (T -228)) -((-1330 (*1 *1 *1) (-4 *1 (-228))) (-1780 (*1 *1 *1) (-4 *1 (-228))) (-1330 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-757)))) (-1780 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-757))))) -(-13 (-1031) (-10 -8 (-15 -1330 ($ $)) (-15 -1780 ($ $)) (-15 -1330 ($ $ (-757))) (-15 -1780 ($ $ (-757))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3093 (($) 12) (($ (-630 |#2|)) NIL)) (-1508 (($ $) 14)) (-3121 (($ (-630 |#2|)) 10)) (-3110 (((-845) $) 21))) -(((-229 |#1| |#2|) (-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -3093 (|#1| (-630 |#2|))) (-15 -3093 (|#1|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -1508 (|#1| |#1|))) (-230 |#2|) (-1079)) (T -229)) -NIL -(-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -3093 (|#1| (-630 |#2|))) (-15 -3093 (|#1|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -1508 (|#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-2955 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2638 (($ $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3093 (($) 49) (($ (-630 |#1|)) 48)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 50)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-230 |#1|) (-137) (-1079)) (T -230)) -((-3093 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1079)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-230 *3)))) (-3986 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-230 *2)) (-4 *2 (-1079)))) (-3986 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-230 *3)) (-4 *3 (-1079)))) (-2955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-230 *3)) (-4 *3 (-1079))))) -(-13 (-106 |t#1|) (-148 |t#1|) (-10 -8 (-15 -3093 ($)) (-15 -3093 ($ (-630 |t#1|))) (IF (|has| $ (-6 -4369)) (PROGN (-15 -3986 ($ |t#1| $)) (-15 -3986 ($ (-1 (-111) |t#1|) $)) (-15 -2955 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-1506 (((-2 (|:| |varOrder| (-630 (-1155))) (|:| |inhom| (-3 (-630 (-1238 (-757))) "failed")) (|:| |hom| (-630 (-1238 (-757))))) (-288 (-934 (-553)))) 27))) -(((-231) (-10 -7 (-15 -1506 ((-2 (|:| |varOrder| (-630 (-1155))) (|:| |inhom| (-3 (-630 (-1238 (-757))) "failed")) (|:| |hom| (-630 (-1238 (-757))))) (-288 (-934 (-553))))))) (T -231)) -((-1506 (*1 *2 *3) (-12 (-5 *3 (-288 (-934 (-553)))) (-5 *2 (-2 (|:| |varOrder| (-630 (-1155))) (|:| |inhom| (-3 (-630 (-1238 (-757))) "failed")) (|:| |hom| (-630 (-1238 (-757)))))) (-5 *1 (-231))))) -(-10 -7 (-15 -1506 ((-2 (|:| |varOrder| (-630 (-1155))) (|:| |inhom| (-3 (-630 (-1238 (-757))) "failed")) (|:| |hom| (-630 (-1238 (-757))))) (-288 (-934 (-553)))))) -((-2571 (((-757)) 51)) (-2077 (((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 $) (-1238 $)) 49) (((-674 |#3|) (-674 $)) 41) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL)) (-1337 (((-132)) 57)) (-1330 (($ $ (-1 |#3| |#3|) (-757)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL) (($ $ (-757)) NIL) (($ $) NIL)) (-3110 (((-1238 |#3|) $) NIL) (($ |#3|) NIL) (((-845) $) NIL) (($ (-553)) 12) (($ (-401 (-553))) NIL)) (-1999 (((-757)) 15)) (-1723 (($ $ |#3|) 54))) -(((-232 |#1| |#2| |#3|) (-10 -8 (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|)) (-15 -1999 ((-757))) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -3110 (|#1| |#3|)) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|) (-757))) (-15 -2077 ((-674 |#3|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 |#1|) (-1238 |#1|))) (-15 -2571 ((-757))) (-15 -1723 (|#1| |#1| |#3|)) (-15 -1337 ((-132))) (-15 -3110 ((-1238 |#3|) |#1|))) (-233 |#2| |#3|) (-757) (-1192)) (T -232)) -((-1337 (*1 *2) (-12 (-14 *4 (-757)) (-4 *5 (-1192)) (-5 *2 (-132)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-2571 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1192)) (-5 *2 (-757)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-1999 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1192)) (-5 *2 (-757)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5))))) -(-10 -8 (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|)) (-15 -1999 ((-757))) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -3110 (|#1| |#3|)) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|) (-757))) (-15 -2077 ((-674 |#3|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 |#1|) (-1238 |#1|))) (-15 -2571 ((-757))) (-15 -1723 (|#1| |#1| |#3|)) (-15 -1337 ((-132))) (-15 -3110 ((-1238 |#3|) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#2| (-1079)))) (-3769 (((-111) $) 72 (|has| |#2| (-129)))) (-1561 (($ (-903)) 125 (|has| |#2| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-2345 (($ $ $) 121 (|has| |#2| (-779)))) (-2910 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-1511 (((-111) $ (-757)) 8)) (-2571 (((-757)) 107 (|has| |#2| (-362)))) (-2125 (((-553) $) 119 (|has| |#2| (-831)))) (-1490 ((|#2| $ (-553) |#2|) 52 (|has| $ (-6 -4370)))) (-3820 (($) 7 T CONST)) (-1399 (((-3 (-553) "failed") $) 67 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-3 (-401 (-553)) "failed") $) 64 (-3726 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1079)))) (-2707 (((-553) $) 66 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-401 (-553)) $) 63 (-3726 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) ((|#2| $) 62 (|has| |#2| (-1079)))) (-2077 (((-674 (-553)) (-674 $)) 106 (-3726 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 105 (-3726 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) 104 (|has| |#2| (-1031))) (((-674 |#2|) (-674 $)) 103 (|has| |#2| (-1031)))) (-2982 (((-3 $ "failed") $) 79 (|has| |#2| (-712)))) (-3031 (($) 110 (|has| |#2| (-362)))) (-2515 ((|#2| $ (-553) |#2|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#2| $ (-553)) 51)) (-4270 (((-111) $) 117 (|has| |#2| (-831)))) (-1408 (((-630 |#2|) $) 30 (|has| $ (-6 -4369)))) (-1848 (((-111) $) 81 (|has| |#2| (-712)))) (-2797 (((-111) $) 118 (|has| |#2| (-831)))) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 116 (-3988 (|has| |#2| (-831)) (|has| |#2| (-779))))) (-2195 (((-630 |#2|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 115 (-3988 (|has| |#2| (-831)) (|has| |#2| (-779))))) (-2503 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2|) $) 35)) (-3796 (((-903) $) 109 (|has| |#2| (-362)))) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#2| (-1079)))) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2735 (($ (-903)) 108 (|has| |#2| (-362)))) (-2786 (((-1099) $) 21 (|has| |#2| (-1079)))) (-2603 ((|#2| $) 42 (|has| (-553) (-833)))) (-2858 (($ $ |#2|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#2| $ (-553) |#2|) 50) ((|#2| $ (-553)) 49)) (-1449 ((|#2| $ $) 124 (|has| |#2| (-1031)))) (-3398 (($ (-1238 |#2|)) 126)) (-1337 (((-132)) 123 (|has| |#2| (-357)))) (-1330 (($ $) 98 (-3726 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) 96 (-3726 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) 94 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) 93 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) 92 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) 91 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) 84 (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1031)))) (-2796 (((-757) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4369))) (((-757) |#2| $) 28 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-1238 |#2|) $) 127) (($ (-553)) 68 (-3988 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031)))) (($ (-401 (-553))) 65 (-3726 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (($ |#2|) 60 (|has| |#2| (-1079))) (((-845) $) 18 (|has| |#2| (-600 (-845))))) (-1999 (((-757)) 102 (|has| |#2| (-1031)))) (-3296 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4369)))) (-3466 (($ $) 120 (|has| |#2| (-831)))) (-1988 (($) 71 (|has| |#2| (-129)) CONST)) (-1997 (($) 82 (|has| |#2| (-712)) CONST)) (-1780 (($ $) 97 (-3726 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) 95 (-3726 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) 90 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) 89 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) 88 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) 87 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) 86 (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1031)))) (-1669 (((-111) $ $) 113 (-3988 (|has| |#2| (-831)) (|has| |#2| (-779))))) (-1648 (((-111) $ $) 112 (-3988 (|has| |#2| (-831)) (|has| |#2| (-779))))) (-1617 (((-111) $ $) 20 (|has| |#2| (-1079)))) (-1659 (((-111) $ $) 114 (-3988 (|has| |#2| (-831)) (|has| |#2| (-779))))) (-1636 (((-111) $ $) 111 (-3988 (|has| |#2| (-831)) (|has| |#2| (-779))))) (-1723 (($ $ |#2|) 122 (|has| |#2| (-357)))) (-1711 (($ $ $) 100 (|has| |#2| (-1031))) (($ $) 99 (|has| |#2| (-1031)))) (-1700 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-757)) 80 (|has| |#2| (-712))) (($ $ (-903)) 77 (|has| |#2| (-712)))) (* (($ (-553) $) 101 (|has| |#2| (-1031))) (($ $ $) 78 (|has| |#2| (-712))) (($ $ |#2|) 76 (|has| |#2| (-712))) (($ |#2| $) 75 (|has| |#2| (-712))) (($ (-757) $) 73 (|has| |#2| (-129))) (($ (-903) $) 70 (|has| |#2| (-25)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-233 |#1| |#2|) (-137) (-757) (-1192)) (T -233)) -((-3398 (*1 *1 *2) (-12 (-5 *2 (-1238 *4)) (-4 *4 (-1192)) (-4 *1 (-233 *3 *4)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1031)) (-4 *4 (-1192)))) (-1449 (*1 *2 *1 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1192)) (-4 *2 (-1031)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1192)) (-4 *2 (-712))))) -(-13 (-591 (-553) |t#2|) (-600 (-1238 |t#2|)) (-10 -8 (-6 -4369) (-15 -3398 ($ (-1238 |t#2|))) (IF (|has| |t#2| (-1079)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1031)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-226 |t#2|)) (-6 (-371 |t#2|)) (-15 -1561 ($ (-903))) (-15 -1449 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-712)) (PROGN (-6 (-712)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |t#2| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |t#2| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#2| (-357)) (-6 (-1245 |t#2|)) |%noBranch|))) -(((-21) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-23) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-779)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-25) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-779)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -3988 (|has| |#2| (-1079)) (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-779)) (|has| |#2| (-712)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -3988 (|has| |#2| (-1031)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-110 $ $) |has| |#2| (-169)) ((-129) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-779)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-603 #0=(-401 (-553))) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079))) ((-603 (-553)) -3988 (|has| |#2| (-1031)) (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-831)) (|has| |#2| (-169))) ((-603 |#2|) -3988 (|has| |#2| (-1079)) (|has| |#2| (-169))) ((-600 (-845)) -3988 (|has| |#2| (-1079)) (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-779)) (|has| |#2| (-712)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-600 (-845))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-600 (-1238 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-226 |#2|) |has| |#2| (-1031)) ((-228) -12 (|has| |#2| (-228)) (|has| |#2| (-1031))) ((-280 #1=(-553) |#2|) . T) ((-282 #1# |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-362) |has| |#2| (-362)) ((-371 |#2|) |has| |#2| (-1031)) ((-405 |#2|) |has| |#2| (-1079)) ((-482 |#2|) . T) ((-591 #1# |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-633 |#2|) -3988 (|has| |#2| (-1031)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-633 $) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-169))) ((-626 (-553)) -12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031))) ((-626 |#2|) |has| |#2| (-1031)) ((-703 |#2|) -3988 (|has| |#2| (-357)) (|has| |#2| (-169))) ((-712) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-712)) (|has| |#2| (-169))) ((-777) |has| |#2| (-831)) ((-778) -3988 (|has| |#2| (-831)) (|has| |#2| (-779))) ((-779) |has| |#2| (-779)) ((-780) -3988 (|has| |#2| (-831)) (|has| |#2| (-779))) ((-781) -3988 (|has| |#2| (-831)) (|has| |#2| (-779))) ((-831) |has| |#2| (-831)) ((-833) -3988 (|has| |#2| (-831)) (|has| |#2| (-779))) ((-882 (-1155)) -12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031))) ((-1020 #0#) -12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079))) ((-1020 (-553)) -12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) ((-1020 |#2|) |has| |#2| (-1079)) ((-1037 |#2|) -3988 (|has| |#2| (-1031)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-1037 $) |has| |#2| (-169)) ((-1031) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-169))) ((-1038) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-169))) ((-1091) -3988 (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-712)) (|has| |#2| (-169))) ((-1079) -3988 (|has| |#2| (-1079)) (|has| |#2| (-1031)) (|has| |#2| (-831)) (|has| |#2| (-779)) (|has| |#2| (-712)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1192) . T) ((-1245 |#2|) |has| |#2| (-357))) -((-3215 (((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 21)) (-2654 ((|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 23)) (-1482 (((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)) 18))) -(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -3215 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -2654 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -1482 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) (-757) (-1192) (-1192)) (T -234)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-757)) (-4 *6 (-1192)) (-4 *7 (-1192)) (-5 *2 (-235 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-757)) (-4 *6 (-1192)) (-4 *2 (-1192)) (-5 *1 (-234 *5 *6 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-757)) (-4 *7 (-1192)) (-4 *5 (-1192)) (-5 *2 (-235 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) -(-10 -7 (-15 -3215 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -2654 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -1482 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) -((-3096 (((-111) $ $) NIL (|has| |#2| (-1079)))) (-3769 (((-111) $) NIL (|has| |#2| (-129)))) (-1561 (($ (-903)) 56 (|has| |#2| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2345 (($ $ $) 60 (|has| |#2| (-779)))) (-2910 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-1511 (((-111) $ (-757)) 17)) (-2571 (((-757)) NIL (|has| |#2| (-362)))) (-2125 (((-553) $) NIL (|has| |#2| (-831)))) (-1490 ((|#2| $ (-553) |#2|) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1079)))) (-2707 (((-553) $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-401 (-553)) $) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) ((|#2| $) 27 (|has| |#2| (-1079)))) (-2077 (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL (|has| |#2| (-1031))) (((-674 |#2|) (-674 $)) NIL (|has| |#2| (-1031)))) (-2982 (((-3 $ "failed") $) 53 (|has| |#2| (-712)))) (-3031 (($) NIL (|has| |#2| (-362)))) (-2515 ((|#2| $ (-553) |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ (-553)) 51)) (-4270 (((-111) $) NIL (|has| |#2| (-831)))) (-1408 (((-630 |#2|) $) 15 (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL (|has| |#2| (-712)))) (-2797 (((-111) $) NIL (|has| |#2| (-831)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 20 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-2195 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 (((-553) $) 50 (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-2503 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2|) $) 41)) (-3796 (((-903) $) NIL (|has| |#2| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#2| (-1079)))) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2735 (($ (-903)) NIL (|has| |#2| (-362)))) (-2786 (((-1099) $) NIL (|has| |#2| (-1079)))) (-2603 ((|#2| $) NIL (|has| (-553) (-833)))) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ (-553) |#2|) NIL) ((|#2| $ (-553)) 21)) (-1449 ((|#2| $ $) NIL (|has| |#2| (-1031)))) (-3398 (($ (-1238 |#2|)) 18)) (-1337 (((-132)) NIL (|has| |#2| (-357)))) (-1330 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1031)))) (-2796 (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1238 |#2|) $) 10) (($ (-553)) NIL (-3988 (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031)))) (($ (-401 (-553))) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (($ |#2|) 13 (|has| |#2| (-1079))) (((-845) $) NIL (|has| |#2| (-600 (-845))))) (-1999 (((-757)) NIL (|has| |#2| (-1031)))) (-3296 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-3466 (($ $) NIL (|has| |#2| (-831)))) (-1988 (($) 35 (|has| |#2| (-129)) CONST)) (-1997 (($) 38 (|has| |#2| (-712)) CONST)) (-1780 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1031)))) (-1669 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1617 (((-111) $ $) 26 (|has| |#2| (-1079)))) (-1659 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1636 (((-111) $ $) 58 (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $ $) NIL (|has| |#2| (-1031))) (($ $) NIL (|has| |#2| (-1031)))) (-1700 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-757)) NIL (|has| |#2| (-712))) (($ $ (-903)) NIL (|has| |#2| (-712)))) (* (($ (-553) $) NIL (|has| |#2| (-1031))) (($ $ $) 44 (|has| |#2| (-712))) (($ $ |#2|) 42 (|has| |#2| (-712))) (($ |#2| $) 43 (|has| |#2| (-712))) (($ (-757) $) NIL (|has| |#2| (-129))) (($ (-903) $) NIL (|has| |#2| (-25)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-235 |#1| |#2|) (-233 |#1| |#2|) (-757) (-1192)) (T -235)) -NIL -(-233 |#1| |#2|) -((-1414 (((-553) (-630 (-1137))) 24) (((-553) (-1137)) 19)) (-3710 (((-1243) (-630 (-1137))) 29) (((-1243) (-1137)) 28)) (-3492 (((-1137)) 14)) (-3024 (((-1137) (-553) (-1137)) 16)) (-4010 (((-630 (-1137)) (-630 (-1137)) (-553) (-1137)) 25) (((-1137) (-1137) (-553) (-1137)) 23)) (-1940 (((-630 (-1137)) (-630 (-1137))) 13) (((-630 (-1137)) (-1137)) 11))) -(((-236) (-10 -7 (-15 -1940 ((-630 (-1137)) (-1137))) (-15 -1940 ((-630 (-1137)) (-630 (-1137)))) (-15 -3492 ((-1137))) (-15 -3024 ((-1137) (-553) (-1137))) (-15 -4010 ((-1137) (-1137) (-553) (-1137))) (-15 -4010 ((-630 (-1137)) (-630 (-1137)) (-553) (-1137))) (-15 -3710 ((-1243) (-1137))) (-15 -3710 ((-1243) (-630 (-1137)))) (-15 -1414 ((-553) (-1137))) (-15 -1414 ((-553) (-630 (-1137)))))) (T -236)) -((-1414 (*1 *2 *3) (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-553)) (-5 *1 (-236)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-553)) (-5 *1 (-236)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1243)) (-5 *1 (-236)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-236)))) (-4010 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-630 (-1137))) (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *1 (-236)))) (-4010 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1137)) (-5 *3 (-553)) (-5 *1 (-236)))) (-3024 (*1 *2 *3 *2) (-12 (-5 *2 (-1137)) (-5 *3 (-553)) (-5 *1 (-236)))) (-3492 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-236)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-236)))) (-1940 (*1 *2 *3) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-236)) (-5 *3 (-1137))))) -(-10 -7 (-15 -1940 ((-630 (-1137)) (-1137))) (-15 -1940 ((-630 (-1137)) (-630 (-1137)))) (-15 -3492 ((-1137))) (-15 -3024 ((-1137) (-553) (-1137))) (-15 -4010 ((-1137) (-1137) (-553) (-1137))) (-15 -4010 ((-630 (-1137)) (-630 (-1137)) (-553) (-1137))) (-15 -3710 ((-1243) (-1137))) (-15 -3710 ((-1243) (-630 (-1137)))) (-15 -1414 ((-553) (-1137))) (-15 -1414 ((-553) (-630 (-1137))))) -((** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 16)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ (-401 (-553)) $) 23) (($ $ (-401 (-553))) NIL))) -(((-237 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-553))) (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 ** (|#1| |#1| (-757))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-903))) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) (-238)) (T -237)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-553))) (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 ** (|#1| |#1| (-757))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-903))) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 40)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 44)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 41)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ (-401 (-553)) $) 43) (($ $ (-401 (-553))) 42))) -(((-238) (-137)) (T -238)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-553)))) (-3610 (*1 *1 *1) (-4 *1 (-238)))) -(-13 (-284) (-38 (-401 (-553))) (-10 -8 (-15 ** ($ $ (-553))) (-15 -3610 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-284) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-712) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-1787 (($ $) 57)) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-2967 (($ $ $) 53 (|has| $ (-6 -4370)))) (-1405 (($ $ $) 52 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3820 (($) 7 T CONST)) (-1871 (($ $) 56)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-2097 (($ $) 55)) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2594 ((|#1| $) 59)) (-2117 (($ $) 58)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47)) (-3558 (((-553) $ $) 44)) (-1510 (((-111) $) 46)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-2269 (($ $ $) 54 (|has| $ (-6 -4370)))) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-239 |#1|) (-137) (-1192)) (T -239)) -((-2594 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-1787 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-1871 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-2097 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-2269 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-2967 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-239 *2)) (-4 *2 (-1192)))) (-1405 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-239 *2)) (-4 *2 (-1192))))) -(-13 (-992 |t#1|) (-10 -8 (-15 -2594 (|t#1| $)) (-15 -2117 ($ $)) (-15 -1787 ($ $)) (-15 -1871 ($ $)) (-15 -2097 ($ $)) (IF (|has| $ (-6 -4370)) (PROGN (-15 -2269 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -1405 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-992 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-1787 (($ $) NIL)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) $) NIL (|has| |#1| (-833))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1587 (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-2990 (($ $) 10 (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-2314 (($ $ $) NIL (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "rest" $) NIL (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) |#1|) $) NIL)) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2123 ((|#1| $) NIL)) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2616 (($ $) NIL) (($ $ (-757)) NIL)) (-2873 (($ $) NIL (|has| |#1| (-1079)))) (-2638 (($ $) 7 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) NIL (|has| |#1| (-1079))) (($ (-1 (-111) |#1|) $) NIL)) (-2575 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-3145 (((-111) $) NIL)) (-1478 (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079))) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) (-1 (-111) |#1|) $) NIL)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1750 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3160 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2480 (($ |#1|) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2594 ((|#1| $) NIL) (($ $ (-757)) NIL)) (-2636 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1774 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL) (($ $ (-757)) NIL)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-1411 (((-111) $) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1205 (-553))) NIL) ((|#1| $ (-553)) NIL) ((|#1| $ (-553) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-757) $ "count") 16)) (-3558 (((-553) $ $) NIL)) (-3231 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2005 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2927 (($ (-630 |#1|)) 22)) (-1510 (((-111) $) NIL)) (-2383 (($ $) NIL)) (-1566 (($ $) NIL (|has| $ (-6 -4370)))) (-2586 (((-757) $) NIL)) (-4321 (($ $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-2269 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4325 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-630 $)) NIL) (($ $ |#1|) NIL)) (-3110 (($ (-630 |#1|)) 17) (((-630 |#1|) $) 18) (((-845) $) 21 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) 14 (|has| $ (-6 -4369))))) -(((-240 |#1|) (-13 (-651 |#1|) (-483 (-630 |#1|)) (-10 -8 (-15 -2927 ($ (-630 |#1|))) (-15 -2046 ($ $ "unique")) (-15 -2046 ($ $ "sort")) (-15 -2046 ((-757) $ "count")))) (-833)) (T -240)) -((-2927 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-240 *3)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-833)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-833)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-757)) (-5 *1 (-240 *4)) (-4 *4 (-833))))) -(-13 (-651 |#1|) (-483 (-630 |#1|)) (-10 -8 (-15 -2927 ($ (-630 |#1|))) (-15 -2046 ($ $ "unique")) (-15 -2046 ($ $ "sort")) (-15 -2046 ((-757) $ "count")))) -((-1646 (((-3 (-757) "failed") |#1| |#1| (-757)) 27))) -(((-241 |#1|) (-10 -7 (-15 -1646 ((-3 (-757) "failed") |#1| |#1| (-757)))) (-13 (-712) (-362) (-10 -7 (-15 ** (|#1| |#1| (-553)))))) (T -241)) -((-1646 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-757)) (-4 *3 (-13 (-712) (-362) (-10 -7 (-15 ** (*3 *3 (-553)))))) (-5 *1 (-241 *3))))) -(-10 -7 (-15 -1646 ((-3 (-757) "failed") |#1| |#1| (-757)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-847 |#1|)) $) NIL)) (-3322 (((-1151 $) $ (-847 |#1|)) NIL) (((-1151 |#2|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-1968 (($ $) NIL (|has| |#2| (-545)))) (-2028 (((-111) $) NIL (|has| |#2| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-847 |#1|))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1536 (($ $) NIL (|has| |#2| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#2| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-847 |#1|) "failed") $) NIL)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-847 |#1|) $) NIL)) (-2134 (($ $ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-3683 (($ $ (-630 (-553))) NIL)) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#2| (-891)))) (-2686 (($ $ |#2| (-235 (-2563 |#1|) (-757)) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#2|) (-847 |#1|)) NIL) (($ (-1151 $) (-847 |#1|)) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#2| (-235 (-2563 |#1|) (-757))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-847 |#1|)) NIL)) (-2423 (((-235 (-2563 |#1|) (-757)) $) NIL) (((-757) $ (-847 |#1|)) NIL) (((-630 (-757)) $ (-630 (-847 |#1|))) NIL)) (-1824 (($ $ $) NIL (|has| |#2| (-833)))) (-1975 (($ $ $) NIL (|has| |#2| (-833)))) (-2241 (($ (-1 (-235 (-2563 |#1|) (-757)) (-235 (-2563 |#1|) (-757))) $) NIL)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1332 (((-3 (-847 |#1|) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#2| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-847 |#1|)) (|:| -2692 (-757))) "failed") $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#2| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#2| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#2| (-891)))) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-847 |#1|) |#2|) NIL) (($ $ (-630 (-847 |#1|)) (-630 |#2|)) NIL) (($ $ (-847 |#1|) $) NIL) (($ $ (-630 (-847 |#1|)) (-630 $)) NIL)) (-3000 (($ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-1330 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3872 (((-235 (-2563 |#1|) (-757)) $) NIL) (((-757) $ (-847 |#1|)) NIL) (((-630 (-757)) $ (-630 (-847 |#1|))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-847 |#1|) (-601 (-529))) (|has| |#2| (-601 (-529)))))) (-4198 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) NIL) (($ (-847 |#1|)) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#2| (-545)))) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-235 (-2563 |#1|) (-757))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#2| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#2| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#2| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#2| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#2| (-38 (-401 (-553))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-242 |#1| |#2|) (-13 (-931 |#2| (-235 (-2563 |#1|) (-757)) (-847 |#1|)) (-10 -8 (-15 -3683 ($ $ (-630 (-553)))))) (-630 (-1155)) (-1031)) (T -242)) -((-3683 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-242 *3 *4)) (-14 *3 (-630 (-1155))) (-4 *4 (-1031))))) -(-13 (-931 |#2| (-235 (-2563 |#1|) (-757)) (-847 |#1|)) (-10 -8 (-15 -3683 ($ $ (-630 (-553)))))) -((-3096 (((-111) $ $) NIL)) (-1934 (((-1243) $) 15)) (-3002 (((-180) $) 9)) (-3435 (($ (-180)) 10)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 7)) (-1617 (((-111) $ $) 13))) -(((-243) (-13 (-1079) (-10 -8 (-15 -3002 ((-180) $)) (-15 -3435 ($ (-180))) (-15 -1934 ((-1243) $))))) (T -243)) -((-3002 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-243))))) -(-13 (-1079) (-10 -8 (-15 -3002 ((-180) $)) (-15 -3435 ($ (-180))) (-15 -1934 ((-1243) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-1561 (($ (-903)) NIL (|has| |#4| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2345 (($ $ $) NIL (|has| |#4| (-779)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| |#4| (-362)))) (-2125 (((-553) $) NIL (|has| |#4| (-831)))) (-1490 ((|#4| $ (-553) |#4|) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1079))) (((-3 (-553) "failed") $) NIL (-12 (|has| |#4| (-1020 (-553))) (|has| |#4| (-1079)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#4| (-1020 (-401 (-553)))) (|has| |#4| (-1079))))) (-2707 ((|#4| $) NIL (|has| |#4| (-1079))) (((-553) $) NIL (-12 (|has| |#4| (-1020 (-553))) (|has| |#4| (-1079)))) (((-401 (-553)) $) NIL (-12 (|has| |#4| (-1020 (-401 (-553)))) (|has| |#4| (-1079))))) (-2077 (((-2 (|:| -3344 (-674 |#4|)) (|:| |vec| (-1238 |#4|))) (-674 $) (-1238 $)) NIL (|has| |#4| (-1031))) (((-674 |#4|) (-674 $)) NIL (|has| |#4| (-1031))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031)))) (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))))) (-2982 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))) (|has| |#4| (-712)) (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))))) (-3031 (($) NIL (|has| |#4| (-362)))) (-2515 ((|#4| $ (-553) |#4|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#4| $ (-553)) NIL)) (-4270 (((-111) $) NIL (|has| |#4| (-831)))) (-1408 (((-630 |#4|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL (-3988 (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))) (|has| |#4| (-712)) (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))))) (-2797 (((-111) $) NIL (|has| |#4| (-831)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (-3988 (|has| |#4| (-779)) (|has| |#4| (-831))))) (-2195 (((-630 |#4|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (-3988 (|has| |#4| (-779)) (|has| |#4| (-831))))) (-2503 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#4| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2735 (($ (-903)) NIL (|has| |#4| (-362)))) (-2786 (((-1099) $) NIL)) (-2603 ((|#4| $) NIL (|has| (-553) (-833)))) (-2858 (($ $ |#4|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 |#4|) (-630 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-1912 (((-630 |#4|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#4| $ (-553) |#4|) NIL) ((|#4| $ (-553)) 12)) (-1449 ((|#4| $ $) NIL (|has| |#4| (-1031)))) (-3398 (($ (-1238 |#4|)) NIL)) (-1337 (((-132)) NIL (|has| |#4| (-357)))) (-1330 (($ $ (-1 |#4| |#4|) (-757)) NIL (|has| |#4| (-1031))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1031))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1031)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))))) (-2796 (((-757) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369))) (((-757) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1238 |#4|) $) NIL) (((-845) $) NIL) (($ |#4|) NIL (|has| |#4| (-1079))) (($ (-553)) NIL (-3988 (-12 (|has| |#4| (-1020 (-553))) (|has| |#4| (-1079))) (|has| |#4| (-1031)))) (($ (-401 (-553))) NIL (-12 (|has| |#4| (-1020 (-401 (-553)))) (|has| |#4| (-1079))))) (-1999 (((-757)) NIL (|has| |#4| (-1031)))) (-3296 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-3466 (($ $) NIL (|has| |#4| (-831)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL (-3988 (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))) (|has| |#4| (-712)) (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) CONST)) (-1780 (($ $ (-1 |#4| |#4|) (-757)) NIL (|has| |#4| (-1031))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1031))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1031)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))))) (-1669 (((-111) $ $) NIL (-3988 (|has| |#4| (-779)) (|has| |#4| (-831))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#4| (-779)) (|has| |#4| (-831))))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (-3988 (|has| |#4| (-779)) (|has| |#4| (-831))))) (-1636 (((-111) $ $) NIL (-3988 (|has| |#4| (-779)) (|has| |#4| (-831))))) (-1723 (($ $ |#4|) NIL (|has| |#4| (-357)))) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL (-3988 (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))) (|has| |#4| (-712)) (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031))))) (($ $ (-903)) NIL (-3988 (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))) (|has| |#4| (-712)) (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))))) (* (($ |#2| $) 14) (($ (-553) $) NIL) (($ (-757) $) NIL) (($ (-903) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-712))) (($ |#4| $) NIL (|has| |#4| (-712))) (($ $ $) NIL (-3988 (-12 (|has| |#4| (-228)) (|has| |#4| (-1031))) (-12 (|has| |#4| (-626 (-553))) (|has| |#4| (-1031))) (|has| |#4| (-712)) (-12 (|has| |#4| (-882 (-1155))) (|has| |#4| (-1031)))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-244 |#1| |#2| |#3| |#4|) (-13 (-233 |#1| |#4|) (-633 |#2|) (-633 |#3|)) (-903) (-1031) (-1102 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-633 |#2|)) (T -244)) -NIL -(-13 (-233 |#1| |#4|) (-633 |#2|) (-633 |#3|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-1561 (($ (-903)) NIL (|has| |#3| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2345 (($ $ $) NIL (|has| |#3| (-779)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| |#3| (-362)))) (-2125 (((-553) $) NIL (|has| |#3| (-831)))) (-1490 ((|#3| $ (-553) |#3|) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1079))) (((-3 (-553) "failed") $) NIL (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079))))) (-2707 ((|#3| $) NIL (|has| |#3| (-1079))) (((-553) $) NIL (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079)))) (((-401 (-553)) $) NIL (-12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079))))) (-2077 (((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 $) (-1238 $)) NIL (|has| |#3| (-1031))) (((-674 |#3|) (-674 $)) NIL (|has| |#3| (-1031))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031)))) (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))))) (-2982 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))) (|has| |#3| (-712)) (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))))) (-3031 (($) NIL (|has| |#3| (-362)))) (-2515 ((|#3| $ (-553) |#3|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#3| $ (-553)) NIL)) (-4270 (((-111) $) NIL (|has| |#3| (-831)))) (-1408 (((-630 |#3|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL (-3988 (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))) (|has| |#3| (-712)) (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))))) (-2797 (((-111) $) NIL (|has| |#3| (-831)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-2195 (((-630 |#3|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-2503 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#3| |#3|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#3| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2735 (($ (-903)) NIL (|has| |#3| (-362)))) (-2786 (((-1099) $) NIL)) (-2603 ((|#3| $) NIL (|has| (-553) (-833)))) (-2858 (($ $ |#3|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-630 |#3|) (-630 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-1912 (((-630 |#3|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#3| $ (-553) |#3|) NIL) ((|#3| $ (-553)) 11)) (-1449 ((|#3| $ $) NIL (|has| |#3| (-1031)))) (-3398 (($ (-1238 |#3|)) NIL)) (-1337 (((-132)) NIL (|has| |#3| (-357)))) (-1330 (($ $ (-1 |#3| |#3|) (-757)) NIL (|has| |#3| (-1031))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1031))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))))) (-2796 (((-757) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369))) (((-757) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1238 |#3|) $) NIL) (((-845) $) NIL) (($ |#3|) NIL (|has| |#3| (-1079))) (($ (-553)) NIL (-3988 (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079))) (|has| |#3| (-1031)))) (($ (-401 (-553))) NIL (-12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079))))) (-1999 (((-757)) NIL (|has| |#3| (-1031)))) (-3296 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-3466 (($ $) NIL (|has| |#3| (-831)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL (-3988 (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))) (|has| |#3| (-712)) (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) CONST)) (-1780 (($ $ (-1 |#3| |#3|) (-757)) NIL (|has| |#3| (-1031))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1031))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))))) (-1669 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1636 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1723 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL (-3988 (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))) (|has| |#3| (-712)) (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031))))) (($ $ (-903)) NIL (-3988 (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))) (|has| |#3| (-712)) (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))))) (* (($ |#2| $) 13) (($ (-553) $) NIL) (($ (-757) $) NIL) (($ (-903) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-712))) (($ |#3| $) NIL (|has| |#3| (-712))) (($ $ $) NIL (-3988 (-12 (|has| |#3| (-228)) (|has| |#3| (-1031))) (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031))) (|has| |#3| (-712)) (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-245 |#1| |#2| |#3|) (-13 (-233 |#1| |#3|) (-633 |#2|)) (-757) (-1031) (-633 |#2|)) (T -245)) -NIL -(-13 (-233 |#1| |#3|) (-633 |#2|)) -((-2991 (((-630 (-757)) $) 47) (((-630 (-757)) $ |#3|) 50)) (-2342 (((-757) $) 49) (((-757) $ |#3|) 52)) (-2387 (($ $) 65)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 (-553) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2968 (((-757) $ |#3|) 39) (((-757) $) 36)) (-3553 (((-1 $ (-757)) |#3|) 15) (((-1 $ (-757)) $) 77)) (-2415 ((|#4| $) 58)) (-2296 (((-111) $) 56)) (-2901 (($ $) 64)) (-2356 (($ $ (-630 (-288 $))) 97) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-630 |#4|) (-630 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-630 |#4|) (-630 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-630 |#3|) (-630 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-630 |#3|) (-630 |#2|)) 84)) (-1330 (($ $ |#4|) NIL) (($ $ (-630 |#4|)) NIL) (($ $ |#4| (-757)) NIL) (($ $ (-630 |#4|) (-630 (-757))) NIL) (($ $) NIL) (($ $ (-757)) NIL) (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3193 (((-630 |#3|) $) 75)) (-3872 ((|#5| $) NIL) (((-757) $ |#4|) NIL) (((-630 (-757)) $ (-630 |#4|)) NIL) (((-757) $ |#3|) 44)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-401 (-553))) NIL) (($ $) NIL))) -(((-246 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3110 (|#1| |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -2356 (|#1| |#1| (-630 |#3|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#3| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#3|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#3| |#1|)) (-15 -3553 ((-1 |#1| (-757)) |#1|)) (-15 -2387 (|#1| |#1|)) (-15 -2901 (|#1| |#1|)) (-15 -2415 (|#4| |#1|)) (-15 -2296 ((-111) |#1|)) (-15 -2342 ((-757) |#1| |#3|)) (-15 -2991 ((-630 (-757)) |#1| |#3|)) (-15 -2342 ((-757) |#1|)) (-15 -2991 ((-630 (-757)) |#1|)) (-15 -3872 ((-757) |#1| |#3|)) (-15 -2968 ((-757) |#1|)) (-15 -2968 ((-757) |#1| |#3|)) (-15 -3193 ((-630 |#3|) |#1|)) (-15 -3553 ((-1 |#1| (-757)) |#3|)) (-15 -3110 (|#1| |#3|)) (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -3872 ((-630 (-757)) |#1| (-630 |#4|))) (-15 -3872 ((-757) |#1| |#4|)) (-15 -3110 (|#1| |#4|)) (-15 -1399 ((-3 |#4| "failed") |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#4| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#4| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -3872 (|#5| |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1330 (|#1| |#1| (-630 |#4|) (-630 (-757)))) (-15 -1330 (|#1| |#1| |#4| (-757))) (-15 -1330 (|#1| |#1| (-630 |#4|))) (-15 -1330 (|#1| |#1| |#4|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-247 |#2| |#3| |#4| |#5|) (-1031) (-833) (-260 |#3|) (-779)) (T -246)) -NIL -(-10 -8 (-15 -3110 (|#1| |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -2356 (|#1| |#1| (-630 |#3|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#3| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#3|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#3| |#1|)) (-15 -3553 ((-1 |#1| (-757)) |#1|)) (-15 -2387 (|#1| |#1|)) (-15 -2901 (|#1| |#1|)) (-15 -2415 (|#4| |#1|)) (-15 -2296 ((-111) |#1|)) (-15 -2342 ((-757) |#1| |#3|)) (-15 -2991 ((-630 (-757)) |#1| |#3|)) (-15 -2342 ((-757) |#1|)) (-15 -2991 ((-630 (-757)) |#1|)) (-15 -3872 ((-757) |#1| |#3|)) (-15 -2968 ((-757) |#1|)) (-15 -2968 ((-757) |#1| |#3|)) (-15 -3193 ((-630 |#3|) |#1|)) (-15 -3553 ((-1 |#1| (-757)) |#3|)) (-15 -3110 (|#1| |#3|)) (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -3872 ((-630 (-757)) |#1| (-630 |#4|))) (-15 -3872 ((-757) |#1| |#4|)) (-15 -3110 (|#1| |#4|)) (-15 -1399 ((-3 |#4| "failed") |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#4| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#4| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -3872 (|#5| |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1330 (|#1| |#1| (-630 |#4|) (-630 (-757)))) (-15 -1330 (|#1| |#1| |#4| (-757))) (-15 -1330 (|#1| |#1| (-630 |#4|))) (-15 -1330 (|#1| |#1| |#4|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2991 (((-630 (-757)) $) 214) (((-630 (-757)) $ |#2|) 212)) (-2342 (((-757) $) 213) (((-757) $ |#2|) 211)) (-3506 (((-630 |#3|) $) 110)) (-3322 (((-1151 $) $ |#3|) 125) (((-1151 |#1|) $) 124)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 87 (|has| |#1| (-545)))) (-1968 (($ $) 88 (|has| |#1| (-545)))) (-2028 (((-111) $) 90 (|has| |#1| (-545)))) (-2085 (((-757) $) 112) (((-757) $ (-630 |#3|)) 111)) (-2910 (((-3 $ "failed") $ $) 19)) (-1393 (((-412 (-1151 $)) (-1151 $)) 100 (|has| |#1| (-891)))) (-1536 (($ $) 98 (|has| |#1| (-445)))) (-2708 (((-412 $) $) 97 (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 103 (|has| |#1| (-891)))) (-2387 (($ $) 207)) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 164) (((-3 (-401 (-553)) "failed") $) 161 (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) 159 (|has| |#1| (-1020 (-553)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2707 ((|#1| $) 163) (((-401 (-553)) $) 162 (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) 160 (|has| |#1| (-1020 (-553)))) ((|#3| $) 137) ((|#2| $) 222)) (-2134 (($ $ $ |#3|) 108 (|has| |#1| (-169)))) (-3678 (($ $) 154)) (-2077 (((-674 (-553)) (-674 $)) 134 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 133 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 132) (((-674 |#1|) (-674 $)) 131)) (-2982 (((-3 $ "failed") $) 33)) (-1655 (($ $) 176 (|has| |#1| (-445))) (($ $ |#3|) 105 (|has| |#1| (-445)))) (-3667 (((-630 $) $) 109)) (-3119 (((-111) $) 96 (|has| |#1| (-891)))) (-2686 (($ $ |#1| |#4| $) 172)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 84 (-12 (|has| |#3| (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 83 (-12 (|has| |#3| (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-2968 (((-757) $ |#2|) 217) (((-757) $) 216)) (-1848 (((-111) $) 31)) (-1984 (((-757) $) 169)) (-3493 (($ (-1151 |#1|) |#3|) 117) (($ (-1151 $) |#3|) 116)) (-2096 (((-630 $) $) 126)) (-1298 (((-111) $) 152)) (-3481 (($ |#1| |#4|) 153) (($ $ |#3| (-757)) 119) (($ $ (-630 |#3|) (-630 (-757))) 118)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#3|) 120)) (-2423 ((|#4| $) 170) (((-757) $ |#3|) 122) (((-630 (-757)) $ (-630 |#3|)) 121)) (-1824 (($ $ $) 79 (|has| |#1| (-833)))) (-1975 (($ $ $) 78 (|has| |#1| (-833)))) (-2241 (($ (-1 |#4| |#4|) $) 171)) (-1482 (($ (-1 |#1| |#1|) $) 151)) (-3553 (((-1 $ (-757)) |#2|) 219) (((-1 $ (-757)) $) 206 (|has| |#1| (-228)))) (-1332 (((-3 |#3| "failed") $) 123)) (-3644 (($ $) 149)) (-3655 ((|#1| $) 148)) (-2415 ((|#3| $) 209)) (-2471 (($ (-630 $)) 94 (|has| |#1| (-445))) (($ $ $) 93 (|has| |#1| (-445)))) (-1735 (((-1137) $) 9)) (-2296 (((-111) $) 210)) (-2411 (((-3 (-630 $) "failed") $) 114)) (-2201 (((-3 (-630 $) "failed") $) 115)) (-3107 (((-3 (-2 (|:| |var| |#3|) (|:| -2692 (-757))) "failed") $) 113)) (-2901 (($ $) 208)) (-2786 (((-1099) $) 10)) (-3623 (((-111) $) 166)) (-3633 ((|#1| $) 167)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 95 (|has| |#1| (-445)))) (-2508 (($ (-630 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 102 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 101 (|has| |#1| (-891)))) (-3355 (((-412 $) $) 99 (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) 145) (($ $ (-288 $)) 144) (($ $ $ $) 143) (($ $ (-630 $) (-630 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-630 |#3|) (-630 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-630 |#3|) (-630 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-228))) (($ $ (-630 |#2|) (-630 $)) 204 (|has| |#1| (-228))) (($ $ |#2| |#1|) 203 (|has| |#1| (-228))) (($ $ (-630 |#2|) (-630 |#1|)) 202 (|has| |#1| (-228)))) (-3000 (($ $ |#3|) 107 (|has| |#1| (-169)))) (-1330 (($ $ |#3|) 42) (($ $ (-630 |#3|)) 41) (($ $ |#3| (-757)) 40) (($ $ (-630 |#3|) (-630 (-757))) 39) (($ $) 238 (|has| |#1| (-228))) (($ $ (-757)) 236 (|has| |#1| (-228))) (($ $ (-1155)) 234 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 233 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 232 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 231 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3193 (((-630 |#2|) $) 218)) (-3872 ((|#4| $) 150) (((-757) $ |#3|) 130) (((-630 (-757)) $ (-630 |#3|)) 129) (((-757) $ |#2|) 215)) (-1524 (((-874 (-373)) $) 82 (-12 (|has| |#3| (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) 81 (-12 (|has| |#3| (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) 80 (-12 (|has| |#3| (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) 175 (|has| |#1| (-445))) (($ $ |#3|) 106 (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 104 (-3726 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-401 (-553))) 72 (-3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553)))))) (($ $) 85 (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) 168)) (-1624 ((|#1| $ |#4|) 155) (($ $ |#3| (-757)) 128) (($ $ (-630 |#3|) (-630 (-757))) 127)) (-2941 (((-3 $ "failed") $) 73 (-3988 (-3726 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) 28)) (-2599 (($ $ $ (-757)) 173 (|has| |#1| (-169)))) (-1639 (((-111) $ $) 89 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ |#3|) 38) (($ $ (-630 |#3|)) 37) (($ $ |#3| (-757)) 36) (($ $ (-630 |#3|) (-630 (-757))) 35) (($ $) 237 (|has| |#1| (-228))) (($ $ (-757)) 235 (|has| |#1| (-228))) (($ $ (-1155)) 230 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 229 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 228 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 227 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1669 (((-111) $ $) 76 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 75 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 77 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 74 (|has| |#1| (-833)))) (-1723 (($ $ |#1|) 156 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 158 (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) 157 (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-247 |#1| |#2| |#3| |#4|) (-137) (-1031) (-833) (-260 |t#2|) (-779)) (T -247)) -((-3553 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *3 (-833)) (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-1 *1 (-757))) (-4 *1 (-247 *4 *3 *5 *6)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-630 *4)))) (-2968 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-757)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-757)))) (-3872 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-757)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-630 (-757))))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-757)))) (-2991 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-630 (-757))))) (-2342 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-757)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-111)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-779)) (-4 *2 (-260 *4)))) (-2901 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1031)) (-4 *3 (-833)) (-4 *4 (-260 *3)) (-4 *5 (-779)))) (-2387 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1031)) (-4 *3 (-833)) (-4 *4 (-260 *3)) (-4 *5 (-779)))) (-3553 (*1 *2 *1) (-12 (-4 *3 (-228)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-1 *1 (-757))) (-4 *1 (-247 *3 *4 *5 *6))))) -(-13 (-931 |t#1| |t#4| |t#3|) (-226 |t#1|) (-1020 |t#2|) (-10 -8 (-15 -3553 ((-1 $ (-757)) |t#2|)) (-15 -3193 ((-630 |t#2|) $)) (-15 -2968 ((-757) $ |t#2|)) (-15 -2968 ((-757) $)) (-15 -3872 ((-757) $ |t#2|)) (-15 -2991 ((-630 (-757)) $)) (-15 -2342 ((-757) $)) (-15 -2991 ((-630 (-757)) $ |t#2|)) (-15 -2342 ((-757) $ |t#2|)) (-15 -2296 ((-111) $)) (-15 -2415 (|t#3| $)) (-15 -2901 ($ $)) (-15 -2387 ($ $)) (IF (|has| |t#1| (-228)) (PROGN (-6 (-507 |t#2| |t#1|)) (-6 (-507 |t#2| $)) (-6 (-303 $)) (-15 -3553 ((-1 $ (-757)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 |#2|) . T) ((-603 |#3|) . T) ((-603 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-601 (-529)) -12 (|has| |#1| (-601 (-529))) (|has| |#3| (-601 (-529)))) ((-601 (-874 (-373))) -12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#3| (-601 (-874 (-373))))) ((-601 (-874 (-553))) -12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#3| (-601 (-874 (-553))))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-284) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#4|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -3988 (|has| |#1| (-891)) (|has| |#1| (-445))) ((-507 |#2| |#1|) |has| |#1| (-228)) ((-507 |#2| $) |has| |#1| (-228)) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-712) . T) ((-833) |has| |#1| (-833)) ((-882 (-1155)) |has| |#1| (-882 (-1155))) ((-882 |#3|) . T) ((-868 (-373)) -12 (|has| |#1| (-868 (-373))) (|has| |#3| (-868 (-373)))) ((-868 (-553)) -12 (|has| |#1| (-868 (-553))) (|has| |#3| (-868 (-553)))) ((-931 |#1| |#4| |#3|) . T) ((-891) |has| |#1| (-891)) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1020 |#2|) . T) ((-1020 |#3|) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) |has| |#1| (-891))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2497 ((|#1| $) 54)) (-3343 ((|#1| $) 44)) (-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-4171 (($ $) 60)) (-1467 (($ $) 48)) (-2260 ((|#1| |#1| $) 46)) (-3196 ((|#1| $) 45)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1899 (((-757) $) 61)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-4098 ((|#1| |#1| $) 52)) (-2685 ((|#1| |#1| $) 51)) (-2636 (($ |#1| $) 40)) (-2304 (((-757) $) 55)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2964 ((|#1| $) 62)) (-2475 ((|#1| $) 50)) (-1525 ((|#1| $) 49)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2865 ((|#1| |#1| $) 58)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-1456 ((|#1| $) 59)) (-2721 (($) 57) (($ (-630 |#1|)) 56)) (-3090 (((-757) $) 43)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2492 ((|#1| $) 53)) (-2711 (($ (-630 |#1|)) 42)) (-3732 ((|#1| $) 63)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-248 |#1|) (-137) (-1192)) (T -248)) -((-2721 (*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-4 *1 (-248 *3)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1192)) (-5 *2 (-757)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-4098 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-2685 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) (-1467 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) -(-13 (-1100 |t#1|) (-977 |t#1|) (-10 -8 (-15 -2721 ($)) (-15 -2721 ($ (-630 |t#1|))) (-15 -2304 ((-757) $)) (-15 -2497 (|t#1| $)) (-15 -2492 (|t#1| $)) (-15 -4098 (|t#1| |t#1| $)) (-15 -2685 (|t#1| |t#1| $)) (-15 -2475 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -1467 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-977 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1100 |#1|) . T) ((-1192) . T)) -((-1340 (((-1 (-925 (-220)) (-220) (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 139)) (-4096 (((-1112 (-220)) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373))) 160) (((-1112 (-220)) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)) (-630 (-257))) 158) (((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373))) 163) (((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257))) 159) (((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373))) 150) (((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257))) 149) (((-1112 (-220)) (-1 (-925 (-220)) (-220)) (-1073 (-373))) 129) (((-1112 (-220)) (-1 (-925 (-220)) (-220)) (-1073 (-373)) (-630 (-257))) 127) (((-1112 (-220)) (-861 (-1 (-220) (-220))) (-1073 (-373))) 128) (((-1112 (-220)) (-861 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257))) 125)) (-4051 (((-1240) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373))) 162) (((-1240) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)) (-630 (-257))) 161) (((-1240) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373))) 165) (((-1240) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257))) 164) (((-1240) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373))) 152) (((-1240) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257))) 151) (((-1240) (-1 (-925 (-220)) (-220)) (-1073 (-373))) 135) (((-1240) (-1 (-925 (-220)) (-220)) (-1073 (-373)) (-630 (-257))) 134) (((-1240) (-861 (-1 (-220) (-220))) (-1073 (-373))) 133) (((-1240) (-861 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257))) 132) (((-1239) (-859 (-1 (-220) (-220))) (-1073 (-373))) 100) (((-1239) (-859 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257))) 99) (((-1239) (-1 (-220) (-220)) (-1073 (-373))) 96) (((-1239) (-1 (-220) (-220)) (-1073 (-373)) (-630 (-257))) 95))) -(((-249) (-10 -7 (-15 -4051 ((-1239) (-1 (-220) (-220)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) (-1 (-220) (-220)) (-1073 (-373)))) (-15 -4051 ((-1239) (-859 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) (-859 (-1 (-220) (-220))) (-1073 (-373)))) (-15 -4051 ((-1240) (-861 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-861 (-1 (-220) (-220))) (-1073 (-373)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-861 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-861 (-1 (-220) (-220))) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220)) (-1073 (-373)))) (-15 -4051 ((-1240) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4051 ((-1240) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)))) (-15 -1340 ((-1 (-925 (-220)) (-220) (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -249)) -((-1340 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-925 (-220)) (-220) (-220))) (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-859 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-859 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *2 (-1239)) (-5 *1 (-249)))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1073 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-249))))) -(-10 -7 (-15 -4051 ((-1239) (-1 (-220) (-220)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) (-1 (-220) (-220)) (-1073 (-373)))) (-15 -4051 ((-1239) (-859 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) (-859 (-1 (-220) (-220))) (-1073 (-373)))) (-15 -4051 ((-1240) (-861 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-861 (-1 (-220) (-220))) (-1073 (-373)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-861 (-1 (-220) (-220))) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-861 (-1 (-220) (-220))) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220)) (-1073 (-373)))) (-15 -4051 ((-1240) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-373)) (-1073 (-373)))) (-15 -4051 ((-1240) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)))) (-15 -4096 ((-1112 (-220)) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-864 (-1 (-220) (-220) (-220))) (-1073 (-373)) (-1073 (-373)))) (-15 -1340 ((-1 (-925 (-220)) (-220) (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) -((-4051 (((-1239) (-288 |#2|) (-1155) (-1155) (-630 (-257))) 96))) -(((-250 |#1| |#2|) (-10 -7 (-15 -4051 ((-1239) (-288 |#2|) (-1155) (-1155) (-630 (-257))))) (-13 (-545) (-833) (-1020 (-553))) (-424 |#1|)) (T -250)) -((-4051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1155)) (-5 *5 (-630 (-257))) (-4 *7 (-424 *6)) (-4 *6 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-1239)) (-5 *1 (-250 *6 *7))))) -(-10 -7 (-15 -4051 ((-1239) (-288 |#2|) (-1155) (-1155) (-630 (-257))))) -((-3361 (((-553) (-553)) 50)) (-3242 (((-553) (-553)) 51)) (-3241 (((-220) (-220)) 52)) (-2650 (((-1240) (-1 (-166 (-220)) (-166 (-220))) (-1073 (-220)) (-1073 (-220))) 49)) (-3531 (((-1240) (-1 (-166 (-220)) (-166 (-220))) (-1073 (-220)) (-1073 (-220)) (-111)) 47))) -(((-251) (-10 -7 (-15 -3531 ((-1240) (-1 (-166 (-220)) (-166 (-220))) (-1073 (-220)) (-1073 (-220)) (-111))) (-15 -2650 ((-1240) (-1 (-166 (-220)) (-166 (-220))) (-1073 (-220)) (-1073 (-220)))) (-15 -3361 ((-553) (-553))) (-15 -3242 ((-553) (-553))) (-15 -3241 ((-220) (-220))))) (T -251)) -((-3241 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251)))) (-3242 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-251)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-251)))) (-2650 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1073 (-220))) (-5 *2 (-1240)) (-5 *1 (-251)))) (-3531 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1073 (-220))) (-5 *5 (-111)) (-5 *2 (-1240)) (-5 *1 (-251))))) -(-10 -7 (-15 -3531 ((-1240) (-1 (-166 (-220)) (-166 (-220))) (-1073 (-220)) (-1073 (-220)) (-111))) (-15 -2650 ((-1240) (-1 (-166 (-220)) (-166 (-220))) (-1073 (-220)) (-1073 (-220)))) (-15 -3361 ((-553) (-553))) (-15 -3242 ((-553) (-553))) (-15 -3241 ((-220) (-220)))) -((-3110 (((-1071 (-373)) (-1071 (-310 |#1|))) 16))) -(((-252 |#1|) (-10 -7 (-15 -3110 ((-1071 (-373)) (-1071 (-310 |#1|))))) (-13 (-833) (-545) (-601 (-373)))) (T -252)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-1071 (-310 *4))) (-4 *4 (-13 (-833) (-545) (-601 (-373)))) (-5 *2 (-1071 (-373))) (-5 *1 (-252 *4))))) -(-10 -7 (-15 -3110 ((-1071 (-373)) (-1071 (-310 |#1|))))) -((-4096 (((-1112 (-220)) (-864 |#1|) (-1071 (-373)) (-1071 (-373))) 71) (((-1112 (-220)) (-864 |#1|) (-1071 (-373)) (-1071 (-373)) (-630 (-257))) 70) (((-1112 (-220)) |#1| (-1071 (-373)) (-1071 (-373))) 61) (((-1112 (-220)) |#1| (-1071 (-373)) (-1071 (-373)) (-630 (-257))) 60) (((-1112 (-220)) (-861 |#1|) (-1071 (-373))) 52) (((-1112 (-220)) (-861 |#1|) (-1071 (-373)) (-630 (-257))) 51)) (-4051 (((-1240) (-864 |#1|) (-1071 (-373)) (-1071 (-373))) 74) (((-1240) (-864 |#1|) (-1071 (-373)) (-1071 (-373)) (-630 (-257))) 73) (((-1240) |#1| (-1071 (-373)) (-1071 (-373))) 64) (((-1240) |#1| (-1071 (-373)) (-1071 (-373)) (-630 (-257))) 63) (((-1240) (-861 |#1|) (-1071 (-373))) 56) (((-1240) (-861 |#1|) (-1071 (-373)) (-630 (-257))) 55) (((-1239) (-859 |#1|) (-1071 (-373))) 43) (((-1239) (-859 |#1|) (-1071 (-373)) (-630 (-257))) 42) (((-1239) |#1| (-1071 (-373))) 35) (((-1239) |#1| (-1071 (-373)) (-630 (-257))) 34))) -(((-253 |#1|) (-10 -7 (-15 -4051 ((-1239) |#1| (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) |#1| (-1071 (-373)))) (-15 -4051 ((-1239) (-859 |#1|) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) (-859 |#1|) (-1071 (-373)))) (-15 -4051 ((-1240) (-861 |#1|) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-861 |#1|) (-1071 (-373)))) (-15 -4096 ((-1112 (-220)) (-861 |#1|) (-1071 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-861 |#1|) (-1071 (-373)))) (-15 -4051 ((-1240) |#1| (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) |#1| (-1071 (-373)) (-1071 (-373)))) (-15 -4096 ((-1112 (-220)) |#1| (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) |#1| (-1071 (-373)) (-1071 (-373)))) (-15 -4051 ((-1240) (-864 |#1|) (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-864 |#1|) (-1071 (-373)) (-1071 (-373)))) (-15 -4096 ((-1112 (-220)) (-864 |#1|) (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-864 |#1|) (-1071 (-373)) (-1071 (-373))))) (-13 (-601 (-529)) (-1079))) (T -253)) -((-4096 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-864 *5)) (-5 *4 (-1071 (-373))) (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *5)))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-864 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *6)))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-864 *5)) (-5 *4 (-1071 (-373))) (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) (-5 *1 (-253 *5)))) (-4051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-864 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) (-5 *1 (-253 *6)))) (-4096 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1071 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) (-4096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1071 (-373))) (-5 *2 (-1240)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) (-4051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1071 (-373))) (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *5)))) (-4096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-861 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *6)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1071 (-373))) (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) (-5 *1 (-253 *5)))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-861 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) (-5 *1 (-253 *6)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-859 *5)) (-5 *4 (-1071 (-373))) (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1239)) (-5 *1 (-253 *5)))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-859 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1239)) (-5 *1 (-253 *6)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-1071 (-373))) (-5 *2 (-1239)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) (-4051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079)))))) -(-10 -7 (-15 -4051 ((-1239) |#1| (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) |#1| (-1071 (-373)))) (-15 -4051 ((-1239) (-859 |#1|) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1239) (-859 |#1|) (-1071 (-373)))) (-15 -4051 ((-1240) (-861 |#1|) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-861 |#1|) (-1071 (-373)))) (-15 -4096 ((-1112 (-220)) (-861 |#1|) (-1071 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-861 |#1|) (-1071 (-373)))) (-15 -4051 ((-1240) |#1| (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) |#1| (-1071 (-373)) (-1071 (-373)))) (-15 -4096 ((-1112 (-220)) |#1| (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) |#1| (-1071 (-373)) (-1071 (-373)))) (-15 -4051 ((-1240) (-864 |#1|) (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4051 ((-1240) (-864 |#1|) (-1071 (-373)) (-1071 (-373)))) (-15 -4096 ((-1112 (-220)) (-864 |#1|) (-1071 (-373)) (-1071 (-373)) (-630 (-257)))) (-15 -4096 ((-1112 (-220)) (-864 |#1|) (-1071 (-373)) (-1071 (-373))))) -((-4051 (((-1240) (-630 (-220)) (-630 (-220)) (-630 (-220)) (-630 (-257))) 23) (((-1240) (-630 (-220)) (-630 (-220)) (-630 (-220))) 24) (((-1239) (-630 (-925 (-220))) (-630 (-257))) 16) (((-1239) (-630 (-925 (-220)))) 17) (((-1239) (-630 (-220)) (-630 (-220)) (-630 (-257))) 20) (((-1239) (-630 (-220)) (-630 (-220))) 21))) -(((-254) (-10 -7 (-15 -4051 ((-1239) (-630 (-220)) (-630 (-220)))) (-15 -4051 ((-1239) (-630 (-220)) (-630 (-220)) (-630 (-257)))) (-15 -4051 ((-1239) (-630 (-925 (-220))))) (-15 -4051 ((-1239) (-630 (-925 (-220))) (-630 (-257)))) (-15 -4051 ((-1240) (-630 (-220)) (-630 (-220)) (-630 (-220)))) (-15 -4051 ((-1240) (-630 (-220)) (-630 (-220)) (-630 (-220)) (-630 (-257)))))) (T -254)) -((-4051 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-630 (-220))) (-5 *4 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-254)))) (-4051 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-630 (-220))) (-5 *2 (-1240)) (-5 *1 (-254)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-925 (-220)))) (-5 *4 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-254)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-630 (-925 (-220)))) (-5 *2 (-1239)) (-5 *1 (-254)))) (-4051 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-630 (-220))) (-5 *4 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-254)))) (-4051 (*1 *2 *3 *3) (-12 (-5 *3 (-630 (-220))) (-5 *2 (-1239)) (-5 *1 (-254))))) -(-10 -7 (-15 -4051 ((-1239) (-630 (-220)) (-630 (-220)))) (-15 -4051 ((-1239) (-630 (-220)) (-630 (-220)) (-630 (-257)))) (-15 -4051 ((-1239) (-630 (-925 (-220))))) (-15 -4051 ((-1239) (-630 (-925 (-220))) (-630 (-257)))) (-15 -4051 ((-1240) (-630 (-220)) (-630 (-220)) (-630 (-220)))) (-15 -4051 ((-1240) (-630 (-220)) (-630 (-220)) (-630 (-220)) (-630 (-257))))) -((-2385 (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-630 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 26)) (-2286 (((-903) (-630 (-257)) (-903)) 53)) (-3744 (((-903) (-630 (-257)) (-903)) 52)) (-2064 (((-630 (-373)) (-630 (-257)) (-630 (-373))) 69)) (-3580 (((-373) (-630 (-257)) (-373)) 58)) (-1552 (((-903) (-630 (-257)) (-903)) 54)) (-1338 (((-111) (-630 (-257)) (-111)) 28)) (-3990 (((-1137) (-630 (-257)) (-1137)) 20)) (-3106 (((-1137) (-630 (-257)) (-1137)) 27)) (-1391 (((-1112 (-220)) (-630 (-257))) 47)) (-2319 (((-630 (-1073 (-373))) (-630 (-257)) (-630 (-1073 (-373)))) 41)) (-3171 (((-856) (-630 (-257)) (-856)) 33)) (-2627 (((-856) (-630 (-257)) (-856)) 34)) (-4132 (((-1 (-925 (-220)) (-925 (-220))) (-630 (-257)) (-1 (-925 (-220)) (-925 (-220)))) 64)) (-3388 (((-111) (-630 (-257)) (-111)) 16)) (-4314 (((-111) (-630 (-257)) (-111)) 15))) -(((-255) (-10 -7 (-15 -4314 ((-111) (-630 (-257)) (-111))) (-15 -3388 ((-111) (-630 (-257)) (-111))) (-15 -2385 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-630 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -3990 ((-1137) (-630 (-257)) (-1137))) (-15 -3106 ((-1137) (-630 (-257)) (-1137))) (-15 -1338 ((-111) (-630 (-257)) (-111))) (-15 -3171 ((-856) (-630 (-257)) (-856))) (-15 -2627 ((-856) (-630 (-257)) (-856))) (-15 -2319 ((-630 (-1073 (-373))) (-630 (-257)) (-630 (-1073 (-373))))) (-15 -3744 ((-903) (-630 (-257)) (-903))) (-15 -2286 ((-903) (-630 (-257)) (-903))) (-15 -1391 ((-1112 (-220)) (-630 (-257)))) (-15 -1552 ((-903) (-630 (-257)) (-903))) (-15 -3580 ((-373) (-630 (-257)) (-373))) (-15 -4132 ((-1 (-925 (-220)) (-925 (-220))) (-630 (-257)) (-1 (-925 (-220)) (-925 (-220))))) (-15 -2064 ((-630 (-373)) (-630 (-257)) (-630 (-373)))))) (T -255)) -((-2064 (*1 *2 *3 *2) (-12 (-5 *2 (-630 (-373))) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-4132 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-925 (-220)) (-925 (-220)))) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-3580 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-1552 (*1 *2 *3 *2) (-12 (-5 *2 (-903)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *2) (-12 (-5 *2 (-903)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-3744 (*1 *2 *3 *2) (-12 (-5 *2 (-903)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-2627 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-3171 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-3106 (*1 *2 *3 *2) (-12 (-5 *2 (-1137)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-3990 (*1 *2 *3 *2) (-12 (-5 *2 (-1137)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-2385 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-3388 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) (-4314 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-630 (-257))) (-5 *1 (-255))))) -(-10 -7 (-15 -4314 ((-111) (-630 (-257)) (-111))) (-15 -3388 ((-111) (-630 (-257)) (-111))) (-15 -2385 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-630 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -3990 ((-1137) (-630 (-257)) (-1137))) (-15 -3106 ((-1137) (-630 (-257)) (-1137))) (-15 -1338 ((-111) (-630 (-257)) (-111))) (-15 -3171 ((-856) (-630 (-257)) (-856))) (-15 -2627 ((-856) (-630 (-257)) (-856))) (-15 -2319 ((-630 (-1073 (-373))) (-630 (-257)) (-630 (-1073 (-373))))) (-15 -3744 ((-903) (-630 (-257)) (-903))) (-15 -2286 ((-903) (-630 (-257)) (-903))) (-15 -1391 ((-1112 (-220)) (-630 (-257)))) (-15 -1552 ((-903) (-630 (-257)) (-903))) (-15 -3580 ((-373) (-630 (-257)) (-373))) (-15 -4132 ((-1 (-925 (-220)) (-925 (-220))) (-630 (-257)) (-1 (-925 (-220)) (-925 (-220))))) (-15 -2064 ((-630 (-373)) (-630 (-257)) (-630 (-373))))) -((-2150 (((-3 |#1| "failed") (-630 (-257)) (-1155)) 17))) -(((-256 |#1|) (-10 -7 (-15 -2150 ((-3 |#1| "failed") (-630 (-257)) (-1155)))) (-1192)) (T -256)) -((-2150 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 (-257))) (-5 *4 (-1155)) (-5 *1 (-256 *2)) (-4 *2 (-1192))))) -(-10 -7 (-15 -2150 ((-3 |#1| "failed") (-630 (-257)) (-1155)))) -((-3096 (((-111) $ $) NIL)) (-2385 (($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 15)) (-2286 (($ (-903)) 76)) (-3744 (($ (-903)) 75)) (-3908 (($ (-630 (-373))) 82)) (-3580 (($ (-373)) 58)) (-1552 (($ (-903)) 77)) (-1338 (($ (-111)) 23)) (-3990 (($ (-1137)) 18)) (-3106 (($ (-1137)) 19)) (-1391 (($ (-1112 (-220))) 71)) (-2319 (($ (-630 (-1073 (-373)))) 67)) (-1457 (($ (-630 (-1073 (-373)))) 59) (($ (-630 (-1073 (-401 (-553))))) 66)) (-3288 (($ (-373)) 29) (($ (-856)) 33)) (-2931 (((-111) (-630 $) (-1155)) 91)) (-2150 (((-3 (-52) "failed") (-630 $) (-1155)) 93)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3622 (($ (-373)) 34) (($ (-856)) 35)) (-2855 (($ (-1 (-925 (-220)) (-925 (-220)))) 57)) (-4132 (($ (-1 (-925 (-220)) (-925 (-220)))) 78)) (-2148 (($ (-1 (-220) (-220))) 39) (($ (-1 (-220) (-220) (-220))) 43) (($ (-1 (-220) (-220) (-220) (-220))) 47)) (-3110 (((-845) $) 87)) (-2783 (($ (-111)) 24) (($ (-630 (-1073 (-373)))) 52)) (-4314 (($ (-111)) 25)) (-1617 (((-111) $ $) 89))) -(((-257) (-13 (-1079) (-10 -8 (-15 -4314 ($ (-111))) (-15 -2783 ($ (-111))) (-15 -2385 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -3990 ($ (-1137))) (-15 -3106 ($ (-1137))) (-15 -1338 ($ (-111))) (-15 -2783 ($ (-630 (-1073 (-373))))) (-15 -2855 ($ (-1 (-925 (-220)) (-925 (-220))))) (-15 -3288 ($ (-373))) (-15 -3288 ($ (-856))) (-15 -3622 ($ (-373))) (-15 -3622 ($ (-856))) (-15 -2148 ($ (-1 (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -3580 ($ (-373))) (-15 -1457 ($ (-630 (-1073 (-373))))) (-15 -1457 ($ (-630 (-1073 (-401 (-553)))))) (-15 -2319 ($ (-630 (-1073 (-373))))) (-15 -1391 ($ (-1112 (-220)))) (-15 -3744 ($ (-903))) (-15 -2286 ($ (-903))) (-15 -1552 ($ (-903))) (-15 -4132 ($ (-1 (-925 (-220)) (-925 (-220))))) (-15 -3908 ($ (-630 (-373)))) (-15 -2150 ((-3 (-52) "failed") (-630 $) (-1155))) (-15 -2931 ((-111) (-630 $) (-1155)))))) (T -257)) -((-4314 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-257)))) (-3990 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-257)))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-257)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-257)))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-1 (-925 (-220)) (-925 (-220)))) (-5 *1 (-257)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-257)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-257)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) (-3580 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-257)))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-401 (-553))))) (-5 *1 (-257)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-257)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-257)))) (-3744 (*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-257)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-257)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-257)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1 (-925 (-220)) (-925 (-220)))) (-5 *1 (-257)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-630 (-373))) (-5 *1 (-257)))) (-2150 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 (-257))) (-5 *4 (-1155)) (-5 *2 (-52)) (-5 *1 (-257)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-257))) (-5 *4 (-1155)) (-5 *2 (-111)) (-5 *1 (-257))))) -(-13 (-1079) (-10 -8 (-15 -4314 ($ (-111))) (-15 -2783 ($ (-111))) (-15 -2385 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -3990 ($ (-1137))) (-15 -3106 ($ (-1137))) (-15 -1338 ($ (-111))) (-15 -2783 ($ (-630 (-1073 (-373))))) (-15 -2855 ($ (-1 (-925 (-220)) (-925 (-220))))) (-15 -3288 ($ (-373))) (-15 -3288 ($ (-856))) (-15 -3622 ($ (-373))) (-15 -3622 ($ (-856))) (-15 -2148 ($ (-1 (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220)))) (-15 -2148 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -3580 ($ (-373))) (-15 -1457 ($ (-630 (-1073 (-373))))) (-15 -1457 ($ (-630 (-1073 (-401 (-553)))))) (-15 -2319 ($ (-630 (-1073 (-373))))) (-15 -1391 ($ (-1112 (-220)))) (-15 -3744 ($ (-903))) (-15 -2286 ($ (-903))) (-15 -1552 ($ (-903))) (-15 -4132 ($ (-1 (-925 (-220)) (-925 (-220))))) (-15 -3908 ($ (-630 (-373)))) (-15 -2150 ((-3 (-52) "failed") (-630 $) (-1155))) (-15 -2931 ((-111) (-630 $) (-1155))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2991 (((-630 (-757)) $) NIL) (((-630 (-757)) $ |#2|) NIL)) (-2342 (((-757) $) NIL) (((-757) $ |#2|) NIL)) (-3506 (((-630 |#3|) $) NIL)) (-3322 (((-1151 $) $ |#3|) NIL) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 |#3|)) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-2387 (($ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1104 |#1| |#2|) "failed") $) 21)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1104 |#1| |#2|) $) NIL)) (-2134 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-524 |#3|) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| |#1| (-868 (-373))) (|has| |#3| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| |#1| (-868 (-553))) (|has| |#3| (-868 (-553)))))) (-2968 (((-757) $ |#2|) NIL) (((-757) $) 10)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#1|) |#3|) NIL) (($ (-1151 $) |#3|) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-524 |#3|)) NIL) (($ $ |#3| (-757)) NIL) (($ $ (-630 |#3|) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#3|) NIL)) (-2423 (((-524 |#3|) $) NIL) (((-757) $ |#3|) NIL) (((-630 (-757)) $ (-630 |#3|)) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-524 |#3|) (-524 |#3|)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3553 (((-1 $ (-757)) |#2|) NIL) (((-1 $ (-757)) $) NIL (|has| |#1| (-228)))) (-1332 (((-3 |#3| "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2415 ((|#3| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-2296 (((-111) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| |#3|) (|:| -2692 (-757))) "failed") $) NIL)) (-2901 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-630 |#3|) (-630 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-630 |#3|) (-630 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-228))) (($ $ (-630 |#2|) (-630 $)) NIL (|has| |#1| (-228))) (($ $ |#2| |#1|) NIL (|has| |#1| (-228))) (($ $ (-630 |#2|) (-630 |#1|)) NIL (|has| |#1| (-228)))) (-3000 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-1330 (($ $ |#3|) NIL) (($ $ (-630 |#3|)) NIL) (($ $ |#3| (-757)) NIL) (($ $ (-630 |#3|) (-630 (-757))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3193 (((-630 |#2|) $) NIL)) (-3872 (((-524 |#3|) $) NIL) (((-757) $ |#3|) NIL) (((-630 (-757)) $ (-630 |#3|)) NIL) (((-757) $ |#2|) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#3| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#3| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| |#1| (-601 (-529))) (|has| |#3| (-601 (-529)))))) (-4198 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1104 |#1| |#2|)) 30) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-524 |#3|)) NIL) (($ $ |#3| (-757)) NIL) (($ $ (-630 |#3|) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ |#3|) NIL) (($ $ (-630 |#3|)) NIL) (($ $ |#3| (-757)) NIL) (($ $ (-630 |#3|) (-630 (-757))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-258 |#1| |#2| |#3|) (-13 (-247 |#1| |#2| |#3| (-524 |#3|)) (-1020 (-1104 |#1| |#2|))) (-1031) (-833) (-260 |#2|)) (T -258)) -NIL -(-13 (-247 |#1| |#2| |#3| (-524 |#3|)) (-1020 (-1104 |#1| |#2|))) -((-2342 (((-757) $) 30)) (-1399 (((-3 |#2| "failed") $) 17)) (-2707 ((|#2| $) 27)) (-1330 (($ $) 12) (($ $ (-757)) 15)) (-3110 (((-845) $) 26) (($ |#2|) 10)) (-1617 (((-111) $ $) 20)) (-1636 (((-111) $ $) 29))) -(((-259 |#1| |#2|) (-10 -8 (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -2342 ((-757) |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-260 |#2|) (-833)) (T -259)) -NIL -(-10 -8 (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -2342 ((-757) |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-2342 (((-757) $) 22)) (-1509 ((|#1| $) 23)) (-1399 (((-3 |#1| "failed") $) 27)) (-2707 ((|#1| $) 28)) (-2968 (((-757) $) 24)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-3553 (($ |#1| (-757)) 25)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1330 (($ $) 21) (($ $ (-757)) 20)) (-3110 (((-845) $) 11) (($ |#1|) 26)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18))) -(((-260 |#1|) (-137) (-833)) (T -260)) -((-3110 (*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-833)))) (-3553 (*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-260 *2)) (-4 *2 (-833)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-833)) (-5 *2 (-757)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-833)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-833)) (-5 *2 (-757)))) (-1330 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-833)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-260 *3)) (-4 *3 (-833))))) -(-13 (-833) (-1020 |t#1|) (-10 -8 (-15 -3553 ($ |t#1| (-757))) (-15 -2968 ((-757) $)) (-15 -1509 (|t#1| $)) (-15 -2342 ((-757) $)) (-15 -1330 ($ $)) (-15 -1330 ($ $ (-757))) (-15 -3110 ($ |t#1|)))) -(((-101) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-833) . T) ((-1020 |#1|) . T) ((-1079) . T)) -((-3506 (((-630 (-1155)) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 41)) (-2694 (((-630 (-1155)) (-310 (-220)) (-757)) 80)) (-2803 (((-3 (-310 (-220)) "failed") (-310 (-220))) 51)) (-1316 (((-310 (-220)) (-310 (-220))) 67)) (-1344 (((-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 26)) (-2442 (((-111) (-630 (-310 (-220)))) 84)) (-2052 (((-111) (-310 (-220))) 24)) (-2113 (((-630 (-1137)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))))) 106)) (-1757 (((-630 (-310 (-220))) (-630 (-310 (-220)))) 88)) (-2830 (((-630 (-310 (-220))) (-630 (-310 (-220)))) 86)) (-4034 (((-674 (-220)) (-630 (-310 (-220))) (-757)) 95)) (-4073 (((-111) (-310 (-220))) 20) (((-111) (-630 (-310 (-220)))) 85)) (-2932 (((-630 (-220)) (-630 (-826 (-220))) (-220)) 14)) (-1729 (((-373) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 101)) (-1586 (((-1017) (-1155) (-1017)) 34))) -(((-261) (-10 -7 (-15 -2932 ((-630 (-220)) (-630 (-826 (-220))) (-220))) (-15 -1344 ((-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))))) (-15 -2803 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1316 ((-310 (-220)) (-310 (-220)))) (-15 -2442 ((-111) (-630 (-310 (-220))))) (-15 -4073 ((-111) (-630 (-310 (-220))))) (-15 -4073 ((-111) (-310 (-220)))) (-15 -4034 ((-674 (-220)) (-630 (-310 (-220))) (-757))) (-15 -2830 ((-630 (-310 (-220))) (-630 (-310 (-220))))) (-15 -1757 ((-630 (-310 (-220))) (-630 (-310 (-220))))) (-15 -2052 ((-111) (-310 (-220)))) (-15 -3506 ((-630 (-1155)) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -2694 ((-630 (-1155)) (-310 (-220)) (-757))) (-15 -1586 ((-1017) (-1155) (-1017))) (-15 -1729 ((-373) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -2113 ((-630 (-1137)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))))))) (T -261)) -((-2113 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))))) (-5 *2 (-630 (-1137))) (-5 *1 (-261)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) (-5 *2 (-373)) (-5 *1 (-261)))) (-1586 (*1 *2 *3 *2) (-12 (-5 *2 (-1017)) (-5 *3 (-1155)) (-5 *1 (-261)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-757)) (-5 *2 (-630 (-1155))) (-5 *1 (-261)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) (-5 *2 (-630 (-1155))) (-5 *1 (-261)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-630 (-310 (-220)))) (-5 *1 (-261)))) (-2830 (*1 *2 *2) (-12 (-5 *2 (-630 (-310 (-220)))) (-5 *1 (-261)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-310 (-220)))) (-5 *4 (-757)) (-5 *2 (-674 (-220))) (-5 *1 (-261)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-630 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-630 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-2803 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (-5 *1 (-261)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-826 (-220)))) (-5 *4 (-220)) (-5 *2 (-630 *4)) (-5 *1 (-261))))) -(-10 -7 (-15 -2932 ((-630 (-220)) (-630 (-826 (-220))) (-220))) (-15 -1344 ((-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))))) (-15 -2803 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1316 ((-310 (-220)) (-310 (-220)))) (-15 -2442 ((-111) (-630 (-310 (-220))))) (-15 -4073 ((-111) (-630 (-310 (-220))))) (-15 -4073 ((-111) (-310 (-220)))) (-15 -4034 ((-674 (-220)) (-630 (-310 (-220))) (-757))) (-15 -2830 ((-630 (-310 (-220))) (-630 (-310 (-220))))) (-15 -1757 ((-630 (-310 (-220))) (-630 (-310 (-220))))) (-15 -2052 ((-111) (-310 (-220)))) (-15 -3506 ((-630 (-1155)) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -2694 ((-630 (-1155)) (-310 (-220)) (-757))) (-15 -1586 ((-1017) (-1155) (-1017))) (-15 -1729 ((-373) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -2113 ((-630 (-1137)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))))))) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 44)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 26) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-262) (-822)) (T -262)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 58) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 54)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 34) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 36)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-263) (-822)) (T -263)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 76) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 73)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 44) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 55)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-264) (-822)) (T -264)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 50)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 31) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-265) (-822)) (T -265)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 50)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 28) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-266) (-822)) (T -266)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 73)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 28) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-267) (-822)) (T -267)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 77)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 25) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-268) (-822)) (T -268)) -NIL -(-822) -((-3096 (((-111) $ $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3328 (((-630 (-553)) $) 19)) (-3872 (((-757) $) 17)) (-3110 (((-845) $) 23) (($ (-630 (-553))) 15)) (-2628 (($ (-757)) 20)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 9)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 11))) -(((-269) (-13 (-833) (-10 -8 (-15 -3110 ($ (-630 (-553)))) (-15 -3872 ((-757) $)) (-15 -3328 ((-630 (-553)) $)) (-15 -2628 ($ (-757)))))) (T -269)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-269)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-269)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-269)))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-269))))) -(-13 (-833) (-10 -8 (-15 -3110 ($ (-630 (-553)))) (-15 -3872 ((-757) $)) (-15 -3328 ((-630 (-553)) $)) (-15 -2628 ($ (-757))))) -((-2380 ((|#2| |#2|) 77)) (-2246 ((|#2| |#2|) 65)) (-4151 (((-3 |#2| "failed") |#2| (-630 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-2357 ((|#2| |#2|) 75)) (-2224 ((|#2| |#2|) 63)) (-2403 ((|#2| |#2|) 79)) (-2268 ((|#2| |#2|) 67)) (-3996 ((|#2|) 46)) (-4180 (((-113) (-113)) 95)) (-2366 ((|#2| |#2|) 61)) (-2285 (((-111) |#2|) 134)) (-2598 ((|#2| |#2|) 181)) (-2225 ((|#2| |#2|) 157)) (-2891 ((|#2|) 59)) (-3755 ((|#2|) 58)) (-2468 ((|#2| |#2|) 177)) (-1719 ((|#2| |#2|) 153)) (-3866 ((|#2| |#2|) 185)) (-4001 ((|#2| |#2|) 161)) (-3414 ((|#2| |#2|) 149)) (-3793 ((|#2| |#2|) 151)) (-3664 ((|#2| |#2|) 187)) (-4229 ((|#2| |#2|) 163)) (-2688 ((|#2| |#2|) 183)) (-2732 ((|#2| |#2|) 159)) (-3865 ((|#2| |#2|) 179)) (-1682 ((|#2| |#2|) 155)) (-1887 ((|#2| |#2|) 193)) (-2162 ((|#2| |#2|) 169)) (-3004 ((|#2| |#2|) 189)) (-3260 ((|#2| |#2|) 165)) (-1581 ((|#2| |#2|) 197)) (-2807 ((|#2| |#2|) 173)) (-1432 ((|#2| |#2|) 199)) (-2450 ((|#2| |#2|) 175)) (-3772 ((|#2| |#2|) 195)) (-2287 ((|#2| |#2|) 171)) (-4328 ((|#2| |#2|) 191)) (-2649 ((|#2| |#2|) 167)) (-2743 ((|#2| |#2|) 62)) (-2414 ((|#2| |#2|) 80)) (-2279 ((|#2| |#2|) 68)) (-2392 ((|#2| |#2|) 78)) (-2257 ((|#2| |#2|) 66)) (-2368 ((|#2| |#2|) 76)) (-2234 ((|#2| |#2|) 64)) (-2274 (((-111) (-113)) 93)) (-2447 ((|#2| |#2|) 83)) (-2313 ((|#2| |#2|) 71)) (-2425 ((|#2| |#2|) 81)) (-2291 ((|#2| |#2|) 69)) (-3791 ((|#2| |#2|) 85)) (-2336 ((|#2| |#2|) 73)) (-2570 ((|#2| |#2|) 86)) (-2346 ((|#2| |#2|) 74)) (-3780 ((|#2| |#2|) 84)) (-2324 ((|#2| |#2|) 72)) (-2435 ((|#2| |#2|) 82)) (-2302 ((|#2| |#2|) 70))) -(((-270 |#1| |#2|) (-10 -7 (-15 -2743 (|#2| |#2|)) (-15 -2366 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -2234 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2268 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -2313 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2425 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -2447 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -3996 (|#2|)) (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -3755 (|#2|)) (-15 -2891 (|#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3414 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -2649 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -2450 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -2688 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3004 (|#2| |#2|)) (-15 -4328 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -4151 ((-3 |#2| "failed") |#2| (-630 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2285 ((-111) |#2|))) (-13 (-833) (-545)) (-13 (-424 |#1|) (-984))) (T -270)) -((-2285 (*1 *2 *3) (-12 (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-424 *4) (-984))))) (-4151 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-630 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-424 *4) (-984))) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-270 *4 *2)))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-1581 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-4328 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3004 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2688 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3865 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2450 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2649 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3414 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2891 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-984))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-833) (-545))))) (-3755 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-984))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-833) (-545))))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *4)) (-4 *4 (-13 (-424 *3) (-984))))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-984))))) (-3996 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-984))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-833) (-545))))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2425 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2268 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2234 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-984)))))) -(-10 -7 (-15 -2743 (|#2| |#2|)) (-15 -2366 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -2234 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2268 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -2313 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2425 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -2447 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -3996 (|#2|)) (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -3755 (|#2|)) (-15 -2891 (|#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3414 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -2649 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -2450 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -2688 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3004 (|#2| |#2|)) (-15 -4328 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -1581 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -4151 ((-3 |#2| "failed") |#2| (-630 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2285 ((-111) |#2|))) -((-2734 (((-3 |#2| "failed") (-630 (-599 |#2|)) |#2| (-1155)) 135)) (-1911 ((|#2| (-401 (-553)) |#2|) 51)) (-2961 ((|#2| |#2| (-599 |#2|)) 128)) (-3076 (((-2 (|:| |func| |#2|) (|:| |kers| (-630 (-599 |#2|))) (|:| |vals| (-630 |#2|))) |#2| (-1155)) 127)) (-2705 ((|#2| |#2| (-1155)) 20) ((|#2| |#2|) 23)) (-3208 ((|#2| |#2| (-1155)) 141) ((|#2| |#2|) 139))) -(((-271 |#1| |#2|) (-10 -7 (-15 -3208 (|#2| |#2|)) (-15 -3208 (|#2| |#2| (-1155))) (-15 -3076 ((-2 (|:| |func| |#2|) (|:| |kers| (-630 (-599 |#2|))) (|:| |vals| (-630 |#2|))) |#2| (-1155))) (-15 -2705 (|#2| |#2|)) (-15 -2705 (|#2| |#2| (-1155))) (-15 -2734 ((-3 |#2| "failed") (-630 (-599 |#2|)) |#2| (-1155))) (-15 -2961 (|#2| |#2| (-599 |#2|))) (-15 -1911 (|#2| (-401 (-553)) |#2|))) (-13 (-545) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -271)) -((-1911 (*1 *2 *3 *2) (-12 (-5 *3 (-401 (-553))) (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) (-2961 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))) (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *4 *2)))) (-2734 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-630 (-599 *2))) (-5 *4 (-1155)) (-4 *2 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *5 *2)))) (-2705 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-630 (-599 *3))) (|:| |vals| (-630 *3)))) (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-3208 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) (-3208 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3)))))) -(-10 -7 (-15 -3208 (|#2| |#2|)) (-15 -3208 (|#2| |#2| (-1155))) (-15 -3076 ((-2 (|:| |func| |#2|) (|:| |kers| (-630 (-599 |#2|))) (|:| |vals| (-630 |#2|))) |#2| (-1155))) (-15 -2705 (|#2| |#2|)) (-15 -2705 (|#2| |#2| (-1155))) (-15 -2734 ((-3 |#2| "failed") (-630 (-599 |#2|)) |#2| (-1155))) (-15 -2961 (|#2| |#2| (-599 |#2|))) (-15 -1911 (|#2| (-401 (-553)) |#2|))) -((-2773 (((-3 |#3| "failed") |#3|) 110)) (-2380 ((|#3| |#3|) 131)) (-2825 (((-3 |#3| "failed") |#3|) 82)) (-2246 ((|#3| |#3|) 121)) (-2753 (((-3 |#3| "failed") |#3|) 58)) (-2357 ((|#3| |#3|) 129)) (-3157 (((-3 |#3| "failed") |#3|) 46)) (-2224 ((|#3| |#3|) 119)) (-2809 (((-3 |#3| "failed") |#3|) 112)) (-2403 ((|#3| |#3|) 133)) (-3680 (((-3 |#3| "failed") |#3|) 84)) (-2268 ((|#3| |#3|) 123)) (-2573 (((-3 |#3| "failed") |#3| (-757)) 36)) (-3690 (((-3 |#3| "failed") |#3|) 74)) (-2366 ((|#3| |#3|) 118)) (-1767 (((-3 |#3| "failed") |#3|) 44)) (-2743 ((|#3| |#3|) 117)) (-3091 (((-3 |#3| "failed") |#3|) 113)) (-2414 ((|#3| |#3|) 134)) (-3551 (((-3 |#3| "failed") |#3|) 85)) (-2279 ((|#3| |#3|) 124)) (-2585 (((-3 |#3| "failed") |#3|) 111)) (-2392 ((|#3| |#3|) 132)) (-1522 (((-3 |#3| "failed") |#3|) 83)) (-2257 ((|#3| |#3|) 122)) (-3317 (((-3 |#3| "failed") |#3|) 60)) (-2368 ((|#3| |#3|) 130)) (-4235 (((-3 |#3| "failed") |#3|) 48)) (-2234 ((|#3| |#3|) 120)) (-3079 (((-3 |#3| "failed") |#3|) 66)) (-2447 ((|#3| |#3|) 137)) (-3994 (((-3 |#3| "failed") |#3|) 104)) (-2313 ((|#3| |#3|) 142)) (-1645 (((-3 |#3| "failed") |#3|) 62)) (-2425 ((|#3| |#3|) 135)) (-1944 (((-3 |#3| "failed") |#3|) 50)) (-2291 ((|#3| |#3|) 125)) (-2080 (((-3 |#3| "failed") |#3|) 70)) (-3791 ((|#3| |#3|) 139)) (-3451 (((-3 |#3| "failed") |#3|) 54)) (-2336 ((|#3| |#3|) 127)) (-2663 (((-3 |#3| "failed") |#3|) 72)) (-2570 ((|#3| |#3|) 140)) (-1797 (((-3 |#3| "failed") |#3|) 56)) (-2346 ((|#3| |#3|) 128)) (-3232 (((-3 |#3| "failed") |#3|) 68)) (-3780 ((|#3| |#3|) 138)) (-1392 (((-3 |#3| "failed") |#3|) 107)) (-2324 ((|#3| |#3|) 143)) (-2975 (((-3 |#3| "failed") |#3|) 64)) (-2435 ((|#3| |#3|) 136)) (-1706 (((-3 |#3| "failed") |#3|) 52)) (-2302 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-401 (-553))) 40 (|has| |#1| (-357))))) -(((-272 |#1| |#2| |#3|) (-13 (-965 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-553)))) |%noBranch|) (-15 -2743 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2234 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2268 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2302 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2336 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2380 (|#3| |#3|)) (-15 -2392 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2425 (|#3| |#3|)) (-15 -2435 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)))) (-38 (-401 (-553))) (-1229 |#1|) (-1200 |#1| |#2|)) (T -272)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-553))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1229 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1200 *4 *5)))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2234 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2268 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2425 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4))))) -(-13 (-965 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-553)))) |%noBranch|) (-15 -2743 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2234 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2268 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2302 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2336 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2380 (|#3| |#3|)) (-15 -2392 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2425 (|#3| |#3|)) (-15 -2435 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)))) -((-2773 (((-3 |#3| "failed") |#3|) 66)) (-2380 ((|#3| |#3|) 129)) (-2825 (((-3 |#3| "failed") |#3|) 50)) (-2246 ((|#3| |#3|) 117)) (-2753 (((-3 |#3| "failed") |#3|) 62)) (-2357 ((|#3| |#3|) 127)) (-3157 (((-3 |#3| "failed") |#3|) 46)) (-2224 ((|#3| |#3|) 115)) (-2809 (((-3 |#3| "failed") |#3|) 70)) (-2403 ((|#3| |#3|) 131)) (-3680 (((-3 |#3| "failed") |#3|) 54)) (-2268 ((|#3| |#3|) 119)) (-2573 (((-3 |#3| "failed") |#3| (-757)) 35)) (-3690 (((-3 |#3| "failed") |#3|) 44)) (-2366 ((|#3| |#3|) 104)) (-1767 (((-3 |#3| "failed") |#3|) 42)) (-2743 ((|#3| |#3|) 114)) (-3091 (((-3 |#3| "failed") |#3|) 72)) (-2414 ((|#3| |#3|) 132)) (-3551 (((-3 |#3| "failed") |#3|) 56)) (-2279 ((|#3| |#3|) 120)) (-2585 (((-3 |#3| "failed") |#3|) 68)) (-2392 ((|#3| |#3|) 130)) (-1522 (((-3 |#3| "failed") |#3|) 52)) (-2257 ((|#3| |#3|) 118)) (-3317 (((-3 |#3| "failed") |#3|) 64)) (-2368 ((|#3| |#3|) 128)) (-4235 (((-3 |#3| "failed") |#3|) 48)) (-2234 ((|#3| |#3|) 116)) (-3079 (((-3 |#3| "failed") |#3|) 74)) (-2447 ((|#3| |#3|) 135)) (-3994 (((-3 |#3| "failed") |#3|) 58)) (-2313 ((|#3| |#3|) 123)) (-1645 (((-3 |#3| "failed") |#3|) 105)) (-2425 ((|#3| |#3|) 133)) (-1944 (((-3 |#3| "failed") |#3|) 94)) (-2291 ((|#3| |#3|) 121)) (-2080 (((-3 |#3| "failed") |#3|) 109)) (-3791 ((|#3| |#3|) 137)) (-3451 (((-3 |#3| "failed") |#3|) 101)) (-2336 ((|#3| |#3|) 125)) (-2663 (((-3 |#3| "failed") |#3|) 110)) (-2570 ((|#3| |#3|) 138)) (-1797 (((-3 |#3| "failed") |#3|) 103)) (-2346 ((|#3| |#3|) 126)) (-3232 (((-3 |#3| "failed") |#3|) 76)) (-3780 ((|#3| |#3|) 136)) (-1392 (((-3 |#3| "failed") |#3|) 60)) (-2324 ((|#3| |#3|) 124)) (-2975 (((-3 |#3| "failed") |#3|) 106)) (-2435 ((|#3| |#3|) 134)) (-1706 (((-3 |#3| "failed") |#3|) 97)) (-2302 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-401 (-553))) 40 (|has| |#1| (-357))))) -(((-273 |#1| |#2| |#3| |#4|) (-13 (-965 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-553)))) |%noBranch|) (-15 -2743 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2234 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2268 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2302 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2336 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2380 (|#3| |#3|)) (-15 -2392 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2425 (|#3| |#3|)) (-15 -2435 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)))) (-38 (-401 (-553))) (-1198 |#1|) (-1221 |#1| |#2|) (-965 |#2|)) (T -273)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-553))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1198 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1221 *4 *5)) (-4 *6 (-965 *5)))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2234 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2268 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2425 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4))))) -(-13 (-965 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-553)))) |%noBranch|) (-15 -2743 (|#3| |#3|)) (-15 -2366 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2234 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2268 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2302 (|#3| |#3|)) (-15 -2313 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2336 (|#3| |#3|)) (-15 -2346 (|#3| |#3|)) (-15 -2357 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2380 (|#3| |#3|)) (-15 -2392 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2425 (|#3| |#3|)) (-15 -2435 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)))) -((-2696 (((-111) $) 19)) (-1734 (((-180) $) 7)) (-2701 (((-3 (-1155) "failed") $) 14)) (-4134 (((-3 (-630 $) "failed") $) NIL)) (-2231 (((-3 (-1155) "failed") $) 21)) (-1317 (((-3 (-1083) "failed") $) 17)) (-3641 (((-111) $) 15)) (-3110 (((-845) $) NIL)) (-2390 (((-111) $) 9))) -(((-274) (-13 (-600 (-845)) (-10 -8 (-15 -1734 ((-180) $)) (-15 -3641 ((-111) $)) (-15 -1317 ((-3 (-1083) "failed") $)) (-15 -2696 ((-111) $)) (-15 -2231 ((-3 (-1155) "failed") $)) (-15 -2390 ((-111) $)) (-15 -2701 ((-3 (-1155) "failed") $)) (-15 -4134 ((-3 (-630 $) "failed") $))))) (T -274)) -((-1734 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-1317 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-274)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-2231 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-274)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-2701 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-274)))) (-4134 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 (-274))) (-5 *1 (-274))))) -(-13 (-600 (-845)) (-10 -8 (-15 -1734 ((-180) $)) (-15 -3641 ((-111) $)) (-15 -1317 ((-3 (-1083) "failed") $)) (-15 -2696 ((-111) $)) (-15 -2231 ((-3 (-1155) "failed") $)) (-15 -2390 ((-111) $)) (-15 -2701 ((-3 (-1155) "failed") $)) (-15 -4134 ((-3 (-630 $) "failed") $)))) -((-3905 (($ (-1 (-111) |#2|) $) 24)) (-2638 (($ $) 36)) (-3986 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-2575 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-1750 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1774 (($ |#2| $ (-553)) 20) (($ $ $ (-553)) 22)) (-2005 (($ $ (-553)) 11) (($ $ (-1205 (-553))) 14)) (-2269 (($ $ |#2|) 30) (($ $ $) NIL)) (-4325 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-630 $)) NIL))) -(((-275 |#1| |#2|) (-10 -8 (-15 -1750 (|#1| |#1| |#1|)) (-15 -3986 (|#1| |#2| |#1|)) (-15 -1750 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3986 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -2005 (|#1| |#1| (-1205 (-553)))) (-15 -2005 (|#1| |#1| (-553))) (-15 -4325 (|#1| (-630 |#1|))) (-15 -4325 (|#1| |#1| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -2575 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3905 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2575 (|#1| |#2| |#1|)) (-15 -2638 (|#1| |#1|))) (-276 |#2|) (-1192)) (T -275)) -NIL -(-10 -8 (-15 -1750 (|#1| |#1| |#1|)) (-15 -3986 (|#1| |#2| |#1|)) (-15 -1750 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3986 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -2005 (|#1| |#1| (-1205 (-553)))) (-15 -2005 (|#1| |#1| (-553))) (-15 -4325 (|#1| (-630 |#1|))) (-15 -4325 (|#1| |#1| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -2575 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3905 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2575 (|#1| |#2| |#1|)) (-15 -2638 (|#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) |#1|) 52 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 58 (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) |#1|) $) 85)) (-3905 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2873 (($ $) 83 (|has| |#1| (-1079)))) (-2638 (($ $) 78 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1079)))) (-2575 (($ |#1| $) 77 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 51)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1750 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2636 (($ |#1| $ (-553)) 88) (($ $ $ (-553)) 87)) (-1774 (($ |#1| $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 42 (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2858 (($ $ |#1|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) |#1|) 50) ((|#1| $ (-553)) 49) (($ $ (-1205 (-553))) 63)) (-3231 (($ $ (-553)) 91) (($ $ (-1205 (-553))) 90)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 70)) (-2269 (($ $ |#1|) 93) (($ $ $) 92)) (-4325 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-276 |#1|) (-137) (-1192)) (T -276)) -((-2269 (*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)))) (-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)))) (-3231 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) (-3231 (*1 *1 *1 *2) (-12 (-5 *2 (-1205 (-553))) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) (-3986 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) (-2636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-276 *2)) (-4 *2 (-1192)))) (-2636 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) (-1750 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) (-2955 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) (-3986 (*1 *1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)) (-4 *2 (-1079)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)) (-4 *2 (-1079)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)) (-4 *2 (-833))))) -(-13 (-636 |t#1|) (-10 -8 (-6 -4370) (-15 -2269 ($ $ |t#1|)) (-15 -2269 ($ $ $)) (-15 -3231 ($ $ (-553))) (-15 -3231 ($ $ (-1205 (-553)))) (-15 -3986 ($ (-1 (-111) |t#1|) $)) (-15 -2636 ($ |t#1| $ (-553))) (-15 -2636 ($ $ $ (-553))) (-15 -1750 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -2955 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -3986 ($ |t#1| $)) (-15 -2873 ($ $))) |%noBranch|) (IF (|has| |t#1| (-833)) (-15 -1750 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) +((-3580 (((-112) $) 12)) (-2879 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-402 (-554)) $) 25) (($ $ (-402 (-554))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-47 |#2| |#3|) (-1034) (-779)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-3308 ((|#2| $) 67)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-47 |#1| |#2|) (-138) (-1034) (-779)) (T -47)) +((-2530 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-112)))) (-2383 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-1779 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *2 (-358))))) +(-13 (-1034) (-111 |t#1| |t#1|) (-10 -8 (-15 -2530 (|t#1| $)) (-15 -2518 ($ $)) (-15 -3308 (|t#2| $)) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -3580 ((-112) $)) (-15 -2383 ($ |t#1| |t#2|)) (-15 -2550 ($ $)) (-15 -1779 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-358)) (-15 -1752 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-546)) (-6 (-546)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (-6 (-38 (-402 (-554)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-285) |has| |#1| (-546)) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-2719 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3856 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-1695 (((-112) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2143 (((-631 (-600 $)) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3613 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3625 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-600 $) $) NIL) (((-554) $) NIL) (((-402 (-554)) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-402 (-554)))) (|:| |vec| (-1241 (-402 (-554))))) (-675 $) (-1241 $)) NIL) (((-675 (-402 (-554))) (-675 $)) NIL)) (-3676 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) NIL)) (-3248 (((-112) $) 14)) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2810 (((-1107 (-554) (-600 $)) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-3274 (((-1154 $) (-1154 $) (-600 $)) NIL) (((-1154 $) (-1154 $) (-631 (-600 $))) NIL) (($ $ (-600 $)) NIL) (($ $ (-631 (-600 $))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1823 (((-1154 $) (-600 $)) NIL (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) NIL)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) NIL)) (-1408 (($ (-114) $) NIL) (($ (-114) (-631 $)) NIL)) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) NIL)) (-2483 (($ $) NIL)) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2072 (((-758) $) NIL)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3862 (($ $) NIL) (($ $ $) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-2822 (((-1107 (-554) (-600 $)) $) NIL)) (-4318 (($ $) NIL (|has| $ (-1034)))) (-2927 (((-374) $) NIL) (((-221) $) NIL) (((-167 (-374)) $) NIL)) (-3075 (((-848) $) NIL) (($ (-600 $)) NIL) (($ (-402 (-554))) NIL) (($ $) NIL) (($ (-554)) NIL) (($ (-1107 (-554) (-600 $))) NIL)) (-2261 (((-758)) NIL)) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1902 (((-112) (-114)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 7 T CONST)) (-2014 (($) 12 T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 16)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $ $) 15) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-402 (-554))) NIL) (($ $ (-554)) NIL) (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ $ $) NIL) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL))) +(((-48) (-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $))))))) (T -48)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) (-3676 (*1 *1 *1) (-5 *1 (-48))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-600 (-48))) (-5 *1 (-48)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-631 (-600 (-48)))) (-5 *1 (-48)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-600 (-48))) (-5 *1 (-48)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-48)))) (-5 *1 (-48))))) +(-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $)))))) +((-3062 (((-112) $ $) NIL)) (-1322 (((-631 (-1158)) $) 17)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-4319 (((-1163) $) 18)) (-1658 (((-112) $ $) NIL))) +(((-49) (-13 (-1082) (-10 -8 (-15 -1322 ((-631 (-1158)) $)) (-15 -4319 ((-1163) $))))) (T -49)) +((-1322 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-49)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-49))))) +(-13 (-1082) (-10 -8 (-15 -1322 ((-631 (-1158)) $)) (-15 -4319 ((-1163) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 61)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3051 (((-112) $) 20)) (-2784 (((-3 |#1| "failed") $) 23)) (-1668 ((|#1| $) 24)) (-2550 (($ $) 28)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2530 ((|#1| $) 21)) (-1500 (($ $) 50)) (-1613 (((-1140) $) NIL)) (-2177 (((-112) $) 30)) (-2768 (((-1102) $) NIL)) (-4137 (($ (-758)) 48)) (-1333 (($ (-631 (-554))) 49)) (-3308 (((-758) $) 31)) (-3075 (((-848) $) 64) (($ (-554)) 45) (($ |#1|) 43)) (-1779 ((|#1| $ $) 19)) (-2261 (((-758)) 47)) (-2004 (($) 32 T CONST)) (-2014 (($) 14 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 40)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-608 |#1|) (-1023 |#1|) (-10 -8 (-15 -2530 (|#1| $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 (|#1| $ $)) (-15 -4137 ($ (-758))) (-15 -1333 ($ (-631 (-554)))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-758) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)))) (-1034) (-631 (-1158))) (T -50)) +((-2530 (*1 *2 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158))))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))))) (-1779 (*1 *2 *1 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158))))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-1333 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) (-14 *4 (-631 (-1158))))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-50 *3 *4)) (-14 *4 (-631 (-1158)))))) +(-13 (-608 |#1|) (-1023 |#1|) (-10 -8 (-15 -2530 (|#1| $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 (|#1| $ $)) (-15 -4137 ($ (-758))) (-15 -1333 ($ (-631 (-554)))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-758) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)))) +((-3051 (((-112) (-52)) 13)) (-2784 (((-3 |#1| "failed") (-52)) 21)) (-1668 ((|#1| (-52)) 22)) (-3075 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -3075 ((-52) |#1|)) (-15 -2784 ((-3 |#1| "failed") (-52))) (-15 -3051 ((-112) (-52))) (-15 -1668 (|#1| (-52)))) (-1195)) (T -51)) +((-1668 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1195)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1195))))) +(-10 -7 (-15 -3075 ((-52) |#1|)) (-15 -2784 ((-3 |#1| "failed") (-52))) (-15 -3051 ((-112) (-52))) (-15 -1668 (|#1| (-52)))) +((-3062 (((-112) $ $) NIL)) (-3305 (((-1140) (-112)) 25)) (-2805 (((-848) $) 24)) (-3596 (((-761) $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2842 (((-848) $) 16)) (-3925 (((-1086) $) 14)) (-3075 (((-848) $) 32)) (-2406 (($ (-1086) (-761)) 33)) (-1658 (((-112) $ $) 18))) +(((-52) (-13 (-1082) (-10 -8 (-15 -2406 ($ (-1086) (-761))) (-15 -2842 ((-848) $)) (-15 -2805 ((-848) $)) (-15 -3925 ((-1086) $)) (-15 -3596 ((-761) $)) (-15 -3305 ((-1140) (-112)))))) (T -52)) +((-2406 (*1 *1 *2 *3) (-12 (-5 *2 (-1086)) (-5 *3 (-761)) (-5 *1 (-52)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-52)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-52)))) (-3305 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1140)) (-5 *1 (-52))))) +(-13 (-1082) (-10 -8 (-15 -2406 ($ (-1086) (-761))) (-15 -2842 ((-848) $)) (-15 -2805 ((-848) $)) (-15 -3925 ((-1086) $)) (-15 -3596 ((-761) $)) (-15 -3305 ((-1140) (-112))))) +((-1485 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1485 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1034) (-634 |#1|) (-838 |#1|)) (T -53)) +((-1485 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-634 *5)) (-4 *5 (-1034)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-838 *5))))) +(-10 -7 (-15 -1485 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3565 ((|#3| |#3| (-631 (-1158))) 35)) (-3524 ((|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3| (-906)) 22) ((|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3|)) (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3| (-906))) (-15 -3565 (|#3| |#3| (-631 (-1158))))) (-1082) (-13 (-1034) (-871 |#1|) (-836) (-602 (-877 |#1|))) (-13 (-425 |#2|) (-871 |#1|) (-602 (-877 |#1|)))) (T -54)) +((-3565 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) (-3524 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 (-1058 *5 *6 *2))) (-5 *4 (-906)) (-4 *5 (-1082)) (-4 *6 (-13 (-1034) (-871 *5) (-836) (-602 (-877 *5)))) (-4 *2 (-13 (-425 *6) (-871 *5) (-602 (-877 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3524 (*1 *2 *3 *2) (-12 (-5 *3 (-631 (-1058 *4 *5 *2))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3|)) (-15 -3524 (|#3| (-631 (-1058 |#1| |#2| |#3|)) |#3| (-906))) (-15 -3565 (|#3| |#3| (-631 (-1158))))) +((-3062 (((-112) $ $) NIL)) (-2784 (((-3 (-758) "failed") $) 22)) (-1668 (((-758) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) 9)) (-3075 (((-848) $) 16) (($ (-758)) 20)) (-1327 (($) 7 T CONST)) (-1658 (((-112) $ $) 11))) +(((-55) (-13 (-1082) (-1023 (-758)) (-10 -8 (-15 -1327 ($) -2397)))) (T -55)) +((-1327 (*1 *1) (-5 *1 (-55)))) +(-13 (-1082) (-1023 (-758)) (-10 -8 (-15 -1327 ($) -2397))) +((-3019 (((-112) $ (-758)) 23)) (-2557 (($ $ (-554) |#3|) 47)) (-1464 (($ $ (-554) |#4|) 51)) (-3519 ((|#3| $ (-554)) 60)) (-2466 (((-631 |#2|) $) 30)) (-2230 (((-112) $ (-758)) 25)) (-3068 (((-112) |#2| $) 55)) (-2849 (($ (-1 |#2| |#2|) $) 38)) (-2879 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3731 (((-112) $ (-758)) 24)) (-2441 (($ $ |#2|) 35)) (-2845 (((-112) (-1 (-112) |#2|) $) 19)) (-2064 ((|#2| $ (-554) (-554)) NIL) ((|#2| $ (-554) (-554) |#2|) 27)) (-2777 (((-758) (-1 (-112) |#2|) $) 28) (((-758) |#2| $) 57)) (-1521 (($ $) 34)) (-3259 ((|#4| $ (-554)) 63)) (-3075 (((-848) $) 69)) (-2438 (((-112) (-1 (-112) |#2|) $) 18)) (-1658 (((-112) $ $) 54)) (-2563 (((-758) $) 26))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1464 (|#1| |#1| (-554) |#4|)) (-15 -2557 (|#1| |#1| (-554) |#3|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -3259 (|#4| |#1| (-554))) (-15 -3519 (|#3| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -1521 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1195) (-368 |#2|) (-368 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1464 (|#1| |#1| (-554) |#4|)) (-15 -2557 (|#1| |#1| (-554) |#3|)) (-15 -2466 ((-631 |#2|) |#1|)) (-15 -3259 (|#4| |#1| (-554))) (-15 -3519 (|#3| |#1| (-554))) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758))) (-15 -1521 (|#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) (-554) |#1|) 44)) (-2557 (($ $ (-554) |#2|) 42)) (-1464 (($ $ (-554) |#3|) 41)) (-4087 (($) 7 T CONST)) (-3519 ((|#2| $ (-554)) 46)) (-2862 ((|#1| $ (-554) (-554) |#1|) 43)) (-2796 ((|#1| $ (-554) (-554)) 48)) (-2466 (((-631 |#1|) $) 30)) (-4130 (((-758) $) 51)) (-3180 (($ (-758) (-758) |#1|) 57)) (-4143 (((-758) $) 50)) (-2230 (((-112) $ (-758)) 9)) (-3985 (((-554) $) 55)) (-1817 (((-554) $) 53)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 54)) (-4249 (((-554) $) 52)) (-2849 (($ (-1 |#1| |#1|) $) 34)) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) 56)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) (-554)) 49) ((|#1| $ (-554) (-554) |#1|) 47)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3259 ((|#3| $ (-554)) 45)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-57 |#1| |#2| |#3|) (-138) (-1195) (-368 |t#1|) (-368 |t#1|)) (T -57)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3180 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-758)) (-4 *3 (-1195)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2441 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-554)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-758)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-758)))) (-2064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1195)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1195)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1195)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-631 *3)))) (-1501 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-2862 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-2557 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-368 *4)) (-4 *5 (-368 *4)))) (-1464 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1195)) (-4 *5 (-368 *4)) (-4 *3 (-368 *4)))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2879 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) +(-13 (-483 |t#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -3180 ($ (-758) (-758) |t#1|)) (-15 -2441 ($ $ |t#1|)) (-15 -3985 ((-554) $)) (-15 -2787 ((-554) $)) (-15 -1817 ((-554) $)) (-15 -4249 ((-554) $)) (-15 -4130 ((-758) $)) (-15 -4143 ((-758) $)) (-15 -2064 (|t#1| $ (-554) (-554))) (-15 -2796 (|t#1| $ (-554) (-554))) (-15 -2064 (|t#1| $ (-554) (-554) |t#1|)) (-15 -3519 (|t#2| $ (-554))) (-15 -3259 (|t#3| $ (-554))) (-15 -2466 ((-631 |t#1|) $)) (-15 -1501 (|t#1| $ (-554) (-554) |t#1|)) (-15 -2862 (|t#1| $ (-554) (-554) |t#1|)) (-15 -2557 ($ $ (-554) |t#2|)) (-15 -1464 ($ $ (-554) |t#3|)) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -2849 ($ (-1 |t#1| |t#1|) $)) (-15 -2879 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2879 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-4159 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2879 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -4159 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2879 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1195) (-1195)) (T -58)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-58 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -4159 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2879 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 11 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3418 (($ (-631 |#1|)) 13) (($ (-758) |#1|) 14)) (-3180 (($ (-758) |#1|) 9)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 7)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3418 ($ (-631 |#1|))) (-15 -3418 ($ (-758) |#1|)))) (-1195)) (T -59)) +((-3418 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-59 *3)))) (-3418 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-59 *3)) (-4 *3 (-1195))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3418 ($ (-631 |#1|))) (-15 -3418 ($ (-758) |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2557 (($ $ (-554) (-59 |#1|)) NIL)) (-1464 (($ $ (-554) (-59 |#1|)) NIL)) (-4087 (($) NIL T CONST)) (-3519 (((-59 |#1|) $ (-554)) NIL)) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-59 |#1|) $ (-554)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4374))) (-1195)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4374))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 74) (((-3 $ "failed") (-1241 (-311 (-554)))) 63) (((-3 $ "failed") (-1241 (-937 (-374)))) 94) (((-3 $ "failed") (-1241 (-937 (-554)))) 84) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 52) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 39)) (-1668 (($ (-1241 (-311 (-374)))) 70) (($ (-1241 (-311 (-554)))) 59) (($ (-1241 (-937 (-374)))) 90) (($ (-1241 (-937 (-554)))) 80) (($ (-1241 (-402 (-937 (-374))))) 48) (($ (-1241 (-402 (-937 (-554))))) 32)) (-1405 (((-1246) $) 120)) (-3075 (((-848) $) 113) (($ (-631 (-325))) 103) (($ (-325)) 97) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 101) (($ (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685)))) 31))) +(((-61 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685))))))) (-1158)) (T -61)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685)))) (-5 *1 (-61 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3089) (-685))))))) +((-1405 (((-1246) $) 53) (((-1246)) 54)) (-3075 (((-848) $) 50))) +(((-62 |#1|) (-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) (-1158)) (T -62)) +((-1405 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-62 *3)) (-14 *3 (-1158))))) +(-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 144) (((-3 $ "failed") (-1241 (-311 (-554)))) 134) (((-3 $ "failed") (-1241 (-937 (-374)))) 164) (((-3 $ "failed") (-1241 (-937 (-554)))) 154) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 123) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 111)) (-1668 (($ (-1241 (-311 (-374)))) 140) (($ (-1241 (-311 (-554)))) 130) (($ (-1241 (-937 (-374)))) 160) (($ (-1241 (-937 (-554)))) 150) (($ (-1241 (-402 (-937 (-374))))) 119) (($ (-1241 (-402 (-937 (-554))))) 104)) (-1405 (((-1246) $) 97)) (-3075 (((-848) $) 91) (($ (-631 (-325))) 29) (($ (-325)) 34) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 32) (($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) 89))) +(((-63 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))) (-1158)) (T -63)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) (-5 *1 (-63 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))) +((-2784 (((-3 $ "failed") (-311 (-374))) 41) (((-3 $ "failed") (-311 (-554))) 46) (((-3 $ "failed") (-937 (-374))) 50) (((-3 $ "failed") (-937 (-554))) 54) (((-3 $ "failed") (-402 (-937 (-374)))) 36) (((-3 $ "failed") (-402 (-937 (-554)))) 29)) (-1668 (($ (-311 (-374))) 39) (($ (-311 (-554))) 44) (($ (-937 (-374))) 48) (($ (-937 (-554))) 52) (($ (-402 (-937 (-374)))) 34) (($ (-402 (-937 (-554)))) 26)) (-1405 (((-1246) $) 76)) (-3075 (((-848) $) 69) (($ (-631 (-325))) 61) (($ (-325)) 66) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 64) (($ (-334 (-3089 (QUOTE X)) (-3089) (-685))) 25))) +(((-64 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089) (-685)))))) (-1158)) (T -64)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089 (QUOTE X)) (-3089) (-685))) (-5 *1 (-64 *3)) (-14 *3 (-1158))))) +(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089) (-685)))))) +((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 109) (((-3 $ "failed") (-675 (-311 (-554)))) 97) (((-3 $ "failed") (-675 (-937 (-374)))) 131) (((-3 $ "failed") (-675 (-937 (-554)))) 120) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 85) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 71)) (-1668 (($ (-675 (-311 (-374)))) 105) (($ (-675 (-311 (-554)))) 93) (($ (-675 (-937 (-374)))) 127) (($ (-675 (-937 (-554)))) 116) (($ (-675 (-402 (-937 (-374))))) 81) (($ (-675 (-402 (-937 (-554))))) 64)) (-1405 (((-1246) $) 139)) (-3075 (((-848) $) 133) (($ (-631 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 31) (($ (-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685)))) 54))) +(((-65 |#1|) (-13 (-379) (-604 (-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685))))) (-1158)) (T -65)) +NIL +(-13 (-379) (-604 (-675 (-334 (-3089) (-3089 (QUOTE X) (QUOTE HESS)) (-685))))) +((-2784 (((-3 $ "failed") (-311 (-374))) 59) (((-3 $ "failed") (-311 (-554))) 64) (((-3 $ "failed") (-937 (-374))) 68) (((-3 $ "failed") (-937 (-554))) 72) (((-3 $ "failed") (-402 (-937 (-374)))) 54) (((-3 $ "failed") (-402 (-937 (-554)))) 47)) (-1668 (($ (-311 (-374))) 57) (($ (-311 (-554))) 62) (($ (-937 (-374))) 66) (($ (-937 (-554))) 70) (($ (-402 (-937 (-374)))) 52) (($ (-402 (-937 (-554)))) 44)) (-1405 (((-1246) $) 81)) (-3075 (((-848) $) 75) (($ (-631 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 31) (($ (-334 (-3089) (-3089 (QUOTE XC)) (-685))) 39))) +(((-66 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE XC)) (-685)))))) (-1158)) (T -66)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089) (-3089 (QUOTE XC)) (-685))) (-5 *1 (-66 *3)) (-14 *3 (-1158))))) +(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE XC)) (-685)))))) +((-1405 (((-1246) $) 63)) (-3075 (((-848) $) 57) (($ (-675 (-685))) 49) (($ (-631 (-325))) 48) (($ (-325)) 55) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 53))) +(((-67 |#1|) (-378) (-1158)) (T -67)) +NIL +(-378) +((-1405 (((-1246) $) 64)) (-3075 (((-848) $) 58) (($ (-675 (-685))) 50) (($ (-631 (-325))) 49) (($ (-325)) 52) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 55))) +(((-68 |#1|) (-378) (-1158)) (T -68)) +NIL +(-378) +((-1405 (((-1246) $) NIL) (((-1246)) 32)) (-3075 (((-848) $) NIL))) +(((-69 |#1|) (-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) (-1158)) (T -69)) +((-1405 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-69 *3)) (-14 *3 (-1158))))) +(-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) +((-1405 (((-1246) $) 73)) (-3075 (((-848) $) 67) (($ (-675 (-685))) 59) (($ (-631 (-325))) 61) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 58))) +(((-70 |#1|) (-378) (-1158)) (T -70)) +NIL +(-378) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 103) (((-3 $ "failed") (-1241 (-311 (-554)))) 92) (((-3 $ "failed") (-1241 (-937 (-374)))) 123) (((-3 $ "failed") (-1241 (-937 (-554)))) 113) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 81) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 68)) (-1668 (($ (-1241 (-311 (-374)))) 99) (($ (-1241 (-311 (-554)))) 88) (($ (-1241 (-937 (-374)))) 119) (($ (-1241 (-937 (-554)))) 109) (($ (-1241 (-402 (-937 (-374))))) 77) (($ (-1241 (-402 (-937 (-554))))) 61)) (-1405 (((-1246) $) 136)) (-3075 (((-848) $) 130) (($ (-631 (-325))) 125) (($ (-325)) 128) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 53) (($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) 54))) +(((-71 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))) (-1158)) (T -71)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) (-5 *1 (-71 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))) +((-1405 (((-1246) $) 32) (((-1246)) 31)) (-3075 (((-848) $) 35))) +(((-72 |#1|) (-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) (-1158)) (T -72)) +((-1405 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-72 *3)) (-14 *3 (-1158))))) +(-13 (-390) (-10 -7 (-15 -1405 ((-1246))))) +((-1405 (((-1246) $) 63)) (-3075 (((-848) $) 57) (($ (-675 (-685))) 49) (($ (-631 (-325))) 51) (($ (-325)) 54) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 48))) +(((-73 |#1|) (-378) (-1158)) (T -73)) +NIL +(-378) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 125) (((-3 $ "failed") (-1241 (-311 (-554)))) 115) (((-3 $ "failed") (-1241 (-937 (-374)))) 145) (((-3 $ "failed") (-1241 (-937 (-554)))) 135) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 105) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 93)) (-1668 (($ (-1241 (-311 (-374)))) 121) (($ (-1241 (-311 (-554)))) 111) (($ (-1241 (-937 (-374)))) 141) (($ (-1241 (-937 (-554)))) 131) (($ (-1241 (-402 (-937 (-374))))) 101) (($ (-1241 (-402 (-937 (-554))))) 86)) (-1405 (((-1246) $) 78)) (-3075 (((-848) $) 27) (($ (-631 (-325))) 68) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 71) (($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) 65))) +(((-74 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))))) (-1158)) (T -74)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) (-5 *1 (-74 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 130) (((-3 $ "failed") (-1241 (-311 (-554)))) 119) (((-3 $ "failed") (-1241 (-937 (-374)))) 150) (((-3 $ "failed") (-1241 (-937 (-554)))) 140) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 108) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 95)) (-1668 (($ (-1241 (-311 (-374)))) 126) (($ (-1241 (-311 (-554)))) 115) (($ (-1241 (-937 (-374)))) 146) (($ (-1241 (-937 (-554)))) 136) (($ (-1241 (-402 (-937 (-374))))) 104) (($ (-1241 (-402 (-937 (-554))))) 88)) (-1405 (((-1246) $) 79)) (-3075 (((-848) $) 71) (($ (-631 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) NIL) (($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685)))) 66))) +(((-75 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685))))))) (-1158) (-1158) (-1158)) (T -75)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158)) (-14 *5 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE EPS)) (-3089 (QUOTE -1277)) (-685))))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 134) (((-3 $ "failed") (-1241 (-311 (-554)))) 123) (((-3 $ "failed") (-1241 (-937 (-374)))) 154) (((-3 $ "failed") (-1241 (-937 (-554)))) 144) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 112) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 99)) (-1668 (($ (-1241 (-311 (-374)))) 130) (($ (-1241 (-311 (-554)))) 119) (($ (-1241 (-937 (-374)))) 150) (($ (-1241 (-937 (-554)))) 140) (($ (-1241 (-402 (-937 (-374))))) 108) (($ (-1241 (-402 (-937 (-554))))) 92)) (-1405 (((-1246) $) 83)) (-3075 (((-848) $) 75) (($ (-631 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) NIL) (($ (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685)))) 70))) +(((-76 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685))))))) (-1158) (-1158) (-1158)) (T -76)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158)) (-14 *5 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE EPS)) (-3089 (QUOTE YA) (QUOTE YB)) (-685))))))) +((-2784 (((-3 $ "failed") (-311 (-374))) 82) (((-3 $ "failed") (-311 (-554))) 87) (((-3 $ "failed") (-937 (-374))) 91) (((-3 $ "failed") (-937 (-554))) 95) (((-3 $ "failed") (-402 (-937 (-374)))) 77) (((-3 $ "failed") (-402 (-937 (-554)))) 70)) (-1668 (($ (-311 (-374))) 80) (($ (-311 (-554))) 85) (($ (-937 (-374))) 89) (($ (-937 (-554))) 93) (($ (-402 (-937 (-374)))) 75) (($ (-402 (-937 (-554)))) 67)) (-1405 (((-1246) $) 62)) (-3075 (((-848) $) 50) (($ (-631 (-325))) 46) (($ (-325)) 56) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 54) (($ (-334 (-3089) (-3089 (QUOTE X)) (-685))) 47))) +(((-77 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685)))))) (-1158)) (T -77)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089) (-3089 (QUOTE X)) (-685))) (-5 *1 (-77 *3)) (-14 *3 (-1158))))) +(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685)))))) +((-2784 (((-3 $ "failed") (-311 (-374))) 46) (((-3 $ "failed") (-311 (-554))) 51) (((-3 $ "failed") (-937 (-374))) 55) (((-3 $ "failed") (-937 (-554))) 59) (((-3 $ "failed") (-402 (-937 (-374)))) 41) (((-3 $ "failed") (-402 (-937 (-554)))) 34)) (-1668 (($ (-311 (-374))) 44) (($ (-311 (-554))) 49) (($ (-937 (-374))) 53) (($ (-937 (-554))) 57) (($ (-402 (-937 (-374)))) 39) (($ (-402 (-937 (-554)))) 31)) (-1405 (((-1246) $) 80)) (-3075 (((-848) $) 74) (($ (-631 (-325))) 66) (($ (-325)) 71) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 69) (($ (-334 (-3089) (-3089 (QUOTE X)) (-685))) 30))) +(((-78 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685)))))) (-1158)) (T -78)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089) (-3089 (QUOTE X)) (-685))) (-5 *1 (-78 *3)) (-14 *3 (-1158))))) +(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089) (-3089 (QUOTE X)) (-685)))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 89) (((-3 $ "failed") (-1241 (-311 (-554)))) 78) (((-3 $ "failed") (-1241 (-937 (-374)))) 109) (((-3 $ "failed") (-1241 (-937 (-554)))) 99) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 67) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 54)) (-1668 (($ (-1241 (-311 (-374)))) 85) (($ (-1241 (-311 (-554)))) 74) (($ (-1241 (-937 (-374)))) 105) (($ (-1241 (-937 (-554)))) 95) (($ (-1241 (-402 (-937 (-374))))) 63) (($ (-1241 (-402 (-937 (-554))))) 47)) (-1405 (((-1246) $) 125)) (-3075 (((-848) $) 119) (($ (-631 (-325))) 112) (($ (-325)) 37) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 115) (($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) 38))) +(((-79 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))) (-1158)) (T -79)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685)))) (-5 *1 (-79 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE XC)) (-685))))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 142) (((-3 $ "failed") (-1241 (-311 (-554)))) 132) (((-3 $ "failed") (-1241 (-937 (-374)))) 162) (((-3 $ "failed") (-1241 (-937 (-554)))) 152) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 122) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 110)) (-1668 (($ (-1241 (-311 (-374)))) 138) (($ (-1241 (-311 (-554)))) 128) (($ (-1241 (-937 (-374)))) 158) (($ (-1241 (-937 (-554)))) 148) (($ (-1241 (-402 (-937 (-374))))) 118) (($ (-1241 (-402 (-937 (-554))))) 103)) (-1405 (((-1246) $) 96)) (-3075 (((-848) $) 90) (($ (-631 (-325))) 81) (($ (-325)) 88) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 86) (($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) 82))) +(((-80 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))))) (-1158)) (T -80)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) (-5 *1 (-80 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 78) (((-3 $ "failed") (-1241 (-311 (-554)))) 67) (((-3 $ "failed") (-1241 (-937 (-374)))) 98) (((-3 $ "failed") (-1241 (-937 (-554)))) 88) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 56) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 43)) (-1668 (($ (-1241 (-311 (-374)))) 74) (($ (-1241 (-311 (-554)))) 63) (($ (-1241 (-937 (-374)))) 94) (($ (-1241 (-937 (-554)))) 84) (($ (-1241 (-402 (-937 (-374))))) 52) (($ (-1241 (-402 (-937 (-554))))) 36)) (-1405 (((-1246) $) 124)) (-3075 (((-848) $) 118) (($ (-631 (-325))) 109) (($ (-325)) 115) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 113) (($ (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685)))) 35))) +(((-81 |#1|) (-13 (-435) (-604 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))) (-1158)) (T -81)) +NIL +(-13 (-435) (-604 (-1241 (-334 (-3089) (-3089 (QUOTE X)) (-685))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 95) (((-3 $ "failed") (-1241 (-311 (-554)))) 84) (((-3 $ "failed") (-1241 (-937 (-374)))) 115) (((-3 $ "failed") (-1241 (-937 (-554)))) 105) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 73) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 60)) (-1668 (($ (-1241 (-311 (-374)))) 91) (($ (-1241 (-311 (-554)))) 80) (($ (-1241 (-937 (-374)))) 111) (($ (-1241 (-937 (-554)))) 101) (($ (-1241 (-402 (-937 (-374))))) 69) (($ (-1241 (-402 (-937 (-554))))) 53)) (-1405 (((-1246) $) 45)) (-3075 (((-848) $) 39) (($ (-631 (-325))) 29) (($ (-325)) 32) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 35) (($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) 30))) +(((-82 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685))))))) (-1158)) (T -82)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) (-5 *1 (-82 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685))))))) +((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 115) (((-3 $ "failed") (-675 (-311 (-554)))) 104) (((-3 $ "failed") (-675 (-937 (-374)))) 137) (((-3 $ "failed") (-675 (-937 (-554)))) 126) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 93) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 80)) (-1668 (($ (-675 (-311 (-374)))) 111) (($ (-675 (-311 (-554)))) 100) (($ (-675 (-937 (-374)))) 133) (($ (-675 (-937 (-554)))) 122) (($ (-675 (-402 (-937 (-374))))) 89) (($ (-675 (-402 (-937 (-554))))) 73)) (-1405 (((-1246) $) 63)) (-3075 (((-848) $) 50) (($ (-631 (-325))) 57) (($ (-325)) 46) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 55) (($ (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) 47))) +(((-83 |#1|) (-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685))))))) (-1158)) (T -83)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685)))) (-5 *1 (-83 *3)) (-14 *3 (-1158))))) +(-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X) (QUOTE -1277)) (-3089) (-685))))))) +((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 112) (((-3 $ "failed") (-675 (-311 (-554)))) 100) (((-3 $ "failed") (-675 (-937 (-374)))) 134) (((-3 $ "failed") (-675 (-937 (-554)))) 123) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 88) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 74)) (-1668 (($ (-675 (-311 (-374)))) 108) (($ (-675 (-311 (-554)))) 96) (($ (-675 (-937 (-374)))) 130) (($ (-675 (-937 (-554)))) 119) (($ (-675 (-402 (-937 (-374))))) 84) (($ (-675 (-402 (-937 (-554))))) 67)) (-1405 (((-1246) $) 59)) (-3075 (((-848) $) 53) (($ (-631 (-325))) 47) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 44) (($ (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) 45))) +(((-84 |#1|) (-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685))))))) (-1158)) (T -84)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) (-5 *1 (-84 *3)) (-14 *3 (-1158))))) +(-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE X)) (-3089) (-685))))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 104) (((-3 $ "failed") (-1241 (-311 (-554)))) 93) (((-3 $ "failed") (-1241 (-937 (-374)))) 124) (((-3 $ "failed") (-1241 (-937 (-554)))) 114) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 82) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 69)) (-1668 (($ (-1241 (-311 (-374)))) 100) (($ (-1241 (-311 (-554)))) 89) (($ (-1241 (-937 (-374)))) 120) (($ (-1241 (-937 (-554)))) 110) (($ (-1241 (-402 (-937 (-374))))) 78) (($ (-1241 (-402 (-937 (-554))))) 62)) (-1405 (((-1246) $) 46)) (-3075 (((-848) $) 40) (($ (-631 (-325))) 49) (($ (-325)) 36) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 52) (($ (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) 37))) +(((-85 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685))))))) (-1158)) (T -85)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685)))) (-5 *1 (-85 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089) (-685))))))) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 79) (((-3 $ "failed") (-1241 (-311 (-554)))) 68) (((-3 $ "failed") (-1241 (-937 (-374)))) 99) (((-3 $ "failed") (-1241 (-937 (-554)))) 89) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 57) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 44)) (-1668 (($ (-1241 (-311 (-374)))) 75) (($ (-1241 (-311 (-554)))) 64) (($ (-1241 (-937 (-374)))) 95) (($ (-1241 (-937 (-554)))) 85) (($ (-1241 (-402 (-937 (-374))))) 53) (($ (-1241 (-402 (-937 (-554))))) 37)) (-1405 (((-1246) $) 125)) (-3075 (((-848) $) 119) (($ (-631 (-325))) 110) (($ (-325)) 116) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 114) (($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) 36))) +(((-86 |#1|) (-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))) (-1158)) (T -86)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))) (-5 *1 (-86 *3)) (-14 *3 (-1158))))) +(-13 (-435) (-10 -8 (-15 -3075 ($ (-1241 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))))))) +((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 113) (((-3 $ "failed") (-675 (-311 (-554)))) 101) (((-3 $ "failed") (-675 (-937 (-374)))) 135) (((-3 $ "failed") (-675 (-937 (-554)))) 124) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 89) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 75)) (-1668 (($ (-675 (-311 (-374)))) 109) (($ (-675 (-311 (-554)))) 97) (($ (-675 (-937 (-374)))) 131) (($ (-675 (-937 (-554)))) 120) (($ (-675 (-402 (-937 (-374))))) 85) (($ (-675 (-402 (-937 (-554))))) 68)) (-1405 (((-1246) $) 59)) (-3075 (((-848) $) 53) (($ (-631 (-325))) 43) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 48) (($ (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685)))) 44))) +(((-87 |#1|) (-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685))))))) (-1158)) (T -87)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685)))) (-5 *1 (-87 *3)) (-14 *3 (-1158))))) +(-13 (-379) (-10 -8 (-15 -3075 ($ (-675 (-334 (-3089 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3089) (-685))))))) +((-1405 (((-1246) $) 44)) (-3075 (((-848) $) 38) (($ (-1241 (-685))) 92) (($ (-631 (-325))) 30) (($ (-325)) 35) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 33))) +(((-88 |#1|) (-434) (-1158)) (T -88)) +NIL +(-434) +((-2784 (((-3 $ "failed") (-311 (-374))) 47) (((-3 $ "failed") (-311 (-554))) 52) (((-3 $ "failed") (-937 (-374))) 56) (((-3 $ "failed") (-937 (-554))) 60) (((-3 $ "failed") (-402 (-937 (-374)))) 42) (((-3 $ "failed") (-402 (-937 (-554)))) 35)) (-1668 (($ (-311 (-374))) 45) (($ (-311 (-554))) 50) (($ (-937 (-374))) 54) (($ (-937 (-554))) 58) (($ (-402 (-937 (-374)))) 40) (($ (-402 (-937 (-554)))) 32)) (-1405 (((-1246) $) 90)) (-3075 (((-848) $) 84) (($ (-631 (-325))) 78) (($ (-325)) 81) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 76) (($ (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))) 31))) +(((-89 |#1|) (-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))))) (-1158)) (T -89)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685))) (-5 *1 (-89 *3)) (-14 *3 (-1158))))) +(-13 (-391) (-10 -8 (-15 -3075 ($ (-334 (-3089 (QUOTE X)) (-3089 (QUOTE -1277)) (-685)))))) +((-4238 (((-1241 (-675 |#1|)) (-675 |#1|)) 54)) (-3507 (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 (-631 (-906))))) |#2| (-906)) 44)) (-4000 (((-2 (|:| |minor| (-631 (-906))) (|:| -4329 |#2|) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 |#2|))) |#2| (-906)) 65 (|has| |#1| (-358))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -3507 ((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 (-631 (-906))))) |#2| (-906))) (-15 -4238 ((-1241 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-358)) (-15 -4000 ((-2 (|:| |minor| (-631 (-906))) (|:| -4329 |#2|) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 |#2|))) |#2| (-906))) |%noBranch|)) (-546) (-642 |#1|)) (T -90)) +((-4000 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |minor| (-631 (-906))) (|:| -4329 *3) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-675 *4)) (-4 *5 (-642 *4)))) (-3507 (*1 *2 *3 *4) (-12 (-4 *5 (-546)) (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 (-631 (-906)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5))))) +(-10 -7 (-15 -3507 ((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 (-631 (-906))))) |#2| (-906))) (-15 -4238 ((-1241 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-358)) (-15 -4000 ((-2 (|:| |minor| (-631 (-906))) (|:| -4329 |#2|) (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 |#2|))) |#2| (-906))) |%noBranch|)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2292 ((|#1| $) 35)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-1790 ((|#1| |#1| $) 30)) (-3956 ((|#1| $) 28)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) NIL)) (-2045 (($ |#1| $) 31)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2152 ((|#1| $) 29)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 16)) (-4240 (($) 39)) (-2763 (((-758) $) 26)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 15)) (-3075 (((-848) $) 25 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) NIL)) (-1800 (($ (-631 |#1|)) 37)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 13 (|has| |#1| (-1082)))) (-2563 (((-758) $) 10 (|has| $ (-6 -4373))))) +(((-91 |#1|) (-13 (-1103 |#1|) (-10 -8 (-15 -1800 ($ (-631 |#1|))))) (-1082)) (T -91)) +((-1800 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-91 *3))))) +(-13 (-1103 |#1|) (-10 -8 (-15 -1800 ($ (-631 |#1|))))) +((-3075 (((-848) $) 13) (($ (-1163)) 9) (((-1163) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3075 ((-1163) |#1|)) (-15 -3075 (|#1| (-1163))) (-15 -3075 ((-848) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3075 ((-1163) |#1|)) (-15 -3075 (|#1| (-1163))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-1163)) 16) (((-1163) $) 15)) (-1658 (((-112) $ $) 6))) +(((-93) (-138)) (T -93)) +NIL +(-13 (-1082) (-484 (-1163))) +(((-102) . T) ((-604 #0=(-1163)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T)) +((-2981 (($ $) 10)) (-2991 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|))) (-95)) (T -94)) +NIL +(-10 -8 (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|))) +((-2959 (($ $) 11)) (-2938 (($ $) 10)) (-2981 (($ $) 9)) (-2991 (($ $) 8)) (-2969 (($ $) 7)) (-2948 (($ $) 6))) +(((-95) (-138)) (T -95)) +((-2959 (*1 *1 *1) (-4 *1 (-95))) (-2938 (*1 *1 *1) (-4 *1 (-95))) (-2981 (*1 *1 *1) (-4 *1 (-95))) (-2991 (*1 *1 *1) (-4 *1 (-95))) (-2969 (*1 *1 *1) (-4 *1 (-95))) (-2948 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2948 ($ $)) (-15 -2969 ($ $)) (-15 -2991 ($ $)) (-15 -2981 ($ $)) (-15 -2938 ($ $)) (-15 -2959 ($ $)))) +((-3062 (((-112) $ $) NIL)) (-4309 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-96) (-13 (-1065) (-10 -8 (-15 -4309 ((-1117) $))))) (T -96)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-96))))) +(-13 (-1065) (-10 -8 (-15 -4309 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1282 (((-374) (-1140) (-374)) 42) (((-374) (-1140) (-1140) (-374)) 41)) (-1640 (((-374) (-374)) 33)) (-1278 (((-1246)) 36)) (-1613 (((-1140) $) NIL)) (-2553 (((-374) (-1140) (-1140)) 46) (((-374) (-1140)) 48)) (-2768 (((-1102) $) NIL)) (-2163 (((-374) (-1140) (-1140)) 47)) (-2442 (((-374) (-1140) (-1140)) 49) (((-374) (-1140)) 50)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-97) (-13 (-1082) (-10 -7 (-15 -2553 ((-374) (-1140) (-1140))) (-15 -2553 ((-374) (-1140))) (-15 -2442 ((-374) (-1140) (-1140))) (-15 -2442 ((-374) (-1140))) (-15 -2163 ((-374) (-1140) (-1140))) (-15 -1278 ((-1246))) (-15 -1640 ((-374) (-374))) (-15 -1282 ((-374) (-1140) (-374))) (-15 -1282 ((-374) (-1140) (-1140) (-374))) (-6 -4373)))) (T -97)) +((-2553 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2442 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-2163 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) (-1278 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-97)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-97)))) (-1282 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97)))) (-1282 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97))))) +(-13 (-1082) (-10 -7 (-15 -2553 ((-374) (-1140) (-1140))) (-15 -2553 ((-374) (-1140))) (-15 -2442 ((-374) (-1140) (-1140))) (-15 -2442 ((-374) (-1140))) (-15 -2163 ((-374) (-1140) (-1140))) (-15 -1278 ((-1246))) (-15 -1640 ((-374) (-374))) (-15 -1282 ((-374) (-1140) (-374))) (-15 -1282 ((-374) (-1140) (-1140) (-374))) (-6 -4373))) +NIL +(((-98) (-138)) (T -98)) +NIL +(-13 (-10 -7 (-6 -4373) (-6 (-4375 "*")) (-6 -4374) (-6 -4370) (-6 -4368) (-6 -4367) (-6 -4366) (-6 -4371) (-6 -4365) (-6 -4364) (-6 -4363) (-6 -4362) (-6 -4361) (-6 -4369) (-6 -4372) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4360))) +((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3949 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-554))) 22)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 14)) (-2768 (((-1102) $) NIL)) (-2064 ((|#1| $ |#1|) 11)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 20)) (-2014 (($) 8 T CONST)) (-1658 (((-112) $ $) 10)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) 27) (($ $ (-758)) NIL) (($ $ (-554)) 16)) (* (($ $ $) 28))) +(((-99 |#1|) (-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -3949 ($ (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1| (-554)))))) (-1034)) (T -99)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3)))) (-3949 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-99 *3))))) +(-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -3949 ($ (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3949 ($ (-1 |#1| |#1| (-554)))))) +((-3721 (((-413 |#2|) |#2| (-631 |#2|)) 10) (((-413 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3721 ((-413 |#2|) |#2| |#2|)) (-15 -3721 ((-413 |#2|) |#2| (-631 |#2|)))) (-13 (-446) (-145)) (-1217 |#1|)) (T -100)) +((-3721 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-100 *5 *3)))) (-3721 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -3721 ((-413 |#2|) |#2| |#2|)) (-15 -3721 ((-413 |#2|) |#2| (-631 |#2|)))) +((-3062 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -3062 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -3062 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1658 (((-112) $ $) 6))) +(((-102) (-138)) (T -102)) +((-3062 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1658 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -1658 ((-112) $ $)) (-15 -3062 ((-112) $ $)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) 13 (|has| $ (-6 -4374)))) (-2336 (($ $ $) NIL (|has| $ (-6 -4374)))) (-2035 (($ $ $) NIL (|has| $ (-6 -4374)))) (-4078 (($ $ (-631 |#1|)) 15)) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 11)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 17)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2315 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3683 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-631 |#1|) |#1| |#1| |#1|)) 35)) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 10)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) 12)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 9)) (-4240 (($) 16)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3627 (($ (-758) |#1|) 19)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3627 ($ (-758) |#1|)) (-15 -4078 ($ $ (-631 |#1|))) (-15 -2315 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2315 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 (-631 |#1|) |#1| |#1| |#1|))))) (-1082)) (T -103)) +((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-103 *3)) (-4 *3 (-1082)))) (-4078 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1082)))) (-2315 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-103 *2)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-631 *2) *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3627 ($ (-758) |#1|)) (-15 -4078 ($ $ (-631 |#1|))) (-15 -2315 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2315 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3683 ($ $ |#1| (-1 (-631 |#1|) |#1| |#1| |#1|))))) +((-1888 ((|#3| |#2| |#2|) 29)) (-1917 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4375 "*"))))) (-1306 ((|#3| |#2| |#2|) 30)) (-2566 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4375 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1888 (|#3| |#2| |#2|)) (-15 -1306 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4375 "*"))) (PROGN (-15 -1917 (|#1| |#2| |#2|)) (-15 -2566 (|#1| |#2|))) |%noBranch|)) (-1034) (-1217 |#1|) (-673 |#1| |#4| |#5|) (-368 |#1|) (-368 |#1|)) (T -104)) +((-2566 (*1 *2 *3) (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2)) (-4 *4 (-673 *2 *5 *6)))) (-1917 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2)) (-4 *4 (-673 *2 *5 *6)))) (-1306 (*1 *2 *3 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)))) (-1888 (*1 *2 *3 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))))) +(-10 -7 (-15 -1888 (|#3| |#2| |#2|)) (-15 -1306 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4375 "*"))) (PROGN (-15 -1917 (|#1| |#2| |#2|)) (-15 -2566 (|#1| |#2|))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2470 (((-631 (-1158))) 33)) (-3998 (((-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221)))) (-1158)) 35)) (-1658 (((-112) $ $) NIL))) +(((-105) (-13 (-1082) (-10 -7 (-15 -2470 ((-631 (-1158)))) (-15 -3998 ((-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221)))) (-1158))) (-6 -4373)))) (T -105)) +((-2470 (*1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-105)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221))))) (-5 *1 (-105))))) +(-13 (-1082) (-10 -7 (-15 -2470 ((-631 (-1158)))) (-15 -3998 ((-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) (|:| |singularities| (-1138 (-221)))) (-1158))) (-6 -4373))) +((-1591 (($ (-631 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1591 (|#1| (-631 |#2|)))) (-107 |#2|) (-1195)) (T -106)) +NIL +(-10 -8 (-15 -1591 (|#1| (-631 |#2|)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-107 |#1|) (-138) (-1195)) (T -107)) +((-1591 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-107 *3)))) (-2152 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))) (-2045 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195))))) +(-13 (-483 |t#1|) (-10 -8 (-6 -4374) (-15 -1591 ($ (-631 |t#1|))) (-15 -2152 (|t#1| $)) (-15 -2045 ($ |t#1| $)) (-15 -4150 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-554) $) NIL (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) NIL)) (-4339 (((-554) $) NIL (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 8) (($ (-554)) NIL) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL) (((-989 2) $) 10)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-554) $) NIL (|has| (-554) (-539)))) (-1522 (($ (-402 (-554))) 9)) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1752 (($ $ $) NIL) (($ (-554) (-554)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL))) +(((-108) (-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 2)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1522 ($ (-402 (-554))))))) (T -108)) +((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108))))) +(-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 2)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1522 ($ (-402 (-554)))))) +((-2171 (((-631 (-950)) $) 14)) (-4309 (((-1158) $) 10)) (-3075 (((-848) $) 23)) (-4328 (($ (-1158) (-631 (-950))) 15))) +(((-109) (-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-631 (-950)) $)) (-15 -4328 ($ (-1158) (-631 (-950))))))) (T -109)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-109)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-631 (-950))) (-5 *1 (-109)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-109))))) +(-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-631 (-950)) $)) (-15 -4328 ($ (-1158) (-631 (-950)))))) +((-3062 (((-112) $ $) NIL)) (-1285 (($ $) NIL)) (-4066 (($ $ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| (-112) (-836))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-112) (-836)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-112) $ (-1208 (-554)) (-112)) NIL (|has| $ (-6 -4374))) (((-112) $ (-554) (-112)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2574 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-3676 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2862 (((-112) $ (-554) (-112)) NIL (|has| $ (-6 -4374)))) (-2796 (((-112) $ (-554)) NIL)) (-1484 (((-554) (-112) $ (-554)) NIL (|has| (-112) (-1082))) (((-554) (-112) $) NIL (|has| (-112) (-1082))) (((-554) (-1 (-112) (-112)) $) NIL)) (-2466 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3038 (($ $ $) NIL)) (-4081 (($ $) NIL)) (-3811 (($ $ $) NIL)) (-3180 (($ (-758) (-112)) 8)) (-2860 (($ $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL)) (-3717 (($ $ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2379 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL)) (-2849 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ (-112) $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-112) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2441 (($ $ (-112)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-112)) (-631 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-631 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2625 (((-631 (-112)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (($ $ (-1208 (-554))) NIL) (((-112) $ (-554)) NIL) (((-112) $ (-554) (-112)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2777 (((-758) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082)))) (((-758) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-112) (-602 (-530))))) (-3089 (($ (-631 (-112))) NIL)) (-4323 (($ (-631 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3075 (((-848) $) NIL)) (-3219 (($ (-758) (-112)) 9)) (-2438 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3726 (($ $ $) NIL)) (-2140 (($ $ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-2130 (($ $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-110) (-13 (-123) (-10 -8 (-15 -3219 ($ (-758) (-112)))))) (T -110)) +((-3219 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -3219 ($ (-758) (-112))))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-138) (-1034) (-1034)) (T -111)) +NIL +(-13 (-634 |t#1|) (-1040 |t#2|) (-10 -7 (-6 -4368) (-6 -4367))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-1040 |#2|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1285 (($ $) 10)) (-4066 (($ $ $) 15)) (-3715 (($) 7 T CONST)) (-2957 (($ $) 6)) (-1508 (((-758)) 24)) (-3353 (($) 30)) (-3038 (($ $ $) 13)) (-4081 (($ $) 9)) (-3811 (($ $ $) 16)) (-2860 (($ $ $) 17)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3830 (((-906) $) 29)) (-1613 (((-1140) $) NIL)) (-2717 (($ (-906)) 28)) (-3771 (($ $ $) 20)) (-2768 (((-1102) $) NIL)) (-2521 (($) 8 T CONST)) (-2455 (($ $ $) 21)) (-2927 (((-530) $) 36)) (-3075 (((-848) $) 39)) (-3726 (($ $ $) 11)) (-2140 (($ $ $) 14)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 19)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 22)) (-2130 (($ $ $) 12))) +(((-112) (-13 (-830) (-647) (-952) (-602 (-530)) (-10 -8 (-15 -3715 ($) -2397) (-15 -2521 ($) -2397) (-15 -4066 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -2957 ($ $))))) (T -112)) +((-3715 (*1 *1) (-5 *1 (-112))) (-2521 (*1 *1) (-5 *1 (-112))) (-4066 (*1 *1 *1 *1) (-5 *1 (-112))) (-2860 (*1 *1 *1 *1) (-5 *1 (-112))) (-3811 (*1 *1 *1 *1) (-5 *1 (-112))) (-2957 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-830) (-647) (-952) (-602 (-530)) (-10 -8 (-15 -3715 ($) -2397) (-15 -2521 ($) -2397) (-15 -4066 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -2957 ($ $)))) +((-3282 (((-3 (-1 |#1| (-631 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-631 |#1|))) 11) (((-3 |#1| "failed") (-114) (-631 |#1|)) 21)) (-2525 (((-3 (-631 (-1 |#1| (-631 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-631 (-1 |#1| (-631 |#1|)))) 26)) (-3104 (((-114) |#1|) 56 (|has| |#1| (-836)))) (-2537 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-836))))) +(((-113 |#1|) (-10 -7 (-15 -3282 ((-3 |#1| "failed") (-114) (-631 |#1|))) (-15 -3282 ((-114) (-114) (-1 |#1| (-631 |#1|)))) (-15 -3282 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3282 ((-3 (-1 |#1| (-631 |#1|)) "failed") (-114))) (-15 -2525 ((-114) (-114) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2525 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2525 ((-3 (-631 (-1 |#1| (-631 |#1|))) "failed") (-114))) (IF (|has| |#1| (-836)) (PROGN (-15 -3104 ((-114) |#1|)) (-15 -2537 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1082)) (T -113)) +((-2537 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1082)) (-4 *2 (-836)) (-5 *1 (-113 *2)))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-836)) (-4 *3 (-1082)))) (-2525 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-1 *4 (-631 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1082)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 (-1 *4 (-631 *4)))) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-3282 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-631 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1082)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-631 *4))) (-4 *4 (-1082)) (-5 *1 (-113 *4)))) (-3282 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-631 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1082))))) +(-10 -7 (-15 -3282 ((-3 |#1| "failed") (-114) (-631 |#1|))) (-15 -3282 ((-114) (-114) (-1 |#1| (-631 |#1|)))) (-15 -3282 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3282 ((-3 (-1 |#1| (-631 |#1|)) "failed") (-114))) (-15 -2525 ((-114) (-114) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2525 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2525 ((-3 (-631 (-1 |#1| (-631 |#1|))) "failed") (-114))) (IF (|has| |#1| (-836)) (PROGN (-15 -3104 ((-114) |#1|)) (-15 -2537 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-1316 (((-758) $) 72) (($ $ (-758)) 30)) (-3334 (((-112) $) 32)) (-2909 (($ $ (-1140) (-761)) 26)) (-2854 (($ $ (-45 (-1140) (-761))) 15)) (-2047 (((-3 (-761) "failed") $ (-1140)) 25)) (-2171 (((-45 (-1140) (-761)) $) 14)) (-3086 (($ (-1158)) 17) (($ (-1158) (-758)) 22)) (-3597 (((-112) $) 31)) (-2514 (((-112) $) 33)) (-4309 (((-1158) $) 8)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2640 (((-112) $ (-1158)) 10)) (-1431 (($ $ (-1 (-530) (-631 (-530)))) 52) (((-3 (-1 (-530) (-631 (-530))) "failed") $) 56)) (-2768 (((-1102) $) NIL)) (-2200 (((-112) $ (-1140)) 29)) (-3070 (($ $ (-1 (-112) $ $)) 35)) (-2524 (((-3 (-1 (-848) (-631 (-848))) "failed") $) 54) (($ $ (-1 (-848) (-631 (-848)))) 41) (($ $ (-1 (-848) (-848))) 43)) (-2418 (($ $ (-1140)) 45)) (-1521 (($ $) 63)) (-3786 (($ $ (-1 (-112) $ $)) 36)) (-3075 (((-848) $) 48)) (-1849 (($ $ (-1140)) 27)) (-1937 (((-3 (-758) "failed") $) 58)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 71)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 79))) +(((-114) (-13 (-836) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-45 (-1140) (-761)) $)) (-15 -1521 ($ $)) (-15 -3086 ($ (-1158))) (-15 -3086 ($ (-1158) (-758))) (-15 -1937 ((-3 (-758) "failed") $)) (-15 -3597 ((-112) $)) (-15 -3334 ((-112) $)) (-15 -2514 ((-112) $)) (-15 -1316 ((-758) $)) (-15 -1316 ($ $ (-758))) (-15 -3070 ($ $ (-1 (-112) $ $))) (-15 -3786 ($ $ (-1 (-112) $ $))) (-15 -2524 ((-3 (-1 (-848) (-631 (-848))) "failed") $)) (-15 -2524 ($ $ (-1 (-848) (-631 (-848))))) (-15 -2524 ($ $ (-1 (-848) (-848)))) (-15 -1431 ($ $ (-1 (-530) (-631 (-530))))) (-15 -1431 ((-3 (-1 (-530) (-631 (-530))) "failed") $)) (-15 -2640 ((-112) $ (-1158))) (-15 -2200 ((-112) $ (-1140))) (-15 -1849 ($ $ (-1140))) (-15 -2418 ($ $ (-1140))) (-15 -2047 ((-3 (-761) "failed") $ (-1140))) (-15 -2909 ($ $ (-1140) (-761))) (-15 -2854 ($ $ (-45 (-1140) (-761))))))) (T -114)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114)))) (-1521 (*1 *1 *1) (-5 *1 (-114))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *1 (-114)))) (-1937 (*1 *2 *1) (|partial| -12 (-5 *2 (-758)) (-5 *1 (-114)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-114)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-114)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2524 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114)))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-848))) (-5 *1 (-114)))) (-1431 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114)))) (-1431 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1849 (*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114)))) (-2418 (*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114)))) (-2047 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-761)) (-5 *1 (-114)))) (-2909 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-761)) (-5 *1 (-114)))) (-2854 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114))))) +(-13 (-836) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2171 ((-45 (-1140) (-761)) $)) (-15 -1521 ($ $)) (-15 -3086 ($ (-1158))) (-15 -3086 ($ (-1158) (-758))) (-15 -1937 ((-3 (-758) "failed") $)) (-15 -3597 ((-112) $)) (-15 -3334 ((-112) $)) (-15 -2514 ((-112) $)) (-15 -1316 ((-758) $)) (-15 -1316 ($ $ (-758))) (-15 -3070 ($ $ (-1 (-112) $ $))) (-15 -3786 ($ $ (-1 (-112) $ $))) (-15 -2524 ((-3 (-1 (-848) (-631 (-848))) "failed") $)) (-15 -2524 ($ $ (-1 (-848) (-631 (-848))))) (-15 -2524 ($ $ (-1 (-848) (-848)))) (-15 -1431 ($ $ (-1 (-530) (-631 (-530))))) (-15 -1431 ((-3 (-1 (-530) (-631 (-530))) "failed") $)) (-15 -2640 ((-112) $ (-1158))) (-15 -2200 ((-112) $ (-1140))) (-15 -1849 ($ $ (-1140))) (-15 -2418 ($ $ (-1140))) (-15 -2047 ((-3 (-761) "failed") $ (-1140))) (-15 -2909 ($ $ (-1140) (-761))) (-15 -2854 ($ $ (-45 (-1140) (-761)))))) +((-1421 (((-554) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1421 ((-554) |#2|))) (-13 (-358) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -115)) +((-1421 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-1023 (-402 *2)))) (-5 *2 (-554)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -1421 ((-554) |#2|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $ (-554)) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2638 (($ (-1154 (-554)) (-554)) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2612 (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-2342 (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 (((-554)) NIL)) (-3859 (((-554) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4282 (($ $ (-554)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-1138 (-554)) $) NIL)) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-4333 (((-554) $ (-554)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-854 |#1|) (-554)) (T -116)) +NIL +(-854 |#1|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-116 |#1|) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-116 |#1|) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-116 |#1|) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-116 |#1|) (-1023 (-554))))) (-1668 (((-116 |#1|) $) NIL) (((-1158) $) NIL (|has| (-116 |#1|) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-116 |#1|) (-1023 (-554)))) (((-554) $) NIL (|has| (-116 |#1|) (-1023 (-554))))) (-1749 (($ $) NIL) (($ (-554) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-116 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-116 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-116 |#1|))) (|:| |vec| (-1241 (-116 |#1|)))) (-675 $) (-1241 $)) NIL) (((-675 (-116 |#1|)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-116 |#1|) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-116 |#1|) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-116 |#1|) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-116 |#1|) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-116 |#1|) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1133)))) (-4304 (((-112) $) NIL (|has| (-116 |#1|) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-116 |#1|) (-836)))) (-2706 (($ $ $) NIL (|has| (-116 |#1|) (-836)))) (-2879 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-116 |#1|) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-116 |#1|) (-302)))) (-4339 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-116 |#1|) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-116 |#1|)) (-631 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-289 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-631 (-289 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-631 (-1158)) (-631 (-116 |#1|))) NIL (|has| (-116 |#1|) (-508 (-1158) (-116 |#1|)))) (($ $ (-1158) (-116 |#1|)) NIL (|has| (-116 |#1|) (-508 (-1158) (-116 |#1|))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-281 (-116 |#1|) (-116 |#1|))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-758)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-116 |#1|) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-116 |#1|) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-116 |#1|) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-116 |#1|) (-602 (-530)))) (((-374) $) NIL (|has| (-116 |#1|) (-1007))) (((-221) $) NIL (|has| (-116 |#1|) (-1007)))) (-3691 (((-172 (-402 (-554))) $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-116 |#1|)) NIL) (($ (-1158)) NIL (|has| (-116 |#1|) (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-894))) (|has| (-116 |#1|) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-539)))) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ (-554)) NIL)) (-1700 (($ $) NIL (|has| (-116 |#1|) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-116 |#1|) (-885 (-1158)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-758)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-116 |#1|) (-836)))) (-1752 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-977 (-116 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) (-554)) (T -117)) +((-4333 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-554)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-117 *3)) (-14 *3 (-554)))) (-1749 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-554)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-977 (-116 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) +((-1501 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3677 (((-631 $) $) 27)) (-1990 (((-112) $ $) 32)) (-3068 (((-112) |#2| $) 36)) (-2306 (((-631 |#2|) $) 22)) (-3216 (((-112) $) 16)) (-2064 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3008 (((-112) $) 45)) (-3075 (((-848) $) 41)) (-2461 (((-631 $) $) 28)) (-1658 (((-112) $ $) 34)) (-2563 (((-758) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1501 (|#1| |#1| "right" |#1|)) (-15 -1501 (|#1| |#1| "left" |#1|)) (-15 -2064 (|#1| |#1| "right")) (-15 -2064 (|#1| |#1| "left")) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -2306 ((-631 |#2|) |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2563 ((-758) |#1|))) (-119 |#2|) (-1195)) (T -118)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1501 (|#1| |#1| "right" |#1|)) (-15 -1501 (|#1| |#1| "left" |#1|)) (-15 -2064 (|#1| |#1| "right")) (-15 -2064 (|#1| |#1| "left")) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -2306 ((-631 |#2|) |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2563 ((-758) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 52 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 54 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) (($ $ "left" $) 55 (|has| $ (-6 -4374))) (($ $ "right" $) 53 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-3324 (($ $) 57)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-3311 (($ $) 59)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-119 |#1|) (-138) (-1195)) (T -119)) +((-3311 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-3324 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-1501 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-2035 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195)))) (-1501 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3)) (-4 *3 (-1195)))) (-2336 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195))))) +(-13 (-995 |t#1|) (-10 -8 (-15 -3311 ($ $)) (-15 -2064 ($ $ "left")) (-15 -3324 ($ $)) (-15 -2064 ($ $ "right")) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1501 ($ $ "left" $)) (-15 -2035 ($ $ $)) (-15 -1501 ($ $ "right" $)) (-15 -2336 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-4072 (((-112) |#1|) 24)) (-3913 (((-758) (-758)) 23) (((-758)) 22)) (-2751 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -2751 ((-112) |#1|)) (-15 -2751 ((-112) |#1| (-112))) (-15 -3913 ((-758))) (-15 -3913 ((-758) (-758))) (-15 -4072 ((-112) |#1|))) (-1217 (-554))) (T -120)) +((-4072 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-3913 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-2751 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) (-2751 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554)))))) +(-10 -7 (-15 -2751 ((-112) |#1|)) (-15 -2751 ((-112) |#1| (-112))) (-15 -3913 ((-758))) (-15 -3913 ((-758) (-758))) (-15 -4072 ((-112) |#1|))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 15)) (-1515 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2336 (($ $ $) 18 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 20 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 17)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 23)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 19)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4167 (($ |#1| $) 24)) (-2045 (($ |#1| $) 10)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 8)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2071 (($ (-631 |#1|)) 12)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2071 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)) (-15 -4167 ($ |#1| $)) (-15 -1515 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-836)) (T -121)) +((-2071 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-121 *3)))) (-2045 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836)))) (-4167 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836)))) (-1515 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-836))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2071 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)) (-15 -4167 ($ |#1| $)) (-15 -1515 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1285 (($ $) 13)) (-4081 (($ $) 11)) (-3811 (($ $ $) 23)) (-2860 (($ $ $) 21)) (-2140 (($ $ $) 19)) (-2130 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -3811 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4081 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -2140 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -3811 (|#1| |#1| |#1|)) (-15 -2860 (|#1| |#1| |#1|)) (-15 -4081 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -2130 (|#1| |#1| |#1|)) (-15 -2140 (|#1| |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1285 (($ $) 103)) (-4066 (($ $ $) 25)) (-4233 (((-1246) $ (-554) (-554)) 66 (|has| $ (-6 -4374)))) (-4015 (((-112) $) 98 (|has| (-112) (-836))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2576 (($ $) 102 (-12 (|has| (-112) (-836)) (|has| $ (-6 -4374)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4374)))) (-3303 (($ $) 97 (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3019 (((-112) $ (-758)) 37)) (-1501 (((-112) $ (-1208 (-554)) (-112)) 88 (|has| $ (-6 -4374))) (((-112) $ (-554) (-112)) 54 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4373)))) (-4087 (($) 38 T CONST)) (-3920 (($ $) 100 (|has| $ (-6 -4374)))) (-3799 (($ $) 90)) (-1571 (($ $) 68 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4373))) (($ (-112) $) 69 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-3676 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-2862 (((-112) $ (-554) (-112)) 53 (|has| $ (-6 -4374)))) (-2796 (((-112) $ (-554)) 55)) (-1484 (((-554) (-112) $ (-554)) 95 (|has| (-112) (-1082))) (((-554) (-112) $) 94 (|has| (-112) (-1082))) (((-554) (-1 (-112) (-112)) $) 93)) (-2466 (((-631 (-112)) $) 45 (|has| $ (-6 -4373)))) (-3038 (($ $ $) 26)) (-4081 (($ $) 30)) (-3811 (($ $ $) 28)) (-3180 (($ (-758) (-112)) 77)) (-2860 (($ $ $) 29)) (-2230 (((-112) $ (-758)) 36)) (-3044 (((-554) $) 63 (|has| (-554) (-836)))) (-4223 (($ $ $) 13)) (-3717 (($ $ $) 96 (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2379 (((-631 (-112)) $) 46 (|has| $ (-6 -4373)))) (-3068 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 62 (|has| (-554) (-836)))) (-2706 (($ $ $) 14)) (-2849 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3731 (((-112) $ (-758)) 35)) (-1613 (((-1140) $) 9)) (-1782 (($ $ $ (-554)) 87) (($ (-112) $ (-554)) 86)) (-2529 (((-631 (-554)) $) 60)) (-3618 (((-112) (-554) $) 59)) (-2768 (((-1102) $) 10)) (-1539 (((-112) $) 64 (|has| (-554) (-836)))) (-1652 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2441 (($ $ (-112)) 65 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-112)) (-631 (-112))) 52 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-289 (-112))) 50 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-631 (-289 (-112)))) 49 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))))) (-2494 (((-112) $ $) 31)) (-1609 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2625 (((-631 (-112)) $) 58)) (-3543 (((-112) $) 34)) (-4240 (($) 33)) (-2064 (($ $ (-1208 (-554))) 83) (((-112) $ (-554)) 57) (((-112) $ (-554) (-112)) 56)) (-2021 (($ $ (-1208 (-554))) 85) (($ $ (-554)) 84)) (-2777 (((-758) (-112) $) 47 (-12 (|has| (-112) (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) 99 (|has| $ (-6 -4374)))) (-1521 (($ $) 32)) (-2927 (((-530) $) 67 (|has| (-112) (-602 (-530))))) (-3089 (($ (-631 (-112))) 76)) (-4323 (($ (-631 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3075 (((-848) $) 11)) (-2438 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4373)))) (-3726 (($ $ $) 27)) (-2140 (($ $ $) 105)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-2130 (($ $ $) 104)) (-2563 (((-758) $) 39 (|has| $ (-6 -4373))))) +(((-123) (-138)) (T -123)) +((-4081 (*1 *1 *1) (-4 *1 (-123))) (-2860 (*1 *1 *1 *1) (-4 *1 (-123))) (-3811 (*1 *1 *1 *1) (-4 *1 (-123))) (-3726 (*1 *1 *1 *1) (-4 *1 (-123))) (-3038 (*1 *1 *1 *1) (-4 *1 (-123))) (-4066 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-836) (-647) (-19 (-112)) (-10 -8 (-15 -4081 ($ $)) (-15 -2860 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -4066 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 #0=(-112)) . T) ((-602 (-530)) |has| (-112) (-602 (-530))) ((-281 #1=(-554) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))) ((-368 #0#) . T) ((-483 #0#) . T) ((-592 #1# #0#) . T) ((-508 #0# #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))) ((-637 #0#) . T) ((-647) . T) ((-19 #0#) . T) ((-836) . T) ((-1082) . T) ((-1195) . T)) +((-2849 (($ (-1 |#2| |#2|) $) 22)) (-1521 (($ $) 16)) (-2563 (((-758) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -1521 (|#1| |#1|))) (-125 |#2|) (-1082)) (T -124)) +NIL +(-10 -8 (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -1521 (|#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 52 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 54 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) (($ $ "left" $) 55 (|has| $ (-6 -4374))) (($ $ "right" $) 53 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-3324 (($ $) 57)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 60)) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-3311 (($ $) 59)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-125 |#1|) (-138) (-1082)) (T -125)) +((-2987 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1082))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2987 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-119 |#1|) . T) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 15)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) 19 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 20 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 18 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 21)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2045 (($ |#1| $) 10)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 8)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 17)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1417 (($ (-631 |#1|)) 12)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4374) (-15 -1417 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)))) (-836)) (T -126)) +((-1417 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-126 *3)))) (-2045 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-836))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4374) (-15 -1417 ($ (-631 |#1|))) (-15 -2045 ($ |#1| $)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 24)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) 26 (|has| $ (-6 -4374)))) (-2336 (($ $ $) 30 (|has| $ (-6 -4374)))) (-2035 (($ $ $) 28 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 20)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2987 (($ $ |#1| $) 15)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 19)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) 21)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 18)) (-4240 (($) 11)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3503 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 10 (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3503 ($ |#1|)) (-15 -3503 ($ $ |#1| $)))) (-1082)) (T -127)) +((-3503 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082)))) (-3503 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082))))) +(-13 (-125 |#1|) (-10 -8 (-15 -3503 ($ |#1|)) (-15 -3503 ($ $ |#1| $)))) +((-3062 (((-112) $ $) NIL (|has| (-129) (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-836)))) (-2576 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-129) (-836))))) (-3303 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-129) $ (-554) (-129)) 17 (|has| $ (-6 -4374))) (((-129) $ (-1208 (-554)) (-129)) NIL (|has| $ (-6 -4374)))) (-2295 (((-758) $ (-758)) 7)) (-1871 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-2574 (($ (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4373))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-129) $ (-554) (-129)) 16 (|has| $ (-6 -4374)))) (-2796 (((-129) $ (-554)) 13)) (-1484 (((-554) (-1 (-112) (-129)) $) NIL) (((-554) (-129) $) NIL (|has| (-129) (-1082))) (((-554) (-129) $ (-554)) NIL (|has| (-129) (-1082)))) (-2466 (((-631 (-129)) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-129)) 11)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 18 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-129) (-836)))) (-3717 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-836)))) (-2379 (((-631 (-129)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-2256 (((-554) $) 19 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-129) (-836)))) (-2849 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| (-129) (-1082)))) (-1782 (($ (-129) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| (-129) (-1082)))) (-1539 (((-129) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2441 (($ $ (-129)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-129)))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082)))) (($ $ (-289 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082)))) (($ $ (-631 (-129)) (-631 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-2625 (((-631 (-129)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 9)) (-2064 (((-129) $ (-554) (-129)) NIL) (((-129) $ (-554)) 15) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373))) (((-758) (-129) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-129) (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-129) (-602 (-530))))) (-3089 (($ (-631 (-129))) 29)) (-4323 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-631 $)) NIL)) (-3075 (((-1140) $) 27) (((-848) $) NIL (|has| (-129) (-601 (-848))))) (-2420 (((-758) $) 14)) (-3295 (($ (-758)) 8)) (-2438 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| (-129) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-129) (-836)))) (-1658 (((-112) $ $) 22 (|has| (-129) (-1082)))) (-1697 (((-112) $ $) NIL (|has| (-129) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-129) (-836)))) (-2563 (((-758) $) 20))) +(((-128) (-13 (-19 (-129)) (-601 (-1140)) (-10 -8 (-15 -3295 ($ (-758))) (-15 -2563 ((-758) $)) (-15 -2420 ((-758) $)) (-15 -2295 ((-758) $ (-758)))))) (T -128)) +((-3295 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) (-2295 (*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-601 (-1140)) (-10 -8 (-15 -3295 ($ (-758))) (-15 -2563 ((-758) $)) (-15 -2420 ((-758) $)) (-15 -2295 ((-758) $ (-758))))) +((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) 9)) (-3075 (((-848) $) 19) (((-758) $) 11) (($ (-142)) 14) (((-142) $) 16) (($ (-758)) 10)) (-1286 (($ (-758)) 7)) (-4088 (($ $ $) 24)) (-4074 (($ $ $) 23)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 21)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 22))) +(((-129) (-13 (-836) (-601 (-758)) (-484 (-142)) (-10 -8 (-15 -1286 ($ (-758))) (-15 -3075 ($ (-758))) (-15 -4074 ($ $ $)) (-15 -4088 ($ $ $)) (-15 -4087 ($))))) (T -129)) +((-1286 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129)))) (-4074 (*1 *1 *1 *1) (-5 *1 (-129))) (-4088 (*1 *1 *1 *1) (-5 *1 (-129))) (-4087 (*1 *1) (-5 *1 (-129)))) +(-13 (-836) (-601 (-758)) (-484 (-142)) (-10 -8 (-15 -1286 ($ (-758))) (-15 -3075 ($ (-758))) (-15 -4074 ($ $ $)) (-15 -4088 ($ $ $)) (-15 -4087 ($)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15))) +(((-130) (-138)) (T -130)) +((-2934 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -2934 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-2886 (((-1246) $ (-758)) 19)) (-1484 (((-758) $) 20)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18))) +(((-131) (-138)) (T -131)) +((-1484 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-758)))) (-2886 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-758)) (-5 *2 (-1246))))) +(-13 (-836) (-10 -8 (-15 -1484 ((-758) $)) (-15 -2886 ((-1246) $ (-758))))) +(((-102) . T) ((-601 (-848)) . T) ((-836) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 10)) (-1658 (((-112) $ $) NIL))) +(((-132) (-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $))))) (T -132)) +((-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-132))))) +(-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $)))) +((-3062 (((-112) $ $) 34)) (-1695 (((-112) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-758) "failed") $) 40)) (-1668 (((-758) $) 38)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3482 (((-112)) 41)) (-1616 (((-112) (-112)) 43)) (-2874 (((-112) $) 24)) (-2582 (((-112) $) 37)) (-3075 (((-848) $) 22) (($ (-758)) 14)) (-2004 (($) 11 T CONST)) (-2014 (($) 12 T CONST)) (-2131 (($ (-758)) 15)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 25)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 26)) (-1744 (((-3 $ "failed") $ $) 30)) (-1735 (($ $ $) 28)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL) (($ $ $) 36)) (* (($ (-758) $) 33) (($ (-906) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-836) (-23) (-713) (-1023 (-758)) (-10 -8 (-6 (-4375 "*")) (-15 -1744 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2131 ($ (-758))) (-15 -2874 ((-112) $)) (-15 -2582 ((-112) $)) (-15 -3482 ((-112))) (-15 -1616 ((-112) (-112)))))) (T -133)) +((-1744 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2131 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-133)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3482 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-836) (-23) (-713) (-1023 (-758)) (-10 -8 (-6 (-4375 "*")) (-15 -1744 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2131 ($ (-758))) (-15 -2874 ((-112) $)) (-15 -2582 ((-112) $)) (-15 -3482 ((-112))) (-15 -1616 ((-112) (-112))))) +((-2516 (((-135 |#1| |#2| |#4|) (-631 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2879 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2516 ((-135 |#1| |#2| |#4|) (-631 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2879 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-554) (-758) (-170) (-170)) (T -134)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554)) (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554)) (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) +(-10 -7 (-15 -2516 ((-135 |#1| |#2| |#4|) (-631 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2879 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-3062 (((-112) $ $) NIL)) (-2714 (($ (-631 |#3|)) 40)) (-2757 (($ $) 99) (($ $ (-554) (-554)) 98)) (-4087 (($) 17)) (-2784 (((-3 |#3| "failed") $) 60)) (-1668 ((|#3| $) NIL)) (-2378 (($ $ (-631 (-554))) 100)) (-2504 (((-631 |#3|) $) 36)) (-4186 (((-758) $) 44)) (-4264 (($ $ $) 93)) (-2006 (($) 43)) (-1613 (((-1140) $) NIL)) (-3141 (($) 16)) (-2768 (((-1102) $) NIL)) (-2064 ((|#3| $) 46) ((|#3| $ (-554)) 47) ((|#3| $ (-554) (-554)) 48) ((|#3| $ (-554) (-554) (-554)) 49) ((|#3| $ (-554) (-554) (-554) (-554)) 50) ((|#3| $ (-631 (-554))) 52)) (-3308 (((-758) $) 45)) (-4295 (($ $ (-554) $ (-554)) 94) (($ $ (-554) (-554)) 96)) (-3075 (((-848) $) 67) (($ |#3|) 68) (($ (-236 |#2| |#3|)) 75) (($ (-1124 |#2| |#3|)) 78) (($ (-631 |#3|)) 53) (($ (-631 $)) 58)) (-2004 (($) 69 T CONST)) (-2014 (($) 70 T CONST)) (-1658 (((-112) $ $) 80)) (-1744 (($ $) 86) (($ $ $) 84)) (-1735 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-554)) 89) (($ (-554) $) 88) (($ $ $) 95))) +(((-135 |#1| |#2| |#3|) (-13 (-459 |#3| (-758)) (-464 (-554) (-758)) (-10 -8 (-15 -3075 ($ (-236 |#2| |#3|))) (-15 -3075 ($ (-1124 |#2| |#3|))) (-15 -3075 ($ (-631 |#3|))) (-15 -3075 ($ (-631 $))) (-15 -4186 ((-758) $)) (-15 -2064 (|#3| $)) (-15 -2064 (|#3| $ (-554))) (-15 -2064 (|#3| $ (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-631 (-554)))) (-15 -4264 ($ $ $)) (-15 * ($ $ $)) (-15 -4295 ($ $ (-554) $ (-554))) (-15 -4295 ($ $ (-554) (-554))) (-15 -2757 ($ $)) (-15 -2757 ($ $ (-554) (-554))) (-15 -2378 ($ $ (-631 (-554)))) (-15 -3141 ($)) (-15 -2006 ($)) (-15 -2504 ((-631 |#3|) $)) (-15 -2714 ($ (-631 |#3|))) (-15 -4087 ($)))) (-554) (-758) (-170)) (T -135)) +((-4264 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1124 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 *2) (-4 *5 (-170)))) (-2064 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-554)) (-14 *4 (-758)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-758)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-631 (-554))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-554)) (-14 *5 (-758)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-4295 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-758)) (-4 *5 (-170)))) (-4295 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-758)) (-4 *5 (-170)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-2757 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-758)) (-4 *5 (-170)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) (-3141 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-2006 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-631 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) (-14 *4 (-758)))) (-4087 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) (-4 *4 (-170))))) +(-13 (-459 |#3| (-758)) (-464 (-554) (-758)) (-10 -8 (-15 -3075 ($ (-236 |#2| |#3|))) (-15 -3075 ($ (-1124 |#2| |#3|))) (-15 -3075 ($ (-631 |#3|))) (-15 -3075 ($ (-631 $))) (-15 -4186 ((-758) $)) (-15 -2064 (|#3| $)) (-15 -2064 (|#3| $ (-554))) (-15 -2064 (|#3| $ (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-554) (-554) (-554) (-554))) (-15 -2064 (|#3| $ (-631 (-554)))) (-15 -4264 ($ $ $)) (-15 * ($ $ $)) (-15 -4295 ($ $ (-554) $ (-554))) (-15 -4295 ($ $ (-554) (-554))) (-15 -2757 ($ $)) (-15 -2757 ($ $ (-554) (-554))) (-15 -2378 ($ $ (-631 (-554)))) (-15 -3141 ($)) (-15 -2006 ($)) (-15 -2504 ((-631 |#3|) $)) (-15 -2714 ($ (-631 |#3|))) (-15 -4087 ($)))) +((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-136) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -136)) +((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136))))) +(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1466 (((-1158) $) 10)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 12)) (-1658 (((-112) $ $) NIL))) +(((-137) (-13 (-1065) (-10 -8 (-15 -1466 ((-1158) $)) (-15 -4319 ((-631 (-1117)) $))))) (T -137)) +((-1466 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-137)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-137))))) +(-13 (-1065) (-10 -8 (-15 -1466 ((-1158) $)) (-15 -4319 ((-631 (-1117)) $)))) +((-3075 (((-848) $) 7))) +(((-138) (-601 (-848))) (T -138)) +NIL +(-601 (-848)) +((-3062 (((-112) $ $) NIL)) (-2451 (($) 15 T CONST)) (-3509 (($) NIL (|has| (-142) (-363)))) (-3382 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3775 (($ $ $) NIL)) (-2411 (((-112) $ $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| (-142) (-363)))) (-1489 (($) NIL) (($ (-631 (-142))) NIL)) (-2220 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-1884 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (($ (-142) $) 51 (|has| $ (-6 -4373)))) (-2574 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3353 (($) NIL (|has| (-142) (-363)))) (-2466 (((-631 (-142)) $) 60 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-4223 (((-142) $) NIL (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2706 (((-142) $) NIL (|has| (-142) (-836)))) (-2849 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) 55)) (-1913 (($) 16 T CONST)) (-3830 (((-906) $) NIL (|has| (-142) (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 29)) (-4150 (((-142) $) 52)) (-2045 (($ (-142) $) 50)) (-2717 (($ (-906)) NIL (|has| (-142) (-363)))) (-2348 (($) 14 T CONST)) (-2768 (((-1102) $) NIL)) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2152 (((-142) $) 53)) (-2845 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-142)) (-631 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 48)) (-2967 (($) 13 T CONST)) (-3372 (($ $ $) 31) (($ $ (-142)) NIL)) (-4310 (($ (-631 (-142))) NIL) (($) NIL)) (-2777 (((-758) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (((-758) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-1140) $) 36) (((-530) $) NIL (|has| (-142) (-602 (-530)))) (((-631 (-142)) $) 34)) (-3089 (($ (-631 (-142))) NIL)) (-3043 (($ $) 32 (|has| (-142) (-363)))) (-3075 (((-848) $) 46)) (-4070 (($ (-1140)) 12) (($ (-631 (-142))) 43)) (-3813 (((-758) $) NIL)) (-2332 (($) 49) (($ (-631 (-142))) NIL)) (-1591 (($ (-631 (-142))) NIL)) (-2438 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2889 (($) 19 T CONST)) (-1418 (($) 18 T CONST)) (-1658 (((-112) $ $) 22)) (-2563 (((-758) $) 47 (|has| $ (-6 -4373))))) +(((-139) (-13 (-1082) (-602 (-1140)) (-420 (-142)) (-602 (-631 (-142))) (-10 -8 (-15 -4070 ($ (-1140))) (-15 -4070 ($ (-631 (-142)))) (-15 -2967 ($) -2397) (-15 -2348 ($) -2397) (-15 -2451 ($) -2397) (-15 -1913 ($) -2397) (-15 -1418 ($) -2397) (-15 -2889 ($) -2397)))) (T -139)) +((-4070 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-139)))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-631 (-142))) (-5 *1 (-139)))) (-2967 (*1 *1) (-5 *1 (-139))) (-2348 (*1 *1) (-5 *1 (-139))) (-2451 (*1 *1) (-5 *1 (-139))) (-1913 (*1 *1) (-5 *1 (-139))) (-1418 (*1 *1) (-5 *1 (-139))) (-2889 (*1 *1) (-5 *1 (-139)))) +(-13 (-1082) (-602 (-1140)) (-420 (-142)) (-602 (-631 (-142))) (-10 -8 (-15 -4070 ($ (-1140))) (-15 -4070 ($ (-631 (-142)))) (-15 -2967 ($) -2397) (-15 -2348 ($) -2397) (-15 -2451 ($) -2397) (-15 -1913 ($) -2397) (-15 -1418 ($) -2397) (-15 -2889 ($) -2397))) +((-2037 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2715 ((|#1| |#3|) 9)) (-1770 ((|#3| |#3|) 15))) +(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-546) (-977 |#1|) (-368 |#2|)) (T -140)) +((-2037 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-368 *5)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-368 *4)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-368 *4))))) +(-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1295 (($ $ $) 8)) (-1582 (($ $) 7)) (-1629 (($ $ $) 6))) +(((-141) (-138)) (T -141)) +((-1295 (*1 *1 *1 *1) (-4 *1 (-141))) (-1582 (*1 *1 *1) (-4 *1 (-141))) (-1629 (*1 *1 *1 *1) (-4 *1 (-141)))) +(-13 (-10 -8 (-15 -1629 ($ $ $)) (-15 -1582 ($ $)) (-15 -1295 ($ $ $)))) +((-3062 (((-112) $ $) NIL)) (-3145 (((-112) $) 30)) (-2451 (($ $) 43)) (-4287 (($) 17)) (-1508 (((-758)) 10)) (-3353 (($) 16)) (-3402 (($) 18)) (-2856 (((-758) $) 14)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-4283 (((-112) $) 32)) (-1913 (($ $) 44)) (-3830 (((-906) $) 15)) (-1613 (((-1140) $) 38)) (-2717 (($ (-906)) 13)) (-2658 (((-112) $) 28)) (-2768 (((-1102) $) NIL)) (-2372 (($) 19)) (-4300 (((-112) $) 26)) (-3075 (((-848) $) 21)) (-3231 (($ (-758)) 11) (($ (-1140)) 42)) (-3645 (((-112) $) 36)) (-2674 (((-112) $) 34)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 7)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 8))) +(((-142) (-13 (-830) (-10 -8 (-15 -2856 ((-758) $)) (-15 -3231 ($ (-758))) (-15 -3231 ($ (-1140))) (-15 -4287 ($)) (-15 -3402 ($)) (-15 -2372 ($)) (-15 -2451 ($ $)) (-15 -1913 ($ $)) (-15 -4300 ((-112) $)) (-15 -2658 ((-112) $)) (-15 -2674 ((-112) $)) (-15 -3145 ((-112) $)) (-15 -4283 ((-112) $)) (-15 -3645 ((-112) $))))) (T -142)) +((-2856 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-142)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-142)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-142)))) (-4287 (*1 *1) (-5 *1 (-142))) (-3402 (*1 *1) (-5 *1 (-142))) (-2372 (*1 *1) (-5 *1 (-142))) (-2451 (*1 *1 *1) (-5 *1 (-142))) (-1913 (*1 *1 *1) (-5 *1 (-142))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(-13 (-830) (-10 -8 (-15 -2856 ((-758) $)) (-15 -3231 ($ (-758))) (-15 -3231 ($ (-1140))) (-15 -4287 ($)) (-15 -3402 ($)) (-15 -2372 ($)) (-15 -2451 ($ $)) (-15 -1913 ($ $)) (-15 -4300 ((-112) $)) (-15 -2658 ((-112) $)) (-15 -2674 ((-112) $)) (-15 -3145 ((-112) $)) (-15 -4283 ((-112) $)) (-15 -3645 ((-112) $)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2084 (((-3 $ "failed") $) 35)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-143) (-138)) (T -143)) +((-2084 (*1 *1 *1) (|partial| -4 *1 (-143)))) +(-13 (-1034) (-10 -8 (-15 -2084 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3109 ((|#1| (-675 |#1|) |#1|) 19))) +(((-144 |#1|) (-10 -7 (-15 -3109 (|#1| (-675 |#1|) |#1|))) (-170)) (T -144)) +((-3109 (*1 *2 *3 *2) (-12 (-5 *3 (-675 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) +(-10 -7 (-15 -3109 (|#1| (-675 |#1|) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-145) (-138)) (T -145)) +NIL +(-13 (-1034)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3698 (((-2 (|:| -1407 (-758)) (|:| -1490 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-758)) 70)) (-2345 (((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-758))) "failed") |#3|) 52)) (-1546 (((-2 (|:| -1490 (-402 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2191 ((|#1| |#3| |#3|) 40)) (-2386 ((|#3| |#3| (-402 |#2|) (-402 |#2|)) 19)) (-3080 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-758))) |#3| |#3|) 49))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1546 ((-2 (|:| -1490 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2345 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-758))) "failed") |#3|)) (-15 -3698 ((-2 (|:| -1407 (-758)) (|:| -1490 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-758))) (-15 -2191 (|#1| |#3| |#3|)) (-15 -2386 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -3080 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-758))) |#3| |#3|))) (-1199) (-1217 |#1|) (-1217 (-402 |#2|))) (T -146)) +((-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) (|:| |c2| (-402 *5)) (|:| |deg| (-758)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))) (-2386 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1217 *3)))) (-2191 (*1 *2 *3 *3) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-1199)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1217 (-402 *4))))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *6)) (-4 *5 (-1199)) (-4 *6 (-1217 *5)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-758)) (-4 *7 (-1217 *3)))) (-2345 (*1 *2 *3) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-758)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5))))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -1490 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5)))))) +(-10 -7 (-15 -1546 ((-2 (|:| -1490 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2345 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-758))) "failed") |#3|)) (-15 -3698 ((-2 (|:| -1407 (-758)) (|:| -1490 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-758))) (-15 -2191 (|#1| |#3| |#3|)) (-15 -2386 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -3080 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-758))) |#3| |#3|))) +((-1625 (((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)) 32))) +(((-147 |#1| |#2|) (-10 -7 (-15 -1625 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)))) (-539) (-164 |#1|)) (T -147)) +((-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5)) (-4 *5 (-164 *4)) (-4 *4 (-539)) (-5 *1 (-147 *4 *5))))) +(-10 -7 (-15 -1625 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)))) +((-1871 (($ (-1 (-112) |#2|) $) 29)) (-1571 (($ $) 36)) (-2574 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-3676 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1652 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2845 (((-112) (-1 (-112) |#2|) $) 16)) (-2777 (((-758) (-1 (-112) |#2|) $) 14) (((-758) |#2| $) NIL)) (-2438 (((-112) (-1 (-112) |#2|) $) 15)) (-2563 (((-758) $) 11))) +(((-148 |#1| |#2|) (-10 -8 (-15 -1571 (|#1| |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|))) (-149 |#2|) (-1195)) (T -148)) +NIL +(-10 -8 (-15 -1571 (|#1| |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-1871 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 41 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373))) (($ |#1| $) 42 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 40 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 49)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-149 |#1|) (-138) (-1195)) (T -149)) +((-3089 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-149 *3)))) (-1652 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-3676 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-3676 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3)) (-4 *3 (-1195)))) (-1871 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3)) (-4 *3 (-1195)))) (-3676 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)))) (-2574 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) (-1571 (*1 *1 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)) (-4 *2 (-1082))))) +(-13 (-483 |t#1|) (-10 -8 (-15 -3089 ($ (-631 |t#1|))) (-15 -1652 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4373)) (PROGN (-15 -3676 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3676 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2574 ($ (-1 (-112) |t#1|) $)) (-15 -1871 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -3676 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2574 ($ |t#1| $)) (-15 -1571 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) 86)) (-3248 (((-112) $) NIL)) (-2383 (($ |#2| (-631 (-906))) 56)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4017 (($ (-906)) 47)) (-3330 (((-133)) 23)) (-3075 (((-848) $) 69) (($ (-554)) 45) (($ |#2|) 46)) (-1779 ((|#2| $ (-631 (-906))) 59)) (-2261 (((-758)) 20)) (-2004 (($) 40 T CONST)) (-2014 (($) 43 T CONST)) (-1658 (((-112) $ $) 26)) (-1752 (($ $ |#2|) NIL)) (-1744 (($ $) 34) (($ $ $) 32)) (-1735 (($ $ $) 30)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-150 |#1| |#2| |#3|) (-13 (-1034) (-38 |#2|) (-1248 |#2|) (-10 -8 (-15 -4017 ($ (-906))) (-15 -2383 ($ |#2| (-631 (-906)))) (-15 -1779 (|#2| $ (-631 (-906)))) (-15 -1320 ((-3 $ "failed") $)))) (-906) (-358) (-978 |#1| |#2|)) (T -150)) +((-1320 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-906)) (-4 *3 (-358)) (-14 *4 (-978 *2 *3)))) (-4017 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) (-14 *5 (-978 *3 *4)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-906))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-906)) (-4 *2 (-358)) (-14 *5 (-978 *4 *2)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-631 (-906))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-906)) (-14 *5 (-978 *4 *2))))) +(-13 (-1034) (-38 |#2|) (-1248 |#2|) (-10 -8 (-15 -4017 ($ (-906))) (-15 -2383 ($ |#2| (-631 (-906)))) (-15 -1779 (|#2| $ (-631 (-906)))) (-15 -1320 ((-3 $ "failed") $)))) +((-2531 (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))) (-221) (-221) (-221) (-221)) 38)) (-3921 (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554))) 63) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912)) 64)) (-4184 (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221))))) 67) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-928 (-221)))) 66) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554))) 58) (((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912)) 59))) +(((-151) (-10 -7 (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -2531 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))) (-221) (-221) (-221) (-221))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-928 (-221))))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))))))) (T -151)) +((-4184 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 (-221))))))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)) (-5 *3 (-631 (-928 (-221)))))) (-2531 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-221)) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 *4)))) (|:| |xValues| (-1076 *4)) (|:| |yValues| (-1076 *4)))) (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 *4)))))) (-3921 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554))) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))) (-4184 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554))) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) (-5 *1 (-151))))) +(-10 -7 (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912))) (-15 -3921 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-912) (-402 (-554)) (-402 (-554)))) (-15 -2531 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221)))) (-221) (-221) (-221) (-221))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-928 (-221))))) (-15 -4184 ((-2 (|:| |brans| (-631 (-631 (-928 (-221))))) (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221)))) (-631 (-631 (-928 (-221))))))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1584 (((-631 (-1117)) $) 15)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 24) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 9)) (-1658 (((-112) $ $) NIL))) +(((-152) (-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $))))) (T -152)) +((-1584 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-152)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-152))))) +(-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $)))) +((-2390 (((-631 (-167 |#2|)) |#1| |#2|) 45))) +(((-153 |#1| |#2|) (-10 -7 (-15 -2390 ((-631 (-167 |#2|)) |#1| |#2|))) (-1217 (-167 (-554))) (-13 (-358) (-834))) (T -153)) +((-2390 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1217 (-167 (-554)))) (-4 *4 (-13 (-358) (-834)))))) +(-10 -7 (-15 -2390 ((-631 (-167 |#2|)) |#1| |#2|))) +((-3062 (((-112) $ $) NIL)) (-3848 (((-1194) $) 12)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-154) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1194) $))))) (T -154)) +((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-154)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-154))))) +(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1194) $)))) +((-3062 (((-112) $ $) NIL)) (-1512 (($) 15)) (-2323 (($) 14)) (-1796 (((-906)) 22)) (-1613 (((-1140) $) NIL)) (-3684 (((-554) $) 19)) (-2768 (((-1102) $) NIL)) (-4006 (($) 16)) (-2301 (($ (-554)) 23)) (-3075 (((-848) $) 29)) (-4312 (($) 17)) (-1658 (((-112) $ $) 13)) (-1735 (($ $ $) 11)) (* (($ (-906) $) 21) (($ (-221) $) 8))) +(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-906) $)) (-15 * ($ (-221) $)) (-15 -1735 ($ $ $)) (-15 -2323 ($)) (-15 -1512 ($)) (-15 -4006 ($)) (-15 -4312 ($)) (-15 -3684 ((-554) $)) (-15 -1796 ((-906))) (-15 -2301 ($ (-554)))))) (T -155)) +((-1735 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) (-2323 (*1 *1) (-5 *1 (-155))) (-1512 (*1 *1) (-5 *1 (-155))) (-4006 (*1 *1) (-5 *1 (-155))) (-4312 (*1 *1) (-5 *1 (-155))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-155)))) (-1796 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-155)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-155))))) +(-13 (-25) (-10 -8 (-15 * ($ (-906) $)) (-15 * ($ (-221) $)) (-15 -1735 ($ $ $)) (-15 -2323 ($)) (-15 -1512 ($)) (-15 -4006 ($)) (-15 -4312 ($)) (-15 -3684 ((-554) $)) (-15 -1796 ((-906))) (-15 -2301 ($ (-554))))) +((-3820 ((|#2| |#2| (-1074 |#2|)) 88) ((|#2| |#2| (-1158)) 68)) (-4264 ((|#2| |#2| (-1074 |#2|)) 87) ((|#2| |#2| (-1158)) 67)) (-1295 ((|#2| |#2| |#2|) 27)) (-3086 (((-114) (-114)) 99)) (-3696 ((|#2| (-631 |#2|)) 117)) (-3762 ((|#2| (-631 |#2|)) 135)) (-2952 ((|#2| (-631 |#2|)) 125)) (-3125 ((|#2| |#2|) 123)) (-2978 ((|#2| (-631 |#2|)) 111)) (-2827 ((|#2| (-631 |#2|)) 112)) (-3815 ((|#2| (-631 |#2|)) 133)) (-1662 ((|#2| |#2| (-1158)) 56) ((|#2| |#2|) 55)) (-1582 ((|#2| |#2|) 23)) (-1629 ((|#2| |#2| |#2|) 26)) (-1902 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2|)) (-15 -1295 (|#2| |#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1662 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1074 |#2|))) (-15 -4264 (|#2| |#2| (-1158))) (-15 -4264 (|#2| |#2| (-1074 |#2|))) (-15 -3125 (|#2| |#2|)) (-15 -3815 (|#2| (-631 |#2|))) (-15 -2952 (|#2| (-631 |#2|))) (-15 -3762 (|#2| (-631 |#2|))) (-15 -2978 (|#2| (-631 |#2|))) (-15 -2827 (|#2| (-631 |#2|))) (-15 -3696 (|#2| (-631 |#2|)))) (-13 (-836) (-546)) (-425 |#1|)) (T -156)) +((-3696 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-836) (-546))))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-4264 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)))) (-4264 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1662 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1295 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1629 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *4)) (-4 *4 (-425 *3)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4))))) +(-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1629 (|#2| |#2| |#2|)) (-15 -1295 (|#2| |#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1662 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1158))) (-15 -3820 (|#2| |#2| (-1074 |#2|))) (-15 -4264 (|#2| |#2| (-1158))) (-15 -4264 (|#2| |#2| (-1074 |#2|))) (-15 -3125 (|#2| |#2|)) (-15 -3815 (|#2| (-631 |#2|))) (-15 -2952 (|#2| (-631 |#2|))) (-15 -3762 (|#2| (-631 |#2|))) (-15 -2978 (|#2| (-631 |#2|))) (-15 -2827 (|#2| (-631 |#2|))) (-15 -3696 (|#2| (-631 |#2|)))) +((-2351 ((|#1| |#1| |#1|) 53)) (-3267 ((|#1| |#1| |#1|) 50)) (-1295 ((|#1| |#1| |#1|) 44)) (-3941 ((|#1| |#1|) 35)) (-3607 ((|#1| |#1| (-631 |#1|)) 43)) (-1582 ((|#1| |#1|) 37)) (-1629 ((|#1| |#1| |#1|) 40))) +(((-157 |#1|) (-10 -7 (-15 -1629 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -3607 (|#1| |#1| (-631 |#1|))) (-15 -3941 (|#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -3267 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) (-539)) (T -157)) +((-2351 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-3267 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-1295 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-3941 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-3607 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-539)) (-5 *1 (-157 *2)))) (-1582 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))) +(-10 -7 (-15 -1629 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -3607 (|#1| |#1| (-631 |#1|))) (-15 -3941 (|#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -3267 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|))) +((-3820 (($ $ (-1158)) 12) (($ $ (-1074 $)) 11)) (-4264 (($ $ (-1158)) 10) (($ $ (-1074 $)) 9)) (-1295 (($ $ $) 8)) (-1662 (($ $) 14) (($ $ (-1158)) 13)) (-1582 (($ $) 7)) (-1629 (($ $ $) 6))) +(((-158) (-138)) (T -158)) +((-1662 (*1 *1 *1) (-4 *1 (-158))) (-1662 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) (-3820 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) (-3820 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158)))) (-4264 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) (-4264 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158))))) +(-13 (-141) (-10 -8 (-15 -1662 ($ $)) (-15 -1662 ($ $ (-1158))) (-15 -3820 ($ $ (-1158))) (-15 -3820 ($ $ (-1074 $))) (-15 -4264 ($ $ (-1158))) (-15 -4264 ($ $ (-1074 $))))) +(((-141) . T)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 9)) (-1658 (((-112) $ $) NIL))) +(((-159) (-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $))))) (T -159)) +((-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-159))))) +(-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $)))) +((-3062 (((-112) $ $) NIL)) (-1287 (($ (-554)) 13) (($ $ $) 14)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17)) (-1658 (((-112) $ $) 9))) +(((-160) (-13 (-1082) (-10 -8 (-15 -1287 ($ (-554))) (-15 -1287 ($ $ $))))) (T -160)) +((-1287 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-160)))) (-1287 (*1 *1 *1 *1) (-5 *1 (-160)))) +(-13 (-1082) (-10 -8 (-15 -1287 ($ (-554))) (-15 -1287 ($ $ $)))) +((-3086 (((-114) (-1158)) 97))) +(((-161) (-10 -7 (-15 -3086 ((-114) (-1158))))) (T -161)) +((-3086 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-114)) (-5 *1 (-161))))) +(-10 -7 (-15 -3086 ((-114) (-1158)))) +((-1487 ((|#3| |#3|) 19))) +(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1487 (|#3| |#3|))) (-1034) (-1217 |#1|) (-1217 |#2|)) (T -162)) +((-1487 (*1 *2 *2) (-12 (-4 *3 (-1034)) (-4 *4 (-1217 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1217 *4))))) +(-10 -7 (-15 -1487 (|#3| |#3|))) +((-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 217)) (-1612 ((|#2| $) 96)) (-3023 (($ $) 247)) (-4200 (($ $) 241)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 40)) (-3003 (($ $) 245)) (-4177 (($ $) 239)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 139)) (-3964 (($ $ $) 222)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 155) (((-675 |#2|) (-675 $)) 149)) (-3676 (($ (-1154 |#2|)) 119) (((-3 $ "failed") (-402 (-1154 |#2|))) NIL)) (-1320 (((-3 $ "failed") $) 209)) (-1623 (((-3 (-402 (-554)) "failed") $) 199)) (-2069 (((-112) $) 194)) (-2197 (((-402 (-554)) $) 197)) (-4186 (((-906)) 89)) (-3943 (($ $ $) 224)) (-2244 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-2844 (($) 236)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 186) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 191)) (-3274 ((|#2| $) 94)) (-3361 (((-1154 |#2|) $) 121)) (-2879 (($ (-1 |#2| |#2|) $) 102)) (-2395 (($ $) 238)) (-3662 (((-1154 |#2|) $) 120)) (-2483 (($ $) 202)) (-2659 (($) 97)) (-1290 (((-413 (-1154 $)) (-1154 $)) 88)) (-3082 (((-413 (-1154 $)) (-1154 $)) 57)) (-3919 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1333 (($ $) 237)) (-2072 (((-758) $) 219)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 229)) (-1495 ((|#2| (-1241 $)) NIL) ((|#2|) 91)) (-1553 (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-4318 (((-1154 |#2|)) 114)) (-3014 (($ $) 246)) (-4188 (($ $) 240)) (-3656 (((-1241 |#2|) $ (-1241 $)) 128) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $) 110) (((-675 |#2|) (-1241 $)) NIL)) (-2927 (((-1241 |#2|) $) NIL) (($ (-1241 |#2|)) NIL) (((-1154 |#2|) $) NIL) (($ (-1154 |#2|)) NIL) (((-877 (-554)) $) 177) (((-877 (-374)) $) 181) (((-167 (-374)) $) 167) (((-167 (-221)) $) 162) (((-530) $) 173)) (-3992 (($ $) 98)) (-3075 (((-848) $) 138) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-402 (-554))) NIL) (($ $) NIL)) (-3109 (((-1154 |#2|) $) 23)) (-2261 (((-758)) 100)) (-3096 (($ $) 250)) (-2959 (($ $) 244)) (-3069 (($ $) 248)) (-2938 (($ $) 242)) (-2592 ((|#2| $) 233)) (-3083 (($ $) 249)) (-2948 (($ $) 243)) (-1700 (($ $) 157)) (-1658 (((-112) $ $) 104)) (-1676 (((-112) $ $) 193)) (-1744 (($ $) 106) (($ $ $) NIL)) (-1735 (($ $ $) 105)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-402 (-554))) 267) (($ $ $) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL))) +(((-163 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3075 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-167 (-221)) |#1|)) (-15 -2927 ((-167 (-374)) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2844 (|#1|)) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -2244 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2592 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3992 (|#1| |#1|)) (-15 -2659 (|#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -3676 ((-3 |#1| "failed") (-402 (-1154 |#2|)))) (-15 -3662 ((-1154 |#2|) |#1|)) (-15 -2927 (|#1| (-1154 |#2|))) (-15 -3676 (|#1| (-1154 |#2|))) (-15 -4318 ((-1154 |#2|))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -3109 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3274 (|#2| |#1|)) (-15 -1612 (|#2| |#1|)) (-15 -4186 ((-906))) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) +((-2261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4186 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-906)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-1495 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-4318 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1154 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) +(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3075 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-167 (-221)) |#1|)) (-15 -2927 ((-167 (-374)) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2844 (|#1|)) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -2244 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2592 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3992 (|#1| |#1|)) (-15 -2659 (|#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -3676 ((-3 |#1| "failed") (-402 (-1154 |#2|)))) (-15 -3662 ((-1154 |#2|) |#1|)) (-15 -2927 (|#1| (-1154 |#2|))) (-15 -3676 (|#1| (-1154 |#2|))) (-15 -4318 ((-1154 |#2|))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -3109 ((-1154 |#2|) |#1|)) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3274 (|#2| |#1|)) (-15 -1612 (|#2| |#1|)) (-15 -4186 ((-906))) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 93 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1976 (($ $) 94 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1363 (((-112) $) 96 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1903 (((-675 |#1|) (-1241 $)) 47) (((-675 |#1|)) 62)) (-1612 ((|#1| $) 53)) (-3023 (($ $) 227 (|has| |#1| (-1180)))) (-4200 (($ $) 210 (|has| |#1| (-1180)))) (-3205 (((-1168 (-906) (-758)) (-554)) 146 (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 241 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3278 (($ $) 113 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-1565 (((-413 $) $) 114 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2282 (($ $) 240 (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 244 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2286 (((-112) $ $) 104 (|has| |#1| (-302)))) (-1508 (((-758)) 87 (|has| |#1| (-363)))) (-3003 (($ $) 226 (|has| |#1| (-1180)))) (-4177 (($ $) 211 (|has| |#1| (-1180)))) (-3046 (($ $) 225 (|has| |#1| (-1180)))) (-2916 (($ $) 212 (|has| |#1| (-1180)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 169 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 167 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 164)) (-1668 (((-554) $) 168 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 166 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 165)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49) (($ (-1241 |#1|)) 65)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-344)))) (-3964 (($ $ $) 108 (|has| |#1| (-302)))) (-3629 (((-675 |#1|) $ (-1241 $)) 54) (((-675 |#1|) $) 60)) (-3699 (((-675 (-554)) (-675 $)) 163 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 162 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 161) (((-675 |#1|) (-675 $)) 160)) (-3676 (($ (-1154 |#1|)) 157) (((-3 $ "failed") (-402 (-1154 |#1|))) 154 (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) 33)) (-2293 ((|#1| $) 252)) (-1623 (((-3 (-402 (-554)) "failed") $) 245 (|has| |#1| (-539)))) (-2069 (((-112) $) 247 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 246 (|has| |#1| (-539)))) (-4186 (((-906)) 55)) (-3353 (($) 90 (|has| |#1| (-363)))) (-3943 (($ $ $) 107 (|has| |#1| (-302)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 102 (|has| |#1| (-302)))) (-3157 (($) 148 (|has| |#1| (-344)))) (-2754 (((-112) $) 149 (|has| |#1| (-344)))) (-4122 (($ $ (-758)) 140 (|has| |#1| (-344))) (($ $) 139 (|has| |#1| (-344)))) (-3289 (((-112) $) 115 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2244 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1043)) (|has| |#1| (-1180))))) (-2844 (($) 237 (|has| |#1| (-1180)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 260 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 259 (|has| |#1| (-871 (-374))))) (-2342 (((-906) $) 151 (|has| |#1| (-344))) (((-820 (-906)) $) 137 (|has| |#1| (-344)))) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 239 (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-3274 ((|#1| $) 52)) (-3339 (((-3 $ "failed") $) 141 (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 111 (|has| |#1| (-302)))) (-3361 (((-1154 |#1|) $) 45 (|has| |#1| (-358)))) (-4223 (($ $ $) 206 (|has| |#1| (-836)))) (-2706 (($ $ $) 205 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 261)) (-3830 (((-906) $) 89 (|has| |#1| (-363)))) (-2395 (($ $) 234 (|has| |#1| (-1180)))) (-3662 (((-1154 |#1|) $) 155)) (-2475 (($ (-631 $)) 100 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (($ $ $) 99 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 116 (|has| |#1| (-358)))) (-3834 (($) 142 (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) 88 (|has| |#1| (-363)))) (-2659 (($) 256)) (-2302 ((|#1| $) 253)) (-2768 (((-1102) $) 10)) (-4137 (($) 159)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 101 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-2510 (($ (-631 $)) 98 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (($ $ $) 97 (-3994 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 145 (|has| |#1| (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 243 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3082 (((-413 (-1154 $)) (-1154 $)) 242 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2270 (((-413 $) $) 112 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 109 (|has| |#1| (-302)))) (-3919 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 92 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 103 (|has| |#1| (-302)))) (-1333 (($ $) 235 (|has| |#1| (-1180)))) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 267 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 265 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 264 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 263 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 262 (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) 105 (|has| |#1| (-302)))) (-2064 (($ $ |#1|) 268 (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 106 (|has| |#1| (-302)))) (-1495 ((|#1| (-1241 $)) 48) ((|#1|) 61)) (-3316 (((-758) $) 150 (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) 138 (|has| |#1| (-344)))) (-1553 (($ $ (-1 |#1| |#1|) (-758)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-631 (-1158)) (-631 (-758))) 129 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 130 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 131 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 132 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 134 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 136 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-358)))) (-4318 (((-1154 |#1|)) 158)) (-3057 (($ $) 224 (|has| |#1| (-1180)))) (-2926 (($ $) 213 (|has| |#1| (-1180)))) (-3944 (($) 147 (|has| |#1| (-344)))) (-3034 (($ $) 223 (|has| |#1| (-1180)))) (-4213 (($ $) 214 (|has| |#1| (-1180)))) (-3014 (($ $) 222 (|has| |#1| (-1180)))) (-4188 (($ $) 215 (|has| |#1| (-1180)))) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50) (((-1241 |#1|) $) 67) (((-675 |#1|) (-1241 $)) 66)) (-2927 (((-1241 |#1|) $) 64) (($ (-1241 |#1|)) 63) (((-1154 |#1|) $) 170) (($ (-1154 |#1|)) 156) (((-877 (-554)) $) 258 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 257 (|has| |#1| (-602 (-877 (-374))))) (((-167 (-374)) $) 209 (|has| |#1| (-1007))) (((-167 (-221)) $) 208 (|has| |#1| (-1007))) (((-530) $) 207 (|has| |#1| (-602 (-530))))) (-3992 (($ $) 255)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 144 (-3994 (-3726 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (|has| |#1| (-344))))) (-4344 (($ |#1| |#1|) 254)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ (-402 (-554))) 86 (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) 91 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-2084 (($ $) 143 (|has| |#1| (-344))) (((-3 $ "failed") $) 44 (-3994 (-3726 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))) (|has| |#1| (-143))))) (-3109 (((-1154 |#1|) $) 46)) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 68)) (-3096 (($ $) 233 (|has| |#1| (-1180)))) (-2959 (($ $) 221 (|has| |#1| (-1180)))) (-1909 (((-112) $ $) 95 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894)))))) (-3069 (($ $) 232 (|has| |#1| (-1180)))) (-2938 (($ $) 220 (|has| |#1| (-1180)))) (-3120 (($ $) 231 (|has| |#1| (-1180)))) (-2981 (($ $) 219 (|has| |#1| (-1180)))) (-2592 ((|#1| $) 249 (|has| |#1| (-1180)))) (-2908 (($ $) 230 (|has| |#1| (-1180)))) (-2991 (($ $) 218 (|has| |#1| (-1180)))) (-3108 (($ $) 229 (|has| |#1| (-1180)))) (-2969 (($ $) 217 (|has| |#1| (-1180)))) (-3083 (($ $) 228 (|has| |#1| (-1180)))) (-2948 (($ $) 216 (|has| |#1| (-1180)))) (-1700 (($ $) 250 (|has| |#1| (-1043)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#1| |#1|) (-758)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-631 (-1158)) (-631 (-758))) 125 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 126 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 127 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 128 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 133 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 135 (-3994 (-3726 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3726 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-1708 (((-112) $ $) 203 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 202 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 204 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 201 (|has| |#1| (-836)))) (-1752 (($ $ $) 120 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-402 (-554))) 238 (-12 (|has| |#1| (-987)) (|has| |#1| (-1180)))) (($ $ $) 236 (|has| |#1| (-1180))) (($ $ (-554)) 117 (|has| |#1| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-402 (-554)) $) 119 (|has| |#1| (-358))) (($ $ (-402 (-554))) 118 (|has| |#1| (-358))))) +(((-164 |#1|) (-138) (-170)) (T -164)) +((-3274 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2659 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3992 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4344 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) (-2592 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1180)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1043)) (-4 *3 (-1180)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554)))))) +(-13 (-711 |t#1| (-1154 |t#1|)) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-395 |t#1|) (-869 |t#1|) (-372 |t#1|) (-170) (-10 -8 (-15 -2659 ($)) (-15 -3992 ($ $)) (-15 -4344 ($ |t#1| |t#1|)) (-15 -2302 (|t#1| $)) (-15 -2293 (|t#1| $)) (-15 -3274 (|t#1| $)) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-6 (-546)) (-15 -3919 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-6 -4372)) (-6 -4372) |%noBranch|) (IF (|has| |t#1| (-6 -4369)) (-6 -4369) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1007)) (PROGN (-6 (-602 (-167 (-221)))) (-6 (-602 (-167 (-374))))) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -1700 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1180)) (PROGN (-6 (-1180)) (-15 -2592 (|t#1| $)) (IF (|has| |t#1| (-987)) (-6 (-987)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -2244 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-894)) (IF (|has| |t#1| (-302)) (-6 (-894)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-35) |has| |#1| (-1180)) ((-95) |has| |#1| (-1180)) ((-102) . T) ((-111 #0# #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-344)) (|has| |#1| (-358))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-601 (-848)) . T) ((-170) . T) ((-602 (-167 (-221))) |has| |#1| (-1007)) ((-602 (-167 (-374))) |has| |#1| (-1007)) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-602 #1=(-1154 |#1|)) . T) ((-227 |#1|) . T) ((-229) -3994 (|has| |#1| (-344)) (|has| |#1| (-229))) ((-239) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-279) |has| |#1| (-1180)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-302) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -3994 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| #1#) . T) ((-404 |#1| #1#) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-487) |has| |#1| (-1180)) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-634 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-704 |#1|) . T) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-711 |#1| #1#) . T) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-894) -12 (|has| |#1| (-302)) (|has| |#1| (-894))) ((-905) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-987) -12 (|has| |#1| (-987)) (|has| |#1| (-1180))) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-344)) ((-1180) |has| |#1| (-1180)) ((-1183) |has| |#1| (-1180)) ((-1195) . T) ((-1199) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)) (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) +((-2270 (((-413 |#2|) |#2|) 63))) +(((-165 |#1| |#2|) (-10 -7 (-15 -2270 ((-413 |#2|) |#2|))) (-302) (-1217 (-167 |#1|))) (T -165)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1217 (-167 *4)))))) +(-10 -7 (-15 -2270 ((-413 |#2|) |#2|))) +((-2879 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14))) +(((-166 |#1| |#2|) (-10 -7 (-15 -2879 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))) +(-10 -7 (-15 -2879 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 33)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-1976 (($ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-1363 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-1903 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) NIL)) (-1612 ((|#1| $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-1180)))) (-4200 (($ $) NIL (|has| |#1| (-1180)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3278 (($ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-1565 (((-413 $) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2282 (($ $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-302)))) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-3003 (($ $) NIL (|has| |#1| (-1180)))) (-4177 (($ $) NIL (|has| |#1| (-1180)))) (-3046 (($ $) NIL (|has| |#1| (-1180)))) (-2916 (($ $) NIL (|has| |#1| (-1180)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|) (-1241 $)) NIL) (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3964 (($ $ $) NIL (|has| |#1| (-302)))) (-3629 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-3676 (($ (-1154 |#1|)) NIL) (((-3 $ "failed") (-402 (-1154 |#1|))) NIL (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-2293 ((|#1| $) 13)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-539)))) (-2069 (((-112) $) NIL (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| |#1| (-539)))) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL (|has| |#1| (-302)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-302)))) (-3157 (($) NIL (|has| |#1| (-344)))) (-2754 (((-112) $) NIL (|has| |#1| (-344)))) (-4122 (($ $ (-758)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-3289 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2244 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1043)) (|has| |#1| (-1180))))) (-2844 (($) NIL (|has| |#1| (-1180)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| |#1| (-871 (-374))))) (-2342 (((-906) $) NIL (|has| |#1| (-344))) (((-820 (-906)) $) NIL (|has| |#1| (-344)))) (-3248 (((-112) $) 35)) (-3734 (($ $ (-554)) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1180))))) (-3274 ((|#1| $) 46)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-302)))) (-3361 (((-1154 |#1|) $) NIL (|has| |#1| (-358)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-2395 (($ $) NIL (|has| |#1| (-1180)))) (-3662 (((-1154 |#1|) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-3834 (($) NIL (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2659 (($) NIL)) (-2302 ((|#1| $) 15)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-302)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-894))))) (-2270 (((-413 $) $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-358))))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-302)))) (-3919 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 47 (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-302)))) (-1333 (($ $) NIL (|has| |#1| (-1180)))) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) NIL (|has| |#1| (-302)))) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-302)))) (-1495 ((|#1| (-1241 $)) NIL) ((|#1|) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) NIL (|has| |#1| (-344)))) (-1553 (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-4318 (((-1154 |#1|)) NIL)) (-3057 (($ $) NIL (|has| |#1| (-1180)))) (-2926 (($ $) NIL (|has| |#1| (-1180)))) (-3944 (($) NIL (|has| |#1| (-344)))) (-3034 (($ $) NIL (|has| |#1| (-1180)))) (-4213 (($ $) NIL (|has| |#1| (-1180)))) (-3014 (($ $) NIL (|has| |#1| (-1180)))) (-4188 (($ $) NIL (|has| |#1| (-1180)))) (-3656 (((-1241 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) (-1241 $) (-1241 $)) NIL) (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-2927 (((-1241 |#1|) $) NIL) (($ (-1241 |#1|)) NIL) (((-1154 |#1|) $) NIL) (($ (-1154 |#1|)) NIL) (((-877 (-554)) $) NIL (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#1| (-602 (-877 (-374))))) (((-167 (-374)) $) NIL (|has| |#1| (-1007))) (((-167 (-221)) $) NIL (|has| |#1| (-1007))) (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3992 (($ $) 45)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-344))))) (-4344 (($ |#1| |#1|) 37)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) 36) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-2084 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-3109 (((-1154 |#1|) $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-1180)))) (-2959 (($ $) NIL (|has| |#1| (-1180)))) (-1909 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-302)) (|has| |#1| (-894))) (|has| |#1| (-546))))) (-3069 (($ $) NIL (|has| |#1| (-1180)))) (-2938 (($ $) NIL (|has| |#1| (-1180)))) (-3120 (($ $) NIL (|has| |#1| (-1180)))) (-2981 (($ $) NIL (|has| |#1| (-1180)))) (-2592 ((|#1| $) NIL (|has| |#1| (-1180)))) (-2908 (($ $) NIL (|has| |#1| (-1180)))) (-2991 (($ $) NIL (|has| |#1| (-1180)))) (-3108 (($ $) NIL (|has| |#1| (-1180)))) (-2969 (($ $) NIL (|has| |#1| (-1180)))) (-3083 (($ $) NIL (|has| |#1| (-1180)))) (-2948 (($ $) NIL (|has| |#1| (-1180)))) (-1700 (($ $) NIL (|has| |#1| (-1043)))) (-2004 (($) 28 T CONST)) (-2014 (($) 30 T CONST)) (-4048 (((-1140) $) 23 (|has| |#1| (-815))) (((-1140) $ (-112)) 25 (|has| |#1| (-815))) (((-1246) (-809) $) 26 (|has| |#1| (-815))) (((-1246) (-809) $ (-112)) 27 (|has| |#1| (-815)))) (-1787 (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 39)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-402 (-554))) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1180)))) (($ $ $) NIL (|has| |#1| (-1180))) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-554))) NIL (|has| |#1| (-358))))) +(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-170)) (T -167)) +NIL +(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) +((-2927 (((-877 |#1|) |#3|) 22))) +(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2927 ((-877 |#1|) |#3|))) (-1082) (-13 (-602 (-877 |#1|)) (-170)) (-164 |#2|)) (T -168)) +((-2927 (*1 *2 *3) (-12 (-4 *5 (-13 (-602 *2) (-170))) (-5 *2 (-877 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1082)) (-4 *3 (-164 *5))))) +(-10 -7 (-15 -2927 ((-877 |#1|) |#3|))) +((-3062 (((-112) $ $) NIL)) (-1754 (((-112) $) 9)) (-2562 (((-112) $ (-112)) 11)) (-3180 (($) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1521 (($ $) 13)) (-3075 (((-848) $) 17)) (-3088 (((-112) $) 8)) (-2498 (((-112) $ (-112)) 10)) (-1658 (((-112) $ $) NIL))) +(((-169) (-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -3088 ((-112) $)) (-15 -1754 ((-112) $)) (-15 -2498 ((-112) $ (-112))) (-15 -2562 ((-112) $ (-112))) (-15 -1521 ($ $))))) (T -169)) +((-3180 (*1 *1) (-5 *1 (-169))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2498 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-2562 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1521 (*1 *1 *1) (-5 *1 (-169)))) +(-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -3088 ((-112) $)) (-15 -1754 ((-112) $)) (-15 -2498 ((-112) $ (-112))) (-15 -2562 ((-112) $ (-112))) (-15 -1521 ($ $)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-170) (-138)) (T -170)) +NIL +(-13 (-1034) (-111 $ $) (-10 -7 (-6 (-4375 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3745 (($ $) 6))) +(((-171) (-138)) (T -171)) +((-3745 (*1 *1 *1) (-4 *1 (-171)))) +(-13 (-10 -8 (-15 -3745 ($ $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 ((|#1| $) 75)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-3962 (($ $) 19)) (-1750 (($ |#1| (-1138 |#1|)) 48)) (-1320 (((-3 $ "failed") $) 117)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2448 (((-1138 |#1|) $) 82)) (-2229 (((-1138 |#1|) $) 79)) (-2398 (((-1138 |#1|) $) 80)) (-3248 (((-112) $) NIL)) (-3166 (((-1138 |#1|) $) 88)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-4282 (($ $ (-554)) 91)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3935 (((-1138 |#1|) $) 89)) (-3456 (((-1138 (-402 |#1|)) $) 14)) (-3691 (($ (-402 |#1|)) 17) (($ |#1| (-1138 |#1|) (-1138 |#1|)) 38)) (-1300 (($ $) 93)) (-3075 (((-848) $) 127) (($ (-554)) 51) (($ |#1|) 52) (($ (-402 |#1|)) 36) (($ (-402 (-554))) NIL) (($ $) NIL)) (-2261 (((-758)) 64)) (-1909 (((-112) $ $) NIL)) (-1881 (((-1138 (-402 |#1|)) $) 18)) (-2004 (($) 25 T CONST)) (-2014 (($) 28 T CONST)) (-1658 (((-112) $ $) 35)) (-1752 (($ $ $) 115)) (-1744 (($ $) 106) (($ $ $) 103)) (-1735 (($ $ $) 101)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-402 |#1|) $) 111) (($ $ (-402 |#1|)) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL))) +(((-172 |#1|) (-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -3691 ($ (-402 |#1|))) (-15 -3691 ($ |#1| (-1138 |#1|) (-1138 |#1|))) (-15 -1750 ($ |#1| (-1138 |#1|))) (-15 -2229 ((-1138 |#1|) $)) (-15 -2398 ((-1138 |#1|) $)) (-15 -2448 ((-1138 |#1|) $)) (-15 -3831 (|#1| $)) (-15 -3962 ($ $)) (-15 -1881 ((-1138 (-402 |#1|)) $)) (-15 -3456 ((-1138 (-402 |#1|)) $)) (-15 -3166 ((-1138 |#1|) $)) (-15 -3935 ((-1138 |#1|) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $)))) (-302)) (T -172)) +((-3691 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) (-3691 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1750 (*1 *1 *2 *3) (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3831 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1300 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))) +(-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -3691 ($ (-402 |#1|))) (-15 -3691 ($ |#1| (-1138 |#1|) (-1138 |#1|))) (-15 -1750 ($ |#1| (-1138 |#1|))) (-15 -2229 ((-1138 |#1|) $)) (-15 -2398 ((-1138 |#1|) $)) (-15 -2448 ((-1138 |#1|) $)) (-15 -3831 (|#1| $)) (-15 -3962 ($ $)) (-15 -1881 ((-1138 (-402 |#1|)) $)) (-15 -3456 ((-1138 (-402 |#1|)) $)) (-15 -3166 ((-1138 |#1|) $)) (-15 -3935 ((-1138 |#1|) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $)))) +((-3081 (($ (-109) $) 13)) (-2559 (((-3 (-109) "failed") (-1158) $) 12)) (-3075 (((-848) $) 16)) (-3952 (((-631 (-109)) $) 8))) +(((-173) (-13 (-601 (-848)) (-10 -8 (-15 -3952 ((-631 (-109)) $)) (-15 -3081 ($ (-109) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $))))) (T -173)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-631 (-109))) (-5 *1 (-173)))) (-3081 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-173)))) (-2559 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-173))))) +(-13 (-601 (-848)) (-10 -8 (-15 -3952 ((-631 (-109)) $)) (-15 -3081 ($ (-109) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $)))) +((-3437 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 40)) (-1384 (((-928 |#1|) (-928 |#1|)) 19)) (-3345 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 36)) (-2873 (((-928 |#1|) (-928 |#1|)) 17)) (-1307 (((-928 |#1|) (-928 |#1|)) 25)) (-4163 (((-928 |#1|) (-928 |#1|)) 24)) (-2388 (((-928 |#1|) (-928 |#1|)) 23)) (-2979 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 37)) (-3283 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 35)) (-2535 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 34)) (-2769 (((-928 |#1|) (-928 |#1|)) 18)) (-3984 (((-1 (-928 |#1|) (-928 |#1|)) |#1| |#1|) 43)) (-1719 (((-928 |#1|) (-928 |#1|)) 8)) (-2478 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 39)) (-2012 (((-1 (-928 |#1|) (-928 |#1|)) |#1|) 38))) +(((-174 |#1|) (-10 -7 (-15 -1719 ((-928 |#1|) (-928 |#1|))) (-15 -2873 ((-928 |#1|) (-928 |#1|))) (-15 -2769 ((-928 |#1|) (-928 |#1|))) (-15 -1384 ((-928 |#1|) (-928 |#1|))) (-15 -2388 ((-928 |#1|) (-928 |#1|))) (-15 -4163 ((-928 |#1|) (-928 |#1|))) (-15 -1307 ((-928 |#1|) (-928 |#1|))) (-15 -2535 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3283 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3345 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2979 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2012 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2478 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3437 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3984 ((-1 (-928 |#1|) (-928 |#1|)) |#1| |#1|))) (-13 (-358) (-1180) (-987))) (T -174)) +((-3984 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2478 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2979 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-3345 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-2535 (*1 *2 *3) (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1180) (-987))))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) (-5 *1 (-174 *3))))) +(-10 -7 (-15 -1719 ((-928 |#1|) (-928 |#1|))) (-15 -2873 ((-928 |#1|) (-928 |#1|))) (-15 -2769 ((-928 |#1|) (-928 |#1|))) (-15 -1384 ((-928 |#1|) (-928 |#1|))) (-15 -2388 ((-928 |#1|) (-928 |#1|))) (-15 -4163 ((-928 |#1|) (-928 |#1|))) (-15 -1307 ((-928 |#1|) (-928 |#1|))) (-15 -2535 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3283 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3345 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2979 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2012 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -2478 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3437 ((-1 (-928 |#1|) (-928 |#1|)) |#1|)) (-15 -3984 ((-1 (-928 |#1|) (-928 |#1|)) |#1| |#1|))) +((-3109 ((|#2| |#3|) 27))) +(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -3109 (|#2| |#3|))) (-170) (-1217 |#1|) (-711 |#1| |#2|)) (T -175)) +((-3109 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1217 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-711 *4 *2))))) +(-10 -7 (-15 -3109 (|#2| |#3|))) +((-1655 (((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)) 47 (|has| (-937 |#2|) (-871 |#1|))))) +(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-937 |#2|) (-871 |#1|)) (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) |%noBranch|)) (-1082) (-13 (-871 |#1|) (-170)) (-164 |#2|)) (T -176)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *3 (-164 *6)) (-4 (-937 *6) (-871 *5)) (-4 *6 (-13 (-871 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) +(-10 -7 (IF (|has| (-937 |#2|) (-871 |#1|)) (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) |%noBranch|)) +((-3818 (((-631 |#1|) (-631 |#1|) |#1|) 38)) (-2432 (((-631 |#1|) |#1| (-631 |#1|)) 19)) (-3589 (((-631 |#1|) (-631 (-631 |#1|)) (-631 |#1|)) 33) ((|#1| (-631 |#1|) (-631 |#1|)) 31))) +(((-177 |#1|) (-10 -7 (-15 -2432 ((-631 |#1|) |#1| (-631 |#1|))) (-15 -3589 (|#1| (-631 |#1|) (-631 |#1|))) (-15 -3589 ((-631 |#1|) (-631 (-631 |#1|)) (-631 |#1|))) (-15 -3818 ((-631 |#1|) (-631 |#1|) |#1|))) (-302)) (T -177)) +((-3818 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *3 (-631 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) (-3589 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) (-2432 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) +(-10 -7 (-15 -2432 ((-631 |#1|) |#1| (-631 |#1|))) (-15 -3589 (|#1| (-631 |#1|) (-631 |#1|))) (-15 -3589 ((-631 |#1|) (-631 (-631 |#1|)) (-631 |#1|))) (-15 -3818 ((-631 |#1|) (-631 |#1|) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 10)) (-3075 (((-848) $) 22) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-178) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))) (T -178)) +((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-178)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-178))))) +(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $)))) +((-1392 (((-2 (|:| |start| |#2|) (|:| -2316 (-413 |#2|))) |#2|) 61)) (-1324 ((|#1| |#1|) 54)) (-3568 (((-167 |#1|) |#2|) 84)) (-1355 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2865 ((|#2| |#2|) 83)) (-2309 (((-413 |#2|) |#2| |#1|) 113) (((-413 |#2|) |#2| |#1| (-112)) 81)) (-3274 ((|#1| |#2|) 112)) (-3154 ((|#2| |#2|) 119)) (-2270 (((-413 |#2|) |#2|) 134) (((-413 |#2|) |#2| |#1|) 32) (((-413 |#2|) |#2| |#1| (-112)) 133)) (-3483 (((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2|) 132) (((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2| (-112)) 76)) (-2390 (((-631 (-167 |#1|)) |#2| |#1|) 40) (((-631 (-167 |#1|)) |#2|) 41))) +(((-179 |#1| |#2|) (-10 -7 (-15 -2390 ((-631 (-167 |#1|)) |#2|)) (-15 -2390 ((-631 (-167 |#1|)) |#2| |#1|)) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2| (-112))) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2|)) (-15 -2270 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2270 ((-413 |#2|) |#2| |#1|)) (-15 -2270 ((-413 |#2|) |#2|)) (-15 -3154 (|#2| |#2|)) (-15 -3274 (|#1| |#2|)) (-15 -2309 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2309 ((-413 |#2|) |#2| |#1|)) (-15 -2865 (|#2| |#2|)) (-15 -1355 (|#1| |#2| |#1|)) (-15 -1355 (|#1| |#2|)) (-15 -3568 ((-167 |#1|) |#2|)) (-15 -1324 (|#1| |#1|)) (-15 -1392 ((-2 (|:| |start| |#2|) (|:| -2316 (-413 |#2|))) |#2|))) (-13 (-358) (-834)) (-1217 (-167 |#1|))) (T -179)) +((-1392 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-2 (|:| |start| *3) (|:| -2316 (-413 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-1324 (*1 *2 *2) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-3568 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-834))) (-4 *3 (-1217 *2)))) (-1355 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-1355 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1217 (-167 *3))))) (-2309 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2309 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-3274 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1217 (-167 *2))))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1217 (-167 *3))))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2270 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-3483 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-3483 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-834))) (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1217 (-167 *5))))) (-2390 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))) +(-10 -7 (-15 -2390 ((-631 (-167 |#1|)) |#2|)) (-15 -2390 ((-631 (-167 |#1|)) |#2| |#1|)) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2| (-112))) (-15 -3483 ((-631 (-2 (|:| -2316 (-631 |#2|)) (|:| -1841 |#1|))) |#2| |#2|)) (-15 -2270 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2270 ((-413 |#2|) |#2| |#1|)) (-15 -2270 ((-413 |#2|) |#2|)) (-15 -3154 (|#2| |#2|)) (-15 -3274 (|#1| |#2|)) (-15 -2309 ((-413 |#2|) |#2| |#1| (-112))) (-15 -2309 ((-413 |#2|) |#2| |#1|)) (-15 -2865 (|#2| |#2|)) (-15 -1355 (|#1| |#2| |#1|)) (-15 -1355 (|#1| |#2|)) (-15 -3568 ((-167 |#1|) |#2|)) (-15 -1324 (|#1| |#1|)) (-15 -1392 ((-2 (|:| |start| |#2|) (|:| -2316 (-413 |#2|))) |#2|))) +((-2586 (((-3 |#2| "failed") |#2|) 14)) (-4254 (((-758) |#2|) 16)) (-2274 ((|#2| |#2| |#2|) 18))) +(((-180 |#1| |#2|) (-10 -7 (-15 -2586 ((-3 |#2| "failed") |#2|)) (-15 -4254 ((-758) |#2|)) (-15 -2274 (|#2| |#2| |#2|))) (-1195) (-660 |#1|)) (T -180)) +((-2274 (*1 *2 *2 *2) (-12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) (-4 *2 (-660 *3)))) (-4254 (*1 *2 *3) (-12 (-4 *4 (-1195)) (-5 *2 (-758)) (-5 *1 (-180 *4 *3)) (-4 *3 (-660 *4)))) (-2586 (*1 *2 *2) (|partial| -12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) (-4 *2 (-660 *3))))) +(-10 -7 (-15 -2586 ((-3 |#2| "failed") |#2|)) (-15 -4254 ((-758) |#2|)) (-15 -2274 (|#2| |#2| |#2|))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1544 (((-1158) $) 10)) (-3075 (((-848) $) 17)) (-2793 (((-631 (-1163)) $) 12)) (-1658 (((-112) $ $) 15))) +(((-181) (-13 (-1082) (-10 -8 (-15 -1544 ((-1158) $)) (-15 -2793 ((-631 (-1163)) $))))) (T -181)) +((-1544 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-181)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-181))))) +(-13 (-1082) (-10 -8 (-15 -1544 ((-1158) $)) (-15 -2793 ((-631 (-1163)) $)))) +((-3062 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-8 (($) 7 T CONST)) (-3075 (((-848) $) 14)) (-9 (($) 6 T CONST)) (-1658 (((-112) $ $) 10))) +(((-182) (-13 (-1082) (-10 -8 (-15 -9 ($) -2397) (-15 -8 ($) -2397) (-15 -7 ($) -2397)))) (T -182)) +((-9 (*1 *1) (-5 *1 (-182))) (-8 (*1 *1) (-5 *1 (-182))) (-7 (*1 *1) (-5 *1 (-182)))) +(-13 (-1082) (-10 -8 (-15 -9 ($) -2397) (-15 -8 ($) -2397) (-15 -7 ($) -2397))) +((-3062 (((-112) $ $) NIL)) (-4309 (((-500) $) 8)) (-1613 (((-1140) $) NIL)) (-1466 (((-182) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14)) (-1937 (((-1102) $) NIL)) (-1658 (((-112) $ $) 11))) +(((-183) (-13 (-1082) (-10 -8 (-15 -4309 ((-500) $)) (-15 -1466 ((-182) $)) (-15 -1937 ((-1102) $))))) (T -183)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-183)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-183))))) +(-13 (-1082) (-10 -8 (-15 -4309 ((-500) $)) (-15 -1466 ((-182) $)) (-15 -1937 ((-1102) $)))) +((-3400 ((|#2| |#2|) 28)) (-1809 (((-112) |#2|) 19)) (-2293 (((-311 |#1|) |#2|) 12)) (-2302 (((-311 |#1|) |#2|) 14)) (-2232 ((|#2| |#2| (-1158)) 68) ((|#2| |#2|) 69)) (-1436 (((-167 (-311 |#1|)) |#2|) 10)) (-2110 ((|#2| |#2| (-1158)) 65) ((|#2| |#2|) 59))) +(((-184 |#1| |#2|) (-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -2293 ((-311 |#1|) |#2|)) (-15 -2302 ((-311 |#1|) |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -3400 (|#2| |#2|)) (-15 -1436 ((-167 (-311 |#1|)) |#2|))) (-13 (-546) (-836) (-1023 (-554))) (-13 (-27) (-1180) (-425 (-167 |#1|)))) (T -184)) +((-1436 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-3400 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-112)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2302 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4)))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3))))))) +(-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -2293 ((-311 |#1|) |#2|)) (-15 -2302 ((-311 |#1|) |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -3400 (|#2| |#2|)) (-15 -1436 ((-167 (-311 |#1|)) |#2|))) +((-1358 (((-1241 (-675 (-937 |#1|))) (-1241 (-675 |#1|))) 24)) (-3075 (((-1241 (-675 (-402 (-937 |#1|)))) (-1241 (-675 |#1|))) 33))) +(((-185 |#1|) (-10 -7 (-15 -1358 ((-1241 (-675 (-937 |#1|))) (-1241 (-675 |#1|)))) (-15 -3075 ((-1241 (-675 (-402 (-937 |#1|)))) (-1241 (-675 |#1|))))) (-170)) (T -185)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170)) (-5 *2 (-1241 (-675 (-402 (-937 *4))))) (-5 *1 (-185 *4)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170)) (-5 *2 (-1241 (-675 (-937 *4)))) (-5 *1 (-185 *4))))) +(-10 -7 (-15 -1358 ((-1241 (-675 (-937 |#1|))) (-1241 (-675 |#1|)))) (-15 -3075 ((-1241 (-675 (-402 (-937 |#1|)))) (-1241 (-675 |#1|))))) +((-3240 (((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554)))) 66)) (-4293 (((-1160 (-402 (-554))) (-631 (-554)) (-631 (-554))) 75)) (-2338 (((-1160 (-402 (-554))) (-554)) 40)) (-1781 (((-1160 (-402 (-554))) (-554)) 52)) (-2386 (((-402 (-554)) (-1160 (-402 (-554)))) 62)) (-3404 (((-1160 (-402 (-554))) (-554)) 32)) (-3794 (((-1160 (-402 (-554))) (-554)) 48)) (-2687 (((-1160 (-402 (-554))) (-554)) 46)) (-3558 (((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554)))) 60)) (-1300 (((-1160 (-402 (-554))) (-554)) 25)) (-3744 (((-402 (-554)) (-1160 (-402 (-554))) (-1160 (-402 (-554)))) 64)) (-3688 (((-1160 (-402 (-554))) (-554)) 30)) (-3555 (((-1160 (-402 (-554))) (-631 (-554))) 72))) +(((-186) (-10 -7 (-15 -1300 ((-1160 (-402 (-554))) (-554))) (-15 -2338 ((-1160 (-402 (-554))) (-554))) (-15 -3404 ((-1160 (-402 (-554))) (-554))) (-15 -3688 ((-1160 (-402 (-554))) (-554))) (-15 -2687 ((-1160 (-402 (-554))) (-554))) (-15 -3794 ((-1160 (-402 (-554))) (-554))) (-15 -1781 ((-1160 (-402 (-554))) (-554))) (-15 -3744 ((-402 (-554)) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3558 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -2386 ((-402 (-554)) (-1160 (-402 (-554))))) (-15 -3240 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3555 ((-1160 (-402 (-554))) (-631 (-554)))) (-15 -4293 ((-1160 (-402 (-554))) (-631 (-554)) (-631 (-554)))))) (T -186)) +((-4293 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554))) (-5 *1 (-186)))) (-3558 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)))) (-3744 (*1 *2 *3 *3) (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554))) (-5 *1 (-186)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-3794 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-2687 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-3404 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) (-1300 (*1 *2 *3) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))) +(-10 -7 (-15 -1300 ((-1160 (-402 (-554))) (-554))) (-15 -2338 ((-1160 (-402 (-554))) (-554))) (-15 -3404 ((-1160 (-402 (-554))) (-554))) (-15 -3688 ((-1160 (-402 (-554))) (-554))) (-15 -2687 ((-1160 (-402 (-554))) (-554))) (-15 -3794 ((-1160 (-402 (-554))) (-554))) (-15 -1781 ((-1160 (-402 (-554))) (-554))) (-15 -3744 ((-402 (-554)) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3558 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -2386 ((-402 (-554)) (-1160 (-402 (-554))))) (-15 -3240 ((-1160 (-402 (-554))) (-1160 (-402 (-554))) (-1160 (-402 (-554))))) (-15 -3555 ((-1160 (-402 (-554))) (-631 (-554)))) (-15 -4293 ((-1160 (-402 (-554))) (-631 (-554)) (-631 (-554))))) +((-2560 (((-413 (-1154 (-554))) (-554)) 28)) (-2609 (((-631 (-1154 (-554))) (-554)) 23)) (-3506 (((-1154 (-554)) (-554)) 21))) +(((-187) (-10 -7 (-15 -2609 ((-631 (-1154 (-554))) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2560 ((-413 (-1154 (-554))) (-554))))) (T -187)) +((-2560 (*1 *2 *3) (-12 (-5 *2 (-413 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554)))) (-3506 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-187)) (-5 *3 (-554)))) (-2609 (*1 *2 *3) (-12 (-5 *2 (-631 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554))))) +(-10 -7 (-15 -2609 ((-631 (-1154 (-554))) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2560 ((-413 (-1154 (-554))) (-554)))) +((-2980 (((-1138 (-221)) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 104)) (-2976 (((-631 (-1140)) (-1138 (-221))) NIL)) (-4071 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 80)) (-2089 (((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221)))) NIL)) (-1984 (((-631 (-1140)) (-631 (-221))) NIL)) (-4243 (((-221) (-1076 (-829 (-221)))) 24)) (-3653 (((-221) (-1076 (-829 (-221)))) 25)) (-2328 (((-374) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 97)) (-2740 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-2588 (((-1140) (-221)) NIL)) (-4262 (((-1140) (-631 (-1140))) 20)) (-4298 (((-1020) (-1158) (-1158) (-1020)) 13))) +(((-188) (-10 -7 (-15 -4071 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2740 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -2328 ((-374) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4262 ((-1140) (-631 (-1140)))) (-15 -4298 ((-1020) (-1158) (-1158) (-1020))))) (T -188)) +((-4298 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-188)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-188)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-188)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-188)))) (-2089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158)) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-188)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-188)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-188)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-188))))) +(-10 -7 (-15 -4071 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2740 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -2328 ((-374) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4262 ((-1140) (-631 (-1140)))) (-15 -4298 ((-1020) (-1158) (-1158) (-1020)))) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 55) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-189) (-774)) (T -189)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 60) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-190) (-774)) (T -190)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 69) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-191) (-774)) (T -191)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 56) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-192) (-774)) (T -192)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 67) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 38) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-193) (-774)) (T -193)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 73) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-194) (-774)) (T -194)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 80) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 44) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-195) (-774)) (T -195)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 70) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-196) (-774)) (T -196)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 65)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-197) (-774)) (T -197)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 63)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-198) (-774)) (T -198)) +NIL +(-774) +((-3062 (((-112) $ $) NIL)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 90) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 78) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-199) (-774)) (T -199)) +NIL +(-774) +((-2049 (((-3 (-2 (|:| -1482 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 85)) (-2241 (((-554) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-1346 (((-3 (-631 (-221)) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 73))) +(((-200) (-10 -7 (-15 -2049 ((-3 (-2 (|:| -1482 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1346 ((-3 (-631 (-221)) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2241 ((-554) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -200)) +((-2241 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-554)) (-5 *1 (-200)))) (-1346 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-200)))) (-2049 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -1482 (-114)) (|:| |w| (-221)))) (-5 *1 (-200))))) +(-10 -7 (-15 -2049 ((-3 (-2 (|:| -1482 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1346 ((-3 (-631 (-221)) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2241 ((-554) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-2462 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-2113 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 129)) (-2096 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-675 (-311 (-221)))) 88)) (-3399 (((-374) (-675 (-311 (-221)))) 112)) (-2449 (((-675 (-311 (-221))) (-1241 (-311 (-221))) (-631 (-1158))) 109)) (-1454 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 30)) (-2268 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 43)) (-2386 (((-675 (-311 (-221))) (-675 (-311 (-221))) (-631 (-1158)) (-1241 (-311 (-221)))) 101)) (-1755 (((-374) (-374) (-631 (-374))) 106) (((-374) (-374) (-374)) 104)) (-2500 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36))) +(((-201) (-10 -7 (-15 -1755 ((-374) (-374) (-374))) (-15 -1755 ((-374) (-374) (-631 (-374)))) (-15 -3399 ((-374) (-675 (-311 (-221))))) (-15 -2449 ((-675 (-311 (-221))) (-1241 (-311 (-221))) (-631 (-1158)))) (-15 -2386 ((-675 (-311 (-221))) (-675 (-311 (-221))) (-631 (-1158)) (-1241 (-311 (-221))))) (-15 -2096 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-675 (-311 (-221))))) (-15 -2113 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2462 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2268 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2500 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1454 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -201)) +((-1454 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-675 (-311 (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-2386 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-675 (-311 (-221)))) (-5 *3 (-631 (-1158))) (-5 *4 (-1241 (-311 (-221)))) (-5 *1 (-201)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158))) (-5 *2 (-675 (-311 (-221)))) (-5 *1 (-201)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-675 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-1755 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-374))) (-5 *2 (-374)) (-5 *1 (-201)))) (-1755 (*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201))))) +(-10 -7 (-15 -1755 ((-374) (-374) (-374))) (-15 -1755 ((-374) (-374) (-631 (-374)))) (-15 -3399 ((-374) (-675 (-311 (-221))))) (-15 -2449 ((-675 (-311 (-221))) (-1241 (-311 (-221))) (-631 (-1158)))) (-15 -2386 ((-675 (-311 (-221))) (-675 (-311 (-221))) (-631 (-1158)) (-1241 (-311 (-221))))) (-15 -2096 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-675 (-311 (-221))))) (-15 -2113 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2462 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2268 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2500 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1454 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 64)) (-1658 (((-112) $ $) NIL))) +(((-202) (-787)) (T -202)) +NIL +(-787) +((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 62)) (-1658 (((-112) $ $) NIL))) +(((-203) (-787)) (T -203)) +NIL +(-787) +((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 66)) (-1658 (((-112) $ $) NIL))) +(((-204) (-787)) (T -204)) +NIL +(-787) +((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 46)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 75)) (-1658 (((-112) $ $) NIL))) +(((-205) (-787)) (T -205)) +NIL +(-787) +((-1654 (((-631 (-1158)) (-1158) (-758)) 23)) (-4313 (((-311 (-221)) (-311 (-221))) 31)) (-2440 (((-112) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 73)) (-4214 (((-112) (-221) (-221) (-631 (-311 (-221)))) 44))) +(((-206) (-10 -7 (-15 -1654 ((-631 (-1158)) (-1158) (-758))) (-15 -4313 ((-311 (-221)) (-311 (-221)))) (-15 -4214 ((-112) (-221) (-221) (-631 (-311 (-221))))) (-15 -2440 ((-112) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))))) (T -206)) +((-2440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *2 (-112)) (-5 *1 (-206)))) (-4214 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-631 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-206)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-631 (-1158))) (-5 *1 (-206)) (-5 *3 (-1158))))) +(-10 -7 (-15 -1654 ((-631 (-1158)) (-1158) (-758))) (-15 -4313 ((-311 (-221)) (-311 (-221)))) (-15 -4214 ((-112) (-221) (-221) (-631 (-311 (-221))))) (-15 -2440 ((-112) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))))) +((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 26)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1275 (((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 57)) (-1658 (((-112) $ $) NIL))) +(((-207) (-880)) (T -207)) +NIL +(-880) +((-3062 (((-112) $ $) NIL)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1275 (((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) NIL)) (-1658 (((-112) $ $) NIL))) +(((-208) (-880)) (T -208)) +NIL +(-880) +((-3062 (((-112) $ $) NIL)) (-2807 ((|#2| $ (-758) |#2|) 11)) (-2796 ((|#2| $ (-758)) 10)) (-3180 (($) 8)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18)) (-1658 (((-112) $ $) 13))) +(((-209 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -2796 (|#2| $ (-758))) (-15 -2807 (|#2| $ (-758) |#2|)))) (-906) (-1082)) (T -209)) +((-3180 (*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1082)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *2 (-1082)) (-5 *1 (-209 *4 *2)) (-14 *4 (-906)))) (-2807 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-209 *4 *2)) (-14 *4 (-906)) (-4 *2 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -3180 ($)) (-15 -2796 (|#2| $ (-758))) (-15 -2807 (|#2| $ (-758) |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2941 (((-1246) $) 36) (((-1246) $ (-906) (-906)) 38)) (-2064 (($ $ (-974)) 19) (((-241 (-1140)) $ (-1158)) 15)) (-2524 (((-1246) $) 34)) (-3075 (((-848) $) 31) (($ (-631 |#1|)) 8)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $ $) 27)) (-1735 (($ $ $) 22))) +(((-210 |#1|) (-13 (-1082) (-604 (-631 |#1|)) (-10 -8 (-15 -2064 ($ $ (-974))) (-15 -2064 ((-241 (-1140)) $ (-1158))) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -2941 ((-1246) $ (-906) (-906))))) (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))) (T -210)) +((-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-974)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-241 (-1140))) (-5 *1 (-210 *4)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ *3)) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-1735 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-1744 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $))))))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) (-15 -2941 (*2 $))))))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) (-15 -2941 (*2 $))))))) (-2941 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-210 *4)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) (-15 -2941 (*2 $)))))))) +(-13 (-1082) (-604 (-631 |#1|)) (-10 -8 (-15 -2064 ($ $ (-974))) (-15 -2064 ((-241 (-1140)) $ (-1158))) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -2941 ((-1246) $ (-906) (-906))))) +((-3004 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3004 (|#2| |#4| (-1 |#2| |#2|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -211)) +((-3004 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1217 (-402 *2))) (-4 *2 (-1217 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6))))) +(-10 -7 (-15 -3004 (|#2| |#4| (-1 |#2| |#2|)))) +((-1360 ((|#2| |#2| (-758) |#2|) 42)) (-1874 ((|#2| |#2| (-758) |#2|) 38)) (-3539 (((-631 |#2|) (-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|)))) 57)) (-2346 (((-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))) |#2|) 53)) (-1956 (((-112) |#2|) 50)) (-4091 (((-413 |#2|) |#2|) 77)) (-2270 (((-413 |#2|) |#2|) 76)) (-4028 ((|#2| |#2| (-758) |#2|) 36)) (-3213 (((-2 (|:| |cont| |#1|) (|:| -2316 (-631 (-2 (|:| |irr| |#2|) (|:| -4218 (-554)))))) |#2| (-112)) 69))) +(((-212 |#1| |#2|) (-10 -7 (-15 -2270 ((-413 |#2|) |#2|)) (-15 -4091 ((-413 |#2|) |#2|)) (-15 -3213 ((-2 (|:| |cont| |#1|) (|:| -2316 (-631 (-2 (|:| |irr| |#2|) (|:| -4218 (-554)))))) |#2| (-112))) (-15 -2346 ((-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))) |#2|)) (-15 -3539 ((-631 |#2|) (-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))))) (-15 -4028 (|#2| |#2| (-758) |#2|)) (-15 -1874 (|#2| |#2| (-758) |#2|)) (-15 -1360 (|#2| |#2| (-758) |#2|)) (-15 -1956 ((-112) |#2|))) (-344) (-1217 |#1|)) (T -212)) +((-1956 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))) (-1360 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1217 *4)))) (-1874 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1217 *4)))) (-4028 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1217 *4)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *5)))) (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *2 (-631 *5)) (-5 *1 (-212 *4 *5)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *3)))) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-212 *5 *3)) (-4 *3 (-1217 *5)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -2270 ((-413 |#2|) |#2|)) (-15 -4091 ((-413 |#2|) |#2|)) (-15 -3213 ((-2 (|:| |cont| |#1|) (|:| -2316 (-631 (-2 (|:| |irr| |#2|) (|:| -4218 (-554)))))) |#2| (-112))) (-15 -2346 ((-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))) |#2|)) (-15 -3539 ((-631 |#2|) (-631 (-2 (|:| |deg| (-758)) (|:| -2436 |#2|))))) (-15 -4028 (|#2| |#2| (-758) |#2|)) (-15 -1874 (|#2| |#2| (-758) |#2|)) (-15 -1360 (|#2| |#2| (-758) |#2|)) (-15 -1956 ((-112) |#2|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-554) $) NIL (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) NIL)) (-4339 (((-554) $) NIL (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) NIL)) (-1953 (($ (-402 (-554))) 9)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 8) (($ (-554)) NIL) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL) (((-989 10) $) 10)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-554) $) NIL (|has| (-554) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1752 (($ $ $) NIL) (($ (-554) (-554)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL))) +(((-213) (-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 10)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1953 ($ (-402 (-554))))))) (T -213)) +((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213))))) +(-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 10)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -1953 ($ (-402 (-554)))))) +((-3062 (((-112) $ $) NIL)) (-3885 (((-1100) $) 13)) (-1613 (((-1140) $) NIL)) (-4133 (((-477) $) 10)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 25) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 15)) (-1658 (((-112) $ $) NIL))) +(((-214) (-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -3885 ((-1100) $)) (-15 -4319 ((-1117) $))))) (T -214)) +((-4133 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-214)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-214))))) +(-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -3885 ((-1100) $)) (-15 -4319 ((-1117) $)))) +((-2279 (((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)) (-1140)) 28) (((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|))) 24)) (-1882 (((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1158) (-829 |#2|) (-829 |#2|) (-112)) 17))) +(((-215 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)))) (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)) (-1140))) (-15 -1882 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1158) (-829 |#2|) (-829 |#2|) (-112)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-29 |#1|))) (T -215)) +((-1882 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1158)) (-5 *6 (-112)) (-4 *7 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-4 *3 (-13 (-1180) (-944) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *7 *3)) (-5 *5 (-829 *3)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-829 *3))) (-5 *5 (-1140)) (-4 *3 (-13 (-1180) (-944) (-29 *6))) (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6 *3)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-829 *3))) (-4 *3 (-13 (-1180) (-944) (-29 *5))) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5 *3))))) +(-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)))) (-15 -2279 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-829 |#2|)) (-1140))) (-15 -1882 ((-3 (|:| |f1| (-829 |#2|)) (|:| |f2| (-631 (-829 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1158) (-829 |#2|) (-829 |#2|) (-112)))) +((-2279 (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))) (-1140)) 46) (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|))))) 43) (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))) (-1140)) 47) (((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|)))) 20))) +(((-216 |#1|) (-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))) (-1140))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))) (-1140)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (T -216)) +((-2279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-829 (-402 (-937 *6))))) (-5 *5 (-1140)) (-5 *3 (-402 (-937 *6))) (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-829 (-402 (-937 *5))))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1074 (-829 (-311 *6)))) (-5 *5 (-1140)) (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1074 (-829 (-311 *5)))) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5))))) +(-10 -7 (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-311 |#1|))) (-1140))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))))) (-15 -2279 ((-3 (|:| |f1| (-829 (-311 |#1|))) (|:| |f2| (-631 (-829 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-937 |#1|)) (-1074 (-829 (-402 (-937 |#1|)))) (-1140)))) +((-3676 (((-2 (|:| -2598 (-1154 |#1|)) (|:| |deg| (-906))) (-1154 |#1|)) 21)) (-1845 (((-631 (-311 |#2|)) (-311 |#2|) (-906)) 42))) +(((-217 |#1| |#2|) (-10 -7 (-15 -3676 ((-2 (|:| -2598 (-1154 |#1|)) (|:| |deg| (-906))) (-1154 |#1|))) (-15 -1845 ((-631 (-311 |#2|)) (-311 |#2|) (-906)))) (-1034) (-13 (-546) (-836))) (T -217)) +((-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *6 (-13 (-546) (-836))) (-5 *2 (-631 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6)) (-4 *5 (-1034)))) (-3676 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-2 (|:| -2598 (-1154 *4)) (|:| |deg| (-906)))) (-5 *1 (-217 *4 *5)) (-5 *3 (-1154 *4)) (-4 *5 (-13 (-546) (-836)))))) +(-10 -7 (-15 -3676 ((-2 (|:| -2598 (-1154 |#1|)) (|:| |deg| (-906))) (-1154 |#1|))) (-15 -1845 ((-631 (-311 |#2|)) (-311 |#2|) (-906)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3285 ((|#1| $) NIL)) (-2292 ((|#1| $) 25)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-4289 (($ $) NIL)) (-3920 (($ $) 31)) (-1790 ((|#1| |#1| $) NIL)) (-3956 ((|#1| $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2577 (((-758) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) NIL)) (-1692 ((|#1| |#1| $) 28)) (-1335 ((|#1| |#1| $) 30)) (-2045 (($ |#1| $) NIL)) (-3323 (((-758) $) 27)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2312 ((|#1| $) NIL)) (-3084 ((|#1| $) 26)) (-3161 ((|#1| $) 24)) (-2152 ((|#1| $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-2515 ((|#1| |#1| $) NIL)) (-3543 (((-112) $) 9)) (-4240 (($) NIL)) (-3817 ((|#1| $) NIL)) (-1684 (($) NIL) (($ (-631 |#1|)) 16)) (-2763 (((-758) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-3232 ((|#1| $) 13)) (-1591 (($ (-631 |#1|)) NIL)) (-1325 ((|#1| $) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-218 |#1|) (-13 (-249 |#1|) (-10 -8 (-15 -1684 ($ (-631 |#1|))))) (-1082)) (T -218)) +((-1684 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-218 *3))))) +(-13 (-249 |#1|) (-10 -8 (-15 -1684 ($ (-631 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-4102 (($ (-311 |#1|)) 23)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3051 (((-112) $) NIL)) (-2784 (((-3 (-311 |#1|) "failed") $) NIL)) (-1668 (((-311 |#1|) $) NIL)) (-2550 (($ $) 31)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-2879 (($ (-1 (-311 |#1|) (-311 |#1|)) $) NIL)) (-2530 (((-311 |#1|) $) NIL)) (-1500 (($ $) 30)) (-1613 (((-1140) $) NIL)) (-2177 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($ (-758)) NIL)) (-3190 (($ $) 32)) (-3308 (((-554) $) NIL)) (-3075 (((-848) $) 57) (($ (-554)) NIL) (($ (-311 |#1|)) NIL)) (-1779 (((-311 |#1|) $ $) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) 25 T CONST)) (-2014 (($) 50 T CONST)) (-1658 (((-112) $ $) 28)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 19)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 24) (($ (-311 |#1|) $) 18))) +(((-219 |#1| |#2|) (-13 (-608 (-311 |#1|)) (-1023 (-311 |#1|)) (-10 -8 (-15 -2530 ((-311 |#1|) $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 ((-311 |#1|) $ $)) (-15 -4137 ($ (-758))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2879 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4102 ($ (-311 |#1|))) (-15 -3190 ($ $)))) (-13 (-1034) (-836)) (-631 (-1158))) (T -219)) +((-2530 (*1 *2 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) (-14 *3 (-631 (-1158))))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) (-14 *3 (-631 (-1158))))) (-1779 (*1 *2 *1 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1034) (-836))) (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158))))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1034) (-836))) (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158))))) (-3190 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) (-14 *3 (-631 (-1158)))))) +(-13 (-608 (-311 |#1|)) (-1023 (-311 |#1|)) (-10 -8 (-15 -2530 ((-311 |#1|) $)) (-15 -1500 ($ $)) (-15 -2550 ($ $)) (-15 -1779 ((-311 |#1|) $ $)) (-15 -4137 ($ (-758))) (-15 -2177 ((-112) $)) (-15 -3051 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2879 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4102 ($ (-311 |#1|))) (-15 -3190 ($ $)))) +((-2728 (((-112) (-1140)) 22)) (-3442 (((-3 (-829 |#2|) "failed") (-600 |#2|) |#2| (-829 |#2|) (-829 |#2|) (-112)) 32)) (-3727 (((-3 (-112) "failed") (-1154 |#2|) (-829 |#2|) (-829 |#2|) (-112)) 73) (((-3 (-112) "failed") (-937 |#1|) (-1158) (-829 |#2|) (-829 |#2|) (-112)) 74))) +(((-220 |#1| |#2|) (-10 -7 (-15 -2728 ((-112) (-1140))) (-15 -3442 ((-3 (-829 |#2|) "failed") (-600 |#2|) |#2| (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-937 |#1|) (-1158) (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-1154 |#2|) (-829 |#2|) (-829 |#2|) (-112)))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-29 |#1|))) (T -220)) +((-3727 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1154 *6)) (-5 *4 (-829 *6)) (-4 *6 (-13 (-1180) (-29 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-220 *5 *6)))) (-3727 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-937 *6)) (-5 *4 (-1158)) (-5 *5 (-829 *7)) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *7 (-13 (-1180) (-29 *6))) (-5 *1 (-220 *6 *7)))) (-3442 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-829 *4)) (-5 *3 (-600 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1180) (-29 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-220 *6 *4)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1180) (-29 *4)))))) +(-10 -7 (-15 -2728 ((-112) (-1140))) (-15 -3442 ((-3 (-829 |#2|) "failed") (-600 |#2|) |#2| (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-937 |#1|) (-1158) (-829 |#2|) (-829 |#2|) (-112))) (-15 -3727 ((-3 (-112) "failed") (-1154 |#2|) (-829 |#2|) (-829 |#2|) (-112)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 87)) (-3831 (((-554) $) 98)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1557 (($ $) NIL)) (-3023 (($ $) 75)) (-4200 (($ $) 63)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) 54)) (-2286 (((-112) $ $) NIL)) (-3003 (($ $) 73)) (-4177 (($ $) 61)) (-4219 (((-554) $) 115)) (-3046 (($ $) 78)) (-2916 (($ $) 65)) (-4087 (($) NIL T CONST)) (-2087 (($ $) NIL)) (-2784 (((-3 (-554) "failed") $) 114) (((-3 (-402 (-554)) "failed") $) 111)) (-1668 (((-554) $) 112) (((-402 (-554)) $) 109)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 91)) (-1824 (((-402 (-554)) $ (-758)) 107) (((-402 (-554)) $ (-758) (-758)) 106)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2276 (((-906)) 27) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-2745 (((-112) $) NIL)) (-2844 (($) 37)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL)) (-2342 (((-554) $) 33)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-3274 (($ $) NIL)) (-4304 (((-112) $) 86)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) 51) (($) 32 (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-2706 (($ $ $) 50) (($) 31 (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-1837 (((-554) $) 25)) (-3187 (($ $) 28)) (-4062 (($ $) 55)) (-2395 (($ $) 60)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3845 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-2768 (((-1102) $) 89)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL)) (-4339 (($ $) NIL)) (-3302 (($ (-554) (-554)) NIL) (($ (-554) (-554) (-906)) 99)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1407 (((-554) $) 26)) (-2311 (($) 36)) (-1333 (($ $) 59)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-906)) NIL) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-1553 (($ $ (-758)) NIL) (($ $) 92)) (-4353 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-3057 (($ $) 76)) (-2926 (($ $) 66)) (-3034 (($ $) 77)) (-4213 (($ $) 64)) (-3014 (($ $) 74)) (-4188 (($ $) 62)) (-2927 (((-374) $) 103) (((-221) $) 100) (((-877 (-374)) $) NIL) (((-530) $) 43)) (-3075 (((-848) $) 40) (($ (-554)) 58) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-554)) 58) (($ (-402 (-554))) NIL)) (-2261 (((-758)) NIL)) (-2755 (($ $) NIL)) (-3219 (((-906)) 30) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-3462 (((-906)) 23)) (-3096 (($ $) 81)) (-2959 (($ $) 69) (($ $ $) 108)) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) 79)) (-2938 (($ $) 67)) (-3120 (($ $) 84)) (-2981 (($ $) 72)) (-2908 (($ $) 82)) (-2991 (($ $) 70)) (-3108 (($ $) 83)) (-2969 (($ $) 71)) (-3083 (($ $) 80)) (-2948 (($ $) 68)) (-1700 (($ $) 116)) (-2004 (($) 34 T CONST)) (-2014 (($) 35 T CONST)) (-4048 (((-1140) $) 17) (((-1140) $ (-112)) 19) (((-1246) (-809) $) 20) (((-1246) (-809) $ (-112)) 21)) (-3628 (($ $) 95)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-4280 (($ $ $) 97)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 52)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 44)) (-1752 (($ $ $) 85) (($ $ (-554)) 53)) (-1744 (($ $) 45) (($ $ $) 47)) (-1735 (($ $ $) 46)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 56) (($ $ (-402 (-554))) 127) (($ $ $) 57)) (* (($ (-906) $) 29) (($ (-758) $) NIL) (($ (-554) $) 49) (($ $ $) 48) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-221) (-13 (-399) (-229) (-815) (-1180) (-602 (-530)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -2311 ($)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -2959 ($ $ $)) (-15 -3628 ($ $)) (-15 -4280 ($ $ $)) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758)))))) (T -221)) +((** (*1 *1 *1 *1) (-5 *1 (-221))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-221)))) (-2311 (*1 *1) (-5 *1 (-221))) (-3187 (*1 *1 *1) (-5 *1 (-221))) (-4062 (*1 *1 *1) (-5 *1 (-221))) (-2959 (*1 *1 *1 *1) (-5 *1 (-221))) (-3628 (*1 *1 *1) (-5 *1 (-221))) (-4280 (*1 *1 *1 *1) (-5 *1 (-221))) (-1824 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221)))) (-1824 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221))))) +(-13 (-399) (-229) (-815) (-1180) (-602 (-530)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -2311 ($)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -2959 ($ $ $)) (-15 -3628 ($ $)) (-15 -4280 ($ $ $)) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758))))) +((-1738 (((-167 (-221)) (-758) (-167 (-221))) 11) (((-221) (-758) (-221)) 12)) (-3024 (((-167 (-221)) (-167 (-221))) 13) (((-221) (-221)) 14)) (-2464 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 19) (((-221) (-221) (-221)) 22)) (-2696 (((-167 (-221)) (-167 (-221))) 25) (((-221) (-221)) 24)) (-1943 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 43) (((-221) (-221) (-221)) 35)) (-1952 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 48) (((-221) (-221) (-221)) 45)) (-3586 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 15) (((-221) (-221) (-221)) 16)) (-3746 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 17) (((-221) (-221) (-221)) 18)) (-2973 (((-167 (-221)) (-167 (-221))) 60) (((-221) (-221)) 59)) (-1959 (((-221) (-221)) 54) (((-167 (-221)) (-167 (-221))) 58)) (-3628 (((-167 (-221)) (-167 (-221))) 8) (((-221) (-221)) 9)) (-4280 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 30) (((-221) (-221) (-221)) 26))) +(((-222) (-10 -7 (-15 -3628 ((-221) (-221))) (-15 -3628 ((-167 (-221)) (-167 (-221)))) (-15 -4280 ((-221) (-221) (-221))) (-15 -4280 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3024 ((-221) (-221))) (-15 -3024 ((-167 (-221)) (-167 (-221)))) (-15 -2696 ((-221) (-221))) (-15 -2696 ((-167 (-221)) (-167 (-221)))) (-15 -1738 ((-221) (-758) (-221))) (-15 -1738 ((-167 (-221)) (-758) (-167 (-221)))) (-15 -3586 ((-221) (-221) (-221))) (-15 -3586 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1943 ((-221) (-221) (-221))) (-15 -1943 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3746 ((-221) (-221) (-221))) (-15 -3746 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1952 ((-221) (-221) (-221))) (-15 -1952 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1959 ((-167 (-221)) (-167 (-221)))) (-15 -1959 ((-221) (-221))) (-15 -2973 ((-221) (-221))) (-15 -2973 ((-167 (-221)) (-167 (-221)))) (-15 -2464 ((-221) (-221) (-221))) (-15 -2464 ((-167 (-221)) (-167 (-221)) (-167 (-221)))))) (T -222)) +((-2464 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-2464 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-221))) (-5 *3 (-758)) (-5 *1 (-222)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-758)) (-5 *1 (-222)))) (-2696 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-2696 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-4280 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-4280 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))) +(-10 -7 (-15 -3628 ((-221) (-221))) (-15 -3628 ((-167 (-221)) (-167 (-221)))) (-15 -4280 ((-221) (-221) (-221))) (-15 -4280 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3024 ((-221) (-221))) (-15 -3024 ((-167 (-221)) (-167 (-221)))) (-15 -2696 ((-221) (-221))) (-15 -2696 ((-167 (-221)) (-167 (-221)))) (-15 -1738 ((-221) (-758) (-221))) (-15 -1738 ((-167 (-221)) (-758) (-167 (-221)))) (-15 -3586 ((-221) (-221) (-221))) (-15 -3586 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1943 ((-221) (-221) (-221))) (-15 -1943 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -3746 ((-221) (-221) (-221))) (-15 -3746 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1952 ((-221) (-221) (-221))) (-15 -1952 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1959 ((-167 (-221)) (-167 (-221)))) (-15 -1959 ((-221) (-221))) (-15 -2973 ((-221) (-221))) (-15 -2973 ((-167 (-221)) (-167 (-221)))) (-15 -2464 ((-221) (-221) (-221))) (-15 -2464 ((-167 (-221)) (-167 (-221)) (-167 (-221))))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) NIL)) (-1846 (($ $ $) NIL)) (-2757 (($ (-1241 |#1|)) NIL) (($ $) NIL)) (-2183 (($ |#1| |#1| |#1|) 32)) (-1350 (((-112) $) NIL)) (-2416 (($ $ (-554) (-554)) NIL)) (-3705 (($ $ (-554) (-554)) NIL)) (-1458 (($ $ (-554) (-554) (-554) (-554)) NIL)) (-3657 (($ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4345 (($ $ (-554) (-554) $) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) NIL)) (-2557 (($ $ (-554) (-1241 |#1|)) NIL)) (-1464 (($ $ (-554) (-1241 |#1|)) NIL)) (-1585 (($ |#1| |#1| |#1|) 31)) (-1475 (($ (-758) |#1|) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) NIL (|has| |#1| (-302)))) (-3519 (((-1241 |#1|) $ (-554)) NIL)) (-1656 (($ |#1|) 30)) (-2078 (($ |#1|) 29)) (-3457 (($ |#1|) 28)) (-4186 (((-758) $) NIL (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4332 (((-758) $) NIL (|has| |#1| (-546)))) (-2412 (((-631 (-1241 |#1|)) $) NIL (|has| |#1| (-546)))) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#1| $) NIL (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#1|))) 11)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1679 (((-631 (-631 |#1|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-2554 (($) 12)) (-4041 (($ $ $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554))) NIL)) (-3198 (($ (-631 |#1|)) NIL) (($ (-631 $)) NIL)) (-2361 (((-112) $) NIL)) (-2870 ((|#1| $) NIL (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-1241 |#1|) $ (-554)) NIL)) (-3075 (($ (-1241 |#1|)) NIL) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-554) $) NIL) (((-1241 |#1|) $ (-1241 |#1|)) 15) (((-1241 |#1|) (-1241 |#1|) $) NIL) (((-928 |#1|) $ (-928 |#1|)) 20)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-223 |#1|) (-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 * ((-928 |#1|) $ (-928 |#1|))) (-15 -2554 ($)) (-15 -3457 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -1656 ($ |#1|)) (-15 -1585 ($ |#1| |#1| |#1|)) (-15 -2183 ($ |#1| |#1| |#1|)))) (-13 (-358) (-1180))) (T -223)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180))) (-5 *1 (-223 *3)))) (-2554 (*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-3457 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-2078 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-1656 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-1585 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) (-2183 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))) +(-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 * ((-928 |#1|) $ (-928 |#1|))) (-15 -2554 ($)) (-15 -3457 ($ |#1|)) (-15 -2078 ($ |#1|)) (-15 -1656 ($ |#1|)) (-15 -1585 ($ |#1| |#1| |#1|)) (-15 -2183 ($ |#1| |#1| |#1|)))) +((-2220 (($ (-1 (-112) |#2|) $) 16)) (-1884 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-4310 (($) NIL) (($ (-631 |#2|)) 11)) (-1658 (((-112) $ $) 23))) +(((-224 |#1| |#2|) (-10 -8 (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-225 |#2|) (-1082)) (T -224)) +NIL +(-10 -8 (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-225 |#1|) (-138) (-1082)) (T -225)) +NIL +(-13 (-231 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-1553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) 11) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) 19) (($ $ (-758)) NIL) (($ $) 16)) (-1787 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-758)) 14) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL))) +(((-226 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1158))) (-15 -1787 (|#1| |#1| (-631 (-1158)))) (-15 -1787 (|#1| |#1| (-1158) (-758))) (-15 -1787 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1034)) (T -226)) +NIL +(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1158))) (-15 -1787 (|#1| |#1| (-631 (-1158)))) (-15 -1787 (|#1| |#1| (-1158) (-758))) (-15 -1787 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1787 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-758)) 51) (($ $ (-631 (-1158)) (-631 (-758))) 44 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 43 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 42 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 41 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 39 (|has| |#1| (-229))) (($ $) 37 (|has| |#1| (-229)))) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-758)) 49) (($ $ (-631 (-1158)) (-631 (-758))) 48 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 47 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 46 (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 45 (|has| |#1| (-885 (-1158)))) (($ $ (-758)) 40 (|has| |#1| (-229))) (($ $) 38 (|has| |#1| (-229)))) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-227 |#1|) (-138) (-1034)) (T -227)) +((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4)) (-4 *4 (-1034)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034)))) (-1787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4)) (-4 *4 (-1034))))) +(-13 (-1034) (-10 -8 (-15 -1553 ($ $ (-1 |t#1| |t#1|))) (-15 -1553 ($ $ (-1 |t#1| |t#1|) (-758))) (-15 -1787 ($ $ (-1 |t#1| |t#1|))) (-15 -1787 ($ $ (-1 |t#1| |t#1|) (-758))) (IF (|has| |t#1| (-229)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-229) |has| |#1| (-229)) ((-634 $) . T) ((-713) . T) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-1553 (($ $) NIL) (($ $ (-758)) 10)) (-1787 (($ $) 8) (($ $ (-758)) 12))) +(((-228 |#1|) (-10 -8 (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1|))) (-229)) (T -228)) +NIL +(-10 -8 (-15 -1787 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1787 (|#1| |#1|)) (-15 -1553 (|#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $) 38) (($ $ (-758)) 36)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 37) (($ $ (-758)) 35)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-229) (-138)) (T -229)) +((-1553 (*1 *1 *1) (-4 *1 (-229))) (-1787 (*1 *1 *1) (-4 *1 (-229))) (-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758)))) (-1787 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758))))) +(-13 (-1034) (-10 -8 (-15 -1553 ($ $)) (-15 -1787 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -1787 ($ $ (-758))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-4310 (($) 12) (($ (-631 |#2|)) NIL)) (-1521 (($ $) 14)) (-3089 (($ (-631 |#2|)) 10)) (-3075 (((-848) $) 21))) +(((-230 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1521 (|#1| |#1|))) (-231 |#2|) (-1082)) (T -230)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -4310 (|#1| (-631 |#2|))) (-15 -4310 (|#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -1521 (|#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-231 |#1|) (-138) (-1082)) (T -231)) +((-4310 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1082)))) (-4310 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-231 *3)))) (-1884 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-231 *2)) (-4 *2 (-1082)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3)) (-4 *3 (-1082)))) (-2220 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3)) (-4 *3 (-1082))))) +(-13 (-107 |t#1|) (-149 |t#1|) (-10 -8 (-15 -4310 ($)) (-15 -4310 ($ (-631 |t#1|))) (IF (|has| $ (-6 -4373)) (PROGN (-15 -1884 ($ |t#1| $)) (-15 -1884 ($ (-1 (-112) |t#1|) $)) (-15 -2220 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-2984 (((-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758))))) (-289 (-937 (-554)))) 27))) +(((-232) (-10 -7 (-15 -2984 ((-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758))))) (-289 (-937 (-554))))))) (T -232)) +((-2984 (*1 *2 *3) (-12 (-5 *3 (-289 (-937 (-554)))) (-5 *2 (-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758)))))) (-5 *1 (-232))))) +(-10 -7 (-15 -2984 ((-2 (|:| |varOrder| (-631 (-1158))) (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) (|:| |hom| (-631 (-1241 (-758))))) (-289 (-937 (-554)))))) +((-1508 (((-758)) 51)) (-3699 (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) 49) (((-675 |#3|) (-675 $)) 41) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-3330 (((-133)) 57)) (-1553 (($ $ (-1 |#3| |#3|) (-758)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-3075 (((-1241 |#3|) $) NIL) (($ |#3|) NIL) (((-848) $) NIL) (($ (-554)) 12) (($ (-402 (-554))) NIL)) (-2261 (((-758)) 15)) (-1752 (($ $ |#3|) 54))) +(((-233 |#1| |#2| |#3|) (-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)) (-15 -2261 ((-758))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -1508 ((-758))) (-15 -1752 (|#1| |#1| |#3|)) (-15 -3330 ((-133))) (-15 -3075 ((-1241 |#3|) |#1|))) (-234 |#2| |#3|) (-758) (-1195)) (T -233)) +((-3330 (*1 *2) (-12 (-14 *4 (-758)) (-4 *5 (-1195)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-1508 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-2261 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))) +(-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|)) (-15 -2261 ((-758))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -1508 ((-758))) (-15 -1752 (|#1| |#1| |#3|)) (-15 -3330 ((-133))) (-15 -3075 ((-1241 |#3|) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#2| (-1082)))) (-1695 (((-112) $) 72 (|has| |#2| (-130)))) (-2327 (($ (-906)) 125 (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-1349 (($ $ $) 121 (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) 8)) (-1508 (((-758)) 107 (|has| |#2| (-363)))) (-4219 (((-554) $) 119 (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) 52 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-2784 (((-3 (-554) "failed") $) 67 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) 64 (-3726 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1082)))) (-1668 (((-554) $) 66 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) 63 (-3726 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) 62 (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) 106 (-3726 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 105 (-3726 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 104 (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) 103 (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) 79 (|has| |#2| (-713)))) (-3353 (($) 110 (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) 51)) (-2745 (((-112) $) 117 (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) 30 (|has| $ (-6 -4373)))) (-3248 (((-112) $) 81 (|has| |#2| (-713)))) (-4304 (((-112) $) 118 (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 116 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-2379 (((-631 |#2|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 115 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-2849 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) 35)) (-3830 (((-906) $) 109 (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2717 (($ (-906)) 108 (|has| |#2| (-363)))) (-2768 (((-1102) $) 21 (|has| |#2| (-1082)))) (-1539 ((|#2| $) 42 (|has| (-554) (-836)))) (-2441 (($ $ |#2|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ (-554) |#2|) 50) ((|#2| $ (-554)) 49)) (-3748 ((|#2| $ $) 124 (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) 126)) (-3330 (((-133)) 123 (|has| |#2| (-358)))) (-1553 (($ $) 98 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) 96 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) 94 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) 93 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) 92 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) 91 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) 84 (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4373))) (((-758) |#2| $) 28 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-1241 |#2|) $) 127) (($ (-554)) 68 (-3994 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) 65 (-3726 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) 60 (|has| |#2| (-1082))) (((-848) $) 18 (|has| |#2| (-601 (-848))))) (-2261 (((-758)) 102 (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4373)))) (-1700 (($ $) 120 (|has| |#2| (-834)))) (-2004 (($) 71 (|has| |#2| (-130)) CONST)) (-2014 (($) 82 (|has| |#2| (-713)) CONST)) (-1787 (($ $) 97 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) 95 (-3726 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) 90 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) 89 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) 88 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) 87 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) 86 (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1034)))) (-1708 (((-112) $ $) 113 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1686 (((-112) $ $) 112 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1658 (((-112) $ $) 20 (|has| |#2| (-1082)))) (-1697 (((-112) $ $) 114 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1676 (((-112) $ $) 111 (-3994 (|has| |#2| (-834)) (|has| |#2| (-780))))) (-1752 (($ $ |#2|) 122 (|has| |#2| (-358)))) (-1744 (($ $ $) 100 (|has| |#2| (-1034))) (($ $) 99 (|has| |#2| (-1034)))) (-1735 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-758)) 80 (|has| |#2| (-713))) (($ $ (-906)) 77 (|has| |#2| (-713)))) (* (($ (-554) $) 101 (|has| |#2| (-1034))) (($ $ $) 78 (|has| |#2| (-713))) (($ $ |#2|) 76 (|has| |#2| (-713))) (($ |#2| $) 75 (|has| |#2| (-713))) (($ (-758) $) 73 (|has| |#2| (-130))) (($ (-906) $) 70 (|has| |#2| (-25)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-234 |#1| |#2|) (-138) (-758) (-1195)) (T -234)) +((-2313 (*1 *1 *2) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1195)) (-4 *1 (-234 *3 *4)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1034)) (-4 *4 (-1195)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713))))) +(-13 (-592 (-554) |t#2|) (-601 (-1241 |t#2|)) (-10 -8 (-6 -4373) (-15 -2313 ($ (-1241 |t#2|))) (IF (|has| |t#2| (-1082)) (-6 (-406 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1034)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-227 |t#2|)) (-6 (-372 |t#2|)) (-15 -2327 ($ (-906))) (-15 -3748 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-713)) (PROGN (-6 (-713)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4370)) (-6 -4370) |%noBranch|) (IF (|has| |t#2| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |t#2| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |t#2| (-358)) (-6 (-1248 |t#2|)) |%noBranch|))) +(((-21) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-23) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-102) -3994 (|has| |#2| (-1082)) (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-713)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3994 (|has| |#2| (-1034)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-604 #0=(-402 (-554))) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))) ((-604 (-554)) -3994 (|has| |#2| (-1034)) (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-604 |#2|) -3994 (|has| |#2| (-1082)) (|has| |#2| (-170))) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-713)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-601 (-848))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-601 (-1241 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-227 |#2|) |has| |#2| (-1034)) ((-229) -12 (|has| |#2| (-229)) (|has| |#2| (-1034))) ((-281 #1=(-554) |#2|) . T) ((-283 #1# |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-363) |has| |#2| (-363)) ((-372 |#2|) |has| |#2| (-1034)) ((-406 |#2|) |has| |#2| (-1082)) ((-483 |#2|) . T) ((-592 #1# |#2|) . T) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-634 |#2|) -3994 (|has| |#2| (-1034)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-634 $) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-627 (-554)) -12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034))) ((-627 |#2|) |has| |#2| (-1034)) ((-704 |#2|) -3994 (|has| |#2| (-358)) (|has| |#2| (-170))) ((-713) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-713)) (|has| |#2| (-170))) ((-778) |has| |#2| (-834)) ((-779) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-780) |has| |#2| (-780)) ((-781) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-782) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-834) |has| |#2| (-834)) ((-836) -3994 (|has| |#2| (-834)) (|has| |#2| (-780))) ((-885 (-1158)) -12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034))) ((-1023 #0#) -12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082))) ((-1023 (-554)) -12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) ((-1023 |#2|) |has| |#2| (-1082)) ((-1040 |#2|) -3994 (|has| |#2| (-1034)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-1040 $) |has| |#2| (-170)) ((-1034) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-1041) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-170))) ((-1094) -3994 (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-713)) (|has| |#2| (-170))) ((-1082) -3994 (|has| |#2| (-1082)) (|has| |#2| (-1034)) (|has| |#2| (-834)) (|has| |#2| (-780)) (|has| |#2| (-713)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1195) . T) ((-1248 |#2|) |has| |#2| (-358))) +((-4159 (((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 21)) (-3676 ((|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 23)) (-2879 (((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)) 18))) +(((-235 |#1| |#2| |#3|) (-10 -7 (-15 -4159 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -3676 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2879 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)))) (-758) (-1195) (-1195)) (T -235)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-5 *2 (-236 *5 *7)) (-5 *1 (-235 *5 *6 *7)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758)) (-4 *6 (-1195)) (-4 *2 (-1195)) (-5 *1 (-235 *5 *6 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-758)) (-4 *7 (-1195)) (-4 *5 (-1195)) (-5 *2 (-236 *6 *5)) (-5 *1 (-235 *6 *7 *5))))) +(-10 -7 (-15 -4159 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -3676 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2879 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)))) +((-3062 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1695 (((-112) $) NIL (|has| |#2| (-130)))) (-2327 (($ (-906)) 56 (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) 60 (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) 17)) (-1508 (((-758)) NIL (|has| |#2| (-363)))) (-4219 (((-554) $) NIL (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) 27 (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) NIL (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) 53 (|has| |#2| (-713)))) (-3353 (($) NIL (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) 51)) (-2745 (((-112) $) NIL (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) 15 (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#2| (-713)))) (-4304 (((-112) $) NIL (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 20 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 (((-554) $) 50 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) 41)) (-3830 (((-906) $) NIL (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#2| (-363)))) (-2768 (((-1102) $) NIL (|has| |#2| (-1082)))) (-1539 ((|#2| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) 21)) (-3748 ((|#2| $ $) NIL (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) 18)) (-3330 (((-133)) NIL (|has| |#2| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#2|) $) 10) (($ (-554)) NIL (-3994 (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) 13 (|has| |#2| (-1082))) (((-848) $) NIL (|has| |#2| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#2| (-834)))) (-2004 (($) 35 (|has| |#2| (-130)) CONST)) (-2014 (($) 38 (|has| |#2| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1658 (((-112) $ $) 26 (|has| |#2| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1676 (((-112) $ $) 58 (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $ $) NIL (|has| |#2| (-1034))) (($ $) NIL (|has| |#2| (-1034)))) (-1735 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-758)) NIL (|has| |#2| (-713))) (($ $ (-906)) NIL (|has| |#2| (-713)))) (* (($ (-554) $) NIL (|has| |#2| (-1034))) (($ $ $) 44 (|has| |#2| (-713))) (($ $ |#2|) 42 (|has| |#2| (-713))) (($ |#2| $) 43 (|has| |#2| (-713))) (($ (-758) $) NIL (|has| |#2| (-130))) (($ (-906) $) NIL (|has| |#2| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-236 |#1| |#2|) (-234 |#1| |#2|) (-758) (-1195)) (T -236)) +NIL +(-234 |#1| |#2|) +((-1409 (((-554) (-631 (-1140))) 24) (((-554) (-1140)) 19)) (-2245 (((-1246) (-631 (-1140))) 29) (((-1246) (-1140)) 28)) (-3812 (((-1140)) 14)) (-1727 (((-1140) (-554) (-1140)) 16)) (-1608 (((-631 (-1140)) (-631 (-1140)) (-554) (-1140)) 25) (((-1140) (-1140) (-554) (-1140)) 23)) (-1951 (((-631 (-1140)) (-631 (-1140))) 13) (((-631 (-1140)) (-1140)) 11))) +(((-237) (-10 -7 (-15 -1951 ((-631 (-1140)) (-1140))) (-15 -1951 ((-631 (-1140)) (-631 (-1140)))) (-15 -3812 ((-1140))) (-15 -1727 ((-1140) (-554) (-1140))) (-15 -1608 ((-1140) (-1140) (-554) (-1140))) (-15 -1608 ((-631 (-1140)) (-631 (-1140)) (-554) (-1140))) (-15 -2245 ((-1246) (-1140))) (-15 -2245 ((-1246) (-631 (-1140)))) (-15 -1409 ((-554) (-1140))) (-15 -1409 ((-554) (-631 (-1140)))))) (T -237)) +((-1409 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-554)) (-5 *1 (-237)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-237)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1246)) (-5 *1 (-237)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-237)))) (-1608 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-631 (-1140))) (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *1 (-237)))) (-1608 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237)))) (-1727 (*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237)))) (-3812 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-237)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)))) (-1951 (*1 *2 *3) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)) (-5 *3 (-1140))))) +(-10 -7 (-15 -1951 ((-631 (-1140)) (-1140))) (-15 -1951 ((-631 (-1140)) (-631 (-1140)))) (-15 -3812 ((-1140))) (-15 -1727 ((-1140) (-554) (-1140))) (-15 -1608 ((-1140) (-1140) (-554) (-1140))) (-15 -1608 ((-631 (-1140)) (-631 (-1140)) (-554) (-1140))) (-15 -2245 ((-1246) (-1140))) (-15 -2245 ((-1246) (-631 (-1140)))) (-15 -1409 ((-554) (-1140))) (-15 -1409 ((-554) (-631 (-1140))))) +((** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 16)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ (-402 (-554)) $) 23) (($ $ (-402 (-554))) NIL))) +(((-238 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-239)) (T -238)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 40)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 44)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 41)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ (-402 (-554)) $) 43) (($ $ (-402 (-554))) 42))) +(((-239) (-138)) (T -239)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-554)))) (-2483 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-285) (-38 (-402 (-554))) (-10 -8 (-15 ** ($ $ (-554))) (-15 -2483 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-285) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-713) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3387 (($ $) 57)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2330 (($ $ $) 53 (|has| $ (-6 -4374)))) (-1337 (($ $ $) 52 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-3583 (($ $) 56)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-1634 (($ $) 55)) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 59)) (-4133 (($ $) 58)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-1853 (($ $ $) 54 (|has| $ (-6 -4374)))) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-240 |#1|) (-138) (-1195)) (T -240)) +((-2597 (*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-4133 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-3583 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-1634 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-2330 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))) (-1337 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195))))) +(-13 (-995 |t#1|) (-10 -8 (-15 -2597 (|t#1| $)) (-15 -4133 ($ $)) (-15 -3387 ($ $)) (-15 -3583 ($ $)) (-15 -1634 ($ $)) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1853 ($ $ $)) (-15 -2330 ($ $ $)) (-15 -1337 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) 10 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) NIL (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "rest" $) NIL (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1551 (($ $) NIL) (($ $ (-758)) NIL)) (-2593 (($ $) NIL (|has| |#1| (-1082)))) (-1571 (($ $) 7 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082))) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3717 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1416 (($ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) NIL) ((|#1| $ (-554) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-758) $ "count") 16)) (-3250 (((-554) $ $) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-4111 (($ (-631 |#1|)) 22)) (-3008 (((-112) $) NIL)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-1853 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4323 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-631 $)) NIL) (($ $ |#1|) NIL)) (-3075 (($ (-631 |#1|)) 17) (((-631 |#1|) $) 18) (((-848) $) 21 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 14 (|has| $ (-6 -4373))))) +(((-241 |#1|) (-13 (-652 |#1|) (-484 (-631 |#1|)) (-10 -8 (-15 -4111 ($ (-631 |#1|))) (-15 -2064 ($ $ "unique")) (-15 -2064 ($ $ "sort")) (-15 -2064 ((-758) $ "count")))) (-836)) (T -241)) +((-4111 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-241 *3)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-836)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-836)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-758)) (-5 *1 (-241 *4)) (-4 *4 (-836))))) +(-13 (-652 |#1|) (-484 (-631 |#1|)) (-10 -8 (-15 -4111 ($ (-631 |#1|))) (-15 -2064 ($ $ "unique")) (-15 -2064 ($ $ "sort")) (-15 -2064 ((-758) $ "count")))) +((-1989 (((-3 (-758) "failed") |#1| |#1| (-758)) 27))) +(((-242 |#1|) (-10 -7 (-15 -1989 ((-3 (-758) "failed") |#1| |#1| (-758)))) (-13 (-713) (-363) (-10 -7 (-15 ** (|#1| |#1| (-554)))))) (T -242)) +((-1989 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-758)) (-4 *3 (-13 (-713) (-363) (-10 -7 (-15 ** (*3 *3 (-554)))))) (-5 *1 (-242 *3))))) +(-10 -7 (-15 -1989 ((-3 (-758) "failed") |#1| |#1| (-758)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-850 |#1|)) $) NIL)) (-2237 (((-1154 $) $ (-850 |#1|)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2026 (($ $ (-631 (-554))) NIL)) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-236 (-2563 |#1|) (-758)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) NIL) (($ (-1154 $) (-850 |#1|)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-236 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 (((-236 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-236 (-2563 |#1|) (-758)) (-236 (-2563 |#1|) (-758))) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) NIL) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) NIL) (($ $ (-850 |#1|) $) NIL) (($ $ (-631 (-850 |#1|)) (-631 $)) NIL)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 (((-236 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-850 |#1|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-236 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-243 |#1| |#2|) (-13 (-934 |#2| (-236 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) (-631 (-1158)) (-1034)) (T -243)) +((-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-243 *3 *4)) (-14 *3 (-631 (-1158))) (-4 *4 (-1034))))) +(-13 (-934 |#2| (-236 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) +((-3062 (((-112) $ $) NIL)) (-1932 (((-1246) $) 15)) (-1514 (((-181) $) 9)) (-1396 (($ (-181)) 10)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-1658 (((-112) $ $) 13))) +(((-244) (-13 (-1082) (-10 -8 (-15 -1514 ((-181) $)) (-15 -1396 ($ (-181))) (-15 -1932 ((-1246) $))))) (T -244)) +((-1514 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-244))))) +(-13 (-1082) (-10 -8 (-15 -1514 ((-181) $)) (-15 -1396 ($ (-181))) (-15 -1932 ((-1246) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2327 (($ (-906)) NIL (|has| |#4| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#4| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#4| (-363)))) (-4219 (((-554) $) NIL (|has| |#4| (-834)))) (-1501 ((|#4| $ (-554) |#4|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1082))) (((-3 (-554) "failed") $) NIL (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))) (-1668 ((|#4| $) NIL (|has| |#4| (-1082))) (((-554) $) NIL (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))) (-3699 (((-2 (|:| -2866 (-675 |#4|)) (|:| |vec| (-1241 |#4|))) (-675 $) (-1241 $)) NIL (|has| |#4| (-1034))) (((-675 |#4|) (-675 $)) NIL (|has| |#4| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (-3353 (($) NIL (|has| |#4| (-363)))) (-2862 ((|#4| $ (-554) |#4|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#4| $ (-554)) NIL)) (-2745 (((-112) $) NIL (|has| |#4| (-834)))) (-2466 (((-631 |#4|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (-4304 (((-112) $) NIL (|has| |#4| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-2379 (((-631 |#4|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-2849 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#4| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#4| (-363)))) (-2768 (((-1102) $) NIL)) (-1539 ((|#4| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#4|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2625 (((-631 |#4|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#4| $ (-554) |#4|) NIL) ((|#4| $ (-554)) 12)) (-3748 ((|#4| $ $) NIL (|has| |#4| (-1034)))) (-2313 (($ (-1241 |#4|)) NIL)) (-3330 (((-133)) NIL (|has| |#4| (-358)))) (-1553 (($ $ (-1 |#4| |#4|) (-758)) NIL (|has| |#4| (-1034))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))))) (-2777 (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#4|) $) NIL) (((-848) $) NIL) (($ |#4|) NIL (|has| |#4| (-1082))) (($ (-554)) NIL (-3994 (-12 (|has| |#4| (-1023 (-554))) (|has| |#4| (-1082))) (|has| |#4| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#4| (-1023 (-402 (-554)))) (|has| |#4| (-1082))))) (-2261 (((-758)) NIL (|has| |#4| (-1034)))) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#4| (-834)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) CONST)) (-1787 (($ $ (-1 |#4| |#4|) (-758)) NIL (|has| |#4| (-1034))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1676 (((-112) $ $) NIL (-3994 (|has| |#4| (-780)) (|has| |#4| (-834))))) (-1752 (($ $ |#4|) NIL (|has| |#4| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034))))) (($ $ (-906)) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (* (($ |#2| $) 14) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-713))) (($ |#4| $) NIL (|has| |#4| (-713))) (($ $ $) NIL (-3994 (-12 (|has| |#4| (-229)) (|has| |#4| (-1034))) (-12 (|has| |#4| (-627 (-554))) (|has| |#4| (-1034))) (|has| |#4| (-713)) (-12 (|has| |#4| (-885 (-1158))) (|has| |#4| (-1034)))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-245 |#1| |#2| |#3| |#4|) (-13 (-234 |#1| |#4|) (-634 |#2|) (-634 |#3|)) (-906) (-1034) (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-634 |#2|)) (T -245)) +NIL +(-13 (-234 |#1| |#4|) (-634 |#2|) (-634 |#3|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2327 (($ (-906)) NIL (|has| |#3| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#3| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#3| (-363)))) (-4219 (((-554) $) NIL (|has| |#3| (-834)))) (-1501 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1082))) (((-3 (-554) "failed") $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))) (-1668 ((|#3| $) NIL (|has| |#3| (-1082))) (((-554) $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))) (-3699 (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) NIL (|has| |#3| (-1034))) (((-675 |#3|) (-675 $)) NIL (|has| |#3| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (-3353 (($) NIL (|has| |#3| (-363)))) (-2862 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#3| $ (-554)) NIL)) (-2745 (((-112) $) NIL (|has| |#3| (-834)))) (-2466 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (-4304 (((-112) $) NIL (|has| |#3| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2379 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2849 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#3| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#3| (-363)))) (-2768 (((-1102) $) NIL)) (-1539 ((|#3| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#3|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 |#3|) (-631 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2625 (((-631 |#3|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#3| $ (-554) |#3|) NIL) ((|#3| $ (-554)) 11)) (-3748 ((|#3| $ $) NIL (|has| |#3| (-1034)))) (-2313 (($ (-1241 |#3|)) NIL)) (-3330 (((-133)) NIL (|has| |#3| (-358)))) (-1553 (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))))) (-2777 (((-758) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373))) (((-758) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#3|) $) NIL) (((-848) $) NIL) (($ |#3|) NIL (|has| |#3| (-1082))) (($ (-554)) NIL (-3994 (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082))))) (-2261 (((-758)) NIL (|has| |#3| (-1034)))) (-2438 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#3| (-834)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) CONST)) (-1787 (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1676 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1752 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034))))) (($ $ (-906)) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (* (($ |#2| $) 13) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-713))) (($ |#3| $) NIL (|has| |#3| (-713))) (($ $ $) NIL (-3994 (-12 (|has| |#3| (-229)) (|has| |#3| (-1034))) (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034))) (|has| |#3| (-713)) (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-246 |#1| |#2| |#3|) (-13 (-234 |#1| |#3|) (-634 |#2|)) (-758) (-1034) (-634 |#2|)) (T -246)) +NIL +(-13 (-234 |#1| |#3|) (-634 |#2|)) +((-1386 (((-631 (-758)) $) 47) (((-631 (-758)) $ |#3|) 50)) (-1316 (((-758) $) 49) (((-758) $ |#3|) 52)) (-1698 (($ $) 65)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2342 (((-758) $ |#3|) 39) (((-758) $) 36)) (-3179 (((-1 $ (-758)) |#3|) 15) (((-1 $ (-758)) $) 77)) (-1897 ((|#4| $) 58)) (-2081 (((-112) $) 56)) (-1502 (($ $) 64)) (-2386 (($ $ (-631 (-289 $))) 97) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-631 |#4|) (-631 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-631 |#4|) (-631 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-631 |#3|) (-631 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-631 |#3|) (-631 |#2|)) 84)) (-1553 (($ $ |#4|) NIL) (($ $ (-631 |#4|)) NIL) (($ $ |#4| (-758)) NIL) (($ $ (-631 |#4|) (-631 (-758))) NIL) (($ $) NIL) (($ $ (-758)) NIL) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3922 (((-631 |#3|) $) 75)) (-3308 ((|#5| $) NIL) (((-758) $ |#4|) NIL) (((-631 (-758)) $ (-631 |#4|)) NIL) (((-758) $ |#3|) 44)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-402 (-554))) NIL) (($ $) NIL))) +(((-247 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#3| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#3| |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1897 (|#4| |#1|)) (-15 -2081 ((-112) |#1|)) (-15 -1316 ((-758) |#1| |#3|)) (-15 -1386 ((-631 (-758)) |#1| |#3|)) (-15 -1316 ((-758) |#1|)) (-15 -1386 ((-631 (-758)) |#1|)) (-15 -3308 ((-758) |#1| |#3|)) (-15 -2342 ((-758) |#1|)) (-15 -2342 ((-758) |#1| |#3|)) (-15 -3922 ((-631 |#3|) |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#3|)) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 |#4|))) (-15 -3308 ((-758) |#1| |#4|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 (|#5| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#4| (-758))) (-15 -1553 (|#1| |#1| (-631 |#4|))) (-15 -1553 (|#1| |#1| |#4|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-248 |#2| |#3| |#4| |#5|) (-1034) (-836) (-261 |#3|) (-780)) (T -247)) +NIL +(-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#3| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#3|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#3| |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1897 (|#4| |#1|)) (-15 -2081 ((-112) |#1|)) (-15 -1316 ((-758) |#1| |#3|)) (-15 -1386 ((-631 (-758)) |#1| |#3|)) (-15 -1316 ((-758) |#1|)) (-15 -1386 ((-631 (-758)) |#1|)) (-15 -3308 ((-758) |#1| |#3|)) (-15 -2342 ((-758) |#1|)) (-15 -2342 ((-758) |#1| |#3|)) (-15 -3922 ((-631 |#3|) |#1|)) (-15 -3179 ((-1 |#1| (-758)) |#3|)) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 |#4|))) (-15 -3308 ((-758) |#1| |#4|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 (|#5| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#4| (-758))) (-15 -1553 (|#1| |#1| (-631 |#4|))) (-15 -1553 (|#1| |#1| |#4|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1386 (((-631 (-758)) $) 214) (((-631 (-758)) $ |#2|) 212)) (-1316 (((-758) $) 213) (((-758) $ |#2|) 211)) (-2405 (((-631 |#3|) $) 110)) (-2237 (((-1154 $) $ |#3|) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 |#3|)) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-1698 (($ $) 207)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) ((|#3| $) 137) ((|#2| $) 222)) (-2999 (($ $ $ |#3|) 108 (|has| |#1| (-170)))) (-2550 (($ $) 154)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ |#3|) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-1344 (($ $ |#1| |#4| $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| |#3| (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| |#3| (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ |#2|) 217) (((-758) $) 216)) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-2393 (($ (-1154 |#1|) |#3|) 117) (($ (-1154 $) |#3|) 116)) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| |#4|) 153) (($ $ |#3| (-758)) 119) (($ $ (-631 |#3|) (-631 (-758))) 118)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 120)) (-3893 ((|#4| $) 170) (((-758) $ |#3|) 122) (((-631 (-758)) $ (-631 |#3|)) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 |#4| |#4|) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-3179 (((-1 $ (-758)) |#2|) 219) (((-1 $ (-758)) $) 206 (|has| |#1| (-229)))) (-3277 (((-3 |#3| "failed") $) 123)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148)) (-1897 ((|#3| $) 209)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1613 (((-1140) $) 9)) (-2081 (((-112) $) 210)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) 113)) (-1502 (($ $) 208)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-631 |#3|) (-631 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-631 |#3|) (-631 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 $)) 204 (|has| |#1| (-229))) (($ $ |#2| |#1|) 203 (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 |#1|)) 202 (|has| |#1| (-229)))) (-1495 (($ $ |#3|) 107 (|has| |#1| (-170)))) (-1553 (($ $ |#3|) 42) (($ $ (-631 |#3|)) 41) (($ $ |#3| (-758)) 40) (($ $ (-631 |#3|) (-631 (-758))) 39) (($ $) 238 (|has| |#1| (-229))) (($ $ (-758)) 236 (|has| |#1| (-229))) (($ $ (-1158)) 234 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 233 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 232 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 231 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3922 (((-631 |#2|) $) 218)) (-3308 ((|#4| $) 150) (((-758) $ |#3|) 130) (((-631 (-758)) $ (-631 |#3|)) 129) (((-758) $ |#2|) 215)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| |#3| (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| |#3| (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| |#3| (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ |#3|) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554)))))) (($ $) 85 (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ |#4|) 155) (($ $ |#3| (-758)) 128) (($ $ (-631 |#3|) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#3|) 38) (($ $ (-631 |#3|)) 37) (($ $ |#3| (-758)) 36) (($ $ (-631 |#3|) (-631 (-758))) 35) (($ $) 237 (|has| |#1| (-229))) (($ $ (-758)) 235 (|has| |#1| (-229))) (($ $ (-1158)) 230 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 229 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 228 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 227 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-248 |#1| |#2| |#3| |#4|) (-138) (-1034) (-836) (-261 |t#2|) (-780)) (T -248)) +((-3179 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *4 *3 *5 *6)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 *4)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758)))) (-3308 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 (-758))))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758)))) (-1386 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-631 (-758))))) (-1316 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-112)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-780)) (-4 *2 (-261 *4)))) (-1502 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836)) (-4 *4 (-261 *3)) (-4 *5 (-780)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836)) (-4 *4 (-261 *3)) (-4 *5 (-780)))) (-3179 (*1 *2 *1) (-12 (-4 *3 (-229)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *3 *4 *5 *6))))) +(-13 (-934 |t#1| |t#4| |t#3|) (-227 |t#1|) (-1023 |t#2|) (-10 -8 (-15 -3179 ((-1 $ (-758)) |t#2|)) (-15 -3922 ((-631 |t#2|) $)) (-15 -2342 ((-758) $ |t#2|)) (-15 -2342 ((-758) $)) (-15 -3308 ((-758) $ |t#2|)) (-15 -1386 ((-631 (-758)) $)) (-15 -1316 ((-758) $)) (-15 -1386 ((-631 (-758)) $ |t#2|)) (-15 -1316 ((-758) $ |t#2|)) (-15 -2081 ((-112) $)) (-15 -1897 (|t#3| $)) (-15 -1502 ($ $)) (-15 -1698 ($ $)) (IF (|has| |t#1| (-229)) (PROGN (-6 (-508 |t#2| |t#1|)) (-6 (-508 |t#2| $)) (-6 (-304 $)) (-15 -3179 ((-1 $ (-758)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 |#2|) . T) ((-604 |#3|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#4|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446))) ((-508 |#2| |#1|) |has| |#1| (-229)) ((-508 |#2| $) |has| |#1| (-229)) ((-508 |#3| |#1|) . T) ((-508 |#3| $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-885 |#3|) . T) ((-871 (-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) ((-934 |#1| |#4| |#3|) . T) ((-894) |has| |#1| (-894)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1023 |#2|) . T) ((-1023 |#3|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) |has| |#1| (-894))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3285 ((|#1| $) 54)) (-2292 ((|#1| $) 44)) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-4289 (($ $) 60)) (-3920 (($ $) 48)) (-1790 ((|#1| |#1| $) 46)) (-3956 ((|#1| $) 45)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2577 (((-758) $) 61)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-1692 ((|#1| |#1| $) 52)) (-1335 ((|#1| |#1| $) 51)) (-2045 (($ |#1| $) 40)) (-3323 (((-758) $) 55)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2312 ((|#1| $) 62)) (-3084 ((|#1| $) 50)) (-3161 ((|#1| $) 49)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-2515 ((|#1| |#1| $) 58)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-3817 ((|#1| $) 59)) (-1684 (($) 57) (($ (-631 |#1|)) 56)) (-2763 (((-758) $) 43)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-3232 ((|#1| $) 53)) (-1591 (($ (-631 |#1|)) 42)) (-1325 ((|#1| $) 63)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-249 |#1|) (-138) (-1195)) (T -249)) +((-1684 (*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-249 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-1692 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-1335 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(-13 (-1103 |t#1|) (-980 |t#1|) (-10 -8 (-15 -1684 ($)) (-15 -1684 ($ (-631 |t#1|))) (-15 -3323 ((-758) $)) (-15 -3285 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -1692 (|t#1| |t#1| $)) (-15 -1335 (|t#1| |t#1| $)) (-15 -3084 (|t#1| $)) (-15 -3161 (|t#1| $)) (-15 -3920 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-980 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1103 |#1|) . T) ((-1195) . T)) +((-3359 (((-1 (-928 (-221)) (-221) (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 139)) (-1465 (((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374))) 160) (((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 158) (((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 163) (((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 159) (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 150) (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 149) (((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374))) 129) (((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258))) 127) (((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374))) 128) (((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258))) 125)) (-1420 (((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374))) 162) (((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 161) (((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 165) (((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 164) (((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374))) 152) (((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258))) 151) (((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374))) 135) (((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258))) 134) (((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374))) 133) (((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258))) 132) (((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374))) 100) (((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258))) 99) (((-1242) (-1 (-221) (-221)) (-1076 (-374))) 96) (((-1242) (-1 (-221) (-221)) (-1076 (-374)) (-631 (-258))) 95))) +(((-250) (-10 -7 (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -3359 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -250)) +((-3359 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221) (-221))) (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *2 (-1242)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *2 (-1242)) (-5 *1 (-250)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250))))) +(-10 -7 (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-1 (-221) (-221)) (-1076 (-374)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 (-1 (-221) (-221))) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-374)) (-1076 (-374)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 (-1 (-221) (-221) (-221))) (-1076 (-374)) (-1076 (-374)))) (-15 -3359 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))))) +((-1420 (((-1242) (-289 |#2|) (-1158) (-1158) (-631 (-258))) 96))) +(((-251 |#1| |#2|) (-10 -7 (-15 -1420 ((-1242) (-289 |#2|) (-1158) (-1158) (-631 (-258))))) (-13 (-546) (-836) (-1023 (-554))) (-425 |#1|)) (T -251)) +((-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-1158)) (-5 *5 (-631 (-258))) (-4 *7 (-425 *6)) (-4 *6 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-1242)) (-5 *1 (-251 *6 *7))))) +(-10 -7 (-15 -1420 ((-1242) (-289 |#2|) (-1158) (-1158) (-631 (-258))))) +((-1859 (((-554) (-554)) 50)) (-3126 (((-554) (-554)) 51)) (-3114 (((-221) (-221)) 52)) (-2165 (((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221))) 49)) (-4234 (((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)) (-112)) 47))) +(((-252) (-10 -7 (-15 -4234 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)) (-112))) (-15 -2165 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -1859 ((-554) (-554))) (-15 -3126 ((-554) (-554))) (-15 -3114 ((-221) (-221))))) (T -252)) +((-3114 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252)))) (-2165 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221))) (-5 *2 (-1243)) (-5 *1 (-252)))) (-4234 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221))) (-5 *5 (-112)) (-5 *2 (-1243)) (-5 *1 (-252))))) +(-10 -7 (-15 -4234 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)) (-112))) (-15 -2165 ((-1243) (-1 (-167 (-221)) (-167 (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -1859 ((-554) (-554))) (-15 -3126 ((-554) (-554))) (-15 -3114 ((-221) (-221)))) +((-3075 (((-1074 (-374)) (-1074 (-311 |#1|))) 16))) +(((-253 |#1|) (-10 -7 (-15 -3075 ((-1074 (-374)) (-1074 (-311 |#1|))))) (-13 (-836) (-546) (-602 (-374)))) (T -253)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-1074 (-311 *4))) (-4 *4 (-13 (-836) (-546) (-602 (-374)))) (-5 *2 (-1074 (-374))) (-5 *1 (-253 *4))))) +(-10 -7 (-15 -3075 ((-1074 (-374)) (-1074 (-311 |#1|))))) +((-1465 (((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374))) 71) (((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 70) (((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374))) 61) (((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 60) (((-1115 (-221)) (-864 |#1|) (-1074 (-374))) 52) (((-1115 (-221)) (-864 |#1|) (-1074 (-374)) (-631 (-258))) 51)) (-1420 (((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374))) 74) (((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 73) (((-1243) |#1| (-1074 (-374)) (-1074 (-374))) 64) (((-1243) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258))) 63) (((-1243) (-864 |#1|) (-1074 (-374))) 56) (((-1243) (-864 |#1|) (-1074 (-374)) (-631 (-258))) 55) (((-1242) (-862 |#1|) (-1074 (-374))) 43) (((-1242) (-862 |#1|) (-1074 (-374)) (-631 (-258))) 42) (((-1242) |#1| (-1074 (-374))) 35) (((-1242) |#1| (-1074 (-374)) (-631 (-258))) 34))) +(((-254 |#1|) (-10 -7 (-15 -1420 ((-1242) |#1| (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) |#1| (-1074 (-374)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374))))) (-13 (-602 (-530)) (-1082))) (T -254)) +((-1465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *5)))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *5)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *6)))) (-1465 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1465 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1243)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *5)))) (-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *5)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-862 *5)) (-5 *4 (-1074 (-374))) (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242)) (-5 *1 (-254 *5)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-862 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242)) (-5 *1 (-254 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1242)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082)))))) +(-10 -7 (-15 -1420 ((-1242) |#1| (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) |#1| (-1074 (-374)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1242) (-862 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-864 |#1|) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-864 |#1|) (-1074 (-374)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) |#1| (-1074 (-374)) (-1074 (-374)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1420 ((-1243) (-867 |#1|) (-1074 (-374)) (-1074 (-374)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374)) (-631 (-258)))) (-15 -1465 ((-1115 (-221)) (-867 |#1|) (-1074 (-374)) (-1074 (-374))))) +((-1420 (((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)) (-631 (-258))) 23) (((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221))) 24) (((-1242) (-631 (-928 (-221))) (-631 (-258))) 16) (((-1242) (-631 (-928 (-221)))) 17) (((-1242) (-631 (-221)) (-631 (-221)) (-631 (-258))) 20) (((-1242) (-631 (-221)) (-631 (-221))) 21))) +(((-255) (-10 -7 (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)) (-631 (-258)))) (-15 -1420 ((-1242) (-631 (-928 (-221))))) (-15 -1420 ((-1242) (-631 (-928 (-221))) (-631 (-258)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)) (-631 (-258)))))) (T -255)) +((-1420 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1243)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-255)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *2 (-1242)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-255)))) (-1420 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1242)) (-5 *1 (-255))))) +(-10 -7 (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1242) (-631 (-221)) (-631 (-221)) (-631 (-258)))) (-15 -1420 ((-1242) (-631 (-928 (-221))))) (-15 -1420 ((-1242) (-631 (-928 (-221))) (-631 (-258)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)))) (-15 -1420 ((-1243) (-631 (-221)) (-631 (-221)) (-631 (-221)) (-631 (-258))))) +((-1691 (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-631 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 26)) (-2010 (((-906) (-631 (-258)) (-906)) 53)) (-1452 (((-906) (-631 (-258)) (-906)) 52)) (-2079 (((-631 (-374)) (-631 (-258)) (-631 (-374))) 69)) (-3478 (((-374) (-631 (-258)) (-374)) 58)) (-3469 (((-906) (-631 (-258)) (-906)) 54)) (-3340 (((-112) (-631 (-258)) (-112)) 28)) (-3982 (((-1140) (-631 (-258)) (-1140)) 20)) (-3147 (((-1140) (-631 (-258)) (-1140)) 27)) (-4287 (((-1115 (-221)) (-631 (-258))) 47)) (-2289 (((-631 (-1076 (-374))) (-631 (-258)) (-631 (-1076 (-374)))) 41)) (-3708 (((-859) (-631 (-258)) (-859)) 33)) (-1966 (((-859) (-631 (-258)) (-859)) 34)) (-3872 (((-1 (-928 (-221)) (-928 (-221))) (-631 (-258)) (-1 (-928 (-221)) (-928 (-221)))) 64)) (-2100 (((-112) (-631 (-258)) (-112)) 16)) (-1979 (((-112) (-631 (-258)) (-112)) 15))) +(((-256) (-10 -7 (-15 -1979 ((-112) (-631 (-258)) (-112))) (-15 -2100 ((-112) (-631 (-258)) (-112))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-631 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ((-1140) (-631 (-258)) (-1140))) (-15 -3147 ((-1140) (-631 (-258)) (-1140))) (-15 -3340 ((-112) (-631 (-258)) (-112))) (-15 -3708 ((-859) (-631 (-258)) (-859))) (-15 -1966 ((-859) (-631 (-258)) (-859))) (-15 -2289 ((-631 (-1076 (-374))) (-631 (-258)) (-631 (-1076 (-374))))) (-15 -1452 ((-906) (-631 (-258)) (-906))) (-15 -2010 ((-906) (-631 (-258)) (-906))) (-15 -4287 ((-1115 (-221)) (-631 (-258)))) (-15 -3469 ((-906) (-631 (-258)) (-906))) (-15 -3478 ((-374) (-631 (-258)) (-374))) (-15 -3872 ((-1 (-928 (-221)) (-928 (-221))) (-631 (-258)) (-1 (-928 (-221)) (-928 (-221))))) (-15 -2079 ((-631 (-374)) (-631 (-258)) (-631 (-374)))))) (T -256)) +((-2079 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-374))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3872 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3478 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3469 (*1 *2 *3 *2) (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-256)))) (-2010 (*1 *2 *3 *2) (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1452 (*1 *2 *3 *2) (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-2289 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1966 (*1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3340 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3147 (*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-3982 (*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-2100 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) (-1979 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))) +(-10 -7 (-15 -1979 ((-112) (-631 (-258)) (-112))) (-15 -2100 ((-112) (-631 (-258)) (-112))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-631 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ((-1140) (-631 (-258)) (-1140))) (-15 -3147 ((-1140) (-631 (-258)) (-1140))) (-15 -3340 ((-112) (-631 (-258)) (-112))) (-15 -3708 ((-859) (-631 (-258)) (-859))) (-15 -1966 ((-859) (-631 (-258)) (-859))) (-15 -2289 ((-631 (-1076 (-374))) (-631 (-258)) (-631 (-1076 (-374))))) (-15 -1452 ((-906) (-631 (-258)) (-906))) (-15 -2010 ((-906) (-631 (-258)) (-906))) (-15 -4287 ((-1115 (-221)) (-631 (-258)))) (-15 -3469 ((-906) (-631 (-258)) (-906))) (-15 -3478 ((-374) (-631 (-258)) (-374))) (-15 -3872 ((-1 (-928 (-221)) (-928 (-221))) (-631 (-258)) (-1 (-928 (-221)) (-928 (-221))))) (-15 -2079 ((-631 (-374)) (-631 (-258)) (-631 (-374))))) +((-2169 (((-3 |#1| "failed") (-631 (-258)) (-1158)) 17))) +(((-257 |#1|) (-10 -7 (-15 -2169 ((-3 |#1| "failed") (-631 (-258)) (-1158)))) (-1195)) (T -257)) +((-2169 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *1 (-257 *2)) (-4 *2 (-1195))))) +(-10 -7 (-15 -2169 ((-3 |#1| "failed") (-631 (-258)) (-1158)))) +((-3062 (((-112) $ $) NIL)) (-1691 (($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 15)) (-2010 (($ (-906)) 76)) (-1452 (($ (-906)) 75)) (-3646 (($ (-631 (-374))) 82)) (-3478 (($ (-374)) 58)) (-3469 (($ (-906)) 77)) (-3340 (($ (-112)) 23)) (-3982 (($ (-1140)) 18)) (-3147 (($ (-1140)) 19)) (-4287 (($ (-1115 (-221))) 71)) (-2289 (($ (-631 (-1076 (-374)))) 67)) (-3827 (($ (-631 (-1076 (-374)))) 59) (($ (-631 (-1076 (-402 (-554))))) 66)) (-2389 (($ (-374)) 29) (($ (-859)) 33)) (-1983 (((-112) (-631 $) (-1158)) 91)) (-2169 (((-3 (-52) "failed") (-631 $) (-1158)) 93)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2626 (($ (-374)) 34) (($ (-859)) 35)) (-3656 (($ (-1 (-928 (-221)) (-928 (-221)))) 57)) (-3872 (($ (-1 (-928 (-221)) (-928 (-221)))) 78)) (-3137 (($ (-1 (-221) (-221))) 39) (($ (-1 (-221) (-221) (-221))) 43) (($ (-1 (-221) (-221) (-221) (-221))) 47)) (-3075 (((-848) $) 87)) (-4184 (($ (-112)) 24) (($ (-631 (-1076 (-374)))) 52)) (-1979 (($ (-112)) 25)) (-1658 (((-112) $ $) 89))) +(((-258) (-13 (-1082) (-10 -8 (-15 -1979 ($ (-112))) (-15 -4184 ($ (-112))) (-15 -1691 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ($ (-1140))) (-15 -3147 ($ (-1140))) (-15 -3340 ($ (-112))) (-15 -4184 ($ (-631 (-1076 (-374))))) (-15 -3656 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -2389 ($ (-374))) (-15 -2389 ($ (-859))) (-15 -2626 ($ (-374))) (-15 -2626 ($ (-859))) (-15 -3137 ($ (-1 (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3478 ($ (-374))) (-15 -3827 ($ (-631 (-1076 (-374))))) (-15 -3827 ($ (-631 (-1076 (-402 (-554)))))) (-15 -2289 ($ (-631 (-1076 (-374))))) (-15 -4287 ($ (-1115 (-221)))) (-15 -1452 ($ (-906))) (-15 -2010 ($ (-906))) (-15 -3469 ($ (-906))) (-15 -3872 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -3646 ($ (-631 (-374)))) (-15 -2169 ((-3 (-52) "failed") (-631 $) (-1158))) (-15 -1983 ((-112) (-631 $) (-1158)))))) (T -258)) +((-1979 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-258)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258)))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258)))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-402 (-554))))) (-5 *1 (-258)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-258)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-258)))) (-2169 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-52)) (-5 *1 (-258)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-112)) (-5 *1 (-258))))) +(-13 (-1082) (-10 -8 (-15 -1979 ($ (-112))) (-15 -4184 ($ (-112))) (-15 -1691 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -3982 ($ (-1140))) (-15 -3147 ($ (-1140))) (-15 -3340 ($ (-112))) (-15 -4184 ($ (-631 (-1076 (-374))))) (-15 -3656 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -2389 ($ (-374))) (-15 -2389 ($ (-859))) (-15 -2626 ($ (-374))) (-15 -2626 ($ (-859))) (-15 -3137 ($ (-1 (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221)))) (-15 -3137 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3478 ($ (-374))) (-15 -3827 ($ (-631 (-1076 (-374))))) (-15 -3827 ($ (-631 (-1076 (-402 (-554)))))) (-15 -2289 ($ (-631 (-1076 (-374))))) (-15 -4287 ($ (-1115 (-221)))) (-15 -1452 ($ (-906))) (-15 -2010 ($ (-906))) (-15 -3469 ($ (-906))) (-15 -3872 ($ (-1 (-928 (-221)) (-928 (-221))))) (-15 -3646 ($ (-631 (-374)))) (-15 -2169 ((-3 (-52) "failed") (-631 $) (-1158))) (-15 -1983 ((-112) (-631 $) (-1158))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1386 (((-631 (-758)) $) NIL) (((-631 (-758)) $ |#2|) NIL)) (-1316 (((-758) $) NIL) (((-758) $ |#2|) NIL)) (-2405 (((-631 |#3|) $) NIL)) (-2237 (((-1154 $) $ |#3|) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 |#3|)) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-1698 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1107 |#1| |#2|) "failed") $) 21)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1107 |#1| |#2|) $) NIL)) (-2999 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 |#3|) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))))) (-2342 (((-758) $ |#2|) NIL) (((-758) $) 10)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) |#3|) NIL) (($ (-1154 $) |#3|) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) NIL)) (-3893 (((-525 |#3|) $) NIL) (((-758) $ |#3|) NIL) (((-631 (-758)) $ (-631 |#3|)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 |#3|) (-525 |#3|)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3179 (((-1 $ (-758)) |#2|) NIL) (((-1 $ (-758)) $) NIL (|has| |#1| (-229)))) (-3277 (((-3 |#3| "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1897 ((|#3| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2081 (((-112) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) NIL)) (-1502 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-631 |#3|) (-631 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-631 |#3|) (-631 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 $)) NIL (|has| |#1| (-229))) (($ $ |#2| |#1|) NIL (|has| |#1| (-229))) (($ $ (-631 |#2|) (-631 |#1|)) NIL (|has| |#1| (-229)))) (-1495 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-1553 (($ $ |#3|) NIL) (($ $ (-631 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3922 (((-631 |#2|) $) NIL)) (-3308 (((-525 |#3|) $) NIL) (((-758) $ |#3|) NIL) (((-631 (-758)) $ (-631 |#3|)) NIL) (((-758) $ |#2|) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1107 |#1| |#2|)) 30) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ |#3|) NIL) (($ $ (-631 |#3|)) NIL) (($ $ |#3| (-758)) NIL) (($ $ (-631 |#3|) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-259 |#1| |#2| |#3|) (-13 (-248 |#1| |#2| |#3| (-525 |#3|)) (-1023 (-1107 |#1| |#2|))) (-1034) (-836) (-261 |#2|)) (T -259)) +NIL +(-13 (-248 |#1| |#2| |#3| (-525 |#3|)) (-1023 (-1107 |#1| |#2|))) +((-1316 (((-758) $) 30)) (-2784 (((-3 |#2| "failed") $) 17)) (-1668 ((|#2| $) 27)) (-1553 (($ $) 12) (($ $ (-758)) 15)) (-3075 (((-848) $) 26) (($ |#2|) 10)) (-1658 (((-112) $ $) 20)) (-1676 (((-112) $ $) 29))) +(((-260 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -1316 ((-758) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-261 |#2|) (-836)) (T -260)) +NIL +(-10 -8 (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -1316 ((-758) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1316 (((-758) $) 22)) (-1576 ((|#1| $) 23)) (-2784 (((-3 |#1| "failed") $) 27)) (-1668 ((|#1| $) 28)) (-2342 (((-758) $) 24)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-3179 (($ |#1| (-758)) 25)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $) 21) (($ $ (-758)) 20)) (-3075 (((-848) $) 11) (($ |#1|) 26)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18))) +(((-261 |#1|) (-138) (-836)) (T -261)) +((-3075 (*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-3179 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758)))) (-1553 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-261 *3)) (-4 *3 (-836))))) +(-13 (-836) (-1023 |t#1|) (-10 -8 (-15 -3179 ($ |t#1| (-758))) (-15 -2342 ((-758) $)) (-15 -1576 (|t#1| $)) (-15 -1316 ((-758) $)) (-15 -1553 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -3075 ($ |t#1|)))) +(((-102) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-836) . T) ((-1023 |#1|) . T) ((-1082) . T)) +((-2405 (((-631 (-1158)) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 41)) (-1654 (((-631 (-1158)) (-311 (-221)) (-758)) 80)) (-3078 (((-3 (-311 (-221)) "failed") (-311 (-221))) 51)) (-3094 (((-311 (-221)) (-311 (-221))) 67)) (-4211 (((-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 26)) (-4076 (((-112) (-631 (-311 (-221)))) 84)) (-1599 (((-112) (-311 (-221))) 24)) (-4084 (((-631 (-1140)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) 106)) (-3669 (((-631 (-311 (-221))) (-631 (-311 (-221)))) 88)) (-3391 (((-631 (-311 (-221))) (-631 (-311 (-221)))) 86)) (-2280 (((-675 (-221)) (-631 (-311 (-221))) (-758)) 95)) (-1478 (((-112) (-311 (-221))) 20) (((-112) (-631 (-311 (-221)))) 85)) (-1992 (((-631 (-221)) (-631 (-829 (-221))) (-221)) 14)) (-1566 (((-374) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 101)) (-2565 (((-1020) (-1158) (-1020)) 34))) +(((-262) (-10 -7 (-15 -1992 ((-631 (-221)) (-631 (-829 (-221))) (-221))) (-15 -4211 ((-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3078 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3094 ((-311 (-221)) (-311 (-221)))) (-15 -4076 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-311 (-221)))) (-15 -2280 ((-675 (-221)) (-631 (-311 (-221))) (-758))) (-15 -3391 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -3669 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -1599 ((-112) (-311 (-221)))) (-15 -2405 ((-631 (-1158)) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -1654 ((-631 (-1158)) (-311 (-221)) (-758))) (-15 -2565 ((-1020) (-1158) (-1020))) (-15 -1566 ((-374) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -4084 ((-631 (-1140)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))))) (T -262)) +((-4084 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) (-5 *2 (-631 (-1140))) (-5 *1 (-262)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-374)) (-5 *1 (-262)))) (-2565 (*1 *2 *3 *2) (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-262)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-758)) (-5 *2 (-631 (-1158))) (-5 *1 (-262)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-631 (-1158))) (-5 *1 (-262)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3669 (*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *4 (-758)) (-5 *2 (-675 (-221))) (-5 *1 (-262)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-3078 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *1 (-262)))) (-1992 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-829 (-221)))) (-5 *4 (-221)) (-5 *2 (-631 *4)) (-5 *1 (-262))))) +(-10 -7 (-15 -1992 ((-631 (-221)) (-631 (-829 (-221))) (-221))) (-15 -4211 ((-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3078 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3094 ((-311 (-221)) (-311 (-221)))) (-15 -4076 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-631 (-311 (-221))))) (-15 -1478 ((-112) (-311 (-221)))) (-15 -2280 ((-675 (-221)) (-631 (-311 (-221))) (-758))) (-15 -3391 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -3669 ((-631 (-311 (-221))) (-631 (-311 (-221))))) (-15 -1599 ((-112) (-311 (-221)))) (-15 -2405 ((-631 (-1158)) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -1654 ((-631 (-1158)) (-311 (-221)) (-758))) (-15 -2565 ((-1020) (-1158) (-1020))) (-15 -1566 ((-374) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -4084 ((-631 (-1140)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))))) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 44)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 26) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-263) (-825)) (T -263)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 58) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 54)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 34) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 36)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-264) (-825)) (T -264)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 76) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 73)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 44) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 55)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-265) (-825)) (T -265)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 50)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 31) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-266) (-825)) (T -266)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 50)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 28) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-267) (-825)) (T -267)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 73)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 28) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-268) (-825)) (T -268)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 77)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 25) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-269) (-825)) (T -269)) +NIL +(-825) +((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2708 (((-631 (-554)) $) 19)) (-3308 (((-758) $) 17)) (-3075 (((-848) $) 23) (($ (-631 (-554))) 15)) (-1977 (($ (-758)) 20)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 9)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 11))) +(((-270) (-13 (-836) (-10 -8 (-15 -3075 ($ (-631 (-554)))) (-15 -3308 ((-758) $)) (-15 -2708 ((-631 (-554)) $)) (-15 -1977 ($ (-758)))))) (T -270)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-270)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-270))))) +(-13 (-836) (-10 -8 (-15 -3075 ($ (-631 (-554)))) (-15 -3308 ((-758) $)) (-15 -2708 ((-631 (-554)) $)) (-15 -1977 ($ (-758))))) +((-3023 ((|#2| |#2|) 77)) (-4200 ((|#2| |#2|) 65)) (-4079 (((-3 |#2| "failed") |#2| (-631 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3003 ((|#2| |#2|) 75)) (-4177 ((|#2| |#2|) 63)) (-3046 ((|#2| |#2|) 79)) (-2916 ((|#2| |#2|) 67)) (-2844 ((|#2|) 46)) (-3086 (((-114) (-114)) 95)) (-2395 ((|#2| |#2|) 61)) (-2000 (((-112) |#2|) 134)) (-2898 ((|#2| |#2|) 181)) (-2650 ((|#2| |#2|) 157)) (-2752 ((|#2|) 59)) (-1564 ((|#2|) 58)) (-3015 ((|#2| |#2|) 177)) (-1467 ((|#2| |#2|) 153)) (-3256 ((|#2| |#2|) 185)) (-2002 ((|#2| |#2|) 161)) (-2362 ((|#2| |#2|) 149)) (-3796 ((|#2| |#2|) 151)) (-1847 ((|#2| |#2|) 187)) (-3599 ((|#2| |#2|) 163)) (-1365 ((|#2| |#2|) 183)) (-1784 ((|#2| |#2|) 159)) (-3241 ((|#2| |#2|) 179)) (-2287 ((|#2| |#2|) 155)) (-2404 ((|#2| |#2|) 193)) (-3279 ((|#2| |#2|) 169)) (-1531 ((|#2| |#2|) 189)) (-3332 ((|#2| |#2|) 165)) (-2511 ((|#2| |#2|) 197)) (-3128 ((|#2| |#2|) 173)) (-3590 ((|#2| |#2|) 199)) (-4152 ((|#2| |#2|) 175)) (-1724 ((|#2| |#2|) 195)) (-2019 ((|#2| |#2|) 171)) (-2088 ((|#2| |#2|) 191)) (-2156 ((|#2| |#2|) 167)) (-1333 ((|#2| |#2|) 62)) (-3057 ((|#2| |#2|) 80)) (-2926 ((|#2| |#2|) 68)) (-3034 ((|#2| |#2|) 78)) (-4213 ((|#2| |#2|) 66)) (-3014 ((|#2| |#2|) 76)) (-4188 ((|#2| |#2|) 64)) (-1902 (((-112) (-114)) 93)) (-3096 ((|#2| |#2|) 83)) (-2959 ((|#2| |#2|) 71)) (-3069 ((|#2| |#2|) 81)) (-2938 ((|#2| |#2|) 69)) (-3120 ((|#2| |#2|) 85)) (-2981 ((|#2| |#2|) 73)) (-2908 ((|#2| |#2|) 86)) (-2991 ((|#2| |#2|) 74)) (-3108 ((|#2| |#2|) 84)) (-2969 ((|#2| |#2|) 72)) (-3083 ((|#2| |#2|) 82)) (-2948 ((|#2| |#2|) 70))) +(((-271 |#1| |#2|) (-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -2916 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -2938 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -2959 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3034 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3069 (|#2| |#2|)) (-15 -3083 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -2908 (|#2| |#2|)) (-15 -2844 (|#2|)) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1564 (|#2|)) (-15 -2752 (|#2|)) (-15 -3796 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3015 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -4079 ((-3 |#2| "failed") |#2| (-631 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2000 ((-112) |#2|))) (-13 (-836) (-546)) (-13 (-425 |#1|) (-987))) (T -271)) +((-2000 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) (-4 *3 (-13 (-425 *4) (-987))))) (-4079 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-631 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-425 *4) (-987))) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-271 *4 *2)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3256 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3015 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3128 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3279 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2752 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-836) (-546))))) (-1564 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-836) (-546))))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *4)) (-4 *4 (-13 (-425 *3) (-987))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-987))))) (-2844 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-836) (-546))))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3069 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2916 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-987)))))) +(-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -2916 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -2938 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -2959 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -2991 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3034 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -3057 (|#2| |#2|)) (-15 -3069 (|#2| |#2|)) (-15 -3083 (|#2| |#2|)) (-15 -3096 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -2908 (|#2| |#2|)) (-15 -2844 (|#2|)) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1564 (|#2|)) (-15 -2752 (|#2|)) (-15 -3796 (|#2| |#2|)) (-15 -2362 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -3128 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3015 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -3256 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -4079 ((-3 |#2| "failed") |#2| (-631 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2000 ((-112) |#2|))) +((-1803 (((-3 |#2| "failed") (-631 (-600 |#2|)) |#2| (-1158)) 135)) (-2616 ((|#2| (-402 (-554)) |#2|) 51)) (-2281 ((|#2| |#2| (-600 |#2|)) 128)) (-4141 (((-2 (|:| |func| |#2|) (|:| |kers| (-631 (-600 |#2|))) (|:| |vals| (-631 |#2|))) |#2| (-1158)) 127)) (-1542 ((|#2| |#2| (-1158)) 20) ((|#2| |#2|) 23)) (-4085 ((|#2| |#2| (-1158)) 141) ((|#2| |#2|) 139))) +(((-272 |#1| |#2|) (-10 -7 (-15 -4085 (|#2| |#2|)) (-15 -4085 (|#2| |#2| (-1158))) (-15 -4141 ((-2 (|:| |func| |#2|) (|:| |kers| (-631 (-600 |#2|))) (|:| |vals| (-631 |#2|))) |#2| (-1158))) (-15 -1542 (|#2| |#2|)) (-15 -1542 (|#2| |#2| (-1158))) (-15 -1803 ((-3 |#2| "failed") (-631 (-600 |#2|)) |#2| (-1158))) (-15 -2281 (|#2| |#2| (-600 |#2|))) (-15 -2616 (|#2| (-402 (-554)) |#2|))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -272)) +((-2616 (*1 *2 *3 *2) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2281 (*1 *2 *2 *3) (-12 (-5 *3 (-600 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)))) (-1803 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-1158)) (-4 *2 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *5 *2)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-631 (-600 *3))) (|:| |vals| (-631 *3)))) (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-4085 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))) +(-10 -7 (-15 -4085 (|#2| |#2|)) (-15 -4085 (|#2| |#2| (-1158))) (-15 -4141 ((-2 (|:| |func| |#2|) (|:| |kers| (-631 (-600 |#2|))) (|:| |vals| (-631 |#2|))) |#2| (-1158))) (-15 -1542 (|#2| |#2|)) (-15 -1542 (|#2| |#2| (-1158))) (-15 -1803 ((-3 |#2| "failed") (-631 (-600 |#2|)) |#2| (-1158))) (-15 -2281 (|#2| |#2| (-600 |#2|))) (-15 -2616 (|#2| (-402 (-554)) |#2|))) +((-4060 (((-3 |#3| "failed") |#3|) 110)) (-3023 ((|#3| |#3|) 131)) (-3346 (((-3 |#3| "failed") |#3|) 82)) (-4200 ((|#3| |#3|) 121)) (-3855 (((-3 |#3| "failed") |#3|) 58)) (-3003 ((|#3| |#3|) 129)) (-3685 (((-3 |#3| "failed") |#3|) 46)) (-4177 ((|#3| |#3|) 119)) (-3153 (((-3 |#3| "failed") |#3|) 112)) (-3046 ((|#3| |#3|) 133)) (-1996 (((-3 |#3| "failed") |#3|) 84)) (-2916 ((|#3| |#3|) 123)) (-2685 (((-3 |#3| "failed") |#3| (-758)) 36)) (-2097 (((-3 |#3| "failed") |#3|) 74)) (-2395 ((|#3| |#3|) 118)) (-3765 (((-3 |#3| "failed") |#3|) 44)) (-1333 ((|#3| |#3|) 117)) (-4288 (((-3 |#3| "failed") |#3|) 113)) (-3057 ((|#3| |#3|) 134)) (-3158 (((-3 |#3| "failed") |#3|) 85)) (-2926 ((|#3| |#3|) 124)) (-2785 (((-3 |#3| "failed") |#3|) 111)) (-3034 ((|#3| |#3|) 132)) (-3136 (((-3 |#3| "failed") |#3|) 83)) (-4213 ((|#3| |#3|) 122)) (-2622 (((-3 |#3| "failed") |#3|) 60)) (-3014 ((|#3| |#3|) 130)) (-3660 (((-3 |#3| "failed") |#3|) 48)) (-4188 ((|#3| |#3|) 120)) (-4181 (((-3 |#3| "failed") |#3|) 66)) (-3096 ((|#3| |#3|) 137)) (-1950 (((-3 |#3| "failed") |#3|) 104)) (-2959 ((|#3| |#3|) 142)) (-1980 (((-3 |#3| "failed") |#3|) 62)) (-3069 ((|#3| |#3|) 135)) (-1767 (((-3 |#3| "failed") |#3|) 50)) (-2938 ((|#3| |#3|) 125)) (-3729 (((-3 |#3| "failed") |#3|) 70)) (-3120 ((|#3| |#3|) 139)) (-1568 (((-3 |#3| "failed") |#3|) 54)) (-2981 ((|#3| |#3|) 127)) (-2296 (((-3 |#3| "failed") |#3|) 72)) (-2908 ((|#3| |#3|) 140)) (-4031 (((-3 |#3| "failed") |#3|) 56)) (-2991 ((|#3| |#3|) 128)) (-3041 (((-3 |#3| "failed") |#3|) 68)) (-3108 ((|#3| |#3|) 138)) (-4297 (((-3 |#3| "failed") |#3|) 107)) (-2969 ((|#3| |#3|) 143)) (-2402 (((-3 |#3| "failed") |#3|) 64)) (-3083 ((|#3| |#3|) 136)) (-1357 (((-3 |#3| "failed") |#3|) 52)) (-2948 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-402 (-554))) 40 (|has| |#1| (-358))))) +(((-273 |#1| |#2| |#3|) (-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)))) (-38 (-402 (-554))) (-1232 |#1|) (-1203 |#1| |#2|)) (T -273)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1232 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1203 *4 *5)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2916 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3069 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4))))) +(-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)))) +((-4060 (((-3 |#3| "failed") |#3|) 66)) (-3023 ((|#3| |#3|) 129)) (-3346 (((-3 |#3| "failed") |#3|) 50)) (-4200 ((|#3| |#3|) 117)) (-3855 (((-3 |#3| "failed") |#3|) 62)) (-3003 ((|#3| |#3|) 127)) (-3685 (((-3 |#3| "failed") |#3|) 46)) (-4177 ((|#3| |#3|) 115)) (-3153 (((-3 |#3| "failed") |#3|) 70)) (-3046 ((|#3| |#3|) 131)) (-1996 (((-3 |#3| "failed") |#3|) 54)) (-2916 ((|#3| |#3|) 119)) (-2685 (((-3 |#3| "failed") |#3| (-758)) 35)) (-2097 (((-3 |#3| "failed") |#3|) 44)) (-2395 ((|#3| |#3|) 104)) (-3765 (((-3 |#3| "failed") |#3|) 42)) (-1333 ((|#3| |#3|) 114)) (-4288 (((-3 |#3| "failed") |#3|) 72)) (-3057 ((|#3| |#3|) 132)) (-3158 (((-3 |#3| "failed") |#3|) 56)) (-2926 ((|#3| |#3|) 120)) (-2785 (((-3 |#3| "failed") |#3|) 68)) (-3034 ((|#3| |#3|) 130)) (-3136 (((-3 |#3| "failed") |#3|) 52)) (-4213 ((|#3| |#3|) 118)) (-2622 (((-3 |#3| "failed") |#3|) 64)) (-3014 ((|#3| |#3|) 128)) (-3660 (((-3 |#3| "failed") |#3|) 48)) (-4188 ((|#3| |#3|) 116)) (-4181 (((-3 |#3| "failed") |#3|) 74)) (-3096 ((|#3| |#3|) 135)) (-1950 (((-3 |#3| "failed") |#3|) 58)) (-2959 ((|#3| |#3|) 123)) (-1980 (((-3 |#3| "failed") |#3|) 105)) (-3069 ((|#3| |#3|) 133)) (-1767 (((-3 |#3| "failed") |#3|) 94)) (-2938 ((|#3| |#3|) 121)) (-3729 (((-3 |#3| "failed") |#3|) 109)) (-3120 ((|#3| |#3|) 137)) (-1568 (((-3 |#3| "failed") |#3|) 101)) (-2981 ((|#3| |#3|) 125)) (-2296 (((-3 |#3| "failed") |#3|) 110)) (-2908 ((|#3| |#3|) 138)) (-4031 (((-3 |#3| "failed") |#3|) 103)) (-2991 ((|#3| |#3|) 126)) (-3041 (((-3 |#3| "failed") |#3|) 76)) (-3108 ((|#3| |#3|) 136)) (-4297 (((-3 |#3| "failed") |#3|) 60)) (-2969 ((|#3| |#3|) 124)) (-2402 (((-3 |#3| "failed") |#3|) 106)) (-3083 ((|#3| |#3|) 134)) (-1357 (((-3 |#3| "failed") |#3|) 97)) (-2948 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-402 (-554))) 40 (|has| |#1| (-358))))) +(((-274 |#1| |#2| |#3| |#4|) (-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)))) (-38 (-402 (-554))) (-1201 |#1|) (-1224 |#1| |#2|) (-968 |#2|)) (T -274)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1201 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1224 *4 *5)) (-4 *6 (-968 *5)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2916 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2991 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3057 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3069 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3083 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4))))) +(-13 (-968 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-554)))) |%noBranch|) (-15 -1333 (|#3| |#3|)) (-15 -2395 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4200 (|#3| |#3|)) (-15 -4213 (|#3| |#3|)) (-15 -2916 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -2938 (|#3| |#3|)) (-15 -2948 (|#3| |#3|)) (-15 -2959 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -2991 (|#3| |#3|)) (-15 -3003 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3034 (|#3| |#3|)) (-15 -3046 (|#3| |#3|)) (-15 -3057 (|#3| |#3|)) (-15 -3069 (|#3| |#3|)) (-15 -3083 (|#3| |#3|)) (-15 -3096 (|#3| |#3|)) (-15 -3108 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)))) +((-1440 (((-112) $) 19)) (-1762 (((-181) $) 7)) (-1499 (((-3 (-1158) "failed") $) 14)) (-3894 (((-3 (-631 $) "failed") $) NIL)) (-2709 (((-3 (-1158) "failed") $) 21)) (-3106 (((-3 (-1086) "failed") $) 17)) (-2798 (((-112) $) 15)) (-3075 (((-848) $) NIL)) (-1728 (((-112) $) 9))) +(((-275) (-13 (-601 (-848)) (-10 -8 (-15 -1762 ((-181) $)) (-15 -2798 ((-112) $)) (-15 -3106 ((-3 (-1086) "failed") $)) (-15 -1440 ((-112) $)) (-15 -2709 ((-3 (-1158) "failed") $)) (-15 -1728 ((-112) $)) (-15 -1499 ((-3 (-1158) "failed") $)) (-15 -3894 ((-3 (-631 $) "failed") $))))) (T -275)) +((-1762 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-3106 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-275)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2709 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-1499 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275)))) (-3894 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-275))) (-5 *1 (-275))))) +(-13 (-601 (-848)) (-10 -8 (-15 -1762 ((-181) $)) (-15 -2798 ((-112) $)) (-15 -3106 ((-3 (-1086) "failed") $)) (-15 -1440 ((-112) $)) (-15 -2709 ((-3 (-1158) "failed") $)) (-15 -1728 ((-112) $)) (-15 -1499 ((-3 (-1158) "failed") $)) (-15 -3894 ((-3 (-631 $) "failed") $)))) +((-1871 (($ (-1 (-112) |#2|) $) 24)) (-1571 (($ $) 36)) (-1884 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-2574 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3606 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1782 (($ |#2| $ (-554)) 20) (($ $ $ (-554)) 22)) (-2021 (($ $ (-554)) 11) (($ $ (-1208 (-554))) 14)) (-1853 (($ $ |#2|) 30) (($ $ $) NIL)) (-4323 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-631 $)) NIL))) +(((-276 |#1| |#2|) (-10 -8 (-15 -3606 (|#1| |#1| |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -1571 (|#1| |#1|))) (-277 |#2|) (-1195)) (T -276)) +NIL +(-10 -8 (-15 -3606 (|#1| |#1| |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2574 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1871 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2574 (|#1| |#2| |#1|)) (-15 -1571 (|#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) 85)) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 83 (|has| |#1| (-1082)))) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1082)))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-3606 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2045 (($ |#1| $ (-554)) 88) (($ $ $ (-554)) 87)) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-3029 (($ $ (-554)) 91) (($ $ (-1208 (-554))) 90)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-1853 (($ $ |#1|) 93) (($ $ $) 92)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-277 |#1|) (-138) (-1195)) (T -277)) +((-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-2045 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-2045 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3606 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-2220 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-1884 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) (-3606 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-836))))) +(-13 (-637 |t#1|) (-10 -8 (-6 -4374) (-15 -1853 ($ $ |t#1|)) (-15 -1853 ($ $ $)) (-15 -3029 ($ $ (-554))) (-15 -3029 ($ $ (-1208 (-554)))) (-15 -1884 ($ (-1 (-112) |t#1|) $)) (-15 -2045 ($ |t#1| $ (-554))) (-15 -2045 ($ $ $ (-554))) (-15 -3606 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2220 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -1884 ($ |t#1| $)) (-15 -2593 ($ $))) |%noBranch|) (IF (|has| |t#1| (-836)) (-15 -3606 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) ((** (($ $ $) 10))) -(((-277 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-278)) (T -277)) +(((-278 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-279)) (T -278)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2366 (($ $) 6)) (-2743 (($ $) 7)) (** (($ $ $) 8))) -(((-278) (-137)) (T -278)) -((** (*1 *1 *1 *1) (-4 *1 (-278))) (-2743 (*1 *1 *1) (-4 *1 (-278))) (-2366 (*1 *1 *1) (-4 *1 (-278)))) -(-13 (-10 -8 (-15 -2366 ($ $)) (-15 -2743 ($ $)) (-15 ** ($ $ $)))) -((-4182 (((-630 (-1135 |#1|)) (-1135 |#1|) |#1|) 35)) (-1792 ((|#2| |#2| |#1|) 38)) (-2381 ((|#2| |#2| |#1|) 40)) (-4194 ((|#2| |#2| |#1|) 39))) -(((-279 |#1| |#2|) (-10 -7 (-15 -1792 (|#2| |#2| |#1|)) (-15 -4194 (|#2| |#2| |#1|)) (-15 -2381 (|#2| |#2| |#1|)) (-15 -4182 ((-630 (-1135 |#1|)) (-1135 |#1|) |#1|))) (-357) (-1229 |#1|)) (T -279)) -((-4182 (*1 *2 *3 *4) (-12 (-4 *4 (-357)) (-5 *2 (-630 (-1135 *4))) (-5 *1 (-279 *4 *5)) (-5 *3 (-1135 *4)) (-4 *5 (-1229 *4)))) (-2381 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1229 *3)))) (-4194 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1229 *3)))) (-1792 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -1792 (|#2| |#2| |#1|)) (-15 -4194 (|#2| |#2| |#1|)) (-15 -2381 (|#2| |#2| |#1|)) (-15 -4182 ((-630 (-1135 |#1|)) (-1135 |#1|) |#1|))) -((-2046 ((|#2| $ |#1|) 6))) -(((-280 |#1| |#2|) (-137) (-1079) (-1192)) (T -280)) -((-2046 (*1 *2 *1 *3) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192))))) -(-13 (-10 -8 (-15 -2046 (|t#2| $ |t#1|)))) -((-2515 ((|#3| $ |#2| |#3|) 12)) (-2441 ((|#3| $ |#2|) 10))) -(((-281 |#1| |#2| |#3|) (-10 -8 (-15 -2515 (|#3| |#1| |#2| |#3|)) (-15 -2441 (|#3| |#1| |#2|))) (-282 |#2| |#3|) (-1079) (-1192)) (T -281)) -NIL -(-10 -8 (-15 -2515 (|#3| |#1| |#2| |#3|)) (-15 -2441 (|#3| |#1| |#2|))) -((-1490 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4370)))) (-2515 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) 11)) (-2046 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-282 |#1| |#2|) (-137) (-1079) (-1192)) (T -282)) -((-2046 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) (-2441 (*1 *2 *1 *3) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) (-1490 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) (-2515 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192))))) -(-13 (-280 |t#1| |t#2|) (-10 -8 (-15 -2046 (|t#2| $ |t#1| |t#2|)) (-15 -2441 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4370)) (PROGN (-15 -1490 (|t#2| $ |t#1| |t#2|)) (-15 -2515 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-280 |#1| |#2|) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 35)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 40)) (-1968 (($ $) 38)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) 33)) (-2654 (($ |#2| |#3|) 19)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2326 ((|#3| $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 20)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3930 (((-3 $ "failed") $ $) NIL)) (-3384 (((-757) $) 34)) (-2046 ((|#2| $ |#2|) 42)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 24)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 29 T CONST)) (-1997 (($) 36 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 37))) -(((-283 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-301) (-10 -8 (-15 -2326 (|#3| $)) (-15 -3110 (|#2| $)) (-15 -2654 ($ |#2| |#3|)) (-15 -3930 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -3610 ($ $)) (-15 -2046 (|#2| $ |#2|)))) (-169) (-1214 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -283)) -((-2982 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1214 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2326 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1214 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-1214 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2654 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1214 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3930 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1214 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3610 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1214 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2046 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1214 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-301) (-10 -8 (-15 -2326 (|#3| $)) (-15 -3110 (|#2| $)) (-15 -2654 ($ |#2| |#3|)) (-15 -3930 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -3610 ($ $)) (-15 -2046 (|#2| $ |#2|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-284) (-137)) (T -284)) -NIL -(-13 (-1031) (-110 $ $) (-10 -7 (-6 -4362))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1283 (($ (-1155) (-1155) (-1083) $) 17)) (-2011 (($ (-1155) (-630 (-947)) $) 22)) (-4256 (((-630 (-1064)) $) 10)) (-2317 (((-3 (-1083) "failed") (-1155) (-1155) $) 16)) (-3646 (((-3 (-630 (-947)) "failed") (-1155) $) 21)) (-3222 (($) 7)) (-3746 (($) 23)) (-3110 (((-845) $) 27)) (-2730 (($) 24))) -(((-285) (-13 (-600 (-845)) (-10 -8 (-15 -3222 ($)) (-15 -4256 ((-630 (-1064)) $)) (-15 -2317 ((-3 (-1083) "failed") (-1155) (-1155) $)) (-15 -1283 ($ (-1155) (-1155) (-1083) $)) (-15 -3646 ((-3 (-630 (-947)) "failed") (-1155) $)) (-15 -2011 ($ (-1155) (-630 (-947)) $)) (-15 -3746 ($)) (-15 -2730 ($))))) (T -285)) -((-3222 (*1 *1) (-5 *1 (-285))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-630 (-1064))) (-5 *1 (-285)))) (-2317 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-1083)) (-5 *1 (-285)))) (-1283 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1155)) (-5 *3 (-1083)) (-5 *1 (-285)))) (-3646 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-630 (-947))) (-5 *1 (-285)))) (-2011 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-947))) (-5 *1 (-285)))) (-3746 (*1 *1) (-5 *1 (-285))) (-2730 (*1 *1) (-5 *1 (-285)))) -(-13 (-600 (-845)) (-10 -8 (-15 -3222 ($)) (-15 -4256 ((-630 (-1064)) $)) (-15 -2317 ((-3 (-1083) "failed") (-1155) (-1155) $)) (-15 -1283 ($ (-1155) (-1155) (-1083) $)) (-15 -3646 ((-3 (-630 (-947)) "failed") (-1155) $)) (-15 -2011 ($ (-1155) (-630 (-947)) $)) (-15 -3746 ($)) (-15 -2730 ($)))) -((-1985 (((-630 (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |geneigvec| (-630 (-674 (-401 (-934 |#1|))))))) (-674 (-401 (-934 |#1|)))) 85)) (-2944 (((-630 (-674 (-401 (-934 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 |#1|)))))) (-674 (-401 (-934 |#1|)))) 80) (((-630 (-674 (-401 (-934 |#1|)))) (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|))) (-674 (-401 (-934 |#1|))) (-757) (-757)) 38)) (-2066 (((-630 (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 |#1|))))))) (-674 (-401 (-934 |#1|)))) 82)) (-3069 (((-630 (-674 (-401 (-934 |#1|)))) (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|))) (-674 (-401 (-934 |#1|)))) 62)) (-2101 (((-630 (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (-674 (-401 (-934 |#1|)))) 61)) (-3547 (((-934 |#1|) (-674 (-401 (-934 |#1|)))) 50) (((-934 |#1|) (-674 (-401 (-934 |#1|))) (-1155)) 51))) -(((-286 |#1|) (-10 -7 (-15 -3547 ((-934 |#1|) (-674 (-401 (-934 |#1|))) (-1155))) (-15 -3547 ((-934 |#1|) (-674 (-401 (-934 |#1|))))) (-15 -2101 ((-630 (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (-674 (-401 (-934 |#1|))))) (-15 -3069 ((-630 (-674 (-401 (-934 |#1|)))) (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|))) (-674 (-401 (-934 |#1|))))) (-15 -2944 ((-630 (-674 (-401 (-934 |#1|)))) (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|))) (-674 (-401 (-934 |#1|))) (-757) (-757))) (-15 -2944 ((-630 (-674 (-401 (-934 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 |#1|)))))) (-674 (-401 (-934 |#1|))))) (-15 -1985 ((-630 (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |geneigvec| (-630 (-674 (-401 (-934 |#1|))))))) (-674 (-401 (-934 |#1|))))) (-15 -2066 ((-630 (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 |#1|))))))) (-674 (-401 (-934 |#1|)))))) (-445)) (T -286)) -((-2066 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-630 (-2 (|:| |eigval| (-3 (-401 (-934 *4)) (-1144 (-1155) (-934 *4)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-674 (-401 (-934 *4)))))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-630 (-2 (|:| |eigval| (-3 (-401 (-934 *4)) (-1144 (-1155) (-934 *4)))) (|:| |geneigvec| (-630 (-674 (-401 (-934 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-674 (-401 (-934 *4)))))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-401 (-934 *5)) (-1144 (-1155) (-934 *5)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 *4)))) (-4 *5 (-445)) (-5 *2 (-630 (-674 (-401 (-934 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-674 (-401 (-934 *5)))))) (-2944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-401 (-934 *6)) (-1144 (-1155) (-934 *6)))) (-5 *5 (-757)) (-4 *6 (-445)) (-5 *2 (-630 (-674 (-401 (-934 *6))))) (-5 *1 (-286 *6)) (-5 *4 (-674 (-401 (-934 *6)))))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-401 (-934 *5)) (-1144 (-1155) (-934 *5)))) (-4 *5 (-445)) (-5 *2 (-630 (-674 (-401 (-934 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-674 (-401 (-934 *5)))))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-674 (-401 (-934 *4)))) (-4 *4 (-445)) (-5 *2 (-630 (-3 (-401 (-934 *4)) (-1144 (-1155) (-934 *4))))) (-5 *1 (-286 *4)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-674 (-401 (-934 *4)))) (-5 *2 (-934 *4)) (-5 *1 (-286 *4)) (-4 *4 (-445)))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-401 (-934 *5)))) (-5 *4 (-1155)) (-5 *2 (-934 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445))))) -(-10 -7 (-15 -3547 ((-934 |#1|) (-674 (-401 (-934 |#1|))) (-1155))) (-15 -3547 ((-934 |#1|) (-674 (-401 (-934 |#1|))))) (-15 -2101 ((-630 (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (-674 (-401 (-934 |#1|))))) (-15 -3069 ((-630 (-674 (-401 (-934 |#1|)))) (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|))) (-674 (-401 (-934 |#1|))))) (-15 -2944 ((-630 (-674 (-401 (-934 |#1|)))) (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|))) (-674 (-401 (-934 |#1|))) (-757) (-757))) (-15 -2944 ((-630 (-674 (-401 (-934 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 |#1|)))))) (-674 (-401 (-934 |#1|))))) (-15 -1985 ((-630 (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |geneigvec| (-630 (-674 (-401 (-934 |#1|))))))) (-674 (-401 (-934 |#1|))))) (-15 -2066 ((-630 (-2 (|:| |eigval| (-3 (-401 (-934 |#1|)) (-1144 (-1155) (-934 |#1|)))) (|:| |eigmult| (-757)) (|:| |eigvec| (-630 (-674 (-401 (-934 |#1|))))))) (-674 (-401 (-934 |#1|)))))) -((-1482 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14))) -(((-287 |#1| |#2|) (-10 -7 (-15 -1482 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1192) (-1192)) (T -287)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6))))) -(-10 -7 (-15 -1482 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3769 (((-111) $) NIL (|has| |#1| (-21)))) (-3748 (($ $) 12)) (-2910 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2885 (($ $ $) 94 (|has| |#1| (-296)))) (-3820 (($) NIL (-3988 (|has| |#1| (-21)) (|has| |#1| (-712))) CONST)) (-2872 (($ $) 50 (|has| |#1| (-21)))) (-1625 (((-3 $ "failed") $) 61 (|has| |#1| (-712)))) (-1314 ((|#1| $) 11)) (-2982 (((-3 $ "failed") $) 59 (|has| |#1| (-712)))) (-1848 (((-111) $) NIL (|has| |#1| (-712)))) (-1482 (($ (-1 |#1| |#1|) $) 14)) (-1301 ((|#1| $) 10)) (-1477 (($ $) 49 (|has| |#1| (-21)))) (-1826 (((-3 $ "failed") $) 60 (|has| |#1| (-712)))) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-3610 (($ $) 63 (-3988 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-4129 (((-630 $) $) 84 (|has| |#1| (-545)))) (-2356 (($ $ $) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 $)) 28 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-1155) |#1|) 17 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 21 (|has| |#1| (-507 (-1155) |#1|)))) (-4304 (($ |#1| |#1|) 9)) (-1337 (((-132)) 89 (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) 86 (|has| |#1| (-882 (-1155))))) (-3199 (($ $ $) NIL (|has| |#1| (-466)))) (-1957 (($ $ $) NIL (|has| |#1| (-466)))) (-3110 (($ (-553)) NIL (|has| |#1| (-1031))) (((-111) $) 36 (|has| |#1| (-1079))) (((-845) $) 35 (|has| |#1| (-1079)))) (-1999 (((-757)) 66 (|has| |#1| (-1031)))) (-1988 (($) 46 (|has| |#1| (-21)) CONST)) (-1997 (($) 56 (|has| |#1| (-712)) CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155))))) (-1617 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1079)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 91 (-3988 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-1711 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1700 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-553)) NIL (|has| |#1| (-466))) (($ $ (-757)) NIL (|has| |#1| (-712))) (($ $ (-903)) NIL (|has| |#1| (-1091)))) (* (($ $ |#1|) 54 (|has| |#1| (-1091))) (($ |#1| $) 53 (|has| |#1| (-1091))) (($ $ $) 52 (|has| |#1| (-1091))) (($ (-553) $) 69 (|has| |#1| (-21))) (($ (-757) $) NIL (|has| |#1| (-21))) (($ (-903) $) NIL (|has| |#1| (-25))))) -(((-288 |#1|) (-13 (-1192) (-10 -8 (-15 -1617 ($ |#1| |#1|)) (-15 -4304 ($ |#1| |#1|)) (-15 -3748 ($ $)) (-15 -1301 (|#1| $)) (-15 -1314 (|#1| $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1155) |#1|)) (-6 (-507 (-1155) |#1|)) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-600 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -2356 ($ $ $)) (-15 -2356 ($ $ (-630 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1700 ($ |#1| $)) (-15 -1700 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1477 ($ $)) (-15 -2872 ($ $)) (-15 -1711 ($ |#1| $)) (-15 -1711 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1091)) (PROGN (-6 (-1091)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-712)) (PROGN (-6 (-712)) (-15 -1826 ((-3 $ "failed") $)) (-15 -1625 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -1826 ((-3 $ "failed") $)) (-15 -1625 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-6 (-1031)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-703 |#1|)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -4129 ((-630 $) $)) |%noBranch|) (IF (|has| |#1| (-882 (-1155))) (-6 (-882 (-1155))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1245 |#1|)) (-15 -1723 ($ $ $)) (-15 -3610 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2885 ($ $ $)) |%noBranch|))) (-1192)) (T -288)) -((-1617 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) (-4304 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) (-3748 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) (-1301 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) (-1314 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-288 *3)))) (-2356 (*1 *1 *1 *1) (-12 (-4 *2 (-303 *2)) (-4 *2 (-1079)) (-4 *2 (-1192)) (-5 *1 (-288 *2)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1079)) (-4 *3 (-1192)) (-5 *1 (-288 *3)))) (-1700 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1192)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1192)))) (-1477 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192)))) (-2872 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192)))) (-1711 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192)))) (-1711 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192)))) (-1826 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-712)) (-4 *2 (-1192)))) (-1625 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-712)) (-4 *2 (-1192)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-630 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-545)) (-4 *3 (-1192)))) (-2885 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1192)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1091)) (-4 *2 (-1192)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1091)) (-4 *2 (-1192)))) (-1723 (*1 *1 *1 *1) (-3988 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1192))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1192))))) (-3610 (*1 *1 *1) (-3988 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1192))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1192)))))) -(-13 (-1192) (-10 -8 (-15 -1617 ($ |#1| |#1|)) (-15 -4304 ($ |#1| |#1|)) (-15 -3748 ($ $)) (-15 -1301 (|#1| $)) (-15 -1314 (|#1| $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1155) |#1|)) (-6 (-507 (-1155) |#1|)) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-600 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -2356 ($ $ $)) (-15 -2356 ($ $ (-630 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1700 ($ |#1| $)) (-15 -1700 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1477 ($ $)) (-15 -2872 ($ $)) (-15 -1711 ($ |#1| $)) (-15 -1711 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1091)) (PROGN (-6 (-1091)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-712)) (PROGN (-6 (-712)) (-15 -1826 ((-3 $ "failed") $)) (-15 -1625 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -1826 ((-3 $ "failed") $)) (-15 -1625 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-6 (-1031)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-703 |#1|)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -4129 ((-630 $) $)) |%noBranch|) (IF (|has| |#1| (-882 (-1155))) (-6 (-882 (-1155))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1245 |#1|)) (-15 -1723 ($ $ $)) (-15 -3610 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2885 ($ $ $)) |%noBranch|))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#2| $ |#1| |#2|) NIL)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) NIL)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3729 (((-630 |#1|) $) NIL)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1901 (((-630 |#1|) $) NIL)) (-3594 (((-111) |#1| $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-289 |#1| |#2|) (-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) (-1079) (-1079)) (T -289)) -NIL -(-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) -((-1833 (((-306) (-1137) (-630 (-1137))) 16) (((-306) (-1137) (-1137)) 15) (((-306) (-630 (-1137))) 14) (((-306) (-1137)) 12))) -(((-290) (-10 -7 (-15 -1833 ((-306) (-1137))) (-15 -1833 ((-306) (-630 (-1137)))) (-15 -1833 ((-306) (-1137) (-1137))) (-15 -1833 ((-306) (-1137) (-630 (-1137)))))) (T -290)) -((-1833 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-1137))) (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-290)))) (-1833 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-290)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-306)) (-5 *1 (-290)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-290))))) -(-10 -7 (-15 -1833 ((-306) (-1137))) (-15 -1833 ((-306) (-630 (-1137)))) (-15 -1833 ((-306) (-1137) (-1137))) (-15 -1833 ((-306) (-1137) (-630 (-1137))))) -((-1482 ((|#2| (-1 |#2| |#1|) (-1137) (-599 |#1|)) 18))) -(((-291 |#1| |#2|) (-10 -7 (-15 -1482 (|#2| (-1 |#2| |#1|) (-1137) (-599 |#1|)))) (-296) (-1192)) (T -291)) -((-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1137)) (-5 *5 (-599 *6)) (-4 *6 (-296)) (-4 *2 (-1192)) (-5 *1 (-291 *6 *2))))) -(-10 -7 (-15 -1482 (|#2| (-1 |#2| |#1|) (-1137) (-599 |#1|)))) -((-1482 ((|#2| (-1 |#2| |#1|) (-599 |#1|)) 17))) -(((-292 |#1| |#2|) (-10 -7 (-15 -1482 (|#2| (-1 |#2| |#1|) (-599 |#1|)))) (-296) (-296)) (T -292)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-599 *5)) (-4 *5 (-296)) (-4 *2 (-296)) (-5 *1 (-292 *5 *2))))) -(-10 -7 (-15 -1482 (|#2| (-1 |#2| |#1|) (-599 |#1|)))) -((-4319 (((-111) (-220)) 10))) -(((-293 |#1| |#2|) (-10 -7 (-15 -4319 ((-111) (-220)))) (-220) (-220)) (T -293)) -((-4319 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -4319 ((-111) (-220)))) -((-3329 (((-1135 (-220)) (-310 (-220)) (-630 (-1155)) (-1073 (-826 (-220)))) 92)) (-1823 (((-1135 (-220)) (-1238 (-310 (-220))) (-630 (-1155)) (-1073 (-826 (-220)))) 106) (((-1135 (-220)) (-310 (-220)) (-630 (-1155)) (-1073 (-826 (-220)))) 61)) (-3226 (((-630 (-1137)) (-1135 (-220))) NIL)) (-4013 (((-630 (-220)) (-310 (-220)) (-1155) (-1073 (-826 (-220)))) 58)) (-3426 (((-630 (-220)) (-934 (-401 (-553))) (-1155) (-1073 (-826 (-220)))) 49)) (-3998 (((-630 (-1137)) (-630 (-220))) NIL)) (-1684 (((-220) (-1073 (-826 (-220)))) 25)) (-2073 (((-220) (-1073 (-826 (-220)))) 26)) (-1693 (((-111) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 54)) (-3314 (((-1137) (-220)) NIL))) -(((-294) (-10 -7 (-15 -1684 ((-220) (-1073 (-826 (-220))))) (-15 -2073 ((-220) (-1073 (-826 (-220))))) (-15 -1693 ((-111) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -4013 ((-630 (-220)) (-310 (-220)) (-1155) (-1073 (-826 (-220))))) (-15 -3329 ((-1135 (-220)) (-310 (-220)) (-630 (-1155)) (-1073 (-826 (-220))))) (-15 -1823 ((-1135 (-220)) (-310 (-220)) (-630 (-1155)) (-1073 (-826 (-220))))) (-15 -1823 ((-1135 (-220)) (-1238 (-310 (-220))) (-630 (-1155)) (-1073 (-826 (-220))))) (-15 -3426 ((-630 (-220)) (-934 (-401 (-553))) (-1155) (-1073 (-826 (-220))))) (-15 -3314 ((-1137) (-220))) (-15 -3998 ((-630 (-1137)) (-630 (-220)))) (-15 -3226 ((-630 (-1137)) (-1135 (-220)))))) (T -294)) -((-3226 (*1 *2 *3) (-12 (-5 *3 (-1135 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-294)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-630 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-294)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1137)) (-5 *1 (-294)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-934 (-401 (-553)))) (-5 *4 (-1155)) (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-294)))) (-1823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *4 (-630 (-1155))) (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-294)))) (-1823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-630 (-1155))) (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-294)))) (-3329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-630 (-1155))) (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-294)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1155)) (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-294)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-111)) (-5 *1 (-294)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-294))))) -(-10 -7 (-15 -1684 ((-220) (-1073 (-826 (-220))))) (-15 -2073 ((-220) (-1073 (-826 (-220))))) (-15 -1693 ((-111) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -4013 ((-630 (-220)) (-310 (-220)) (-1155) (-1073 (-826 (-220))))) (-15 -3329 ((-1135 (-220)) (-310 (-220)) (-630 (-1155)) (-1073 (-826 (-220))))) (-15 -1823 ((-1135 (-220)) (-310 (-220)) (-630 (-1155)) (-1073 (-826 (-220))))) (-15 -1823 ((-1135 (-220)) (-1238 (-310 (-220))) (-630 (-1155)) (-1073 (-826 (-220))))) (-15 -3426 ((-630 (-220)) (-934 (-401 (-553))) (-1155) (-1073 (-826 (-220))))) (-15 -3314 ((-1137) (-220))) (-15 -3998 ((-630 (-1137)) (-630 (-220)))) (-15 -3226 ((-630 (-1137)) (-1135 (-220))))) -((-3233 (((-630 (-599 $)) $) 30)) (-2885 (($ $ (-288 $)) 81) (($ $ (-630 (-288 $))) 123) (($ $ (-630 (-599 $)) (-630 $)) NIL)) (-1399 (((-3 (-599 $) "failed") $) 113)) (-2707 (((-599 $) $) 112)) (-2985 (($ $) 19) (($ (-630 $)) 56)) (-2521 (((-630 (-113)) $) 38)) (-4180 (((-113) (-113)) 91)) (-1850 (((-111) $) 131)) (-1482 (($ (-1 $ $) (-599 $)) 89)) (-1335 (((-3 (-599 $) "failed") $) 93)) (-4040 (($ (-113) $) 61) (($ (-113) (-630 $)) 100)) (-1288 (((-111) $ (-113)) 117) (((-111) $ (-1155)) 116)) (-2304 (((-757) $) 46)) (-4006 (((-111) $ $) 59) (((-111) $ (-1155)) 51)) (-3781 (((-111) $) 129)) (-2356 (($ $ (-599 $) $) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL) (($ $ (-630 (-288 $))) 121) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ $))) 84) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-1155) (-1 $ (-630 $))) 69) (($ $ (-1155) (-1 $ $)) 75) (($ $ (-630 (-113)) (-630 (-1 $ $))) 83) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) 85) (($ $ (-113) (-1 $ (-630 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-2046 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-630 $)) 109)) (-1460 (($ $) 53) (($ $ $) 119)) (-2633 (($ $) 17) (($ (-630 $)) 55)) (-2274 (((-111) (-113)) 22))) -(((-295 |#1|) (-10 -8 (-15 -1850 ((-111) |#1|)) (-15 -3781 ((-111) |#1|)) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| |#1|)))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| |#1|)))) (-15 -4006 ((-111) |#1| (-1155))) (-15 -4006 ((-111) |#1| |#1|)) (-15 -1482 (|#1| (-1 |#1| |#1|) (-599 |#1|))) (-15 -4040 (|#1| (-113) (-630 |#1|))) (-15 -4040 (|#1| (-113) |#1|)) (-15 -1288 ((-111) |#1| (-1155))) (-15 -1288 ((-111) |#1| (-113))) (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -2521 ((-630 (-113)) |#1|)) (-15 -3233 ((-630 (-599 |#1|)) |#1|)) (-15 -1335 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2304 ((-757) |#1|)) (-15 -1460 (|#1| |#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2985 (|#1| (-630 |#1|))) (-15 -2985 (|#1| |#1|)) (-15 -2633 (|#1| (-630 |#1|))) (-15 -2633 (|#1| |#1|)) (-15 -2885 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2885 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2885 (|#1| |#1| (-288 |#1|))) (-15 -2046 (|#1| (-113) (-630 |#1|))) (-15 -2046 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2356 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -1399 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2707 ((-599 |#1|) |#1|))) (-296)) (T -295)) -((-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296))))) -(-10 -8 (-15 -1850 ((-111) |#1|)) (-15 -3781 ((-111) |#1|)) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| |#1|)))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| |#1|)))) (-15 -4006 ((-111) |#1| (-1155))) (-15 -4006 ((-111) |#1| |#1|)) (-15 -1482 (|#1| (-1 |#1| |#1|) (-599 |#1|))) (-15 -4040 (|#1| (-113) (-630 |#1|))) (-15 -4040 (|#1| (-113) |#1|)) (-15 -1288 ((-111) |#1| (-1155))) (-15 -1288 ((-111) |#1| (-113))) (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -2521 ((-630 (-113)) |#1|)) (-15 -3233 ((-630 (-599 |#1|)) |#1|)) (-15 -1335 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2304 ((-757) |#1|)) (-15 -1460 (|#1| |#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2985 (|#1| (-630 |#1|))) (-15 -2985 (|#1| |#1|)) (-15 -2633 (|#1| (-630 |#1|))) (-15 -2633 (|#1| |#1|)) (-15 -2885 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2885 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2885 (|#1| |#1| (-288 |#1|))) (-15 -2046 (|#1| (-113) (-630 |#1|))) (-15 -2046 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2356 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -1399 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2707 ((-599 |#1|) |#1|))) -((-3096 (((-111) $ $) 7)) (-3233 (((-630 (-599 $)) $) 44)) (-2885 (($ $ (-288 $)) 56) (($ $ (-630 (-288 $))) 55) (($ $ (-630 (-599 $)) (-630 $)) 54)) (-1399 (((-3 (-599 $) "failed") $) 69)) (-2707 (((-599 $) $) 70)) (-2985 (($ $) 51) (($ (-630 $)) 50)) (-2521 (((-630 (-113)) $) 43)) (-4180 (((-113) (-113)) 42)) (-1850 (((-111) $) 22 (|has| $ (-1020 (-553))))) (-1629 (((-1151 $) (-599 $)) 25 (|has| $ (-1031)))) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1482 (($ (-1 $ $) (-599 $)) 36)) (-1335 (((-3 (-599 $) "failed") $) 46)) (-1735 (((-1137) $) 9)) (-3310 (((-630 (-599 $)) $) 45)) (-4040 (($ (-113) $) 38) (($ (-113) (-630 $)) 37)) (-1288 (((-111) $ (-113)) 40) (((-111) $ (-1155)) 39)) (-2304 (((-757) $) 47)) (-2786 (((-1099) $) 10)) (-4006 (((-111) $ $) 35) (((-111) $ (-1155)) 34)) (-3781 (((-111) $) 23 (|has| $ (-1020 (-553))))) (-2356 (($ $ (-599 $) $) 67) (($ $ (-630 (-599 $)) (-630 $)) 66) (($ $ (-630 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-630 $) (-630 $)) 62) (($ $ (-630 (-1155)) (-630 (-1 $ $))) 33) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) 32) (($ $ (-1155) (-1 $ (-630 $))) 31) (($ $ (-1155) (-1 $ $)) 30) (($ $ (-630 (-113)) (-630 (-1 $ $))) 29) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) 28) (($ $ (-113) (-1 $ (-630 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-2046 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-630 $)) 57)) (-1460 (($ $) 49) (($ $ $) 48)) (-1394 (($ $) 24 (|has| $ (-1031)))) (-3110 (((-845) $) 11) (($ (-599 $)) 68)) (-2633 (($ $) 53) (($ (-630 $)) 52)) (-2274 (((-111) (-113)) 41)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18))) -(((-296) (-137)) (T -296)) -((-2046 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2046 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2046 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2046 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2046 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-630 *1)) (-4 *1 (-296)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-288 *1))) (-4 *1 (-296)))) (-2885 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-599 *1))) (-5 *3 (-630 *1)) (-4 *1 (-296)))) (-2633 (*1 *1 *1) (-4 *1 (-296))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-296)))) (-2985 (*1 *1 *1) (-4 *1 (-296))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-296)))) (-1460 (*1 *1 *1) (-4 *1 (-296))) (-1460 (*1 *1 *1 *1) (-4 *1 (-296))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-757)))) (-1335 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-296)))) (-3310 (*1 *2 *1) (-12 (-5 *2 (-630 (-599 *1))) (-4 *1 (-296)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-630 (-599 *1))) (-4 *1 (-296)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-630 (-113))))) (-4180 (*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2274 (*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-1288 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-1288 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1155)) (-5 *2 (-111)))) (-4040 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-4040 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-630 *1)) (-4 *1 (-296)))) (-1482 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-599 *1)) (-4 *1 (-296)))) (-4006 (*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111)))) (-4006 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1155)) (-5 *2 (-111)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-1 *1 *1))) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-1 *1 (-630 *1)))) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1 *1 (-630 *1))) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-113))) (-5 *3 (-630 (-1 *1 *1))) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-113))) (-5 *3 (-630 (-1 *1 (-630 *1)))) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-630 *1))) (-4 *1 (-296)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1031)) (-4 *1 (-296)) (-5 *2 (-1151 *1)))) (-1394 (*1 *1 *1) (-12 (-4 *1 (-1031)) (-4 *1 (-296)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1020 (-553))) (-4 *1 (-296)) (-5 *2 (-111)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-1020 (-553))) (-4 *1 (-296)) (-5 *2 (-111))))) -(-13 (-833) (-1020 (-599 $)) (-507 (-599 $) $) (-303 $) (-10 -8 (-15 -2046 ($ (-113) $)) (-15 -2046 ($ (-113) $ $)) (-15 -2046 ($ (-113) $ $ $)) (-15 -2046 ($ (-113) $ $ $ $)) (-15 -2046 ($ (-113) (-630 $))) (-15 -2885 ($ $ (-288 $))) (-15 -2885 ($ $ (-630 (-288 $)))) (-15 -2885 ($ $ (-630 (-599 $)) (-630 $))) (-15 -2633 ($ $)) (-15 -2633 ($ (-630 $))) (-15 -2985 ($ $)) (-15 -2985 ($ (-630 $))) (-15 -1460 ($ $)) (-15 -1460 ($ $ $)) (-15 -2304 ((-757) $)) (-15 -1335 ((-3 (-599 $) "failed") $)) (-15 -3310 ((-630 (-599 $)) $)) (-15 -3233 ((-630 (-599 $)) $)) (-15 -2521 ((-630 (-113)) $)) (-15 -4180 ((-113) (-113))) (-15 -2274 ((-111) (-113))) (-15 -1288 ((-111) $ (-113))) (-15 -1288 ((-111) $ (-1155))) (-15 -4040 ($ (-113) $)) (-15 -4040 ($ (-113) (-630 $))) (-15 -1482 ($ (-1 $ $) (-599 $))) (-15 -4006 ((-111) $ $)) (-15 -4006 ((-111) $ (-1155))) (-15 -2356 ($ $ (-630 (-1155)) (-630 (-1 $ $)))) (-15 -2356 ($ $ (-630 (-1155)) (-630 (-1 $ (-630 $))))) (-15 -2356 ($ $ (-1155) (-1 $ (-630 $)))) (-15 -2356 ($ $ (-1155) (-1 $ $))) (-15 -2356 ($ $ (-630 (-113)) (-630 (-1 $ $)))) (-15 -2356 ($ $ (-630 (-113)) (-630 (-1 $ (-630 $))))) (-15 -2356 ($ $ (-113) (-1 $ (-630 $)))) (-15 -2356 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1031)) (PROGN (-15 -1629 ((-1151 $) (-599 $))) (-15 -1394 ($ $))) |%noBranch|) (IF (|has| $ (-1020 (-553))) (PROGN (-15 -3781 ((-111) $)) (-15 -1850 ((-111) $))) |%noBranch|))) -(((-101) . T) ((-603 #0=(-599 $)) . T) ((-600 (-845)) . T) ((-303 $) . T) ((-507 (-599 $) $) . T) ((-507 $ $) . T) ((-833) . T) ((-1020 #0#) . T) ((-1079) . T)) -((-2856 (((-630 |#1|) (-630 |#1|)) 10))) -(((-297 |#1|) (-10 -7 (-15 -2856 ((-630 |#1|) (-630 |#1|)))) (-831)) (T -297)) -((-2856 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-831)) (-5 *1 (-297 *3))))) -(-10 -7 (-15 -2856 ((-630 |#1|) (-630 |#1|)))) -((-1482 (((-674 |#2|) (-1 |#2| |#1|) (-674 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -1482 ((-674 |#2|) (-1 |#2| |#1|) (-674 |#1|)))) (-1031) (-1031)) (T -298)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-5 *2 (-674 *6)) (-5 *1 (-298 *5 *6))))) -(-10 -7 (-15 -1482 ((-674 |#2|) (-1 |#2| |#1|) (-674 |#1|)))) -((-3181 (((-1238 (-310 (-373))) (-1238 (-310 (-220)))) 105)) (-1857 (((-1073 (-826 (-220))) (-1073 (-826 (-373)))) 40)) (-3226 (((-630 (-1137)) (-1135 (-220))) 87)) (-3191 (((-310 (-373)) (-934 (-220))) 50)) (-3774 (((-220) (-934 (-220))) 46)) (-2067 (((-1137) (-373)) 169)) (-4243 (((-826 (-220)) (-826 (-373))) 34)) (-3854 (((-2 (|:| |additions| (-553)) (|:| |multiplications| (-553)) (|:| |exponentiations| (-553)) (|:| |functionCalls| (-553))) (-1238 (-310 (-220)))) 143)) (-3509 (((-1017) (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) 181) (((-1017) (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) 179)) (-3344 (((-674 (-220)) (-630 (-220)) (-757)) 14)) (-1442 (((-1238 (-684)) (-630 (-220))) 94)) (-3998 (((-630 (-1137)) (-630 (-220))) 75)) (-3502 (((-3 (-310 (-220)) "failed") (-310 (-220))) 120)) (-4319 (((-111) (-220) (-1073 (-826 (-220)))) 109)) (-3759 (((-1017) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) 198)) (-1684 (((-220) (-1073 (-826 (-220)))) 107)) (-2073 (((-220) (-1073 (-826 (-220)))) 108)) (-3635 (((-220) (-401 (-553))) 27)) (-3487 (((-1137) (-373)) 73)) (-2733 (((-220) (-373)) 17)) (-1729 (((-373) (-1238 (-310 (-220)))) 154)) (-3867 (((-310 (-220)) (-310 (-373))) 23)) (-2228 (((-401 (-553)) (-310 (-220))) 53)) (-4177 (((-310 (-401 (-553))) (-310 (-220))) 69)) (-1366 (((-310 (-373)) (-310 (-220))) 98)) (-1346 (((-220) (-310 (-220))) 54)) (-3708 (((-630 (-220)) (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) 64)) (-2482 (((-1073 (-826 (-220))) (-1073 (-826 (-220)))) 61)) (-3314 (((-1137) (-220)) 72)) (-1736 (((-684) (-220)) 90)) (-3686 (((-401 (-553)) (-220)) 55)) (-1291 (((-310 (-373)) (-220)) 49)) (-1524 (((-630 (-1073 (-826 (-220)))) (-630 (-1073 (-826 (-373))))) 43)) (-4325 (((-1017) (-630 (-1017))) 165) (((-1017) (-1017) (-1017)) 162)) (-2615 (((-1017) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-299) (-10 -7 (-15 -2733 ((-220) (-373))) (-15 -3867 ((-310 (-220)) (-310 (-373)))) (-15 -4243 ((-826 (-220)) (-826 (-373)))) (-15 -1857 ((-1073 (-826 (-220))) (-1073 (-826 (-373))))) (-15 -1524 ((-630 (-1073 (-826 (-220)))) (-630 (-1073 (-826 (-373)))))) (-15 -3686 ((-401 (-553)) (-220))) (-15 -2228 ((-401 (-553)) (-310 (-220)))) (-15 -1346 ((-220) (-310 (-220)))) (-15 -3502 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1729 ((-373) (-1238 (-310 (-220))))) (-15 -3854 ((-2 (|:| |additions| (-553)) (|:| |multiplications| (-553)) (|:| |exponentiations| (-553)) (|:| |functionCalls| (-553))) (-1238 (-310 (-220))))) (-15 -4177 ((-310 (-401 (-553))) (-310 (-220)))) (-15 -2482 ((-1073 (-826 (-220))) (-1073 (-826 (-220))))) (-15 -3708 ((-630 (-220)) (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) (-15 -1736 ((-684) (-220))) (-15 -1442 ((-1238 (-684)) (-630 (-220)))) (-15 -1366 ((-310 (-373)) (-310 (-220)))) (-15 -3181 ((-1238 (-310 (-373))) (-1238 (-310 (-220))))) (-15 -4319 ((-111) (-220) (-1073 (-826 (-220))))) (-15 -3314 ((-1137) (-220))) (-15 -3487 ((-1137) (-373))) (-15 -3998 ((-630 (-1137)) (-630 (-220)))) (-15 -3226 ((-630 (-1137)) (-1135 (-220)))) (-15 -1684 ((-220) (-1073 (-826 (-220))))) (-15 -2073 ((-220) (-1073 (-826 (-220))))) (-15 -4325 ((-1017) (-1017) (-1017))) (-15 -4325 ((-1017) (-630 (-1017)))) (-15 -2067 ((-1137) (-373))) (-15 -3509 ((-1017) (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))))) (-15 -3509 ((-1017) (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))))) (-15 -2615 ((-1017) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3759 ((-1017) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -3191 ((-310 (-373)) (-934 (-220)))) (-15 -3774 ((-220) (-934 (-220)))) (-15 -1291 ((-310 (-373)) (-220))) (-15 -3635 ((-220) (-401 (-553)))) (-15 -3344 ((-674 (-220)) (-630 (-220)) (-757))))) (T -299)) -((-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-220))) (-5 *4 (-757)) (-5 *2 (-674 (-220))) (-5 *1 (-299)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-401 (-553))) (-5 *2 (-220)) (-5 *1 (-299)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-934 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-934 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *2 (-1017)) (-5 *1 (-299)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1017)) (-5 *1 (-299)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) (-5 *2 (-1017)) (-5 *1 (-299)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *2 (-1017)) (-5 *1 (-299)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1137)) (-5 *1 (-299)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-630 (-1017))) (-5 *2 (-1017)) (-5 *1 (-299)))) (-4325 (*1 *2 *2 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-299)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1135 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-299)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-630 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-299)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1137)) (-5 *1 (-299)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1137)) (-5 *1 (-299)))) (-4319 (*1 *2 *3 *4) (-12 (-5 *4 (-1073 (-826 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-299)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *2 (-1238 (-310 (-373)))) (-5 *1 (-299)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-630 (-220))) (-5 *2 (-1238 (-684))) (-5 *1 (-299)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-684)) (-5 *1 (-299)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *2 (-630 (-220))) (-5 *1 (-299)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-1073 (-826 (-220)))) (-5 *1 (-299)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-553)))) (-5 *1 (-299)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *2 (-2 (|:| |additions| (-553)) (|:| |multiplications| (-553)) (|:| |exponentiations| (-553)) (|:| |functionCalls| (-553)))) (-5 *1 (-299)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299)))) (-3502 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-553))) (-5 *1 (-299)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-553))) (-5 *1 (-299)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-630 (-1073 (-826 (-373))))) (-5 *2 (-630 (-1073 (-826 (-220))))) (-5 *1 (-299)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-1073 (-826 (-373)))) (-5 *2 (-1073 (-826 (-220)))) (-5 *1 (-299)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-826 (-373))) (-5 *2 (-826 (-220))) (-5 *1 (-299)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) -(-10 -7 (-15 -2733 ((-220) (-373))) (-15 -3867 ((-310 (-220)) (-310 (-373)))) (-15 -4243 ((-826 (-220)) (-826 (-373)))) (-15 -1857 ((-1073 (-826 (-220))) (-1073 (-826 (-373))))) (-15 -1524 ((-630 (-1073 (-826 (-220)))) (-630 (-1073 (-826 (-373)))))) (-15 -3686 ((-401 (-553)) (-220))) (-15 -2228 ((-401 (-553)) (-310 (-220)))) (-15 -1346 ((-220) (-310 (-220)))) (-15 -3502 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1729 ((-373) (-1238 (-310 (-220))))) (-15 -3854 ((-2 (|:| |additions| (-553)) (|:| |multiplications| (-553)) (|:| |exponentiations| (-553)) (|:| |functionCalls| (-553))) (-1238 (-310 (-220))))) (-15 -4177 ((-310 (-401 (-553))) (-310 (-220)))) (-15 -2482 ((-1073 (-826 (-220))) (-1073 (-826 (-220))))) (-15 -3708 ((-630 (-220)) (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) (-15 -1736 ((-684) (-220))) (-15 -1442 ((-1238 (-684)) (-630 (-220)))) (-15 -1366 ((-310 (-373)) (-310 (-220)))) (-15 -3181 ((-1238 (-310 (-373))) (-1238 (-310 (-220))))) (-15 -4319 ((-111) (-220) (-1073 (-826 (-220))))) (-15 -3314 ((-1137) (-220))) (-15 -3487 ((-1137) (-373))) (-15 -3998 ((-630 (-1137)) (-630 (-220)))) (-15 -3226 ((-630 (-1137)) (-1135 (-220)))) (-15 -1684 ((-220) (-1073 (-826 (-220))))) (-15 -2073 ((-220) (-1073 (-826 (-220))))) (-15 -4325 ((-1017) (-1017) (-1017))) (-15 -4325 ((-1017) (-630 (-1017)))) (-15 -2067 ((-1137) (-373))) (-15 -3509 ((-1017) (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))))) (-15 -3509 ((-1017) (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))))) (-15 -2615 ((-1017) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3759 ((-1017) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -3191 ((-310 (-373)) (-934 (-220)))) (-15 -3774 ((-220) (-934 (-220)))) (-15 -1291 ((-310 (-373)) (-220))) (-15 -3635 ((-220) (-401 (-553)))) (-15 -3344 ((-674 (-220)) (-630 (-220)) (-757)))) -((-4349 (((-111) $ $) 11)) (-3973 (($ $ $) 15)) (-3952 (($ $ $) 14)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 44)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2508 (($ $ $) 21) (($ (-630 $)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3929 (((-3 $ "failed") $ $) 17)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 46))) -(((-300 |#1|) (-10 -8 (-15 -3046 ((-3 (-630 |#1|) "failed") (-630 |#1|) |#1|)) (-15 -2936 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4093 |#1|)) |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -4349 ((-111) |#1| |#1|)) (-15 -1572 ((-3 (-630 |#1|) "failed") (-630 |#1|) |#1|)) (-15 -1320 ((-2 (|:| -4120 (-630 |#1|)) (|:| -4093 |#1|)) (-630 |#1|))) (-15 -2508 (|#1| (-630 |#1|))) (-15 -2508 (|#1| |#1| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|))) (-301)) (T -300)) -NIL -(-10 -8 (-15 -3046 ((-3 (-630 |#1|) "failed") (-630 |#1|) |#1|)) (-15 -2936 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4093 |#1|)) |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| |#1|)) (-15 -4349 ((-111) |#1| |#1|)) (-15 -1572 ((-3 (-630 |#1|) "failed") (-630 |#1|) |#1|)) (-15 -1320 ((-2 (|:| -4120 (-630 |#1|)) (|:| -4093 |#1|)) (-630 |#1|))) (-15 -2508 (|#1| (-630 |#1|))) (-15 -2508 (|#1| |#1| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-1848 (((-111) $) 31)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-301) (-137)) (T -301)) -((-4349 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-757)))) (-4032 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-301)))) (-3952 (*1 *1 *1 *1) (-4 *1 (-301))) (-3973 (*1 *1 *1 *1) (-4 *1 (-301))) (-2936 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4093 *1))) (-4 *1 (-301)))) (-2936 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-301)))) (-3046 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-301))))) -(-13 (-902) (-10 -8 (-15 -4349 ((-111) $ $)) (-15 -3384 ((-757) $)) (-15 -4032 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3952 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -2936 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $)) (-15 -2936 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3046 ((-3 (-630 $) "failed") (-630 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-2356 (($ $ (-630 |#2|) (-630 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-630 (-288 |#2|))) NIL))) -(((-302 |#1| |#2|) (-10 -8 (-15 -2356 (|#1| |#1| (-630 (-288 |#2|)))) (-15 -2356 (|#1| |#1| (-288 |#2|))) (-15 -2356 (|#1| |#1| |#2| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#2|)))) (-303 |#2|) (-1079)) (T -302)) -NIL -(-10 -8 (-15 -2356 (|#1| |#1| (-630 (-288 |#2|)))) (-15 -2356 (|#1| |#1| (-288 |#2|))) (-15 -2356 (|#1| |#1| |#2| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#2|)))) -((-2356 (($ $ (-630 |#1|) (-630 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 11) (($ $ (-630 (-288 |#1|))) 10))) -(((-303 |#1|) (-137) (-1079)) (T -303)) -((-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1079)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1079))))) -(-13 (-507 |t#1| |t#1|) (-10 -8 (-15 -2356 ($ $ (-288 |t#1|))) (-15 -2356 ($ $ (-630 (-288 |t#1|)))))) -(((-507 |#1| |#1|) . T)) -((-2356 ((|#1| (-1 |#1| (-553)) (-1157 (-401 (-553)))) 25))) -(((-304 |#1|) (-10 -7 (-15 -2356 (|#1| (-1 |#1| (-553)) (-1157 (-401 (-553)))))) (-38 (-401 (-553)))) (T -304)) -((-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-553))) (-5 *4 (-1157 (-401 (-553)))) (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-553))))))) -(-10 -7 (-15 -2356 (|#1| (-1 |#1| (-553)) (-1157 (-401 (-553)))))) -((-3096 (((-111) $ $) NIL)) (-2402 (((-553) $) 12)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3456 (((-1114) $) 9)) (-3110 (((-845) $) 21) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-305) (-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -2402 ((-553) $))))) (T -305)) -((-3456 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-305)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-305))))) -(-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -2402 ((-553) $)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 7)) (-1617 (((-111) $ $) 9))) -(((-306) (-1079)) (T -306)) -NIL -(-1079) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 62)) (-2751 (((-1224 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-1224 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-553)))) (((-3 (-1223 |#2| |#3| |#4|) "failed") $) 25)) (-2707 (((-1224 |#1| |#2| |#3| |#4|) $) NIL) (((-1155) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-553)))) (((-553) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-553)))) (((-1223 |#2| |#3| |#4|) $) NIL)) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-1224 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1238 (-1224 |#1| |#2| |#3| |#4|)))) (-674 $) (-1238 $)) NIL) (((-674 (-1224 |#1| |#2| |#3| |#4|)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-1224 |#1| |#2| |#3| |#4|) $) 21)) (-2502 (((-3 $ "failed") $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1130)))) (-2797 (((-111) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-833)))) (-1975 (($ $ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-833)))) (-1482 (($ (-1 (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|)) $) NIL)) (-2561 (((-3 (-826 |#2|) "failed") $) 78)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-301)))) (-2334 (((-1224 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-1224 |#1| |#2| |#3| |#4|)) (-630 (-1224 |#1| |#2| |#3| |#4|))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-303 (-1224 |#1| |#2| |#3| |#4|)))) (($ $ (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-303 (-1224 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1224 |#1| |#2| |#3| |#4|))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-303 (-1224 |#1| |#2| |#3| |#4|)))) (($ $ (-630 (-288 (-1224 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-303 (-1224 |#1| |#2| |#3| |#4|)))) (($ $ (-630 (-1155)) (-630 (-1224 |#1| |#2| |#3| |#4|))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-507 (-1155) (-1224 |#1| |#2| |#3| |#4|)))) (($ $ (-1155) (-1224 |#1| |#2| |#3| |#4|)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-507 (-1155) (-1224 |#1| |#2| |#3| |#4|))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-1224 |#1| |#2| |#3| |#4|)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-280 (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-757)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1155)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-1 (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|)) (-757)) NIL) (($ $ (-1 (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-1224 |#1| |#2| |#3| |#4|) $) 17)) (-1524 (((-874 (-553)) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-601 (-529)))) (((-373) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1004))) (((-220) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-1224 |#1| |#2| |#3| |#4|) (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-1224 |#1| |#2| |#3| |#4|)) 29) (($ (-1155)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-1020 (-1155)))) (($ (-1223 |#2| |#3| |#4|)) 36)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-1224 |#1| |#2| |#3| |#4|) (-891))) (|has| (-1224 |#1| |#2| |#3| |#4|) (-142))))) (-1999 (((-757)) NIL)) (-2582 (((-1224 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-538)))) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-806)))) (-1988 (($) 41 T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-757)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1155)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-882 (-1155)))) (($ $ (-1 (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|)) (-757)) NIL) (($ $ (-1 (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-1224 |#1| |#2| |#3| |#4|) (-833)))) (-1723 (($ $ $) 34) (($ (-1224 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|)) 31)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-1224 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1224 |#1| |#2| |#3| |#4|)) NIL))) -(((-307 |#1| |#2| |#3| |#4|) (-13 (-974 (-1224 |#1| |#2| |#3| |#4|)) (-1020 (-1223 |#2| |#3| |#4|)) (-10 -8 (-15 -2561 ((-3 (-826 |#2|) "failed") $)) (-15 -3110 ($ (-1223 |#2| |#3| |#4|))))) (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445)) (-13 (-27) (-1177) (-424 |#1|)) (-1155) |#2|) (T -307)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1223 *4 *5 *6)) (-4 *4 (-13 (-27) (-1177) (-424 *3))) (-14 *5 (-1155)) (-14 *6 *4) (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) (-5 *1 (-307 *3 *4 *5 *6)))) (-2561 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) (-5 *2 (-826 *4)) (-5 *1 (-307 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1177) (-424 *3))) (-14 *5 (-1155)) (-14 *6 *4)))) -(-13 (-974 (-1224 |#1| |#2| |#3| |#4|)) (-1020 (-1223 |#2| |#3| |#4|)) (-10 -8 (-15 -2561 ((-3 (-826 |#2|) "failed") $)) (-15 -3110 ($ (-1223 |#2| |#3| |#4|))))) -((-1482 (((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)) 13))) -(((-308 |#1| |#2|) (-10 -7 (-15 -1482 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) (-833) (-833)) (T -308)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-833)) (-4 *6 (-833)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6))))) -(-10 -7 (-15 -1482 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) -((-3562 (((-52) |#2| (-288 |#2|) (-757)) 33) (((-52) |#2| (-288 |#2|)) 24) (((-52) |#2| (-757)) 28) (((-52) |#2|) 25) (((-52) (-1155)) 21)) (-1779 (((-52) |#2| (-288 |#2|) (-401 (-553))) 51) (((-52) |#2| (-288 |#2|)) 48) (((-52) |#2| (-401 (-553))) 50) (((-52) |#2|) 49) (((-52) (-1155)) 47)) (-3587 (((-52) |#2| (-288 |#2|) (-401 (-553))) 46) (((-52) |#2| (-288 |#2|)) 43) (((-52) |#2| (-401 (-553))) 45) (((-52) |#2|) 44) (((-52) (-1155)) 42)) (-3575 (((-52) |#2| (-288 |#2|) (-553)) 39) (((-52) |#2| (-288 |#2|)) 35) (((-52) |#2| (-553)) 38) (((-52) |#2|) 36) (((-52) (-1155)) 34))) -(((-309 |#1| |#2|) (-10 -7 (-15 -3562 ((-52) (-1155))) (-15 -3562 ((-52) |#2|)) (-15 -3562 ((-52) |#2| (-757))) (-15 -3562 ((-52) |#2| (-288 |#2|))) (-15 -3562 ((-52) |#2| (-288 |#2|) (-757))) (-15 -3575 ((-52) (-1155))) (-15 -3575 ((-52) |#2|)) (-15 -3575 ((-52) |#2| (-553))) (-15 -3575 ((-52) |#2| (-288 |#2|))) (-15 -3575 ((-52) |#2| (-288 |#2|) (-553))) (-15 -3587 ((-52) (-1155))) (-15 -3587 ((-52) |#2|)) (-15 -3587 ((-52) |#2| (-401 (-553)))) (-15 -3587 ((-52) |#2| (-288 |#2|))) (-15 -3587 ((-52) |#2| (-288 |#2|) (-401 (-553)))) (-15 -1779 ((-52) (-1155))) (-15 -1779 ((-52) |#2|)) (-15 -1779 ((-52) |#2| (-401 (-553)))) (-15 -1779 ((-52) |#2| (-288 |#2|))) (-15 -1779 ((-52) |#2| (-288 |#2|) (-401 (-553))))) (-13 (-445) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -309)) -((-1779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-553))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-1779 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4))))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1177) (-424 *4))))) (-3587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-553))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4))))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1177) (-424 *4))))) (-3575 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-445) (-833) (-1020 *5) (-626 *5))) (-5 *5 (-553)) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-553)) (-4 *5 (-13 (-445) (-833) (-1020 *4) (-626 *4))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4))))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1177) (-424 *4))))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-757)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-3562 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1177) (-424 *4)))))) -(-10 -7 (-15 -3562 ((-52) (-1155))) (-15 -3562 ((-52) |#2|)) (-15 -3562 ((-52) |#2| (-757))) (-15 -3562 ((-52) |#2| (-288 |#2|))) (-15 -3562 ((-52) |#2| (-288 |#2|) (-757))) (-15 -3575 ((-52) (-1155))) (-15 -3575 ((-52) |#2|)) (-15 -3575 ((-52) |#2| (-553))) (-15 -3575 ((-52) |#2| (-288 |#2|))) (-15 -3575 ((-52) |#2| (-288 |#2|) (-553))) (-15 -3587 ((-52) (-1155))) (-15 -3587 ((-52) |#2|)) (-15 -3587 ((-52) |#2| (-401 (-553)))) (-15 -3587 ((-52) |#2| (-288 |#2|))) (-15 -3587 ((-52) |#2| (-288 |#2|) (-401 (-553)))) (-15 -1779 ((-52) (-1155))) (-15 -1779 ((-52) |#2|)) (-15 -1779 ((-52) |#2| (-401 (-553)))) (-15 -1779 ((-52) |#2| (-288 |#2|))) (-15 -1779 ((-52) |#2| (-288 |#2|) (-401 (-553))))) -((-3096 (((-111) $ $) NIL)) (-3329 (((-630 $) $ (-1155)) NIL (|has| |#1| (-545))) (((-630 $) $) NIL (|has| |#1| (-545))) (((-630 $) (-1151 $) (-1155)) NIL (|has| |#1| (-545))) (((-630 $) (-1151 $)) NIL (|has| |#1| (-545))) (((-630 $) (-934 $)) NIL (|has| |#1| (-545)))) (-1299 (($ $ (-1155)) NIL (|has| |#1| (-545))) (($ $) NIL (|has| |#1| (-545))) (($ (-1151 $) (-1155)) NIL (|has| |#1| (-545))) (($ (-1151 $)) NIL (|has| |#1| (-545))) (($ (-934 $)) NIL (|has| |#1| (-545)))) (-3769 (((-111) $) 27 (-3988 (|has| |#1| (-25)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))))) (-3506 (((-630 (-1155)) $) 350)) (-3322 (((-401 (-1151 $)) $ (-599 $)) NIL (|has| |#1| (-545)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-3233 (((-630 (-599 $)) $) NIL)) (-2380 (($ $) 159 (|has| |#1| (-545)))) (-2246 (($ $) 135 (|has| |#1| (-545)))) (-3795 (($ $ (-1071 $)) 220 (|has| |#1| (-545))) (($ $ (-1155)) 216 (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) NIL (-3988 (|has| |#1| (-21)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))))) (-2885 (($ $ (-288 $)) NIL) (($ $ (-630 (-288 $))) 367) (($ $ (-630 (-599 $)) (-630 $)) 411)) (-1393 (((-412 (-1151 $)) (-1151 $)) 294 (-12 (|has| |#1| (-445)) (|has| |#1| (-545))))) (-1536 (($ $) NIL (|has| |#1| (-545)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-545)))) (-3365 (($ $) NIL (|has| |#1| (-545)))) (-4349 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2357 (($ $) 155 (|has| |#1| (-545)))) (-2224 (($ $) 131 (|has| |#1| (-545)))) (-3787 (($ $ (-553)) 69 (|has| |#1| (-545)))) (-2403 (($ $) 163 (|has| |#1| (-545)))) (-2268 (($ $) 139 (|has| |#1| (-545)))) (-3820 (($) NIL (-3988 (|has| |#1| (-25)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091))) CONST)) (-2851 (((-630 $) $ (-1155)) NIL (|has| |#1| (-545))) (((-630 $) $) NIL (|has| |#1| (-545))) (((-630 $) (-1151 $) (-1155)) NIL (|has| |#1| (-545))) (((-630 $) (-1151 $)) NIL (|has| |#1| (-545))) (((-630 $) (-934 $)) NIL (|has| |#1| (-545)))) (-3906 (($ $ (-1155)) NIL (|has| |#1| (-545))) (($ $) NIL (|has| |#1| (-545))) (($ (-1151 $) (-1155)) 122 (|has| |#1| (-545))) (($ (-1151 $)) NIL (|has| |#1| (-545))) (($ (-934 $)) NIL (|has| |#1| (-545)))) (-1399 (((-3 (-599 $) "failed") $) 17) (((-3 (-1155) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-934 |#1|)) "failed") $) NIL (|has| |#1| (-545))) (((-3 (-934 |#1|) "failed") $) NIL (|has| |#1| (-1031))) (((-3 (-401 (-553)) "failed") $) 46 (-3988 (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-2707 (((-599 $) $) 11) (((-1155) $) NIL) ((|#1| $) 402) (((-48) $) NIL (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-934 |#1|)) $) NIL (|has| |#1| (-545))) (((-934 |#1|) $) NIL (|has| |#1| (-1031))) (((-401 (-553)) $) 305 (-3988 (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-3973 (($ $ $) NIL (|has| |#1| (-545)))) (-2077 (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 115 (|has| |#1| (-1031))) (((-674 |#1|) (-674 $)) 105 (|has| |#1| (-1031))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))) (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))))) (-2654 (($ $) 87 (|has| |#1| (-545)))) (-2982 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091))))) (-3952 (($ $ $) NIL (|has| |#1| (-545)))) (-3087 (($ $ (-1071 $)) 224 (|has| |#1| (-545))) (($ $ (-1155)) 222 (|has| |#1| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-545)))) (-3119 (((-111) $) NIL (|has| |#1| (-545)))) (-2391 (($ $ $) 190 (|has| |#1| (-545)))) (-3996 (($) 125 (|has| |#1| (-545)))) (-2340 (($ $ $) 210 (|has| |#1| (-545)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 373 (|has| |#1| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 380 (|has| |#1| (-868 (-373))))) (-2985 (($ $) NIL) (($ (-630 $)) NIL)) (-2521 (((-630 (-113)) $) NIL)) (-4180 (((-113) (-113)) 265)) (-1848 (((-111) $) 25 (-3988 (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091))))) (-1850 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-2181 (($ $) 68 (|has| |#1| (-1031)))) (-3963 (((-1104 |#1| (-599 $)) $) 82 (|has| |#1| (-1031)))) (-3740 (((-111) $) 61 (|has| |#1| (-545)))) (-2406 (($ $ (-553)) NIL (|has| |#1| (-545)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-545)))) (-1629 (((-1151 $) (-599 $)) 266 (|has| $ (-1031)))) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 $ $) (-599 $)) 407)) (-1335 (((-3 (-599 $) "failed") $) NIL)) (-2366 (($ $) 129 (|has| |#1| (-545)))) (-2445 (($ $) 235 (|has| |#1| (-545)))) (-2471 (($ (-630 $)) NIL (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-1735 (((-1137) $) NIL)) (-3310 (((-630 (-599 $)) $) 49)) (-4040 (($ (-113) $) NIL) (($ (-113) (-630 $)) 412)) (-2411 (((-3 (-630 $) "failed") $) NIL (|has| |#1| (-1091)))) (-1500 (((-3 (-2 (|:| |val| $) (|:| -2692 (-553))) "failed") $) NIL (|has| |#1| (-1031)))) (-2201 (((-3 (-630 $) "failed") $) 415 (|has| |#1| (-25)))) (-3648 (((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 $))) "failed") $) 419 (|has| |#1| (-25)))) (-3107 (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $) NIL (|has| |#1| (-1091))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-113)) NIL (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-1155)) NIL (|has| |#1| (-1031)))) (-1288 (((-111) $ (-113)) NIL) (((-111) $ (-1155)) 53)) (-3610 (($ $) NIL (-3988 (|has| |#1| (-466)) (|has| |#1| (-545))))) (-3144 (($ $ (-1155)) 239 (|has| |#1| (-545))) (($ $ (-1071 $)) 241 (|has| |#1| (-545)))) (-2304 (((-757) $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) 43)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 287 (|has| |#1| (-545)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-4006 (((-111) $ $) NIL) (((-111) $ (-1155)) NIL)) (-3017 (($ $ (-1155)) 214 (|has| |#1| (-545))) (($ $) 212 (|has| |#1| (-545)))) (-3757 (($ $) 206 (|has| |#1| (-545)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 292 (-12 (|has| |#1| (-445)) (|has| |#1| (-545))))) (-3355 (((-412 $) $) NIL (|has| |#1| (-545)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-545))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-545)))) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-545)))) (-2743 (($ $) 127 (|has| |#1| (-545)))) (-3781 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-2356 (($ $ (-599 $) $) NIL) (($ $ (-630 (-599 $)) (-630 $)) 406) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-1155) (-1 $ (-630 $))) NIL) (($ $ (-1155) (-1 $ $)) NIL) (($ $ (-630 (-113)) (-630 (-1 $ $))) 360) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-113) (-1 $ (-630 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1155)) NIL (|has| |#1| (-601 (-529)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-601 (-529)))) (($ $) NIL (|has| |#1| (-601 (-529)))) (($ $ (-113) $ (-1155)) 348 (|has| |#1| (-601 (-529)))) (($ $ (-630 (-113)) (-630 $) (-1155)) 347 (|has| |#1| (-601 (-529)))) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ $))) NIL (|has| |#1| (-1031))) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ (-630 $)))) NIL (|has| |#1| (-1031))) (($ $ (-1155) (-757) (-1 $ (-630 $))) NIL (|has| |#1| (-1031))) (($ $ (-1155) (-757) (-1 $ $)) NIL (|has| |#1| (-1031)))) (-3384 (((-757) $) NIL (|has| |#1| (-545)))) (-2183 (($ $) 227 (|has| |#1| (-545)))) (-2046 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-630 $)) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-1460 (($ $) NIL) (($ $ $) NIL)) (-2214 (($ $) 237 (|has| |#1| (-545)))) (-1599 (($ $) 188 (|has| |#1| (-545)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-1031))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-1031))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-1031))) (($ $ (-1155)) NIL (|has| |#1| (-1031)))) (-3161 (($ $) 70 (|has| |#1| (-545)))) (-3974 (((-1104 |#1| (-599 $)) $) 84 (|has| |#1| (-545)))) (-1394 (($ $) 303 (|has| $ (-1031)))) (-2414 (($ $) 165 (|has| |#1| (-545)))) (-2279 (($ $) 141 (|has| |#1| (-545)))) (-2392 (($ $) 161 (|has| |#1| (-545)))) (-2257 (($ $) 137 (|has| |#1| (-545)))) (-2368 (($ $) 157 (|has| |#1| (-545)))) (-2234 (($ $) 133 (|has| |#1| (-545)))) (-1524 (((-874 (-553)) $) NIL (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| |#1| (-601 (-874 (-373))))) (($ (-412 $)) NIL (|has| |#1| (-545))) (((-529) $) 345 (|has| |#1| (-601 (-529))))) (-3199 (($ $ $) NIL (|has| |#1| (-466)))) (-1957 (($ $ $) NIL (|has| |#1| (-466)))) (-3110 (((-845) $) 405) (($ (-599 $)) 396) (($ (-1155)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-545))) (($ (-48)) 298 (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553))))) (($ (-1104 |#1| (-599 $))) 86 (|has| |#1| (-1031))) (($ (-401 |#1|)) NIL (|has| |#1| (-545))) (($ (-934 (-401 |#1|))) NIL (|has| |#1| (-545))) (($ (-401 (-934 (-401 |#1|)))) NIL (|has| |#1| (-545))) (($ (-401 (-934 |#1|))) NIL (|has| |#1| (-545))) (($ (-934 |#1|)) NIL (|has| |#1| (-1031))) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-545)) (|has| |#1| (-1020 (-401 (-553)))))) (($ (-553)) 34 (-3988 (|has| |#1| (-1020 (-553))) (|has| |#1| (-1031))))) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL (|has| |#1| (-1031)))) (-2633 (($ $) NIL) (($ (-630 $)) NIL)) (-1737 (($ $ $) 208 (|has| |#1| (-545)))) (-2624 (($ $ $) 194 (|has| |#1| (-545)))) (-1966 (($ $ $) 198 (|has| |#1| (-545)))) (-2534 (($ $ $) 192 (|has| |#1| (-545)))) (-3039 (($ $ $) 196 (|has| |#1| (-545)))) (-2274 (((-111) (-113)) 9)) (-2447 (($ $) 171 (|has| |#1| (-545)))) (-2313 (($ $) 147 (|has| |#1| (-545)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) 167 (|has| |#1| (-545)))) (-2291 (($ $) 143 (|has| |#1| (-545)))) (-3791 (($ $) 175 (|has| |#1| (-545)))) (-2336 (($ $) 151 (|has| |#1| (-545)))) (-3823 (($ (-1155) $) NIL) (($ (-1155) $ $) NIL) (($ (-1155) $ $ $) NIL) (($ (-1155) $ $ $ $) NIL) (($ (-1155) (-630 $)) NIL)) (-3660 (($ $) 202 (|has| |#1| (-545)))) (-1643 (($ $) 200 (|has| |#1| (-545)))) (-2570 (($ $) 177 (|has| |#1| (-545)))) (-2346 (($ $) 153 (|has| |#1| (-545)))) (-3780 (($ $) 173 (|has| |#1| (-545)))) (-2324 (($ $) 149 (|has| |#1| (-545)))) (-2435 (($ $) 169 (|has| |#1| (-545)))) (-2302 (($ $) 145 (|has| |#1| (-545)))) (-3466 (($ $) 180 (|has| |#1| (-545)))) (-1988 (($) 20 (-3988 (|has| |#1| (-25)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))) CONST)) (-3327 (($ $) 231 (|has| |#1| (-545)))) (-1997 (($) 22 (-3988 (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091))) CONST)) (-3595 (($ $) 182 (|has| |#1| (-545))) (($ $ $) 184 (|has| |#1| (-545)))) (-1741 (($ $) 229 (|has| |#1| (-545)))) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-1031))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-1031))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-1031))) (($ $ (-1155)) NIL (|has| |#1| (-1031)))) (-2029 (($ $) 233 (|has| |#1| (-545)))) (-3536 (($ $ $) 186 (|has| |#1| (-545)))) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 79)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 78)) (-1723 (($ (-1104 |#1| (-599 $)) (-1104 |#1| (-599 $))) 96 (|has| |#1| (-545))) (($ $ $) 42 (-3988 (|has| |#1| (-466)) (|has| |#1| (-545))))) (-1711 (($ $ $) 40 (-3988 (|has| |#1| (-21)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))))) (($ $) 29 (-3988 (|has| |#1| (-21)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))))) (-1700 (($ $ $) 38 (-3988 (|has| |#1| (-25)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))))) (** (($ $ $) 63 (|has| |#1| (-545))) (($ $ (-401 (-553))) 300 (|has| |#1| (-545))) (($ $ (-553)) 74 (-3988 (|has| |#1| (-466)) (|has| |#1| (-545)))) (($ $ (-757)) 71 (-3988 (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091)))) (($ $ (-903)) 76 (-3988 (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091))))) (* (($ (-401 (-553)) $) NIL (|has| |#1| (-545))) (($ $ (-401 (-553))) NIL (|has| |#1| (-545))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-3988 (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) (|has| |#1| (-1091)))) (($ (-553) $) 32 (-3988 (|has| |#1| (-21)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))))) (($ (-757) $) NIL (-3988 (|has| |#1| (-25)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))))) (($ (-903) $) NIL (-3988 (|has| |#1| (-25)) (-12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))))))) -(((-310 |#1|) (-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-545)) (PROGN (-6 (-29 |#1|)) (-6 (-1177)) (-6 (-157)) (-6 (-616)) (-6 (-1118)) (-15 -2654 ($ $)) (-15 -3740 ((-111) $)) (-15 -3787 ($ $ (-553))) (IF (|has| |#1| (-445)) (PROGN (-15 -1834 ((-412 (-1151 $)) (-1151 $))) (-15 -1393 ((-412 (-1151 $)) (-1151 $)))) |%noBranch|) (IF (|has| |#1| (-1020 (-553))) (-6 (-1020 (-48))) |%noBranch|)) |%noBranch|))) (-833)) (T -310)) -((-2654 (*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-545)) (-4 *2 (-833)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-545)) (-4 *3 (-833)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-310 *3)) (-4 *3 (-545)) (-4 *3 (-833)))) (-1834 (*1 *2 *3) (-12 (-5 *2 (-412 (-1151 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1151 *1)) (-4 *4 (-445)) (-4 *4 (-545)) (-4 *4 (-833)))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-412 (-1151 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1151 *1)) (-4 *4 (-445)) (-4 *4 (-545)) (-4 *4 (-833))))) -(-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-545)) (PROGN (-6 (-29 |#1|)) (-6 (-1177)) (-6 (-157)) (-6 (-616)) (-6 (-1118)) (-15 -2654 ($ $)) (-15 -3740 ((-111) $)) (-15 -3787 ($ $ (-553))) (IF (|has| |#1| (-445)) (PROGN (-15 -1834 ((-412 (-1151 $)) (-1151 $))) (-15 -1393 ((-412 (-1151 $)) (-1151 $)))) |%noBranch|) (IF (|has| |#1| (-1020 (-553))) (-6 (-1020 (-48))) |%noBranch|)) |%noBranch|))) -((-2779 (((-52) |#2| (-113) (-288 |#2|) (-630 |#2|)) 88) (((-52) |#2| (-113) (-288 |#2|) (-288 |#2|)) 84) (((-52) |#2| (-113) (-288 |#2|) |#2|) 86) (((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|) 87) (((-52) (-630 |#2|) (-630 (-113)) (-288 |#2|) (-630 (-288 |#2|))) 80) (((-52) (-630 |#2|) (-630 (-113)) (-288 |#2|) (-630 |#2|)) 82) (((-52) (-630 (-288 |#2|)) (-630 (-113)) (-288 |#2|) (-630 |#2|)) 83) (((-52) (-630 (-288 |#2|)) (-630 (-113)) (-288 |#2|) (-630 (-288 |#2|))) 81) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-630 |#2|)) 89) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|)) 85))) -(((-311 |#1| |#2|) (-10 -7 (-15 -2779 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -2779 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-630 |#2|))) (-15 -2779 ((-52) (-630 (-288 |#2|)) (-630 (-113)) (-288 |#2|) (-630 (-288 |#2|)))) (-15 -2779 ((-52) (-630 (-288 |#2|)) (-630 (-113)) (-288 |#2|) (-630 |#2|))) (-15 -2779 ((-52) (-630 |#2|) (-630 (-113)) (-288 |#2|) (-630 |#2|))) (-15 -2779 ((-52) (-630 |#2|) (-630 (-113)) (-288 |#2|) (-630 (-288 |#2|)))) (-15 -2779 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -2779 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -2779 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -2779 ((-52) |#2| (-113) (-288 |#2|) (-630 |#2|)))) (-13 (-833) (-545) (-601 (-529))) (-424 |#1|)) (T -311)) -((-2779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-630 *3)) (-4 *3 (-424 *7)) (-4 *7 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *3)))) (-2779 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-2779 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-2779 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *5)))) (-2779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 (-113))) (-5 *6 (-630 (-288 *8))) (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-2779 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-630 *7)) (-5 *4 (-630 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-2779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 (-288 *8))) (-5 *4 (-630 (-113))) (-5 *5 (-288 *8)) (-5 *6 (-630 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-2779 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-630 (-288 *7))) (-5 *4 (-630 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-2779 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-630 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-2779 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) (-4 *5 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) (-5 *1 (-311 *5 *6))))) -(-10 -7 (-15 -2779 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -2779 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-630 |#2|))) (-15 -2779 ((-52) (-630 (-288 |#2|)) (-630 (-113)) (-288 |#2|) (-630 (-288 |#2|)))) (-15 -2779 ((-52) (-630 (-288 |#2|)) (-630 (-113)) (-288 |#2|) (-630 |#2|))) (-15 -2779 ((-52) (-630 |#2|) (-630 (-113)) (-288 |#2|) (-630 |#2|))) (-15 -2779 ((-52) (-630 |#2|) (-630 (-113)) (-288 |#2|) (-630 (-288 |#2|)))) (-15 -2779 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -2779 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -2779 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -2779 ((-52) |#2| (-113) (-288 |#2|) (-630 |#2|)))) -((-2568 (((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-220) (-553) (-1137)) 46) (((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-220) (-553)) 47) (((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-1 (-220) (-220)) (-553) (-1137)) 43) (((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-1 (-220) (-220)) (-553)) 44)) (-1370 (((-1 (-220) (-220)) (-220)) 45))) -(((-312) (-10 -7 (-15 -1370 ((-1 (-220) (-220)) (-220))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-1 (-220) (-220)) (-553))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-1 (-220) (-220)) (-553) (-1137))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-220) (-553))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-220) (-553) (-1137))))) (T -312)) -((-2568 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1073 (-220))) (-5 *6 (-220)) (-5 *7 (-553)) (-5 *8 (-1137)) (-5 *2 (-1187 (-908))) (-5 *1 (-312)))) (-2568 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1073 (-220))) (-5 *6 (-220)) (-5 *7 (-553)) (-5 *2 (-1187 (-908))) (-5 *1 (-312)))) (-2568 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1073 (-220))) (-5 *6 (-553)) (-5 *7 (-1137)) (-5 *2 (-1187 (-908))) (-5 *1 (-312)))) (-2568 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1073 (-220))) (-5 *6 (-553)) (-5 *2 (-1187 (-908))) (-5 *1 (-312)))) (-1370 (*1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) -(-10 -7 (-15 -1370 ((-1 (-220) (-220)) (-220))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-1 (-220) (-220)) (-553))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-1 (-220) (-220)) (-553) (-1137))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-220) (-553))) (-15 -2568 ((-1187 (-908)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-220) (-553) (-1137)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 25)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) NIL) (($ $ (-401 (-553)) (-401 (-553))) NIL)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) 20)) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) 32)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) NIL) (((-401 (-553)) $ (-401 (-553))) 16)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) NIL) (($ $ (-401 (-553))) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-401 (-553))) NIL) (($ $ (-1061) (-401 (-553))) NIL) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-3406 (($ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177)))))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) NIL)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1716 (((-401 (-553)) $) 17)) (-3901 (($ (-1223 |#1| |#2| |#3|)) 11)) (-2692 (((-1223 |#1| |#2| |#3|) $) 12)) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) NIL) (($ $ $) NIL (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-3872 (((-401 (-553)) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 10)) (-3110 (((-845) $) 38) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) 30)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) NIL)) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 27)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 33)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-313 |#1| |#2| |#3|) (-13 (-1219 |#1|) (-778) (-10 -8 (-15 -3901 ($ (-1223 |#1| |#2| |#3|))) (-15 -2692 ((-1223 |#1| |#2| |#3|) $)) (-15 -1716 ((-401 (-553)) $)))) (-13 (-357) (-833)) (-1155) |#1|) (T -313)) -((-3901 (*1 *1 *2) (-12 (-5 *2 (-1223 *3 *4 *5)) (-4 *3 (-13 (-357) (-833))) (-14 *4 (-1155)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-833))) (-14 *4 (-1155)) (-14 *5 *3))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-833))) (-14 *4 (-1155)) (-14 *5 *3)))) -(-13 (-1219 |#1|) (-778) (-10 -8 (-15 -3901 ($ (-1223 |#1| |#2| |#3|))) (-15 -2692 ((-1223 |#1| |#2| |#3|) $)) (-15 -1716 ((-401 (-553)) $)))) -((-2406 (((-2 (|:| -2692 (-757)) (|:| -4120 |#1|) (|:| |radicand| (-630 |#1|))) (-412 |#1|) (-757)) 24)) (-2366 (((-630 (-2 (|:| -4120 (-757)) (|:| |logand| |#1|))) (-412 |#1|)) 28))) -(((-314 |#1|) (-10 -7 (-15 -2406 ((-2 (|:| -2692 (-757)) (|:| -4120 |#1|) (|:| |radicand| (-630 |#1|))) (-412 |#1|) (-757))) (-15 -2366 ((-630 (-2 (|:| -4120 (-757)) (|:| |logand| |#1|))) (-412 |#1|)))) (-545)) (T -314)) -((-2366 (*1 *2 *3) (-12 (-5 *3 (-412 *4)) (-4 *4 (-545)) (-5 *2 (-630 (-2 (|:| -4120 (-757)) (|:| |logand| *4)))) (-5 *1 (-314 *4)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *5)) (-4 *5 (-545)) (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *5) (|:| |radicand| (-630 *5)))) (-5 *1 (-314 *5)) (-5 *4 (-757))))) -(-10 -7 (-15 -2406 ((-2 (|:| -2692 (-757)) (|:| -4120 |#1|) (|:| |radicand| (-630 |#1|))) (-412 |#1|) (-757))) (-15 -2366 ((-630 (-2 (|:| -4120 (-757)) (|:| |logand| |#1|))) (-412 |#1|)))) -((-3506 (((-630 |#2|) (-1151 |#4|)) 43)) (-3943 ((|#3| (-553)) 46)) (-2003 (((-1151 |#4|) (-1151 |#3|)) 30)) (-4266 (((-1151 |#4|) (-1151 |#4|) (-553)) 56)) (-1579 (((-1151 |#3|) (-1151 |#4|)) 21)) (-3872 (((-630 (-757)) (-1151 |#4|) (-630 |#2|)) 40)) (-3042 (((-1151 |#3|) (-1151 |#4|) (-630 |#2|) (-630 |#3|)) 35))) -(((-315 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3042 ((-1151 |#3|) (-1151 |#4|) (-630 |#2|) (-630 |#3|))) (-15 -3872 ((-630 (-757)) (-1151 |#4|) (-630 |#2|))) (-15 -3506 ((-630 |#2|) (-1151 |#4|))) (-15 -1579 ((-1151 |#3|) (-1151 |#4|))) (-15 -2003 ((-1151 |#4|) (-1151 |#3|))) (-15 -4266 ((-1151 |#4|) (-1151 |#4|) (-553))) (-15 -3943 (|#3| (-553)))) (-779) (-833) (-1031) (-931 |#3| |#1| |#2|)) (T -315)) -((-3943 (*1 *2 *3) (-12 (-5 *3 (-553)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1031)) (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-931 *2 *4 *5)))) (-4266 (*1 *2 *2 *3) (-12 (-5 *2 (-1151 *7)) (-5 *3 (-553)) (-4 *7 (-931 *6 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-5 *1 (-315 *4 *5 *6 *7)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-1151 *6)) (-4 *6 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-1151 *7)) (-5 *1 (-315 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1151 *7)) (-4 *7 (-931 *6 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-5 *2 (-1151 *6)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1151 *7)) (-4 *7 (-931 *6 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-5 *2 (-630 *5)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *8)) (-5 *4 (-630 *6)) (-4 *6 (-833)) (-4 *8 (-931 *7 *5 *6)) (-4 *5 (-779)) (-4 *7 (-1031)) (-5 *2 (-630 (-757))) (-5 *1 (-315 *5 *6 *7 *8)))) (-3042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1151 *9)) (-5 *4 (-630 *7)) (-5 *5 (-630 *8)) (-4 *7 (-833)) (-4 *8 (-1031)) (-4 *9 (-931 *8 *6 *7)) (-4 *6 (-779)) (-5 *2 (-1151 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) -(-10 -7 (-15 -3042 ((-1151 |#3|) (-1151 |#4|) (-630 |#2|) (-630 |#3|))) (-15 -3872 ((-630 (-757)) (-1151 |#4|) (-630 |#2|))) (-15 -3506 ((-630 |#2|) (-1151 |#4|))) (-15 -1579 ((-1151 |#3|) (-1151 |#4|))) (-15 -2003 ((-1151 |#4|) (-1151 |#3|))) (-15 -4266 ((-1151 |#4|) (-1151 |#4|) (-553))) (-15 -3943 (|#3| (-553)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 14)) (-2140 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-553)))) $) 18)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2571 (((-757) $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-3111 ((|#1| $ (-553)) NIL)) (-2776 (((-553) $ (-553)) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-3589 (($ (-1 |#1| |#1|) $) NIL)) (-2894 (($ (-1 (-553) (-553)) $) 10)) (-1735 (((-1137) $) NIL)) (-2460 (($ $ $) NIL (|has| (-553) (-778)))) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL) (($ |#1|) NIL)) (-1624 (((-553) |#1| $) NIL)) (-1988 (($) 15 T CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) 21 (|has| |#1| (-833)))) (-1711 (($ $) 11) (($ $ $) 20)) (-1700 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ (-553)) NIL) (($ (-553) |#1|) 19))) -(((-316 |#1|) (-13 (-21) (-703 (-553)) (-317 |#1| (-553)) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-1079)) (T -316)) -NIL -(-13 (-21) (-703 (-553)) (-317 |#1| (-553)) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2140 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))) $) 27)) (-2910 (((-3 $ "failed") $ $) 19)) (-2571 (((-757) $) 28)) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 32)) (-2707 ((|#1| $) 33)) (-3111 ((|#1| $ (-553)) 25)) (-2776 ((|#2| $ (-553)) 26)) (-3589 (($ (-1 |#1| |#1|) $) 22)) (-2894 (($ (-1 |#2| |#2|) $) 23)) (-1735 (((-1137) $) 9)) (-2460 (($ $ $) 21 (|has| |#2| (-778)))) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ |#1|) 31)) (-1624 ((|#2| |#1| $) 24)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1700 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ |#2| |#1|) 29))) -(((-317 |#1| |#2|) (-137) (-1079) (-129)) (T -317)) -((-1700 (*1 *1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-129)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-129)) (-5 *2 (-757)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-129)) (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 *4)))))) (-2776 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-129)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1079)))) (-1624 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-129)))) (-2894 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-129)))) (-3589 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-129)))) (-2460 (*1 *1 *1 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-129)) (-4 *3 (-778))))) -(-13 (-129) (-1020 |t#1|) (-10 -8 (-15 -1700 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2571 ((-757) $)) (-15 -2140 ((-630 (-2 (|:| |gen| |t#1|) (|:| -2743 |t#2|))) $)) (-15 -2776 (|t#2| $ (-553))) (-15 -3111 (|t#1| $ (-553))) (-15 -1624 (|t#2| |t#1| $)) (-15 -2894 ($ (-1 |t#2| |t#2|) $)) (-15 -3589 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-778)) (-15 -2460 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-1020 |#1|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2140 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2571 (((-757) $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-3111 ((|#1| $ (-553)) NIL)) (-2776 (((-757) $ (-553)) NIL)) (-3589 (($ (-1 |#1| |#1|) $) NIL)) (-2894 (($ (-1 (-757) (-757)) $) NIL)) (-1735 (((-1137) $) NIL)) (-2460 (($ $ $) NIL (|has| (-757) (-778)))) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL) (($ |#1|) NIL)) (-1624 (((-757) |#1| $) NIL)) (-1988 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1700 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-757) |#1|) NIL))) -(((-318 |#1|) (-317 |#1| (-757)) (-1079)) (T -318)) -NIL -(-317 |#1| (-757)) -((-1655 (($ $) 53)) (-2686 (($ $ |#2| |#3| $) 14)) (-2241 (($ (-1 |#3| |#3|) $) 33)) (-3623 (((-111) $) 24)) (-3633 ((|#2| $) 26)) (-3929 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-4198 ((|#2| $) 49)) (-3987 (((-630 |#2|) $) 36)) (-2599 (($ $ $ (-757)) 20)) (-1723 (($ $ |#2|) 40))) -(((-319 |#1| |#2| |#3|) (-10 -8 (-15 -1655 (|#1| |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2599 (|#1| |#1| |#1| (-757))) (-15 -2686 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2241 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3987 ((-630 |#2|) |#1|)) (-15 -3633 (|#2| |#1|)) (-15 -3623 ((-111) |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1723 (|#1| |#1| |#2|))) (-320 |#2| |#3|) (-1031) (-778)) (T -319)) -NIL -(-10 -8 (-15 -1655 (|#1| |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2599 (|#1| |#1| |#1| (-757))) (-15 -2686 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2241 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3987 ((-630 |#2|) |#1|)) (-15 -3633 (|#2| |#1|)) (-15 -3623 ((-111) |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1723 (|#1| |#1| |#2|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 91 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 89 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 86)) (-2707 (((-553) $) 90 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 88 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 87)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-1655 (($ $) 75 (|has| |#1| (-445)))) (-2686 (($ $ |#1| |#2| $) 79)) (-1848 (((-111) $) 31)) (-1984 (((-757) $) 82)) (-1298 (((-111) $) 65)) (-3481 (($ |#1| |#2|) 64)) (-2423 ((|#2| $) 81)) (-2241 (($ (-1 |#2| |#2|) $) 80)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3623 (((-111) $) 85)) (-3633 ((|#1| $) 84)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-545)))) (-3872 ((|#2| $) 67)) (-4198 ((|#1| $) 76 (|has| |#1| (-445)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 52 (|has| |#1| (-545))) (($ |#1|) 50) (($ (-401 (-553))) 60 (-3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))))) (-3987 (((-630 |#1|) $) 83)) (-1624 ((|#1| $ |#2|) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-2599 (($ $ $ (-757)) 78 (|has| |#1| (-169)))) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-320 |#1| |#2|) (-137) (-1031) (-778)) (T -320)) -((-3623 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-5 *2 (-111)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-5 *2 (-630 *3)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-5 *2 (-757)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-2241 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)))) (-2686 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) (-2599 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-4 *3 (-169)))) (-3929 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)) (-4 *2 (-545)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)) (-4 *2 (-445)))) (-1655 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)) (-4 *2 (-445))))) -(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -3623 ((-111) $)) (-15 -3633 (|t#1| $)) (-15 -3987 ((-630 |t#1|) $)) (-15 -1984 ((-757) $)) (-15 -2423 (|t#2| $)) (-15 -2241 ($ (-1 |t#2| |t#2|) $)) (-15 -2686 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -2599 ($ $ $ (-757))) |%noBranch|) (IF (|has| |t#1| (-545)) (-15 -3929 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -4198 (|t#1| $)) (-15 -1655 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-284) |has| |#1| (-545)) ((-405 |#1|) . T) ((-545) |has| |#1| (-545)) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) . T) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-2576 (((-111) (-111)) NIL)) (-1490 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) |#1|) $) NIL)) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2873 (($ $) NIL (|has| |#1| (-1079)))) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) NIL (|has| |#1| (-1079))) (($ (-1 (-111) |#1|) $) NIL)) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-2301 (($ $ (-553)) NIL)) (-2673 (((-757) $) NIL)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1750 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2636 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-1575 (($ (-630 |#1|)) NIL)) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-3231 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-2269 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-321 |#1|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -1575 ($ (-630 |#1|))) (-15 -2673 ((-757) $)) (-15 -2301 ($ $ (-553))) (-15 -2576 ((-111) (-111))))) (-1192)) (T -321)) -((-1575 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-321 *3)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-321 *3)) (-4 *3 (-1192)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-321 *3)) (-4 *3 (-1192)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1192))))) -(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -1575 ($ (-630 |#1|))) (-15 -2673 ((-757) $)) (-15 -2301 ($ $ (-553))) (-15 -2576 ((-111) (-111))))) -((-1446 (((-111) $) 42)) (-2276 (((-757)) 22)) (-1576 ((|#2| $) 46) (($ $ (-903)) 101)) (-2571 (((-757)) 102)) (-3461 (($ (-1238 |#2|)) 20)) (-2574 (((-111) $) 115)) (-3560 ((|#2| $) 48) (($ $ (-903)) 99)) (-3568 (((-1151 |#2|) $) NIL) (((-1151 $) $ (-903)) 95)) (-3194 (((-1151 |#2|) $) 82)) (-3540 (((-1151 |#2|) $) 79) (((-3 (-1151 |#2|) "failed") $ $) 76)) (-4036 (($ $ (-1151 |#2|)) 53)) (-4043 (((-819 (-903))) 28) (((-903)) 43)) (-1337 (((-132)) 25)) (-3872 (((-819 (-903)) $) 30) (((-903) $) 117)) (-3407 (($) 108)) (-2855 (((-1238 |#2|) $) NIL) (((-674 |#2|) (-1238 $)) 39)) (-2941 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4223 (((-111) $) 41))) -(((-322 |#1| |#2|) (-10 -8 (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -2571 ((-757))) (-15 -2941 (|#1| |#1|)) (-15 -3540 ((-3 (-1151 |#2|) "failed") |#1| |#1|)) (-15 -3540 ((-1151 |#2|) |#1|)) (-15 -3194 ((-1151 |#2|) |#1|)) (-15 -4036 (|#1| |#1| (-1151 |#2|))) (-15 -2574 ((-111) |#1|)) (-15 -3407 (|#1|)) (-15 -1576 (|#1| |#1| (-903))) (-15 -3560 (|#1| |#1| (-903))) (-15 -3568 ((-1151 |#1|) |#1| (-903))) (-15 -1576 (|#2| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -3872 ((-903) |#1|)) (-15 -4043 ((-903))) (-15 -3568 ((-1151 |#2|) |#1|)) (-15 -3461 (|#1| (-1238 |#2|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -2276 ((-757))) (-15 -4043 ((-819 (-903)))) (-15 -3872 ((-819 (-903)) |#1|)) (-15 -1446 ((-111) |#1|)) (-15 -4223 ((-111) |#1|)) (-15 -1337 ((-132)))) (-323 |#2|) (-357)) (T -322)) -((-1337 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-4043 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-819 (-903))) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-2276 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-757)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-4043 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-903)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-2571 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-757)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4))))) -(-10 -8 (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -2571 ((-757))) (-15 -2941 (|#1| |#1|)) (-15 -3540 ((-3 (-1151 |#2|) "failed") |#1| |#1|)) (-15 -3540 ((-1151 |#2|) |#1|)) (-15 -3194 ((-1151 |#2|) |#1|)) (-15 -4036 (|#1| |#1| (-1151 |#2|))) (-15 -2574 ((-111) |#1|)) (-15 -3407 (|#1|)) (-15 -1576 (|#1| |#1| (-903))) (-15 -3560 (|#1| |#1| (-903))) (-15 -3568 ((-1151 |#1|) |#1| (-903))) (-15 -1576 (|#2| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -3872 ((-903) |#1|)) (-15 -4043 ((-903))) (-15 -3568 ((-1151 |#2|) |#1|)) (-15 -3461 (|#1| (-1238 |#2|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -2276 ((-757))) (-15 -4043 ((-819 (-903)))) (-15 -3872 ((-819 (-903)) |#1|)) (-15 -1446 ((-111) |#1|)) (-15 -4223 ((-111) |#1|)) (-15 -1337 ((-132)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-1446 (((-111) $) 95)) (-2276 (((-757)) 91)) (-1576 ((|#1| $) 141) (($ $ (-903)) 138 (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) 123 (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-4349 (((-111) $ $) 60)) (-2571 (((-757)) 113 (|has| |#1| (-362)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 102)) (-2707 ((|#1| $) 103)) (-3461 (($ (-1238 |#1|)) 147)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-362)))) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3031 (($) 110 (|has| |#1| (-362)))) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-2484 (($) 125 (|has| |#1| (-362)))) (-3637 (((-111) $) 126 (|has| |#1| (-362)))) (-1808 (($ $ (-757)) 88 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 87 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) 72)) (-2968 (((-903) $) 128 (|has| |#1| (-362))) (((-819 (-903)) $) 85 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) 31)) (-2157 (($) 136 (|has| |#1| (-362)))) (-2574 (((-111) $) 135 (|has| |#1| (-362)))) (-3560 ((|#1| $) 142) (($ $ (-903)) 139 (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) 114 (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-3568 (((-1151 |#1|) $) 146) (((-1151 $) $ (-903)) 140 (|has| |#1| (-362)))) (-3796 (((-903) $) 111 (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) 132 (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) 131 (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) 130 (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) 133 (|has| |#1| (-362)))) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-1945 (($) 115 (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) 112 (|has| |#1| (-362)))) (-1657 (((-111) $) 94)) (-2786 (((-1099) $) 10)) (-4093 (($) 134 (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 122 (|has| |#1| (-362)))) (-3355 (((-412 $) $) 75)) (-4043 (((-819 (-903))) 92) (((-903)) 144)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3122 (((-757) $) 127 (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) 86 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) 100)) (-1330 (($ $) 119 (|has| |#1| (-362))) (($ $ (-757)) 117 (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) 93) (((-903) $) 143)) (-1394 (((-1151 |#1|)) 145)) (-1469 (($) 124 (|has| |#1| (-362)))) (-3407 (($) 137 (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) 149) (((-674 |#1|) (-1238 $)) 148)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 121 (|has| |#1| (-362)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67) (($ |#1|) 101)) (-2941 (($ $) 120 (|has| |#1| (-362))) (((-3 $ "failed") $) 84 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) 28)) (-4124 (((-1238 $)) 151) (((-1238 $) (-903)) 150)) (-1639 (((-111) $ $) 40)) (-4223 (((-111) $) 96)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1950 (($ $) 90 (|has| |#1| (-362))) (($ $ (-757)) 89 (|has| |#1| (-362)))) (-1780 (($ $) 118 (|has| |#1| (-362))) (($ $ (-757)) 116 (|has| |#1| (-362)))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 66) (($ $ |#1|) 99)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-323 |#1|) (-137) (-357)) (T -323)) -((-4124 (*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1238 *1)) (-4 *1 (-323 *3)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-903)) (-4 *4 (-357)) (-5 *2 (-1238 *1)) (-4 *1 (-323 *4)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1238 *3)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) (-5 *2 (-674 *4)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1151 *3)))) (-1394 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1151 *3)))) (-4043 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-903)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-903)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (-903)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1151 *1)) (-4 *1 (-323 *4)))) (-3560 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-3407 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2157 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) (-4093 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) (-4 *3 (-357)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1151 *3)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1151 *3)))) (-3540 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1151 *3))))) -(-13 (-1257 |t#1|) (-1020 |t#1|) (-10 -8 (-15 -4124 ((-1238 $))) (-15 -4124 ((-1238 $) (-903))) (-15 -2855 ((-1238 |t#1|) $)) (-15 -2855 ((-674 |t#1|) (-1238 $))) (-15 -3461 ($ (-1238 |t#1|))) (-15 -3568 ((-1151 |t#1|) $)) (-15 -1394 ((-1151 |t#1|))) (-15 -4043 ((-903))) (-15 -3872 ((-903) $)) (-15 -3560 (|t#1| $)) (-15 -1576 (|t#1| $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-343)) (-15 -3568 ((-1151 $) $ (-903))) (-15 -3560 ($ $ (-903))) (-15 -1576 ($ $ (-903))) (-15 -3407 ($)) (-15 -2157 ($)) (-15 -2574 ((-111) $)) (-15 -4093 ($)) (-15 -4036 ($ $ (-1151 |t#1|))) (-15 -3194 ((-1151 |t#1|) $)) (-15 -3540 ((-1151 |t#1|) $)) (-15 -3540 ((-3 (-1151 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -3988 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-228) |has| |#1| (-362)) ((-238) . T) ((-284) . T) ((-301) . T) ((-1257 |#1|) . T) ((-357) . T) ((-396) -3988 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-362) |has| |#1| (-362)) ((-343) |has| |#1| (-362)) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 |#1|) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1020 |#1|) . T) ((-1037 #0#) . T) ((-1037 |#1|) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) |has| |#1| (-362)) ((-1196) . T) ((-1245 |#1|) . T)) -((-3096 (((-111) $ $) NIL)) (-2004 (($ (-1154) $) 88)) (-2235 (($) 77)) (-2928 (((-1099) (-1099)) 11)) (-3142 (($) 78)) (-2658 (($) 90) (($ (-310 (-684))) 98) (($ (-310 (-686))) 94) (($ (-310 (-679))) 102) (($ (-310 (-373))) 109) (($ (-310 (-553))) 105) (($ (-310 (-166 (-373)))) 113)) (-3047 (($ (-1154) $) 89)) (-1306 (($ (-630 (-845))) 79)) (-2258 (((-1243) $) 75)) (-1387 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2713 (($ (-1099)) 51)) (-3140 (((-1083) $) 25)) (-2645 (($ (-1071 (-934 (-553))) $) 85) (($ (-1071 (-934 (-553))) (-934 (-553)) $) 86)) (-4076 (($ (-1099)) 87)) (-1462 (($ (-1154) $) 115) (($ (-1154) $ $) 116)) (-1751 (($ (-1155) (-630 (-1155))) 76)) (-3311 (($ (-1137)) 82) (($ (-630 (-1137))) 80)) (-3110 (((-845) $) 118)) (-2106 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1155)) (|:| |arrayIndex| (-630 (-934 (-553)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1155)) (|:| |rand| (-845)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1154)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3586 (-111)) (|:| -2821 (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |blockBranch| (-630 $)) (|:| |commentBranch| (-630 (-1137))) (|:| |callBranch| (-1137)) (|:| |forBranch| (-2 (|:| -1457 (-1071 (-934 (-553)))) (|:| |span| (-934 (-553))) (|:| -4310 $))) (|:| |labelBranch| (-1099)) (|:| |loopBranch| (-2 (|:| |switch| (-1154)) (|:| -4310 $))) (|:| |commonBranch| (-2 (|:| -4298 (-1155)) (|:| |contents| (-630 (-1155))))) (|:| |printBranch| (-630 (-845)))) $) 44)) (-1485 (($ (-1137)) 187)) (-1755 (($ (-630 $)) 114)) (-2607 (($ (-1155) (-1137)) 120) (($ (-1155) (-310 (-686))) 160) (($ (-1155) (-310 (-684))) 161) (($ (-1155) (-310 (-679))) 162) (($ (-1155) (-674 (-686))) 123) (($ (-1155) (-674 (-684))) 126) (($ (-1155) (-674 (-679))) 129) (($ (-1155) (-1238 (-686))) 132) (($ (-1155) (-1238 (-684))) 135) (($ (-1155) (-1238 (-679))) 138) (($ (-1155) (-674 (-310 (-686)))) 141) (($ (-1155) (-674 (-310 (-684)))) 144) (($ (-1155) (-674 (-310 (-679)))) 147) (($ (-1155) (-1238 (-310 (-686)))) 150) (($ (-1155) (-1238 (-310 (-684)))) 153) (($ (-1155) (-1238 (-310 (-679)))) 156) (($ (-1155) (-630 (-934 (-553))) (-310 (-686))) 157) (($ (-1155) (-630 (-934 (-553))) (-310 (-684))) 158) (($ (-1155) (-630 (-934 (-553))) (-310 (-679))) 159) (($ (-1155) (-310 (-553))) 184) (($ (-1155) (-310 (-373))) 185) (($ (-1155) (-310 (-166 (-373)))) 186) (($ (-1155) (-674 (-310 (-553)))) 165) (($ (-1155) (-674 (-310 (-373)))) 168) (($ (-1155) (-674 (-310 (-166 (-373))))) 171) (($ (-1155) (-1238 (-310 (-553)))) 174) (($ (-1155) (-1238 (-310 (-373)))) 177) (($ (-1155) (-1238 (-310 (-166 (-373))))) 180) (($ (-1155) (-630 (-934 (-553))) (-310 (-553))) 181) (($ (-1155) (-630 (-934 (-553))) (-310 (-373))) 182) (($ (-1155) (-630 (-934 (-553))) (-310 (-166 (-373)))) 183)) (-1617 (((-111) $ $) NIL))) -(((-324) (-13 (-1079) (-10 -8 (-15 -2645 ($ (-1071 (-934 (-553))) $)) (-15 -2645 ($ (-1071 (-934 (-553))) (-934 (-553)) $)) (-15 -2004 ($ (-1154) $)) (-15 -3047 ($ (-1154) $)) (-15 -2713 ($ (-1099))) (-15 -4076 ($ (-1099))) (-15 -3311 ($ (-1137))) (-15 -3311 ($ (-630 (-1137)))) (-15 -1485 ($ (-1137))) (-15 -2658 ($)) (-15 -2658 ($ (-310 (-684)))) (-15 -2658 ($ (-310 (-686)))) (-15 -2658 ($ (-310 (-679)))) (-15 -2658 ($ (-310 (-373)))) (-15 -2658 ($ (-310 (-553)))) (-15 -2658 ($ (-310 (-166 (-373))))) (-15 -1462 ($ (-1154) $)) (-15 -1462 ($ (-1154) $ $)) (-15 -2607 ($ (-1155) (-1137))) (-15 -2607 ($ (-1155) (-310 (-686)))) (-15 -2607 ($ (-1155) (-310 (-684)))) (-15 -2607 ($ (-1155) (-310 (-679)))) (-15 -2607 ($ (-1155) (-674 (-686)))) (-15 -2607 ($ (-1155) (-674 (-684)))) (-15 -2607 ($ (-1155) (-674 (-679)))) (-15 -2607 ($ (-1155) (-1238 (-686)))) (-15 -2607 ($ (-1155) (-1238 (-684)))) (-15 -2607 ($ (-1155) (-1238 (-679)))) (-15 -2607 ($ (-1155) (-674 (-310 (-686))))) (-15 -2607 ($ (-1155) (-674 (-310 (-684))))) (-15 -2607 ($ (-1155) (-674 (-310 (-679))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-686))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-684))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-679))))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-686)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-684)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-679)))) (-15 -2607 ($ (-1155) (-310 (-553)))) (-15 -2607 ($ (-1155) (-310 (-373)))) (-15 -2607 ($ (-1155) (-310 (-166 (-373))))) (-15 -2607 ($ (-1155) (-674 (-310 (-553))))) (-15 -2607 ($ (-1155) (-674 (-310 (-373))))) (-15 -2607 ($ (-1155) (-674 (-310 (-166 (-373)))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-553))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-373))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-166 (-373)))))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-553)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-373)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-166 (-373))))) (-15 -1755 ($ (-630 $))) (-15 -2235 ($)) (-15 -3142 ($)) (-15 -1306 ($ (-630 (-845)))) (-15 -1751 ($ (-1155) (-630 (-1155)))) (-15 -1387 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2106 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1155)) (|:| |arrayIndex| (-630 (-934 (-553)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1155)) (|:| |rand| (-845)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1154)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3586 (-111)) (|:| -2821 (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |blockBranch| (-630 $)) (|:| |commentBranch| (-630 (-1137))) (|:| |callBranch| (-1137)) (|:| |forBranch| (-2 (|:| -1457 (-1071 (-934 (-553)))) (|:| |span| (-934 (-553))) (|:| -4310 $))) (|:| |labelBranch| (-1099)) (|:| |loopBranch| (-2 (|:| |switch| (-1154)) (|:| -4310 $))) (|:| |commonBranch| (-2 (|:| -4298 (-1155)) (|:| |contents| (-630 (-1155))))) (|:| |printBranch| (-630 (-845)))) $)) (-15 -2258 ((-1243) $)) (-15 -3140 ((-1083) $)) (-15 -2928 ((-1099) (-1099)))))) (T -324)) -((-2645 (*1 *1 *2 *1) (-12 (-5 *2 (-1071 (-934 (-553)))) (-5 *1 (-324)))) (-2645 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1071 (-934 (-553)))) (-5 *3 (-934 (-553))) (-5 *1 (-324)))) (-2004 (*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) (-3047 (*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) (-2713 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-324)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-324)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-324)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-324)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-324)))) (-2658 (*1 *1) (-5 *1 (-324))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-310 (-684))) (-5 *1 (-324)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-310 (-686))) (-5 *1 (-324)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-310 (-679))) (-5 *1 (-324)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-310 (-553))) (-5 *1 (-324)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-1462 (*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) (-1462 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1137)) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-686))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-684))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-679))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-686))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-684))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-679))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-686))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-684))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-679))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-686)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-684)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-679)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-686)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-684)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-679)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-310 (-686))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-310 (-684))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-310 (-679))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-553))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-553)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-373)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-553)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-373)))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-310 (-553))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-310 (-373))) (-5 *1 (-324)))) (-2607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-5 *1 (-324)))) (-2235 (*1 *1) (-5 *1 (-324))) (-3142 (*1 *1) (-5 *1 (-324))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-324)))) (-1751 (*1 *1 *2 *3) (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1155)) (-5 *1 (-324)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-324)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1155)) (|:| |arrayIndex| (-630 (-934 (-553)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1155)) (|:| |rand| (-845)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1154)) (|:| |thenClause| (-324)) (|:| |elseClause| (-324)))) (|:| |returnBranch| (-2 (|:| -3586 (-111)) (|:| -2821 (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |blockBranch| (-630 (-324))) (|:| |commentBranch| (-630 (-1137))) (|:| |callBranch| (-1137)) (|:| |forBranch| (-2 (|:| -1457 (-1071 (-934 (-553)))) (|:| |span| (-934 (-553))) (|:| -4310 (-324)))) (|:| |labelBranch| (-1099)) (|:| |loopBranch| (-2 (|:| |switch| (-1154)) (|:| -4310 (-324)))) (|:| |commonBranch| (-2 (|:| -4298 (-1155)) (|:| |contents| (-630 (-1155))))) (|:| |printBranch| (-630 (-845))))) (-5 *1 (-324)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-324)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-324)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-324))))) -(-13 (-1079) (-10 -8 (-15 -2645 ($ (-1071 (-934 (-553))) $)) (-15 -2645 ($ (-1071 (-934 (-553))) (-934 (-553)) $)) (-15 -2004 ($ (-1154) $)) (-15 -3047 ($ (-1154) $)) (-15 -2713 ($ (-1099))) (-15 -4076 ($ (-1099))) (-15 -3311 ($ (-1137))) (-15 -3311 ($ (-630 (-1137)))) (-15 -1485 ($ (-1137))) (-15 -2658 ($)) (-15 -2658 ($ (-310 (-684)))) (-15 -2658 ($ (-310 (-686)))) (-15 -2658 ($ (-310 (-679)))) (-15 -2658 ($ (-310 (-373)))) (-15 -2658 ($ (-310 (-553)))) (-15 -2658 ($ (-310 (-166 (-373))))) (-15 -1462 ($ (-1154) $)) (-15 -1462 ($ (-1154) $ $)) (-15 -2607 ($ (-1155) (-1137))) (-15 -2607 ($ (-1155) (-310 (-686)))) (-15 -2607 ($ (-1155) (-310 (-684)))) (-15 -2607 ($ (-1155) (-310 (-679)))) (-15 -2607 ($ (-1155) (-674 (-686)))) (-15 -2607 ($ (-1155) (-674 (-684)))) (-15 -2607 ($ (-1155) (-674 (-679)))) (-15 -2607 ($ (-1155) (-1238 (-686)))) (-15 -2607 ($ (-1155) (-1238 (-684)))) (-15 -2607 ($ (-1155) (-1238 (-679)))) (-15 -2607 ($ (-1155) (-674 (-310 (-686))))) (-15 -2607 ($ (-1155) (-674 (-310 (-684))))) (-15 -2607 ($ (-1155) (-674 (-310 (-679))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-686))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-684))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-679))))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-686)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-684)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-679)))) (-15 -2607 ($ (-1155) (-310 (-553)))) (-15 -2607 ($ (-1155) (-310 (-373)))) (-15 -2607 ($ (-1155) (-310 (-166 (-373))))) (-15 -2607 ($ (-1155) (-674 (-310 (-553))))) (-15 -2607 ($ (-1155) (-674 (-310 (-373))))) (-15 -2607 ($ (-1155) (-674 (-310 (-166 (-373)))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-553))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-373))))) (-15 -2607 ($ (-1155) (-1238 (-310 (-166 (-373)))))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-553)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-373)))) (-15 -2607 ($ (-1155) (-630 (-934 (-553))) (-310 (-166 (-373))))) (-15 -1755 ($ (-630 $))) (-15 -2235 ($)) (-15 -3142 ($)) (-15 -1306 ($ (-630 (-845)))) (-15 -1751 ($ (-1155) (-630 (-1155)))) (-15 -1387 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2106 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1155)) (|:| |arrayIndex| (-630 (-934 (-553)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1155)) (|:| |rand| (-845)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1154)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3586 (-111)) (|:| -2821 (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) (|:| |blockBranch| (-630 $)) (|:| |commentBranch| (-630 (-1137))) (|:| |callBranch| (-1137)) (|:| |forBranch| (-2 (|:| -1457 (-1071 (-934 (-553)))) (|:| |span| (-934 (-553))) (|:| -4310 $))) (|:| |labelBranch| (-1099)) (|:| |loopBranch| (-2 (|:| |switch| (-1154)) (|:| -4310 $))) (|:| |commonBranch| (-2 (|:| -4298 (-1155)) (|:| |contents| (-630 (-1155))))) (|:| |printBranch| (-630 (-845)))) $)) (-15 -2258 ((-1243) $)) (-15 -3140 ((-1083) $)) (-15 -2928 ((-1099) (-1099))))) -((-3096 (((-111) $ $) NIL)) (-2021 (((-111) $) 11)) (-2224 (($ |#1|) 8)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2234 (($ |#1|) 9)) (-3110 (((-845) $) 17)) (-3928 ((|#1| $) 12)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 19))) -(((-325 |#1|) (-13 (-833) (-10 -8 (-15 -2224 ($ |#1|)) (-15 -2234 ($ |#1|)) (-15 -2021 ((-111) $)) (-15 -3928 (|#1| $)))) (-833)) (T -325)) -((-2224 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-833)))) (-2234 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-833)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-833)))) (-3928 (*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-833))))) -(-13 (-833) (-10 -8 (-15 -2224 ($ |#1|)) (-15 -2234 ($ |#1|)) (-15 -2021 ((-111) $)) (-15 -3928 (|#1| $)))) -((-2277 (((-324) (-1155) (-934 (-553))) 23)) (-1913 (((-324) (-1155) (-934 (-553))) 27)) (-1364 (((-324) (-1155) (-1071 (-934 (-553))) (-1071 (-934 (-553)))) 26) (((-324) (-1155) (-934 (-553)) (-934 (-553))) 24)) (-2716 (((-324) (-1155) (-934 (-553))) 31))) -(((-326) (-10 -7 (-15 -2277 ((-324) (-1155) (-934 (-553)))) (-15 -1364 ((-324) (-1155) (-934 (-553)) (-934 (-553)))) (-15 -1364 ((-324) (-1155) (-1071 (-934 (-553))) (-1071 (-934 (-553))))) (-15 -1913 ((-324) (-1155) (-934 (-553)))) (-15 -2716 ((-324) (-1155) (-934 (-553)))))) (T -326)) -((-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) (-5 *1 (-326)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) (-5 *1 (-326)))) (-1364 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-1071 (-934 (-553)))) (-5 *2 (-324)) (-5 *1 (-326)))) (-1364 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) (-5 *1 (-326)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) (-5 *1 (-326))))) -(-10 -7 (-15 -2277 ((-324) (-1155) (-934 (-553)))) (-15 -1364 ((-324) (-1155) (-934 (-553)) (-934 (-553)))) (-15 -1364 ((-324) (-1155) (-1071 (-934 (-553))) (-1071 (-934 (-553))))) (-15 -1913 ((-324) (-1155) (-934 (-553)))) (-15 -2716 ((-324) (-1155) (-934 (-553))))) -((-1482 (((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)) 33))) -(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1482 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-357) (-1214 |#5|) (-1214 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -327)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *9 (-357)) (-4 *10 (-1214 *9)) (-4 *11 (-1214 (-401 *10))) (-5 *2 (-330 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-336 *9 *10 *11))))) -(-10 -7 (-15 -1482 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) -((-3498 (((-111) $) 14))) -(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3498 ((-111) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-357) (-1214 |#2|) (-1214 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -328)) -NIL -(-10 -8 (-15 -3498 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2654 (($ $) 26)) (-3498 (((-111) $) 25)) (-1735 (((-1137) $) 9)) (-1773 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 32)) (-2786 (((-1099) $) 10)) (-4093 (((-3 |#4| "failed") $) 24)) (-2270 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-553)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2075 (((-2 (|:| -3168 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20))) -(((-329 |#1| |#2| |#3| |#4|) (-137) (-357) (-1214 |t#1|) (-1214 (-401 |t#2|)) (-336 |t#1| |t#2| |t#3|)) (T -329)) -((-1773 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-407 *4 (-401 *4) *5 *6)))) (-2270 (*1 *1 *2) (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) (-4 *1 (-329 *3 *4 *5 *6)))) (-2270 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) (-2270 (*1 *1 *2 *2) (-12 (-4 *2 (-357)) (-4 *3 (-1214 *2)) (-4 *4 (-1214 (-401 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) (-2270 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-553)) (-4 *2 (-357)) (-4 *4 (-1214 *2)) (-4 *5 (-1214 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-336 *2 *4 *5)))) (-2075 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-2 (|:| -3168 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) (-2654 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1214 *2)) (-4 *4 (-1214 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111)))) (-4093 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *2 (-336 *3 *4 *5)))) (-2270 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-357)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 (-401 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1773 ((-407 |t#2| (-401 |t#2|) |t#3| |t#4|) $)) (-15 -2270 ($ (-407 |t#2| (-401 |t#2|) |t#3| |t#4|))) (-15 -2270 ($ |t#4|)) (-15 -2270 ($ |t#1| |t#1|)) (-15 -2270 ($ |t#1| |t#1| (-553))) (-15 -2075 ((-2 (|:| -3168 (-407 |t#2| (-401 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2654 ($ $)) (-15 -3498 ((-111) $)) (-15 -4093 ((-3 |t#4| "failed") $)) (-15 -2270 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2654 (($ $) 33)) (-3498 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-2182 (((-1238 |#4|) $) 125)) (-1773 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 31)) (-2786 (((-1099) $) NIL)) (-4093 (((-3 |#4| "failed") $) 36)) (-2476 (((-1238 |#4|) $) 118)) (-2270 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-553)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2075 (((-2 (|:| -3168 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3110 (((-845) $) 17)) (-1988 (($) 14 T CONST)) (-1617 (((-111) $ $) 20)) (-1711 (($ $) 27) (($ $ $) NIL)) (-1700 (($ $ $) 25)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 23))) -(((-330 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2476 ((-1238 |#4|) $)) (-15 -2182 ((-1238 |#4|) $)))) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -330)) -((-2476 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-1238 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5)))) (-2182 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-1238 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5))))) -(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2476 ((-1238 |#4|) $)) (-15 -2182 ((-1238 |#4|) $)))) -((-2356 (($ $ (-1155) |#2|) NIL) (($ $ (-630 (-1155)) (-630 |#2|)) 20) (($ $ (-630 (-288 |#2|))) 15) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-630 |#2|) (-630 |#2|)) NIL)) (-2046 (($ $ |#2|) 11))) -(((-331 |#1| |#2|) (-10 -8 (-15 -2046 (|#1| |#1| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#2| |#2|)) (-15 -2356 (|#1| |#1| (-288 |#2|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#2|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 |#2|))) (-15 -2356 (|#1| |#1| (-1155) |#2|))) (-332 |#2|) (-1079)) (T -331)) -NIL -(-10 -8 (-15 -2046 (|#1| |#1| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#2| |#2|)) (-15 -2356 (|#1| |#1| (-288 |#2|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#2|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 |#2|))) (-15 -2356 (|#1| |#1| (-1155) |#2|))) -((-1482 (($ (-1 |#1| |#1|) $) 6)) (-2356 (($ $ (-1155) |#1|) 17 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 16 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-630 (-288 |#1|))) 15 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 14 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-303 |#1|))) (($ $ (-630 |#1|) (-630 |#1|)) 12 (|has| |#1| (-303 |#1|)))) (-2046 (($ $ |#1|) 11 (|has| |#1| (-280 |#1| |#1|))))) -(((-332 |#1|) (-137) (-1079)) (T -332)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1079))))) -(-13 (-10 -8 (-15 -1482 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-280 |t#1| |t#1|)) (-6 (-280 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-507 (-1155) |t#1|)) (-6 (-507 (-1155) |t#1|)) |%noBranch|))) -(((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-507 (-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-303 |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1155)) $) NIL)) (-3938 (((-111)) 91) (((-111) (-111)) 92)) (-3233 (((-630 (-599 $)) $) NIL)) (-2380 (($ $) NIL)) (-2246 (($ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $ (-288 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL)) (-3365 (($ $) NIL)) (-2357 (($ $) NIL)) (-2224 (($ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-599 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-310 |#3|)) 71) (((-3 $ "failed") (-1155)) 97) (((-3 $ "failed") (-310 (-553))) 59 (|has| |#3| (-1020 (-553)))) (((-3 $ "failed") (-401 (-934 (-553)))) 65 (|has| |#3| (-1020 (-553)))) (((-3 $ "failed") (-934 (-553))) 60 (|has| |#3| (-1020 (-553)))) (((-3 $ "failed") (-310 (-373))) 89 (|has| |#3| (-1020 (-373)))) (((-3 $ "failed") (-401 (-934 (-373)))) 83 (|has| |#3| (-1020 (-373)))) (((-3 $ "failed") (-934 (-373))) 78 (|has| |#3| (-1020 (-373))))) (-2707 (((-599 $) $) NIL) ((|#3| $) NIL) (($ (-310 |#3|)) 72) (($ (-1155)) 98) (($ (-310 (-553))) 61 (|has| |#3| (-1020 (-553)))) (($ (-401 (-934 (-553)))) 66 (|has| |#3| (-1020 (-553)))) (($ (-934 (-553))) 62 (|has| |#3| (-1020 (-553)))) (($ (-310 (-373))) 90 (|has| |#3| (-1020 (-373)))) (($ (-401 (-934 (-373)))) 84 (|has| |#3| (-1020 (-373)))) (($ (-934 (-373))) 80 (|has| |#3| (-1020 (-373))))) (-2982 (((-3 $ "failed") $) NIL)) (-3996 (($) 10)) (-2985 (($ $) NIL) (($ (-630 $)) NIL)) (-2521 (((-630 (-113)) $) NIL)) (-4180 (((-113) (-113)) NIL)) (-1848 (((-111) $) NIL)) (-1850 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-1629 (((-1151 $) (-599 $)) NIL (|has| $ (-1031)))) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 $ $) (-599 $)) NIL)) (-1335 (((-3 (-599 $) "failed") $) NIL)) (-4055 (($ $) 94)) (-2366 (($ $) NIL)) (-1735 (((-1137) $) NIL)) (-3310 (((-630 (-599 $)) $) NIL)) (-4040 (($ (-113) $) 93) (($ (-113) (-630 $)) NIL)) (-1288 (((-111) $ (-113)) NIL) (((-111) $ (-1155)) NIL)) (-2304 (((-757) $) NIL)) (-2786 (((-1099) $) NIL)) (-4006 (((-111) $ $) NIL) (((-111) $ (-1155)) NIL)) (-2743 (($ $) NIL)) (-3781 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-2356 (($ $ (-599 $) $) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-1155) (-1 $ (-630 $))) NIL) (($ $ (-1155) (-1 $ $)) NIL) (($ $ (-630 (-113)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-113) (-1 $ (-630 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-2046 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-630 $)) NIL)) (-1460 (($ $) NIL) (($ $ $) NIL)) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL)) (-1394 (($ $) NIL (|has| $ (-1031)))) (-2368 (($ $) NIL)) (-2234 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-599 $)) NIL) (($ |#3|) NIL) (($ (-553)) NIL) (((-310 |#3|) $) 96)) (-1999 (((-757)) NIL)) (-2633 (($ $) NIL) (($ (-630 $)) NIL)) (-2274 (((-111) (-113)) NIL)) (-2313 (($ $) NIL)) (-2291 (($ $) NIL)) (-2302 (($ $) NIL)) (-3466 (($ $) NIL)) (-1988 (($) 95 T CONST)) (-1997 (($) 24 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL) (($ $ (-903)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-553) $) NIL) (($ (-757) $) NIL) (($ (-903) $) NIL))) -(((-333 |#1| |#2| |#3|) (-13 (-296) (-38 |#3|) (-1020 |#3|) (-882 (-1155)) (-10 -8 (-15 -2707 ($ (-310 |#3|))) (-15 -1399 ((-3 $ "failed") (-310 |#3|))) (-15 -2707 ($ (-1155))) (-15 -1399 ((-3 $ "failed") (-1155))) (-15 -3110 ((-310 |#3|) $)) (IF (|has| |#3| (-1020 (-553))) (PROGN (-15 -2707 ($ (-310 (-553)))) (-15 -1399 ((-3 $ "failed") (-310 (-553)))) (-15 -2707 ($ (-401 (-934 (-553))))) (-15 -1399 ((-3 $ "failed") (-401 (-934 (-553))))) (-15 -2707 ($ (-934 (-553)))) (-15 -1399 ((-3 $ "failed") (-934 (-553))))) |%noBranch|) (IF (|has| |#3| (-1020 (-373))) (PROGN (-15 -2707 ($ (-310 (-373)))) (-15 -1399 ((-3 $ "failed") (-310 (-373)))) (-15 -2707 ($ (-401 (-934 (-373))))) (-15 -1399 ((-3 $ "failed") (-401 (-934 (-373))))) (-15 -2707 ($ (-934 (-373)))) (-15 -1399 ((-3 $ "failed") (-934 (-373))))) |%noBranch|) (-15 -3466 ($ $)) (-15 -3365 ($ $)) (-15 -2743 ($ $)) (-15 -2366 ($ $)) (-15 -4055 ($ $)) (-15 -2224 ($ $)) (-15 -2234 ($ $)) (-15 -2246 ($ $)) (-15 -2291 ($ $)) (-15 -2302 ($ $)) (-15 -2313 ($ $)) (-15 -2357 ($ $)) (-15 -2368 ($ $)) (-15 -2380 ($ $)) (-15 -3996 ($)) (-15 -3506 ((-630 (-1155)) $)) (-15 -3938 ((-111))) (-15 -3938 ((-111) (-111))))) (-630 (-1155)) (-630 (-1155)) (-381)) (T -333)) -((-2707 (*1 *1 *2) (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 *2)) (-14 *4 (-630 *2)) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 *2)) (-14 *4 (-630 *2)) (-4 *5 (-381)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-310 (-553))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-553))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-553)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-934 (-553)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-934 (-553))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-553))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-934 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-934 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-3466 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-3365 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2743 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-4055 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2224 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2234 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2291 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2302 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-3996 (*1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-381)))) (-3938 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381))))) -(-13 (-296) (-38 |#3|) (-1020 |#3|) (-882 (-1155)) (-10 -8 (-15 -2707 ($ (-310 |#3|))) (-15 -1399 ((-3 $ "failed") (-310 |#3|))) (-15 -2707 ($ (-1155))) (-15 -1399 ((-3 $ "failed") (-1155))) (-15 -3110 ((-310 |#3|) $)) (IF (|has| |#3| (-1020 (-553))) (PROGN (-15 -2707 ($ (-310 (-553)))) (-15 -1399 ((-3 $ "failed") (-310 (-553)))) (-15 -2707 ($ (-401 (-934 (-553))))) (-15 -1399 ((-3 $ "failed") (-401 (-934 (-553))))) (-15 -2707 ($ (-934 (-553)))) (-15 -1399 ((-3 $ "failed") (-934 (-553))))) |%noBranch|) (IF (|has| |#3| (-1020 (-373))) (PROGN (-15 -2707 ($ (-310 (-373)))) (-15 -1399 ((-3 $ "failed") (-310 (-373)))) (-15 -2707 ($ (-401 (-934 (-373))))) (-15 -1399 ((-3 $ "failed") (-401 (-934 (-373))))) (-15 -2707 ($ (-934 (-373)))) (-15 -1399 ((-3 $ "failed") (-934 (-373))))) |%noBranch|) (-15 -3466 ($ $)) (-15 -3365 ($ $)) (-15 -2743 ($ $)) (-15 -2366 ($ $)) (-15 -4055 ($ $)) (-15 -2224 ($ $)) (-15 -2234 ($ $)) (-15 -2246 ($ $)) (-15 -2291 ($ $)) (-15 -2302 ($ $)) (-15 -2313 ($ $)) (-15 -2357 ($ $)) (-15 -2368 ($ $)) (-15 -2380 ($ $)) (-15 -3996 ($)) (-15 -3506 ((-630 (-1155)) $)) (-15 -3938 ((-111))) (-15 -3938 ((-111) (-111))))) -((-1482 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-334 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1482 (|#8| (-1 |#5| |#1|) |#4|))) (-1196) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-1196) (-1214 |#5|) (-1214 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -334)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1196)) (-4 *8 (-1196)) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *9 (-1214 *8)) (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1214 (-401 *9)))))) -(-10 -7 (-15 -1482 (|#8| (-1 |#5| |#1|) |#4|))) -((-2820 (((-2 (|:| |num| (-1238 |#3|)) (|:| |den| |#3|)) $) 38)) (-3461 (($ (-1238 (-401 |#3|)) (-1238 $)) NIL) (($ (-1238 (-401 |#3|))) NIL) (($ (-1238 |#3|) |#3|) 161)) (-3303 (((-1238 $) (-1238 $)) 145)) (-3071 (((-630 (-630 |#2|))) 119)) (-3967 (((-111) |#2| |#2|) 73)) (-1655 (($ $) 139)) (-2015 (((-757)) 31)) (-3149 (((-1238 $) (-1238 $)) 198)) (-2954 (((-630 (-934 |#2|)) (-1155)) 110)) (-4020 (((-111) $) 158)) (-1806 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-2462 (((-3 |#3| "failed")) 50)) (-3118 (((-757)) 170)) (-2046 ((|#2| $ |#2| |#2|) 132)) (-3306 (((-3 |#3| "failed")) 68)) (-1330 (($ $ (-1 (-401 |#3|) (-401 |#3|)) (-757)) NIL) (($ $ (-1 (-401 |#3|) (-401 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL) (($ $ (-757)) NIL) (($ $) NIL)) (-2657 (((-1238 $) (-1238 $)) 151)) (-2756 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-4014 (((-111)) 33))) -(((-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -3071 ((-630 (-630 |#2|)))) (-15 -2954 ((-630 (-934 |#2|)) (-1155))) (-15 -2756 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2462 ((-3 |#3| "failed"))) (-15 -3306 ((-3 |#3| "failed"))) (-15 -2046 (|#2| |#1| |#2| |#2|)) (-15 -1655 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1806 ((-111) |#1| |#3|)) (-15 -1806 ((-111) |#1| |#2|)) (-15 -3461 (|#1| (-1238 |#3|) |#3|)) (-15 -2820 ((-2 (|:| |num| (-1238 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3303 ((-1238 |#1|) (-1238 |#1|))) (-15 -3149 ((-1238 |#1|) (-1238 |#1|))) (-15 -2657 ((-1238 |#1|) (-1238 |#1|))) (-15 -1806 ((-111) |#1|)) (-15 -4020 ((-111) |#1|)) (-15 -3967 ((-111) |#2| |#2|)) (-15 -4014 ((-111))) (-15 -3118 ((-757))) (-15 -2015 ((-757))) (-15 -1330 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -1330 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-757))) (-15 -3461 (|#1| (-1238 (-401 |#3|)))) (-15 -3461 (|#1| (-1238 (-401 |#3|)) (-1238 |#1|)))) (-336 |#2| |#3| |#4|) (-1196) (-1214 |#2|) (-1214 (-401 |#3|))) (T -335)) -((-2015 (*1 *2) (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-757)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3118 (*1 *2) (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-757)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-4014 (*1 *2) (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3967 (*1 *2 *3 *3) (-12 (-4 *3 (-1196)) (-4 *5 (-1214 *3)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) (-3306 (*1 *2) (|partial| -12 (-4 *4 (-1196)) (-4 *5 (-1214 (-401 *2))) (-4 *2 (-1214 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-2462 (*1 *2) (|partial| -12 (-4 *4 (-1196)) (-4 *5 (-1214 (-401 *2))) (-4 *2 (-1214 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *5 (-1196)) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-5 *2 (-630 (-934 *5))) (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) (-3071 (*1 *2) (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-630 (-630 *4))) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6))))) -(-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -3071 ((-630 (-630 |#2|)))) (-15 -2954 ((-630 (-934 |#2|)) (-1155))) (-15 -2756 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2462 ((-3 |#3| "failed"))) (-15 -3306 ((-3 |#3| "failed"))) (-15 -2046 (|#2| |#1| |#2| |#2|)) (-15 -1655 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1806 ((-111) |#1| |#3|)) (-15 -1806 ((-111) |#1| |#2|)) (-15 -3461 (|#1| (-1238 |#3|) |#3|)) (-15 -2820 ((-2 (|:| |num| (-1238 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3303 ((-1238 |#1|) (-1238 |#1|))) (-15 -3149 ((-1238 |#1|) (-1238 |#1|))) (-15 -2657 ((-1238 |#1|) (-1238 |#1|))) (-15 -1806 ((-111) |#1|)) (-15 -4020 ((-111) |#1|)) (-15 -3967 ((-111) |#2| |#2|)) (-15 -4014 ((-111))) (-15 -3118 ((-757))) (-15 -2015 ((-757))) (-15 -1330 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -1330 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-757))) (-15 -3461 (|#1| (-1238 (-401 |#3|)))) (-15 -3461 (|#1| (-1238 (-401 |#3|)) (-1238 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2820 (((-2 (|:| |num| (-1238 |#2|)) (|:| |den| |#2|)) $) 195)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 93 (|has| (-401 |#2|) (-357)))) (-1968 (($ $) 94 (|has| (-401 |#2|) (-357)))) (-2028 (((-111) $) 96 (|has| (-401 |#2|) (-357)))) (-3989 (((-674 (-401 |#2|)) (-1238 $)) 47) (((-674 (-401 |#2|))) 62)) (-1576 (((-401 |#2|) $) 53)) (-3555 (((-1165 (-903) (-757)) (-553)) 146 (|has| (-401 |#2|) (-343)))) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 113 (|has| (-401 |#2|) (-357)))) (-2708 (((-412 $) $) 114 (|has| (-401 |#2|) (-357)))) (-4349 (((-111) $ $) 104 (|has| (-401 |#2|) (-357)))) (-2571 (((-757)) 87 (|has| (-401 |#2|) (-362)))) (-1753 (((-111)) 212)) (-2945 (((-111) |#1|) 211) (((-111) |#2|) 210)) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 169 (|has| (-401 |#2|) (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 167 (|has| (-401 |#2|) (-1020 (-401 (-553))))) (((-3 (-401 |#2|) "failed") $) 164)) (-2707 (((-553) $) 168 (|has| (-401 |#2|) (-1020 (-553)))) (((-401 (-553)) $) 166 (|has| (-401 |#2|) (-1020 (-401 (-553))))) (((-401 |#2|) $) 165)) (-3461 (($ (-1238 (-401 |#2|)) (-1238 $)) 49) (($ (-1238 (-401 |#2|))) 65) (($ (-1238 |#2|) |#2|) 194)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-401 |#2|) (-343)))) (-3973 (($ $ $) 108 (|has| (-401 |#2|) (-357)))) (-4232 (((-674 (-401 |#2|)) $ (-1238 $)) 54) (((-674 (-401 |#2|)) $) 60)) (-2077 (((-674 (-553)) (-674 $)) 163 (|has| (-401 |#2|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 162 (|has| (-401 |#2|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-401 |#2|))) (|:| |vec| (-1238 (-401 |#2|)))) (-674 $) (-1238 $)) 161) (((-674 (-401 |#2|)) (-674 $)) 160)) (-3303 (((-1238 $) (-1238 $)) 200)) (-2654 (($ |#3|) 157) (((-3 $ "failed") (-401 |#3|)) 154 (|has| (-401 |#2|) (-357)))) (-2982 (((-3 $ "failed") $) 33)) (-3071 (((-630 (-630 |#1|))) 181 (|has| |#1| (-362)))) (-3967 (((-111) |#1| |#1|) 216)) (-2409 (((-903)) 55)) (-3031 (($) 90 (|has| (-401 |#2|) (-362)))) (-3925 (((-111)) 209)) (-3999 (((-111) |#1|) 208) (((-111) |#2|) 207)) (-3952 (($ $ $) 107 (|has| (-401 |#2|) (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 102 (|has| (-401 |#2|) (-357)))) (-1655 (($ $) 187)) (-2484 (($) 148 (|has| (-401 |#2|) (-343)))) (-3637 (((-111) $) 149 (|has| (-401 |#2|) (-343)))) (-1808 (($ $ (-757)) 140 (|has| (-401 |#2|) (-343))) (($ $) 139 (|has| (-401 |#2|) (-343)))) (-3119 (((-111) $) 115 (|has| (-401 |#2|) (-357)))) (-2968 (((-903) $) 151 (|has| (-401 |#2|) (-343))) (((-819 (-903)) $) 137 (|has| (-401 |#2|) (-343)))) (-1848 (((-111) $) 31)) (-2015 (((-757)) 219)) (-3149 (((-1238 $) (-1238 $)) 201)) (-3560 (((-401 |#2|) $) 52)) (-2954 (((-630 (-934 |#1|)) (-1155)) 182 (|has| |#1| (-357)))) (-2502 (((-3 $ "failed") $) 141 (|has| (-401 |#2|) (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 111 (|has| (-401 |#2|) (-357)))) (-3568 ((|#3| $) 45 (|has| (-401 |#2|) (-357)))) (-3796 (((-903) $) 89 (|has| (-401 |#2|) (-362)))) (-2643 ((|#3| $) 155)) (-2471 (($ (-630 $)) 100 (|has| (-401 |#2|) (-357))) (($ $ $) 99 (|has| (-401 |#2|) (-357)))) (-1735 (((-1137) $) 9)) (-3212 (((-674 (-401 |#2|))) 196)) (-3609 (((-674 (-401 |#2|))) 198)) (-3610 (($ $) 116 (|has| (-401 |#2|) (-357)))) (-2207 (($ (-1238 |#2|) |#2|) 192)) (-3037 (((-674 (-401 |#2|))) 197)) (-2838 (((-674 (-401 |#2|))) 199)) (-3878 (((-2 (|:| |num| (-674 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-4084 (((-2 (|:| |num| (-1238 |#2|)) (|:| |den| |#2|)) $) 193)) (-2338 (((-1238 $)) 205)) (-2827 (((-1238 $)) 206)) (-4020 (((-111) $) 204)) (-1806 (((-111) $) 203) (((-111) $ |#1|) 190) (((-111) $ |#2|) 189)) (-1945 (($) 142 (|has| (-401 |#2|) (-343)) CONST)) (-2735 (($ (-903)) 88 (|has| (-401 |#2|) (-362)))) (-2462 (((-3 |#2| "failed")) 184)) (-2786 (((-1099) $) 10)) (-3118 (((-757)) 218)) (-4093 (($) 159)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 101 (|has| (-401 |#2|) (-357)))) (-2508 (($ (-630 $)) 98 (|has| (-401 |#2|) (-357))) (($ $ $) 97 (|has| (-401 |#2|) (-357)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 145 (|has| (-401 |#2|) (-343)))) (-3355 (((-412 $) $) 112 (|has| (-401 |#2|) (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 109 (|has| (-401 |#2|) (-357)))) (-3929 (((-3 $ "failed") $ $) 92 (|has| (-401 |#2|) (-357)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 103 (|has| (-401 |#2|) (-357)))) (-3384 (((-757) $) 105 (|has| (-401 |#2|) (-357)))) (-2046 ((|#1| $ |#1| |#1|) 186)) (-3306 (((-3 |#2| "failed")) 185)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 106 (|has| (-401 |#2|) (-357)))) (-3000 (((-401 |#2|) (-1238 $)) 48) (((-401 |#2|)) 61)) (-3122 (((-757) $) 150 (|has| (-401 |#2|) (-343))) (((-3 (-757) "failed") $ $) 138 (|has| (-401 |#2|) (-343)))) (-1330 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-757)) 122 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 121 (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-630 (-1155)) (-630 (-757))) 129 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-1155) (-757)) 130 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-630 (-1155))) 131 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-1155)) 132 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-757)) 134 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3726 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 136 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3726 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2297 (((-674 (-401 |#2|)) (-1238 $) (-1 (-401 |#2|) (-401 |#2|))) 153 (|has| (-401 |#2|) (-357)))) (-1394 ((|#3|) 158)) (-1469 (($) 147 (|has| (-401 |#2|) (-343)))) (-2855 (((-1238 (-401 |#2|)) $ (-1238 $)) 51) (((-674 (-401 |#2|)) (-1238 $) (-1238 $)) 50) (((-1238 (-401 |#2|)) $) 67) (((-674 (-401 |#2|)) (-1238 $)) 66)) (-1524 (((-1238 (-401 |#2|)) $) 64) (($ (-1238 (-401 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 144 (|has| (-401 |#2|) (-343)))) (-2657 (((-1238 $) (-1238 $)) 202)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 |#2|)) 38) (($ (-401 (-553))) 86 (-3988 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-1020 (-401 (-553)))))) (($ $) 91 (|has| (-401 |#2|) (-357)))) (-2941 (($ $) 143 (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) 44 (|has| (-401 |#2|) (-142)))) (-3547 ((|#3| $) 46)) (-1999 (((-757)) 28)) (-3794 (((-111)) 215)) (-3722 (((-111) |#1|) 214) (((-111) |#2|) 213)) (-4124 (((-1238 $)) 68)) (-1639 (((-111) $ $) 95 (|has| (-401 |#2|) (-357)))) (-2756 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-4014 (((-111)) 217)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-757)) 124 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 123 (|has| (-401 |#2|) (-357))) (($ $ (-630 (-1155)) (-630 (-757))) 125 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-1155) (-757)) 126 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-630 (-1155))) 127 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-1155)) 128 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) (-3726 (|has| (-401 |#2|) (-882 (-1155))) (|has| (-401 |#2|) (-357))))) (($ $ (-757)) 133 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3726 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 135 (-3988 (-3726 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-3726 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 120 (|has| (-401 |#2|) (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 117 (|has| (-401 |#2|) (-357)))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 |#2|)) 40) (($ (-401 |#2|) $) 39) (($ (-401 (-553)) $) 119 (|has| (-401 |#2|) (-357))) (($ $ (-401 (-553))) 118 (|has| (-401 |#2|) (-357))))) -(((-336 |#1| |#2| |#3|) (-137) (-1196) (-1214 |t#1|) (-1214 (-401 |t#2|))) (T -336)) -((-2015 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-757)))) (-3118 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-757)))) (-4014 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-3967 (*1 *2 *3 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-3794 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-3722 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-3722 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) (-1753 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-2945 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-2945 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) (-3925 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-3999 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-3999 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) (-2827 (*1 *2) (-12 (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)))) (-2338 (*1 *2) (-12 (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))))) (-3303 (*1 *2 *2) (-12 (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))))) (-2838 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4))))) (-3609 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4))))) (-3037 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4))))) (-3212 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4))))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1238 *4)) (|:| |den| *4))))) (-3461 (*1 *1 *2 *3) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1214 *4)) (-4 *4 (-1196)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1214 (-401 *3))))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1238 *4)) (|:| |den| *4))))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1214 *4)) (-4 *4 (-1196)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1214 (-401 *3))))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-2 (|:| |num| (-674 *5)) (|:| |den| *5))))) (-1806 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) (-1806 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))))) (-1655 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1196)) (-4 *3 (-1214 *2)) (-4 *4 (-1214 (-401 *3))))) (-2046 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1196)) (-4 *3 (-1214 *2)) (-4 *4 (-1214 (-401 *3))))) (-3306 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1196)) (-4 *4 (-1214 (-401 *2))) (-4 *2 (-1214 *3)))) (-2462 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1196)) (-4 *4 (-1214 (-401 *2))) (-4 *2 (-1214 *3)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-1196)) (-4 *6 (-1214 (-401 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-336 *4 *5 *6)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-4 *4 (-357)) (-5 *2 (-630 (-934 *4))))) (-3071 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-630 (-630 *3)))))) -(-13 (-710 (-401 |t#2|) |t#3|) (-10 -8 (-15 -2015 ((-757))) (-15 -3118 ((-757))) (-15 -4014 ((-111))) (-15 -3967 ((-111) |t#1| |t#1|)) (-15 -3794 ((-111))) (-15 -3722 ((-111) |t#1|)) (-15 -3722 ((-111) |t#2|)) (-15 -1753 ((-111))) (-15 -2945 ((-111) |t#1|)) (-15 -2945 ((-111) |t#2|)) (-15 -3925 ((-111))) (-15 -3999 ((-111) |t#1|)) (-15 -3999 ((-111) |t#2|)) (-15 -2827 ((-1238 $))) (-15 -2338 ((-1238 $))) (-15 -4020 ((-111) $)) (-15 -1806 ((-111) $)) (-15 -2657 ((-1238 $) (-1238 $))) (-15 -3149 ((-1238 $) (-1238 $))) (-15 -3303 ((-1238 $) (-1238 $))) (-15 -2838 ((-674 (-401 |t#2|)))) (-15 -3609 ((-674 (-401 |t#2|)))) (-15 -3037 ((-674 (-401 |t#2|)))) (-15 -3212 ((-674 (-401 |t#2|)))) (-15 -2820 ((-2 (|:| |num| (-1238 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3461 ($ (-1238 |t#2|) |t#2|)) (-15 -4084 ((-2 (|:| |num| (-1238 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2207 ($ (-1238 |t#2|) |t#2|)) (-15 -3878 ((-2 (|:| |num| (-674 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1806 ((-111) $ |t#1|)) (-15 -1806 ((-111) $ |t#2|)) (-15 -1330 ($ $ (-1 |t#2| |t#2|))) (-15 -1655 ($ $)) (-15 -2046 (|t#1| $ |t#1| |t#1|)) (-15 -3306 ((-3 |t#2| "failed"))) (-15 -2462 ((-3 |t#2| "failed"))) (-15 -2756 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-357)) (-15 -2954 ((-630 (-934 |t#1|)) (-1155))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -3071 ((-630 (-630 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-38 #1=(-401 |#2|)) . T) ((-38 $) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-101) . T) ((-110 #0# #0#) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-142))) ((-144) |has| (-401 |#2|) (-144)) ((-603 #0#) -3988 (|has| (-401 |#2|) (-1020 (-401 (-553)))) (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-603 #1#) . T) ((-603 (-553)) . T) ((-603 $) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-600 (-845)) . T) ((-169) . T) ((-601 |#3|) . T) ((-226 #1#) |has| (-401 |#2|) (-357)) ((-228) -3988 (|has| (-401 |#2|) (-343)) (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357)))) ((-238) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-284) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-301) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-357) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-396) |has| (-401 |#2|) (-343)) ((-362) -3988 (|has| (-401 |#2|) (-362)) (|has| (-401 |#2|) (-343))) ((-343) |has| (-401 |#2|) (-343)) ((-364 #1# |#3|) . T) ((-403 #1# |#3|) . T) ((-371 #1#) . T) ((-405 #1#) . T) ((-445) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-545) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-633 #0#) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-633 #1#) . T) ((-633 $) . T) ((-626 #1#) . T) ((-626 (-553)) |has| (-401 |#2|) (-626 (-553))) ((-703 #0#) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-703 #1#) . T) ((-703 $) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-710 #1# |#3|) . T) ((-712) . T) ((-882 (-1155)) -12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155)))) ((-902) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1020 (-401 (-553))) |has| (-401 |#2|) (-1020 (-401 (-553)))) ((-1020 #1#) . T) ((-1020 (-553)) |has| (-401 |#2|) (-1020 (-553))) ((-1037 #0#) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1037 #1#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) |has| (-401 |#2|) (-343)) ((-1196) -3988 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 (((-892 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-892 |#1|) (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| (-892 |#1|) (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-892 |#1|) "failed") $) NIL)) (-2707 (((-892 |#1|) $) NIL)) (-3461 (($ (-1238 (-892 |#1|))) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-892 |#1|) (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-892 |#1|) (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| (-892 |#1|) (-362)))) (-3637 (((-111) $) NIL (|has| (-892 |#1|) (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362)))) (($ $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| (-892 |#1|) (-362))) (((-819 (-903)) $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| (-892 |#1|) (-362)))) (-2574 (((-111) $) NIL (|has| (-892 |#1|) (-362)))) (-3560 (((-892 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| (-892 |#1|) (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 (-892 |#1|)) $) NIL) (((-1151 $) $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-3796 (((-903) $) NIL (|has| (-892 |#1|) (-362)))) (-3194 (((-1151 (-892 |#1|)) $) NIL (|has| (-892 |#1|) (-362)))) (-3540 (((-1151 (-892 |#1|)) $) NIL (|has| (-892 |#1|) (-362))) (((-3 (-1151 (-892 |#1|)) "failed") $ $) NIL (|has| (-892 |#1|) (-362)))) (-4036 (($ $ (-1151 (-892 |#1|))) NIL (|has| (-892 |#1|) (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-892 |#1|) (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-3022 (((-940 (-1099))) NIL)) (-4093 (($) NIL (|has| (-892 |#1|) (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-892 |#1|) (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| (-892 |#1|) (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 (-892 |#1|))) NIL)) (-1469 (($) NIL (|has| (-892 |#1|) (-362)))) (-3407 (($) NIL (|has| (-892 |#1|) (-362)))) (-2855 (((-1238 (-892 |#1|)) $) NIL) (((-674 (-892 |#1|)) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| (-892 |#1|) (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-892 |#1|)) NIL)) (-2941 (($ $) NIL (|has| (-892 |#1|) (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-1780 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ (-892 |#1|)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ (-892 |#1|)) NIL) (($ (-892 |#1|) $) NIL))) -(((-337 |#1| |#2|) (-13 (-323 (-892 |#1|)) (-10 -7 (-15 -3022 ((-940 (-1099)))))) (-903) (-903)) (T -337)) -((-3022 (*1 *2) (-12 (-5 *2 (-940 (-1099))) (-5 *1 (-337 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903))))) -(-13 (-323 (-892 |#1|)) (-10 -7 (-15 -3022 ((-940 (-1099)))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 44)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) 41 (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 115)) (-2707 ((|#1| $) 86)) (-3461 (($ (-1238 |#1|)) 104)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) 98 (|has| |#1| (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) 129 (|has| |#1| (-362)))) (-3637 (((-111) $) 48 (|has| |#1| (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) 45 (|has| |#1| (-362))) (((-819 (-903)) $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) 131 (|has| |#1| (-362)))) (-2574 (((-111) $) NIL (|has| |#1| (-362)))) (-3560 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 |#1|) $) 90) (((-1151 $) $ (-903)) NIL (|has| |#1| (-362)))) (-3796 (((-903) $) 139 (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) NIL (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) NIL (|has| |#1| (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 146)) (-1945 (($) NIL (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) 71 (|has| |#1| (-362)))) (-1657 (((-111) $) 118)) (-2786 (((-1099) $) NIL)) (-3022 (((-940 (-1099))) 42)) (-4093 (($) 127 (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 93 (|has| |#1| (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) 67) (((-903)) 68)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) 130 (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) 125 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 |#1|)) 96)) (-1469 (($) 128 (|has| |#1| (-362)))) (-3407 (($) 136 (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) 59) (((-674 |#1|) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) 142) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) 75)) (-2941 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) 138)) (-4124 (((-1238 $)) 117) (((-1238 $) (-903)) 73)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) 49 T CONST)) (-1997 (($) 46 T CONST)) (-1950 (($ $) 81 (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1780 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1617 (((-111) $ $) 47)) (-1723 (($ $ $) 144) (($ $ |#1|) 145)) (-1711 (($ $) 126) (($ $ $) NIL)) (-1700 (($ $ $) 61)) (** (($ $ (-903)) 148) (($ $ (-757)) 149) (($ $ (-553)) 147)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 77) (($ $ $) 76) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-338 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -3022 ((-940 (-1099)))))) (-343) (-1151 |#1|)) (T -338)) -((-3022 (*1 *2) (-12 (-5 *2 (-940 (-1099))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1151 *3))))) -(-13 (-323 |#1|) (-10 -7 (-15 -3022 ((-940 (-1099)))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-3461 (($ (-1238 |#1|)) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| |#1| (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| |#1| (-362)))) (-3637 (((-111) $) NIL (|has| |#1| (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| |#1| (-362))) (((-819 (-903)) $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| |#1| (-362)))) (-2574 (((-111) $) NIL (|has| |#1| (-362)))) (-3560 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 |#1|) $) NIL) (((-1151 $) $ (-903)) NIL (|has| |#1| (-362)))) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) NIL (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) NIL (|has| |#1| (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-3022 (((-940 (-1099))) NIL)) (-4093 (($) NIL (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| |#1| (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 |#1|)) NIL)) (-1469 (($) NIL (|has| |#1| (-362)))) (-3407 (($) NIL (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) NIL) (((-674 |#1|) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) NIL)) (-2941 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1780 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-339 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -3022 ((-940 (-1099)))))) (-343) (-903)) (T -339)) -((-3022 (*1 *2) (-12 (-5 *2 (-940 (-1099))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-903))))) -(-13 (-323 |#1|) (-10 -7 (-15 -3022 ((-940 (-1099)))))) -((-1573 (((-757) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) 42)) (-1583 (((-940 (-1099)) (-1151 |#1|)) 85)) (-4033 (((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) (-1151 |#1|)) 78)) (-3219 (((-674 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) 86)) (-2422 (((-3 (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) "failed") (-903)) 13)) (-2141 (((-3 (-1151 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) (-903)) 18))) -(((-340 |#1|) (-10 -7 (-15 -1583 ((-940 (-1099)) (-1151 |#1|))) (-15 -4033 ((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) (-1151 |#1|))) (-15 -3219 ((-674 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -1573 ((-757) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -2422 ((-3 (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) "failed") (-903))) (-15 -2141 ((-3 (-1151 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) (-903)))) (-343)) (T -340)) -((-2141 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-3 (-1151 *4) (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-2422 (*1 *2 *3) (|partial| -12 (-5 *3 (-903)) (-5 *2 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) (-4 *4 (-343)) (-5 *2 (-757)) (-5 *1 (-340 *4)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) (-4 *4 (-343)) (-5 *2 (-674 *4)) (-5 *1 (-340 *4)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) (-5 *1 (-340 *4)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-940 (-1099))) (-5 *1 (-340 *4))))) -(-10 -7 (-15 -1583 ((-940 (-1099)) (-1151 |#1|))) (-15 -4033 ((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) (-1151 |#1|))) (-15 -3219 ((-674 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -1573 ((-757) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -2422 ((-3 (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) "failed") (-903))) (-15 -2141 ((-3 (-1151 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) (-903)))) -((-3110 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -3110 (|#3| |#1|)) (-15 -3110 (|#1| |#3|))) (-323 |#2|) (-343) (-323 |#2|)) (T -341)) -((-3110 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-323 *4)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-323 *4))))) -(-10 -7 (-15 -3110 (|#3| |#1|)) (-15 -3110 (|#1| |#3|))) -((-3637 (((-111) $) 51)) (-2968 (((-819 (-903)) $) 21) (((-903) $) 52)) (-2502 (((-3 $ "failed") $) 16)) (-1945 (($) 9)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 93)) (-3122 (((-3 (-757) "failed") $ $) 71) (((-757) $) 60)) (-1330 (($ $ (-757)) NIL) (($ $) 8)) (-1469 (($) 44)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 34)) (-2941 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-342 |#1|) (-10 -8 (-15 -2968 ((-903) |#1|)) (-15 -3122 ((-757) |#1|)) (-15 -3637 ((-111) |#1|)) (-15 -1469 (|#1|)) (-15 -2119 ((-3 (-1238 |#1|) "failed") (-674 |#1|))) (-15 -2941 (|#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -3122 ((-3 (-757) "failed") |#1| |#1|)) (-15 -2968 ((-819 (-903)) |#1|)) (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|)))) (-343)) (T -342)) -NIL -(-10 -8 (-15 -2968 ((-903) |#1|)) (-15 -3122 ((-757) |#1|)) (-15 -3637 ((-111) |#1|)) (-15 -1469 (|#1|)) (-15 -2119 ((-3 (-1238 |#1|) "failed") (-674 |#1|))) (-15 -2941 (|#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -3122 ((-3 (-757) "failed") |#1| |#1|)) (-15 -2968 ((-819 (-903)) |#1|)) (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-3555 (((-1165 (-903) (-757)) (-553)) 94)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-4349 (((-111) $ $) 60)) (-2571 (((-757)) 104)) (-3820 (($) 17 T CONST)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3031 (($) 107)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-2484 (($) 92)) (-3637 (((-111) $) 91)) (-1808 (($ $) 80) (($ $ (-757)) 79)) (-3119 (((-111) $) 72)) (-2968 (((-819 (-903)) $) 82) (((-903) $) 89)) (-1848 (((-111) $) 31)) (-2502 (((-3 $ "failed") $) 103)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-3796 (((-903) $) 106)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-1945 (($) 102 T CONST)) (-2735 (($ (-903)) 105)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 95)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3122 (((-3 (-757) "failed") $ $) 81) (((-757) $) 90)) (-1330 (($ $ (-757)) 100) (($ $) 98)) (-1469 (($) 93)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 96)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67)) (-2941 (((-3 $ "failed") $) 83) (($ $) 97)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-757)) 101) (($ $) 99)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 66)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68))) -(((-343) (-137)) (T -343)) -((-2941 (*1 *1 *1) (-4 *1 (-343))) (-2119 (*1 *2 *3) (|partial| -12 (-5 *3 (-674 *1)) (-4 *1 (-343)) (-5 *2 (-1238 *1)))) (-3484 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))))) (-3555 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-553)) (-5 *2 (-1165 (-903) (-757))))) (-1469 (*1 *1) (-4 *1 (-343))) (-2484 (*1 *1) (-4 *1 (-343))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-757)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-903)))) (-1922 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-396) (-362) (-1130) (-228) (-10 -8 (-15 -2941 ($ $)) (-15 -2119 ((-3 (-1238 $) "failed") (-674 $))) (-15 -3484 ((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553)))))) (-15 -3555 ((-1165 (-903) (-757)) (-553))) (-15 -1469 ($)) (-15 -2484 ($)) (-15 -3637 ((-111) $)) (-15 -3122 ((-757) $)) (-15 -2968 ((-903) $)) (-15 -1922 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-228) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) . T) ((-362) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) . T) ((-1196) . T)) -((-4009 (((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) |#1|) 53)) (-2827 (((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|)))) 51))) -(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -2827 ((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))))) (-15 -4009 ((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) |#1|))) (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $)))) (-1214 |#1|) (-403 |#1| |#2|)) (T -344)) -((-4009 (*1 *2 *3) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *2 (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-674 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2827 (*1 *2) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *2 (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-674 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(-10 -7 (-15 -2827 ((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))))) (-15 -4009 ((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 (((-892 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-892 |#1|) (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-1573 (((-757)) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| (-892 |#1|) (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-892 |#1|) "failed") $) NIL)) (-2707 (((-892 |#1|) $) NIL)) (-3461 (($ (-1238 (-892 |#1|))) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-892 |#1|) (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-892 |#1|) (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| (-892 |#1|) (-362)))) (-3637 (((-111) $) NIL (|has| (-892 |#1|) (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362)))) (($ $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| (-892 |#1|) (-362))) (((-819 (-903)) $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| (-892 |#1|) (-362)))) (-2574 (((-111) $) NIL (|has| (-892 |#1|) (-362)))) (-3560 (((-892 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| (-892 |#1|) (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 (-892 |#1|)) $) NIL) (((-1151 $) $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-3796 (((-903) $) NIL (|has| (-892 |#1|) (-362)))) (-3194 (((-1151 (-892 |#1|)) $) NIL (|has| (-892 |#1|) (-362)))) (-3540 (((-1151 (-892 |#1|)) $) NIL (|has| (-892 |#1|) (-362))) (((-3 (-1151 (-892 |#1|)) "failed") $ $) NIL (|has| (-892 |#1|) (-362)))) (-4036 (($ $ (-1151 (-892 |#1|))) NIL (|has| (-892 |#1|) (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-892 |#1|) (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-2288 (((-1238 (-630 (-2 (|:| -2821 (-892 |#1|)) (|:| -2735 (-1099)))))) NIL)) (-1590 (((-674 (-892 |#1|))) NIL)) (-4093 (($) NIL (|has| (-892 |#1|) (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-892 |#1|) (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| (-892 |#1|) (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 (-892 |#1|))) NIL)) (-1469 (($) NIL (|has| (-892 |#1|) (-362)))) (-3407 (($) NIL (|has| (-892 |#1|) (-362)))) (-2855 (((-1238 (-892 |#1|)) $) NIL) (((-674 (-892 |#1|)) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| (-892 |#1|) (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-892 |#1|)) NIL)) (-2941 (($ $) NIL (|has| (-892 |#1|) (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-1780 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ (-892 |#1|)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ (-892 |#1|)) NIL) (($ (-892 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-323 (-892 |#1|)) (-10 -7 (-15 -2288 ((-1238 (-630 (-2 (|:| -2821 (-892 |#1|)) (|:| -2735 (-1099))))))) (-15 -1590 ((-674 (-892 |#1|)))) (-15 -1573 ((-757))))) (-903) (-903)) (T -345)) -((-2288 (*1 *2) (-12 (-5 *2 (-1238 (-630 (-2 (|:| -2821 (-892 *3)) (|:| -2735 (-1099)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903)))) (-1590 (*1 *2) (-12 (-5 *2 (-674 (-892 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903)))) (-1573 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-345 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903))))) -(-13 (-323 (-892 |#1|)) (-10 -7 (-15 -2288 ((-1238 (-630 (-2 (|:| -2821 (-892 |#1|)) (|:| -2735 (-1099))))))) (-15 -1590 ((-674 (-892 |#1|)))) (-15 -1573 ((-757))))) -((-3096 (((-111) $ $) 61)) (-3769 (((-111) $) 74)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 ((|#1| $) 92) (($ $ (-903)) 90 (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) 148 (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-1573 (((-757)) 89)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) 162 (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 112)) (-2707 ((|#1| $) 91)) (-3461 (($ (-1238 |#1|)) 58)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) 158 (|has| |#1| (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) 149 (|has| |#1| (-362)))) (-3637 (((-111) $) NIL (|has| |#1| (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| |#1| (-362))) (((-819 (-903)) $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) 98 (|has| |#1| (-362)))) (-2574 (((-111) $) 175 (|has| |#1| (-362)))) (-3560 ((|#1| $) 94) (($ $ (-903)) 93 (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 |#1|) $) 189) (((-1151 $) $ (-903)) NIL (|has| |#1| (-362)))) (-3796 (((-903) $) 134 (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) 73 (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) 70 (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) 82 (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) 69 (|has| |#1| (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 192)) (-1945 (($) NIL (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) 137 (|has| |#1| (-362)))) (-1657 (((-111) $) 108)) (-2786 (((-1099) $) NIL)) (-2288 (((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) 83)) (-1590 (((-674 |#1|)) 87)) (-4093 (($) 96 (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 150 (|has| |#1| (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) 151)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) 62)) (-1394 (((-1151 |#1|)) 152)) (-1469 (($) 133 (|has| |#1| (-362)))) (-3407 (($) NIL (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) 106) (((-674 |#1|) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) 124) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) 57)) (-2941 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) 156)) (-4124 (((-1238 $)) 172) (((-1238 $) (-903)) 101)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) 117 T CONST)) (-1997 (($) 33 T CONST)) (-1950 (($ $) 107 (|has| |#1| (-362))) (($ $ (-757)) 99 (|has| |#1| (-362)))) (-1780 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1617 (((-111) $ $) 183)) (-1723 (($ $ $) 104) (($ $ |#1|) 105)) (-1711 (($ $) 177) (($ $ $) 181)) (-1700 (($ $ $) 179)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 138)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 186) (($ $ $) 142) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-346 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2288 ((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -1590 ((-674 |#1|))) (-15 -1573 ((-757))))) (-343) (-3 (-1151 |#1|) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (T -346)) -((-2288 (*1 *2) (-12 (-5 *2 (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1151 *3) *2)))) (-1590 (*1 *2) (-12 (-5 *2 (-674 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1151 *3) (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099))))))))) (-1573 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1151 *3) (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099)))))))))) -(-13 (-323 |#1|) (-10 -7 (-15 -2288 ((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -1590 ((-674 |#1|))) (-15 -1573 ((-757))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-1573 (((-757)) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-3461 (($ (-1238 |#1|)) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| |#1| (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| |#1| (-362)))) (-3637 (((-111) $) NIL (|has| |#1| (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| |#1| (-362))) (((-819 (-903)) $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| |#1| (-362)))) (-2574 (((-111) $) NIL (|has| |#1| (-362)))) (-3560 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 |#1|) $) NIL) (((-1151 $) $ (-903)) NIL (|has| |#1| (-362)))) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) NIL (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) NIL (|has| |#1| (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-2288 (((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099)))))) NIL)) (-1590 (((-674 |#1|)) NIL)) (-4093 (($) NIL (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| |#1| (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 |#1|)) NIL)) (-1469 (($) NIL (|has| |#1| (-362)))) (-3407 (($) NIL (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) NIL) (((-674 |#1|) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) NIL)) (-2941 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1780 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2288 ((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -1590 ((-674 |#1|))) (-15 -1573 ((-757))))) (-343) (-903)) (T -347)) -((-2288 (*1 *2) (-12 (-5 *2 (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-903)))) (-1590 (*1 *2) (-12 (-5 *2 (-674 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-903)))) (-1573 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-903))))) -(-13 (-323 |#1|) (-10 -7 (-15 -2288 ((-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))))) (-15 -1590 ((-674 |#1|))) (-15 -1573 ((-757))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 (((-892 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-892 |#1|) (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| (-892 |#1|) (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-892 |#1|) "failed") $) NIL)) (-2707 (((-892 |#1|) $) NIL)) (-3461 (($ (-1238 (-892 |#1|))) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-892 |#1|) (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-892 |#1|) (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| (-892 |#1|) (-362)))) (-3637 (((-111) $) NIL (|has| (-892 |#1|) (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362)))) (($ $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| (-892 |#1|) (-362))) (((-819 (-903)) $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| (-892 |#1|) (-362)))) (-2574 (((-111) $) NIL (|has| (-892 |#1|) (-362)))) (-3560 (((-892 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| (-892 |#1|) (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 (-892 |#1|)) $) NIL) (((-1151 $) $ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-3796 (((-903) $) NIL (|has| (-892 |#1|) (-362)))) (-3194 (((-1151 (-892 |#1|)) $) NIL (|has| (-892 |#1|) (-362)))) (-3540 (((-1151 (-892 |#1|)) $) NIL (|has| (-892 |#1|) (-362))) (((-3 (-1151 (-892 |#1|)) "failed") $ $) NIL (|has| (-892 |#1|) (-362)))) (-4036 (($ $ (-1151 (-892 |#1|))) NIL (|has| (-892 |#1|) (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-892 |#1|) (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| (-892 |#1|) (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-4093 (($) NIL (|has| (-892 |#1|) (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-892 |#1|) (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| (-892 |#1|) (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 (-892 |#1|))) NIL)) (-1469 (($) NIL (|has| (-892 |#1|) (-362)))) (-3407 (($) NIL (|has| (-892 |#1|) (-362)))) (-2855 (((-1238 (-892 |#1|)) $) NIL) (((-674 (-892 |#1|)) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| (-892 |#1|) (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-892 |#1|)) NIL)) (-2941 (($ $) NIL (|has| (-892 |#1|) (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| (-892 |#1|) (-142)) (|has| (-892 |#1|) (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-1780 (($ $) NIL (|has| (-892 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-892 |#1|) (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ (-892 |#1|)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ (-892 |#1|)) NIL) (($ (-892 |#1|) $) NIL))) -(((-348 |#1| |#2|) (-323 (-892 |#1|)) (-903) (-903)) (T -348)) -NIL -(-323 (-892 |#1|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) 120 (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) 140 (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 93)) (-2707 ((|#1| $) 90)) (-3461 (($ (-1238 |#1|)) 85)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) 82 (|has| |#1| (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) 42 (|has| |#1| (-362)))) (-3637 (((-111) $) NIL (|has| |#1| (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| |#1| (-362))) (((-819 (-903)) $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) 121 (|has| |#1| (-362)))) (-2574 (((-111) $) 74 (|has| |#1| (-362)))) (-3560 ((|#1| $) 39) (($ $ (-903)) 43 (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 |#1|) $) 65) (((-1151 $) $ (-903)) NIL (|has| |#1| (-362)))) (-3796 (((-903) $) 97 (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) NIL (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) NIL (|has| |#1| (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) 95 (|has| |#1| (-362)))) (-1657 (((-111) $) 142)) (-2786 (((-1099) $) NIL)) (-4093 (($) 36 (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 115 (|has| |#1| (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) 139)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) 59)) (-1394 (((-1151 |#1|)) 88)) (-1469 (($) 126 (|has| |#1| (-362)))) (-3407 (($) NIL (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) 53) (((-674 |#1|) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) 138) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) 87)) (-2941 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) 144)) (-4124 (((-1238 $)) 109) (((-1238 $) (-903)) 49)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) 111 T CONST)) (-1997 (($) 32 T CONST)) (-1950 (($ $) 68 (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1780 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1617 (((-111) $ $) 107)) (-1723 (($ $ $) 99) (($ $ |#1|) 100)) (-1711 (($ $) 80) (($ $ $) 105)) (-1700 (($ $ $) 103)) (** (($ $ (-903)) NIL) (($ $ (-757)) 44) (($ $ (-553)) 130)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 78) (($ $ $) 56) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-349 |#1| |#2|) (-323 |#1|) (-343) (-1151 |#1|)) (T -349)) -NIL -(-323 |#1|) -((-2373 ((|#1| (-1151 |#2|)) 52))) -(((-350 |#1| |#2|) (-10 -7 (-15 -2373 (|#1| (-1151 |#2|)))) (-13 (-396) (-10 -7 (-15 -3110 (|#1| |#2|)) (-15 -3796 ((-903) |#1|)) (-15 -4124 ((-1238 |#1|) (-903))) (-15 -1950 (|#1| |#1|)))) (-343)) (T -350)) -((-2373 (*1 *2 *3) (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-396) (-10 -7 (-15 -3110 (*2 *4)) (-15 -3796 ((-903) *2)) (-15 -4124 ((-1238 *2) (-903))) (-15 -1950 (*2 *2))))) (-5 *1 (-350 *2 *4))))) -(-10 -7 (-15 -2373 (|#1| (-1151 |#2|)))) -((-4173 (((-940 (-1151 |#1|)) (-1151 |#1|)) 36)) (-3031 (((-1151 |#1|) (-903) (-903)) 113) (((-1151 |#1|) (-903)) 112)) (-3637 (((-111) (-1151 |#1|)) 84)) (-2794 (((-903) (-903)) 71)) (-4208 (((-903) (-903)) 74)) (-1854 (((-903) (-903)) 69)) (-2574 (((-111) (-1151 |#1|)) 88)) (-1703 (((-3 (-1151 |#1|) "failed") (-1151 |#1|)) 101)) (-3102 (((-3 (-1151 |#1|) "failed") (-1151 |#1|)) 104)) (-1501 (((-3 (-1151 |#1|) "failed") (-1151 |#1|)) 103)) (-2929 (((-3 (-1151 |#1|) "failed") (-1151 |#1|)) 102)) (-3806 (((-3 (-1151 |#1|) "failed") (-1151 |#1|)) 98)) (-3638 (((-1151 |#1|) (-1151 |#1|)) 62)) (-2750 (((-1151 |#1|) (-903)) 107)) (-4218 (((-1151 |#1|) (-903)) 110)) (-3951 (((-1151 |#1|) (-903)) 109)) (-3789 (((-1151 |#1|) (-903)) 108)) (-2983 (((-1151 |#1|) (-903)) 105))) -(((-351 |#1|) (-10 -7 (-15 -3637 ((-111) (-1151 |#1|))) (-15 -2574 ((-111) (-1151 |#1|))) (-15 -1854 ((-903) (-903))) (-15 -2794 ((-903) (-903))) (-15 -4208 ((-903) (-903))) (-15 -2983 ((-1151 |#1|) (-903))) (-15 -2750 ((-1151 |#1|) (-903))) (-15 -3789 ((-1151 |#1|) (-903))) (-15 -3951 ((-1151 |#1|) (-903))) (-15 -4218 ((-1151 |#1|) (-903))) (-15 -3806 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -1703 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -2929 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -1501 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -3102 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -3031 ((-1151 |#1|) (-903))) (-15 -3031 ((-1151 |#1|) (-903) (-903))) (-15 -3638 ((-1151 |#1|) (-1151 |#1|))) (-15 -4173 ((-940 (-1151 |#1|)) (-1151 |#1|)))) (-343)) (T -351)) -((-4173 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-940 (-1151 *4))) (-5 *1 (-351 *4)) (-5 *3 (-1151 *4)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3102 (*1 *2 *2) (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1501 (*1 *2 *2) (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2929 (*1 *2 *2) (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1703 (*1 *2 *2) (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-3806 (*1 *2 *2) (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-4208 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4))))) -(-10 -7 (-15 -3637 ((-111) (-1151 |#1|))) (-15 -2574 ((-111) (-1151 |#1|))) (-15 -1854 ((-903) (-903))) (-15 -2794 ((-903) (-903))) (-15 -4208 ((-903) (-903))) (-15 -2983 ((-1151 |#1|) (-903))) (-15 -2750 ((-1151 |#1|) (-903))) (-15 -3789 ((-1151 |#1|) (-903))) (-15 -3951 ((-1151 |#1|) (-903))) (-15 -4218 ((-1151 |#1|) (-903))) (-15 -3806 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -1703 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -2929 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -1501 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -3102 ((-3 (-1151 |#1|) "failed") (-1151 |#1|))) (-15 -3031 ((-1151 |#1|) (-903))) (-15 -3031 ((-1151 |#1|) (-903) (-903))) (-15 -3638 ((-1151 |#1|) (-1151 |#1|))) (-15 -4173 ((-940 (-1151 |#1|)) (-1151 |#1|)))) -((-3013 (((-3 (-630 |#3|) "failed") (-630 |#3|) |#3|) 34))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -3013 ((-3 (-630 |#3|) "failed") (-630 |#3|) |#3|))) (-343) (-1214 |#1|) (-1214 |#2|)) (T -352)) -((-3013 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3))))) -(-10 -7 (-15 -3013 ((-3 (-630 |#3|) "failed") (-630 |#3|) |#3|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| |#1| (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-3461 (($ (-1238 |#1|)) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| |#1| (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| |#1| (-362)))) (-3637 (((-111) $) NIL (|has| |#1| (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| |#1| (-362))) (((-819 (-903)) $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| |#1| (-362)))) (-2574 (((-111) $) NIL (|has| |#1| (-362)))) (-3560 ((|#1| $) NIL) (($ $ (-903)) NIL (|has| |#1| (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 |#1|) $) NIL) (((-1151 $) $ (-903)) NIL (|has| |#1| (-362)))) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-3194 (((-1151 |#1|) $) NIL (|has| |#1| (-362)))) (-3540 (((-1151 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1151 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-4036 (($ $ (-1151 |#1|)) NIL (|has| |#1| (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| |#1| (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-4093 (($) NIL (|has| |#1| (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| |#1| (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| |#1| (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 |#1|)) NIL)) (-1469 (($) NIL (|has| |#1| (-362)))) (-3407 (($) NIL (|has| |#1| (-362)))) (-2855 (((-1238 |#1|) $) NIL) (((-674 |#1|) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) NIL)) (-2941 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1780 (($ $) NIL (|has| |#1| (-362))) (($ $ (-757)) NIL (|has| |#1| (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-323 |#1|) (-343) (-903)) (T -353)) -NIL -(-323 |#1|) -((-1333 (((-111) (-630 (-934 |#1|))) 34)) (-1296 (((-630 (-934 |#1|)) (-630 (-934 |#1|))) 46)) (-3305 (((-3 (-630 (-934 |#1|)) "failed") (-630 (-934 |#1|))) 41))) -(((-354 |#1| |#2|) (-10 -7 (-15 -1333 ((-111) (-630 (-934 |#1|)))) (-15 -3305 ((-3 (-630 (-934 |#1|)) "failed") (-630 (-934 |#1|)))) (-15 -1296 ((-630 (-934 |#1|)) (-630 (-934 |#1|))))) (-445) (-630 (-1155))) (T -354)) -((-1296 (*1 *2 *2) (-12 (-5 *2 (-630 (-934 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-630 (-1155))))) (-3305 (*1 *2 *2) (|partial| -12 (-5 *2 (-630 (-934 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-630 (-1155))))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-445)) (-5 *2 (-111)) (-5 *1 (-354 *4 *5)) (-14 *5 (-630 (-1155)))))) -(-10 -7 (-15 -1333 ((-111) (-630 (-934 |#1|)))) (-15 -3305 ((-3 (-630 (-934 |#1|)) "failed") (-630 (-934 |#1|)))) (-15 -1296 ((-630 (-934 |#1|)) (-630 (-934 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-2571 (((-757) $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) 15)) (-3111 ((|#1| $ (-553)) NIL)) (-1360 (((-553) $ (-553)) NIL)) (-3589 (($ (-1 |#1| |#1|) $) 32)) (-3821 (($ (-1 (-553) (-553)) $) 24)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 26)) (-2786 (((-1099) $) NIL)) (-3713 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-553)))) $) 28)) (-3199 (($ $ $) NIL)) (-1957 (($ $ $) NIL)) (-3110 (((-845) $) 38) (($ |#1|) NIL)) (-1997 (($) 9 T CONST)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL) (($ |#1| (-553)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-355 |#1|) (-13 (-466) (-1020 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-553))) (-15 -2571 ((-757) $)) (-15 -1360 ((-553) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3821 ($ (-1 (-553) (-553)) $)) (-15 -3589 ($ (-1 |#1| |#1|) $)) (-15 -3713 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-553)))) $)))) (-1079)) (T -355)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1079)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1079)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-355 *2)) (-4 *2 (-1079)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-355 *3)) (-4 *3 (-1079)))) (-1360 (*1 *2 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-355 *3)) (-4 *3 (-1079)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-355 *2)) (-4 *2 (-1079)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-553) (-553))) (-5 *1 (-355 *3)) (-4 *3 (-1079)))) (-3589 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-355 *3)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 (-553))))) (-5 *1 (-355 *3)) (-4 *3 (-1079))))) -(-13 (-466) (-1020 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-553))) (-15 -2571 ((-757) $)) (-15 -1360 ((-553) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3821 ($ (-1 (-553) (-553)) $)) (-15 -3589 ($ (-1 |#1| |#1|) $)) (-15 -3713 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-553)))) $)))) -((-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 13)) (-1968 (($ $) 14)) (-2708 (((-412 $) $) 30)) (-3119 (((-111) $) 26)) (-3610 (($ $) 19)) (-2508 (($ $ $) 23) (($ (-630 $)) NIL)) (-3355 (((-412 $) $) 31)) (-3929 (((-3 $ "failed") $ $) 22)) (-3384 (((-757) $) 25)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 35)) (-1639 (((-111) $ $) 16)) (-1723 (($ $ $) 33))) -(((-356 |#1|) (-10 -8 (-15 -1723 (|#1| |#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -3119 ((-111) |#1|)) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -4032 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3384 ((-757) |#1|)) (-15 -2508 (|#1| (-630 |#1|))) (-15 -2508 (|#1| |#1| |#1|)) (-15 -1639 ((-111) |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -2020 ((-2 (|:| -3908 |#1|) (|:| -4356 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|))) (-357)) (T -356)) -NIL -(-10 -8 (-15 -1723 (|#1| |#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -3119 ((-111) |#1|)) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -4032 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3384 ((-757) |#1|)) (-15 -2508 (|#1| (-630 |#1|))) (-15 -2508 (|#1| |#1| |#1|)) (-15 -1639 ((-111) |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -2020 ((-2 (|:| -3908 |#1|) (|:| -4356 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-3119 (((-111) $) 72)) (-1848 (((-111) $) 31)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 66)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68))) -(((-357) (-137)) (T -357)) -((-1723 (*1 *1 *1 *1) (-4 *1 (-357)))) -(-13 (-301) (-1196) (-238) (-10 -8 (-15 -1723 ($ $ $)) (-6 -4367) (-6 -4361))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-3096 (((-111) $ $) 7)) (-3172 ((|#2| $ |#2|) 13)) (-3985 (($ $ (-1137)) 18)) (-3131 ((|#2| $) 14)) (-2984 (($ |#1|) 20) (($ |#1| (-1137)) 19)) (-4298 ((|#1| $) 16)) (-1735 (((-1137) $) 9)) (-4086 (((-1137) $) 15)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-2407 (($ $) 17)) (-1617 (((-111) $ $) 6))) -(((-358 |#1| |#2|) (-137) (-1079) (-1079)) (T -358)) -((-2984 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *3 (-1137)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1079)) (-4 *4 (-1079)))) (-3985 (*1 *1 *1 *2) (-12 (-5 *2 (-1137)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-2407 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1079)) (-4 *2 (-1079)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-5 *2 (-1137)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079)))) (-3172 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079))))) -(-13 (-1079) (-10 -8 (-15 -2984 ($ |t#1|)) (-15 -2984 ($ |t#1| (-1137))) (-15 -3985 ($ $ (-1137))) (-15 -2407 ($ $)) (-15 -4298 (|t#1| $)) (-15 -4086 ((-1137) $)) (-15 -3131 (|t#2| $)) (-15 -3172 (|t#2| $ |t#2|)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3172 ((|#1| $ |#1|) 30)) (-3985 (($ $ (-1137)) 22)) (-2792 (((-3 |#1| "failed") $) 29)) (-3131 ((|#1| $) 27)) (-2984 (($ (-382)) 21) (($ (-382) (-1137)) 20)) (-4298 (((-382) $) 24)) (-1735 (((-1137) $) NIL)) (-4086 (((-1137) $) 25)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19)) (-2407 (($ $) 23)) (-1617 (((-111) $ $) 18))) -(((-359 |#1|) (-13 (-358 (-382) |#1|) (-10 -8 (-15 -2792 ((-3 |#1| "failed") $)))) (-1079)) (T -359)) -((-2792 (*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1079))))) -(-13 (-358 (-382) |#1|) (-10 -8 (-15 -2792 ((-3 |#1| "failed") $)))) -((-3836 (((-1238 (-674 |#2|)) (-1238 $)) 61)) (-3874 (((-674 |#2|) (-1238 $)) 120)) (-2124 ((|#2| $) 32)) (-1791 (((-674 |#2|) $ (-1238 $)) 123)) (-1766 (((-3 $ "failed") $) 75)) (-2764 ((|#2| $) 35)) (-3261 (((-1151 |#2|) $) 83)) (-3153 ((|#2| (-1238 $)) 106)) (-3834 (((-1151 |#2|) $) 28)) (-2992 (((-111)) 100)) (-3461 (($ (-1238 |#2|) (-1238 $)) 113)) (-2982 (((-3 $ "failed") $) 79)) (-3307 (((-111)) 95)) (-4108 (((-111)) 90)) (-3756 (((-111)) 53)) (-2593 (((-674 |#2|) (-1238 $)) 118)) (-2146 ((|#2| $) 31)) (-4128 (((-674 |#2|) $ (-1238 $)) 122)) (-3011 (((-3 $ "failed") $) 73)) (-1591 ((|#2| $) 34)) (-2083 (((-1151 |#2|) $) 82)) (-3236 ((|#2| (-1238 $)) 104)) (-2555 (((-1151 |#2|) $) 26)) (-1516 (((-111)) 99)) (-4139 (((-111)) 92)) (-2122 (((-111)) 51)) (-1881 (((-111)) 87)) (-4311 (((-111)) 101)) (-2855 (((-1238 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) (-1238 $) (-1238 $)) 111)) (-1339 (((-111)) 97)) (-1417 (((-630 (-1238 |#2|))) 86)) (-4215 (((-111)) 98)) (-2911 (((-111)) 96)) (-3949 (((-111)) 46)) (-2488 (((-111)) 102))) -(((-360 |#1| |#2|) (-10 -8 (-15 -3261 ((-1151 |#2|) |#1|)) (-15 -2083 ((-1151 |#2|) |#1|)) (-15 -1417 ((-630 (-1238 |#2|)))) (-15 -1766 ((-3 |#1| "failed") |#1|)) (-15 -3011 ((-3 |#1| "failed") |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 -4108 ((-111))) (-15 -4139 ((-111))) (-15 -3307 ((-111))) (-15 -2122 ((-111))) (-15 -3756 ((-111))) (-15 -1881 ((-111))) (-15 -2488 ((-111))) (-15 -4311 ((-111))) (-15 -2992 ((-111))) (-15 -1516 ((-111))) (-15 -3949 ((-111))) (-15 -4215 ((-111))) (-15 -2911 ((-111))) (-15 -1339 ((-111))) (-15 -3834 ((-1151 |#2|) |#1|)) (-15 -2555 ((-1151 |#2|) |#1|)) (-15 -3874 ((-674 |#2|) (-1238 |#1|))) (-15 -2593 ((-674 |#2|) (-1238 |#1|))) (-15 -3153 (|#2| (-1238 |#1|))) (-15 -3236 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -2764 (|#2| |#1|)) (-15 -1591 (|#2| |#1|)) (-15 -2124 (|#2| |#1|)) (-15 -2146 (|#2| |#1|)) (-15 -1791 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -4128 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -3836 ((-1238 (-674 |#2|)) (-1238 |#1|)))) (-361 |#2|) (-169)) (T -360)) -((-1339 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2911 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4215 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3949 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1516 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2992 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4311 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2488 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1881 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3756 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2122 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3307 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4139 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-4108 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1417 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-630 (-1238 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) -(-10 -8 (-15 -3261 ((-1151 |#2|) |#1|)) (-15 -2083 ((-1151 |#2|) |#1|)) (-15 -1417 ((-630 (-1238 |#2|)))) (-15 -1766 ((-3 |#1| "failed") |#1|)) (-15 -3011 ((-3 |#1| "failed") |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 -4108 ((-111))) (-15 -4139 ((-111))) (-15 -3307 ((-111))) (-15 -2122 ((-111))) (-15 -3756 ((-111))) (-15 -1881 ((-111))) (-15 -2488 ((-111))) (-15 -4311 ((-111))) (-15 -2992 ((-111))) (-15 -1516 ((-111))) (-15 -3949 ((-111))) (-15 -4215 ((-111))) (-15 -2911 ((-111))) (-15 -1339 ((-111))) (-15 -3834 ((-1151 |#2|) |#1|)) (-15 -2555 ((-1151 |#2|) |#1|)) (-15 -3874 ((-674 |#2|) (-1238 |#1|))) (-15 -2593 ((-674 |#2|) (-1238 |#1|))) (-15 -3153 (|#2| (-1238 |#1|))) (-15 -3236 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -2764 (|#2| |#1|)) (-15 -1591 (|#2| |#1|)) (-15 -2124 (|#2| |#1|)) (-15 -2146 (|#2| |#1|)) (-15 -1791 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -4128 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -3836 ((-1238 (-674 |#2|)) (-1238 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3908 (((-3 $ "failed")) 37 (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) 19)) (-3836 (((-1238 (-674 |#1|)) (-1238 $)) 78)) (-2110 (((-1238 $)) 81)) (-3820 (($) 17 T CONST)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) 40 (|has| |#1| (-545)))) (-2836 (((-3 $ "failed")) 38 (|has| |#1| (-545)))) (-3874 (((-674 |#1|) (-1238 $)) 65)) (-2124 ((|#1| $) 74)) (-1791 (((-674 |#1|) $ (-1238 $)) 76)) (-1766 (((-3 $ "failed") $) 45 (|has| |#1| (-545)))) (-1658 (($ $ (-903)) 28)) (-2764 ((|#1| $) 72)) (-3261 (((-1151 |#1|) $) 42 (|has| |#1| (-545)))) (-3153 ((|#1| (-1238 $)) 67)) (-3834 (((-1151 |#1|) $) 63)) (-2992 (((-111)) 57)) (-3461 (($ (-1238 |#1|) (-1238 $)) 69)) (-2982 (((-3 $ "failed") $) 47 (|has| |#1| (-545)))) (-2409 (((-903)) 80)) (-2758 (((-111)) 54)) (-3418 (($ $ (-903)) 33)) (-3307 (((-111)) 50)) (-4108 (((-111)) 48)) (-3756 (((-111)) 52)) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) 41 (|has| |#1| (-545)))) (-2757 (((-3 $ "failed")) 39 (|has| |#1| (-545)))) (-2593 (((-674 |#1|) (-1238 $)) 66)) (-2146 ((|#1| $) 75)) (-4128 (((-674 |#1|) $ (-1238 $)) 77)) (-3011 (((-3 $ "failed") $) 46 (|has| |#1| (-545)))) (-1341 (($ $ (-903)) 29)) (-1591 ((|#1| $) 73)) (-2083 (((-1151 |#1|) $) 43 (|has| |#1| (-545)))) (-3236 ((|#1| (-1238 $)) 68)) (-2555 (((-1151 |#1|) $) 64)) (-1516 (((-111)) 58)) (-1735 (((-1137) $) 9)) (-4139 (((-111)) 49)) (-2122 (((-111)) 51)) (-1881 (((-111)) 53)) (-2786 (((-1099) $) 10)) (-4311 (((-111)) 56)) (-2855 (((-1238 |#1|) $ (-1238 $)) 71) (((-674 |#1|) (-1238 $) (-1238 $)) 70)) (-1836 (((-630 (-934 |#1|)) (-1238 $)) 79)) (-1957 (($ $ $) 25)) (-1339 (((-111)) 62)) (-3110 (((-845) $) 11)) (-1417 (((-630 (-1238 |#1|))) 44 (|has| |#1| (-545)))) (-2840 (($ $ $ $) 26)) (-4215 (((-111)) 60)) (-1634 (($ $ $) 24)) (-2911 (((-111)) 61)) (-3949 (((-111)) 59)) (-2488 (((-111)) 55)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 30)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-361 |#1|) (-137) (-169)) (T -361)) -((-2110 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1238 *1)) (-4 *1 (-361 *3)))) (-2409 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-903)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-630 (-934 *4))))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1238 (-674 *4))))) (-4128 (*1 *2 *1 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-674 *4)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-674 *4)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2855 (*1 *2 *1 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1238 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-674 *4)))) (-3461 (*1 *1 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-1238 *1)) (-4 *4 (-169)) (-4 *1 (-361 *4)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-674 *4)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-674 *4)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1151 *3)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1151 *3)))) (-1339 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2911 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4215 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3949 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1516 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2992 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4311 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2488 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2758 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1881 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3756 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2122 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3307 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4139 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-4108 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2982 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) (-3011 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) (-1766 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) (-1417 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-545)) (-5 *2 (-630 (-1238 *3))))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-545)) (-5 *2 (-1151 *3)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-545)) (-5 *2 (-1151 *3)))) (-3462 (*1 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4124 (-630 *1)))) (-4 *1 (-361 *3)))) (-3450 (*1 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4124 (-630 *1)))) (-4 *1 (-361 *3)))) (-2757 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-545)) (-4 *2 (-169)))) (-2836 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-545)) (-4 *2 (-169)))) (-3908 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-545)) (-4 *2 (-169))))) -(-13 (-730 |t#1|) (-10 -8 (-15 -2110 ((-1238 $))) (-15 -2409 ((-903))) (-15 -1836 ((-630 (-934 |t#1|)) (-1238 $))) (-15 -3836 ((-1238 (-674 |t#1|)) (-1238 $))) (-15 -4128 ((-674 |t#1|) $ (-1238 $))) (-15 -1791 ((-674 |t#1|) $ (-1238 $))) (-15 -2146 (|t#1| $)) (-15 -2124 (|t#1| $)) (-15 -1591 (|t#1| $)) (-15 -2764 (|t#1| $)) (-15 -2855 ((-1238 |t#1|) $ (-1238 $))) (-15 -2855 ((-674 |t#1|) (-1238 $) (-1238 $))) (-15 -3461 ($ (-1238 |t#1|) (-1238 $))) (-15 -3236 (|t#1| (-1238 $))) (-15 -3153 (|t#1| (-1238 $))) (-15 -2593 ((-674 |t#1|) (-1238 $))) (-15 -3874 ((-674 |t#1|) (-1238 $))) (-15 -2555 ((-1151 |t#1|) $)) (-15 -3834 ((-1151 |t#1|) $)) (-15 -1339 ((-111))) (-15 -2911 ((-111))) (-15 -4215 ((-111))) (-15 -3949 ((-111))) (-15 -1516 ((-111))) (-15 -2992 ((-111))) (-15 -4311 ((-111))) (-15 -2488 ((-111))) (-15 -2758 ((-111))) (-15 -1881 ((-111))) (-15 -3756 ((-111))) (-15 -2122 ((-111))) (-15 -3307 ((-111))) (-15 -4139 ((-111))) (-15 -4108 ((-111))) (IF (|has| |t#1| (-545)) (PROGN (-15 -2982 ((-3 $ "failed") $)) (-15 -3011 ((-3 $ "failed") $)) (-15 -1766 ((-3 $ "failed") $)) (-15 -1417 ((-630 (-1238 |t#1|)))) (-15 -2083 ((-1151 |t#1|) $)) (-15 -3261 ((-1151 |t#1|) $)) (-15 -3462 ((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed"))) (-15 -3450 ((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed"))) (-15 -2757 ((-3 $ "failed"))) (-15 -2836 ((-3 $ "failed"))) (-15 -3908 ((-3 $ "failed"))) (-6 -4366)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-703 |#1|) . T) ((-706) . T) ((-730 |#1|) . T) ((-747) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-2571 (((-757)) 16)) (-3031 (($) 13)) (-3796 (((-903) $) 14)) (-1735 (((-1137) $) 9)) (-2735 (($ (-903)) 15)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-362) (-137)) (T -362)) -((-2571 (*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-757)))) (-2735 (*1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-362)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-903)))) (-3031 (*1 *1) (-4 *1 (-362)))) -(-13 (-1079) (-10 -8 (-15 -2571 ((-757))) (-15 -2735 ($ (-903))) (-15 -3796 ((-903) $)) (-15 -3031 ($)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3989 (((-674 |#2|) (-1238 $)) 40)) (-3461 (($ (-1238 |#2|) (-1238 $)) 34)) (-4232 (((-674 |#2|) $ (-1238 $)) 42)) (-3000 ((|#2| (-1238 $)) 13)) (-2855 (((-1238 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) (-1238 $) (-1238 $)) 25))) -(((-363 |#1| |#2| |#3|) (-10 -8 (-15 -3989 ((-674 |#2|) (-1238 |#1|))) (-15 -3000 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -4232 ((-674 |#2|) |#1| (-1238 |#1|)))) (-364 |#2| |#3|) (-169) (-1214 |#2|)) (T -363)) -NIL -(-10 -8 (-15 -3989 ((-674 |#2|) (-1238 |#1|))) (-15 -3000 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -4232 ((-674 |#2|) |#1| (-1238 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3989 (((-674 |#1|) (-1238 $)) 47)) (-1576 ((|#1| $) 53)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-3461 (($ (-1238 |#1|) (-1238 $)) 49)) (-4232 (((-674 |#1|) $ (-1238 $)) 54)) (-2982 (((-3 $ "failed") $) 33)) (-2409 (((-903)) 55)) (-1848 (((-111) $) 31)) (-3560 ((|#1| $) 52)) (-3568 ((|#2| $) 45 (|has| |#1| (-357)))) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3000 ((|#1| (-1238 $)) 48)) (-2855 (((-1238 |#1|) $ (-1238 $)) 51) (((-674 |#1|) (-1238 $) (-1238 $)) 50)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38)) (-2941 (((-3 $ "failed") $) 44 (|has| |#1| (-142)))) (-3547 ((|#2| $) 46)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-364 |#1| |#2|) (-137) (-169) (-1214 |t#1|)) (T -364)) -((-2409 (*1 *2) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-903)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1214 *2)) (-4 *2 (-169)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1214 *2)) (-4 *2 (-169)))) (-2855 (*1 *2 *1 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-1238 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) (-3461 (*1 *1 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-1238 *1)) (-4 *4 (-169)) (-4 *1 (-364 *4 *5)) (-4 *5 (-1214 *4)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1214 *2)) (-4 *2 (-169)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1214 *3)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) (-4 *2 (-1214 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -2409 ((-903))) (-15 -4232 ((-674 |t#1|) $ (-1238 $))) (-15 -1576 (|t#1| $)) (-15 -3560 (|t#1| $)) (-15 -2855 ((-1238 |t#1|) $ (-1238 $))) (-15 -2855 ((-674 |t#1|) (-1238 $) (-1238 $))) (-15 -3461 ($ (-1238 |t#1|) (-1238 $))) (-15 -3000 (|t#1| (-1238 $))) (-15 -3989 ((-674 |t#1|) (-1238 $))) (-15 -3547 (|t#2| $)) (IF (|has| |t#1| (-357)) (-15 -3568 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) . T) ((-712) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3215 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2654 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1482 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1192) (-367 |#1|) (-1192) (-367 |#3|)) (T -365)) -((-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1192)) (-4 *5 (-1192)) (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1192)) (-4 *2 (-1192)) (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) -(-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2768 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-1587 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-2990 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-3239 (($ $) 25)) (-1478 (((-553) (-1 (-111) |#2|) $) NIL) (((-553) |#2| $) 11) (((-553) |#2| $ (-553)) NIL)) (-3160 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-366 |#1| |#2|) (-10 -8 (-15 -1587 (|#1| |#1|)) (-15 -1587 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2768 ((-111) |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -1478 ((-553) |#2| |#1| (-553))) (-15 -1478 ((-553) |#2| |#1|)) (-15 -1478 ((-553) (-1 (-111) |#2|) |#1|)) (-15 -2768 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2990 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -3160 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-367 |#2|) (-1192)) (T -366)) -NIL -(-10 -8 (-15 -1587 (|#1| |#1|)) (-15 -1587 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2768 ((-111) |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -1478 ((-553) |#2| |#1| (-553))) (-15 -1478 ((-553) |#2| |#1|)) (-15 -1478 ((-553) (-1 (-111) |#2|) |#1|)) (-15 -2768 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2990 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -3160 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4370))) (($ $) 88 (-12 (|has| |#1| (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) |#1|) 52 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-1467 (($ $) 90 (|has| $ (-6 -4370)))) (-3239 (($ $) 100)) (-2638 (($ $) 78 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 77 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 51)) (-1478 (((-553) (-1 (-111) |#1|) $) 97) (((-553) |#1| $) 96 (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) 95 (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 87 (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 86 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 42 (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2858 (($ $ |#1|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) |#1|) 50) ((|#1| $ (-553)) 49) (($ $ (-1205 (-553))) 63)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 91 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 70)) (-4325 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 84 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 83 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-1659 (((-111) $ $) 85 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 82 (|has| |#1| (-833)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-367 |#1|) (-137) (-1192)) (T -367)) -((-3160 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1192)))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1192)))) (-2990 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1192)))) (-2768 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1192)) (-5 *2 (-111)))) (-1478 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1192)) (-5 *2 (-553)))) (-1478 (*1 *2 *3 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-553)))) (-1478 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-367 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1192)) (-4 *2 (-833)))) (-2990 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1192)) (-4 *2 (-833)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1192)) (-4 *3 (-833)) (-5 *2 (-111)))) (-2530 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-553)) (|has| *1 (-6 -4370)) (-4 *1 (-367 *3)) (-4 *3 (-1192)))) (-1467 (*1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-367 *2)) (-4 *2 (-1192)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4370)) (-4 *1 (-367 *3)) (-4 *3 (-1192)))) (-1587 (*1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-367 *2)) (-4 *2 (-1192)) (-4 *2 (-833))))) -(-13 (-636 |t#1|) (-10 -8 (-6 -4369) (-15 -3160 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3239 ($ $)) (-15 -2990 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -2768 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -1478 ((-553) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -1478 ((-553) |t#1| $)) (-15 -1478 ((-553) |t#1| $ (-553)))) |%noBranch|) (IF (|has| |t#1| (-833)) (PROGN (-6 (-833)) (-15 -3160 ($ $ $)) (-15 -2990 ($ $)) (-15 -2768 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4370)) (PROGN (-15 -2530 ($ $ $ (-553))) (-15 -1467 ($ $)) (-15 -1587 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-833)) (-15 -1587 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-833) |has| |#1| (-833)) ((-1079) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-1192) . T)) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2694 (((-630 |#1|) $) 32)) (-3245 (($ $ (-757)) 33)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1429 (((-1262 |#1| |#2|) (-1262 |#1| |#2|) $) 36)) (-3189 (($ $) 34)) (-1754 (((-1262 |#1| |#2|) (-1262 |#1| |#2|) $) 37)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-2356 (($ $ |#1| $) 31) (($ $ (-630 |#1|) (-630 $)) 30)) (-3872 (((-757) $) 38)) (-3121 (($ $ $) 29)) (-3110 (((-845) $) 11) (($ |#1|) 41) (((-1253 |#1| |#2|) $) 40) (((-1262 |#1| |#2|) $) 39)) (-4120 ((|#2| (-1262 |#1| |#2|) $) 42)) (-1988 (($) 18 T CONST)) (-4041 (($ (-657 |#1|)) 35)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#2|) 28 (|has| |#2| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-368 |#1| |#2|) (-137) (-833) (-169)) (T -368)) -((-4120 (*1 *2 *3 *1) (-12 (-5 *3 (-1262 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-833)) (-4 *2 (-169)))) (-3110 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-833)) (-4 *3 (-169)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) (-5 *2 (-1253 *3 *4)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) (-5 *2 (-1262 *3 *4)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) (-5 *2 (-757)))) (-1754 (*1 *2 *2 *1) (-12 (-5 *2 (-1262 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-1429 (*1 *2 *2 *1) (-12 (-5 *2 (-1262 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-4 *1 (-368 *3 *4)) (-4 *4 (-169)))) (-3189 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-833)) (-4 *3 (-169)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) (-5 *2 (-630 *3)))) (-2356 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-833)) (-4 *3 (-169)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 *1)) (-4 *1 (-368 *4 *5)) (-4 *4 (-833)) (-4 *5 (-169))))) -(-13 (-621 |t#2|) (-10 -8 (-15 -4120 (|t#2| (-1262 |t#1| |t#2|) $)) (-15 -3110 ($ |t#1|)) (-15 -3110 ((-1253 |t#1| |t#2|) $)) (-15 -3110 ((-1262 |t#1| |t#2|) $)) (-15 -3872 ((-757) $)) (-15 -1754 ((-1262 |t#1| |t#2|) (-1262 |t#1| |t#2|) $)) (-15 -1429 ((-1262 |t#1| |t#2|) (-1262 |t#1| |t#2|) $)) (-15 -4041 ($ (-657 |t#1|))) (-15 -3189 ($ $)) (-15 -3245 ($ $ (-757))) (-15 -2694 ((-630 |t#1|) $)) (-15 -2356 ($ $ |t#1| $)) (-15 -2356 ($ $ (-630 |t#1|) (-630 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#2|) . T) ((-621 |#2|) . T) ((-703 |#2|) . T) ((-1037 |#2|) . T) ((-1079) . T)) -((-4039 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-3518 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-3761 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) -(((-369 |#1| |#2|) (-10 -7 (-15 -3518 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -3761 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -4039 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1192) (-13 (-367 |#1|) (-10 -7 (-6 -4370)))) (T -369)) -((-4039 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370)))))) (-3761 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370)))))) (-3518 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370))))))) -(-10 -7 (-15 -3518 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -3761 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -4039 (|#2| (-1 (-111) |#1| |#1|) |#2|))) -((-2077 (((-674 |#2|) (-674 $)) NIL) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 22) (((-674 (-553)) (-674 $)) 14))) -(((-370 |#1| |#2|) (-10 -8 (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 |#2|) (-674 |#1|)))) (-371 |#2|) (-1031)) (T -370)) -NIL -(-10 -8 (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 |#2|) (-674 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2077 (((-674 |#1|) (-674 $)) 36) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 35) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 43 (|has| |#1| (-626 (-553)))) (((-674 (-553)) (-674 $)) 42 (|has| |#1| (-626 (-553))))) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-371 |#1|) (-137) (-1031)) (T -371)) -NIL -(-13 (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-626 (-553))) (-6 (-626 (-553))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3681 (((-630 (-288 (-934 (-166 |#1|)))) (-288 (-401 (-934 (-166 (-553))))) |#1|) 51) (((-630 (-288 (-934 (-166 |#1|)))) (-401 (-934 (-166 (-553)))) |#1|) 50) (((-630 (-630 (-288 (-934 (-166 |#1|))))) (-630 (-288 (-401 (-934 (-166 (-553)))))) |#1|) 47) (((-630 (-630 (-288 (-934 (-166 |#1|))))) (-630 (-401 (-934 (-166 (-553))))) |#1|) 41)) (-3803 (((-630 (-630 (-166 |#1|))) (-630 (-401 (-934 (-166 (-553))))) (-630 (-1155)) |#1|) 30) (((-630 (-166 |#1|)) (-401 (-934 (-166 (-553)))) |#1|) 18))) -(((-372 |#1|) (-10 -7 (-15 -3681 ((-630 (-630 (-288 (-934 (-166 |#1|))))) (-630 (-401 (-934 (-166 (-553))))) |#1|)) (-15 -3681 ((-630 (-630 (-288 (-934 (-166 |#1|))))) (-630 (-288 (-401 (-934 (-166 (-553)))))) |#1|)) (-15 -3681 ((-630 (-288 (-934 (-166 |#1|)))) (-401 (-934 (-166 (-553)))) |#1|)) (-15 -3681 ((-630 (-288 (-934 (-166 |#1|)))) (-288 (-401 (-934 (-166 (-553))))) |#1|)) (-15 -3803 ((-630 (-166 |#1|)) (-401 (-934 (-166 (-553)))) |#1|)) (-15 -3803 ((-630 (-630 (-166 |#1|))) (-630 (-401 (-934 (-166 (-553))))) (-630 (-1155)) |#1|))) (-13 (-357) (-831))) (T -372)) -((-3803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 (-401 (-934 (-166 (-553)))))) (-5 *4 (-630 (-1155))) (-5 *2 (-630 (-630 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-831))))) (-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 (-166 (-553))))) (-5 *2 (-630 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-831))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-934 (-166 (-553)))))) (-5 *2 (-630 (-288 (-934 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-831))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 (-166 (-553))))) (-5 *2 (-630 (-288 (-934 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-831))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-288 (-401 (-934 (-166 (-553))))))) (-5 *2 (-630 (-630 (-288 (-934 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-831))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-401 (-934 (-166 (-553)))))) (-5 *2 (-630 (-630 (-288 (-934 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-831)))))) -(-10 -7 (-15 -3681 ((-630 (-630 (-288 (-934 (-166 |#1|))))) (-630 (-401 (-934 (-166 (-553))))) |#1|)) (-15 -3681 ((-630 (-630 (-288 (-934 (-166 |#1|))))) (-630 (-288 (-401 (-934 (-166 (-553)))))) |#1|)) (-15 -3681 ((-630 (-288 (-934 (-166 |#1|)))) (-401 (-934 (-166 (-553)))) |#1|)) (-15 -3681 ((-630 (-288 (-934 (-166 |#1|)))) (-288 (-401 (-934 (-166 (-553))))) |#1|)) (-15 -3803 ((-630 (-166 |#1|)) (-401 (-934 (-166 (-553)))) |#1|)) (-15 -3803 ((-630 (-630 (-166 |#1|))) (-630 (-401 (-934 (-166 (-553))))) (-630 (-1155)) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 33)) (-2751 (((-553) $) 55)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1728 (($ $) 110)) (-2380 (($ $) 82)) (-2246 (($ $) 71)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3365 (($ $) 44)) (-4349 (((-111) $ $) NIL)) (-2357 (($ $) 80)) (-2224 (($ $) 69)) (-2125 (((-553) $) 64)) (-1608 (($ $ (-553)) 62)) (-2403 (($ $) NIL)) (-2268 (($ $) NIL)) (-3820 (($) NIL T CONST)) (-2641 (($ $) 112)) (-1399 (((-3 (-553) "failed") $) 189) (((-3 (-401 (-553)) "failed") $) 185)) (-2707 (((-553) $) 187) (((-401 (-553)) $) 183)) (-3973 (($ $ $) NIL)) (-3884 (((-553) $ $) 102)) (-2982 (((-3 $ "failed") $) 114)) (-2264 (((-401 (-553)) $ (-757)) 190) (((-401 (-553)) $ (-757) (-757)) 182)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-2737 (((-903)) 73) (((-903) (-903)) 98 (|has| $ (-6 -4360)))) (-4270 (((-111) $) 106)) (-3996 (($) 40)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL)) (-2709 (((-1243) (-757)) 152)) (-4011 (((-1243)) 157) (((-1243) (-757)) 158)) (-3542 (((-1243)) 159) (((-1243) (-757)) 160)) (-3273 (((-1243)) 155) (((-1243) (-757)) 156)) (-2968 (((-553) $) 58)) (-1848 (((-111) $) 104)) (-2406 (($ $ (-553)) NIL)) (-3208 (($ $) 48)) (-3560 (($ $) NIL)) (-2797 (((-111) $) 35)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL) (($) NIL (-12 (-2826 (|has| $ (-6 -4352))) (-2826 (|has| $ (-6 -4360)))))) (-1975 (($ $ $) NIL) (($) 99 (-12 (-2826 (|has| $ (-6 -4352))) (-2826 (|has| $ (-6 -4360)))))) (-1883 (((-553) $) 17)) (-1527 (($) 87) (($ $) 92)) (-4055 (($) 91) (($ $) 93)) (-2366 (($ $) 83)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 116)) (-3496 (((-903) (-553)) 43 (|has| $ (-6 -4360)))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) 53)) (-2334 (($ $) 109)) (-3293 (($ (-553) (-553)) 107) (($ (-553) (-553) (-903)) 108)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2692 (((-553) $) 19)) (-4037 (($) 94)) (-2743 (($ $) 79)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2989 (((-903)) 100) (((-903) (-903)) 101 (|has| $ (-6 -4360)))) (-1330 (($ $ (-757)) NIL) (($ $) 115)) (-3098 (((-903) (-553)) 47 (|has| $ (-6 -4360)))) (-2414 (($ $) NIL)) (-2279 (($ $) NIL)) (-2392 (($ $) NIL)) (-2257 (($ $) NIL)) (-2368 (($ $) 81)) (-2234 (($ $) 70)) (-1524 (((-373) $) 175) (((-220) $) 177) (((-874 (-373)) $) NIL) (((-1137) $) 162) (((-529) $) 173) (($ (-220)) 181)) (-3110 (((-845) $) 164) (($ (-553)) 186) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-553)) 186) (($ (-401 (-553))) NIL) (((-220) $) 178)) (-1999 (((-757)) NIL)) (-2582 (($ $) 111)) (-3556 (((-903)) 54) (((-903) (-903)) 66 (|has| $ (-6 -4360)))) (-2959 (((-903)) 103)) (-2447 (($ $) 86)) (-2313 (($ $) 46) (($ $ $) 52)) (-1639 (((-111) $ $) NIL)) (-2425 (($ $) 84)) (-2291 (($ $) 37)) (-3791 (($ $) NIL)) (-2336 (($ $) NIL)) (-2570 (($ $) NIL)) (-2346 (($ $) NIL)) (-3780 (($ $) NIL)) (-2324 (($ $) NIL)) (-2435 (($ $) 85)) (-2302 (($ $) 49)) (-3466 (($ $) 51)) (-1988 (($) 34 T CONST)) (-1997 (($) 38 T CONST)) (-3205 (((-1137) $) 27) (((-1137) $ (-111)) 29) (((-1243) (-808) $) 30) (((-1243) (-808) $ (-111)) 31)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 39)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 42)) (-1723 (($ $ $) 45) (($ $ (-553)) 41)) (-1711 (($ $) 36) (($ $ $) 50)) (-1700 (($ $ $) 61)) (** (($ $ (-903)) 67) (($ $ (-757)) NIL) (($ $ (-553)) 88) (($ $ (-401 (-553))) 125) (($ $ $) 117)) (* (($ (-903) $) 65) (($ (-757) $) NIL) (($ (-553) $) 68) (($ $ $) 60) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-373) (-13 (-398) (-228) (-601 (-1137)) (-814) (-600 (-220)) (-1177) (-601 (-529)) (-605 (-220)) (-10 -8 (-15 -1723 ($ $ (-553))) (-15 ** ($ $ $)) (-15 -3208 ($ $)) (-15 -3884 ((-553) $ $)) (-15 -1608 ($ $ (-553))) (-15 -2264 ((-401 (-553)) $ (-757))) (-15 -2264 ((-401 (-553)) $ (-757) (-757))) (-15 -1527 ($)) (-15 -4055 ($)) (-15 -4037 ($)) (-15 -2313 ($ $ $)) (-15 -1527 ($ $)) (-15 -4055 ($ $)) (-15 -3542 ((-1243))) (-15 -3542 ((-1243) (-757))) (-15 -3273 ((-1243))) (-15 -3273 ((-1243) (-757))) (-15 -4011 ((-1243))) (-15 -4011 ((-1243) (-757))) (-15 -2709 ((-1243) (-757))) (-6 -4360) (-6 -4352)))) (T -373)) -((** (*1 *1 *1 *1) (-5 *1 (-373))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-373)))) (-3208 (*1 *1 *1) (-5 *1 (-373))) (-3884 (*1 *2 *1 *1) (-12 (-5 *2 (-553)) (-5 *1 (-373)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-373)))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-373)))) (-2264 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-373)))) (-1527 (*1 *1) (-5 *1 (-373))) (-4055 (*1 *1) (-5 *1 (-373))) (-4037 (*1 *1) (-5 *1 (-373))) (-2313 (*1 *1 *1 *1) (-5 *1 (-373))) (-1527 (*1 *1 *1) (-5 *1 (-373))) (-4055 (*1 *1 *1) (-5 *1 (-373))) (-3542 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-373)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373)))) (-3273 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-373)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373)))) (-4011 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-373)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373))))) -(-13 (-398) (-228) (-601 (-1137)) (-814) (-600 (-220)) (-1177) (-601 (-529)) (-605 (-220)) (-10 -8 (-15 -1723 ($ $ (-553))) (-15 ** ($ $ $)) (-15 -3208 ($ $)) (-15 -3884 ((-553) $ $)) (-15 -1608 ($ $ (-553))) (-15 -2264 ((-401 (-553)) $ (-757))) (-15 -2264 ((-401 (-553)) $ (-757) (-757))) (-15 -1527 ($)) (-15 -4055 ($)) (-15 -4037 ($)) (-15 -2313 ($ $ $)) (-15 -1527 ($ $)) (-15 -4055 ($ $)) (-15 -3542 ((-1243))) (-15 -3542 ((-1243) (-757))) (-15 -3273 ((-1243))) (-15 -3273 ((-1243) (-757))) (-15 -4011 ((-1243))) (-15 -4011 ((-1243) (-757))) (-15 -2709 ((-1243) (-757))) (-6 -4360) (-6 -4352))) -((-1638 (((-630 (-288 (-934 |#1|))) (-288 (-401 (-934 (-553)))) |#1|) 46) (((-630 (-288 (-934 |#1|))) (-401 (-934 (-553))) |#1|) 45) (((-630 (-630 (-288 (-934 |#1|)))) (-630 (-288 (-401 (-934 (-553))))) |#1|) 42) (((-630 (-630 (-288 (-934 |#1|)))) (-630 (-401 (-934 (-553)))) |#1|) 36)) (-4231 (((-630 |#1|) (-401 (-934 (-553))) |#1|) 20) (((-630 (-630 |#1|)) (-630 (-401 (-934 (-553)))) (-630 (-1155)) |#1|) 30))) -(((-374 |#1|) (-10 -7 (-15 -1638 ((-630 (-630 (-288 (-934 |#1|)))) (-630 (-401 (-934 (-553)))) |#1|)) (-15 -1638 ((-630 (-630 (-288 (-934 |#1|)))) (-630 (-288 (-401 (-934 (-553))))) |#1|)) (-15 -1638 ((-630 (-288 (-934 |#1|))) (-401 (-934 (-553))) |#1|)) (-15 -1638 ((-630 (-288 (-934 |#1|))) (-288 (-401 (-934 (-553)))) |#1|)) (-15 -4231 ((-630 (-630 |#1|)) (-630 (-401 (-934 (-553)))) (-630 (-1155)) |#1|)) (-15 -4231 ((-630 |#1|) (-401 (-934 (-553))) |#1|))) (-13 (-831) (-357))) (T -374)) -((-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 (-553)))) (-5 *2 (-630 *4)) (-5 *1 (-374 *4)) (-4 *4 (-13 (-831) (-357))))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 (-401 (-934 (-553))))) (-5 *4 (-630 (-1155))) (-5 *2 (-630 (-630 *5))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-831) (-357))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-934 (-553))))) (-5 *2 (-630 (-288 (-934 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-831) (-357))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 (-553)))) (-5 *2 (-630 (-288 (-934 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-831) (-357))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-288 (-401 (-934 (-553)))))) (-5 *2 (-630 (-630 (-288 (-934 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-831) (-357))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-401 (-934 (-553))))) (-5 *2 (-630 (-630 (-288 (-934 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-831) (-357)))))) -(-10 -7 (-15 -1638 ((-630 (-630 (-288 (-934 |#1|)))) (-630 (-401 (-934 (-553)))) |#1|)) (-15 -1638 ((-630 (-630 (-288 (-934 |#1|)))) (-630 (-288 (-401 (-934 (-553))))) |#1|)) (-15 -1638 ((-630 (-288 (-934 |#1|))) (-401 (-934 (-553))) |#1|)) (-15 -1638 ((-630 (-288 (-934 |#1|))) (-288 (-401 (-934 (-553)))) |#1|)) (-15 -4231 ((-630 (-630 |#1|)) (-630 (-401 (-934 (-553)))) (-630 (-1155)) |#1|)) (-15 -4231 ((-630 |#1|) (-401 (-934 (-553))) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) 26)) (-2707 ((|#2| $) 28)) (-3678 (($ $) NIL)) (-1984 (((-757) $) 10)) (-2096 (((-630 $) $) 20)) (-1298 (((-111) $) NIL)) (-1718 (($ |#2| |#1|) 18)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1890 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3644 ((|#2| $) 15)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 45) (($ |#2|) 27)) (-3987 (((-630 |#1|) $) 17)) (-1624 ((|#1| $ |#2|) 47)) (-1988 (($) 29 T CONST)) (-1569 (((-630 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-375 |#1| |#2|) (-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1031) (-833)) (T -375)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-833))))) -(-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#2| "failed") $) 44)) (-2707 ((|#2| $) 45)) (-3678 (($ $) 30)) (-1984 (((-757) $) 34)) (-2096 (((-630 $) $) 35)) (-1298 (((-111) $) 38)) (-1718 (($ |#2| |#1|) 39)) (-1482 (($ (-1 |#1| |#1|) $) 40)) (-1890 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3644 ((|#2| $) 33)) (-3655 ((|#1| $) 32)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ |#2|) 43)) (-3987 (((-630 |#1|) $) 36)) (-1624 ((|#1| $ |#2|) 41)) (-1988 (($) 18 T CONST)) (-1569 (((-630 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-376 |#1| |#2|) (-137) (-1031) (-1079)) (T -376)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-1079)))) (-1624 (*1 *2 *1 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1079)) (-4 *2 (-1031)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)))) (-1718 (*1 *1 *2 *3) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1079)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-111)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-630 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-630 *3)))) (-2096 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-630 *1)) (-4 *1 (-376 *3 *4)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-757)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1079)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1079)) (-4 *2 (-1031)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-1079))))) -(-13 (-110 |t#1| |t#1|) (-1020 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1624 (|t#1| $ |t#2|)) (-15 -1482 ($ (-1 |t#1| |t#1|) $)) (-15 -1718 ($ |t#2| |t#1|)) (-15 -1298 ((-111) $)) (-15 -1569 ((-630 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3987 ((-630 |t#1|) $)) (-15 -2096 ((-630 $) $)) (-15 -1984 ((-757) $)) (-15 -3644 (|t#2| $)) (-15 -3655 (|t#1| $)) (-15 -1890 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3678 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-703 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-603 |#2|) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-703 |#1|) |has| |#1| (-169)) ((-1020 |#2|) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-4005 (((-1243) $) 7)) (-3110 (((-845) $) 8) (($ (-674 (-684))) 14) (($ (-630 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 11))) -(((-377) (-137)) (T -377)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-674 (-684))) (-4 *1 (-377)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-377)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) (-4 *1 (-377))))) -(-13 (-389) (-10 -8 (-15 -3110 ($ (-674 (-684)))) (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-324))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))))) -(((-600 (-845)) . T) ((-389) . T) ((-1192) . T)) -((-1399 (((-3 $ "failed") (-674 (-310 (-373)))) 21) (((-3 $ "failed") (-674 (-310 (-553)))) 19) (((-3 $ "failed") (-674 (-934 (-373)))) 17) (((-3 $ "failed") (-674 (-934 (-553)))) 15) (((-3 $ "failed") (-674 (-401 (-934 (-373))))) 13) (((-3 $ "failed") (-674 (-401 (-934 (-553))))) 11)) (-2707 (($ (-674 (-310 (-373)))) 22) (($ (-674 (-310 (-553)))) 20) (($ (-674 (-934 (-373)))) 18) (($ (-674 (-934 (-553)))) 16) (($ (-674 (-401 (-934 (-373))))) 14) (($ (-674 (-401 (-934 (-553))))) 12)) (-4005 (((-1243) $) 7)) (-3110 (((-845) $) 8) (($ (-630 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 23))) -(((-378) (-137)) (T -378)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-378)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) (-4 *1 (-378)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-674 (-310 (-373)))) (-4 *1 (-378)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-674 (-310 (-373)))) (-4 *1 (-378)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-674 (-310 (-553)))) (-4 *1 (-378)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-674 (-310 (-553)))) (-4 *1 (-378)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-674 (-934 (-373)))) (-4 *1 (-378)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-674 (-934 (-373)))) (-4 *1 (-378)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-674 (-934 (-553)))) (-4 *1 (-378)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-674 (-934 (-553)))) (-4 *1 (-378)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-674 (-401 (-934 (-373))))) (-4 *1 (-378)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-674 (-401 (-934 (-373))))) (-4 *1 (-378)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-674 (-401 (-934 (-553))))) (-4 *1 (-378)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-674 (-401 (-934 (-553))))) (-4 *1 (-378))))) -(-13 (-389) (-10 -8 (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-324))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))) (-15 -2707 ($ (-674 (-310 (-373))))) (-15 -1399 ((-3 $ "failed") (-674 (-310 (-373))))) (-15 -2707 ($ (-674 (-310 (-553))))) (-15 -1399 ((-3 $ "failed") (-674 (-310 (-553))))) (-15 -2707 ($ (-674 (-934 (-373))))) (-15 -1399 ((-3 $ "failed") (-674 (-934 (-373))))) (-15 -2707 ($ (-674 (-934 (-553))))) (-15 -1399 ((-3 $ "failed") (-674 (-934 (-553))))) (-15 -2707 ($ (-674 (-401 (-934 (-373)))))) (-15 -1399 ((-3 $ "failed") (-674 (-401 (-934 (-373)))))) (-15 -2707 ($ (-674 (-401 (-934 (-553)))))) (-15 -1399 ((-3 $ "failed") (-674 (-401 (-934 (-553)))))))) -(((-600 (-845)) . T) ((-389) . T) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-3481 (($ |#1| |#2|) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1277 ((|#2| $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 28)) (-1988 (($) 12 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-379 |#1| |#2|) (-13 (-110 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-703 |#1|)) |%noBranch|))) (-1031) (-833)) (T -379)) -NIL -(-13 (-110 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-703 |#1|)) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-2571 (((-757) $) 59)) (-3820 (($) NIL T CONST)) (-1429 (((-3 $ "failed") $ $) 61)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3213 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1848 (((-111) $) 15)) (-3111 ((|#1| $ (-553)) NIL)) (-1360 (((-757) $ (-553)) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-3589 (($ (-1 |#1| |#1|) $) 38)) (-3821 (($ (-1 (-757) (-757)) $) 35)) (-1754 (((-3 $ "failed") $ $) 50)) (-1735 (((-1137) $) NIL)) (-4308 (($ $ $) 26)) (-3391 (($ $ $) 24)) (-2786 (((-1099) $) NIL)) (-3713 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $) 32)) (-4032 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3110 (((-845) $) 22) (($ |#1|) NIL)) (-1997 (($) 9 T CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 41)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) 63 (|has| |#1| (-833)))) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ |#1| (-757)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-380 |#1|) (-13 (-712) (-1020 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-757))) (-15 -3391 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -1754 ((-3 $ "failed") $ $)) (-15 -1429 ((-3 $ "failed") $ $)) (-15 -4032 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3213 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2571 ((-757) $)) (-15 -3713 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $)) (-15 -1360 ((-757) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3821 ($ (-1 (-757) (-757)) $)) (-15 -3589 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-1079)) (T -380)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (-4308 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (-1754 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (-1429 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (-4032 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) (-3213 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 (-757))))) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-757)) (-5 *1 (-380 *4)) (-4 *4 (-1079)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-380 *2)) (-4 *2 (-1079)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-757) (-757))) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) (-3589 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-380 *3))))) -(-13 (-712) (-1020 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-757))) (-15 -3391 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -1754 ((-3 $ "failed") $ $)) (-15 -1429 ((-3 $ "failed") $ $)) (-15 -4032 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3213 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2571 ((-757) $)) (-15 -3713 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $)) (-15 -1360 ((-757) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3821 ($ (-1 (-757) (-757)) $)) (-15 -3589 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 48)) (-2707 (((-553) $) 49)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1824 (($ $ $) 55)) (-1975 (($ $ $) 54)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ $) 43)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-553)) 47)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 52)) (-1648 (((-111) $ $) 51)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 53)) (-1636 (((-111) $ $) 50)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-381) (-137)) (T -381)) -NIL -(-13 (-545) (-833) (-1020 (-553))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-833) . T) ((-1020 (-553)) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-2877 (((-111) $) 20)) (-2659 (((-111) $) 19)) (-3202 (($ (-1137) (-1137) (-1137)) 21)) (-4298 (((-1137) $) 16)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2596 (($ (-1137) (-1137) (-1137)) 14)) (-3888 (((-1137) $) 17)) (-2210 (((-111) $) 18)) (-3479 (((-1137) $) 15)) (-3110 (((-845) $) 12) (($ (-1137)) 13) (((-1137) $) 9)) (-1617 (((-111) $ $) 7))) -(((-382) (-383)) (T -382)) -NIL -(-383) -((-3096 (((-111) $ $) 7)) (-2877 (((-111) $) 16)) (-2659 (((-111) $) 17)) (-3202 (($ (-1137) (-1137) (-1137)) 15)) (-4298 (((-1137) $) 20)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-2596 (($ (-1137) (-1137) (-1137)) 22)) (-3888 (((-1137) $) 19)) (-2210 (((-111) $) 18)) (-3479 (((-1137) $) 21)) (-3110 (((-845) $) 11) (($ (-1137)) 24) (((-1137) $) 23)) (-1617 (((-111) $ $) 6))) -(((-383) (-137)) (T -383)) -((-2596 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1137)) (-4 *1 (-383)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1137)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1137)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1137)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-3202 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1137)) (-4 *1 (-383))))) -(-13 (-1079) (-483 (-1137)) (-10 -8 (-15 -2596 ($ (-1137) (-1137) (-1137))) (-15 -3479 ((-1137) $)) (-15 -4298 ((-1137) $)) (-15 -3888 ((-1137) $)) (-15 -2210 ((-111) $)) (-15 -2659 ((-111) $)) (-15 -2877 ((-111) $)) (-15 -3202 ($ (-1137) (-1137) (-1137))))) -(((-101) . T) ((-603 #0=(-1137)) . T) ((-600 (-845)) . T) ((-600 #0#) . T) ((-483 #0#) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3957 (((-845) $) 50)) (-3820 (($) NIL T CONST)) (-1658 (($ $ (-903)) NIL)) (-3418 (($ $ (-903)) NIL)) (-1341 (($ $ (-903)) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-4093 (($ (-757)) 26)) (-1337 (((-757)) 17)) (-2310 (((-845) $) 52)) (-1957 (($ $ $) NIL)) (-3110 (((-845) $) NIL)) (-2840 (($ $ $ $) NIL)) (-1634 (($ $ $) NIL)) (-1988 (($) 20 T CONST)) (-1617 (((-111) $ $) 28)) (-1711 (($ $) 34) (($ $ $) 36)) (-1700 (($ $ $) 37)) (** (($ $ (-903)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-384 |#1| |#2| |#3|) (-13 (-730 |#3|) (-10 -8 (-15 -1337 ((-757))) (-15 -2310 ((-845) $)) (-15 -3957 ((-845) $)) (-15 -4093 ($ (-757))))) (-757) (-757) (-169)) (T -384)) -((-1337 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-757)) (-14 *4 (-757)) (-4 *5 (-169)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-757)) (-14 *4 (-757)) (-4 *5 (-169)))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) -(-13 (-730 |#3|) (-10 -8 (-15 -1337 ((-757))) (-15 -2310 ((-845) $)) (-15 -3957 ((-845) $)) (-15 -4093 ($ (-757))))) -((-2061 (((-1137)) 10)) (-1793 (((-1126 (-1137))) 28)) (-3961 (((-1243) (-1137)) 25) (((-1243) (-382)) 24)) (-3970 (((-1243)) 26)) (-2292 (((-1126 (-1137))) 27))) -(((-385) (-10 -7 (-15 -2292 ((-1126 (-1137)))) (-15 -1793 ((-1126 (-1137)))) (-15 -3970 ((-1243))) (-15 -3961 ((-1243) (-382))) (-15 -3961 ((-1243) (-1137))) (-15 -2061 ((-1137))))) (T -385)) -((-2061 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-385)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-385)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1243)) (-5 *1 (-385)))) (-3970 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-385)))) (-1793 (*1 *2) (-12 (-5 *2 (-1126 (-1137))) (-5 *1 (-385)))) (-2292 (*1 *2) (-12 (-5 *2 (-1126 (-1137))) (-5 *1 (-385))))) -(-10 -7 (-15 -2292 ((-1126 (-1137)))) (-15 -1793 ((-1126 (-1137)))) (-15 -3970 ((-1243))) (-15 -3961 ((-1243) (-382))) (-15 -3961 ((-1243) (-1137))) (-15 -2061 ((-1137)))) -((-2968 (((-757) (-330 |#1| |#2| |#3| |#4|)) 16))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2968 ((-757) (-330 |#1| |#2| |#3| |#4|)))) (-13 (-362) (-357)) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -386)) -((-2968 (*1 *2 *3) (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) (-5 *2 (-757)) (-5 *1 (-386 *4 *5 *6 *7))))) -(-10 -7 (-15 -2968 ((-757) (-330 |#1| |#2| |#3| |#4|)))) -((-3110 (((-388) |#1|) 11))) -(((-387 |#1|) (-10 -7 (-15 -3110 ((-388) |#1|))) (-1079)) (T -387)) -((-3110 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1079))))) -(-10 -7 (-15 -3110 ((-388) |#1|))) -((-3096 (((-111) $ $) NIL)) (-4136 (((-630 (-1137)) $ (-630 (-1137))) 38)) (-1660 (((-630 (-1137)) $ (-630 (-1137))) 39)) (-2191 (((-630 (-1137)) $ (-630 (-1137))) 40)) (-1852 (((-630 (-1137)) $) 35)) (-3202 (($) 23)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-4212 (((-630 (-1137)) $) 36)) (-2069 (((-630 (-1137)) $) 37)) (-2524 (((-1243) $ (-553)) 33) (((-1243) $) 34)) (-1524 (($ (-845) (-553)) 30)) (-3110 (((-845) $) 42) (($ (-845)) 25)) (-1617 (((-111) $ $) NIL))) -(((-388) (-13 (-1079) (-603 (-845)) (-10 -8 (-15 -1524 ($ (-845) (-553))) (-15 -2524 ((-1243) $ (-553))) (-15 -2524 ((-1243) $)) (-15 -2069 ((-630 (-1137)) $)) (-15 -4212 ((-630 (-1137)) $)) (-15 -3202 ($)) (-15 -1852 ((-630 (-1137)) $)) (-15 -2191 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -1660 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -4136 ((-630 (-1137)) $ (-630 (-1137))))))) (T -388)) -((-1524 (*1 *1 *2 *3) (-12 (-5 *2 (-845)) (-5 *3 (-553)) (-5 *1 (-388)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-388)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-388)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) (-3202 (*1 *1) (-5 *1 (-388))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) (-2191 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) (-1660 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) (-4136 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388))))) -(-13 (-1079) (-603 (-845)) (-10 -8 (-15 -1524 ($ (-845) (-553))) (-15 -2524 ((-1243) $ (-553))) (-15 -2524 ((-1243) $)) (-15 -2069 ((-630 (-1137)) $)) (-15 -4212 ((-630 (-1137)) $)) (-15 -3202 ($)) (-15 -1852 ((-630 (-1137)) $)) (-15 -2191 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -1660 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -4136 ((-630 (-1137)) $ (-630 (-1137)))))) -((-4005 (((-1243) $) 7)) (-3110 (((-845) $) 8))) -(((-389) (-137)) (T -389)) -((-4005 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1243))))) -(-13 (-1192) (-600 (-845)) (-10 -8 (-15 -4005 ((-1243) $)))) -(((-600 (-845)) . T) ((-1192) . T)) -((-1399 (((-3 $ "failed") (-310 (-373))) 21) (((-3 $ "failed") (-310 (-553))) 19) (((-3 $ "failed") (-934 (-373))) 17) (((-3 $ "failed") (-934 (-553))) 15) (((-3 $ "failed") (-401 (-934 (-373)))) 13) (((-3 $ "failed") (-401 (-934 (-553)))) 11)) (-2707 (($ (-310 (-373))) 22) (($ (-310 (-553))) 20) (($ (-934 (-373))) 18) (($ (-934 (-553))) 16) (($ (-401 (-934 (-373)))) 14) (($ (-401 (-934 (-553)))) 12)) (-4005 (((-1243) $) 7)) (-3110 (((-845) $) 8) (($ (-630 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 23))) -(((-390) (-137)) (T -390)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-390)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) (-4 *1 (-390)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-310 (-553))) (-4 *1 (-390)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-553))) (-4 *1 (-390)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-934 (-373))) (-4 *1 (-390)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-373))) (-4 *1 (-390)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-934 (-553))) (-4 *1 (-390)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-553))) (-4 *1 (-390)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-373)))) (-4 *1 (-390)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-934 (-373)))) (-4 *1 (-390)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-553)))) (-4 *1 (-390)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-934 (-553)))) (-4 *1 (-390))))) -(-13 (-389) (-10 -8 (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-324))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))) (-15 -2707 ($ (-310 (-373)))) (-15 -1399 ((-3 $ "failed") (-310 (-373)))) (-15 -2707 ($ (-310 (-553)))) (-15 -1399 ((-3 $ "failed") (-310 (-553)))) (-15 -2707 ($ (-934 (-373)))) (-15 -1399 ((-3 $ "failed") (-934 (-373)))) (-15 -2707 ($ (-934 (-553)))) (-15 -1399 ((-3 $ "failed") (-934 (-553)))) (-15 -2707 ($ (-401 (-934 (-373))))) (-15 -1399 ((-3 $ "failed") (-401 (-934 (-373))))) (-15 -2707 ($ (-401 (-934 (-553))))) (-15 -1399 ((-3 $ "failed") (-401 (-934 (-553))))))) -(((-600 (-845)) . T) ((-389) . T) ((-1192) . T)) -((-3522 (((-630 (-1137)) (-630 (-1137))) 9)) (-4005 (((-1243) (-382)) 27)) (-4161 (((-1083) (-1155) (-630 (-1155)) (-1158) (-630 (-1155))) 60) (((-1083) (-1155) (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155)))) (-630 (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155))))) (-630 (-1155)) (-1155)) 35) (((-1083) (-1155) (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155)))) (-630 (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155))))) (-630 (-1155))) 34))) -(((-391) (-10 -7 (-15 -4161 ((-1083) (-1155) (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155)))) (-630 (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155))))) (-630 (-1155)))) (-15 -4161 ((-1083) (-1155) (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155)))) (-630 (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155))))) (-630 (-1155)) (-1155))) (-15 -4161 ((-1083) (-1155) (-630 (-1155)) (-1158) (-630 (-1155)))) (-15 -4005 ((-1243) (-382))) (-15 -3522 ((-630 (-1137)) (-630 (-1137)))))) (T -391)) -((-3522 (*1 *2 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-391)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1243)) (-5 *1 (-391)))) (-4161 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-630 (-1155))) (-5 *5 (-1158)) (-5 *3 (-1155)) (-5 *2 (-1083)) (-5 *1 (-391)))) (-4161 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-630 (-630 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-630 (-3 (|:| |array| (-630 *3)) (|:| |scalar| (-1155))))) (-5 *6 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1083)) (-5 *1 (-391)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-630 (-630 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-630 (-3 (|:| |array| (-630 *3)) (|:| |scalar| (-1155))))) (-5 *6 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1083)) (-5 *1 (-391))))) -(-10 -7 (-15 -4161 ((-1083) (-1155) (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155)))) (-630 (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155))))) (-630 (-1155)))) (-15 -4161 ((-1083) (-1155) (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155)))) (-630 (-630 (-3 (|:| |array| (-630 (-1155))) (|:| |scalar| (-1155))))) (-630 (-1155)) (-1155))) (-15 -4161 ((-1083) (-1155) (-630 (-1155)) (-1158) (-630 (-1155)))) (-15 -4005 ((-1243) (-382))) (-15 -3522 ((-630 (-1137)) (-630 (-1137))))) -((-4005 (((-1243) $) 38)) (-3110 (((-845) $) 98) (($ (-324)) 100) (($ (-630 (-324))) 99) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 97) (($ (-310 (-686))) 54) (($ (-310 (-684))) 73) (($ (-310 (-679))) 86) (($ (-288 (-310 (-686)))) 68) (($ (-288 (-310 (-684)))) 81) (($ (-288 (-310 (-679)))) 94) (($ (-310 (-553))) 104) (($ (-310 (-373))) 117) (($ (-310 (-166 (-373)))) 130) (($ (-288 (-310 (-553)))) 112) (($ (-288 (-310 (-373)))) 125) (($ (-288 (-310 (-166 (-373))))) 138))) -(((-392 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -3110 ($ (-324))) (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))) (-15 -3110 ($ (-310 (-686)))) (-15 -3110 ($ (-310 (-684)))) (-15 -3110 ($ (-310 (-679)))) (-15 -3110 ($ (-288 (-310 (-686))))) (-15 -3110 ($ (-288 (-310 (-684))))) (-15 -3110 ($ (-288 (-310 (-679))))) (-15 -3110 ($ (-310 (-553)))) (-15 -3110 ($ (-310 (-373)))) (-15 -3110 ($ (-310 (-166 (-373))))) (-15 -3110 ($ (-288 (-310 (-553))))) (-15 -3110 ($ (-288 (-310 (-373))))) (-15 -3110 ($ (-288 (-310 (-166 (-373)))))))) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-1155)) (-1159)) (T -392)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-310 (-686))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-310 (-684))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-310 (-679))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-686)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-684)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-679)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-310 (-553))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-553)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-14 *5 (-630 (-1155))) (-14 *6 (-1159))))) -(-13 (-389) (-10 -8 (-15 -3110 ($ (-324))) (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))) (-15 -3110 ($ (-310 (-686)))) (-15 -3110 ($ (-310 (-684)))) (-15 -3110 ($ (-310 (-679)))) (-15 -3110 ($ (-288 (-310 (-686))))) (-15 -3110 ($ (-288 (-310 (-684))))) (-15 -3110 ($ (-288 (-310 (-679))))) (-15 -3110 ($ (-310 (-553)))) (-15 -3110 ($ (-310 (-373)))) (-15 -3110 ($ (-310 (-166 (-373))))) (-15 -3110 ($ (-288 (-310 (-553))))) (-15 -3110 ($ (-288 (-310 (-373))))) (-15 -3110 ($ (-288 (-310 (-166 (-373)))))))) -((-3096 (((-111) $ $) NIL)) (-3980 ((|#2| $) 36)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2408 (($ (-401 |#2|)) 85)) (-4118 (((-630 (-2 (|:| -2692 (-757)) (|:| -4010 |#2|) (|:| |num| |#2|))) $) 37)) (-1330 (($ $) 32) (($ $ (-757)) 34)) (-1524 (((-401 |#2|) $) 46)) (-3121 (($ (-630 (-2 (|:| -2692 (-757)) (|:| -4010 |#2|) (|:| |num| |#2|)))) 31)) (-3110 (((-845) $) 120)) (-1780 (($ $) 33) (($ $ (-757)) 35)) (-1617 (((-111) $ $) NIL)) (-1700 (($ |#2| $) 39))) -(((-393 |#1| |#2|) (-13 (-1079) (-601 (-401 |#2|)) (-10 -8 (-15 -1700 ($ |#2| $)) (-15 -2408 ($ (-401 |#2|))) (-15 -3980 (|#2| $)) (-15 -4118 ((-630 (-2 (|:| -2692 (-757)) (|:| -4010 |#2|) (|:| |num| |#2|))) $)) (-15 -3121 ($ (-630 (-2 (|:| -2692 (-757)) (|:| -4010 |#2|) (|:| |num| |#2|))))) (-15 -1330 ($ $)) (-15 -1780 ($ $)) (-15 -1330 ($ $ (-757))) (-15 -1780 ($ $ (-757))))) (-13 (-357) (-144)) (-1214 |#1|)) (T -393)) -((-1700 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) (-4 *2 (-1214 *3)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-401 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-3980 (*1 *2 *1) (-12 (-4 *2 (-1214 *3)) (-5 *1 (-393 *3 *2)) (-4 *3 (-13 (-357) (-144))))) (-4118 (*1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *2 (-630 (-2 (|:| -2692 (-757)) (|:| -4010 *4) (|:| |num| *4)))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1214 *3)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -2692 (-757)) (|:| -4010 *4) (|:| |num| *4)))) (-4 *4 (-1214 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-1330 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1214 *2)))) (-1780 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1214 *2)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1214 *3)))) (-1780 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1214 *3))))) -(-13 (-1079) (-601 (-401 |#2|)) (-10 -8 (-15 -1700 ($ |#2| $)) (-15 -2408 ($ (-401 |#2|))) (-15 -3980 (|#2| $)) (-15 -4118 ((-630 (-2 (|:| -2692 (-757)) (|:| -4010 |#2|) (|:| |num| |#2|))) $)) (-15 -3121 ($ (-630 (-2 (|:| -2692 (-757)) (|:| -4010 |#2|) (|:| |num| |#2|))))) (-15 -1330 ($ $)) (-15 -1780 ($ $)) (-15 -1330 ($ $ (-757))) (-15 -1780 ($ $ (-757))))) -((-3096 (((-111) $ $) 9 (-3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))))) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 15 (|has| |#1| (-868 (-373)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 14 (|has| |#1| (-868 (-553))))) (-1735 (((-1137) $) 13 (-3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))))) (-2786 (((-1099) $) 12 (-3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))))) (-3110 (((-845) $) 11 (-3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))))) (-1617 (((-111) $ $) 10 (-3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373))))))) -(((-394 |#1|) (-137) (-1192)) (T -394)) -NIL -(-13 (-1192) (-10 -7 (IF (|has| |t#1| (-868 (-553))) (-6 (-868 (-553))) |%noBranch|) (IF (|has| |t#1| (-868 (-373))) (-6 (-868 (-373))) |%noBranch|))) -(((-101) -3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))) ((-600 (-845)) -3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))) ((-868 (-373)) |has| |#1| (-868 (-373))) ((-868 (-553)) |has| |#1| (-868 (-553))) ((-1079) -3988 (|has| |#1| (-868 (-553))) (|has| |#1| (-868 (-373)))) ((-1192) . T)) -((-1808 (($ $) 10) (($ $ (-757)) 11))) -(((-395 |#1|) (-10 -8 (-15 -1808 (|#1| |#1| (-757))) (-15 -1808 (|#1| |#1|))) (-396)) (T -395)) -NIL -(-10 -8 (-15 -1808 (|#1| |#1| (-757))) (-15 -1808 (|#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-1808 (($ $) 80) (($ $ (-757)) 79)) (-3119 (((-111) $) 72)) (-2968 (((-819 (-903)) $) 82)) (-1848 (((-111) $) 31)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3122 (((-3 (-757) "failed") $ $) 81)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67)) (-2941 (((-3 $ "failed") $) 83)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 66)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68))) -(((-396) (-137)) (T -396)) -((-2968 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-819 (-903))))) (-3122 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-757)))) (-1808 (*1 *1 *1) (-4 *1 (-396))) (-1808 (*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-757))))) -(-13 (-357) (-142) (-10 -8 (-15 -2968 ((-819 (-903)) $)) (-15 -3122 ((-3 (-757) "failed") $ $)) (-15 -1808 ($ $)) (-15 -1808 ($ $ (-757))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-3293 (($ (-553) (-553)) 11) (($ (-553) (-553) (-903)) NIL)) (-2989 (((-903)) 16) (((-903) (-903)) NIL))) -(((-397 |#1|) (-10 -8 (-15 -2989 ((-903) (-903))) (-15 -2989 ((-903))) (-15 -3293 (|#1| (-553) (-553) (-903))) (-15 -3293 (|#1| (-553) (-553)))) (-398)) (T -397)) -((-2989 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-397 *3)) (-4 *3 (-398))))) -(-10 -8 (-15 -2989 ((-903) (-903))) (-15 -2989 ((-903))) (-15 -3293 (|#1| (-553) (-553) (-903))) (-15 -3293 (|#1| (-553) (-553)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2751 (((-553) $) 90)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-1728 (($ $) 88)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-3365 (($ $) 98)) (-4349 (((-111) $ $) 60)) (-2125 (((-553) $) 115)) (-3820 (($) 17 T CONST)) (-2641 (($ $) 87)) (-1399 (((-3 (-553) "failed") $) 103) (((-3 (-401 (-553)) "failed") $) 100)) (-2707 (((-553) $) 104) (((-401 (-553)) $) 101)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-3119 (((-111) $) 72)) (-2737 (((-903)) 131) (((-903) (-903)) 128 (|has| $ (-6 -4360)))) (-4270 (((-111) $) 113)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 94)) (-2968 (((-553) $) 137)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 97)) (-3560 (($ $) 93)) (-2797 (((-111) $) 114)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-1824 (($ $ $) 112) (($) 125 (-12 (-2826 (|has| $ (-6 -4360))) (-2826 (|has| $ (-6 -4352)))))) (-1975 (($ $ $) 111) (($) 124 (-12 (-2826 (|has| $ (-6 -4360))) (-2826 (|has| $ (-6 -4352)))))) (-1883 (((-553) $) 134)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-3496 (((-903) (-553)) 127 (|has| $ (-6 -4360)))) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3785 (($ $) 89)) (-2334 (($ $) 91)) (-3293 (($ (-553) (-553)) 139) (($ (-553) (-553) (-903)) 138)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-2692 (((-553) $) 135)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-2989 (((-903)) 132) (((-903) (-903)) 129 (|has| $ (-6 -4360)))) (-3098 (((-903) (-553)) 126 (|has| $ (-6 -4360)))) (-1524 (((-373) $) 106) (((-220) $) 105) (((-874 (-373)) $) 95)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67) (($ (-553)) 102) (($ (-401 (-553))) 99)) (-1999 (((-757)) 28)) (-2582 (($ $) 92)) (-3556 (((-903)) 133) (((-903) (-903)) 130 (|has| $ (-6 -4360)))) (-2959 (((-903)) 136)) (-1639 (((-111) $ $) 40)) (-3466 (($ $) 116)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 109)) (-1648 (((-111) $ $) 108)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 110)) (-1636 (((-111) $ $) 107)) (-1723 (($ $ $) 66)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70) (($ $ (-401 (-553))) 96)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68))) -(((-398) (-137)) (T -398)) -((-3293 (*1 *1 *2 *2) (-12 (-5 *2 (-553)) (-4 *1 (-398)))) (-3293 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-553)) (-5 *3 (-903)) (-4 *1 (-398)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-553)))) (-2959 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-553)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-553)))) (-3556 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) (-2989 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) (-2737 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) (-3556 (*1 *2 *2) (-12 (-5 *2 (-903)) (|has| *1 (-6 -4360)) (-4 *1 (-398)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-903)) (|has| *1 (-6 -4360)) (-4 *1 (-398)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-903)) (|has| *1 (-6 -4360)) (-4 *1 (-398)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-553)) (|has| *1 (-6 -4360)) (-4 *1 (-398)) (-5 *2 (-903)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-553)) (|has| *1 (-6 -4360)) (-4 *1 (-398)) (-5 *2 (-903)))) (-1824 (*1 *1) (-12 (-4 *1 (-398)) (-2826 (|has| *1 (-6 -4360))) (-2826 (|has| *1 (-6 -4352))))) (-1975 (*1 *1) (-12 (-4 *1 (-398)) (-2826 (|has| *1 (-6 -4360))) (-2826 (|has| *1 (-6 -4352)))))) -(-13 (-1040) (-10 -8 (-6 -4327) (-15 -3293 ($ (-553) (-553))) (-15 -3293 ($ (-553) (-553) (-903))) (-15 -2968 ((-553) $)) (-15 -2959 ((-903))) (-15 -2692 ((-553) $)) (-15 -1883 ((-553) $)) (-15 -3556 ((-903))) (-15 -2989 ((-903))) (-15 -2737 ((-903))) (IF (|has| $ (-6 -4360)) (PROGN (-15 -3556 ((-903) (-903))) (-15 -2989 ((-903) (-903))) (-15 -2737 ((-903) (-903))) (-15 -3496 ((-903) (-553))) (-15 -3098 ((-903) (-553)))) |%noBranch|) (IF (|has| $ (-6 -4352)) |%noBranch| (IF (|has| $ (-6 -4360)) |%noBranch| (PROGN (-15 -1824 ($)) (-15 -1975 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-601 (-220)) . T) ((-601 (-373)) . T) ((-601 (-874 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 $) . T) ((-712) . T) ((-777) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-831) . T) ((-833) . T) ((-868 (-373)) . T) ((-902) . T) ((-984) . T) ((-1004) . T) ((-1040) . T) ((-1020 (-401 (-553))) . T) ((-1020 (-553)) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-1482 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 20))) -(((-399 |#1| |#2|) (-10 -7 (-15 -1482 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-545) (-545)) (T -399)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6))))) -(-10 -7 (-15 -1482 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) -((-1482 (((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)) 13))) -(((-400 |#1| |#2|) (-10 -7 (-15 -1482 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) (-545) (-545)) (T -400)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6))))) -(-10 -7 (-15 -1482 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 13)) (-2751 ((|#1| $) 21 (|has| |#1| (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| |#1| (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 17) (((-3 (-1155) "failed") $) NIL (|has| |#1| (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) 70 (|has| |#1| (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553))))) (-2707 ((|#1| $) 15) (((-1155) $) NIL (|has| |#1| (-1020 (-1155)))) (((-401 (-553)) $) 67 (|has| |#1| (-1020 (-553)))) (((-553) $) NIL (|has| |#1| (-1020 (-553))))) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) 50)) (-3031 (($) NIL (|has| |#1| (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| |#1| (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| |#1| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| |#1| (-868 (-373))))) (-1848 (((-111) $) 64)) (-2181 (($ $) NIL)) (-3963 ((|#1| $) 71)) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-1130)))) (-2797 (((-111) $) NIL (|has| |#1| (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| |#1| (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 97)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| |#1| (-301)))) (-2334 ((|#1| $) 28 (|has| |#1| (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 135 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 131 (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) NIL (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-507 (-1155) |#1|)))) (-3384 (((-757) $) NIL)) (-2046 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3161 (($ $) NIL)) (-3974 ((|#1| $) 73)) (-1524 (((-874 (-553)) $) NIL (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| |#1| (-601 (-874 (-373))))) (((-529) $) NIL (|has| |#1| (-601 (-529)))) (((-373) $) NIL (|has| |#1| (-1004))) (((-220) $) NIL (|has| |#1| (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 115 (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) 10) (($ (-1155)) NIL (|has| |#1| (-1020 (-1155))))) (-2941 (((-3 $ "failed") $) 99 (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) 100)) (-2582 ((|#1| $) 26 (|has| |#1| (-538)))) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL (|has| |#1| (-806)))) (-1988 (($) 22 T CONST)) (-1997 (($) 8 T CONST)) (-3205 (((-1137) $) 43 (-12 (|has| |#1| (-538)) (|has| |#1| (-814)))) (((-1137) $ (-111)) 44 (-12 (|has| |#1| (-538)) (|has| |#1| (-814)))) (((-1243) (-808) $) 45 (-12 (|has| |#1| (-538)) (|has| |#1| (-814)))) (((-1243) (-808) $ (-111)) 46 (-12 (|has| |#1| (-538)) (|has| |#1| (-814))))) (-1780 (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 56)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) 24 (|has| |#1| (-833)))) (-1723 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1711 (($ $) 25) (($ $ $) 55)) (-1700 (($ $ $) 53)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 125)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 60) (($ $ $) 57) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-401 |#1|) (-13 (-974 |#1|) (-10 -7 (IF (|has| |#1| (-538)) (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4356)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4367)) (-6 -4356) |%noBranch|) |%noBranch|) |%noBranch|))) (-545)) (T -401)) -NIL -(-13 (-974 |#1|) (-10 -7 (IF (|has| |#1| (-538)) (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4356)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4367)) (-6 -4356) |%noBranch|) |%noBranch|) |%noBranch|))) -((-3989 (((-674 |#2|) (-1238 $)) NIL) (((-674 |#2|)) 18)) (-3461 (($ (-1238 |#2|) (-1238 $)) NIL) (($ (-1238 |#2|)) 24)) (-4232 (((-674 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) $) 38)) (-3568 ((|#3| $) 60)) (-3000 ((|#2| (-1238 $)) NIL) ((|#2|) 20)) (-2855 (((-1238 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) (-1238 $) (-1238 $)) NIL) (((-1238 |#2|) $) 22) (((-674 |#2|) (-1238 $)) 36)) (-1524 (((-1238 |#2|) $) 11) (($ (-1238 |#2|)) 13)) (-3547 ((|#3| $) 52))) -(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -4232 ((-674 |#2|) |#1|)) (-15 -3000 (|#2|)) (-15 -3989 ((-674 |#2|))) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -3461 (|#1| (-1238 |#2|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -3568 (|#3| |#1|)) (-15 -3547 (|#3| |#1|)) (-15 -3989 ((-674 |#2|) (-1238 |#1|))) (-15 -3000 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -4232 ((-674 |#2|) |#1| (-1238 |#1|)))) (-403 |#2| |#3|) (-169) (-1214 |#2|)) (T -402)) -((-3989 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-3000 (*1 *2) (-12 (-4 *4 (-1214 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) -(-10 -8 (-15 -4232 ((-674 |#2|) |#1|)) (-15 -3000 (|#2|)) (-15 -3989 ((-674 |#2|))) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -3461 (|#1| (-1238 |#2|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -3568 (|#3| |#1|)) (-15 -3547 (|#3| |#1|)) (-15 -3989 ((-674 |#2|) (-1238 |#1|))) (-15 -3000 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -4232 ((-674 |#2|) |#1| (-1238 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3989 (((-674 |#1|) (-1238 $)) 47) (((-674 |#1|)) 62)) (-1576 ((|#1| $) 53)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-3461 (($ (-1238 |#1|) (-1238 $)) 49) (($ (-1238 |#1|)) 65)) (-4232 (((-674 |#1|) $ (-1238 $)) 54) (((-674 |#1|) $) 60)) (-2982 (((-3 $ "failed") $) 33)) (-2409 (((-903)) 55)) (-1848 (((-111) $) 31)) (-3560 ((|#1| $) 52)) (-3568 ((|#2| $) 45 (|has| |#1| (-357)))) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3000 ((|#1| (-1238 $)) 48) ((|#1|) 61)) (-2855 (((-1238 |#1|) $ (-1238 $)) 51) (((-674 |#1|) (-1238 $) (-1238 $)) 50) (((-1238 |#1|) $) 67) (((-674 |#1|) (-1238 $)) 66)) (-1524 (((-1238 |#1|) $) 64) (($ (-1238 |#1|)) 63)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38)) (-2941 (((-3 $ "failed") $) 44 (|has| |#1| (-142)))) (-3547 ((|#2| $) 46)) (-1999 (((-757)) 28)) (-4124 (((-1238 $)) 68)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-403 |#1| |#2|) (-137) (-169) (-1214 |t#1|)) (T -403)) -((-4124 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-1238 *1)) (-4 *1 (-403 *3 *4)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-1238 *3)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1214 *3)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-1238 *3)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1214 *3)))) (-3989 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-674 *3)))) (-3000 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1214 *2)) (-4 *2 (-169)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-674 *3))))) -(-13 (-364 |t#1| |t#2|) (-10 -8 (-15 -4124 ((-1238 $))) (-15 -2855 ((-1238 |t#1|) $)) (-15 -2855 ((-674 |t#1|) (-1238 $))) (-15 -3461 ($ (-1238 |t#1|))) (-15 -1524 ((-1238 |t#1|) $)) (-15 -1524 ($ (-1238 |t#1|))) (-15 -3989 ((-674 |t#1|))) (-15 -3000 (|t#1|)) (-15 -4232 ((-674 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-364 |#1| |#2|) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) . T) ((-712) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) 27) (((-3 (-553) "failed") $) 19)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) 24) (((-553) $) 14)) (-3110 (($ |#2|) NIL) (($ (-401 (-553))) 22) (($ (-553)) 11))) -(((-404 |#1| |#2|) (-10 -8 (-15 -3110 (|#1| (-553))) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|))) (-405 |#2|) (-1192)) (T -404)) -NIL -(-10 -8 (-15 -3110 (|#1| (-553))) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|))) -((-1399 (((-3 |#1| "failed") $) 9) (((-3 (-401 (-553)) "failed") $) 16 (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) 13 (|has| |#1| (-1020 (-553))))) (-2707 ((|#1| $) 8) (((-401 (-553)) $) 17 (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) 14 (|has| |#1| (-1020 (-553))))) (-3110 (($ |#1|) 6) (($ (-401 (-553))) 15 (|has| |#1| (-1020 (-401 (-553))))) (($ (-553)) 12 (|has| |#1| (-1020 (-553)))))) -(((-405 |#1|) (-137) (-1192)) (T -405)) -NIL -(-13 (-1020 |t#1|) (-10 -7 (IF (|has| |t#1| (-1020 (-553))) (-6 (-1020 (-553))) |%noBranch|) (IF (|has| |t#1| (-1020 (-401 (-553)))) (-6 (-1020 (-401 (-553)))) |%noBranch|))) -(((-603 #0=(-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-603 #1=(-553)) |has| |#1| (-1020 (-553))) ((-603 |#1|) . T) ((-1020 #0#) |has| |#1| (-1020 (-401 (-553)))) ((-1020 #1#) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T)) -((-1482 (((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)) 33))) -(((-406 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1482 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) (-301) (-974 |#1|) (-1214 |#2|) (-13 (-403 |#2| |#3|) (-1020 |#2|)) (-301) (-974 |#5|) (-1214 |#6|) (-13 (-403 |#6| |#7|) (-1020 |#6|))) (T -406)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) (-4 *6 (-974 *5)) (-4 *7 (-1214 *6)) (-4 *8 (-13 (-403 *6 *7) (-1020 *6))) (-4 *9 (-301)) (-4 *10 (-974 *9)) (-4 *11 (-1214 *10)) (-5 *2 (-407 *9 *10 *11 *12)) (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1020 *10)))))) -(-10 -7 (-15 -1482 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) -((-3096 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1929 ((|#4| (-757) (-1238 |#4|)) 56)) (-1848 (((-111) $) NIL)) (-3963 (((-1238 |#4|) $) 17)) (-3560 ((|#2| $) 54)) (-2784 (($ $) 139)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 100)) (-1773 (($ (-1238 |#4|)) 99)) (-2786 (((-1099) $) NIL)) (-3974 ((|#1| $) 18)) (-3199 (($ $ $) NIL)) (-1957 (($ $ $) NIL)) (-3110 (((-845) $) 134)) (-4124 (((-1238 |#4|) $) 129)) (-1997 (($) 11 T CONST)) (-1617 (((-111) $ $) 40)) (-1723 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 122)) (* (($ $ $) 121))) -(((-407 |#1| |#2| |#3| |#4|) (-13 (-466) (-10 -8 (-15 -1773 ($ (-1238 |#4|))) (-15 -4124 ((-1238 |#4|) $)) (-15 -3560 (|#2| $)) (-15 -3963 ((-1238 |#4|) $)) (-15 -3974 (|#1| $)) (-15 -2784 ($ $)) (-15 -1929 (|#4| (-757) (-1238 |#4|))))) (-301) (-974 |#1|) (-1214 |#2|) (-13 (-403 |#2| |#3|) (-1020 |#2|))) (T -407)) -((-1773 (*1 *1 *2) (-12 (-5 *2 (-1238 *6)) (-4 *6 (-13 (-403 *4 *5) (-1020 *4))) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-4 *3 (-301)) (-5 *1 (-407 *3 *4 *5 *6)))) (-4124 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-5 *2 (-1238 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1020 *4))))) (-3560 (*1 *2 *1) (-12 (-4 *4 (-1214 *2)) (-4 *2 (-974 *3)) (-5 *1 (-407 *3 *2 *4 *5)) (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1020 *2))))) (-3963 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-5 *2 (-1238 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1020 *4))))) (-3974 (*1 *2 *1) (-12 (-4 *3 (-974 *2)) (-4 *4 (-1214 *3)) (-4 *2 (-301)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1020 *3))))) (-2784 (*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *3 (-974 *2)) (-4 *4 (-1214 *3)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1020 *3))))) (-1929 (*1 *2 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-1238 *2)) (-4 *5 (-301)) (-4 *6 (-974 *5)) (-4 *2 (-13 (-403 *6 *7) (-1020 *6))) (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1214 *6))))) -(-13 (-466) (-10 -8 (-15 -1773 ($ (-1238 |#4|))) (-15 -4124 ((-1238 |#4|) $)) (-15 -3560 (|#2| $)) (-15 -3963 ((-1238 |#4|) $)) (-15 -3974 (|#1| $)) (-15 -2784 ($ $)) (-15 -1929 (|#4| (-757) (-1238 |#4|))))) -((-3096 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-3560 ((|#2| $) 61)) (-2719 (($ (-1238 |#4|)) 25) (($ (-407 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1020 |#2|)))) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 34)) (-4124 (((-1238 |#4|) $) 26)) (-1997 (($) 23 T CONST)) (-1617 (((-111) $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ $ $) 72))) -(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-712) (-10 -8 (-15 -4124 ((-1238 |#4|) $)) (-15 -3560 (|#2| $)) (-15 -2719 ($ (-1238 |#4|))) (IF (|has| |#4| (-1020 |#2|)) (-15 -2719 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-301) (-974 |#1|) (-1214 |#2|) (-403 |#2| |#3|) (-1238 |#4|)) (T -408)) -((-4124 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-5 *2 (-1238 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-3560 (*1 *2 *1) (-12 (-4 *4 (-1214 *2)) (-4 *2 (-974 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1238 *5)))) (-2719 (*1 *1 *2) (-12 (-5 *2 (-1238 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2719 (*1 *1 *2) (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1020 *4)) (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1238 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) -(-13 (-712) (-10 -8 (-15 -4124 ((-1238 |#4|) $)) (-15 -3560 (|#2| $)) (-15 -2719 ($ (-1238 |#4|))) (IF (|has| |#4| (-1020 |#2|)) (-15 -2719 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1482 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-169) (-411 |#4|) (-169)) (T -409)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) -(-10 -7 (-15 -1482 (|#3| (-1 |#4| |#2|) |#1|))) -((-3908 (((-3 $ "failed")) 86)) (-3836 (((-1238 (-674 |#2|)) (-1238 $)) NIL) (((-1238 (-674 |#2|))) 91)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) 85)) (-2836 (((-3 $ "failed")) 84)) (-3874 (((-674 |#2|) (-1238 $)) NIL) (((-674 |#2|)) 102)) (-1791 (((-674 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) $) 110)) (-3203 (((-1151 (-934 |#2|))) 55)) (-3153 ((|#2| (-1238 $)) NIL) ((|#2|) 106)) (-3461 (($ (-1238 |#2|) (-1238 $)) NIL) (($ (-1238 |#2|)) 112)) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) 83)) (-2757 (((-3 $ "failed")) 75)) (-2593 (((-674 |#2|) (-1238 $)) NIL) (((-674 |#2|)) 100)) (-4128 (((-674 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) $) 108)) (-3574 (((-1151 (-934 |#2|))) 54)) (-3236 ((|#2| (-1238 $)) NIL) ((|#2|) 104)) (-2855 (((-1238 |#2|) $ (-1238 $)) NIL) (((-674 |#2|) (-1238 $) (-1238 $)) NIL) (((-1238 |#2|) $) 111) (((-674 |#2|) (-1238 $)) 118)) (-1524 (((-1238 |#2|) $) 96) (($ (-1238 |#2|)) 98)) (-1836 (((-630 (-934 |#2|)) (-1238 $)) NIL) (((-630 (-934 |#2|))) 94)) (-2549 (($ (-674 |#2|) $) 90))) -(((-410 |#1| |#2|) (-10 -8 (-15 -2549 (|#1| (-674 |#2|) |#1|)) (-15 -3203 ((-1151 (-934 |#2|)))) (-15 -3574 ((-1151 (-934 |#2|)))) (-15 -1791 ((-674 |#2|) |#1|)) (-15 -4128 ((-674 |#2|) |#1|)) (-15 -3874 ((-674 |#2|))) (-15 -2593 ((-674 |#2|))) (-15 -3153 (|#2|)) (-15 -3236 (|#2|)) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -3461 (|#1| (-1238 |#2|))) (-15 -1836 ((-630 (-934 |#2|)))) (-15 -3836 ((-1238 (-674 |#2|)))) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -3908 ((-3 |#1| "failed"))) (-15 -2836 ((-3 |#1| "failed"))) (-15 -2757 ((-3 |#1| "failed"))) (-15 -3450 ((-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed"))) (-15 -3462 ((-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed"))) (-15 -3874 ((-674 |#2|) (-1238 |#1|))) (-15 -2593 ((-674 |#2|) (-1238 |#1|))) (-15 -3153 (|#2| (-1238 |#1|))) (-15 -3236 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -1791 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -4128 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -3836 ((-1238 (-674 |#2|)) (-1238 |#1|))) (-15 -1836 ((-630 (-934 |#2|)) (-1238 |#1|)))) (-411 |#2|) (-169)) (T -410)) -((-3836 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1238 (-674 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1836 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-630 (-934 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3236 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-3153 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-2593 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-674 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3874 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-674 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3574 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1151 (-934 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3203 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1151 (-934 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) -(-10 -8 (-15 -2549 (|#1| (-674 |#2|) |#1|)) (-15 -3203 ((-1151 (-934 |#2|)))) (-15 -3574 ((-1151 (-934 |#2|)))) (-15 -1791 ((-674 |#2|) |#1|)) (-15 -4128 ((-674 |#2|) |#1|)) (-15 -3874 ((-674 |#2|))) (-15 -2593 ((-674 |#2|))) (-15 -3153 (|#2|)) (-15 -3236 (|#2|)) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -3461 (|#1| (-1238 |#2|))) (-15 -1836 ((-630 (-934 |#2|)))) (-15 -3836 ((-1238 (-674 |#2|)))) (-15 -2855 ((-674 |#2|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1|)) (-15 -3908 ((-3 |#1| "failed"))) (-15 -2836 ((-3 |#1| "failed"))) (-15 -2757 ((-3 |#1| "failed"))) (-15 -3450 ((-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed"))) (-15 -3462 ((-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed"))) (-15 -3874 ((-674 |#2|) (-1238 |#1|))) (-15 -2593 ((-674 |#2|) (-1238 |#1|))) (-15 -3153 (|#2| (-1238 |#1|))) (-15 -3236 (|#2| (-1238 |#1|))) (-15 -3461 (|#1| (-1238 |#2|) (-1238 |#1|))) (-15 -2855 ((-674 |#2|) (-1238 |#1|) (-1238 |#1|))) (-15 -2855 ((-1238 |#2|) |#1| (-1238 |#1|))) (-15 -1791 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -4128 ((-674 |#2|) |#1| (-1238 |#1|))) (-15 -3836 ((-1238 (-674 |#2|)) (-1238 |#1|))) (-15 -1836 ((-630 (-934 |#2|)) (-1238 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3908 (((-3 $ "failed")) 37 (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) 19)) (-3836 (((-1238 (-674 |#1|)) (-1238 $)) 78) (((-1238 (-674 |#1|))) 100)) (-2110 (((-1238 $)) 81)) (-3820 (($) 17 T CONST)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) 40 (|has| |#1| (-545)))) (-2836 (((-3 $ "failed")) 38 (|has| |#1| (-545)))) (-3874 (((-674 |#1|) (-1238 $)) 65) (((-674 |#1|)) 92)) (-2124 ((|#1| $) 74)) (-1791 (((-674 |#1|) $ (-1238 $)) 76) (((-674 |#1|) $) 90)) (-1766 (((-3 $ "failed") $) 45 (|has| |#1| (-545)))) (-3203 (((-1151 (-934 |#1|))) 88 (|has| |#1| (-357)))) (-1658 (($ $ (-903)) 28)) (-2764 ((|#1| $) 72)) (-3261 (((-1151 |#1|) $) 42 (|has| |#1| (-545)))) (-3153 ((|#1| (-1238 $)) 67) ((|#1|) 94)) (-3834 (((-1151 |#1|) $) 63)) (-2992 (((-111)) 57)) (-3461 (($ (-1238 |#1|) (-1238 $)) 69) (($ (-1238 |#1|)) 98)) (-2982 (((-3 $ "failed") $) 47 (|has| |#1| (-545)))) (-2409 (((-903)) 80)) (-2758 (((-111)) 54)) (-3418 (($ $ (-903)) 33)) (-3307 (((-111)) 50)) (-4108 (((-111)) 48)) (-3756 (((-111)) 52)) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) 41 (|has| |#1| (-545)))) (-2757 (((-3 $ "failed")) 39 (|has| |#1| (-545)))) (-2593 (((-674 |#1|) (-1238 $)) 66) (((-674 |#1|)) 93)) (-2146 ((|#1| $) 75)) (-4128 (((-674 |#1|) $ (-1238 $)) 77) (((-674 |#1|) $) 91)) (-3011 (((-3 $ "failed") $) 46 (|has| |#1| (-545)))) (-3574 (((-1151 (-934 |#1|))) 89 (|has| |#1| (-357)))) (-1341 (($ $ (-903)) 29)) (-1591 ((|#1| $) 73)) (-2083 (((-1151 |#1|) $) 43 (|has| |#1| (-545)))) (-3236 ((|#1| (-1238 $)) 68) ((|#1|) 95)) (-2555 (((-1151 |#1|) $) 64)) (-1516 (((-111)) 58)) (-1735 (((-1137) $) 9)) (-4139 (((-111)) 49)) (-2122 (((-111)) 51)) (-1881 (((-111)) 53)) (-2786 (((-1099) $) 10)) (-4311 (((-111)) 56)) (-2046 ((|#1| $ (-553)) 101)) (-2855 (((-1238 |#1|) $ (-1238 $)) 71) (((-674 |#1|) (-1238 $) (-1238 $)) 70) (((-1238 |#1|) $) 103) (((-674 |#1|) (-1238 $)) 102)) (-1524 (((-1238 |#1|) $) 97) (($ (-1238 |#1|)) 96)) (-1836 (((-630 (-934 |#1|)) (-1238 $)) 79) (((-630 (-934 |#1|))) 99)) (-1957 (($ $ $) 25)) (-1339 (((-111)) 62)) (-3110 (((-845) $) 11)) (-4124 (((-1238 $)) 104)) (-1417 (((-630 (-1238 |#1|))) 44 (|has| |#1| (-545)))) (-2840 (($ $ $ $) 26)) (-4215 (((-111)) 60)) (-2549 (($ (-674 |#1|) $) 87)) (-1634 (($ $ $) 24)) (-2911 (((-111)) 61)) (-3949 (((-111)) 59)) (-2488 (((-111)) 55)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 30)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-411 |#1|) (-137) (-169)) (T -411)) -((-4124 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1238 *1)) (-4 *1 (-411 *3)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1238 *3)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) (-5 *2 (-674 *4)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3836 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1238 (-674 *3))))) (-1836 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-630 (-934 *3))))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1238 *3)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-3236 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3153 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-2593 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3)))) (-3874 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3)))) (-3574 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1151 (-934 *3))))) (-3203 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1151 (-934 *3))))) (-2549 (*1 *1 *2 *1) (-12 (-5 *2 (-674 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169))))) -(-13 (-361 |t#1|) (-10 -8 (-15 -4124 ((-1238 $))) (-15 -2855 ((-1238 |t#1|) $)) (-15 -2855 ((-674 |t#1|) (-1238 $))) (-15 -2046 (|t#1| $ (-553))) (-15 -3836 ((-1238 (-674 |t#1|)))) (-15 -1836 ((-630 (-934 |t#1|)))) (-15 -3461 ($ (-1238 |t#1|))) (-15 -1524 ((-1238 |t#1|) $)) (-15 -1524 ($ (-1238 |t#1|))) (-15 -3236 (|t#1|)) (-15 -3153 (|t#1|)) (-15 -2593 ((-674 |t#1|))) (-15 -3874 ((-674 |t#1|))) (-15 -4128 ((-674 |t#1|) $)) (-15 -1791 ((-674 |t#1|) $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -3574 ((-1151 (-934 |t#1|)))) (-15 -3203 ((-1151 (-934 |t#1|))))) |%noBranch|) (-15 -2549 ($ (-674 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-600 (-845)) . T) ((-361 |#1|) . T) ((-633 |#1|) . T) ((-703 |#1|) . T) ((-706) . T) ((-730 |#1|) . T) ((-747) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 45)) (-1596 (($ $) 60)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 148)) (-1968 (($ $) NIL)) (-2028 (((-111) $) 39)) (-3908 ((|#1| $) 13)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-1196)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-1196)))) (-4113 (($ |#1| (-553)) 34)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 118)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 58)) (-2982 (((-3 $ "failed") $) 133)) (-3458 (((-3 (-401 (-553)) "failed") $) 66 (|has| |#1| (-538)))) (-4323 (((-111) $) 62 (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) 73 (|has| |#1| (-538)))) (-2512 (($ |#1| (-553)) 36)) (-3119 (((-111) $) 154 (|has| |#1| (-1196)))) (-1848 (((-111) $) 46)) (-3437 (((-757) $) 41)) (-2816 (((-3 "nil" "sqfr" "irred" "prime") $ (-553)) 139)) (-3111 ((|#1| $ (-553)) 138)) (-2943 (((-553) $ (-553)) 137)) (-3991 (($ |#1| (-553)) 33)) (-1482 (($ (-1 |#1| |#1|) $) 145)) (-4091 (($ |#1| (-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-553))))) 61)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-3186 (($ |#1| (-553)) 35)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) 149 (|has| |#1| (-445)))) (-2062 (($ |#1| (-553) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-3713 (((-630 (-2 (|:| -3355 |#1|) (|:| -2692 (-553)))) $) 57)) (-2667 (((-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-553)))) $) 12)) (-3355 (((-412 $) $) NIL (|has| |#1| (-1196)))) (-3929 (((-3 $ "failed") $ $) 140)) (-2692 (((-553) $) 134)) (-3873 ((|#1| $) 59)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 88 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) $) NIL (|has| |#1| (-507 (-1155) $))) (($ $ (-630 (-1155)) (-630 $)) 89 (|has| |#1| (-507 (-1155) $))) (($ $ (-630 (-288 $))) 85 (|has| |#1| (-303 $))) (($ $ (-288 $)) NIL (|has| |#1| (-303 $))) (($ $ $ $) NIL (|has| |#1| (-303 $))) (($ $ (-630 $) (-630 $)) NIL (|has| |#1| (-303 $)))) (-2046 (($ $ |#1|) 74 (|has| |#1| (-280 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-280 $ $)))) (-1330 (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-1524 (((-529) $) 30 (|has| |#1| (-601 (-529)))) (((-373) $) 95 (|has| |#1| (-1004))) (((-220) $) 98 (|has| |#1| (-1004)))) (-3110 (((-845) $) 116) (($ (-553)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553)))))) (-1999 (((-757)) 51)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 43 T CONST)) (-1997 (($) 42 T CONST)) (-1780 (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1617 (((-111) $ $) 99)) (-1711 (($ $) 130) (($ $ $) NIL)) (-1700 (($ $ $) 142)) (** (($ $ (-903)) NIL) (($ $ (-757)) 105)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL))) -(((-412 |#1|) (-13 (-545) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -3873 (|#1| $)) (-15 -2692 ((-553) $)) (-15 -4091 ($ |#1| (-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-553)))))) (-15 -2667 ((-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-553)))) $)) (-15 -3991 ($ |#1| (-553))) (-15 -3713 ((-630 (-2 (|:| -3355 |#1|) (|:| -2692 (-553)))) $)) (-15 -3186 ($ |#1| (-553))) (-15 -2943 ((-553) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -2816 ((-3 "nil" "sqfr" "irred" "prime") $ (-553))) (-15 -3437 ((-757) $)) (-15 -2512 ($ |#1| (-553))) (-15 -4113 ($ |#1| (-553))) (-15 -2062 ($ |#1| (-553) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3908 (|#1| $)) (-15 -1596 ($ $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |#1| (-1196)) (-6 (-1196)) |%noBranch|) (IF (|has| |#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1155) $)) (-6 (-507 (-1155) $)) |%noBranch|))) (-545)) (T -412)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-545)) (-5 *1 (-412 *3)))) (-3873 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-412 *3)) (-4 *3 (-545)))) (-4091 (*1 *1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-553))))) (-4 *2 (-545)) (-5 *1 (-412 *2)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-553))))) (-5 *1 (-412 *3)) (-4 *3 (-545)))) (-3991 (*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| -3355 *3) (|:| -2692 (-553))))) (-5 *1 (-412 *3)) (-4 *3 (-545)))) (-3186 (*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-2943 (*1 *2 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-412 *3)) (-4 *3 (-545)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-2816 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *4)) (-4 *4 (-545)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-412 *3)) (-4 *3 (-545)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-4113 (*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-2062 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-553)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-3908 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-545)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-538)) (-4 *3 (-545)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-412 *3)) (-4 *3 (-538)) (-4 *3 (-545)))) (-3458 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-412 *3)) (-4 *3 (-538)) (-4 *3 (-545))))) -(-13 (-545) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -3873 (|#1| $)) (-15 -2692 ((-553) $)) (-15 -4091 ($ |#1| (-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-553)))))) (-15 -2667 ((-630 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-553)))) $)) (-15 -3991 ($ |#1| (-553))) (-15 -3713 ((-630 (-2 (|:| -3355 |#1|) (|:| -2692 (-553)))) $)) (-15 -3186 ($ |#1| (-553))) (-15 -2943 ((-553) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -2816 ((-3 "nil" "sqfr" "irred" "prime") $ (-553))) (-15 -3437 ((-757) $)) (-15 -2512 ($ |#1| (-553))) (-15 -4113 ($ |#1| (-553))) (-15 -2062 ($ |#1| (-553) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3908 (|#1| $)) (-15 -1596 ($ $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |#1| (-1196)) (-6 (-1196)) |%noBranch|) (IF (|has| |#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1155) $)) (-6 (-507 (-1155) $)) |%noBranch|))) -((-4125 (((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|)) 21)) (-1282 (((-412 |#1|) (-412 |#1|) (-412 |#1|)) 16))) -(((-413 |#1|) (-10 -7 (-15 -4125 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -1282 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) (-545)) (T -413)) -((-1282 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-545)) (-5 *1 (-413 *3)))) (-4125 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-545)) (-5 *2 (-412 *4)) (-5 *1 (-413 *4))))) -(-10 -7 (-15 -4125 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -1282 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) -((-2726 ((|#2| |#2|) 166)) (-3810 (((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111)) 57))) -(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111))) (-15 -2726 (|#2| |#2|))) (-13 (-445) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|)) (-1155) |#2|) (T -414)) -((-2726 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1177) (-424 *3))) (-14 *4 (-1155)) (-14 *5 *2))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137)))))) (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) (-14 *6 (-1155)) (-14 *7 *3)))) -(-10 -7 (-15 -3810 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111))) (-15 -2726 (|#2| |#2|))) -((-1482 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1031) (-833)) (-424 |#1|) (-13 (-1031) (-833)) (-424 |#3|)) (T -415)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1031) (-833))) (-4 *6 (-13 (-1031) (-833))) (-4 *2 (-424 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) -(-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|))) -((-2726 ((|#2| |#2|) 90)) (-2458 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111) (-1137)) 48)) (-1846 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111) (-1137)) 154))) -(((-416 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2458 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111) (-1137))) (-15 -1846 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111) (-1137))) (-15 -2726 (|#2| |#2|))) (-13 (-445) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|) (-10 -8 (-15 -3110 ($ |#3|)))) (-831) (-13 (-1216 |#2| |#3|) (-357) (-1177) (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $)))) (-965 |#4|) (-1155)) (T -416)) -((-2726 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-4 *2 (-13 (-27) (-1177) (-424 *3) (-10 -8 (-15 -3110 ($ *4))))) (-4 *4 (-831)) (-4 *5 (-13 (-1216 *2 *4) (-357) (-1177) (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $))))) (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-965 *5)) (-14 *7 (-1155)))) (-1846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-4 *3 (-13 (-27) (-1177) (-424 *6) (-10 -8 (-15 -3110 ($ *7))))) (-4 *7 (-831)) (-4 *8 (-13 (-1216 *3 *7) (-357) (-1177) (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1137)) (-4 *9 (-965 *8)) (-14 *10 (-1155)))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-4 *3 (-13 (-27) (-1177) (-424 *6) (-10 -8 (-15 -3110 ($ *7))))) (-4 *7 (-831)) (-4 *8 (-13 (-1216 *3 *7) (-357) (-1177) (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1137)) (-4 *9 (-965 *8)) (-14 *10 (-1155))))) -(-10 -7 (-15 -2458 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111) (-1137))) (-15 -1846 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137))))) |#2| (-111) (-1137))) (-15 -2726 (|#2| |#2|))) -((-3215 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2654 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1482 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1079) (-419 |#1|) (-1079) (-419 |#3|)) (T -417)) -((-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1079)) (-4 *5 (-1079)) (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) -(-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3215 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2841 (($) 44)) (-3368 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2745 (($ $ $) 39)) (-4048 (((-111) $ $) 28)) (-2571 (((-757)) 47)) (-1471 (($ (-630 |#2|)) 20) (($) NIL)) (-3031 (($) 53)) (-2024 (((-111) $ $) 13)) (-1824 ((|#2| $) 61)) (-1975 ((|#2| $) 59)) (-3796 (((-903) $) 55)) (-1475 (($ $ $) 35)) (-2735 (($ (-903)) 50)) (-2507 (($ $ |#2|) NIL) (($ $ $) 38)) (-2796 (((-757) (-1 (-111) |#2|) $) NIL) (((-757) |#2| $) 26)) (-3121 (($ (-630 |#2|)) 24)) (-3845 (($ $) 46)) (-3110 (((-845) $) 33)) (-2416 (((-757) $) 21)) (-3420 (($ (-630 |#2|)) 19) (($) NIL)) (-1617 (((-111) $ $) 16))) -(((-418 |#1| |#2|) (-10 -8 (-15 -2571 ((-757))) (-15 -2735 (|#1| (-903))) (-15 -3796 ((-903) |#1|)) (-15 -3031 (|#1|)) (-15 -1824 (|#2| |#1|)) (-15 -1975 (|#2| |#1|)) (-15 -2841 (|#1|)) (-15 -3845 (|#1| |#1|)) (-15 -2416 ((-757) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -2024 ((-111) |#1| |#1|)) (-15 -3420 (|#1|)) (-15 -3420 (|#1| (-630 |#2|))) (-15 -1471 (|#1|)) (-15 -1471 (|#1| (-630 |#2|))) (-15 -1475 (|#1| |#1| |#1|)) (-15 -2507 (|#1| |#1| |#1|)) (-15 -2507 (|#1| |#1| |#2|)) (-15 -2745 (|#1| |#1| |#1|)) (-15 -4048 ((-111) |#1| |#1|)) (-15 -3368 (|#1| |#1| |#1|)) (-15 -3368 (|#1| |#1| |#2|)) (-15 -3368 (|#1| |#2| |#1|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|))) (-419 |#2|) (-1079)) (T -418)) -((-2571 (*1 *2) (-12 (-4 *4 (-1079)) (-5 *2 (-757)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) -(-10 -8 (-15 -2571 ((-757))) (-15 -2735 (|#1| (-903))) (-15 -3796 ((-903) |#1|)) (-15 -3031 (|#1|)) (-15 -1824 (|#2| |#1|)) (-15 -1975 (|#2| |#1|)) (-15 -2841 (|#1|)) (-15 -3845 (|#1| |#1|)) (-15 -2416 ((-757) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -2024 ((-111) |#1| |#1|)) (-15 -3420 (|#1|)) (-15 -3420 (|#1| (-630 |#2|))) (-15 -1471 (|#1|)) (-15 -1471 (|#1| (-630 |#2|))) (-15 -1475 (|#1| |#1| |#1|)) (-15 -2507 (|#1| |#1| |#1|)) (-15 -2507 (|#1| |#1| |#2|)) (-15 -2745 (|#1| |#1| |#1|)) (-15 -4048 ((-111) |#1| |#1|)) (-15 -3368 (|#1| |#1| |#1|)) (-15 -3368 (|#1| |#1| |#2|)) (-15 -3368 (|#1| |#2| |#1|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|))) -((-3096 (((-111) $ $) 19)) (-2841 (($) 67 (|has| |#1| (-362)))) (-3368 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2745 (($ $ $) 78)) (-4048 (((-111) $ $) 79)) (-1511 (((-111) $ (-757)) 8)) (-2571 (((-757)) 61 (|has| |#1| (-362)))) (-1471 (($ (-630 |#1|)) 74) (($) 73)) (-2955 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2638 (($ $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4369)))) (-3031 (($) 64 (|has| |#1| (-362)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) 70)) (-3703 (((-111) $ (-757)) 9)) (-1824 ((|#1| $) 65 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1975 ((|#1| $) 66 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3796 (((-903) $) 63 (|has| |#1| (-362)))) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22)) (-1475 (($ $ $) 75)) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2735 (($ (-903)) 62 (|has| |#1| (-362)))) (-2786 (((-1099) $) 21)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2507 (($ $ |#1|) 77) (($ $ $) 76)) (-3093 (($) 49) (($ (-630 |#1|)) 48)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 50)) (-3845 (($ $) 68 (|has| |#1| (-362)))) (-3110 (((-845) $) 18)) (-2416 (((-757) $) 69)) (-3420 (($ (-630 |#1|)) 72) (($) 71)) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20)) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-419 |#1|) (-137) (-1079)) (T -419)) -((-2416 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1079)) (-5 *2 (-757)))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1079)) (-4 *2 (-362)))) (-2841 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1079)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1079)) (-4 *2 (-833)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1079)) (-4 *2 (-833))))) -(-13 (-224 |t#1|) (-1077 |t#1|) (-10 -8 (-6 -4369) (-15 -2416 ((-757) $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-15 -3845 ($ $)) (-15 -2841 ($))) |%noBranch|) (IF (|has| |t#1| (-833)) (PROGN (-15 -1975 (|t#1| $)) (-15 -1824 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-600 (-845)) . T) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-224 |#1|) . T) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-362) |has| |#1| (-362)) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1077 |#1|) . T) ((-1079) . T) ((-1192) . T)) -((-4195 (((-574 |#2|) |#2| (-1155)) 36)) (-2622 (((-574 |#2|) |#2| (-1155)) 20)) (-2169 ((|#2| |#2| (-1155)) 25))) -(((-420 |#1| |#2|) (-10 -7 (-15 -2622 ((-574 |#2|) |#2| (-1155))) (-15 -4195 ((-574 |#2|) |#2| (-1155))) (-15 -2169 (|#2| |#2| (-1155)))) (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-29 |#1|))) (T -420)) -((-2169 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1177) (-29 *4))))) (-4195 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-574 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1177) (-29 *5))))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-574 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1177) (-29 *5)))))) -(-10 -7 (-15 -2622 ((-574 |#2|) |#2| (-1155))) (-15 -4195 ((-574 |#2|) |#2| (-1155))) (-15 -2169 (|#2| |#2| (-1155)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-4145 (($ |#2| |#1|) 35)) (-4197 (($ |#2| |#1|) 33)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-325 |#2|)) 25)) (-1999 (((-757)) NIL)) (-1988 (($) 10 T CONST)) (-1997 (($) 16 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 34)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-421 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4356)) (IF (|has| |#1| (-6 -4356)) (-6 -4356) |%noBranch|) |%noBranch|) (-15 -3110 ($ |#1|)) (-15 -3110 ($ (-325 |#2|))) (-15 -4145 ($ |#2| |#1|)) (-15 -4197 ($ |#2| |#1|)))) (-13 (-169) (-38 (-401 (-553)))) (-13 (-833) (-21))) (T -421)) -((-3110 (*1 *1 *2) (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-553))))) (-4 *3 (-13 (-833) (-21))))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-833) (-21))) (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-553))))))) (-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-553))))) (-4 *2 (-13 (-833) (-21))))) (-4197 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-553))))) (-4 *2 (-13 (-833) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4356)) (IF (|has| |#1| (-6 -4356)) (-6 -4356) |%noBranch|) |%noBranch|) (-15 -3110 ($ |#1|)) (-15 -3110 ($ (-325 |#2|))) (-15 -4145 ($ |#2| |#1|)) (-15 -4197 ($ |#2| |#1|)))) -((-3406 (((-3 |#2| (-630 |#2|)) |#2| (-1155)) 109))) -(((-422 |#1| |#2|) (-10 -7 (-15 -3406 ((-3 |#2| (-630 |#2|)) |#2| (-1155)))) (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-941) (-29 |#1|))) (T -422)) -((-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 *3 (-630 *3))) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1177) (-941) (-29 *5)))))) -(-10 -7 (-15 -3406 ((-3 |#2| (-630 |#2|)) |#2| (-1155)))) -((-3506 (((-630 (-1155)) $) 72)) (-3322 (((-401 (-1151 $)) $ (-599 $)) 273)) (-2885 (($ $ (-288 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-630 (-599 $)) (-630 $)) 237)) (-1399 (((-3 (-599 $) "failed") $) NIL) (((-3 (-1155) "failed") $) 75) (((-3 (-553) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-401 (-934 |#2|)) "failed") $) 324) (((-3 (-934 |#2|) "failed") $) 235) (((-3 (-401 (-553)) "failed") $) NIL)) (-2707 (((-599 $) $) NIL) (((-1155) $) 30) (((-553) $) NIL) ((|#2| $) 231) (((-401 (-934 |#2|)) $) 305) (((-934 |#2|) $) 232) (((-401 (-553)) $) NIL)) (-4180 (((-113) (-113)) 47)) (-2181 (($ $) 87)) (-1335 (((-3 (-599 $) "failed") $) 228)) (-3310 (((-630 (-599 $)) $) 229)) (-2411 (((-3 (-630 $) "failed") $) 247)) (-1500 (((-3 (-2 (|:| |val| $) (|:| -2692 (-553))) "failed") $) 254)) (-2201 (((-3 (-630 $) "failed") $) 245)) (-3648 (((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 $))) "failed") $) 264)) (-3107 (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $) 251) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-1155)) 219)) (-3623 (((-111) $) 19)) (-3633 ((|#2| $) 21)) (-2356 (($ $ (-599 $) $) NIL) (($ $ (-630 (-599 $)) (-630 $)) 236) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) 96) (($ $ (-1155) (-1 $ (-630 $))) NIL) (($ $ (-1155) (-1 $ $)) NIL) (($ $ (-630 (-113)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-113) (-1 $ (-630 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1155)) 57) (($ $ (-630 (-1155))) 240) (($ $) 241) (($ $ (-113) $ (-1155)) 60) (($ $ (-630 (-113)) (-630 $) (-1155)) 67) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ $))) 107) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ (-630 $)))) 242) (($ $ (-1155) (-757) (-1 $ (-630 $))) 94) (($ $ (-1155) (-757) (-1 $ $)) 93)) (-2046 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-630 $)) 106)) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) 238)) (-3161 (($ $) 284)) (-1524 (((-874 (-553)) $) 257) (((-874 (-373)) $) 261) (($ (-412 $)) 320) (((-529) $) NIL)) (-3110 (((-845) $) 239) (($ (-599 $)) 84) (($ (-1155)) 26) (($ |#2|) NIL) (($ (-1104 |#2| (-599 $))) NIL) (($ (-401 |#2|)) 289) (($ (-934 (-401 |#2|))) 329) (($ (-401 (-934 (-401 |#2|)))) 301) (($ (-401 (-934 |#2|))) 295) (($ $) NIL) (($ (-934 |#2|)) 185) (($ (-401 (-553))) 334) (($ (-553)) NIL)) (-1999 (((-757)) 79)) (-2274 (((-111) (-113)) 41)) (-3823 (($ (-1155) $) 33) (($ (-1155) $ $) 34) (($ (-1155) $ $ $) 35) (($ (-1155) $ $ $ $) 36) (($ (-1155) (-630 $)) 39)) (* (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-553) $) NIL) (($ (-757) $) NIL) (($ (-903) $) NIL))) -(((-423 |#1| |#2|) (-10 -8 (-15 * (|#1| (-903) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3110 (|#1| (-553))) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3110 (|#1| (-934 |#2|))) (-15 -1399 ((-3 (-934 |#2|) "failed") |#1|)) (-15 -2707 ((-934 |#2|) |#1|)) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -3110 (|#1| (-401 (-934 |#2|)))) (-15 -1399 ((-3 (-401 (-934 |#2|)) "failed") |#1|)) (-15 -2707 ((-401 (-934 |#2|)) |#1|)) (-15 -3322 ((-401 (-1151 |#1|)) |#1| (-599 |#1|))) (-15 -3110 (|#1| (-401 (-934 (-401 |#2|))))) (-15 -3110 (|#1| (-934 (-401 |#2|)))) (-15 -3110 (|#1| (-401 |#2|))) (-15 -3161 (|#1| |#1|)) (-15 -1524 (|#1| (-412 |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-757) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-757) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-757)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-757)) (-630 (-1 |#1| |#1|)))) (-15 -1500 ((-3 (-2 (|:| |val| |#1|) (|:| -2692 (-553))) "failed") |#1|)) (-15 -3107 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -2692 (-553))) "failed") |#1| (-1155))) (-15 -3107 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -2692 (-553))) "failed") |#1| (-113))) (-15 -2181 (|#1| |#1|)) (-15 -3110 (|#1| (-1104 |#2| (-599 |#1|)))) (-15 -3648 ((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 |#1|))) "failed") |#1|)) (-15 -2201 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3107 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -2692 (-553))) "failed") |#1|)) (-15 -2411 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 |#1|) (-1155))) (-15 -2356 (|#1| |#1| (-113) |#1| (-1155))) (-15 -2356 (|#1| |#1|)) (-15 -2356 (|#1| |#1| (-630 (-1155)))) (-15 -2356 (|#1| |#1| (-1155))) (-15 -3823 (|#1| (-1155) (-630 |#1|))) (-15 -3823 (|#1| (-1155) |#1| |#1| |#1| |#1|)) (-15 -3823 (|#1| (-1155) |#1| |#1| |#1|)) (-15 -3823 (|#1| (-1155) |#1| |#1|)) (-15 -3823 (|#1| (-1155) |#1|)) (-15 -3506 ((-630 (-1155)) |#1|)) (-15 -3633 (|#2| |#1|)) (-15 -3623 ((-111) |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -3110 (|#1| (-1155))) (-15 -1399 ((-3 (-1155) "failed") |#1|)) (-15 -2707 ((-1155) |#1|)) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| |#1|)))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| |#1|)))) (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -3310 ((-630 (-599 |#1|)) |#1|)) (-15 -1335 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2885 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2885 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2885 (|#1| |#1| (-288 |#1|))) (-15 -2046 (|#1| (-113) (-630 |#1|))) (-15 -2046 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2356 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -3110 (|#1| (-599 |#1|))) (-15 -1399 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2707 ((-599 |#1|) |#1|)) (-15 -3110 ((-845) |#1|))) (-424 |#2|) (-833)) (T -423)) -((-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-833)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) (-1999 (*1 *2) (-12 (-4 *4 (-833)) (-5 *2 (-757)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) -(-10 -8 (-15 * (|#1| (-903) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3110 (|#1| (-553))) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3110 (|#1| (-934 |#2|))) (-15 -1399 ((-3 (-934 |#2|) "failed") |#1|)) (-15 -2707 ((-934 |#2|) |#1|)) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -3110 (|#1| (-401 (-934 |#2|)))) (-15 -1399 ((-3 (-401 (-934 |#2|)) "failed") |#1|)) (-15 -2707 ((-401 (-934 |#2|)) |#1|)) (-15 -3322 ((-401 (-1151 |#1|)) |#1| (-599 |#1|))) (-15 -3110 (|#1| (-401 (-934 (-401 |#2|))))) (-15 -3110 (|#1| (-934 (-401 |#2|)))) (-15 -3110 (|#1| (-401 |#2|))) (-15 -3161 (|#1| |#1|)) (-15 -1524 (|#1| (-412 |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-757) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-757) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-757)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-757)) (-630 (-1 |#1| |#1|)))) (-15 -1500 ((-3 (-2 (|:| |val| |#1|) (|:| -2692 (-553))) "failed") |#1|)) (-15 -3107 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -2692 (-553))) "failed") |#1| (-1155))) (-15 -3107 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -2692 (-553))) "failed") |#1| (-113))) (-15 -2181 (|#1| |#1|)) (-15 -3110 (|#1| (-1104 |#2| (-599 |#1|)))) (-15 -3648 ((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 |#1|))) "failed") |#1|)) (-15 -2201 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3107 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -2692 (-553))) "failed") |#1|)) (-15 -2411 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 |#1|) (-1155))) (-15 -2356 (|#1| |#1| (-113) |#1| (-1155))) (-15 -2356 (|#1| |#1|)) (-15 -2356 (|#1| |#1| (-630 (-1155)))) (-15 -2356 (|#1| |#1| (-1155))) (-15 -3823 (|#1| (-1155) (-630 |#1|))) (-15 -3823 (|#1| (-1155) |#1| |#1| |#1| |#1|)) (-15 -3823 (|#1| (-1155) |#1| |#1| |#1|)) (-15 -3823 (|#1| (-1155) |#1| |#1|)) (-15 -3823 (|#1| (-1155) |#1|)) (-15 -3506 ((-630 (-1155)) |#1|)) (-15 -3633 (|#2| |#1|)) (-15 -3623 ((-111) |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -3110 (|#1| (-1155))) (-15 -1399 ((-3 (-1155) "failed") |#1|)) (-15 -2707 ((-1155) |#1|)) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-113) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-113)) (-630 (-1 |#1| |#1|)))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| |#1|))) (-15 -2356 (|#1| |#1| (-1155) (-1 |#1| (-630 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| (-630 |#1|))))) (-15 -2356 (|#1| |#1| (-630 (-1155)) (-630 (-1 |#1| |#1|)))) (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -3310 ((-630 (-599 |#1|)) |#1|)) (-15 -1335 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2885 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2885 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2885 (|#1| |#1| (-288 |#1|))) (-15 -2046 (|#1| (-113) (-630 |#1|))) (-15 -2046 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1| |#1|)) (-15 -2046 (|#1| (-113) |#1|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -2356 (|#1| |#1| (-630 (-599 |#1|)) (-630 |#1|))) (-15 -2356 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -3110 (|#1| (-599 |#1|))) (-15 -1399 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2707 ((-599 |#1|) |#1|)) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 114 (|has| |#1| (-25)))) (-3506 (((-630 (-1155)) $) 201)) (-3322 (((-401 (-1151 $)) $ (-599 $)) 169 (|has| |#1| (-545)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 141 (|has| |#1| (-545)))) (-1968 (($ $) 142 (|has| |#1| (-545)))) (-2028 (((-111) $) 144 (|has| |#1| (-545)))) (-3233 (((-630 (-599 $)) $) 44)) (-2910 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2885 (($ $ (-288 $)) 56) (($ $ (-630 (-288 $))) 55) (($ $ (-630 (-599 $)) (-630 $)) 54)) (-1536 (($ $) 161 (|has| |#1| (-545)))) (-2708 (((-412 $) $) 162 (|has| |#1| (-545)))) (-4349 (((-111) $ $) 152 (|has| |#1| (-545)))) (-3820 (($) 102 (-3988 (|has| |#1| (-1091)) (|has| |#1| (-25))) CONST)) (-1399 (((-3 (-599 $) "failed") $) 69) (((-3 (-1155) "failed") $) 214) (((-3 (-553) "failed") $) 208 (|has| |#1| (-1020 (-553)))) (((-3 |#1| "failed") $) 205) (((-3 (-401 (-934 |#1|)) "failed") $) 167 (|has| |#1| (-545))) (((-3 (-934 |#1|) "failed") $) 121 (|has| |#1| (-1031))) (((-3 (-401 (-553)) "failed") $) 96 (-3988 (-12 (|has| |#1| (-1020 (-553))) (|has| |#1| (-545))) (|has| |#1| (-1020 (-401 (-553))))))) (-2707 (((-599 $) $) 70) (((-1155) $) 215) (((-553) $) 207 (|has| |#1| (-1020 (-553)))) ((|#1| $) 206) (((-401 (-934 |#1|)) $) 168 (|has| |#1| (-545))) (((-934 |#1|) $) 122 (|has| |#1| (-1031))) (((-401 (-553)) $) 97 (-3988 (-12 (|has| |#1| (-1020 (-553))) (|has| |#1| (-545))) (|has| |#1| (-1020 (-401 (-553))))))) (-3973 (($ $ $) 156 (|has| |#1| (-545)))) (-2077 (((-674 (-553)) (-674 $)) 135 (-3726 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 134 (-3726 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 133 (|has| |#1| (-1031))) (((-674 |#1|) (-674 $)) 132 (|has| |#1| (-1031)))) (-2982 (((-3 $ "failed") $) 104 (|has| |#1| (-1091)))) (-3952 (($ $ $) 155 (|has| |#1| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 150 (|has| |#1| (-545)))) (-3119 (((-111) $) 163 (|has| |#1| (-545)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 210 (|has| |#1| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 209 (|has| |#1| (-868 (-373))))) (-2985 (($ $) 51) (($ (-630 $)) 50)) (-2521 (((-630 (-113)) $) 43)) (-4180 (((-113) (-113)) 42)) (-1848 (((-111) $) 103 (|has| |#1| (-1091)))) (-1850 (((-111) $) 22 (|has| $ (-1020 (-553))))) (-2181 (($ $) 184 (|has| |#1| (-1031)))) (-3963 (((-1104 |#1| (-599 $)) $) 185 (|has| |#1| (-1031)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 159 (|has| |#1| (-545)))) (-1629 (((-1151 $) (-599 $)) 25 (|has| $ (-1031)))) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1482 (($ (-1 $ $) (-599 $)) 36)) (-1335 (((-3 (-599 $) "failed") $) 46)) (-2471 (($ (-630 $)) 148 (|has| |#1| (-545))) (($ $ $) 147 (|has| |#1| (-545)))) (-1735 (((-1137) $) 9)) (-3310 (((-630 (-599 $)) $) 45)) (-4040 (($ (-113) $) 38) (($ (-113) (-630 $)) 37)) (-2411 (((-3 (-630 $) "failed") $) 190 (|has| |#1| (-1091)))) (-1500 (((-3 (-2 (|:| |val| $) (|:| -2692 (-553))) "failed") $) 181 (|has| |#1| (-1031)))) (-2201 (((-3 (-630 $) "failed") $) 188 (|has| |#1| (-25)))) (-3648 (((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3107 (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $) 189 (|has| |#1| (-1091))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-113)) 183 (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-1155)) 182 (|has| |#1| (-1031)))) (-1288 (((-111) $ (-113)) 40) (((-111) $ (-1155)) 39)) (-3610 (($ $) 106 (-3988 (|has| |#1| (-466)) (|has| |#1| (-545))))) (-2304 (((-757) $) 47)) (-2786 (((-1099) $) 10)) (-3623 (((-111) $) 203)) (-3633 ((|#1| $) 202)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 149 (|has| |#1| (-545)))) (-2508 (($ (-630 $)) 146 (|has| |#1| (-545))) (($ $ $) 145 (|has| |#1| (-545)))) (-4006 (((-111) $ $) 35) (((-111) $ (-1155)) 34)) (-3355 (((-412 $) $) 160 (|has| |#1| (-545)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-545))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 157 (|has| |#1| (-545)))) (-3929 (((-3 $ "failed") $ $) 140 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 151 (|has| |#1| (-545)))) (-3781 (((-111) $) 23 (|has| $ (-1020 (-553))))) (-2356 (($ $ (-599 $) $) 67) (($ $ (-630 (-599 $)) (-630 $)) 66) (($ $ (-630 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-630 $) (-630 $)) 62) (($ $ (-630 (-1155)) (-630 (-1 $ $))) 33) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) 32) (($ $ (-1155) (-1 $ (-630 $))) 31) (($ $ (-1155) (-1 $ $)) 30) (($ $ (-630 (-113)) (-630 (-1 $ $))) 29) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) 28) (($ $ (-113) (-1 $ (-630 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1155)) 195 (|has| |#1| (-601 (-529)))) (($ $ (-630 (-1155))) 194 (|has| |#1| (-601 (-529)))) (($ $) 193 (|has| |#1| (-601 (-529)))) (($ $ (-113) $ (-1155)) 192 (|has| |#1| (-601 (-529)))) (($ $ (-630 (-113)) (-630 $) (-1155)) 191 (|has| |#1| (-601 (-529)))) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ $))) 180 (|has| |#1| (-1031))) (($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ (-630 $)))) 179 (|has| |#1| (-1031))) (($ $ (-1155) (-757) (-1 $ (-630 $))) 178 (|has| |#1| (-1031))) (($ $ (-1155) (-757) (-1 $ $)) 177 (|has| |#1| (-1031)))) (-3384 (((-757) $) 153 (|has| |#1| (-545)))) (-2046 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-630 $)) 57)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 154 (|has| |#1| (-545)))) (-1460 (($ $) 49) (($ $ $) 48)) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) 126 (|has| |#1| (-1031))) (($ $ (-1155) (-757)) 125 (|has| |#1| (-1031))) (($ $ (-630 (-1155))) 124 (|has| |#1| (-1031))) (($ $ (-1155)) 123 (|has| |#1| (-1031)))) (-3161 (($ $) 174 (|has| |#1| (-545)))) (-3974 (((-1104 |#1| (-599 $)) $) 175 (|has| |#1| (-545)))) (-1394 (($ $) 24 (|has| $ (-1031)))) (-1524 (((-874 (-553)) $) 212 (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) 211 (|has| |#1| (-601 (-874 (-373))))) (($ (-412 $)) 176 (|has| |#1| (-545))) (((-529) $) 98 (|has| |#1| (-601 (-529))))) (-3199 (($ $ $) 109 (|has| |#1| (-466)))) (-1957 (($ $ $) 110 (|has| |#1| (-466)))) (-3110 (((-845) $) 11) (($ (-599 $)) 68) (($ (-1155)) 213) (($ |#1|) 204) (($ (-1104 |#1| (-599 $))) 186 (|has| |#1| (-1031))) (($ (-401 |#1|)) 172 (|has| |#1| (-545))) (($ (-934 (-401 |#1|))) 171 (|has| |#1| (-545))) (($ (-401 (-934 (-401 |#1|)))) 170 (|has| |#1| (-545))) (($ (-401 (-934 |#1|))) 166 (|has| |#1| (-545))) (($ $) 139 (|has| |#1| (-545))) (($ (-934 |#1|)) 120 (|has| |#1| (-1031))) (($ (-401 (-553))) 95 (-3988 (|has| |#1| (-545)) (-12 (|has| |#1| (-1020 (-553))) (|has| |#1| (-545))) (|has| |#1| (-1020 (-401 (-553)))))) (($ (-553)) 94 (-3988 (|has| |#1| (-1031)) (|has| |#1| (-1020 (-553)))))) (-2941 (((-3 $ "failed") $) 136 (|has| |#1| (-142)))) (-1999 (((-757)) 131 (|has| |#1| (-1031)))) (-2633 (($ $) 53) (($ (-630 $)) 52)) (-2274 (((-111) (-113)) 41)) (-1639 (((-111) $ $) 143 (|has| |#1| (-545)))) (-3823 (($ (-1155) $) 200) (($ (-1155) $ $) 199) (($ (-1155) $ $ $) 198) (($ (-1155) $ $ $ $) 197) (($ (-1155) (-630 $)) 196)) (-1988 (($) 113 (|has| |#1| (-25)) CONST)) (-1997 (($) 101 (|has| |#1| (-1091)) CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) 130 (|has| |#1| (-1031))) (($ $ (-1155) (-757)) 129 (|has| |#1| (-1031))) (($ $ (-630 (-1155))) 128 (|has| |#1| (-1031))) (($ $ (-1155)) 127 (|has| |#1| (-1031)))) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1723 (($ (-1104 |#1| (-599 $)) (-1104 |#1| (-599 $))) 173 (|has| |#1| (-545))) (($ $ $) 107 (-3988 (|has| |#1| (-466)) (|has| |#1| (-545))))) (-1711 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1700 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-553)) 108 (-3988 (|has| |#1| (-466)) (|has| |#1| (-545)))) (($ $ (-757)) 105 (|has| |#1| (-1091))) (($ $ (-903)) 100 (|has| |#1| (-1091)))) (* (($ (-401 (-553)) $) 165 (|has| |#1| (-545))) (($ $ (-401 (-553))) 164 (|has| |#1| (-545))) (($ |#1| $) 138 (|has| |#1| (-169))) (($ $ |#1|) 137 (|has| |#1| (-169))) (($ (-553) $) 119 (|has| |#1| (-21))) (($ (-757) $) 115 (|has| |#1| (-25))) (($ (-903) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1091))))) -(((-424 |#1|) (-137) (-833)) (T -424)) -((-3623 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-833)) (-5 *2 (-111)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-833)) (-5 *2 (-630 (-1155))))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) (-3823 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) (-3823 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) (-3823 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) (-3823 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-630 *1)) (-4 *1 (-424 *4)) (-4 *4 (-833)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)) (-4 *3 (-601 (-529))))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-1155))) (-4 *1 (-424 *3)) (-4 *3 (-833)) (-4 *3 (-601 (-529))))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)) (-4 *2 (-601 (-529))))) (-2356 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1155)) (-4 *1 (-424 *4)) (-4 *4 (-833)) (-4 *4 (-601 (-529))))) (-2356 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-630 (-113))) (-5 *3 (-630 *1)) (-5 *4 (-1155)) (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-601 (-529))))) (-2411 (*1 *2 *1) (|partial| -12 (-4 *3 (-1091)) (-4 *3 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-424 *3)))) (-3107 (*1 *2 *1) (|partial| -12 (-4 *3 (-1091)) (-4 *3 (-833)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -2692 (-553)))) (-4 *1 (-424 *3)))) (-2201 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-424 *3)))) (-3648 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-833)) (-5 *2 (-2 (|:| -4120 (-553)) (|:| |var| (-599 *1)))) (-4 *1 (-424 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1104 *3 (-599 *1))) (-4 *3 (-1031)) (-4 *3 (-833)) (-4 *1 (-424 *3)))) (-3963 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *3 (-833)) (-5 *2 (-1104 *3 (-599 *1))) (-4 *1 (-424 *3)))) (-2181 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)) (-4 *2 (-1031)))) (-3107 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1031)) (-4 *4 (-833)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -2692 (-553)))) (-4 *1 (-424 *4)))) (-3107 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1155)) (-4 *4 (-1031)) (-4 *4 (-833)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -2692 (-553)))) (-4 *1 (-424 *4)))) (-1500 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-833)) (-5 *2 (-2 (|:| |val| *1) (|:| -2692 (-553)))) (-4 *1 (-424 *3)))) (-2356 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-757))) (-5 *4 (-630 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-1031)))) (-2356 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-757))) (-5 *4 (-630 (-1 *1 (-630 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-1031)))) (-2356 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-757)) (-5 *4 (-1 *1 (-630 *1))) (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-1031)))) (-2356 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-757)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-1031)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-545)) (-4 *3 (-833)))) (-3974 (*1 *2 *1) (-12 (-4 *3 (-545)) (-4 *3 (-833)) (-5 *2 (-1104 *3 (-599 *1))) (-4 *1 (-424 *3)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)) (-4 *2 (-545)))) (-1723 (*1 *1 *2 *2) (-12 (-5 *2 (-1104 *3 (-599 *1))) (-4 *3 (-545)) (-4 *3 (-833)) (-4 *1 (-424 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-545)) (-4 *3 (-833)) (-4 *1 (-424 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-934 (-401 *3))) (-4 *3 (-545)) (-4 *3 (-833)) (-4 *1 (-424 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-401 *3)))) (-4 *3 (-545)) (-4 *3 (-833)) (-4 *1 (-424 *3)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-424 *4)) (-4 *4 (-833)) (-4 *4 (-545)) (-5 *2 (-401 (-1151 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-424 *3)) (-4 *3 (-833)) (-4 *3 (-1091))))) -(-13 (-296) (-1020 (-1155)) (-866 |t#1|) (-394 |t#1|) (-405 |t#1|) (-10 -8 (-15 -3623 ((-111) $)) (-15 -3633 (|t#1| $)) (-15 -3506 ((-630 (-1155)) $)) (-15 -3823 ($ (-1155) $)) (-15 -3823 ($ (-1155) $ $)) (-15 -3823 ($ (-1155) $ $ $)) (-15 -3823 ($ (-1155) $ $ $ $)) (-15 -3823 ($ (-1155) (-630 $))) (IF (|has| |t#1| (-601 (-529))) (PROGN (-6 (-601 (-529))) (-15 -2356 ($ $ (-1155))) (-15 -2356 ($ $ (-630 (-1155)))) (-15 -2356 ($ $)) (-15 -2356 ($ $ (-113) $ (-1155))) (-15 -2356 ($ $ (-630 (-113)) (-630 $) (-1155)))) |%noBranch|) (IF (|has| |t#1| (-1091)) (PROGN (-6 (-712)) (-15 ** ($ $ (-757))) (-15 -2411 ((-3 (-630 $) "failed") $)) (-15 -3107 ((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2201 ((-3 (-630 $) "failed") $)) (-15 -3648 ((-3 (-2 (|:| -4120 (-553)) (|:| |var| (-599 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1031)) (PROGN (-6 (-1031)) (-6 (-1020 (-934 |t#1|))) (-6 (-882 (-1155))) (-6 (-371 |t#1|)) (-15 -3110 ($ (-1104 |t#1| (-599 $)))) (-15 -3963 ((-1104 |t#1| (-599 $)) $)) (-15 -2181 ($ $)) (-15 -3107 ((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-113))) (-15 -3107 ((-3 (-2 (|:| |var| (-599 $)) (|:| -2692 (-553))) "failed") $ (-1155))) (-15 -1500 ((-3 (-2 (|:| |val| $) (|:| -2692 (-553))) "failed") $)) (-15 -2356 ($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ $)))) (-15 -2356 ($ $ (-630 (-1155)) (-630 (-757)) (-630 (-1 $ (-630 $))))) (-15 -2356 ($ $ (-1155) (-757) (-1 $ (-630 $)))) (-15 -2356 ($ $ (-1155) (-757) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-357)) (-6 (-1020 (-401 (-934 |t#1|)))) (-15 -1524 ($ (-412 $))) (-15 -3974 ((-1104 |t#1| (-599 $)) $)) (-15 -3161 ($ $)) (-15 -1723 ($ (-1104 |t#1| (-599 $)) (-1104 |t#1| (-599 $)))) (-15 -3110 ($ (-401 |t#1|))) (-15 -3110 ($ (-934 (-401 |t#1|)))) (-15 -3110 ($ (-401 (-934 (-401 |t#1|))))) (-15 -3322 ((-401 (-1151 $)) $ (-599 $))) (IF (|has| |t#1| (-1020 (-553))) (-6 (-1020 (-401 (-553)))) |%noBranch|)) |%noBranch|))) -(((-21) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-23) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-401 (-553))) |has| |#1| (-545)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-545)) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) |has| |#1| (-545)) ((-129) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-545))) ((-603 #1=(-401 (-934 |#1|))) |has| |#1| (-545)) ((-603 (-553)) -3988 (|has| |#1| (-1031)) (|has| |#1| (-1020 (-553))) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-603 #2=(-599 $)) . T) ((-603 #3=(-934 |#1|)) |has| |#1| (-1031)) ((-603 #4=(-1155)) . T) ((-603 |#1|) . T) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) |has| |#1| (-545)) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-601 (-874 (-373))) |has| |#1| (-601 (-874 (-373)))) ((-601 (-874 (-553))) |has| |#1| (-601 (-874 (-553)))) ((-238) |has| |#1| (-545)) ((-284) |has| |#1| (-545)) ((-301) |has| |#1| (-545)) ((-303 $) . T) ((-296) . T) ((-357) |has| |#1| (-545)) ((-371 |#1|) |has| |#1| (-1031)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) |has| |#1| (-545)) ((-466) |has| |#1| (-466)) ((-507 (-599 $) $) . T) ((-507 $ $) . T) ((-545) |has| |#1| (-545)) ((-633 #0#) |has| |#1| (-545)) ((-633 |#1|) |has| |#1| (-169)) ((-633 $) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-626 (-553)) -12 (|has| |#1| (-626 (-553))) (|has| |#1| (-1031))) ((-626 |#1|) |has| |#1| (-1031)) ((-703 #0#) |has| |#1| (-545)) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) -3988 (|has| |#1| (-1091)) (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-833) . T) ((-882 (-1155)) |has| |#1| (-1031)) ((-868 (-373)) |has| |#1| (-868 (-373))) ((-868 (-553)) |has| |#1| (-868 (-553))) ((-866 |#1|) . T) ((-902) |has| |#1| (-545)) ((-1020 (-401 (-553))) -3988 (|has| |#1| (-1020 (-401 (-553)))) (-12 (|has| |#1| (-545)) (|has| |#1| (-1020 (-553))))) ((-1020 #1#) |has| |#1| (-545)) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 #2#) . T) ((-1020 #3#) |has| |#1| (-1031)) ((-1020 #4#) . T) ((-1020 |#1|) . T) ((-1037 #0#) |has| |#1| (-545)) ((-1037 |#1|) |has| |#1| (-169)) ((-1037 $) |has| |#1| (-545)) ((-1031) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1038) -3988 (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1091) -3988 (|has| |#1| (-1091)) (|has| |#1| (-1031)) (|has| |#1| (-545)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1079) . T) ((-1192) . T) ((-1196) |has| |#1| (-545))) -((-2391 ((|#2| |#2| |#2|) 33)) (-4180 (((-113) (-113)) 44)) (-2187 ((|#2| |#2|) 66)) (-2703 ((|#2| |#2|) 69)) (-1599 ((|#2| |#2|) 32)) (-2624 ((|#2| |#2| |#2|) 35)) (-1966 ((|#2| |#2| |#2|) 37)) (-2534 ((|#2| |#2| |#2|) 34)) (-3039 ((|#2| |#2| |#2|) 36)) (-2274 (((-111) (-113)) 42)) (-3660 ((|#2| |#2|) 39)) (-1643 ((|#2| |#2|) 38)) (-3466 ((|#2| |#2|) 27)) (-3595 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3536 ((|#2| |#2| |#2|) 31))) -(((-425 |#1| |#2|) (-10 -7 (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -3466 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3595 (|#2| |#2| |#2|)) (-15 -3536 (|#2| |#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2391 (|#2| |#2| |#2|)) (-15 -2534 (|#2| |#2| |#2|)) (-15 -2624 (|#2| |#2| |#2|)) (-15 -3039 (|#2| |#2| |#2|)) (-15 -1966 (|#2| |#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -2187 (|#2| |#2|))) (-13 (-833) (-545)) (-424 |#1|)) (T -425)) -((-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1966 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3039 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2624 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2391 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3536 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3595 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3595 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *4)) (-4 *4 (-424 *3)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4))))) -(-10 -7 (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -3466 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3595 (|#2| |#2| |#2|)) (-15 -3536 (|#2| |#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -2391 (|#2| |#2| |#2|)) (-15 -2534 (|#2| |#2| |#2|)) (-15 -2624 (|#2| |#2| |#2|)) (-15 -3039 (|#2| |#2| |#2|)) (-15 -1966 (|#2| |#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -2187 (|#2| |#2|))) -((-2484 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1151 |#2|)) (|:| |pol2| (-1151 |#2|)) (|:| |prim| (-1151 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-630 (-1151 |#2|))) (|:| |prim| (-1151 |#2|))) (-630 |#2|)) 61))) -(((-426 |#1| |#2|) (-10 -7 (-15 -2484 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-630 (-1151 |#2|))) (|:| |prim| (-1151 |#2|))) (-630 |#2|))) (IF (|has| |#2| (-27)) (-15 -2484 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1151 |#2|)) (|:| |pol2| (-1151 |#2|)) (|:| |prim| (-1151 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-545) (-833) (-144)) (-424 |#1|)) (T -426)) -((-2484 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-545) (-833) (-144))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1151 *3)) (|:| |pol2| (-1151 *3)) (|:| |prim| (-1151 *3)))) (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-545) (-833) (-144))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-630 (-1151 *5))) (|:| |prim| (-1151 *5)))) (-5 *1 (-426 *4 *5))))) -(-10 -7 (-15 -2484 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-630 (-1151 |#2|))) (|:| |prim| (-1151 |#2|))) (-630 |#2|))) (IF (|has| |#2| (-27)) (-15 -2484 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1151 |#2|)) (|:| |pol2| (-1151 |#2|)) (|:| |prim| (-1151 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3417 (((-1243)) 19)) (-4029 (((-1151 (-401 (-553))) |#2| (-599 |#2|)) 41) (((-401 (-553)) |#2|) 25))) -(((-427 |#1| |#2|) (-10 -7 (-15 -4029 ((-401 (-553)) |#2|)) (-15 -4029 ((-1151 (-401 (-553))) |#2| (-599 |#2|))) (-15 -3417 ((-1243)))) (-13 (-833) (-545) (-1020 (-553))) (-424 |#1|)) (T -427)) -((-3417 (*1 *2) (-12 (-4 *3 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-1243)) (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-427 *5 *3)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-401 (-553))) (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4))))) -(-10 -7 (-15 -4029 ((-401 (-553)) |#2|)) (-15 -4029 ((-1151 (-401 (-553))) |#2| (-599 |#2|))) (-15 -3417 ((-1243)))) -((-3034 (((-111) $) 28)) (-2398 (((-111) $) 30)) (-2339 (((-111) $) 31)) (-2404 (((-111) $) 34)) (-2859 (((-111) $) 29)) (-1304 (((-111) $) 33)) (-3110 (((-845) $) 18) (($ (-1137)) 27) (($ (-1155)) 23) (((-1155) $) 22) (((-1083) $) 21)) (-2227 (((-111) $) 32)) (-1617 (((-111) $ $) 15))) -(((-428) (-13 (-600 (-845)) (-10 -8 (-15 -3110 ($ (-1137))) (-15 -3110 ($ (-1155))) (-15 -3110 ((-1155) $)) (-15 -3110 ((-1083) $)) (-15 -3034 ((-111) $)) (-15 -2859 ((-111) $)) (-15 -2339 ((-111) $)) (-15 -1304 ((-111) $)) (-15 -2404 ((-111) $)) (-15 -2227 ((-111) $)) (-15 -2398 ((-111) $)) (-15 -1617 ((-111) $ $))))) (T -428)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-428)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-428)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-428)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-428)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2227 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1617 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(-13 (-600 (-845)) (-10 -8 (-15 -3110 ($ (-1137))) (-15 -3110 ($ (-1155))) (-15 -3110 ((-1155) $)) (-15 -3110 ((-1083) $)) (-15 -3034 ((-111) $)) (-15 -2859 ((-111) $)) (-15 -2339 ((-111) $)) (-15 -1304 ((-111) $)) (-15 -2404 ((-111) $)) (-15 -2227 ((-111) $)) (-15 -2398 ((-111) $)) (-15 -1617 ((-111) $ $)))) -((-3326 (((-3 (-412 (-1151 (-401 (-553)))) "failed") |#3|) 70)) (-1952 (((-412 |#3|) |#3|) 34)) (-2232 (((-3 (-412 (-1151 (-48))) "failed") |#3|) 46 (|has| |#2| (-1020 (-48))))) (-4346 (((-3 (|:| |overq| (-1151 (-401 (-553)))) (|:| |overan| (-1151 (-48))) (|:| -4140 (-111))) |#3|) 37))) -(((-429 |#1| |#2| |#3|) (-10 -7 (-15 -1952 ((-412 |#3|) |#3|)) (-15 -3326 ((-3 (-412 (-1151 (-401 (-553)))) "failed") |#3|)) (-15 -4346 ((-3 (|:| |overq| (-1151 (-401 (-553)))) (|:| |overan| (-1151 (-48))) (|:| -4140 (-111))) |#3|)) (IF (|has| |#2| (-1020 (-48))) (-15 -2232 ((-3 (-412 (-1151 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-545) (-833) (-1020 (-553))) (-424 |#1|) (-1214 |#2|)) (T -429)) -((-2232 (*1 *2 *3) (|partial| -12 (-4 *5 (-1020 (-48))) (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1151 (-48)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5)))) (-4346 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) (-5 *2 (-3 (|:| |overq| (-1151 (-401 (-553)))) (|:| |overan| (-1151 (-48))) (|:| -4140 (-111)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5)))) (-3326 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1151 (-401 (-553))))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5)))) (-1952 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5))))) -(-10 -7 (-15 -1952 ((-412 |#3|) |#3|)) (-15 -3326 ((-3 (-412 (-1151 (-401 (-553)))) "failed") |#3|)) (-15 -4346 ((-3 (|:| |overq| (-1151 (-401 (-553)))) (|:| |overan| (-1151 (-48))) (|:| -4140 (-111))) |#3|)) (IF (|has| |#2| (-1020 (-48))) (-15 -2232 ((-3 (-412 (-1151 (-48))) "failed") |#3|)) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-3172 (((-1137) $ (-1137)) NIL)) (-3985 (($ $ (-1137)) NIL)) (-3131 (((-1137) $) NIL)) (-3471 (((-382) (-382) (-382)) 17) (((-382) (-382)) 15)) (-2984 (($ (-382)) NIL) (($ (-382) (-1137)) NIL)) (-4298 (((-382) $) NIL)) (-1735 (((-1137) $) NIL)) (-4086 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1897 (((-1243) (-1137)) 9)) (-2930 (((-1243) (-1137)) 10)) (-2090 (((-1243)) 11)) (-3110 (((-845) $) NIL)) (-2407 (($ $) 35)) (-1617 (((-111) $ $) NIL))) -(((-430) (-13 (-358 (-382) (-1137)) (-10 -7 (-15 -3471 ((-382) (-382) (-382))) (-15 -3471 ((-382) (-382))) (-15 -1897 ((-1243) (-1137))) (-15 -2930 ((-1243) (-1137))) (-15 -2090 ((-1243)))))) (T -430)) -((-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-430)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-430)))) (-2090 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-430))))) -(-13 (-358 (-382) (-1137)) (-10 -7 (-15 -3471 ((-382) (-382) (-382))) (-15 -3471 ((-382) (-382))) (-15 -1897 ((-1243) (-1137))) (-15 -2930 ((-1243) (-1137))) (-15 -2090 ((-1243))))) -((-3096 (((-111) $ $) NIL)) (-2918 (((-3 (|:| |fst| (-428)) (|:| -1875 "void")) $) 11)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1565 (($) 32)) (-3982 (($) 38)) (-1539 (($) 34)) (-3148 (($) 36)) (-1991 (($) 33)) (-2152 (($) 35)) (-2644 (($) 37)) (-3811 (((-111) $) 8)) (-3141 (((-630 (-934 (-553))) $) 19)) (-3121 (($ (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-1155)) (-111)) 27) (($ (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-934 (-553))) (-111)) 28)) (-3110 (((-845) $) 23) (($ (-428)) 29)) (-1617 (((-111) $ $) NIL))) -(((-431) (-13 (-1079) (-10 -8 (-15 -3110 ($ (-428))) (-15 -2918 ((-3 (|:| |fst| (-428)) (|:| -1875 "void")) $)) (-15 -3141 ((-630 (-934 (-553))) $)) (-15 -3811 ((-111) $)) (-15 -3121 ($ (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-1155)) (-111))) (-15 -3121 ($ (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-934 (-553))) (-111))) (-15 -1565 ($)) (-15 -1991 ($)) (-15 -1539 ($)) (-15 -3982 ($)) (-15 -2152 ($)) (-15 -3148 ($)) (-15 -2644 ($))))) (T -431)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *1 (-431)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-630 (-934 (-553)))) (-5 *1 (-431)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431)))) (-3121 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *3 (-630 (-1155))) (-5 *4 (-111)) (-5 *1 (-431)))) (-3121 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-111)) (-5 *1 (-431)))) (-1565 (*1 *1) (-5 *1 (-431))) (-1991 (*1 *1) (-5 *1 (-431))) (-1539 (*1 *1) (-5 *1 (-431))) (-3982 (*1 *1) (-5 *1 (-431))) (-2152 (*1 *1) (-5 *1 (-431))) (-3148 (*1 *1) (-5 *1 (-431))) (-2644 (*1 *1) (-5 *1 (-431)))) -(-13 (-1079) (-10 -8 (-15 -3110 ($ (-428))) (-15 -2918 ((-3 (|:| |fst| (-428)) (|:| -1875 "void")) $)) (-15 -3141 ((-630 (-934 (-553))) $)) (-15 -3811 ((-111) $)) (-15 -3121 ($ (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-1155)) (-111))) (-15 -3121 ($ (-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-630 (-934 (-553))) (-111))) (-15 -1565 ($)) (-15 -1991 ($)) (-15 -1539 ($)) (-15 -3982 ($)) (-15 -2152 ($)) (-15 -3148 ($)) (-15 -2644 ($)))) -((-3096 (((-111) $ $) NIL)) (-4298 (((-1155) $) 8)) (-1735 (((-1137) $) 16)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 13))) -(((-432 |#1|) (-13 (-1079) (-10 -8 (-15 -4298 ((-1155) $)))) (-1155)) (T -432)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-432 *3)) (-14 *3 *2)))) -(-13 (-1079) (-10 -8 (-15 -4298 ((-1155) $)))) -((-4005 (((-1243) $) 7)) (-3110 (((-845) $) 8) (($ (-1238 (-684))) 14) (($ (-630 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 11))) -(((-433) (-137)) (T -433)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-684))) (-4 *1 (-433)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-433)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) (-4 *1 (-433))))) -(-13 (-389) (-10 -8 (-15 -3110 ($ (-1238 (-684)))) (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-324))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))))) -(((-600 (-845)) . T) ((-389) . T) ((-1192) . T)) -((-1399 (((-3 $ "failed") (-1238 (-310 (-373)))) 21) (((-3 $ "failed") (-1238 (-310 (-553)))) 19) (((-3 $ "failed") (-1238 (-934 (-373)))) 17) (((-3 $ "failed") (-1238 (-934 (-553)))) 15) (((-3 $ "failed") (-1238 (-401 (-934 (-373))))) 13) (((-3 $ "failed") (-1238 (-401 (-934 (-553))))) 11)) (-2707 (($ (-1238 (-310 (-373)))) 22) (($ (-1238 (-310 (-553)))) 20) (($ (-1238 (-934 (-373)))) 18) (($ (-1238 (-934 (-553)))) 16) (($ (-1238 (-401 (-934 (-373))))) 14) (($ (-1238 (-401 (-934 (-553))))) 12)) (-4005 (((-1243) $) 7)) (-3110 (((-845) $) 8) (($ (-630 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) 23))) -(((-434) (-137)) (T -434)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-434)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) (-4 *1 (-434)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1238 (-310 (-373)))) (-4 *1 (-434)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1238 (-310 (-373)))) (-4 *1 (-434)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1238 (-310 (-553)))) (-4 *1 (-434)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1238 (-310 (-553)))) (-4 *1 (-434)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1238 (-934 (-373)))) (-4 *1 (-434)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1238 (-934 (-373)))) (-4 *1 (-434)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1238 (-934 (-553)))) (-4 *1 (-434)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1238 (-934 (-553)))) (-4 *1 (-434)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1238 (-401 (-934 (-373))))) (-4 *1 (-434)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1238 (-401 (-934 (-373))))) (-4 *1 (-434)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-1238 (-401 (-934 (-553))))) (-4 *1 (-434)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-1238 (-401 (-934 (-553))))) (-4 *1 (-434))))) -(-13 (-389) (-10 -8 (-15 -3110 ($ (-630 (-324)))) (-15 -3110 ($ (-324))) (-15 -3110 ($ (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324)))))) (-15 -2707 ($ (-1238 (-310 (-373))))) (-15 -1399 ((-3 $ "failed") (-1238 (-310 (-373))))) (-15 -2707 ($ (-1238 (-310 (-553))))) (-15 -1399 ((-3 $ "failed") (-1238 (-310 (-553))))) (-15 -2707 ($ (-1238 (-934 (-373))))) (-15 -1399 ((-3 $ "failed") (-1238 (-934 (-373))))) (-15 -2707 ($ (-1238 (-934 (-553))))) (-15 -1399 ((-3 $ "failed") (-1238 (-934 (-553))))) (-15 -2707 ($ (-1238 (-401 (-934 (-373)))))) (-15 -1399 ((-3 $ "failed") (-1238 (-401 (-934 (-373)))))) (-15 -2707 ($ (-1238 (-401 (-934 (-553)))))) (-15 -1399 ((-3 $ "failed") (-1238 (-401 (-934 (-553)))))))) -(((-600 (-845)) . T) ((-389) . T) ((-1192) . T)) -((-1679 (((-111)) 17)) (-3195 (((-111) (-111)) 18)) (-2864 (((-111)) 13)) (-2099 (((-111) (-111)) 14)) (-3177 (((-111)) 15)) (-1454 (((-111) (-111)) 16)) (-1593 (((-903) (-903)) 21) (((-903)) 20)) (-3437 (((-757) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553))))) 42)) (-4067 (((-903) (-903)) 23) (((-903)) 22)) (-2253 (((-2 (|:| -3165 (-553)) (|:| -3713 (-630 |#1|))) |#1|) 62)) (-4091 (((-412 |#1|) (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553))))))) 126)) (-1788 (((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111)) 152)) (-3519 (((-412 |#1|) |#1| (-757) (-757)) 165) (((-412 |#1|) |#1| (-630 (-757)) (-757)) 162) (((-412 |#1|) |#1| (-630 (-757))) 164) (((-412 |#1|) |#1| (-757)) 163) (((-412 |#1|) |#1|) 161)) (-2145 (((-3 |#1| "failed") (-903) |#1| (-630 (-757)) (-757) (-111)) 167) (((-3 |#1| "failed") (-903) |#1| (-630 (-757)) (-757)) 168) (((-3 |#1| "failed") (-903) |#1| (-630 (-757))) 170) (((-3 |#1| "failed") (-903) |#1| (-757)) 169) (((-3 |#1| "failed") (-903) |#1|) 171)) (-3355 (((-412 |#1|) |#1| (-757) (-757)) 160) (((-412 |#1|) |#1| (-630 (-757)) (-757)) 156) (((-412 |#1|) |#1| (-630 (-757))) 158) (((-412 |#1|) |#1| (-757)) 157) (((-412 |#1|) |#1|) 155)) (-4110 (((-111) |#1|) 37)) (-3499 (((-723 (-757)) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553))))) 67)) (-2036 (((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111) (-1081 (-757)) (-757)) 154))) -(((-435 |#1|) (-10 -7 (-15 -4091 ((-412 |#1|) (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))))) (-15 -3499 ((-723 (-757)) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))))) (-15 -4067 ((-903))) (-15 -4067 ((-903) (-903))) (-15 -1593 ((-903))) (-15 -1593 ((-903) (-903))) (-15 -3437 ((-757) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))))) (-15 -2253 ((-2 (|:| -3165 (-553)) (|:| -3713 (-630 |#1|))) |#1|)) (-15 -1679 ((-111))) (-15 -3195 ((-111) (-111))) (-15 -2864 ((-111))) (-15 -2099 ((-111) (-111))) (-15 -4110 ((-111) |#1|)) (-15 -3177 ((-111))) (-15 -1454 ((-111) (-111))) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3355 ((-412 |#1|) |#1| (-757))) (-15 -3355 ((-412 |#1|) |#1| (-630 (-757)))) (-15 -3355 ((-412 |#1|) |#1| (-630 (-757)) (-757))) (-15 -3355 ((-412 |#1|) |#1| (-757) (-757))) (-15 -3519 ((-412 |#1|) |#1|)) (-15 -3519 ((-412 |#1|) |#1| (-757))) (-15 -3519 ((-412 |#1|) |#1| (-630 (-757)))) (-15 -3519 ((-412 |#1|) |#1| (-630 (-757)) (-757))) (-15 -3519 ((-412 |#1|) |#1| (-757) (-757))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1|)) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-757))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-630 (-757)))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-630 (-757)) (-757))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-630 (-757)) (-757) (-111))) (-15 -1788 ((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111))) (-15 -2036 ((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111) (-1081 (-757)) (-757)))) (-1214 (-553))) (T -435)) -((-2036 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1081 (-757))) (-5 *6 (-757)) (-5 *2 (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-2145 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-903)) (-5 *4 (-630 (-757))) (-5 *5 (-757)) (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) (-2145 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-903)) (-5 *4 (-630 (-757))) (-5 *5 (-757)) (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) (-2145 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-903)) (-5 *4 (-630 (-757))) (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) (-2145 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-903)) (-5 *4 (-757)) (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) (-2145 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-903)) (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) (-3519 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3519 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-630 (-757))) (-5 *5 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3519 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-757))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3519 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3519 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3355 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3355 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-630 (-757))) (-5 *5 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-757))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-1454 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3177 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-4110 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-2864 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-1679 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-2253 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3165 (-553)) (|:| -3713 (-630 *3)))) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -3355 *4) (|:| -3872 (-553))))) (-4 *4 (-1214 (-553))) (-5 *2 (-757)) (-5 *1 (-435 *4)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-1593 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-4067 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -3355 *4) (|:| -3872 (-553))))) (-4 *4 (-1214 (-553))) (-5 *2 (-723 (-757))) (-5 *1 (-435 *4)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| *4) (|:| -3220 (-553))))))) (-4 *4 (-1214 (-553))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) -(-10 -7 (-15 -4091 ((-412 |#1|) (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))))) (-15 -3499 ((-723 (-757)) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))))) (-15 -4067 ((-903))) (-15 -4067 ((-903) (-903))) (-15 -1593 ((-903))) (-15 -1593 ((-903) (-903))) (-15 -3437 ((-757) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))))) (-15 -2253 ((-2 (|:| -3165 (-553)) (|:| -3713 (-630 |#1|))) |#1|)) (-15 -1679 ((-111))) (-15 -3195 ((-111) (-111))) (-15 -2864 ((-111))) (-15 -2099 ((-111) (-111))) (-15 -4110 ((-111) |#1|)) (-15 -3177 ((-111))) (-15 -1454 ((-111) (-111))) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3355 ((-412 |#1|) |#1| (-757))) (-15 -3355 ((-412 |#1|) |#1| (-630 (-757)))) (-15 -3355 ((-412 |#1|) |#1| (-630 (-757)) (-757))) (-15 -3355 ((-412 |#1|) |#1| (-757) (-757))) (-15 -3519 ((-412 |#1|) |#1|)) (-15 -3519 ((-412 |#1|) |#1| (-757))) (-15 -3519 ((-412 |#1|) |#1| (-630 (-757)))) (-15 -3519 ((-412 |#1|) |#1| (-630 (-757)) (-757))) (-15 -3519 ((-412 |#1|) |#1| (-757) (-757))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1|)) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-757))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-630 (-757)))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-630 (-757)) (-757))) (-15 -2145 ((-3 |#1| "failed") (-903) |#1| (-630 (-757)) (-757) (-111))) (-15 -1788 ((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111))) (-15 -2036 ((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111) (-1081 (-757)) (-757)))) -((-1730 (((-553) |#2|) 48) (((-553) |#2| (-757)) 47)) (-1776 (((-553) |#2|) 55)) (-2881 ((|#3| |#2|) 25)) (-3560 ((|#3| |#2| (-903)) 14)) (-1899 ((|#3| |#2|) 15)) (-2698 ((|#3| |#2|) 9)) (-2304 ((|#3| |#2|) 10)) (-1609 ((|#3| |#2| (-903)) 62) ((|#3| |#2|) 30)) (-3040 (((-553) |#2|) 57))) -(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -3040 ((-553) |#2|)) (-15 -1609 (|#3| |#2|)) (-15 -1609 (|#3| |#2| (-903))) (-15 -1776 ((-553) |#2|)) (-15 -1730 ((-553) |#2| (-757))) (-15 -1730 ((-553) |#2|)) (-15 -3560 (|#3| |#2| (-903))) (-15 -2881 (|#3| |#2|)) (-15 -2698 (|#3| |#2|)) (-15 -2304 (|#3| |#2|)) (-15 -1899 (|#3| |#2|))) (-1031) (-1214 |#1|) (-13 (-398) (-1020 |#1|) (-357) (-1177) (-278))) (T -436)) -((-1899 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) (-2304 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-4 *5 (-1031)) (-4 *2 (-13 (-398) (-1020 *5) (-357) (-1177) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1214 *5)))) (-1730 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1214 *4)) (-4 *5 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))))) (-1730 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1214 *5)) (-4 *6 (-13 (-398) (-1020 *5) (-357) (-1177) (-278))))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1214 *4)) (-4 *5 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))))) (-1609 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-4 *5 (-1031)) (-4 *2 (-13 (-398) (-1020 *5) (-357) (-1177) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1214 *5)))) (-1609 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) (-3040 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1214 *4)) (-4 *5 (-13 (-398) (-1020 *4) (-357) (-1177) (-278)))))) -(-10 -7 (-15 -3040 ((-553) |#2|)) (-15 -1609 (|#3| |#2|)) (-15 -1609 (|#3| |#2| (-903))) (-15 -1776 ((-553) |#2|)) (-15 -1730 ((-553) |#2| (-757))) (-15 -1730 ((-553) |#2|)) (-15 -3560 (|#3| |#2| (-903))) (-15 -2881 (|#3| |#2|)) (-15 -2698 (|#3| |#2|)) (-15 -2304 (|#3| |#2|)) (-15 -1899 (|#3| |#2|))) -((-3126 ((|#2| (-1238 |#1|)) 36)) (-2136 ((|#2| |#2| |#1|) 49)) (-2092 ((|#2| |#2| |#1|) 41)) (-3239 ((|#2| |#2|) 38)) (-3939 (((-111) |#2|) 30)) (-3869 (((-630 |#2|) (-903) (-412 |#2|)) 17)) (-2145 ((|#2| (-903) (-412 |#2|)) 21)) (-3499 (((-723 (-757)) (-412 |#2|)) 25))) -(((-437 |#1| |#2|) (-10 -7 (-15 -3939 ((-111) |#2|)) (-15 -3126 (|#2| (-1238 |#1|))) (-15 -3239 (|#2| |#2|)) (-15 -2092 (|#2| |#2| |#1|)) (-15 -2136 (|#2| |#2| |#1|)) (-15 -3499 ((-723 (-757)) (-412 |#2|))) (-15 -2145 (|#2| (-903) (-412 |#2|))) (-15 -3869 ((-630 |#2|) (-903) (-412 |#2|)))) (-1031) (-1214 |#1|)) (T -437)) -((-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-412 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-1031)) (-5 *2 (-630 *6)) (-5 *1 (-437 *5 *6)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-412 *2)) (-4 *2 (-1214 *5)) (-5 *1 (-437 *5 *2)) (-4 *5 (-1031)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-1031)) (-5 *2 (-723 (-757))) (-5 *1 (-437 *4 *5)))) (-2136 (*1 *2 *2 *3) (-12 (-4 *3 (-1031)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1214 *3)))) (-2092 (*1 *2 *2 *3) (-12 (-4 *3 (-1031)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1214 *3)))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1214 *3)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1238 *4)) (-4 *4 (-1031)) (-4 *2 (-1214 *4)) (-5 *1 (-437 *4 *2)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -3939 ((-111) |#2|)) (-15 -3126 (|#2| (-1238 |#1|))) (-15 -3239 (|#2| |#2|)) (-15 -2092 (|#2| |#2| |#1|)) (-15 -2136 (|#2| |#2| |#1|)) (-15 -3499 ((-723 (-757)) (-412 |#2|))) (-15 -2145 (|#2| (-903) (-412 |#2|))) (-15 -3869 ((-630 |#2|) (-903) (-412 |#2|)))) -((-1647 (((-757)) 41)) (-2107 (((-757)) 23 (|has| |#1| (-398))) (((-757) (-757)) 22 (|has| |#1| (-398)))) (-1935 (((-553) |#1|) 18 (|has| |#1| (-398)))) (-3366 (((-553) |#1|) 20 (|has| |#1| (-398)))) (-1738 (((-757)) 40) (((-757) (-757)) 39)) (-2089 ((|#1| (-757) (-553)) 29)) (-1385 (((-1243)) 43))) -(((-438 |#1|) (-10 -7 (-15 -2089 (|#1| (-757) (-553))) (-15 -1738 ((-757) (-757))) (-15 -1738 ((-757))) (-15 -1647 ((-757))) (-15 -1385 ((-1243))) (IF (|has| |#1| (-398)) (PROGN (-15 -3366 ((-553) |#1|)) (-15 -1935 ((-553) |#1|)) (-15 -2107 ((-757) (-757))) (-15 -2107 ((-757)))) |%noBranch|)) (-1031)) (T -438)) -((-2107 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031)))) (-1935 (*1 *2 *3) (-12 (-5 *2 (-553)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031)))) (-3366 (*1 *2 *3) (-12 (-5 *2 (-553)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031)))) (-1385 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-438 *3)) (-4 *3 (-1031)))) (-1647 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-1031)))) (-1738 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-1031)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-1031)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-553)) (-5 *1 (-438 *2)) (-4 *2 (-1031))))) -(-10 -7 (-15 -2089 (|#1| (-757) (-553))) (-15 -1738 ((-757) (-757))) (-15 -1738 ((-757))) (-15 -1647 ((-757))) (-15 -1385 ((-1243))) (IF (|has| |#1| (-398)) (PROGN (-15 -3366 ((-553) |#1|)) (-15 -1935 ((-553) |#1|)) (-15 -2107 ((-757) (-757))) (-15 -2107 ((-757)))) |%noBranch|)) -((-2057 (((-630 (-553)) (-553)) 61)) (-3119 (((-111) (-166 (-553))) 65)) (-3355 (((-412 (-166 (-553))) (-166 (-553))) 60))) -(((-439) (-10 -7 (-15 -3355 ((-412 (-166 (-553))) (-166 (-553)))) (-15 -2057 ((-630 (-553)) (-553))) (-15 -3119 ((-111) (-166 (-553)))))) (T -439)) -((-3119 (*1 *2 *3) (-12 (-5 *3 (-166 (-553))) (-5 *2 (-111)) (-5 *1 (-439)))) (-2057 (*1 *2 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-439)) (-5 *3 (-553)))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-412 (-166 (-553)))) (-5 *1 (-439)) (-5 *3 (-166 (-553)))))) -(-10 -7 (-15 -3355 ((-412 (-166 (-553))) (-166 (-553)))) (-15 -2057 ((-630 (-553)) (-553))) (-15 -3119 ((-111) (-166 (-553))))) -((-1450 ((|#4| |#4| (-630 |#4|)) 61)) (-1863 (((-630 |#4|) (-630 |#4|) (-1137) (-1137)) 17) (((-630 |#4|) (-630 |#4|) (-1137)) 16) (((-630 |#4|) (-630 |#4|)) 11))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 (|#4| |#4| (-630 |#4|))) (-15 -1863 ((-630 |#4|) (-630 |#4|))) (-15 -1863 ((-630 |#4|) (-630 |#4|) (-1137))) (-15 -1863 ((-630 |#4|) (-630 |#4|) (-1137) (-1137)))) (-301) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -440)) -((-1863 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1863 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-301)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-440 *3 *4 *5 *6)))) (-1450 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-440 *4 *5 *6 *2))))) -(-10 -7 (-15 -1450 (|#4| |#4| (-630 |#4|))) (-15 -1863 ((-630 |#4|) (-630 |#4|))) (-15 -1863 ((-630 |#4|) (-630 |#4|) (-1137))) (-15 -1863 ((-630 |#4|) (-630 |#4|) (-1137) (-1137)))) -((-3373 (((-630 (-630 |#4|)) (-630 |#4|) (-111)) 73) (((-630 (-630 |#4|)) (-630 |#4|)) 72) (((-630 (-630 |#4|)) (-630 |#4|) (-630 |#4|) (-111)) 66) (((-630 (-630 |#4|)) (-630 |#4|) (-630 |#4|)) 67)) (-3490 (((-630 (-630 |#4|)) (-630 |#4|) (-111)) 42) (((-630 (-630 |#4|)) (-630 |#4|)) 63))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 ((-630 (-630 |#4|)) (-630 |#4|))) (-15 -3490 ((-630 (-630 |#4|)) (-630 |#4|) (-111))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|) (-630 |#4|))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|) (-630 |#4|) (-111))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|) (-111)))) (-13 (-301) (-144)) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -441)) -((-3373 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-630 (-630 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-630 *8)))) (-3373 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-630 (-630 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-3373 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-630 (-630 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-630 *8)))) (-3373 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-630 (-630 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-3490 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-630 (-630 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-630 *8)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-630 (-630 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(-10 -7 (-15 -3490 ((-630 (-630 |#4|)) (-630 |#4|))) (-15 -3490 ((-630 (-630 |#4|)) (-630 |#4|) (-111))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|) (-630 |#4|))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|) (-630 |#4|) (-111))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|))) (-15 -3373 ((-630 (-630 |#4|)) (-630 |#4|) (-111)))) -((-1537 (((-757) |#4|) 12)) (-1486 (((-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|))) |#4| (-757) (-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|)))) 31)) (-3546 (((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2870 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3612 ((|#4| |#4| (-630 |#4|)) 40)) (-2281 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-630 |#4|)) 70)) (-1273 (((-1243) |#4|) 42)) (-3624 (((-1243) (-630 |#4|)) 51)) (-4284 (((-553) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-553) (-553) (-553)) 48)) (-3439 (((-1243) (-553)) 79)) (-2831 (((-630 |#4|) (-630 |#4|)) 77)) (-3995 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|)) |#4| (-757)) 25)) (-3629 (((-553) |#4|) 78)) (-2542 ((|#4| |#4|) 29)) (-4340 (((-630 |#4|) (-630 |#4|) (-553) (-553)) 56)) (-1327 (((-553) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-553) (-553) (-553) (-553)) 89)) (-1452 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2523 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1807 (((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3696 (((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2041 (((-111) |#2| |#2|) 57)) (-3737 (((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2787 (((-111) |#2| |#2| |#2| |#2|) 60)) (-1626 ((|#4| |#4| (-630 |#4|)) 71))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1626 (|#4| |#4| (-630 |#4|))) (-15 -3612 (|#4| |#4| (-630 |#4|))) (-15 -4340 ((-630 |#4|) (-630 |#4|) (-553) (-553))) (-15 -2523 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2041 ((-111) |#2| |#2|)) (-15 -2787 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3737 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3696 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1807 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2281 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-630 |#4|))) (-15 -2542 (|#4| |#4|)) (-15 -1486 ((-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|))) |#4| (-757) (-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|))))) (-15 -2870 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3546 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2831 ((-630 |#4|) (-630 |#4|))) (-15 -3629 ((-553) |#4|)) (-15 -1273 ((-1243) |#4|)) (-15 -4284 ((-553) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-553) (-553) (-553))) (-15 -1327 ((-553) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-553) (-553) (-553) (-553))) (-15 -3624 ((-1243) (-630 |#4|))) (-15 -3439 ((-1243) (-553))) (-15 -1452 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3995 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|)) |#4| (-757))) (-15 -1537 ((-757) |#4|))) (-445) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -442)) -((-1537 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-757)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6)))) (-3995 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-757)) (|:| -4252 *4))) (-5 *5 (-757)) (-4 *4 (-931 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-1452 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-779)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-553)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1243)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1243)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1327 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-757)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-779)) (-4 *4 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-833)) (-5 *1 (-442 *5 *6 *7 *4)))) (-4284 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-757)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-779)) (-4 *4 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-833)) (-5 *1 (-442 *5 *6 *7 *4)))) (-1273 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1243)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6)))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-553)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3546 (*1 *2 *2 *2) (-12 (-5 *2 (-630 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-757)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-779)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-833)) (-5 *1 (-442 *3 *4 *5 *6)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-779)) (-4 *2 (-931 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-445)) (-4 *6 (-833)))) (-1486 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 *3)))) (-5 *4 (-757)) (-4 *3 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-442 *5 *6 *7 *3)))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-931 *3 *4 *5)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-1807 (*1 *2 *3 *2) (-12 (-5 *2 (-630 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-757)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-779)) (-4 *6 (-931 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-833)) (-5 *1 (-442 *4 *3 *5 *6)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-630 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-757)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-779)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-833)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3737 (*1 *2 *3 *2) (-12 (-5 *2 (-630 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-779)) (-4 *3 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-833)) (-5 *1 (-442 *4 *5 *6 *3)))) (-2787 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-931 *4 *3 *5)))) (-2041 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-931 *4 *3 *5)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-779)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-4340 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-553)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3612 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-442 *4 *5 *6 *2)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-442 *4 *5 *6 *2))))) -(-10 -7 (-15 -1626 (|#4| |#4| (-630 |#4|))) (-15 -3612 (|#4| |#4| (-630 |#4|))) (-15 -4340 ((-630 |#4|) (-630 |#4|) (-553) (-553))) (-15 -2523 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2041 ((-111) |#2| |#2|)) (-15 -2787 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3737 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3696 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1807 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2281 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-630 |#4|))) (-15 -2542 (|#4| |#4|)) (-15 -1486 ((-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|))) |#4| (-757) (-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|))))) (-15 -2870 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3546 ((-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-630 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2831 ((-630 |#4|) (-630 |#4|))) (-15 -3629 ((-553) |#4|)) (-15 -1273 ((-1243) |#4|)) (-15 -4284 ((-553) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-553) (-553) (-553))) (-15 -1327 ((-553) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-553) (-553) (-553) (-553))) (-15 -3624 ((-1243) (-630 |#4|))) (-15 -3439 ((-1243) (-553))) (-15 -1452 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3995 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-757)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-757)) (|:| -4252 |#4|)) |#4| (-757))) (-15 -1537 ((-757) |#4|))) -((-3403 ((|#4| |#4| (-630 |#4|)) 22 (|has| |#1| (-357)))) (-1296 (((-630 |#4|) (-630 |#4|) (-1137) (-1137)) 41) (((-630 |#4|) (-630 |#4|) (-1137)) 40) (((-630 |#4|) (-630 |#4|)) 35))) -(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1296 ((-630 |#4|) (-630 |#4|))) (-15 -1296 ((-630 |#4|) (-630 |#4|) (-1137))) (-15 -1296 ((-630 |#4|) (-630 |#4|) (-1137) (-1137))) (IF (|has| |#1| (-357)) (-15 -3403 (|#4| |#4| (-630 |#4|))) |%noBranch|)) (-445) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -443)) -((-3403 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-357)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-443 *4 *5 *6 *2)))) (-1296 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-443 *4 *5 *6 *7)))) (-1296 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-443 *4 *5 *6 *7)))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-443 *3 *4 *5 *6))))) -(-10 -7 (-15 -1296 ((-630 |#4|) (-630 |#4|))) (-15 -1296 ((-630 |#4|) (-630 |#4|) (-1137))) (-15 -1296 ((-630 |#4|) (-630 |#4|) (-1137) (-1137))) (IF (|has| |#1| (-357)) (-15 -3403 (|#4| |#4| (-630 |#4|))) |%noBranch|)) -((-2471 (($ $ $) 14) (($ (-630 $)) 21)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 41)) (-2508 (($ $ $) NIL) (($ (-630 $)) 22))) -(((-444 |#1|) (-10 -8 (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|))) (-15 -2471 (|#1| (-630 |#1|))) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2508 (|#1| (-630 |#1|))) (-15 -2508 (|#1| |#1| |#1|))) (-445)) (T -444)) -NIL -(-10 -8 (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|))) (-15 -2471 (|#1| (-630 |#1|))) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2508 (|#1| (-630 |#1|))) (-15 -2508 (|#1| |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3929 (((-3 $ "failed") $ $) 43)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-445) (-137)) (T -445)) -((-2508 (*1 *1 *1 *1) (-4 *1 (-445))) (-2508 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-445)))) (-2471 (*1 *1 *1 *1) (-4 *1 (-445))) (-2471 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-445)))) (-3237 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-445))))) -(-13 (-545) (-10 -8 (-15 -2508 ($ $ $)) (-15 -2508 ($ (-630 $))) (-15 -2471 ($ $ $)) (-15 -2471 ($ (-630 $))) (-15 -3237 ((-1151 $) (-1151 $) (-1151 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3908 (((-3 $ "failed")) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3836 (((-1238 (-674 (-401 (-934 |#1|)))) (-1238 $)) NIL) (((-1238 (-674 (-401 (-934 |#1|))))) NIL)) (-2110 (((-1238 $)) NIL)) (-3820 (($) NIL T CONST)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL)) (-2836 (((-3 $ "failed")) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-3874 (((-674 (-401 (-934 |#1|))) (-1238 $)) NIL) (((-674 (-401 (-934 |#1|)))) NIL)) (-2124 (((-401 (-934 |#1|)) $) NIL)) (-1791 (((-674 (-401 (-934 |#1|))) $ (-1238 $)) NIL) (((-674 (-401 (-934 |#1|))) $) NIL)) (-1766 (((-3 $ "failed") $) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-3203 (((-1151 (-934 (-401 (-934 |#1|))))) NIL (|has| (-401 (-934 |#1|)) (-357))) (((-1151 (-401 (-934 |#1|)))) 84 (|has| |#1| (-545)))) (-1658 (($ $ (-903)) NIL)) (-2764 (((-401 (-934 |#1|)) $) NIL)) (-3261 (((-1151 (-401 (-934 |#1|))) $) 82 (|has| (-401 (-934 |#1|)) (-545)))) (-3153 (((-401 (-934 |#1|)) (-1238 $)) NIL) (((-401 (-934 |#1|))) NIL)) (-3834 (((-1151 (-401 (-934 |#1|))) $) NIL)) (-2992 (((-111)) NIL)) (-3461 (($ (-1238 (-401 (-934 |#1|))) (-1238 $)) 103) (($ (-1238 (-401 (-934 |#1|)))) NIL)) (-2982 (((-3 $ "failed") $) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-2409 (((-903)) NIL)) (-2758 (((-111)) NIL)) (-3418 (($ $ (-903)) NIL)) (-3307 (((-111)) NIL)) (-4108 (((-111)) NIL)) (-3756 (((-111)) NIL)) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL)) (-2757 (((-3 $ "failed")) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-2593 (((-674 (-401 (-934 |#1|))) (-1238 $)) NIL) (((-674 (-401 (-934 |#1|)))) NIL)) (-2146 (((-401 (-934 |#1|)) $) NIL)) (-4128 (((-674 (-401 (-934 |#1|))) $ (-1238 $)) NIL) (((-674 (-401 (-934 |#1|))) $) NIL)) (-3011 (((-3 $ "failed") $) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-3574 (((-1151 (-934 (-401 (-934 |#1|))))) NIL (|has| (-401 (-934 |#1|)) (-357))) (((-1151 (-401 (-934 |#1|)))) 83 (|has| |#1| (-545)))) (-1341 (($ $ (-903)) NIL)) (-1591 (((-401 (-934 |#1|)) $) NIL)) (-2083 (((-1151 (-401 (-934 |#1|))) $) 77 (|has| (-401 (-934 |#1|)) (-545)))) (-3236 (((-401 (-934 |#1|)) (-1238 $)) NIL) (((-401 (-934 |#1|))) NIL)) (-2555 (((-1151 (-401 (-934 |#1|))) $) NIL)) (-1516 (((-111)) NIL)) (-1735 (((-1137) $) NIL)) (-4139 (((-111)) NIL)) (-2122 (((-111)) NIL)) (-1881 (((-111)) NIL)) (-2786 (((-1099) $) NIL)) (-1619 (((-401 (-934 |#1|)) $ $) 71 (|has| |#1| (-545)))) (-2050 (((-401 (-934 |#1|)) $) 93 (|has| |#1| (-545)))) (-4187 (((-401 (-934 |#1|)) $) 95 (|has| |#1| (-545)))) (-2461 (((-1151 (-401 (-934 |#1|))) $) 88 (|has| |#1| (-545)))) (-4316 (((-401 (-934 |#1|))) 72 (|has| |#1| (-545)))) (-1631 (((-401 (-934 |#1|)) $ $) 64 (|has| |#1| (-545)))) (-3284 (((-401 (-934 |#1|)) $) 92 (|has| |#1| (-545)))) (-1560 (((-401 (-934 |#1|)) $) 94 (|has| |#1| (-545)))) (-3248 (((-1151 (-401 (-934 |#1|))) $) 87 (|has| |#1| (-545)))) (-2790 (((-401 (-934 |#1|))) 68 (|has| |#1| (-545)))) (-2682 (($) 101) (($ (-1155)) 107) (($ (-1238 (-1155))) 106) (($ (-1238 $)) 96) (($ (-1155) (-1238 $)) 105) (($ (-1238 (-1155)) (-1238 $)) 104)) (-4311 (((-111)) NIL)) (-2046 (((-401 (-934 |#1|)) $ (-553)) NIL)) (-2855 (((-1238 (-401 (-934 |#1|))) $ (-1238 $)) 98) (((-674 (-401 (-934 |#1|))) (-1238 $) (-1238 $)) NIL) (((-1238 (-401 (-934 |#1|))) $) 40) (((-674 (-401 (-934 |#1|))) (-1238 $)) NIL)) (-1524 (((-1238 (-401 (-934 |#1|))) $) NIL) (($ (-1238 (-401 (-934 |#1|)))) 37)) (-1836 (((-630 (-934 (-401 (-934 |#1|)))) (-1238 $)) NIL) (((-630 (-934 (-401 (-934 |#1|))))) NIL) (((-630 (-934 |#1|)) (-1238 $)) 99 (|has| |#1| (-545))) (((-630 (-934 |#1|))) 100 (|has| |#1| (-545)))) (-1957 (($ $ $) NIL)) (-1339 (((-111)) NIL)) (-3110 (((-845) $) NIL) (($ (-1238 (-401 (-934 |#1|)))) NIL)) (-4124 (((-1238 $)) 60)) (-1417 (((-630 (-1238 (-401 (-934 |#1|))))) NIL (|has| (-401 (-934 |#1|)) (-545)))) (-2840 (($ $ $ $) NIL)) (-4215 (((-111)) NIL)) (-2549 (($ (-674 (-401 (-934 |#1|))) $) NIL)) (-1634 (($ $ $) NIL)) (-2911 (((-111)) NIL)) (-3949 (((-111)) NIL)) (-2488 (((-111)) NIL)) (-1988 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) 97)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 56) (($ $ (-401 (-934 |#1|))) NIL) (($ (-401 (-934 |#1|)) $) NIL) (($ (-1121 |#2| (-401 (-934 |#1|))) $) NIL))) -(((-446 |#1| |#2| |#3| |#4|) (-13 (-411 (-401 (-934 |#1|))) (-633 (-1121 |#2| (-401 (-934 |#1|)))) (-10 -8 (-15 -3110 ($ (-1238 (-401 (-934 |#1|))))) (-15 -3462 ((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed"))) (-15 -3450 ((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed"))) (-15 -2682 ($)) (-15 -2682 ($ (-1155))) (-15 -2682 ($ (-1238 (-1155)))) (-15 -2682 ($ (-1238 $))) (-15 -2682 ($ (-1155) (-1238 $))) (-15 -2682 ($ (-1238 (-1155)) (-1238 $))) (IF (|has| |#1| (-545)) (PROGN (-15 -3574 ((-1151 (-401 (-934 |#1|))))) (-15 -3248 ((-1151 (-401 (-934 |#1|))) $)) (-15 -3284 ((-401 (-934 |#1|)) $)) (-15 -1560 ((-401 (-934 |#1|)) $)) (-15 -3203 ((-1151 (-401 (-934 |#1|))))) (-15 -2461 ((-1151 (-401 (-934 |#1|))) $)) (-15 -2050 ((-401 (-934 |#1|)) $)) (-15 -4187 ((-401 (-934 |#1|)) $)) (-15 -1631 ((-401 (-934 |#1|)) $ $)) (-15 -2790 ((-401 (-934 |#1|)))) (-15 -1619 ((-401 (-934 |#1|)) $ $)) (-15 -4316 ((-401 (-934 |#1|)))) (-15 -1836 ((-630 (-934 |#1|)) (-1238 $))) (-15 -1836 ((-630 (-934 |#1|))))) |%noBranch|))) (-169) (-903) (-630 (-1155)) (-1238 (-674 |#1|))) (T -446)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1238 (-401 (-934 *3)))) (-4 *3 (-169)) (-14 *6 (-1238 (-674 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))))) (-3462 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -4124 (-630 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-3450 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -4124 (-630 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-2682 (*1 *1) (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-903)) (-14 *4 (-630 (-1155))) (-14 *5 (-1238 (-674 *2))))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 *2)) (-14 *6 (-1238 (-674 *3))))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-1238 (-1155))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-1238 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-903)) (-14 *6 (-630 *2)) (-14 *7 (-1238 (-674 *4))))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1238 (-1155))) (-5 *3 (-1238 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-903)) (-14 *6 (-630 (-1155))) (-14 *7 (-1238 (-674 *4))))) (-3574 (*1 *2) (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-3203 (*1 *2) (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-1631 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-2790 (*1 *2) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-1619 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-4316 (*1 *2) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-1238 (-446 *4 *5 *6 *7))) (-5 *2 (-630 (-934 *4))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *4 (-169)) (-14 *5 (-903)) (-14 *6 (-630 (-1155))) (-14 *7 (-1238 (-674 *4))))) (-1836 (*1 *2) (-12 (-5 *2 (-630 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(-13 (-411 (-401 (-934 |#1|))) (-633 (-1121 |#2| (-401 (-934 |#1|)))) (-10 -8 (-15 -3110 ($ (-1238 (-401 (-934 |#1|))))) (-15 -3462 ((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed"))) (-15 -3450 ((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed"))) (-15 -2682 ($)) (-15 -2682 ($ (-1155))) (-15 -2682 ($ (-1238 (-1155)))) (-15 -2682 ($ (-1238 $))) (-15 -2682 ($ (-1155) (-1238 $))) (-15 -2682 ($ (-1238 (-1155)) (-1238 $))) (IF (|has| |#1| (-545)) (PROGN (-15 -3574 ((-1151 (-401 (-934 |#1|))))) (-15 -3248 ((-1151 (-401 (-934 |#1|))) $)) (-15 -3284 ((-401 (-934 |#1|)) $)) (-15 -1560 ((-401 (-934 |#1|)) $)) (-15 -3203 ((-1151 (-401 (-934 |#1|))))) (-15 -2461 ((-1151 (-401 (-934 |#1|))) $)) (-15 -2050 ((-401 (-934 |#1|)) $)) (-15 -4187 ((-401 (-934 |#1|)) $)) (-15 -1631 ((-401 (-934 |#1|)) $ $)) (-15 -2790 ((-401 (-934 |#1|)))) (-15 -1619 ((-401 (-934 |#1|)) $ $)) (-15 -4316 ((-401 (-934 |#1|)))) (-15 -1836 ((-630 (-934 |#1|)) (-1238 $))) (-15 -1836 ((-630 (-934 |#1|))))) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 13)) (-3506 (((-630 (-847 |#1|)) $) 75)) (-3322 (((-1151 $) $ (-847 |#1|)) 46) (((-1151 |#2|) $) 118)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-1968 (($ $) NIL (|has| |#2| (-545)))) (-2028 (((-111) $) NIL (|has| |#2| (-545)))) (-2085 (((-757) $) 21) (((-757) $ (-630 (-847 |#1|))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1536 (($ $) NIL (|has| |#2| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#2| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) 44) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-847 |#1|) "failed") $) NIL)) (-2707 ((|#2| $) 42) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-847 |#1|) $) NIL)) (-2134 (($ $ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-3683 (($ $ (-630 (-553))) 80)) (-3678 (($ $) 68)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#2| (-891)))) (-2686 (($ $ |#2| |#3| $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) 58)) (-3493 (($ (-1151 |#2|) (-847 |#1|)) 123) (($ (-1151 $) (-847 |#1|)) 52)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) 59)) (-3481 (($ |#2| |#3|) 28) (($ $ (-847 |#1|) (-757)) 30) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-847 |#1|)) NIL)) (-2423 ((|#3| $) NIL) (((-757) $ (-847 |#1|)) 50) (((-630 (-757)) $ (-630 (-847 |#1|))) 57)) (-1824 (($ $ $) NIL (|has| |#2| (-833)))) (-1975 (($ $ $) NIL (|has| |#2| (-833)))) (-2241 (($ (-1 |#3| |#3|) $) NIL)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1332 (((-3 (-847 |#1|) "failed") $) 39)) (-3644 (($ $) NIL)) (-3655 ((|#2| $) 41)) (-2471 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-847 |#1|)) (|:| -2692 (-757))) "failed") $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) 40)) (-3633 ((|#2| $) 116)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#2| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) 128 (|has| |#2| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#2| (-891)))) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-847 |#1|) |#2|) 87) (($ $ (-630 (-847 |#1|)) (-630 |#2|)) 90) (($ $ (-847 |#1|) $) 85) (($ $ (-630 (-847 |#1|)) (-630 $)) 106)) (-3000 (($ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-1330 (($ $ (-847 |#1|)) 53) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3872 ((|#3| $) 67) (((-757) $ (-847 |#1|)) 37) (((-630 (-757)) $ (-630 (-847 |#1|))) 56)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-847 |#1|) (-601 (-529))) (|has| |#2| (-601 (-529)))))) (-4198 ((|#2| $) 125 (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891))))) (-3110 (((-845) $) 145) (($ (-553)) NIL) (($ |#2|) 86) (($ (-847 |#1|)) 31) (($ (-401 (-553))) NIL (-3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#2| (-545)))) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ |#3|) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#2| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#2| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#2| (-545)))) (-1988 (($) 17 T CONST)) (-1997 (($) 25 T CONST)) (-1780 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1723 (($ $ |#2|) 64 (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 111)) (** (($ $ (-903)) NIL) (($ $ (-757)) 109)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 29) (($ $ (-401 (-553))) NIL (|has| |#2| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#2| (-38 (-401 (-553))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-447 |#1| |#2| |#3|) (-13 (-931 |#2| |#3| (-847 |#1|)) (-10 -8 (-15 -3683 ($ $ (-630 (-553)))))) (-630 (-1155)) (-1031) (-233 (-2563 |#1|) (-757))) (T -447)) -((-3683 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-14 *3 (-630 (-1155))) (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1031)) (-4 *5 (-233 (-2563 *3) (-757)))))) -(-13 (-931 |#2| |#3| (-847 |#1|)) (-10 -8 (-15 -3683 ($ $ (-630 (-553)))))) -((-3116 (((-111) |#1| (-630 |#2|)) 69)) (-3308 (((-3 (-1238 (-630 |#2|)) "failed") (-757) |#1| (-630 |#2|)) 78)) (-3491 (((-3 (-630 |#2|) "failed") |#2| |#1| (-1238 (-630 |#2|))) 80)) (-3668 ((|#2| |#2| |#1|) 28)) (-3921 (((-757) |#2| (-630 |#2|)) 20))) -(((-448 |#1| |#2|) (-10 -7 (-15 -3668 (|#2| |#2| |#1|)) (-15 -3921 ((-757) |#2| (-630 |#2|))) (-15 -3308 ((-3 (-1238 (-630 |#2|)) "failed") (-757) |#1| (-630 |#2|))) (-15 -3491 ((-3 (-630 |#2|) "failed") |#2| |#1| (-1238 (-630 |#2|)))) (-15 -3116 ((-111) |#1| (-630 |#2|)))) (-301) (-1214 |#1|)) (T -448)) -((-3116 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *5)) (-4 *5 (-1214 *3)) (-4 *3 (-301)) (-5 *2 (-111)) (-5 *1 (-448 *3 *5)))) (-3491 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1238 (-630 *3))) (-4 *4 (-301)) (-5 *2 (-630 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1214 *4)))) (-3308 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-757)) (-4 *4 (-301)) (-4 *6 (-1214 *4)) (-5 *2 (-1238 (-630 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-630 *6)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-301)) (-5 *2 (-757)) (-5 *1 (-448 *5 *3)))) (-3668 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1214 *3))))) -(-10 -7 (-15 -3668 (|#2| |#2| |#1|)) (-15 -3921 ((-757) |#2| (-630 |#2|))) (-15 -3308 ((-3 (-1238 (-630 |#2|)) "failed") (-757) |#1| (-630 |#2|))) (-15 -3491 ((-3 (-630 |#2|) "failed") |#2| |#1| (-1238 (-630 |#2|)))) (-15 -3116 ((-111) |#1| (-630 |#2|)))) -((-3355 (((-412 |#5|) |#5|) 24))) -(((-449 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3355 ((-412 |#5|) |#5|))) (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155))))) (-779) (-545) (-545) (-931 |#4| |#2| |#1|)) (T -449)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-4 *5 (-779)) (-4 *7 (-545)) (-5 *2 (-412 *3)) (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-545)) (-4 *3 (-931 *7 *5 *4))))) -(-10 -7 (-15 -3355 ((-412 |#5|) |#5|))) -((-2584 ((|#3|) 37)) (-3237 (((-1151 |#4|) (-1151 |#4|) (-1151 |#4|)) 33))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3237 ((-1151 |#4|) (-1151 |#4|) (-1151 |#4|))) (-15 -2584 (|#3|))) (-779) (-833) (-891) (-931 |#3| |#1| |#2|)) (T -450)) -((-2584 (*1 *2) (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-891)) (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-931 *2 *3 *4)))) (-3237 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 *6)) (-4 *6 (-931 *5 *3 *4)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-891)) (-5 *1 (-450 *3 *4 *5 *6))))) -(-10 -7 (-15 -3237 ((-1151 |#4|) (-1151 |#4|) (-1151 |#4|))) (-15 -2584 (|#3|))) -((-3355 (((-412 (-1151 |#1|)) (-1151 |#1|)) 43))) -(((-451 |#1|) (-10 -7 (-15 -3355 ((-412 (-1151 |#1|)) (-1151 |#1|)))) (-301)) (T -451)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1151 *4))) (-5 *1 (-451 *4)) (-5 *3 (-1151 *4))))) -(-10 -7 (-15 -3355 ((-412 (-1151 |#1|)) (-1151 |#1|)))) -((-3562 (((-52) |#2| (-1155) (-288 |#2|) (-1205 (-757))) 42) (((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-757))) 41) (((-52) |#2| (-1155) (-288 |#2|)) 35) (((-52) (-1 |#2| (-553)) (-288 |#2|)) 28)) (-1779 (((-52) |#2| (-1155) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553))) 80) (((-52) (-1 |#2| (-401 (-553))) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553))) 79) (((-52) |#2| (-1155) (-288 |#2|) (-1205 (-553))) 78) (((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-553))) 77) (((-52) |#2| (-1155) (-288 |#2|)) 72) (((-52) (-1 |#2| (-553)) (-288 |#2|)) 71)) (-3587 (((-52) |#2| (-1155) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553))) 66) (((-52) (-1 |#2| (-401 (-553))) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553))) 64)) (-3575 (((-52) |#2| (-1155) (-288 |#2|) (-1205 (-553))) 48) (((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-553))) 47))) -(((-452 |#1| |#2|) (-10 -7 (-15 -3562 ((-52) (-1 |#2| (-553)) (-288 |#2|))) (-15 -3562 ((-52) |#2| (-1155) (-288 |#2|))) (-15 -3562 ((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-757)))) (-15 -3562 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-757)))) (-15 -3575 ((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-553)))) (-15 -3575 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-553)))) (-15 -3587 ((-52) (-1 |#2| (-401 (-553))) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553)))) (-15 -3587 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553)))) (-15 -1779 ((-52) (-1 |#2| (-553)) (-288 |#2|))) (-15 -1779 ((-52) |#2| (-1155) (-288 |#2|))) (-15 -1779 ((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-553)))) (-15 -1779 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-553)))) (-15 -1779 ((-52) (-1 |#2| (-401 (-553))) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553)))) (-15 -1779 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553))))) (-13 (-545) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -452)) -((-1779 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-401 (-553)))) (-5 *7 (-401 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *8))) (-4 *8 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-1779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-553)))) (-5 *4 (-288 *8)) (-5 *5 (-1205 (-401 (-553)))) (-5 *6 (-401 (-553))) (-4 *8 (-13 (-27) (-1177) (-424 *7))) (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-1779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *7))) (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-553))) (-5 *4 (-288 *7)) (-5 *5 (-1205 (-553))) (-4 *7 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-553))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) (-3587 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-401 (-553)))) (-5 *7 (-401 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *8))) (-4 *8 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-3587 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-553)))) (-5 *4 (-288 *8)) (-5 *5 (-1205 (-401 (-553)))) (-5 *6 (-401 (-553))) (-4 *8 (-13 (-27) (-1177) (-424 *7))) (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-3575 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *7))) (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-3575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-553))) (-5 *4 (-288 *7)) (-5 *5 (-1205 (-553))) (-4 *7 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-3562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-757))) (-4 *3 (-13 (-27) (-1177) (-424 *7))) (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-553))) (-5 *4 (-288 *7)) (-5 *5 (-1205 (-757))) (-4 *7 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-553))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6))))) -(-10 -7 (-15 -3562 ((-52) (-1 |#2| (-553)) (-288 |#2|))) (-15 -3562 ((-52) |#2| (-1155) (-288 |#2|))) (-15 -3562 ((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-757)))) (-15 -3562 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-757)))) (-15 -3575 ((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-553)))) (-15 -3575 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-553)))) (-15 -3587 ((-52) (-1 |#2| (-401 (-553))) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553)))) (-15 -3587 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553)))) (-15 -1779 ((-52) (-1 |#2| (-553)) (-288 |#2|))) (-15 -1779 ((-52) |#2| (-1155) (-288 |#2|))) (-15 -1779 ((-52) (-1 |#2| (-553)) (-288 |#2|) (-1205 (-553)))) (-15 -1779 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-553)))) (-15 -1779 ((-52) (-1 |#2| (-401 (-553))) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553)))) (-15 -1779 ((-52) |#2| (-1155) (-288 |#2|) (-1205 (-401 (-553))) (-401 (-553))))) -((-3668 ((|#2| |#2| |#1|) 15)) (-3830 (((-630 |#2|) |#2| (-630 |#2|) |#1| (-903)) 69)) (-2795 (((-2 (|:| |plist| (-630 |#2|)) (|:| |modulo| |#1|)) |#2| (-630 |#2|) |#1| (-903)) 60))) -(((-453 |#1| |#2|) (-10 -7 (-15 -2795 ((-2 (|:| |plist| (-630 |#2|)) (|:| |modulo| |#1|)) |#2| (-630 |#2|) |#1| (-903))) (-15 -3830 ((-630 |#2|) |#2| (-630 |#2|) |#1| (-903))) (-15 -3668 (|#2| |#2| |#1|))) (-301) (-1214 |#1|)) (T -453)) -((-3668 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1214 *3)))) (-3830 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-630 *3)) (-5 *5 (-903)) (-4 *3 (-1214 *4)) (-4 *4 (-301)) (-5 *1 (-453 *4 *3)))) (-2795 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-903)) (-4 *5 (-301)) (-4 *3 (-1214 *5)) (-5 *2 (-2 (|:| |plist| (-630 *3)) (|:| |modulo| *5))) (-5 *1 (-453 *5 *3)) (-5 *4 (-630 *3))))) -(-10 -7 (-15 -2795 ((-2 (|:| |plist| (-630 |#2|)) (|:| |modulo| |#1|)) |#2| (-630 |#2|) |#1| (-903))) (-15 -3830 ((-630 |#2|) |#2| (-630 |#2|) |#1| (-903))) (-15 -3668 (|#2| |#2| |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 28)) (-1561 (($ |#3|) 25)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-3678 (($ $) 32)) (-4306 (($ |#2| |#4| $) 33)) (-3481 (($ |#2| (-699 |#3| |#4| |#5|)) 24)) (-3644 (((-699 |#3| |#4| |#5|) $) 15)) (-3532 ((|#3| $) 19)) (-2996 ((|#4| $) 17)) (-3655 ((|#2| $) 29)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-4230 (($ |#2| |#3| |#4|) 26)) (-1988 (($) 36 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 34)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-454 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-703 |#6|) (-703 |#2|) (-10 -8 (-15 -3655 (|#2| $)) (-15 -3644 ((-699 |#3| |#4| |#5|) $)) (-15 -2996 (|#4| $)) (-15 -3532 (|#3| $)) (-15 -3678 ($ $)) (-15 -3481 ($ |#2| (-699 |#3| |#4| |#5|))) (-15 -1561 ($ |#3|)) (-15 -4230 ($ |#2| |#3| |#4|)) (-15 -4306 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-630 (-1155)) (-169) (-833) (-233 (-2563 |#1|) (-757)) (-1 (-111) (-2 (|:| -2735 |#3|) (|:| -2692 |#4|)) (-2 (|:| -2735 |#3|) (|:| -2692 |#4|))) (-931 |#2| |#4| (-847 |#1|))) (T -454)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) (-4 *6 (-233 (-2563 *3) (-757))) (-14 *7 (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *6)) (-2 (|:| -2735 *5) (|:| -2692 *6)))) (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-833)) (-4 *2 (-931 *4 *6 (-847 *3))))) (-3655 (*1 *2 *1) (-12 (-14 *3 (-630 (-1155))) (-4 *5 (-233 (-2563 *3) (-757))) (-14 *6 (-1 (-111) (-2 (|:| -2735 *4) (|:| -2692 *5)) (-2 (|:| -2735 *4) (|:| -2692 *5)))) (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-833)) (-4 *7 (-931 *2 *5 (-847 *3))))) (-3644 (*1 *2 *1) (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) (-4 *6 (-233 (-2563 *3) (-757))) (-14 *7 (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *6)) (-2 (|:| -2735 *5) (|:| -2692 *6)))) (-5 *2 (-699 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) (-4 *5 (-833)) (-4 *8 (-931 *4 *6 (-847 *3))))) (-2996 (*1 *2 *1) (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) (-14 *6 (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *2)) (-2 (|:| -2735 *5) (|:| -2692 *2)))) (-4 *2 (-233 (-2563 *3) (-757))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) (-4 *5 (-833)) (-4 *7 (-931 *4 *2 (-847 *3))))) (-3532 (*1 *2 *1) (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) (-4 *5 (-233 (-2563 *3) (-757))) (-14 *6 (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *5)) (-2 (|:| -2735 *2) (|:| -2692 *5)))) (-4 *2 (-833)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *7 (-931 *4 *5 (-847 *3))))) (-3678 (*1 *1 *1) (-12 (-14 *2 (-630 (-1155))) (-4 *3 (-169)) (-4 *5 (-233 (-2563 *2) (-757))) (-14 *6 (-1 (-111) (-2 (|:| -2735 *4) (|:| -2692 *5)) (-2 (|:| -2735 *4) (|:| -2692 *5)))) (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-833)) (-4 *7 (-931 *3 *5 (-847 *2))))) (-3481 (*1 *1 *2 *3) (-12 (-5 *3 (-699 *5 *6 *7)) (-4 *5 (-833)) (-4 *6 (-233 (-2563 *4) (-757))) (-14 *7 (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *6)) (-2 (|:| -2735 *5) (|:| -2692 *6)))) (-14 *4 (-630 (-1155))) (-4 *2 (-169)) (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-931 *2 *6 (-847 *4))))) (-1561 (*1 *1 *2) (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) (-4 *5 (-233 (-2563 *3) (-757))) (-14 *6 (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *5)) (-2 (|:| -2735 *2) (|:| -2692 *5)))) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-833)) (-4 *7 (-931 *4 *5 (-847 *3))))) (-4230 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-630 (-1155))) (-4 *2 (-169)) (-4 *4 (-233 (-2563 *5) (-757))) (-14 *6 (-1 (-111) (-2 (|:| -2735 *3) (|:| -2692 *4)) (-2 (|:| -2735 *3) (|:| -2692 *4)))) (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-833)) (-4 *7 (-931 *2 *4 (-847 *5))))) (-4306 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-630 (-1155))) (-4 *2 (-169)) (-4 *3 (-233 (-2563 *4) (-757))) (-14 *6 (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *3)) (-2 (|:| -2735 *5) (|:| -2692 *3)))) (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-833)) (-4 *7 (-931 *2 *3 (-847 *4)))))) -(-13 (-703 |#6|) (-703 |#2|) (-10 -8 (-15 -3655 (|#2| $)) (-15 -3644 ((-699 |#3| |#4| |#5|) $)) (-15 -2996 (|#4| $)) (-15 -3532 (|#3| $)) (-15 -3678 ($ $)) (-15 -3481 ($ |#2| (-699 |#3| |#4| |#5|))) (-15 -1561 ($ |#3|)) (-15 -4230 ($ |#2| |#3| |#4|)) (-15 -4306 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2104 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-455 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2104 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-779) (-833) (-545) (-931 |#3| |#1| |#2|) (-13 (-1020 (-401 (-553))) (-357) (-10 -8 (-15 -3110 ($ |#4|)) (-15 -3963 (|#4| $)) (-15 -3974 (|#4| $))))) (T -455)) -((-2104 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-833)) (-4 *5 (-779)) (-4 *6 (-545)) (-4 *7 (-931 *6 *5 *3)) (-5 *1 (-455 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1020 (-401 (-553))) (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $)))))))) -(-10 -7 (-15 -2104 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3506 (((-630 |#3|) $) 41)) (-1742 (((-111) $) NIL)) (-3538 (((-111) $) NIL (|has| |#1| (-545)))) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3905 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2623 (((-111) $) NIL (|has| |#1| (-545)))) (-2032 (((-111) $ $) NIL (|has| |#1| (-545)))) (-3559 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1921 (((-111) $) NIL (|has| |#1| (-545)))) (-4063 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 47)) (-2707 (($ (-630 |#4|)) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2575 (($ |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4369)))) (-1408 (((-630 |#4|) $) 18 (|has| $ (-6 -4369)))) (-1470 ((|#3| $) 45)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#4|) $) 14 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2503 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 21)) (-3935 (((-630 |#3|) $) NIL)) (-2351 (((-111) |#3| $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-2786 (((-1099) $) NIL)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3341 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 39)) (-3222 (($) 17)) (-2796 (((-757) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (((-757) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) 16)) (-1524 (((-529) $) NIL (|has| |#4| (-601 (-529)))) (($ (-630 |#4|)) 49)) (-3121 (($ (-630 |#4|)) 13)) (-2867 (($ $ |#3|) NIL)) (-3721 (($ $ |#3|) NIL)) (-1665 (($ $ |#3|) NIL)) (-3110 (((-845) $) 38) (((-630 |#4|) $) 48)) (-3296 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 30)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-456 |#1| |#2| |#3| |#4|) (-13 (-958 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1524 ($ (-630 |#4|))) (-6 -4369) (-6 -4370))) (-1031) (-779) (-833) (-1045 |#1| |#2| |#3|)) (T -456)) -((-1524 (*1 *1 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-456 *3 *4 *5 *6))))) -(-13 (-958 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1524 ($ (-630 |#4|))) (-6 -4369) (-6 -4370))) -((-1988 (($) 11)) (-1997 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-457 |#1| |#2| |#3|) (-10 -8 (-15 -1997 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1988 (|#1|))) (-458 |#2| |#3|) (-169) (-23)) (T -457)) -NIL -(-10 -8 (-15 -1997 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1988 (|#1|))) -((-3096 (((-111) $ $) 7)) (-1399 (((-3 |#1| "failed") $) 26)) (-2707 ((|#1| $) 27)) (-3087 (($ $ $) 23)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3872 ((|#2| $) 19)) (-3110 (((-845) $) 11) (($ |#1|) 25)) (-1988 (($) 18 T CONST)) (-1997 (($) 24 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 15) (($ $ $) 13)) (-1700 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-458 |#1| |#2|) (-137) (-169) (-23)) (T -458)) -((-1997 (*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-3087 (*1 *1 *1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) -(-13 (-463 |t#1| |t#2|) (-1020 |t#1|) (-10 -8 (-15 (-1997) ($) -3879) (-15 -3087 ($ $ $)))) -(((-101) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-463 |#1| |#2|) . T) ((-1020 |#1|) . T) ((-1079) . T)) -((-3745 (((-1238 (-1238 (-553))) (-1238 (-1238 (-553))) (-903)) 18)) (-2547 (((-1238 (-1238 (-553))) (-903)) 16))) -(((-459) (-10 -7 (-15 -3745 ((-1238 (-1238 (-553))) (-1238 (-1238 (-553))) (-903))) (-15 -2547 ((-1238 (-1238 (-553))) (-903))))) (T -459)) -((-2547 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1238 (-1238 (-553)))) (-5 *1 (-459)))) (-3745 (*1 *2 *2 *3) (-12 (-5 *2 (-1238 (-1238 (-553)))) (-5 *3 (-903)) (-5 *1 (-459))))) -(-10 -7 (-15 -3745 ((-1238 (-1238 (-553))) (-1238 (-1238 (-553))) (-903))) (-15 -2547 ((-1238 (-1238 (-553))) (-903)))) -((-1783 (((-553) (-553)) 30) (((-553)) 22)) (-1578 (((-553) (-553)) 26) (((-553)) 18)) (-3526 (((-553) (-553)) 28) (((-553)) 20)) (-3813 (((-111) (-111)) 12) (((-111)) 10)) (-2501 (((-111) (-111)) 11) (((-111)) 9)) (-4314 (((-111) (-111)) 24) (((-111)) 15))) -(((-460) (-10 -7 (-15 -2501 ((-111))) (-15 -3813 ((-111))) (-15 -2501 ((-111) (-111))) (-15 -3813 ((-111) (-111))) (-15 -4314 ((-111))) (-15 -3526 ((-553))) (-15 -1578 ((-553))) (-15 -1783 ((-553))) (-15 -4314 ((-111) (-111))) (-15 -3526 ((-553) (-553))) (-15 -1578 ((-553) (-553))) (-15 -1783 ((-553) (-553))))) (T -460)) -((-1783 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) (-3526 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-1783 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) (-1578 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) (-3526 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) (-4314 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3813 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2501 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) -(-10 -7 (-15 -2501 ((-111))) (-15 -3813 ((-111))) (-15 -2501 ((-111) (-111))) (-15 -3813 ((-111) (-111))) (-15 -4314 ((-111))) (-15 -3526 ((-553))) (-15 -1578 ((-553))) (-15 -1783 ((-553))) (-15 -4314 ((-111) (-111))) (-15 -3526 ((-553) (-553))) (-15 -1578 ((-553) (-553))) (-15 -1783 ((-553) (-553)))) -((-3096 (((-111) $ $) NIL)) (-2064 (((-630 (-373)) $) 28) (((-630 (-373)) $ (-630 (-373))) 95)) (-2319 (((-630 (-1073 (-373))) $) 16) (((-630 (-1073 (-373))) $ (-630 (-1073 (-373)))) 92)) (-4031 (((-630 (-630 (-925 (-220)))) (-630 (-630 (-925 (-220)))) (-630 (-856))) 44)) (-3272 (((-630 (-630 (-925 (-220)))) $) 88)) (-1743 (((-1243) $ (-925 (-220)) (-856)) 107)) (-2566 (($ $) 87) (($ (-630 (-630 (-925 (-220))))) 98) (($ (-630 (-630 (-925 (-220)))) (-630 (-856)) (-630 (-856)) (-630 (-903))) 97) (($ (-630 (-630 (-925 (-220)))) (-630 (-856)) (-630 (-856)) (-630 (-903)) (-630 (-257))) 99)) (-1735 (((-1137) $) NIL)) (-2578 (((-553) $) 69)) (-2786 (((-1099) $) NIL)) (-4318 (($) 96)) (-1986 (((-630 (-220)) (-630 (-630 (-925 (-220))))) 54)) (-2817 (((-1243) $ (-630 (-925 (-220))) (-856) (-856) (-903)) 101) (((-1243) $ (-925 (-220))) 103) (((-1243) $ (-925 (-220)) (-856) (-856) (-903)) 102)) (-3110 (((-845) $) 113) (($ (-630 (-630 (-925 (-220))))) 108)) (-1439 (((-1243) $ (-925 (-220))) 106)) (-1617 (((-111) $ $) NIL))) -(((-461) (-13 (-1079) (-10 -8 (-15 -4318 ($)) (-15 -2566 ($ $)) (-15 -2566 ($ (-630 (-630 (-925 (-220)))))) (-15 -2566 ($ (-630 (-630 (-925 (-220)))) (-630 (-856)) (-630 (-856)) (-630 (-903)))) (-15 -2566 ($ (-630 (-630 (-925 (-220)))) (-630 (-856)) (-630 (-856)) (-630 (-903)) (-630 (-257)))) (-15 -3272 ((-630 (-630 (-925 (-220)))) $)) (-15 -2578 ((-553) $)) (-15 -2319 ((-630 (-1073 (-373))) $)) (-15 -2319 ((-630 (-1073 (-373))) $ (-630 (-1073 (-373))))) (-15 -2064 ((-630 (-373)) $)) (-15 -2064 ((-630 (-373)) $ (-630 (-373)))) (-15 -2817 ((-1243) $ (-630 (-925 (-220))) (-856) (-856) (-903))) (-15 -2817 ((-1243) $ (-925 (-220)))) (-15 -2817 ((-1243) $ (-925 (-220)) (-856) (-856) (-903))) (-15 -1439 ((-1243) $ (-925 (-220)))) (-15 -1743 ((-1243) $ (-925 (-220)) (-856))) (-15 -3110 ($ (-630 (-630 (-925 (-220)))))) (-15 -3110 ((-845) $)) (-15 -4031 ((-630 (-630 (-925 (-220)))) (-630 (-630 (-925 (-220)))) (-630 (-856)))) (-15 -1986 ((-630 (-220)) (-630 (-630 (-925 (-220))))))))) (T -461)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-461)))) (-4318 (*1 *1) (-5 *1 (-461))) (-2566 (*1 *1 *1) (-5 *1 (-461))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-461)))) (-2566 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *3 (-630 (-856))) (-5 *4 (-630 (-903))) (-5 *1 (-461)))) (-2566 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *3 (-630 (-856))) (-5 *4 (-630 (-903))) (-5 *5 (-630 (-257))) (-5 *1 (-461)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-461)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-461)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-461)))) (-2319 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-461)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-630 (-373))) (-5 *1 (-461)))) (-2064 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-373))) (-5 *1 (-461)))) (-2817 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-630 (-925 (-220)))) (-5 *4 (-856)) (-5 *5 (-903)) (-5 *2 (-1243)) (-5 *1 (-461)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-925 (-220))) (-5 *2 (-1243)) (-5 *1 (-461)))) (-2817 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-925 (-220))) (-5 *4 (-856)) (-5 *5 (-903)) (-5 *2 (-1243)) (-5 *1 (-461)))) (-1439 (*1 *2 *1 *3) (-12 (-5 *3 (-925 (-220))) (-5 *2 (-1243)) (-5 *1 (-461)))) (-1743 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-925 (-220))) (-5 *4 (-856)) (-5 *2 (-1243)) (-5 *1 (-461)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-461)))) (-4031 (*1 *2 *2 *3) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *3 (-630 (-856))) (-5 *1 (-461)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *2 (-630 (-220))) (-5 *1 (-461))))) -(-13 (-1079) (-10 -8 (-15 -4318 ($)) (-15 -2566 ($ $)) (-15 -2566 ($ (-630 (-630 (-925 (-220)))))) (-15 -2566 ($ (-630 (-630 (-925 (-220)))) (-630 (-856)) (-630 (-856)) (-630 (-903)))) (-15 -2566 ($ (-630 (-630 (-925 (-220)))) (-630 (-856)) (-630 (-856)) (-630 (-903)) (-630 (-257)))) (-15 -3272 ((-630 (-630 (-925 (-220)))) $)) (-15 -2578 ((-553) $)) (-15 -2319 ((-630 (-1073 (-373))) $)) (-15 -2319 ((-630 (-1073 (-373))) $ (-630 (-1073 (-373))))) (-15 -2064 ((-630 (-373)) $)) (-15 -2064 ((-630 (-373)) $ (-630 (-373)))) (-15 -2817 ((-1243) $ (-630 (-925 (-220))) (-856) (-856) (-903))) (-15 -2817 ((-1243) $ (-925 (-220)))) (-15 -2817 ((-1243) $ (-925 (-220)) (-856) (-856) (-903))) (-15 -1439 ((-1243) $ (-925 (-220)))) (-15 -1743 ((-1243) $ (-925 (-220)) (-856))) (-15 -3110 ($ (-630 (-630 (-925 (-220)))))) (-15 -3110 ((-845) $)) (-15 -4031 ((-630 (-630 (-925 (-220)))) (-630 (-630 (-925 (-220)))) (-630 (-856)))) (-15 -1986 ((-630 (-220)) (-630 (-630 (-925 (-220)))))))) -((-1711 (($ $) NIL) (($ $ $) 11))) -(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|))) (-463 |#2| |#3|) (-169) (-23)) (T -462)) -NIL -(-10 -8 (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3872 ((|#2| $) 19)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 15) (($ $ $) 13)) (-1700 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-463 |#1| |#2|) (-137) (-169) (-23)) (T -463)) -((-3872 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-1988 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-1711 (*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) -(-13 (-1079) (-10 -8 (-15 -3872 (|t#2| $)) (-15 (-1988) ($) -3879) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1711 ($ $)) (-15 -1700 ($ $ $)) (-15 -1711 ($ $ $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-2956 (((-3 (-630 (-474 |#1| |#2|)) "failed") (-630 (-474 |#1| |#2|)) (-630 (-847 |#1|))) 92)) (-3054 (((-630 (-630 (-242 |#1| |#2|))) (-630 (-242 |#1| |#2|)) (-630 (-847 |#1|))) 90)) (-2229 (((-2 (|:| |dpolys| (-630 (-242 |#1| |#2|))) (|:| |coords| (-630 (-553)))) (-630 (-242 |#1| |#2|)) (-630 (-847 |#1|))) 61))) -(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -3054 ((-630 (-630 (-242 |#1| |#2|))) (-630 (-242 |#1| |#2|)) (-630 (-847 |#1|)))) (-15 -2956 ((-3 (-630 (-474 |#1| |#2|)) "failed") (-630 (-474 |#1| |#2|)) (-630 (-847 |#1|)))) (-15 -2229 ((-2 (|:| |dpolys| (-630 (-242 |#1| |#2|))) (|:| |coords| (-630 (-553)))) (-630 (-242 |#1| |#2|)) (-630 (-847 |#1|))))) (-630 (-1155)) (-445) (-445)) (T -464)) -((-2229 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-847 *5))) (-14 *5 (-630 (-1155))) (-4 *6 (-445)) (-5 *2 (-2 (|:| |dpolys| (-630 (-242 *5 *6))) (|:| |coords| (-630 (-553))))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-630 (-242 *5 *6))) (-4 *7 (-445)))) (-2956 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-474 *4 *5))) (-5 *3 (-630 (-847 *4))) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) (-4 *6 (-445)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-847 *5))) (-14 *5 (-630 (-1155))) (-4 *6 (-445)) (-5 *2 (-630 (-630 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-630 (-242 *5 *6))) (-4 *7 (-445))))) -(-10 -7 (-15 -3054 ((-630 (-630 (-242 |#1| |#2|))) (-630 (-242 |#1| |#2|)) (-630 (-847 |#1|)))) (-15 -2956 ((-3 (-630 (-474 |#1| |#2|)) "failed") (-630 (-474 |#1| |#2|)) (-630 (-847 |#1|)))) (-15 -2229 ((-2 (|:| |dpolys| (-630 (-242 |#1| |#2|))) (|:| |coords| (-630 (-553)))) (-630 (-242 |#1| |#2|)) (-630 (-847 |#1|))))) -((-2982 (((-3 $ "failed") $) 11)) (-3199 (($ $ $) 18)) (-1957 (($ $ $) 19)) (-1723 (($ $ $) 9)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 17))) -(((-465 |#1|) (-10 -8 (-15 -1957 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 -1723 (|#1| |#1| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903)))) (-466)) (T -465)) -NIL -(-10 -8 (-15 -1957 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 -1723 (|#1| |#1| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-3820 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 15)) (-1848 (((-111) $) 17)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 24)) (-2786 (((-1099) $) 10)) (-3199 (($ $ $) 21)) (-1957 (($ $ $) 20)) (-3110 (((-845) $) 11)) (-1997 (($) 19 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 23)) (** (($ $ (-903)) 13) (($ $ (-757)) 16) (($ $ (-553)) 22)) (* (($ $ $) 14))) -(((-466) (-137)) (T -466)) -((-3610 (*1 *1 *1) (-4 *1 (-466))) (-1723 (*1 *1 *1 *1) (-4 *1 (-466))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-553)))) (-3199 (*1 *1 *1 *1) (-4 *1 (-466))) (-1957 (*1 *1 *1 *1) (-4 *1 (-466)))) -(-13 (-712) (-10 -8 (-15 -3610 ($ $)) (-15 -1723 ($ $ $)) (-15 ** ($ $ (-553))) (-6 -4366) (-15 -3199 ($ $ $)) (-15 -1957 ($ $ $)))) -(((-101) . T) ((-600 (-845)) . T) ((-712) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 17)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) NIL) (($ $ (-401 (-553)) (-401 (-553))) NIL)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) NIL)) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) NIL) (((-401 (-553)) $ (-401 (-553))) NIL)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) NIL) (($ $ (-401 (-553))) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-401 (-553))) NIL) (($ $ (-1061) (-401 (-553))) NIL) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) 22)) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-3406 (($ $) 26 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 33 (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 27 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) NIL)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) NIL) (($ $ $) NIL (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) 25 (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $ (-1234 |#2|)) 15)) (-3872 (((-401 (-553)) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1234 |#2|)) NIL) (($ (-1223 |#1| |#2| |#3|)) 9) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 18)) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) 24)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-467 |#1| |#2| |#3|) (-13 (-1219 |#1|) (-10 -8 (-15 -3110 ($ (-1234 |#2|))) (-15 -3110 ($ (-1223 |#1| |#2| |#3|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -467)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1223 *3 *4 *5)) (-4 *3 (-1031)) (-14 *4 (-1155)) (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1219 |#1|) (-10 -8 (-15 -3110 ($ (-1234 |#2|))) (-15 -3110 ($ (-1223 |#1| |#2| |#3|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#2| $ |#1| |#2|) 18)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) 19)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) 16)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3729 (((-630 |#1|) $) NIL)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1901 (((-630 |#1|) $) NIL)) (-3594 (((-111) |#1| $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-468 |#1| |#2| |#3| |#4|) (-1168 |#1| |#2|) (-1079) (-1079) (-1168 |#1| |#2|) |#2|) (T -468)) -NIL -(-1168 |#1| |#2|) -((-3096 (((-111) $ $) NIL)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) NIL)) (-3247 (((-630 $) (-630 |#4|)) NIL)) (-3506 (((-630 |#3|) $) NIL)) (-1742 (((-111) $) NIL)) (-3538 (((-111) $) NIL (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1484 ((|#4| |#4| $) NIL)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3905 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3820 (($) NIL T CONST)) (-2623 (((-111) $) 26 (|has| |#1| (-545)))) (-2032 (((-111) $ $) NIL (|has| |#1| (-545)))) (-3559 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1921 (((-111) $) NIL (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4063 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) NIL)) (-2707 (($ (-630 |#4|)) NIL)) (-2616 (((-3 $ "failed") $) 39)) (-4290 ((|#4| |#4| $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2575 (($ |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-1345 ((|#4| |#4| $) NIL)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) NIL)) (-1408 (((-630 |#4|) $) 16 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1470 ((|#3| $) 33)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#4|) $) 17 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2503 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 21)) (-3935 (((-630 |#3|) $) NIL)) (-2351 (((-111) |#3| $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-2594 (((-3 |#4| "failed") $) 37)) (-2564 (((-630 |#4|) $) NIL)) (-4299 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4080 ((|#4| |#4| $) NIL)) (-1990 (((-111) $ $) NIL)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3138 ((|#4| |#4| $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-3 |#4| "failed") $) 35)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-2761 (((-3 $ "failed") $ |#4|) 47)) (-3089 (($ $ |#4|) NIL)) (-3341 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 15)) (-3222 (($) 13)) (-3872 (((-757) $) NIL)) (-2796 (((-757) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (((-757) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) 12)) (-1524 (((-529) $) NIL (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 20)) (-2867 (($ $ |#3|) 42)) (-3721 (($ $ |#3|) 44)) (-2316 (($ $) NIL)) (-1665 (($ $ |#3|) NIL)) (-3110 (((-845) $) 31) (((-630 |#4|) $) 40)) (-2668 (((-757) $) NIL (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) NIL)) (-3296 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) NIL)) (-4223 (((-111) |#3| $) NIL)) (-1617 (((-111) $ $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-469 |#1| |#2| |#3| |#4|) (-1185 |#1| |#2| |#3| |#4|) (-545) (-779) (-833) (-1045 |#1| |#2| |#3|)) (T -469)) -NIL -(-1185 |#1| |#2| |#3| |#4|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL)) (-2707 (((-553) $) NIL) (((-401 (-553)) $) NIL)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-3996 (($) 18)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1524 (((-373) $) 22) (((-220) $) 25) (((-401 (-1151 (-553))) $) 19) (((-529) $) 52)) (-3110 (((-845) $) 50) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (((-220) $) 24) (((-373) $) 21)) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 36 T CONST)) (-1997 (($) 11 T CONST)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-470) (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))) (-1004) (-600 (-220)) (-600 (-373)) (-601 (-401 (-1151 (-553)))) (-601 (-529)) (-10 -8 (-15 -3996 ($))))) (T -470)) -((-3996 (*1 *1) (-5 *1 (-470)))) -(-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))) (-1004) (-600 (-220)) (-600 (-373)) (-601 (-401 (-1151 (-553)))) (-601 (-529)) (-10 -8 (-15 -3996 ($)))) -((-3096 (((-111) $ $) NIL)) (-1314 (((-1114) $) 11)) (-1301 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-471) (-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $))))) (T -471)) -((-1301 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-471)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-471))))) -(-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $)))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#2| $ |#1| |#2|) 16)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) 20)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) 18)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3729 (((-630 |#1|) $) 13)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1901 (((-630 |#1|) $) NIL)) (-3594 (((-111) |#1| $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 19)) (-2046 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 11 (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2563 (((-757) $) 15 (|has| $ (-6 -4369))))) -(((-472 |#1| |#2| |#3|) (-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) (-1079) (-1079) (-1137)) (T -472)) -NIL -(-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) -((-4341 (((-553) (-553) (-553)) 7)) (-4047 (((-111) (-553) (-553) (-553) (-553)) 11)) (-4337 (((-1238 (-630 (-553))) (-757) (-757)) 23))) -(((-473) (-10 -7 (-15 -4341 ((-553) (-553) (-553))) (-15 -4047 ((-111) (-553) (-553) (-553) (-553))) (-15 -4337 ((-1238 (-630 (-553))) (-757) (-757))))) (T -473)) -((-4337 (*1 *2 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1238 (-630 (-553)))) (-5 *1 (-473)))) (-4047 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-553)) (-5 *2 (-111)) (-5 *1 (-473)))) (-4341 (*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-473))))) -(-10 -7 (-15 -4341 ((-553) (-553) (-553))) (-15 -4047 ((-111) (-553) (-553) (-553) (-553))) (-15 -4337 ((-1238 (-630 (-553))) (-757) (-757)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-847 |#1|)) $) NIL)) (-3322 (((-1151 $) $ (-847 |#1|)) NIL) (((-1151 |#2|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-1968 (($ $) NIL (|has| |#2| (-545)))) (-2028 (((-111) $) NIL (|has| |#2| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-847 |#1|))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1536 (($ $) NIL (|has| |#2| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#2| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-847 |#1|) "failed") $) NIL)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-847 |#1|) $) NIL)) (-2134 (($ $ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-3683 (($ $ (-630 (-553))) NIL)) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#2| (-891)))) (-2686 (($ $ |#2| (-475 (-2563 |#1|) (-757)) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#2|) (-847 |#1|)) NIL) (($ (-1151 $) (-847 |#1|)) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#2| (-475 (-2563 |#1|) (-757))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-847 |#1|)) NIL)) (-2423 (((-475 (-2563 |#1|) (-757)) $) NIL) (((-757) $ (-847 |#1|)) NIL) (((-630 (-757)) $ (-630 (-847 |#1|))) NIL)) (-1824 (($ $ $) NIL (|has| |#2| (-833)))) (-1975 (($ $ $) NIL (|has| |#2| (-833)))) (-2241 (($ (-1 (-475 (-2563 |#1|) (-757)) (-475 (-2563 |#1|) (-757))) $) NIL)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1332 (((-3 (-847 |#1|) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#2| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-847 |#1|)) (|:| -2692 (-757))) "failed") $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#2| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#2| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#2| (-891)))) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-847 |#1|) |#2|) NIL) (($ $ (-630 (-847 |#1|)) (-630 |#2|)) NIL) (($ $ (-847 |#1|) $) NIL) (($ $ (-630 (-847 |#1|)) (-630 $)) NIL)) (-3000 (($ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-1330 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3872 (((-475 (-2563 |#1|) (-757)) $) NIL) (((-757) $ (-847 |#1|)) NIL) (((-630 (-757)) $ (-630 (-847 |#1|))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-847 |#1|) (-601 (-529))) (|has| |#2| (-601 (-529)))))) (-4198 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) NIL) (($ (-847 |#1|)) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#2| (-545)))) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-475 (-2563 |#1|) (-757))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#2| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#2| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#2| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#2| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#2| (-38 (-401 (-553))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-474 |#1| |#2|) (-13 (-931 |#2| (-475 (-2563 |#1|) (-757)) (-847 |#1|)) (-10 -8 (-15 -3683 ($ $ (-630 (-553)))))) (-630 (-1155)) (-1031)) (T -474)) -((-3683 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-474 *3 *4)) (-14 *3 (-630 (-1155))) (-4 *4 (-1031))))) -(-13 (-931 |#2| (-475 (-2563 |#1|) (-757)) (-847 |#1|)) (-10 -8 (-15 -3683 ($ $ (-630 (-553)))))) -((-3096 (((-111) $ $) NIL (|has| |#2| (-1079)))) (-3769 (((-111) $) NIL (|has| |#2| (-129)))) (-1561 (($ (-903)) NIL (|has| |#2| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2345 (($ $ $) NIL (|has| |#2| (-779)))) (-2910 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| |#2| (-362)))) (-2125 (((-553) $) NIL (|has| |#2| (-831)))) (-1490 ((|#2| $ (-553) |#2|) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1079)))) (-2707 (((-553) $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-401 (-553)) $) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) ((|#2| $) NIL (|has| |#2| (-1079)))) (-2077 (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL (|has| |#2| (-1031))) (((-674 |#2|) (-674 $)) NIL (|has| |#2| (-1031)))) (-2982 (((-3 $ "failed") $) NIL (|has| |#2| (-712)))) (-3031 (($) NIL (|has| |#2| (-362)))) (-2515 ((|#2| $ (-553) |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ (-553)) 11)) (-4270 (((-111) $) NIL (|has| |#2| (-831)))) (-1408 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL (|has| |#2| (-712)))) (-2797 (((-111) $) NIL (|has| |#2| (-831)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-2195 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-2503 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#2| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#2| (-1079)))) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2735 (($ (-903)) NIL (|has| |#2| (-362)))) (-2786 (((-1099) $) NIL (|has| |#2| (-1079)))) (-2603 ((|#2| $) NIL (|has| (-553) (-833)))) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ (-553) |#2|) NIL) ((|#2| $ (-553)) NIL)) (-1449 ((|#2| $ $) NIL (|has| |#2| (-1031)))) (-3398 (($ (-1238 |#2|)) NIL)) (-1337 (((-132)) NIL (|has| |#2| (-357)))) (-1330 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1031)))) (-2796 (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1238 |#2|) $) NIL) (($ (-553)) NIL (-3988 (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031)))) (($ (-401 (-553))) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (($ |#2|) NIL (|has| |#2| (-1079))) (((-845) $) NIL (|has| |#2| (-600 (-845))))) (-1999 (((-757)) NIL (|has| |#2| (-1031)))) (-3296 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-3466 (($ $) NIL (|has| |#2| (-831)))) (-1988 (($) NIL (|has| |#2| (-129)) CONST)) (-1997 (($) NIL (|has| |#2| (-712)) CONST)) (-1780 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1031)))) (-1669 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1617 (((-111) $ $) NIL (|has| |#2| (-1079)))) (-1659 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1636 (((-111) $ $) 15 (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $ $) NIL (|has| |#2| (-1031))) (($ $) NIL (|has| |#2| (-1031)))) (-1700 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-757)) NIL (|has| |#2| (-712))) (($ $ (-903)) NIL (|has| |#2| (-712)))) (* (($ (-553) $) NIL (|has| |#2| (-1031))) (($ $ $) NIL (|has| |#2| (-712))) (($ $ |#2|) NIL (|has| |#2| (-712))) (($ |#2| $) NIL (|has| |#2| (-712))) (($ (-757) $) NIL (|has| |#2| (-129))) (($ (-903) $) NIL (|has| |#2| (-25)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-475 |#1| |#2|) (-233 |#1| |#2|) (-757) (-779)) (T -475)) -NIL -(-233 |#1| |#2|) -((-3096 (((-111) $ $) NIL)) (-4016 (((-630 (-499)) $) 11)) (-4298 (((-499) $) 10)) (-1735 (((-1137) $) NIL)) (-3019 (($ (-499) (-630 (-499))) 9)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-476) (-13 (-1062) (-10 -8 (-15 -3019 ($ (-499) (-630 (-499)))) (-15 -4298 ((-499) $)) (-15 -4016 ((-630 (-499)) $))))) (T -476)) -((-3019 (*1 *1 *2 *3) (-12 (-5 *3 (-630 (-499))) (-5 *2 (-499)) (-5 *1 (-476)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-476)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-630 (-499))) (-5 *1 (-476))))) -(-13 (-1062) (-10 -8 (-15 -3019 ($ (-499) (-630 (-499)))) (-15 -4298 ((-499) $)) (-15 -4016 ((-630 (-499)) $)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) NIL)) (-3820 (($) NIL T CONST)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-1750 (($ $ $) 32)) (-3160 (($ $ $) 31)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1975 ((|#1| $) 26)) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1376 ((|#1| $) 27)) (-2636 (($ |#1| $) 10)) (-3429 (($ (-630 |#1|)) 12)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2949 ((|#1| $) 23)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 9)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 29)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) 21 (|has| $ (-6 -4369))))) -(((-477 |#1|) (-13 (-950 |#1|) (-10 -8 (-15 -3429 ($ (-630 |#1|))))) (-833)) (T -477)) -((-3429 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-477 *3))))) -(-13 (-950 |#1|) (-10 -8 (-15 -3429 ($ (-630 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2654 (($ $) 69)) (-3498 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-1773 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 44)) (-2786 (((-1099) $) NIL)) (-4093 (((-3 |#4| "failed") $) 107)) (-2270 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-553)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2075 (((-2 (|:| -3168 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3110 (((-845) $) 102)) (-1988 (($) 33 T CONST)) (-1617 (((-111) $ $) 109)) (-1711 (($ $) 72) (($ $ $) NIL)) (-1700 (($ $ $) 70)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 73))) -(((-478 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -478)) -NIL -(-329 |#1| |#2| |#3| |#4|) -((-4089 (((-553) (-630 (-553))) 30)) (-4068 ((|#1| (-630 |#1|)) 56)) (-3763 (((-630 |#1|) (-630 |#1|)) 57)) (-2883 (((-630 |#1|) (-630 |#1|)) 59)) (-2508 ((|#1| (-630 |#1|)) 58)) (-4198 (((-630 (-553)) (-630 |#1|)) 33))) -(((-479 |#1|) (-10 -7 (-15 -2508 (|#1| (-630 |#1|))) (-15 -4068 (|#1| (-630 |#1|))) (-15 -2883 ((-630 |#1|) (-630 |#1|))) (-15 -3763 ((-630 |#1|) (-630 |#1|))) (-15 -4198 ((-630 (-553)) (-630 |#1|))) (-15 -4089 ((-553) (-630 (-553))))) (-1214 (-553))) (T -479)) -((-4089 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-553)) (-5 *1 (-479 *4)) (-4 *4 (-1214 *2)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-1214 (-553))) (-5 *2 (-630 (-553))) (-5 *1 (-479 *4)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1214 (-553))) (-5 *1 (-479 *3)))) (-2883 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1214 (-553))) (-5 *1 (-479 *3)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1214 (-553))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1214 (-553)))))) -(-10 -7 (-15 -2508 (|#1| (-630 |#1|))) (-15 -4068 (|#1| (-630 |#1|))) (-15 -2883 ((-630 |#1|) (-630 |#1|))) (-15 -3763 ((-630 |#1|) (-630 |#1|))) (-15 -4198 ((-630 (-553)) (-630 |#1|))) (-15 -4089 ((-553) (-630 (-553))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-553) $) NIL (|has| (-553) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-553) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| (-553) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-553) (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| (-553) (-1020 (-553))))) (-2707 (((-553) $) NIL) (((-1155) $) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-553) (-1020 (-553)))) (((-553) $) NIL (|has| (-553) (-1020 (-553))))) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-553) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| (-553) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-553) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-553) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-553) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| (-553) (-1130)))) (-2797 (((-111) $) NIL (|has| (-553) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-553) (-833)))) (-1482 (($ (-1 (-553) (-553)) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-553) (-1130)) CONST)) (-3642 (($ (-401 (-553))) 9)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-553) (-301))) (((-401 (-553)) $) NIL)) (-2334 (((-553) $) NIL (|has| (-553) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-553)) (-630 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-553) (-553)) NIL (|has| (-553) (-303 (-553)))) (($ $ (-288 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-288 (-553)))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-1155)) (-630 (-553))) NIL (|has| (-553) (-507 (-1155) (-553)))) (($ $ (-1155) (-553)) NIL (|has| (-553) (-507 (-1155) (-553))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-553)) NIL (|has| (-553) (-280 (-553) (-553))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-553) $) NIL)) (-1524 (((-874 (-553)) $) NIL (|has| (-553) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-553) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-553) (-601 (-529)))) (((-373) $) NIL (|has| (-553) (-1004))) (((-220) $) NIL (|has| (-553) (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-553) (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) 8) (($ (-553)) NIL) (($ (-1155)) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL) (((-986 16) $) 10)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-553) (-891))) (|has| (-553) (-142))))) (-1999 (((-757)) NIL)) (-2582 (((-553) $) NIL (|has| (-553) (-538)))) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL (|has| (-553) (-806)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1723 (($ $ $) NIL) (($ (-553) (-553)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-553) $) NIL) (($ $ (-553)) NIL))) -(((-480) (-13 (-974 (-553)) (-600 (-401 (-553))) (-600 (-986 16)) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -3642 ($ (-401 (-553))))))) (T -480)) -((-3785 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-480)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-480))))) -(-13 (-974 (-553)) (-600 (-401 (-553))) (-600 (-986 16)) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -3642 ($ (-401 (-553)))))) -((-2195 (((-630 |#2|) $) 23)) (-1832 (((-111) |#2| $) 28)) (-3341 (((-111) (-1 (-111) |#2|) $) 21)) (-2356 (($ $ (-630 (-288 |#2|))) 13) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-630 |#2|) (-630 |#2|)) NIL)) (-2796 (((-757) (-1 (-111) |#2|) $) 22) (((-757) |#2| $) 26)) (-3110 (((-845) $) 37)) (-3296 (((-111) (-1 (-111) |#2|) $) 20)) (-1617 (((-111) $ $) 31)) (-2563 (((-757) $) 17))) -(((-481 |#1| |#2|) (-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#2| |#2|)) (-15 -2356 (|#1| |#1| (-288 |#2|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#2|)))) (-15 -1832 ((-111) |#2| |#1|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2195 ((-630 |#2|) |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2563 ((-757) |#1|))) (-482 |#2|) (-1192)) (T -481)) -NIL -(-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#2| |#2|)) (-15 -2356 (|#1| |#1| (-288 |#2|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#2|)))) (-15 -1832 ((-111) |#2| |#1|)) (-15 -2796 ((-757) |#2| |#1|)) (-15 -2195 ((-630 |#2|) |#1|)) (-15 -2796 ((-757) (-1 (-111) |#2|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2563 ((-757) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-482 |#1|) (-137) (-1192)) (T -482)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1192)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4370)) (-4 *1 (-482 *3)) (-4 *3 (-1192)))) (-3296 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *4)) (-4 *4 (-1192)) (-5 *2 (-111)))) (-3341 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *4)) (-4 *4 (-1192)) (-5 *2 (-111)))) (-2796 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *4)) (-4 *4 (-1192)) (-5 *2 (-757)))) (-1408 (*1 *2 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) (-5 *2 (-630 *3)))) (-2195 (*1 *2 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) (-5 *2 (-630 *3)))) (-2796 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-757)))) (-1832 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-600 (-845))) (-6 (-600 (-845))) |%noBranch|) (IF (|has| |t#1| (-1079)) (-6 (-1079)) |%noBranch|) (IF (|has| |t#1| (-1079)) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1482 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4370)) (-15 -2503 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4369)) (PROGN (-15 -3296 ((-111) (-1 (-111) |t#1|) $)) (-15 -3341 ((-111) (-1 (-111) |t#1|) $)) (-15 -2796 ((-757) (-1 (-111) |t#1|) $)) (-15 -1408 ((-630 |t#1|) $)) (-15 -2195 ((-630 |t#1|) $)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -2796 ((-757) |t#1| $)) (-15 -1832 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3110 ((|#1| $) 6) (($ |#1|) 9))) -(((-483 |#1|) (-137) (-1192)) (T -483)) -NIL -(-13 (-600 |t#1|) (-603 |t#1|)) -(((-603 |#1|) . T) ((-600 |#1|) . T)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2221 (($ (-1137)) 8)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 14) (((-1137) $) 11)) (-1617 (((-111) $ $) 10))) -(((-484) (-13 (-1079) (-600 (-1137)) (-10 -8 (-15 -2221 ($ (-1137)))))) (T -484)) -((-2221 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-484))))) -(-13 (-1079) (-600 (-1137)) (-10 -8 (-15 -2221 ($ (-1137))))) -((-2380 (($ $) 15)) (-2357 (($ $) 24)) (-2403 (($ $) 12)) (-2414 (($ $) 10)) (-2392 (($ $) 17)) (-2368 (($ $) 22))) -(((-485 |#1|) (-10 -8 (-15 -2368 (|#1| |#1|)) (-15 -2392 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2380 (|#1| |#1|))) (-486)) (T -485)) -NIL -(-10 -8 (-15 -2368 (|#1| |#1|)) (-15 -2392 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2380 (|#1| |#1|))) -((-2380 (($ $) 11)) (-2357 (($ $) 10)) (-2403 (($ $) 9)) (-2414 (($ $) 8)) (-2392 (($ $) 7)) (-2368 (($ $) 6))) -(((-486) (-137)) (T -486)) -((-2380 (*1 *1 *1) (-4 *1 (-486))) (-2357 (*1 *1 *1) (-4 *1 (-486))) (-2403 (*1 *1 *1) (-4 *1 (-486))) (-2414 (*1 *1 *1) (-4 *1 (-486))) (-2392 (*1 *1 *1) (-4 *1 (-486))) (-2368 (*1 *1 *1) (-4 *1 (-486)))) -(-13 (-10 -8 (-15 -2368 ($ $)) (-15 -2392 ($ $)) (-15 -2414 ($ $)) (-15 -2403 ($ $)) (-15 -2357 ($ $)) (-15 -2380 ($ $)))) -((-3355 (((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)) 42))) -(((-487 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) (-357) (-1214 |#1|) (-13 (-357) (-144) (-710 |#1| |#2|)) (-1214 |#3|)) (T -487)) -((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) (-4 *7 (-13 (-357) (-144) (-710 *5 *6))) (-5 *2 (-412 *3)) (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1214 *7))))) -(-10 -7 (-15 -3355 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3329 (((-630 $) (-1151 $) (-1155)) NIL) (((-630 $) (-1151 $)) NIL) (((-630 $) (-934 $)) NIL)) (-1299 (($ (-1151 $) (-1155)) NIL) (($ (-1151 $)) NIL) (($ (-934 $)) NIL)) (-3769 (((-111) $) 39)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-3657 (((-111) $ $) 64)) (-3233 (((-630 (-599 $)) $) 48)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $ (-288 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3365 (($ $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-2851 (((-630 $) (-1151 $) (-1155)) NIL) (((-630 $) (-1151 $)) NIL) (((-630 $) (-934 $)) NIL)) (-3906 (($ (-1151 $) (-1155)) NIL) (($ (-1151 $)) NIL) (($ (-934 $)) NIL)) (-1399 (((-3 (-599 $) "failed") $) NIL) (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL)) (-2707 (((-599 $) $) NIL) (((-553) $) NIL) (((-401 (-553)) $) 50)) (-3973 (($ $ $) NIL)) (-2077 (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-401 (-553)))) (|:| |vec| (-1238 (-401 (-553))))) (-674 $) (-1238 $)) NIL) (((-674 (-401 (-553))) (-674 $)) NIL)) (-2654 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-2985 (($ $) NIL) (($ (-630 $)) NIL)) (-2521 (((-630 (-113)) $) NIL)) (-4180 (((-113) (-113)) NIL)) (-1848 (((-111) $) 42)) (-1850 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-3963 (((-1104 (-553) (-599 $)) $) 37)) (-2406 (($ $ (-553)) NIL)) (-3560 (((-1151 $) (-1151 $) (-599 $)) 78) (((-1151 $) (-1151 $) (-630 (-599 $))) 55) (($ $ (-599 $)) 67) (($ $ (-630 (-599 $))) 68)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1629 (((-1151 $) (-599 $)) 65 (|has| $ (-1031)))) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 $ $) (-599 $)) NIL)) (-1335 (((-3 (-599 $) "failed") $) NIL)) (-2471 (($ (-630 $)) NIL) (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-3310 (((-630 (-599 $)) $) NIL)) (-4040 (($ (-113) $) NIL) (($ (-113) (-630 $)) NIL)) (-1288 (((-111) $ (-113)) NIL) (((-111) $ (-1155)) NIL)) (-3610 (($ $) NIL)) (-2304 (((-757) $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ (-630 $)) NIL) (($ $ $) NIL)) (-4006 (((-111) $ $) NIL) (((-111) $ (-1155)) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3781 (((-111) $) NIL (|has| $ (-1020 (-553))))) (-2356 (($ $ (-599 $) $) NIL) (($ $ (-630 (-599 $)) (-630 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-1155)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-1155) (-1 $ (-630 $))) NIL) (($ $ (-1155) (-1 $ $)) NIL) (($ $ (-630 (-113)) (-630 (-1 $ $))) NIL) (($ $ (-630 (-113)) (-630 (-1 $ (-630 $)))) NIL) (($ $ (-113) (-1 $ (-630 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-3384 (((-757) $) NIL)) (-2046 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-630 $)) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1460 (($ $) NIL) (($ $ $) NIL)) (-1330 (($ $ (-757)) NIL) (($ $) 36)) (-3974 (((-1104 (-553) (-599 $)) $) 20)) (-1394 (($ $) NIL (|has| $ (-1031)))) (-1524 (((-373) $) 92) (((-220) $) 100) (((-166 (-373)) $) 108)) (-3110 (((-845) $) NIL) (($ (-599 $)) NIL) (($ (-401 (-553))) NIL) (($ $) NIL) (($ (-553)) NIL) (($ (-1104 (-553) (-599 $))) 21)) (-1999 (((-757)) NIL)) (-2633 (($ $) NIL) (($ (-630 $)) NIL)) (-2274 (((-111) (-113)) 84)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 10 T CONST)) (-1997 (($) 22 T CONST)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 24)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1723 (($ $ $) 44)) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-401 (-553))) NIL) (($ $ (-553)) 46) (($ $ (-757)) NIL) (($ $ (-903)) NIL)) (* (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL) (($ $ $) 27) (($ (-553) $) NIL) (($ (-757) $) NIL) (($ (-903) $) NIL))) -(((-488) (-13 (-296) (-27) (-1020 (-553)) (-1020 (-401 (-553))) (-626 (-553)) (-1004) (-626 (-401 (-553))) (-144) (-601 (-166 (-373))) (-228) (-10 -8 (-15 -3110 ($ (-1104 (-553) (-599 $)))) (-15 -3963 ((-1104 (-553) (-599 $)) $)) (-15 -3974 ((-1104 (-553) (-599 $)) $)) (-15 -2654 ($ $)) (-15 -3657 ((-111) $ $)) (-15 -3560 ((-1151 $) (-1151 $) (-599 $))) (-15 -3560 ((-1151 $) (-1151 $) (-630 (-599 $)))) (-15 -3560 ($ $ (-599 $))) (-15 -3560 ($ $ (-630 (-599 $))))))) (T -488)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1104 (-553) (-599 (-488)))) (-5 *1 (-488)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-488)))) (-5 *1 (-488)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-488)))) (-5 *1 (-488)))) (-2654 (*1 *1 *1) (-5 *1 (-488))) (-3657 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-488)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-1151 (-488))) (-5 *3 (-599 (-488))) (-5 *1 (-488)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-1151 (-488))) (-5 *3 (-630 (-599 (-488)))) (-5 *1 (-488)))) (-3560 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-488))) (-5 *1 (-488)))) (-3560 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-599 (-488)))) (-5 *1 (-488))))) -(-13 (-296) (-27) (-1020 (-553)) (-1020 (-401 (-553))) (-626 (-553)) (-1004) (-626 (-401 (-553))) (-144) (-601 (-166 (-373))) (-228) (-10 -8 (-15 -3110 ($ (-1104 (-553) (-599 $)))) (-15 -3963 ((-1104 (-553) (-599 $)) $)) (-15 -3974 ((-1104 (-553) (-599 $)) $)) (-15 -2654 ($ $)) (-15 -3657 ((-111) $ $)) (-15 -3560 ((-1151 $) (-1151 $) (-599 $))) (-15 -3560 ((-1151 $) (-1151 $) (-630 (-599 $)))) (-15 -3560 ($ $ (-599 $))) (-15 -3560 ($ $ (-630 (-599 $)))))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) |#1|) 25 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 22 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 21)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 14)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 12 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) 23 (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) 10 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 13)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) 24) (($ $ (-1205 (-553))) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) 9 (|has| $ (-6 -4369))))) -(((-489 |#1| |#2|) (-19 |#1|) (-1192) (-553)) (T -489)) +((-2395 (($ $) 6)) (-1333 (($ $) 7)) (** (($ $ $) 8))) +(((-279) (-138)) (T -279)) +((** (*1 *1 *1 *1) (-4 *1 (-279))) (-1333 (*1 *1 *1) (-4 *1 (-279))) (-2395 (*1 *1 *1) (-4 *1 (-279)))) +(-13 (-10 -8 (-15 -2395 ($ $)) (-15 -1333 ($ $)) (-15 ** ($ $ $)))) +((-3111 (((-631 (-1138 |#1|)) (-1138 |#1|) |#1|) 35)) (-3983 ((|#2| |#2| |#1|) 38)) (-1650 ((|#2| |#2| |#1|) 40)) (-2963 ((|#2| |#2| |#1|) 39))) +(((-280 |#1| |#2|) (-10 -7 (-15 -3983 (|#2| |#2| |#1|)) (-15 -2963 (|#2| |#2| |#1|)) (-15 -1650 (|#2| |#2| |#1|)) (-15 -3111 ((-631 (-1138 |#1|)) (-1138 |#1|) |#1|))) (-358) (-1232 |#1|)) (T -280)) +((-3111 (*1 *2 *3 *4) (-12 (-4 *4 (-358)) (-5 *2 (-631 (-1138 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1138 *4)) (-4 *5 (-1232 *4)))) (-1650 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))) (-2963 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3)))) (-3983 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -3983 (|#2| |#2| |#1|)) (-15 -2963 (|#2| |#2| |#1|)) (-15 -1650 (|#2| |#2| |#1|)) (-15 -3111 ((-631 (-1138 |#1|)) (-1138 |#1|) |#1|))) +((-2064 ((|#2| $ |#1|) 6))) +(((-281 |#1| |#2|) (-138) (-1082) (-1195)) (T -281)) +((-2064 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -2064 (|t#2| $ |t#1|)))) +((-2862 ((|#3| $ |#2| |#3|) 12)) (-2796 ((|#3| $ |#2|) 10))) +(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -2862 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1082) (-1195)) (T -282)) +NIL +(-10 -8 (-15 -2862 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|))) +((-1501 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4374)))) (-2862 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 11)) (-2064 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-283 |#1| |#2|) (-138) (-1082) (-1195)) (T -283)) +((-2064 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-2796 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-2862 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195))))) +(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -2064 (|t#2| $ |t#1| |t#2|)) (-15 -2796 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1501 (|t#2| $ |t#1| |t#2|)) (-15 -2862 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-281 |#1| |#2|) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 35)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 40)) (-1976 (($ $) 38)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) 33)) (-3676 (($ |#2| |#3|) 19)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 ((|#3| $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 20)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2603 (((-3 $ "failed") $ $) NIL)) (-2072 (((-758) $) 34)) (-2064 ((|#2| $ |#2|) 42)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 24)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 29 T CONST)) (-2014 (($) 36 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 37))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-302) (-10 -8 (-15 -2340 (|#3| $)) (-15 -3075 (|#2| $)) (-15 -3676 ($ |#2| |#3|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -2064 (|#2| $ |#2|)))) (-170) (-1217 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284)) +((-1320 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2340 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1217 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3676 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1217 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2603 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2064 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1217 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-302) (-10 -8 (-15 -2340 (|#3| $)) (-15 -3075 (|#2| $)) (-15 -3676 ($ |#2| |#3|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -2064 (|#2| $ |#2|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-285) (-138)) (T -285)) +NIL +(-13 (-1034) (-111 $ $) (-10 -7 (-6 -4366))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2159 (($ (-1158) (-1158) (-1086) $) 17)) (-4290 (($ (-1158) (-631 (-950)) $) 22)) (-2628 (((-631 (-1067)) $) 10)) (-2266 (((-3 (-1086) "failed") (-1158) (-1158) $) 16)) (-2837 (((-3 (-631 (-950)) "failed") (-1158) $) 21)) (-4240 (($) 7)) (-1483 (($) 23)) (-3075 (((-848) $) 27)) (-1768 (($) 24))) +(((-286) (-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2628 ((-631 (-1067)) $)) (-15 -2266 ((-3 (-1086) "failed") (-1158) (-1158) $)) (-15 -2159 ($ (-1158) (-1158) (-1086) $)) (-15 -2837 ((-3 (-631 (-950)) "failed") (-1158) $)) (-15 -4290 ($ (-1158) (-631 (-950)) $)) (-15 -1483 ($)) (-15 -1768 ($))))) (T -286)) +((-4240 (*1 *1) (-5 *1 (-286))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-631 (-1067))) (-5 *1 (-286)))) (-2266 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-286)))) (-2159 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-286)))) (-2837 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-631 (-950))) (-5 *1 (-286)))) (-4290 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-286)))) (-1483 (*1 *1) (-5 *1 (-286))) (-1768 (*1 *1) (-5 *1 (-286)))) +(-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2628 ((-631 (-1067)) $)) (-15 -2266 ((-3 (-1086) "failed") (-1158) (-1158) $)) (-15 -2159 ($ (-1158) (-1158) (-1086) $)) (-15 -2837 ((-3 (-631 (-950)) "failed") (-1158) $)) (-15 -4290 ($ (-1158) (-631 (-950)) $)) (-15 -1483 ($)) (-15 -1768 ($)))) +((-2133 (((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))) 85)) (-2111 (((-631 (-675 (-402 (-937 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|)))))) (-675 (-402 (-937 |#1|)))) 80) (((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))) (-758) (-758)) 38)) (-1716 (((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))) 82)) (-4067 (((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|)))) 62)) (-3955 (((-631 (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (-675 (-402 (-937 |#1|)))) 61)) (-3109 (((-937 |#1|) (-675 (-402 (-937 |#1|)))) 50) (((-937 |#1|) (-675 (-402 (-937 |#1|))) (-1158)) 51))) +(((-287 |#1|) (-10 -7 (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))) (-1158))) (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))))) (-15 -3955 ((-631 (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (-675 (-402 (-937 |#1|))))) (-15 -4067 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))) (-758) (-758))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|)))))) (-675 (-402 (-937 |#1|))))) (-15 -2133 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|))))) (-15 -1716 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))))) (-446)) (T -287)) +((-1716 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-631 (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4)))))) (-2133 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-631 (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4)))))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 *4)))) (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5)))))) (-2111 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-402 (-937 *6)) (-1147 (-1158) (-937 *6)))) (-5 *5 (-758)) (-4 *6 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *6))))) (-5 *1 (-287 *6)) (-5 *4 (-675 (-402 (-937 *6)))))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5)))) (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5)))))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-4 *4 (-446)) (-5 *2 (-631 (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4))))) (-5 *1 (-287 *4)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-5 *2 (-937 *4)) (-5 *1 (-287 *4)) (-4 *4 (-446)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-937 *5)))) (-5 *4 (-1158)) (-5 *2 (-937 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446))))) +(-10 -7 (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))) (-1158))) (-15 -3109 ((-937 |#1|) (-675 (-402 (-937 |#1|))))) (-15 -3955 ((-631 (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (-675 (-402 (-937 |#1|))))) (-15 -4067 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|))) (-675 (-402 (-937 |#1|))) (-758) (-758))) (-15 -2111 ((-631 (-675 (-402 (-937 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|)))))) (-675 (-402 (-937 |#1|))))) (-15 -2133 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |geneigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|))))) (-15 -1716 ((-631 (-2 (|:| |eigval| (-3 (-402 (-937 |#1|)) (-1147 (-1158) (-937 |#1|)))) (|:| |eigmult| (-758)) (|:| |eigvec| (-631 (-675 (-402 (-937 |#1|))))))) (-675 (-402 (-937 |#1|)))))) +((-2879 (((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)) 14))) +(((-288 |#1| |#2|) (-10 -7 (-15 -2879 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) (-1195) (-1195)) (T -288)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6))))) +(-10 -7 (-15 -2879 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1695 (((-112) $) NIL (|has| |#1| (-21)))) (-1487 (($ $) 12)) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3380 (($ $ $) 94 (|has| |#1| (-297)))) (-4087 (($) NIL (-3994 (|has| |#1| (-21)) (|has| |#1| (-713))) CONST)) (-2580 (($ $) 50 (|has| |#1| (-21)))) (-1788 (((-3 $ "failed") $) 61 (|has| |#1| (-713)))) (-3848 ((|#1| $) 11)) (-1320 (((-3 $ "failed") $) 59 (|has| |#1| (-713)))) (-3248 (((-112) $) NIL (|has| |#1| (-713)))) (-2879 (($ (-1 |#1| |#1|) $) 14)) (-3836 ((|#1| $) 10)) (-4001 (($ $) 49 (|has| |#1| (-21)))) (-3002 (((-3 $ "failed") $) 60 (|has| |#1| (-713)))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2483 (($ $) 63 (-3994 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-3837 (((-631 $) $) 84 (|has| |#1| (-546)))) (-2386 (($ $ $) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 $)) 28 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-1158) |#1|) 17 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 21 (|has| |#1| (-508 (-1158) |#1|)))) (-1401 (($ |#1| |#1|) 9)) (-3330 (((-133)) 89 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) 86 (|has| |#1| (-885 (-1158))))) (-3992 (($ $ $) NIL (|has| |#1| (-467)))) (-1856 (($ $ $) NIL (|has| |#1| (-467)))) (-3075 (($ (-554)) NIL (|has| |#1| (-1034))) (((-112) $) 36 (|has| |#1| (-1082))) (((-848) $) 35 (|has| |#1| (-1082)))) (-2261 (((-758)) 66 (|has| |#1| (-1034)))) (-2004 (($) 46 (|has| |#1| (-21)) CONST)) (-2014 (($) 56 (|has| |#1| (-713)) CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158))))) (-1658 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 91 (-3994 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-1744 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1735 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-554)) NIL (|has| |#1| (-467))) (($ $ (-758)) NIL (|has| |#1| (-713))) (($ $ (-906)) NIL (|has| |#1| (-1094)))) (* (($ $ |#1|) 54 (|has| |#1| (-1094))) (($ |#1| $) 53 (|has| |#1| (-1094))) (($ $ $) 52 (|has| |#1| (-1094))) (($ (-554) $) 69 (|has| |#1| (-21))) (($ (-758) $) NIL (|has| |#1| (-21))) (($ (-906) $) NIL (|has| |#1| (-25))))) +(((-289 |#1|) (-13 (-1195) (-10 -8 (-15 -1658 ($ |#1| |#1|)) (-15 -1401 ($ |#1| |#1|)) (-15 -1487 ($ $)) (-15 -3836 (|#1| $)) (-15 -3848 (|#1| $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-508 (-1158) |#1|)) (-6 (-508 (-1158) |#1|)) |%noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-6 (-1082)) (-6 (-601 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -2386 ($ $ $)) (-15 -2386 ($ $ (-631 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1735 ($ |#1| $)) (-15 -1735 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4001 ($ $)) (-15 -2580 ($ $)) (-15 -1744 ($ |#1| $)) (-15 -1744 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-713)) (PROGN (-6 (-713)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-6 (-1034)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|) (IF (|has| |#1| (-546)) (-15 -3837 ((-631 $) $)) |%noBranch|) (IF (|has| |#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1248 |#1|)) (-15 -1752 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3380 ($ $ $)) |%noBranch|))) (-1195)) (T -289)) +((-1658 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-1401 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-1487 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-3836 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-3848 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-289 *3)))) (-2386 (*1 *1 *1 *1) (-12 (-4 *2 (-304 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)) (-5 *1 (-289 *2)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1082)) (-4 *3 (-1195)) (-5 *1 (-289 *3)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-2580 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-1744 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-3002 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195)))) (-1788 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-631 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-546)) (-4 *3 (-1195)))) (-3380 (*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1195)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195)))) (-1752 (*1 *1 *1 *1) (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195))))) (-2483 (*1 *1 *1) (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195)))))) +(-13 (-1195) (-10 -8 (-15 -1658 ($ |#1| |#1|)) (-15 -1401 ($ |#1| |#1|)) (-15 -1487 ($ $)) (-15 -3836 (|#1| $)) (-15 -3848 (|#1| $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-508 (-1158) |#1|)) (-6 (-508 (-1158) |#1|)) |%noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-6 (-1082)) (-6 (-601 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -2386 ($ $ $)) (-15 -2386 ($ $ (-631 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1735 ($ |#1| $)) (-15 -1735 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4001 ($ $)) (-15 -2580 ($ $)) (-15 -1744 ($ |#1| $)) (-15 -1744 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-713)) (PROGN (-6 (-713)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3002 ((-3 $ "failed") $)) (-15 -1788 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-6 (-1034)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|) (IF (|has| |#1| (-546)) (-15 -3837 ((-631 $) $)) |%noBranch|) (IF (|has| |#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1248 |#1|)) (-15 -1752 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3380 ($ $ $)) |%noBranch|))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-290 |#1| |#2|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082)) (T -290)) +NIL +(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) +((-1841 (((-307) (-1140) (-631 (-1140))) 16) (((-307) (-1140) (-1140)) 15) (((-307) (-631 (-1140))) 14) (((-307) (-1140)) 12))) +(((-291) (-10 -7 (-15 -1841 ((-307) (-1140))) (-15 -1841 ((-307) (-631 (-1140)))) (-15 -1841 ((-307) (-1140) (-1140))) (-15 -1841 ((-307) (-1140) (-631 (-1140)))))) (T -291)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1140))) (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1841 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-307)) (-5 *1 (-291)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291))))) +(-10 -7 (-15 -1841 ((-307) (-1140))) (-15 -1841 ((-307) (-631 (-1140)))) (-15 -1841 ((-307) (-1140) (-1140))) (-15 -1841 ((-307) (-1140) (-631 (-1140))))) +((-2879 ((|#2| (-1 |#2| |#1|) (-1140) (-600 |#1|)) 18))) +(((-292 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-1140) (-600 |#1|)))) (-297) (-1195)) (T -292)) +((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1140)) (-5 *5 (-600 *6)) (-4 *6 (-297)) (-4 *2 (-1195)) (-5 *1 (-292 *6 *2))))) +(-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-1140) (-600 |#1|)))) +((-2879 ((|#2| (-1 |#2| |#1|) (-600 |#1|)) 17))) +(((-293 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-600 |#1|)))) (-297) (-297)) (T -293)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-600 *5)) (-4 *5 (-297)) (-4 *2 (-297)) (-5 *1 (-293 *5 *2))))) +(-10 -7 (-15 -2879 (|#2| (-1 |#2| |#1|) (-600 |#1|)))) +((-2028 (((-112) (-221)) 10))) +(((-294 |#1| |#2|) (-10 -7 (-15 -2028 ((-112) (-221)))) (-221) (-221)) (T -294)) +((-2028 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2028 ((-112) (-221)))) +((-2719 (((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221)))) 92)) (-2980 (((-1138 (-221)) (-1241 (-311 (-221))) (-631 (-1158)) (-1076 (-829 (-221)))) 106) (((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221)))) 61)) (-2976 (((-631 (-1140)) (-1138 (-221))) NIL)) (-2089 (((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221)))) 58)) (-1318 (((-631 (-221)) (-937 (-402 (-554))) (-1158) (-1076 (-829 (-221)))) 49)) (-1984 (((-631 (-1140)) (-631 (-221))) NIL)) (-4243 (((-221) (-1076 (-829 (-221)))) 25)) (-3653 (((-221) (-1076 (-829 (-221)))) 26)) (-4315 (((-112) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 54)) (-2588 (((-1140) (-221)) NIL))) +(((-295) (-10 -7 (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4315 ((-112) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2719 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-1241 (-311 (-221))) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -1318 ((-631 (-221)) (-937 (-402 (-554))) (-1158) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))))) (T -295)) +((-2976 (*1 *2 *3) (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-295)))) (-1318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *4 (-1158)) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158))) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158))) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158))) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) (-2089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158)) (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-112)) (-5 *1 (-295)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295))))) +(-10 -7 (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4315 ((-112) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2089 ((-631 (-221)) (-311 (-221)) (-1158) (-1076 (-829 (-221))))) (-15 -2719 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-311 (-221)) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -2980 ((-1138 (-221)) (-1241 (-311 (-221))) (-631 (-1158)) (-1076 (-829 (-221))))) (-15 -1318 ((-631 (-221)) (-937 (-402 (-554))) (-1158) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221))))) +((-2143 (((-631 (-600 $)) $) 30)) (-3380 (($ $ (-289 $)) 81) (($ $ (-631 (-289 $))) 123) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-2784 (((-3 (-600 $) "failed") $) 113)) (-1668 (((-600 $) $) 112)) (-1342 (($ $) 19) (($ (-631 $)) 56)) (-3489 (((-631 (-114)) $) 38)) (-3086 (((-114) (-114)) 91)) (-3273 (((-112) $) 131)) (-2879 (($ (-1 $ $) (-600 $)) 89)) (-3310 (((-3 (-600 $) "failed") $) 93)) (-1408 (($ (-114) $) 61) (($ (-114) (-631 $)) 100)) (-2640 (((-112) $ (-114)) 117) (((-112) $ (-1158)) 116)) (-3323 (((-758) $) 46)) (-2041 (((-112) $ $) 59) (((-112) $ (-1158)) 51)) (-1795 (((-112) $) 129)) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) 121) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 84) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) 69) (($ $ (-1158) (-1 $ $)) 75) (($ $ (-631 (-114)) (-631 (-1 $ $))) 83) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 85) (($ $ (-114) (-1 $ (-631 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-2064 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-631 $)) 109)) (-3862 (($ $) 53) (($ $ $) 119)) (-4125 (($ $) 17) (($ (-631 $)) 55)) (-1902 (((-112) (-114)) 22))) +(((-296 |#1|) (-10 -8 (-15 -3273 ((-112) |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -2041 ((-112) |#1| (-1158))) (-15 -2041 ((-112) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#1| |#1|) (-600 |#1|))) (-15 -1408 (|#1| (-114) (-631 |#1|))) (-15 -1408 (|#1| (-114) |#1|)) (-15 -2640 ((-112) |#1| (-1158))) (-15 -2640 ((-112) |#1| (-114))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -3489 ((-631 (-114)) |#1|)) (-15 -2143 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3323 ((-758) |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1342 (|#1| (-631 |#1|))) (-15 -1342 (|#1| |#1|)) (-15 -4125 (|#1| (-631 |#1|))) (-15 -4125 (|#1| |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|))) (-297)) (T -296)) +((-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297))))) +(-10 -8 (-15 -3273 ((-112) |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -2041 ((-112) |#1| (-1158))) (-15 -2041 ((-112) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#1| |#1|) (-600 |#1|))) (-15 -1408 (|#1| (-114) (-631 |#1|))) (-15 -1408 (|#1| (-114) |#1|)) (-15 -2640 ((-112) |#1| (-1158))) (-15 -2640 ((-112) |#1| (-114))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -3489 ((-631 (-114)) |#1|)) (-15 -2143 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3323 ((-758) |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1342 (|#1| (-631 |#1|))) (-15 -1342 (|#1| |#1|)) (-15 -4125 (|#1| (-631 |#1|))) (-15 -4125 (|#1| |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|))) +((-3062 (((-112) $ $) 7)) (-2143 (((-631 (-600 $)) $) 44)) (-3380 (($ $ (-289 $)) 56) (($ $ (-631 (-289 $))) 55) (($ $ (-631 (-600 $)) (-631 $)) 54)) (-2784 (((-3 (-600 $) "failed") $) 69)) (-1668 (((-600 $) $) 70)) (-1342 (($ $) 51) (($ (-631 $)) 50)) (-3489 (((-631 (-114)) $) 43)) (-3086 (((-114) (-114)) 42)) (-3273 (((-112) $) 22 (|has| $ (-1023 (-554))))) (-1823 (((-1154 $) (-600 $)) 25 (|has| $ (-1034)))) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-2879 (($ (-1 $ $) (-600 $)) 36)) (-3310 (((-3 (-600 $) "failed") $) 46)) (-1613 (((-1140) $) 9)) (-2227 (((-631 (-600 $)) $) 45)) (-1408 (($ (-114) $) 38) (($ (-114) (-631 $)) 37)) (-2640 (((-112) $ (-114)) 40) (((-112) $ (-1158)) 39)) (-3323 (((-758) $) 47)) (-2768 (((-1102) $) 10)) (-2041 (((-112) $ $) 35) (((-112) $ (-1158)) 34)) (-1795 (((-112) $) 23 (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) 67) (($ $ (-631 (-600 $)) (-631 $)) 66) (($ $ (-631 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-631 $) (-631 $)) 62) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 33) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 32) (($ $ (-1158) (-1 $ (-631 $))) 31) (($ $ (-1158) (-1 $ $)) 30) (($ $ (-631 (-114)) (-631 (-1 $ $))) 29) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 28) (($ $ (-114) (-1 $ (-631 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2064 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-631 $)) 57)) (-3862 (($ $) 49) (($ $ $) 48)) (-4318 (($ $) 24 (|has| $ (-1034)))) (-3075 (((-848) $) 11) (($ (-600 $)) 68)) (-4125 (($ $) 53) (($ (-631 $)) 52)) (-1902 (((-112) (-114)) 41)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18))) +(((-297) (-138)) (T -297)) +((-2064 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297)))) (-3380 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297)))) (-3380 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *1))) (-4 *1 (-297)))) (-3380 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-600 *1))) (-5 *3 (-631 *1)) (-4 *1 (-297)))) (-4125 (*1 *1 *1) (-4 *1 (-297))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297)))) (-1342 (*1 *1 *1) (-4 *1 (-297))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297)))) (-3862 (*1 *1 *1) (-4 *1 (-297))) (-3862 (*1 *1 *1 *1) (-4 *1 (-297))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-758)))) (-3310 (*1 *2 *1) (|partial| -12 (-5 *2 (-600 *1)) (-4 *1 (-297)))) (-2227 (*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-631 (-114))))) (-3086 (*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1902 (*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2640 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2640 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112)))) (-1408 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1408 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297)))) (-2879 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-600 *1)) (-4 *1 (-297)))) (-2041 (*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))) (-2041 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-600 *1)) (-4 *1 (-1034)) (-4 *1 (-297)) (-5 *2 (-1154 *1)))) (-4318 (*1 *1 *1) (-12 (-4 *1 (-1034)) (-4 *1 (-297)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112))))) +(-13 (-836) (-1023 (-600 $)) (-508 (-600 $) $) (-304 $) (-10 -8 (-15 -2064 ($ (-114) $)) (-15 -2064 ($ (-114) $ $)) (-15 -2064 ($ (-114) $ $ $)) (-15 -2064 ($ (-114) $ $ $ $)) (-15 -2064 ($ (-114) (-631 $))) (-15 -3380 ($ $ (-289 $))) (-15 -3380 ($ $ (-631 (-289 $)))) (-15 -3380 ($ $ (-631 (-600 $)) (-631 $))) (-15 -4125 ($ $)) (-15 -4125 ($ (-631 $))) (-15 -1342 ($ $)) (-15 -1342 ($ (-631 $))) (-15 -3862 ($ $)) (-15 -3862 ($ $ $)) (-15 -3323 ((-758) $)) (-15 -3310 ((-3 (-600 $) "failed") $)) (-15 -2227 ((-631 (-600 $)) $)) (-15 -2143 ((-631 (-600 $)) $)) (-15 -3489 ((-631 (-114)) $)) (-15 -3086 ((-114) (-114))) (-15 -1902 ((-112) (-114))) (-15 -2640 ((-112) $ (-114))) (-15 -2640 ((-112) $ (-1158))) (-15 -1408 ($ (-114) $)) (-15 -1408 ($ (-114) (-631 $))) (-15 -2879 ($ (-1 $ $) (-600 $))) (-15 -2041 ((-112) $ $)) (-15 -2041 ((-112) $ (-1158))) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-1 $ $)))) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-1 $ (-631 $))))) (-15 -2386 ($ $ (-1158) (-1 $ (-631 $)))) (-15 -2386 ($ $ (-1158) (-1 $ $))) (-15 -2386 ($ $ (-631 (-114)) (-631 (-1 $ $)))) (-15 -2386 ($ $ (-631 (-114)) (-631 (-1 $ (-631 $))))) (-15 -2386 ($ $ (-114) (-1 $ (-631 $)))) (-15 -2386 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1034)) (PROGN (-15 -1823 ((-1154 $) (-600 $))) (-15 -4318 ($ $))) |%noBranch|) (IF (|has| $ (-1023 (-554))) (PROGN (-15 -1795 ((-112) $)) (-15 -3273 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-604 #0=(-600 $)) . T) ((-601 (-848)) . T) ((-304 $) . T) ((-508 (-600 $) $) . T) ((-508 $ $) . T) ((-836) . T) ((-1023 #0#) . T) ((-1082) . T)) +((-3667 (((-631 |#1|) (-631 |#1|)) 10))) +(((-298 |#1|) (-10 -7 (-15 -3667 ((-631 |#1|) (-631 |#1|)))) (-834)) (T -298)) +((-3667 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-834)) (-5 *1 (-298 *3))))) +(-10 -7 (-15 -3667 ((-631 |#1|) (-631 |#1|)))) +((-2879 (((-675 |#2|) (-1 |#2| |#1|) (-675 |#1|)) 17))) +(((-299 |#1| |#2|) (-10 -7 (-15 -2879 ((-675 |#2|) (-1 |#2| |#1|) (-675 |#1|)))) (-1034) (-1034)) (T -299)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-675 *6)) (-5 *1 (-299 *5 *6))))) +(-10 -7 (-15 -2879 ((-675 |#2|) (-1 |#2| |#1|) (-675 |#1|)))) +((-3807 (((-1241 (-311 (-374))) (-1241 (-311 (-221)))) 105)) (-3360 (((-1076 (-829 (-221))) (-1076 (-829 (-374)))) 40)) (-2976 (((-631 (-1140)) (-1138 (-221))) 87)) (-3909 (((-311 (-374)) (-937 (-221))) 50)) (-1742 (((-221) (-937 (-221))) 46)) (-1723 (((-1140) (-374)) 169)) (-2496 (((-829 (-221)) (-829 (-374))) 34)) (-3152 (((-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))) (-1241 (-311 (-221)))) 143)) (-3971 (((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) 181) (((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) 179)) (-2866 (((-675 (-221)) (-631 (-221)) (-758)) 14)) (-3675 (((-1241 (-685)) (-631 (-221))) 94)) (-1984 (((-631 (-1140)) (-631 (-221))) 75)) (-3258 (((-3 (-311 (-221)) "failed") (-311 (-221))) 120)) (-2028 (((-112) (-221) (-1076 (-829 (-221)))) 109)) (-1600 (((-1020) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) 198)) (-4243 (((-221) (-1076 (-829 (-221)))) 107)) (-3653 (((-221) (-1076 (-829 (-221)))) 108)) (-2733 (((-221) (-402 (-554))) 27)) (-3753 (((-1140) (-374)) 73)) (-1794 (((-221) (-374)) 17)) (-1566 (((-374) (-1241 (-311 (-221)))) 154)) (-3269 (((-311 (-221)) (-311 (-374))) 23)) (-2677 (((-402 (-554)) (-311 (-221))) 53)) (-4352 (((-311 (-402 (-554))) (-311 (-221))) 69)) (-3988 (((-311 (-374)) (-311 (-221))) 98)) (-4222 (((-221) (-311 (-221))) 54)) (-2272 (((-631 (-221)) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) 64)) (-3130 (((-1076 (-829 (-221))) (-1076 (-829 (-221)))) 61)) (-2588 (((-1140) (-221)) 72)) (-1621 (((-685) (-221)) 90)) (-2055 (((-402 (-554)) (-221)) 55)) (-3443 (((-311 (-374)) (-221)) 49)) (-2927 (((-631 (-1076 (-829 (-221)))) (-631 (-1076 (-829 (-374))))) 43)) (-4323 (((-1020) (-631 (-1020))) 165) (((-1020) (-1020) (-1020)) 162)) (-1866 (((-1020) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-300) (-10 -7 (-15 -1794 ((-221) (-374))) (-15 -3269 ((-311 (-221)) (-311 (-374)))) (-15 -2496 ((-829 (-221)) (-829 (-374)))) (-15 -3360 ((-1076 (-829 (-221))) (-1076 (-829 (-374))))) (-15 -2927 ((-631 (-1076 (-829 (-221)))) (-631 (-1076 (-829 (-374)))))) (-15 -2055 ((-402 (-554)) (-221))) (-15 -2677 ((-402 (-554)) (-311 (-221)))) (-15 -4222 ((-221) (-311 (-221)))) (-15 -3258 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -1566 ((-374) (-1241 (-311 (-221))))) (-15 -3152 ((-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))) (-1241 (-311 (-221))))) (-15 -4352 ((-311 (-402 (-554))) (-311 (-221)))) (-15 -3130 ((-1076 (-829 (-221))) (-1076 (-829 (-221))))) (-15 -2272 ((-631 (-221)) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-15 -1621 ((-685) (-221))) (-15 -3675 ((-1241 (-685)) (-631 (-221)))) (-15 -3988 ((-311 (-374)) (-311 (-221)))) (-15 -3807 ((-1241 (-311 (-374))) (-1241 (-311 (-221))))) (-15 -2028 ((-112) (-221) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -3753 ((-1140) (-374))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4323 ((-1020) (-1020) (-1020))) (-15 -4323 ((-1020) (-631 (-1020)))) (-15 -1723 ((-1140) (-374))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))) (-15 -1866 ((-1020) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1600 ((-1020) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -3909 ((-311 (-374)) (-937 (-221)))) (-15 -1742 ((-221) (-937 (-221)))) (-15 -3443 ((-311 (-374)) (-221))) (-15 -2733 ((-221) (-402 (-554)))) (-15 -2866 ((-675 (-221)) (-631 (-221)) (-758))))) (T -300)) +((-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-221))) (-5 *4 (-758)) (-5 *2 (-675 (-221))) (-5 *1 (-300)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-402 (-554))) (-5 *2 (-221)) (-5 *1 (-300)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-937 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-937 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-631 (-1020))) (-5 *2 (-1020)) (-5 *1 (-300)))) (-4323 (*1 *2 *2 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-300)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-300)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-1076 (-829 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-300)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-1241 (-311 (-374)))) (-5 *1 (-300)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1241 (-685))) (-5 *1 (-300)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-685)) (-5 *1 (-300)))) (-2272 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *2 (-631 (-221))) (-5 *1 (-300)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-1076 (-829 (-221)))) (-5 *1 (-300)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-554)))) (-5 *1 (-300)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554)))) (-5 *1 (-300)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300)))) (-3258 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-554))) (-5 *1 (-300)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-554))) (-5 *1 (-300)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-631 (-1076 (-829 (-374))))) (-5 *2 (-631 (-1076 (-829 (-221))))) (-5 *1 (-300)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-1076 (-829 (-374)))) (-5 *2 (-1076 (-829 (-221)))) (-5 *1 (-300)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-829 (-374))) (-5 *2 (-829 (-221))) (-5 *1 (-300)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300))))) +(-10 -7 (-15 -1794 ((-221) (-374))) (-15 -3269 ((-311 (-221)) (-311 (-374)))) (-15 -2496 ((-829 (-221)) (-829 (-374)))) (-15 -3360 ((-1076 (-829 (-221))) (-1076 (-829 (-374))))) (-15 -2927 ((-631 (-1076 (-829 (-221)))) (-631 (-1076 (-829 (-374)))))) (-15 -2055 ((-402 (-554)) (-221))) (-15 -2677 ((-402 (-554)) (-311 (-221)))) (-15 -4222 ((-221) (-311 (-221)))) (-15 -3258 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -1566 ((-374) (-1241 (-311 (-221))))) (-15 -3152 ((-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554))) (-1241 (-311 (-221))))) (-15 -4352 ((-311 (-402 (-554))) (-311 (-221)))) (-15 -3130 ((-1076 (-829 (-221))) (-1076 (-829 (-221))))) (-15 -2272 ((-631 (-221)) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-15 -1621 ((-685) (-221))) (-15 -3675 ((-1241 (-685)) (-631 (-221)))) (-15 -3988 ((-311 (-374)) (-311 (-221)))) (-15 -3807 ((-1241 (-311 (-374))) (-1241 (-311 (-221))))) (-15 -2028 ((-112) (-221) (-1076 (-829 (-221))))) (-15 -2588 ((-1140) (-221))) (-15 -3753 ((-1140) (-374))) (-15 -1984 ((-631 (-1140)) (-631 (-221)))) (-15 -2976 ((-631 (-1140)) (-1138 (-221)))) (-15 -4243 ((-221) (-1076 (-829 (-221))))) (-15 -3653 ((-221) (-1076 (-829 (-221))))) (-15 -4323 ((-1020) (-1020) (-1020))) (-15 -4323 ((-1020) (-631 (-1020)))) (-15 -1723 ((-1140) (-374))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))))) (-15 -3971 ((-1020) (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))))) (-15 -1866 ((-1020) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1600 ((-1020) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -3909 ((-311 (-374)) (-937 (-221)))) (-15 -1742 ((-221) (-937 (-221)))) (-15 -3443 ((-311 (-374)) (-221))) (-15 -2733 ((-221) (-402 (-554)))) (-15 -2866 ((-675 (-221)) (-631 (-221)) (-758)))) +((-2286 (((-112) $ $) 11)) (-3964 (($ $ $) 15)) (-3943 (($ $ $) 14)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 44)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2510 (($ $ $) 21) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3919 (((-3 $ "failed") $ $) 17)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 46))) +(((-301 |#1|) (-10 -8 (-15 -3816 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -2032 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2032 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -2286 ((-112) |#1| |#1|)) (-15 -2431 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -3148 ((-2 (|:| -1490 (-631 |#1|)) (|:| -4137 |#1|)) (-631 |#1|))) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|))) (-302)) (T -301)) +NIL +(-10 -8 (-15 -3816 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -2032 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2032 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -3943 (|#1| |#1| |#1|)) (-15 -2286 ((-112) |#1| |#1|)) (-15 -2431 ((-3 (-631 |#1|) "failed") (-631 |#1|) |#1|)) (-15 -3148 ((-2 (|:| -1490 (-631 |#1|)) (|:| -4137 |#1|)) (-631 |#1|))) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-302) (-138)) (T -302)) +((-2286 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-758)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-302)))) (-3943 (*1 *1 *1 *1) (-4 *1 (-302))) (-3964 (*1 *1 *1 *1) (-4 *1 (-302))) (-2032 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) (-4 *1 (-302)))) (-2032 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-302)))) (-3816 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-302))))) +(-13 (-905) (-10 -8 (-15 -2286 ((-112) $ $)) (-15 -2072 ((-758) $)) (-15 -2259 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3943 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -2032 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $)) (-15 -2032 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3816 ((-3 (-631 $) "failed") (-631 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2386 (($ $ (-631 |#2|) (-631 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-289 |#2|)) 11) (($ $ (-631 (-289 |#2|))) NIL))) +(((-303 |#1| |#2|) (-10 -8 (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|)))) (-304 |#2|) (-1082)) (T -303)) +NIL +(-10 -8 (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|)))) +((-2386 (($ $ (-631 |#1|) (-631 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-289 |#1|)) 11) (($ $ (-631 (-289 |#1|))) 10))) +(((-304 |#1|) (-138) (-1082)) (T -304)) +((-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1082)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1082))))) +(-13 (-508 |t#1| |t#1|) (-10 -8 (-15 -2386 ($ $ (-289 |t#1|))) (-15 -2386 ($ $ (-631 (-289 |t#1|)))))) +(((-508 |#1| |#1|) . T)) +((-2386 ((|#1| (-1 |#1| (-554)) (-1160 (-402 (-554)))) 25))) +(((-305 |#1|) (-10 -7 (-15 -2386 (|#1| (-1 |#1| (-554)) (-1160 (-402 (-554)))))) (-38 (-402 (-554)))) (T -305)) +((-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-554))) (-5 *4 (-1160 (-402 (-554)))) (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-554))))))) +(-10 -7 (-15 -2386 (|#1| (-1 |#1| (-554)) (-1160 (-402 (-554)))))) +((-3062 (((-112) $ $) NIL)) (-2848 (((-554) $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 9)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-306) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -2848 ((-554) $))))) (T -306)) +((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-306)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-306))))) +(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -2848 ((-554) $)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-1658 (((-112) $ $) 9))) +(((-307) (-1082)) (T -307)) +NIL +(-1082) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 62)) (-3831 (((-1227 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1227 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-3 (-1226 |#2| |#3| |#4|) "failed") $) 25)) (-1668 (((-1227 |#1| |#2| |#3| |#4|) $) NIL) (((-1158) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-554) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-554)))) (((-1226 |#2| |#3| |#4|) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-1227 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1241 (-1227 |#1| |#2| |#3| |#4|)))) (-675 $) (-1241 $)) NIL) (((-675 (-1227 |#1| |#2| |#3| |#4|)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-1227 |#1| |#2| |#3| |#4|) $) 21)) (-3339 (((-3 $ "failed") $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1133)))) (-4304 (((-112) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-2706 (($ $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-2879 (($ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) $) NIL)) (-2608 (((-3 (-829 |#2|) "failed") $) 78)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-302)))) (-4339 (((-1227 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-1227 |#1| |#2| |#3| |#4|)) (-631 (-1227 |#1| |#2| |#3| |#4|))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-289 (-1227 |#1| |#2| |#3| |#4|))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-631 (-289 (-1227 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-304 (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-631 (-1158)) (-631 (-1227 |#1| |#2| |#3| |#4|))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-508 (-1158) (-1227 |#1| |#2| |#3| |#4|)))) (($ $ (-1158) (-1227 |#1| |#2| |#3| |#4|)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-508 (-1158) (-1227 |#1| |#2| |#3| |#4|))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-1227 |#1| |#2| |#3| |#4|)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-281 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1158)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) (-758)) NIL) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-1227 |#1| |#2| |#3| |#4|) $) 17)) (-2927 (((-877 (-554)) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-602 (-530)))) (((-374) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1007))) (((-221) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-1227 |#1| |#2| |#3| |#4|) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-1227 |#1| |#2| |#3| |#4|)) 29) (($ (-1158)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-1023 (-1158)))) (($ (-1226 |#2| |#3| |#4|)) 36)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-1227 |#1| |#2| |#3| |#4|) (-894))) (|has| (-1227 |#1| |#2| |#3| |#4|) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-1227 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-807)))) (-2004 (($) 41 T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1158)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-885 (-1158)))) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) (-758)) NIL) (($ $ (-1 (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-1227 |#1| |#2| |#3| |#4|) (-836)))) (-1752 (($ $ $) 34) (($ (-1227 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|)) 31)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-1227 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1227 |#1| |#2| |#3| |#4|)) NIL))) +(((-308 |#1| |#2| |#3| |#4|) (-13 (-977 (-1227 |#1| |#2| |#3| |#4|)) (-1023 (-1226 |#2| |#3| |#4|)) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -3075 ($ (-1226 |#2| |#3| |#4|))))) (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)) (-13 (-27) (-1180) (-425 |#1|)) (-1158) |#2|) (T -308)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1226 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4) (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *1 (-308 *3 *4 *5 *6)))) (-2608 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *2 (-829 *4)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4)))) +(-13 (-977 (-1227 |#1| |#2| |#3| |#4|)) (-1023 (-1226 |#2| |#3| |#4|)) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -3075 ($ (-1226 |#2| |#3| |#4|))))) +((-2879 (((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)) 13))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2879 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)))) (-836) (-836)) (T -309)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-836)) (-4 *6 (-836)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6))))) +(-10 -7 (-15 -2879 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)))) +((-2444 (((-52) |#2| (-289 |#2|) (-758)) 33) (((-52) |#2| (-289 |#2|)) 24) (((-52) |#2| (-758)) 28) (((-52) |#2|) 25) (((-52) (-1158)) 21)) (-4175 (((-52) |#2| (-289 |#2|) (-402 (-554))) 51) (((-52) |#2| (-289 |#2|)) 48) (((-52) |#2| (-402 (-554))) 50) (((-52) |#2|) 49) (((-52) (-1158)) 47)) (-2463 (((-52) |#2| (-289 |#2|) (-402 (-554))) 46) (((-52) |#2| (-289 |#2|)) 43) (((-52) |#2| (-402 (-554))) 45) (((-52) |#2|) 44) (((-52) (-1158)) 42)) (-2454 (((-52) |#2| (-289 |#2|) (-554)) 39) (((-52) |#2| (-289 |#2|)) 35) (((-52) |#2| (-554)) 38) (((-52) |#2|) 36) (((-52) (-1158)) 34))) +(((-310 |#1| |#2|) (-10 -7 (-15 -2444 ((-52) (-1158))) (-15 -2444 ((-52) |#2|)) (-15 -2444 ((-52) |#2| (-758))) (-15 -2444 ((-52) |#2| (-289 |#2|))) (-15 -2444 ((-52) |#2| (-289 |#2|) (-758))) (-15 -2454 ((-52) (-1158))) (-15 -2454 ((-52) |#2|)) (-15 -2454 ((-52) |#2| (-554))) (-15 -2454 ((-52) |#2| (-289 |#2|))) (-15 -2454 ((-52) |#2| (-289 |#2|) (-554))) (-15 -2463 ((-52) (-1158))) (-15 -2463 ((-52) |#2|)) (-15 -2463 ((-52) |#2| (-402 (-554)))) (-15 -2463 ((-52) |#2| (-289 |#2|))) (-15 -2463 ((-52) |#2| (-289 |#2|) (-402 (-554)))) (-15 -4175 ((-52) (-1158))) (-15 -4175 ((-52) |#2|)) (-15 -4175 ((-52) |#2| (-402 (-554)))) (-15 -4175 ((-52) |#2| (-289 |#2|))) (-15 -4175 ((-52) |#2| (-289 |#2|) (-402 (-554))))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -310)) +((-4175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-554))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))) (-2463 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-554))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 *5) (-627 *5))) (-5 *5 (-554)) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-4 *5 (-13 (-446) (-836) (-1023 *4) (-627 *4))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2454 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4))))) (-2444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-758)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1180) (-425 *4)))))) +(-10 -7 (-15 -2444 ((-52) (-1158))) (-15 -2444 ((-52) |#2|)) (-15 -2444 ((-52) |#2| (-758))) (-15 -2444 ((-52) |#2| (-289 |#2|))) (-15 -2444 ((-52) |#2| (-289 |#2|) (-758))) (-15 -2454 ((-52) (-1158))) (-15 -2454 ((-52) |#2|)) (-15 -2454 ((-52) |#2| (-554))) (-15 -2454 ((-52) |#2| (-289 |#2|))) (-15 -2454 ((-52) |#2| (-289 |#2|) (-554))) (-15 -2463 ((-52) (-1158))) (-15 -2463 ((-52) |#2|)) (-15 -2463 ((-52) |#2| (-402 (-554)))) (-15 -2463 ((-52) |#2| (-289 |#2|))) (-15 -2463 ((-52) |#2| (-289 |#2|) (-402 (-554)))) (-15 -4175 ((-52) (-1158))) (-15 -4175 ((-52) |#2|)) (-15 -4175 ((-52) |#2| (-402 (-554)))) (-15 -4175 ((-52) |#2| (-289 |#2|))) (-15 -4175 ((-52) |#2| (-289 |#2|) (-402 (-554))))) +((-3062 (((-112) $ $) NIL)) (-2719 (((-631 $) $ (-1158)) NIL (|has| |#1| (-546))) (((-631 $) $) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $) (-1158)) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $)) NIL (|has| |#1| (-546))) (((-631 $) (-937 $)) NIL (|has| |#1| (-546)))) (-3856 (($ $ (-1158)) NIL (|has| |#1| (-546))) (($ $) NIL (|has| |#1| (-546))) (($ (-1154 $) (-1158)) NIL (|has| |#1| (-546))) (($ (-1154 $)) NIL (|has| |#1| (-546))) (($ (-937 $)) NIL (|has| |#1| (-546)))) (-1695 (((-112) $) 27 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-2405 (((-631 (-1158)) $) 350)) (-2237 (((-402 (-1154 $)) $ (-600 $)) NIL (|has| |#1| (-546)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2143 (((-631 (-600 $)) $) NIL)) (-3023 (($ $) 159 (|has| |#1| (-546)))) (-4200 (($ $) 135 (|has| |#1| (-546)))) (-3820 (($ $ (-1074 $)) 220 (|has| |#1| (-546))) (($ $ (-1158)) 216 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) 367) (($ $ (-631 (-600 $)) (-631 $)) 411)) (-4308 (((-413 (-1154 $)) (-1154 $)) 294 (-12 (|has| |#1| (-446)) (|has| |#1| (-546))))) (-3278 (($ $) NIL (|has| |#1| (-546)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-546)))) (-2282 (($ $) NIL (|has| |#1| (-546)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3003 (($ $) 155 (|has| |#1| (-546)))) (-4177 (($ $) 131 (|has| |#1| (-546)))) (-3741 (($ $ (-554)) 69 (|has| |#1| (-546)))) (-3046 (($ $) 163 (|has| |#1| (-546)))) (-2916 (($ $) 139 (|has| |#1| (-546)))) (-4087 (($) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))) CONST)) (-3613 (((-631 $) $ (-1158)) NIL (|has| |#1| (-546))) (((-631 $) $) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $) (-1158)) NIL (|has| |#1| (-546))) (((-631 $) (-1154 $)) NIL (|has| |#1| (-546))) (((-631 $) (-937 $)) NIL (|has| |#1| (-546)))) (-3625 (($ $ (-1158)) NIL (|has| |#1| (-546))) (($ $) NIL (|has| |#1| (-546))) (($ (-1154 $) (-1158)) 122 (|has| |#1| (-546))) (($ (-1154 $)) NIL (|has| |#1| (-546))) (($ (-937 $)) NIL (|has| |#1| (-546)))) (-2784 (((-3 (-600 $) "failed") $) 17) (((-3 (-1158) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-937 |#1|)) "failed") $) NIL (|has| |#1| (-546))) (((-3 (-937 |#1|) "failed") $) NIL (|has| |#1| (-1034))) (((-3 (-402 (-554)) "failed") $) 46 (-3994 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 (((-600 $) $) 11) (((-1158) $) NIL) ((|#1| $) 402) (((-48) $) NIL (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-937 |#1|)) $) NIL (|has| |#1| (-546))) (((-937 |#1|) $) NIL (|has| |#1| (-1034))) (((-402 (-554)) $) 305 (-3994 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-3964 (($ $ $) NIL (|has| |#1| (-546)))) (-3699 (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 115 (|has| |#1| (-1034))) (((-675 |#1|) (-675 $)) 105 (|has| |#1| (-1034))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (-3676 (($ $) 87 (|has| |#1| (-546)))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))))) (-3943 (($ $ $) NIL (|has| |#1| (-546)))) (-4264 (($ $ (-1074 $)) 224 (|has| |#1| (-546))) (($ $ (-1158)) 222 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-546)))) (-3289 (((-112) $) NIL (|has| |#1| (-546)))) (-1738 (($ $ $) 190 (|has| |#1| (-546)))) (-2844 (($) 125 (|has| |#1| (-546)))) (-1295 (($ $ $) 210 (|has| |#1| (-546)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 373 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 380 (|has| |#1| (-871 (-374))))) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) 265)) (-3248 (((-112) $) 25 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))))) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-3472 (($ $) 68 (|has| |#1| (-1034)))) (-2810 (((-1107 |#1| (-600 $)) $) 82 (|has| |#1| (-1034)))) (-1406 (((-112) $) 61 (|has| |#1| (-546)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-546)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-546)))) (-1823 (((-1154 $) (-600 $)) 266 (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) 407)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-2395 (($ $) 129 (|has| |#1| (-546)))) (-4145 (($ $) 235 (|has| |#1| (-546)))) (-2475 (($ (-631 $)) NIL (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) 49)) (-1408 (($ (-114) $) NIL) (($ (-114) (-631 $)) 412)) (-3778 (((-3 (-631 $) "failed") $) NIL (|has| |#1| (-1094)))) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) NIL (|has| |#1| (-1034)))) (-2433 (((-3 (-631 $) "failed") $) 415 (|has| |#1| (-25)))) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 419 (|has| |#1| (-25)))) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) NIL (|has| |#1| (-1094))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) NIL (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) NIL (|has| |#1| (-1034)))) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) 53)) (-2483 (($ $) NIL (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-3546 (($ $ (-1158)) 239 (|has| |#1| (-546))) (($ $ (-1074 $)) 241 (|has| |#1| (-546)))) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 43)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 287 (|has| |#1| (-546)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-1662 (($ $ (-1158)) 214 (|has| |#1| (-546))) (($ $) 212 (|has| |#1| (-546)))) (-1582 (($ $) 206 (|has| |#1| (-546)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 292 (-12 (|has| |#1| (-446)) (|has| |#1| (-546))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-546)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-546))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-546)))) (-1333 (($ $) 127 (|has| |#1| (-546)))) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) 406) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) 360) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1158)) NIL (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-602 (-530)))) (($ $) NIL (|has| |#1| (-602 (-530)))) (($ $ (-114) $ (-1158)) 348 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-114)) (-631 $) (-1158)) 347 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) NIL (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ (-631 $))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ $)) NIL (|has| |#1| (-1034)))) (-2072 (((-758) $) NIL (|has| |#1| (-546)))) (-4124 (($ $) 227 (|has| |#1| (-546)))) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3862 (($ $) NIL) (($ $ $) NIL)) (-4164 (($ $) 237 (|has| |#1| (-546)))) (-2696 (($ $) 188 (|has| |#1| (-546)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-1034))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-1034))) (($ $ (-1158)) NIL (|has| |#1| (-1034)))) (-3623 (($ $) 70 (|has| |#1| (-546)))) (-2822 (((-1107 |#1| (-600 $)) $) 84 (|has| |#1| (-546)))) (-4318 (($ $) 303 (|has| $ (-1034)))) (-3057 (($ $) 165 (|has| |#1| (-546)))) (-2926 (($ $) 141 (|has| |#1| (-546)))) (-3034 (($ $) 161 (|has| |#1| (-546)))) (-4213 (($ $) 137 (|has| |#1| (-546)))) (-3014 (($ $) 157 (|has| |#1| (-546)))) (-4188 (($ $) 133 (|has| |#1| (-546)))) (-2927 (((-877 (-554)) $) NIL (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#1| (-602 (-877 (-374))))) (($ (-413 $)) NIL (|has| |#1| (-546))) (((-530) $) 345 (|has| |#1| (-602 (-530))))) (-3992 (($ $ $) NIL (|has| |#1| (-467)))) (-1856 (($ $ $) NIL (|has| |#1| (-467)))) (-3075 (((-848) $) 405) (($ (-600 $)) 396) (($ (-1158)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-546))) (($ (-48)) 298 (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) (($ (-1107 |#1| (-600 $))) 86 (|has| |#1| (-1034))) (($ (-402 |#1|)) NIL (|has| |#1| (-546))) (($ (-937 (-402 |#1|))) NIL (|has| |#1| (-546))) (($ (-402 (-937 (-402 |#1|)))) NIL (|has| |#1| (-546))) (($ (-402 (-937 |#1|))) NIL (|has| |#1| (-546))) (($ (-937 |#1|)) NIL (|has| |#1| (-1034))) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-546)) (|has| |#1| (-1023 (-402 (-554)))))) (($ (-554)) 34 (-3994 (|has| |#1| (-1023 (-554))) (|has| |#1| (-1034))))) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL (|has| |#1| (-1034)))) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1629 (($ $ $) 208 (|has| |#1| (-546)))) (-1943 (($ $ $) 194 (|has| |#1| (-546)))) (-1952 (($ $ $) 198 (|has| |#1| (-546)))) (-3586 (($ $ $) 192 (|has| |#1| (-546)))) (-3746 (($ $ $) 196 (|has| |#1| (-546)))) (-1902 (((-112) (-114)) 9)) (-3096 (($ $) 171 (|has| |#1| (-546)))) (-2959 (($ $) 147 (|has| |#1| (-546)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 167 (|has| |#1| (-546)))) (-2938 (($ $) 143 (|has| |#1| (-546)))) (-3120 (($ $) 175 (|has| |#1| (-546)))) (-2981 (($ $) 151 (|has| |#1| (-546)))) (-3155 (($ (-1158) $) NIL) (($ (-1158) $ $) NIL) (($ (-1158) $ $ $) NIL) (($ (-1158) $ $ $ $) NIL) (($ (-1158) (-631 $)) NIL)) (-2973 (($ $) 202 (|has| |#1| (-546)))) (-1959 (($ $) 200 (|has| |#1| (-546)))) (-2908 (($ $) 177 (|has| |#1| (-546)))) (-2991 (($ $) 153 (|has| |#1| (-546)))) (-3108 (($ $) 173 (|has| |#1| (-546)))) (-2969 (($ $) 149 (|has| |#1| (-546)))) (-3083 (($ $) 169 (|has| |#1| (-546)))) (-2948 (($ $) 145 (|has| |#1| (-546)))) (-1700 (($ $) 180 (|has| |#1| (-546)))) (-2004 (($) 20 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) CONST)) (-2697 (($ $) 231 (|has| |#1| (-546)))) (-2014 (($) 22 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))) CONST)) (-3628 (($ $) 182 (|has| |#1| (-546))) (($ $ $) 184 (|has| |#1| (-546)))) (-1667 (($ $) 229 (|has| |#1| (-546)))) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-1034))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-1034))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-1034))) (($ $ (-1158)) NIL (|has| |#1| (-1034)))) (-1373 (($ $) 233 (|has| |#1| (-546)))) (-4280 (($ $ $) 186 (|has| |#1| (-546)))) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 79)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 78)) (-1752 (($ (-1107 |#1| (-600 $)) (-1107 |#1| (-600 $))) 96 (|has| |#1| (-546))) (($ $ $) 42 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-1744 (($ $ $) 40 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (($ $) 29 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (-1735 (($ $ $) 38 (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))))) (** (($ $ $) 63 (|has| |#1| (-546))) (($ $ (-402 (-554))) 300 (|has| |#1| (-546))) (($ $ (-554)) 74 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546)))) (($ $ (-758)) 71 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094)))) (($ $ (-906)) 76 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094))))) (* (($ (-402 (-554)) $) NIL (|has| |#1| (-546))) (($ $ (-402 (-554))) NIL (|has| |#1| (-546))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3994 (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) (|has| |#1| (-1094)))) (($ (-554) $) 32 (-3994 (|has| |#1| (-21)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (($ (-758) $) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))) (($ (-906) $) NIL (-3994 (|has| |#1| (-25)) (-12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))))))) +(((-311 |#1|) (-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-546)) (PROGN (-6 (-29 |#1|)) (-6 (-1180)) (-6 (-158)) (-6 (-617)) (-6 (-1121)) (-15 -3676 ($ $)) (-15 -1406 ((-112) $)) (-15 -3741 ($ $ (-554))) (IF (|has| |#1| (-446)) (PROGN (-15 -3082 ((-413 (-1154 $)) (-1154 $))) (-15 -4308 ((-413 (-1154 $)) (-1154 $)))) |%noBranch|) (IF (|has| |#1| (-1023 (-554))) (-6 (-1023 (-48))) |%noBranch|)) |%noBranch|))) (-836)) (T -311)) +((-3676 (*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-546)) (-4 *2 (-836)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836)))) (-3741 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836)))) (-3082 (*1 *2 *3) (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836)))) (-4308 (*1 *2 *3) (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1)) (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836))))) +(-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-546)) (PROGN (-6 (-29 |#1|)) (-6 (-1180)) (-6 (-158)) (-6 (-617)) (-6 (-1121)) (-15 -3676 ($ $)) (-15 -1406 ((-112) $)) (-15 -3741 ($ $ (-554))) (IF (|has| |#1| (-446)) (PROGN (-15 -3082 ((-413 (-1154 $)) (-1154 $))) (-15 -4308 ((-413 (-1154 $)) (-1154 $)))) |%noBranch|) (IF (|has| |#1| (-1023 (-554))) (-6 (-1023 (-48))) |%noBranch|)) |%noBranch|))) +((-4134 (((-52) |#2| (-114) (-289 |#2|) (-631 |#2|)) 88) (((-52) |#2| (-114) (-289 |#2|) (-289 |#2|)) 84) (((-52) |#2| (-114) (-289 |#2|) |#2|) 86) (((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|) 87) (((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|))) 80) (((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 |#2|)) 82) (((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 |#2|)) 83) (((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|))) 81) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|)) 89) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|)) 85))) +(((-312 |#1| |#2|) (-10 -7 (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-631 |#2|)))) (-13 (-836) (-546) (-602 (-530))) (-425 |#1|)) (T -312)) +((-4134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-631 *3)) (-4 *3 (-425 *7)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *3)))) (-4134 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-4134 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *5)))) (-4134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-114))) (-5 *6 (-631 (-289 *8))) (-4 *8 (-425 *7)) (-5 *5 (-289 *8)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-4134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 (-289 *8))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *8)) (-5 *6 (-631 *8)) (-4 *8 (-425 *7)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-4134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-4134 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-631 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-4134 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5)) (-4 *5 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) (-5 *1 (-312 *5 *6))))) +(-10 -7 (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-631 (-289 |#2|)) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 |#2|))) (-15 -4134 ((-52) (-631 |#2|) (-631 (-114)) (-289 |#2|) (-631 (-289 |#2|)))) (-15 -4134 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -4134 ((-52) |#2| (-114) (-289 |#2|) (-631 |#2|)))) +((-2655 (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554) (-1140)) 46) (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554)) 47) (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554) (-1140)) 43) (((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554)) 44)) (-3647 (((-1 (-221) (-221)) (-221)) 45))) +(((-313) (-10 -7 (-15 -3647 ((-1 (-221) (-221)) (-221))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554) (-1140))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554) (-1140))))) (T -313)) +((-2655 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) (-5 *8 (-1140)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-2655 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-2655 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *7 (-1140)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-2655 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) (-3647 (*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221))))) +(-10 -7 (-15 -3647 ((-1 (-221) (-221)) (-221))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-1 (-221) (-221)) (-554) (-1140))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554))) (-15 -2655 ((-1190 (-911)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-221) (-554) (-1140)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 25)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 20)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 32)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) 16)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) NIL) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1442 (((-402 (-554)) $) 17)) (-3581 (($ (-1226 |#1| |#2| |#3|)) 11)) (-1407 (((-1226 |#1| |#2| |#3|) $) 12)) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 10)) (-3075 (((-848) $) 38) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 30)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) NIL)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 27)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 33)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-314 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-779) (-10 -8 (-15 -3581 ($ (-1226 |#1| |#2| |#3|))) (-15 -1407 ((-1226 |#1| |#2| |#3|) $)) (-15 -1442 ((-402 (-554)) $)))) (-13 (-358) (-836)) (-1158) |#1|) (T -314)) +((-3581 (*1 *1 *2) (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1226 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3)))) +(-13 (-1222 |#1|) (-779) (-10 -8 (-15 -3581 ($ (-1226 |#1| |#2| |#3|))) (-15 -1407 ((-1226 |#1| |#2| |#3|) $)) (-15 -1442 ((-402 (-554)) $)))) +((-3734 (((-2 (|:| -1407 (-758)) (|:| -1490 |#1|) (|:| |radicand| (-631 |#1|))) (-413 |#1|) (-758)) 24)) (-2395 (((-631 (-2 (|:| -1490 (-758)) (|:| |logand| |#1|))) (-413 |#1|)) 28))) +(((-315 |#1|) (-10 -7 (-15 -3734 ((-2 (|:| -1407 (-758)) (|:| -1490 |#1|) (|:| |radicand| (-631 |#1|))) (-413 |#1|) (-758))) (-15 -2395 ((-631 (-2 (|:| -1490 (-758)) (|:| |logand| |#1|))) (-413 |#1|)))) (-546)) (T -315)) +((-2395 (*1 *2 *3) (-12 (-5 *3 (-413 *4)) (-4 *4 (-546)) (-5 *2 (-631 (-2 (|:| -1490 (-758)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *5)) (-4 *5 (-546)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *5) (|:| |radicand| (-631 *5)))) (-5 *1 (-315 *5)) (-5 *4 (-758))))) +(-10 -7 (-15 -3734 ((-2 (|:| -1407 (-758)) (|:| -1490 |#1|) (|:| |radicand| (-631 |#1|))) (-413 |#1|) (-758))) (-15 -2395 ((-631 (-2 (|:| -1490 (-758)) (|:| |logand| |#1|))) (-413 |#1|)))) +((-2405 (((-631 |#2|) (-1154 |#4|)) 43)) (-2699 ((|#3| (-554)) 46)) (-2303 (((-1154 |#4|) (-1154 |#3|)) 30)) (-2705 (((-1154 |#4|) (-1154 |#4|) (-554)) 56)) (-2487 (((-1154 |#3|) (-1154 |#4|)) 21)) (-3308 (((-631 (-758)) (-1154 |#4|) (-631 |#2|)) 40)) (-3781 (((-1154 |#3|) (-1154 |#4|) (-631 |#2|) (-631 |#3|)) 35))) +(((-316 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3781 ((-1154 |#3|) (-1154 |#4|) (-631 |#2|) (-631 |#3|))) (-15 -3308 ((-631 (-758)) (-1154 |#4|) (-631 |#2|))) (-15 -2405 ((-631 |#2|) (-1154 |#4|))) (-15 -2487 ((-1154 |#3|) (-1154 |#4|))) (-15 -2303 ((-1154 |#4|) (-1154 |#3|))) (-15 -2705 ((-1154 |#4|) (-1154 |#4|) (-554))) (-15 -2699 (|#3| (-554)))) (-780) (-836) (-1034) (-934 |#3| |#1| |#2|)) (T -316)) +((-2699 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1034)) (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-934 *2 *4 *5)))) (-2705 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *7)) (-5 *3 (-554)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *1 (-316 *4 *5 *6 *7)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1154 *6)) (-4 *6 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-1154 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-1154 *6)) (-5 *1 (-316 *4 *5 *6 *7)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-631 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *8)) (-5 *4 (-631 *6)) (-4 *6 (-836)) (-4 *8 (-934 *7 *5 *6)) (-4 *5 (-780)) (-4 *7 (-1034)) (-5 *2 (-631 (-758))) (-5 *1 (-316 *5 *6 *7 *8)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 *8)) (-4 *7 (-836)) (-4 *8 (-1034)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-1154 *8)) (-5 *1 (-316 *6 *7 *8 *9))))) +(-10 -7 (-15 -3781 ((-1154 |#3|) (-1154 |#4|) (-631 |#2|) (-631 |#3|))) (-15 -3308 ((-631 (-758)) (-1154 |#4|) (-631 |#2|))) (-15 -2405 ((-631 |#2|) (-1154 |#4|))) (-15 -2487 ((-1154 |#3|) (-1154 |#4|))) (-15 -2303 ((-1154 |#4|) (-1154 |#3|))) (-15 -2705 ((-1154 |#4|) (-1154 |#4|) (-554))) (-15 -2699 (|#3| (-554)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 14)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $) 18)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-3195 ((|#1| $ (-554)) NIL)) (-4097 (((-554) $ (-554)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-3563 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 (-554) (-554)) $) 10)) (-1613 (((-1140) $) NIL)) (-4244 (($ $ $) NIL (|has| (-554) (-779)))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1779 (((-554) |#1| $) NIL)) (-2004 (($) 15 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) 21 (|has| |#1| (-836)))) (-1744 (($ $) 11) (($ $ $) 20)) (-1735 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL) (($ (-554) |#1|) 19))) +(((-317 |#1|) (-13 (-21) (-704 (-554)) (-318 |#1| (-554)) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-1082)) (T -317)) +NIL +(-13 (-21) (-704 (-554)) (-318 |#1| (-554)) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $) 27)) (-2934 (((-3 $ "failed") $ $) 19)) (-1508 (((-758) $) 28)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 32)) (-1668 ((|#1| $) 33)) (-3195 ((|#1| $ (-554)) 25)) (-4097 ((|#2| $ (-554)) 26)) (-3563 (($ (-1 |#1| |#1|) $) 22)) (-2781 (($ (-1 |#2| |#2|) $) 23)) (-1613 (((-1140) $) 9)) (-4244 (($ $ $) 21 (|has| |#2| (-779)))) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ |#1|) 31)) (-1779 ((|#2| |#1| $) 24)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ |#2| |#1|) 29))) +(((-318 |#1| |#2|) (-138) (-1082) (-130)) (T -318)) +((-1735 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)) (-5 *2 (-758)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)) (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1082)) (-4 *2 (-130)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1082)))) (-1779 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130)) (-4 *3 (-779))))) +(-13 (-130) (-1023 |t#1|) (-10 -8 (-15 -1735 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1508 ((-758) $)) (-15 -3042 ((-631 (-2 (|:| |gen| |t#1|) (|:| -1333 |t#2|))) $)) (-15 -4097 (|t#2| $ (-554))) (-15 -3195 (|t#1| $ (-554))) (-15 -1779 (|t#2| |t#1| $)) (-15 -2781 ($ (-1 |t#2| |t#2|) $)) (-15 -3563 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-779)) (-15 -4244 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-1023 |#1|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-3195 ((|#1| $ (-554)) NIL)) (-4097 (((-758) $ (-554)) NIL)) (-3563 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 (-758) (-758)) $) NIL)) (-1613 (((-1140) $) NIL)) (-4244 (($ $ $) NIL (|has| (-758) (-779)))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1779 (((-758) |#1| $) NIL)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-758) |#1|) NIL))) +(((-319 |#1|) (-318 |#1| (-758)) (-1082)) (T -319)) +NIL +(-318 |#1| (-758)) +((-2048 (($ $) 53)) (-1344 (($ $ |#2| |#3| $) 14)) (-2789 (($ (-1 |#3| |#3|) $) 33)) (-2492 (((-112) $) 24)) (-2505 ((|#2| $) 26)) (-3919 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3276 ((|#2| $) 49)) (-1893 (((-631 |#2|) $) 36)) (-2907 (($ $ $ (-758)) 20)) (-1752 (($ $ |#2|) 40))) +(((-320 |#1| |#2| |#3|) (-10 -8 (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2907 (|#1| |#1| |#1| (-758))) (-15 -1344 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2789 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1752 (|#1| |#1| |#2|))) (-321 |#2| |#3|) (-1034) (-779)) (T -320)) +NIL +(-10 -8 (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2907 (|#1| |#1| |#1| (-758))) (-15 -1344 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2789 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1752 (|#1| |#1| |#2|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 91 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 89 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 86)) (-1668 (((-554) $) 90 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 88 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 87)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 75 (|has| |#1| (-446)))) (-1344 (($ $ |#1| |#2| $) 79)) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 82)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64)) (-3893 ((|#2| $) 81)) (-2789 (($ (-1 |#2| |#2|) $) 80)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 85)) (-2505 ((|#1| $) 84)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-546)))) (-3308 ((|#2| $) 67)) (-3276 ((|#1| $) 76 (|has| |#1| (-446)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50) (($ (-402 (-554))) 60 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))))) (-1893 (((-631 |#1|) $) 83)) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 78 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-321 |#1| |#2|) (-138) (-1034) (-779)) (T -321)) +((-2492 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-112)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-631 *3)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-758)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2789 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)))) (-1344 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) (-2907 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-4 *3 (-170)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *2 (-546)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)) (-4 *2 (-446)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *2 (-446))))) +(-13 (-47 |t#1| |t#2|) (-406 |t#1|) (-10 -8 (-15 -2492 ((-112) $)) (-15 -2505 (|t#1| $)) (-15 -1893 ((-631 |t#1|) $)) (-15 -2122 ((-758) $)) (-15 -3893 (|t#2| $)) (-15 -2789 ($ (-1 |t#2| |t#2|) $)) (-15 -1344 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -2907 ($ $ $ (-758))) |%noBranch|) (IF (|has| |t#1| (-546)) (-15 -3919 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3276 (|t#1| $)) (-15 -2048 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-285) |has| |#1| (-546)) ((-406 |#1|) . T) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-2703 (((-112) (-112)) NIL)) (-1501 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-2593 (($ $) NIL (|has| |#1| (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2127 (($ $ (-554)) NIL)) (-2375 (((-758) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2457 (($ (-631 |#1|)) NIL)) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-1853 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-322 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112))))) (-1195)) (T -322)) +((-2457 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-322 *3)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1195))))) +(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112))))) +((-3718 (((-112) $) 42)) (-1924 (((-758)) 22)) (-1612 ((|#2| $) 46) (($ $ (-906)) 101)) (-1508 (((-758)) 102)) (-1651 (($ (-1241 |#2|)) 20)) (-2693 (((-112) $) 115)) (-3274 ((|#2| $) 48) (($ $ (-906)) 99)) (-3361 (((-1154 |#2|) $) NIL) (((-1154 $) $ (-906)) 95)) (-3933 (((-1154 |#2|) $) 82)) (-3025 (((-1154 |#2|) $) 79) (((-3 (-1154 |#2|) "failed") $ $) 76)) (-2300 (($ $ (-1154 |#2|)) 53)) (-2365 (((-820 (-906))) 28) (((-906)) 43)) (-3330 (((-133)) 25)) (-3308 (((-820 (-906)) $) 30) (((-906) $) 117)) (-2288 (($) 108)) (-3656 (((-1241 |#2|) $) NIL) (((-675 |#2|) (-1241 $)) 39)) (-2084 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3536 (((-112) $) 41))) +(((-323 |#1| |#2|) (-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1508 ((-758))) (-15 -2084 (|#1| |#1|)) (-15 -3025 ((-3 (-1154 |#2|) "failed") |#1| |#1|)) (-15 -3025 ((-1154 |#2|) |#1|)) (-15 -3933 ((-1154 |#2|) |#1|)) (-15 -2300 (|#1| |#1| (-1154 |#2|))) (-15 -2693 ((-112) |#1|)) (-15 -2288 (|#1|)) (-15 -1612 (|#1| |#1| (-906))) (-15 -3274 (|#1| |#1| (-906))) (-15 -3361 ((-1154 |#1|) |#1| (-906))) (-15 -1612 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3308 ((-906) |#1|)) (-15 -2365 ((-906))) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -1924 ((-758))) (-15 -2365 ((-820 (-906)))) (-15 -3308 ((-820 (-906)) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -3330 ((-133)))) (-324 |#2|) (-358)) (T -323)) +((-3330 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-2365 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-820 (-906))) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-1924 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-2365 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-906)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-1508 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))) +(-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1508 ((-758))) (-15 -2084 (|#1| |#1|)) (-15 -3025 ((-3 (-1154 |#2|) "failed") |#1| |#1|)) (-15 -3025 ((-1154 |#2|) |#1|)) (-15 -3933 ((-1154 |#2|) |#1|)) (-15 -2300 (|#1| |#1| (-1154 |#2|))) (-15 -2693 ((-112) |#1|)) (-15 -2288 (|#1|)) (-15 -1612 (|#1| |#1| (-906))) (-15 -3274 (|#1| |#1| (-906))) (-15 -3361 ((-1154 |#1|) |#1| (-906))) (-15 -1612 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3308 ((-906) |#1|)) (-15 -2365 ((-906))) (-15 -3361 ((-1154 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -1924 ((-758))) (-15 -2365 ((-820 (-906)))) (-15 -3308 ((-820 (-906)) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -3330 ((-133)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3718 (((-112) $) 95)) (-1924 (((-758)) 91)) (-1612 ((|#1| $) 141) (($ $ (-906)) 138 (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 123 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-1508 (((-758)) 113 (|has| |#1| (-363)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 102)) (-1668 ((|#1| $) 103)) (-1651 (($ (-1241 |#1|)) 147)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-363)))) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3353 (($) 110 (|has| |#1| (-363)))) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3157 (($) 125 (|has| |#1| (-363)))) (-2754 (((-112) $) 126 (|has| |#1| (-363)))) (-4122 (($ $ (-758)) 88 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 87 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) 72)) (-2342 (((-906) $) 128 (|has| |#1| (-363))) (((-820 (-906)) $) 85 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) 31)) (-3227 (($) 136 (|has| |#1| (-363)))) (-2693 (((-112) $) 135 (|has| |#1| (-363)))) (-3274 ((|#1| $) 142) (($ $ (-906)) 139 (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) 114 (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-3361 (((-1154 |#1|) $) 146) (((-1154 $) $ (-906)) 140 (|has| |#1| (-363)))) (-3830 (((-906) $) 111 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) 132 (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) 131 (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) 130 (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) 133 (|has| |#1| (-363)))) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3834 (($) 115 (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 112 (|has| |#1| (-363)))) (-2070 (((-112) $) 94)) (-2768 (((-1102) $) 10)) (-4137 (($) 134 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 122 (|has| |#1| (-363)))) (-2270 (((-413 $) $) 75)) (-2365 (((-820 (-906))) 92) (((-906)) 144)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-758) $) 127 (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) 86 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) 100)) (-1553 (($ $) 119 (|has| |#1| (-363))) (($ $ (-758)) 117 (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) 93) (((-906) $) 143)) (-4318 (((-1154 |#1|)) 145)) (-3944 (($) 124 (|has| |#1| (-363)))) (-2288 (($) 137 (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 149) (((-675 |#1|) (-1241 $)) 148)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 121 (|has| |#1| (-363)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ |#1|) 101)) (-2084 (($ $) 120 (|has| |#1| (-363))) (((-3 $ "failed") $) 84 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 151) (((-1241 $) (-906)) 150)) (-1909 (((-112) $ $) 40)) (-3536 (((-112) $) 96)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1811 (($ $) 90 (|has| |#1| (-363))) (($ $ (-758)) 89 (|has| |#1| (-363)))) (-1787 (($ $) 118 (|has| |#1| (-363))) (($ $ (-758)) 116 (|has| |#1| (-363)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66) (($ $ |#1|) 99)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +(((-324 |#1|) (-138) (-358)) (T -324)) +((-3782 (*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1241 *1)) (-4 *1 (-324 *3)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-906)) (-4 *4 (-358)) (-5 *2 (-1241 *1)) (-4 *1 (-324 *4)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1241 *3)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3)))) (-4318 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3)))) (-2365 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-906)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1154 *1)) (-4 *1 (-324 *4)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-2288 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-3227 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2693 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4137 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1154 *3)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1154 *3)))) (-3025 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1154 *3))))) +(-13 (-1260 |t#1|) (-1023 |t#1|) (-10 -8 (-15 -3782 ((-1241 $))) (-15 -3782 ((-1241 $) (-906))) (-15 -3656 ((-1241 |t#1|) $)) (-15 -3656 ((-675 |t#1|) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|))) (-15 -3361 ((-1154 |t#1|) $)) (-15 -4318 ((-1154 |t#1|))) (-15 -2365 ((-906))) (-15 -3308 ((-906) $)) (-15 -3274 (|t#1| $)) (-15 -1612 (|t#1| $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-344)) (-15 -3361 ((-1154 $) $ (-906))) (-15 -3274 ($ $ (-906))) (-15 -1612 ($ $ (-906))) (-15 -2288 ($)) (-15 -3227 ($)) (-15 -2693 ((-112) $)) (-15 -4137 ($)) (-15 -2300 ($ $ (-1154 |t#1|))) (-15 -3933 ((-1154 |t#1|) $)) (-15 -3025 ((-1154 |t#1|) $)) (-15 -3025 ((-3 (-1154 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-229) |has| |#1| (-363)) ((-239) . T) ((-285) . T) ((-302) . T) ((-1260 |#1|) . T) ((-358) . T) ((-397) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-363) |has| |#1| (-363)) ((-344) |has| |#1| (-363)) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 |#1|) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-363)) ((-1199) . T) ((-1248 |#1|) . T)) +((-3062 (((-112) $ $) NIL)) (-2314 (($ (-1157) $) 88)) (-2679 (($) 77)) (-1945 (((-1102) (-1102)) 11)) (-3584 (($) 78)) (-2251 (($) 90) (($ (-311 (-685))) 98) (($ (-311 (-687))) 94) (($ (-311 (-680))) 102) (($ (-311 (-374))) 109) (($ (-311 (-554))) 105) (($ (-311 (-167 (-374)))) 113)) (-3825 (($ (-1157) $) 89)) (-3017 (($ (-631 (-848))) 79)) (-2921 (((-1246) $) 75)) (-1920 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1610 (($ (-1102)) 51)) (-3514 (((-1086) $) 25)) (-2114 (($ (-1074 (-937 (-554))) $) 85) (($ (-1074 (-937 (-554))) (-937 (-554)) $) 86)) (-3218 (($ (-1102)) 87)) (-4020 (($ (-1157) $) 115) (($ (-1157) $ $) 116)) (-3770 (($ (-1158) (-631 (-1158))) 76)) (-2712 (($ (-1140)) 82) (($ (-631 (-1140))) 80)) (-3075 (((-848) $) 118)) (-2126 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 $)) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 $))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 $))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848)))) $) 44)) (-4051 (($ (-1140)) 187)) (-3648 (($ (-631 $)) 114)) (-2972 (($ (-1158) (-1140)) 120) (($ (-1158) (-311 (-687))) 160) (($ (-1158) (-311 (-685))) 161) (($ (-1158) (-311 (-680))) 162) (($ (-1158) (-675 (-687))) 123) (($ (-1158) (-675 (-685))) 126) (($ (-1158) (-675 (-680))) 129) (($ (-1158) (-1241 (-687))) 132) (($ (-1158) (-1241 (-685))) 135) (($ (-1158) (-1241 (-680))) 138) (($ (-1158) (-675 (-311 (-687)))) 141) (($ (-1158) (-675 (-311 (-685)))) 144) (($ (-1158) (-675 (-311 (-680)))) 147) (($ (-1158) (-1241 (-311 (-687)))) 150) (($ (-1158) (-1241 (-311 (-685)))) 153) (($ (-1158) (-1241 (-311 (-680)))) 156) (($ (-1158) (-631 (-937 (-554))) (-311 (-687))) 157) (($ (-1158) (-631 (-937 (-554))) (-311 (-685))) 158) (($ (-1158) (-631 (-937 (-554))) (-311 (-680))) 159) (($ (-1158) (-311 (-554))) 184) (($ (-1158) (-311 (-374))) 185) (($ (-1158) (-311 (-167 (-374)))) 186) (($ (-1158) (-675 (-311 (-554)))) 165) (($ (-1158) (-675 (-311 (-374)))) 168) (($ (-1158) (-675 (-311 (-167 (-374))))) 171) (($ (-1158) (-1241 (-311 (-554)))) 174) (($ (-1158) (-1241 (-311 (-374)))) 177) (($ (-1158) (-1241 (-311 (-167 (-374))))) 180) (($ (-1158) (-631 (-937 (-554))) (-311 (-554))) 181) (($ (-1158) (-631 (-937 (-554))) (-311 (-374))) 182) (($ (-1158) (-631 (-937 (-554))) (-311 (-167 (-374)))) 183)) (-1658 (((-112) $ $) NIL))) +(((-325) (-13 (-1082) (-10 -8 (-15 -2114 ($ (-1074 (-937 (-554))) $)) (-15 -2114 ($ (-1074 (-937 (-554))) (-937 (-554)) $)) (-15 -2314 ($ (-1157) $)) (-15 -3825 ($ (-1157) $)) (-15 -1610 ($ (-1102))) (-15 -3218 ($ (-1102))) (-15 -2712 ($ (-1140))) (-15 -2712 ($ (-631 (-1140)))) (-15 -4051 ($ (-1140))) (-15 -2251 ($)) (-15 -2251 ($ (-311 (-685)))) (-15 -2251 ($ (-311 (-687)))) (-15 -2251 ($ (-311 (-680)))) (-15 -2251 ($ (-311 (-374)))) (-15 -2251 ($ (-311 (-554)))) (-15 -2251 ($ (-311 (-167 (-374))))) (-15 -4020 ($ (-1157) $)) (-15 -4020 ($ (-1157) $ $)) (-15 -2972 ($ (-1158) (-1140))) (-15 -2972 ($ (-1158) (-311 (-687)))) (-15 -2972 ($ (-1158) (-311 (-685)))) (-15 -2972 ($ (-1158) (-311 (-680)))) (-15 -2972 ($ (-1158) (-675 (-687)))) (-15 -2972 ($ (-1158) (-675 (-685)))) (-15 -2972 ($ (-1158) (-675 (-680)))) (-15 -2972 ($ (-1158) (-1241 (-687)))) (-15 -2972 ($ (-1158) (-1241 (-685)))) (-15 -2972 ($ (-1158) (-1241 (-680)))) (-15 -2972 ($ (-1158) (-675 (-311 (-687))))) (-15 -2972 ($ (-1158) (-675 (-311 (-685))))) (-15 -2972 ($ (-1158) (-675 (-311 (-680))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-687))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-685))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-680))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-687)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-685)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-680)))) (-15 -2972 ($ (-1158) (-311 (-554)))) (-15 -2972 ($ (-1158) (-311 (-374)))) (-15 -2972 ($ (-1158) (-311 (-167 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-554))))) (-15 -2972 ($ (-1158) (-675 (-311 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-554))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-374))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-554)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-374)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-167 (-374))))) (-15 -3648 ($ (-631 $))) (-15 -2679 ($)) (-15 -3584 ($)) (-15 -3017 ($ (-631 (-848)))) (-15 -3770 ($ (-1158) (-631 (-1158)))) (-15 -1920 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2126 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 $)) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 $))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 $))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848)))) $)) (-15 -2921 ((-1246) $)) (-15 -3514 ((-1086) $)) (-15 -1945 ((-1102) (-1102)))))) (T -325)) +((-2114 (*1 *1 *2 *1) (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *1 (-325)))) (-2114 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *3 (-937 (-554))) (-5 *1 (-325)))) (-2314 (*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325)))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325)))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-325)))) (-4051 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325)))) (-2251 (*1 *1) (-5 *1 (-325))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-685))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-687))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-680))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-325)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-4020 (*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-4020 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-687)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-685)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-680)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-687)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-685)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-680)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-687))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-685))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-680))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-554))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-374))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-554)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-374)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-554)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-374)))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-554))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-374))) (-5 *1 (-325)))) (-2972 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-5 *1 (-325)))) (-2679 (*1 *1) (-5 *1 (-325))) (-3584 (*1 *1) (-5 *1 (-325))) (-3017 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-325)))) (-3770 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-325)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-325)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| (-325)) (|:| |elseClause| (-325)))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 (-325))) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 (-325)))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 (-325)))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848))))) (-5 *1 (-325)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-325)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-325)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325))))) +(-13 (-1082) (-10 -8 (-15 -2114 ($ (-1074 (-937 (-554))) $)) (-15 -2114 ($ (-1074 (-937 (-554))) (-937 (-554)) $)) (-15 -2314 ($ (-1157) $)) (-15 -3825 ($ (-1157) $)) (-15 -1610 ($ (-1102))) (-15 -3218 ($ (-1102))) (-15 -2712 ($ (-1140))) (-15 -2712 ($ (-631 (-1140)))) (-15 -4051 ($ (-1140))) (-15 -2251 ($)) (-15 -2251 ($ (-311 (-685)))) (-15 -2251 ($ (-311 (-687)))) (-15 -2251 ($ (-311 (-680)))) (-15 -2251 ($ (-311 (-374)))) (-15 -2251 ($ (-311 (-554)))) (-15 -2251 ($ (-311 (-167 (-374))))) (-15 -4020 ($ (-1157) $)) (-15 -4020 ($ (-1157) $ $)) (-15 -2972 ($ (-1158) (-1140))) (-15 -2972 ($ (-1158) (-311 (-687)))) (-15 -2972 ($ (-1158) (-311 (-685)))) (-15 -2972 ($ (-1158) (-311 (-680)))) (-15 -2972 ($ (-1158) (-675 (-687)))) (-15 -2972 ($ (-1158) (-675 (-685)))) (-15 -2972 ($ (-1158) (-675 (-680)))) (-15 -2972 ($ (-1158) (-1241 (-687)))) (-15 -2972 ($ (-1158) (-1241 (-685)))) (-15 -2972 ($ (-1158) (-1241 (-680)))) (-15 -2972 ($ (-1158) (-675 (-311 (-687))))) (-15 -2972 ($ (-1158) (-675 (-311 (-685))))) (-15 -2972 ($ (-1158) (-675 (-311 (-680))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-687))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-685))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-680))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-687)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-685)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-680)))) (-15 -2972 ($ (-1158) (-311 (-554)))) (-15 -2972 ($ (-1158) (-311 (-374)))) (-15 -2972 ($ (-1158) (-311 (-167 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-554))))) (-15 -2972 ($ (-1158) (-675 (-311 (-374))))) (-15 -2972 ($ (-1158) (-675 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-554))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-374))))) (-15 -2972 ($ (-1158) (-1241 (-311 (-167 (-374)))))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-554)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-374)))) (-15 -2972 ($ (-1158) (-631 (-937 (-554))) (-311 (-167 (-374))))) (-15 -3648 ($ (-631 $))) (-15 -2679 ($)) (-15 -3584 ($)) (-15 -3017 ($ (-631 (-848)))) (-15 -3770 ($ (-1158) (-631 (-1158)))) (-15 -1920 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2126 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1158)) (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1157)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3543 (-112)) (|:| -2794 (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |blockBranch| (-631 $)) (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| (-2 (|:| -3827 (-1074 (-937 (-554)))) (|:| |span| (-937 (-554))) (|:| -4319 $))) (|:| |labelBranch| (-1102)) (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 $))) (|:| |commonBranch| (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) (|:| |printBranch| (-631 (-848)))) $)) (-15 -2921 ((-1246) $)) (-15 -3514 ((-1086) $)) (-15 -1945 ((-1102) (-1102))))) +((-3062 (((-112) $ $) NIL)) (-1302 (((-112) $) 11)) (-4177 (($ |#1|) 8)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4188 (($ |#1|) 9)) (-3075 (((-848) $) 17)) (-2592 ((|#1| $) 12)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 19))) +(((-326 |#1|) (-13 (-836) (-10 -8 (-15 -4177 ($ |#1|)) (-15 -4188 ($ |#1|)) (-15 -1302 ((-112) $)) (-15 -2592 (|#1| $)))) (-836)) (T -326)) +((-4177 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) (-4188 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-836)))) (-2592 (*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836))))) +(-13 (-836) (-10 -8 (-15 -4177 ($ |#1|)) (-15 -4188 ($ |#1|)) (-15 -1302 ((-112) $)) (-15 -2592 (|#1| $)))) +((-1933 (((-325) (-1158) (-937 (-554))) 23)) (-2635 (((-325) (-1158) (-937 (-554))) 27)) (-3918 (((-325) (-1158) (-1074 (-937 (-554))) (-1074 (-937 (-554)))) 26) (((-325) (-1158) (-937 (-554)) (-937 (-554))) 24)) (-1636 (((-325) (-1158) (-937 (-554))) 31))) +(((-327) (-10 -7 (-15 -1933 ((-325) (-1158) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-937 (-554)) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-1074 (-937 (-554))) (-1074 (-937 (-554))))) (-15 -2635 ((-325) (-1158) (-937 (-554)))) (-15 -1636 ((-325) (-1158) (-937 (-554)))))) (T -327)) +((-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))) (-3918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1074 (-937 (-554)))) (-5 *2 (-325)) (-5 *1 (-327)))) (-3918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) (-5 *1 (-327))))) +(-10 -7 (-15 -1933 ((-325) (-1158) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-937 (-554)) (-937 (-554)))) (-15 -3918 ((-325) (-1158) (-1074 (-937 (-554))) (-1074 (-937 (-554))))) (-15 -2635 ((-325) (-1158) (-937 (-554)))) (-15 -1636 ((-325) (-1158) (-937 (-554))))) +((-2879 (((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)) 33))) +(((-328 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-358) (-1217 |#5|) (-1217 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -328)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *9 (-358)) (-4 *10 (-1217 *9)) (-4 *11 (-1217 (-402 *10))) (-5 *2 (-331 *9 *10 *11 *12)) (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-337 *9 *10 *11))))) +(-10 -7 (-15 -2879 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)))) +((-3868 (((-112) $) 14))) +(((-329 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3868 ((-112) |#1|))) (-330 |#2| |#3| |#4| |#5|) (-358) (-1217 |#2|) (-1217 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -329)) +NIL +(-10 -8 (-15 -3868 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3676 (($ $) 26)) (-3868 (((-112) $) 25)) (-1613 (((-1140) $) 9)) (-3822 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 32)) (-2768 (((-1102) $) 10)) (-4137 (((-3 |#4| "failed") $) 24)) (-1861 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-554)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3678 (((-2 (|:| -3142 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20))) +(((-330 |#1| |#2| |#3| |#4|) (-138) (-358) (-1217 |t#1|) (-1217 (-402 |t#2|)) (-337 |t#1| |t#2| |t#3|)) (T -330)) +((-3822 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-408 *4 (-402 *4) *5 *6)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) (-4 *1 (-330 *3 *4 *5 *6)))) (-1861 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) (-1861 (*1 *1 *2 *2) (-12 (-4 *2 (-358)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))) (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) (-1861 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-554)) (-4 *2 (-358)) (-4 *4 (-1217 *2)) (-4 *5 (-1217 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6)) (-4 *6 (-337 *2 *4 *5)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-2 (|:| -3142 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))) (-4137 (*1 *2 *1) (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) (-1861 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-358)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3822 ((-408 |t#2| (-402 |t#2|) |t#3| |t#4|) $)) (-15 -1861 ($ (-408 |t#2| (-402 |t#2|) |t#3| |t#4|))) (-15 -1861 ($ |t#4|)) (-15 -1861 ($ |t#1| |t#1|)) (-15 -1861 ($ |t#1| |t#1| (-554))) (-15 -3678 ((-2 (|:| -3142 (-408 |t#2| (-402 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3676 ($ $)) (-15 -3868 ((-112) $)) (-15 -4137 ((-3 |t#4| "failed") $)) (-15 -1861 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ $) 33)) (-3868 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-3484 (((-1241 |#4|) $) 125)) (-3822 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 31)) (-2768 (((-1102) $) NIL)) (-4137 (((-3 |#4| "failed") $) 36)) (-3097 (((-1241 |#4|) $) 118)) (-1861 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-554)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3678 (((-2 (|:| -3142 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3075 (((-848) $) 17)) (-2004 (($) 14 T CONST)) (-1658 (((-112) $ $) 20)) (-1744 (($ $) 27) (($ $ $) NIL)) (-1735 (($ $ $) 25)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 23))) +(((-331 |#1| |#2| |#3| |#4|) (-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3097 ((-1241 |#4|) $)) (-15 -3484 ((-1241 |#4|) $)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -331)) +((-3097 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5))))) +(-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3097 ((-1241 |#4|) $)) (-15 -3484 ((-1241 |#4|) $)))) +((-2386 (($ $ (-1158) |#2|) NIL) (($ $ (-631 (-1158)) (-631 |#2|)) 20) (($ $ (-631 (-289 |#2|))) 15) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-631 |#2|) (-631 |#2|)) NIL)) (-2064 (($ $ |#2|) 11))) +(((-332 |#1| |#2|) (-10 -8 (-15 -2064 (|#1| |#1| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1158) |#2|))) (-333 |#2|) (-1082)) (T -332)) +NIL +(-10 -8 (-15 -2064 (|#1| |#1| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1158) |#2|))) +((-2879 (($ (-1 |#1| |#1|) $) 6)) (-2386 (($ $ (-1158) |#1|) 17 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 16 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-631 (-289 |#1|))) 15 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 14 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-304 |#1|))) (($ $ (-631 |#1|) (-631 |#1|)) 12 (|has| |#1| (-304 |#1|)))) (-2064 (($ $ |#1|) 11 (|has| |#1| (-281 |#1| |#1|))))) +(((-333 |#1|) (-138) (-1082)) (T -333)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1082))))) +(-13 (-10 -8 (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-508 (-1158) |t#1|)) (-6 (-508 (-1158) |t#1|)) |%noBranch|))) +(((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1158)) $) NIL)) (-2671 (((-112)) 91) (((-112) (-112)) 92)) (-2143 (((-631 (-600 $)) $) NIL)) (-3023 (($ $) NIL)) (-4200 (($ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-2282 (($ $) NIL)) (-3003 (($ $) NIL)) (-4177 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-311 |#3|)) 71) (((-3 $ "failed") (-1158)) 97) (((-3 $ "failed") (-311 (-554))) 59 (|has| |#3| (-1023 (-554)))) (((-3 $ "failed") (-402 (-937 (-554)))) 65 (|has| |#3| (-1023 (-554)))) (((-3 $ "failed") (-937 (-554))) 60 (|has| |#3| (-1023 (-554)))) (((-3 $ "failed") (-311 (-374))) 89 (|has| |#3| (-1023 (-374)))) (((-3 $ "failed") (-402 (-937 (-374)))) 83 (|has| |#3| (-1023 (-374)))) (((-3 $ "failed") (-937 (-374))) 78 (|has| |#3| (-1023 (-374))))) (-1668 (((-600 $) $) NIL) ((|#3| $) NIL) (($ (-311 |#3|)) 72) (($ (-1158)) 98) (($ (-311 (-554))) 61 (|has| |#3| (-1023 (-554)))) (($ (-402 (-937 (-554)))) 66 (|has| |#3| (-1023 (-554)))) (($ (-937 (-554))) 62 (|has| |#3| (-1023 (-554)))) (($ (-311 (-374))) 90 (|has| |#3| (-1023 (-374)))) (($ (-402 (-937 (-374)))) 84 (|has| |#3| (-1023 (-374)))) (($ (-937 (-374))) 80 (|has| |#3| (-1023 (-374))))) (-1320 (((-3 $ "failed") $) NIL)) (-2844 (($) 10)) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) NIL)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-1823 (((-1154 $) (-600 $)) NIL (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) NIL)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-4062 (($ $) 94)) (-2395 (($ $) NIL)) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) NIL)) (-1408 (($ (-114) $) 93) (($ (-114) (-631 $)) NIL)) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) NIL)) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-1333 (($ $) NIL)) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-3862 (($ $) NIL) (($ $ $) NIL)) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL)) (-4318 (($ $) NIL (|has| $ (-1034)))) (-3014 (($ $) NIL)) (-4188 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-600 $)) NIL) (($ |#3|) NIL) (($ (-554)) NIL) (((-311 |#3|) $) 96)) (-2261 (((-758)) NIL)) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1902 (((-112) (-114)) NIL)) (-2959 (($ $) NIL)) (-2938 (($ $) NIL)) (-2948 (($ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) 95 T CONST)) (-2014 (($) 24 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL))) +(((-334 |#1| |#2| |#3|) (-13 (-297) (-38 |#3|) (-1023 |#3|) (-885 (-1158)) (-10 -8 (-15 -1668 ($ (-311 |#3|))) (-15 -2784 ((-3 $ "failed") (-311 |#3|))) (-15 -1668 ($ (-1158))) (-15 -2784 ((-3 $ "failed") (-1158))) (-15 -3075 ((-311 |#3|) $)) (IF (|has| |#3| (-1023 (-554))) (PROGN (-15 -1668 ($ (-311 (-554)))) (-15 -2784 ((-3 $ "failed") (-311 (-554)))) (-15 -1668 ($ (-402 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-554))))) (-15 -1668 ($ (-937 (-554)))) (-15 -2784 ((-3 $ "failed") (-937 (-554))))) |%noBranch|) (IF (|has| |#3| (-1023 (-374))) (PROGN (-15 -1668 ($ (-311 (-374)))) (-15 -2784 ((-3 $ "failed") (-311 (-374)))) (-15 -1668 ($ (-402 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-374))))) (-15 -1668 ($ (-937 (-374)))) (-15 -2784 ((-3 $ "failed") (-937 (-374))))) |%noBranch|) (-15 -1700 ($ $)) (-15 -2282 ($ $)) (-15 -1333 ($ $)) (-15 -2395 ($ $)) (-15 -4062 ($ $)) (-15 -4177 ($ $)) (-15 -4188 ($ $)) (-15 -4200 ($ $)) (-15 -2938 ($ $)) (-15 -2948 ($ $)) (-15 -2959 ($ $)) (-15 -3003 ($ $)) (-15 -3014 ($ $)) (-15 -3023 ($ $)) (-15 -2844 ($)) (-15 -2405 ((-631 (-1158)) $)) (-15 -2671 ((-112))) (-15 -2671 ((-112) (-112))))) (-631 (-1158)) (-631 (-1158)) (-382)) (T -334)) +((-1668 (*1 *1 *2) (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 *2)) (-14 *4 (-631 *2)) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 *2)) (-14 *4 (-631 *2)) (-4 *5 (-382)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-1700 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-1333 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2395 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4062 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4177 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4188 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2938 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2959 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-3003 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-3014 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2844 (*1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-382)))) (-2671 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) (-2671 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382))))) +(-13 (-297) (-38 |#3|) (-1023 |#3|) (-885 (-1158)) (-10 -8 (-15 -1668 ($ (-311 |#3|))) (-15 -2784 ((-3 $ "failed") (-311 |#3|))) (-15 -1668 ($ (-1158))) (-15 -2784 ((-3 $ "failed") (-1158))) (-15 -3075 ((-311 |#3|) $)) (IF (|has| |#3| (-1023 (-554))) (PROGN (-15 -1668 ($ (-311 (-554)))) (-15 -2784 ((-3 $ "failed") (-311 (-554)))) (-15 -1668 ($ (-402 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-554))))) (-15 -1668 ($ (-937 (-554)))) (-15 -2784 ((-3 $ "failed") (-937 (-554))))) |%noBranch|) (IF (|has| |#3| (-1023 (-374))) (PROGN (-15 -1668 ($ (-311 (-374)))) (-15 -2784 ((-3 $ "failed") (-311 (-374)))) (-15 -1668 ($ (-402 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-374))))) (-15 -1668 ($ (-937 (-374)))) (-15 -2784 ((-3 $ "failed") (-937 (-374))))) |%noBranch|) (-15 -1700 ($ $)) (-15 -2282 ($ $)) (-15 -1333 ($ $)) (-15 -2395 ($ $)) (-15 -4062 ($ $)) (-15 -4177 ($ $)) (-15 -4188 ($ $)) (-15 -4200 ($ $)) (-15 -2938 ($ $)) (-15 -2948 ($ $)) (-15 -2959 ($ $)) (-15 -3003 ($ $)) (-15 -3014 ($ $)) (-15 -3023 ($ $)) (-15 -2844 ($)) (-15 -2405 ((-631 (-1158)) $)) (-15 -2671 ((-112))) (-15 -2671 ((-112) (-112))))) +((-2879 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|))) (-1199) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-1199) (-1217 |#5|) (-1217 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -335)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1199)) (-4 *8 (-1199)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *9 (-1217 *8)) (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1217 (-402 *9)))))) +(-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|))) +((-3293 (((-2 (|:| |num| (-1241 |#3|)) (|:| |den| |#3|)) $) 38)) (-1651 (($ (-1241 (-402 |#3|)) (-1241 $)) NIL) (($ (-1241 (-402 |#3|))) NIL) (($ (-1241 |#3|) |#3|) 161)) (-2501 (((-1241 $) (-1241 $)) 145)) (-4092 (((-631 (-631 |#2|))) 119)) (-2895 (((-112) |#2| |#2|) 73)) (-2048 (($ $) 139)) (-4324 (((-758)) 31)) (-3600 (((-1241 $) (-1241 $)) 198)) (-2214 (((-631 (-937 |#2|)) (-1158)) 110)) (-2141 (((-112) $) 158)) (-4099 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-4261 (((-3 |#3| "failed")) 50)) (-3271 (((-758)) 170)) (-2064 ((|#2| $ |#2| |#2|) 132)) (-2535 (((-3 |#3| "failed")) 68)) (-1553 (($ $ (-1 (-402 |#3|) (-402 |#3|)) (-758)) NIL) (($ $ (-1 (-402 |#3|) (-402 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-2239 (((-1241 $) (-1241 $)) 151)) (-3889 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2102 (((-112)) 33))) +(((-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -4092 ((-631 (-631 |#2|)))) (-15 -2214 ((-631 (-937 |#2|)) (-1158))) (-15 -3889 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4261 ((-3 |#3| "failed"))) (-15 -2535 ((-3 |#3| "failed"))) (-15 -2064 (|#2| |#1| |#2| |#2|)) (-15 -2048 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4099 ((-112) |#1| |#3|)) (-15 -4099 ((-112) |#1| |#2|)) (-15 -1651 (|#1| (-1241 |#3|) |#3|)) (-15 -3293 ((-2 (|:| |num| (-1241 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2501 ((-1241 |#1|) (-1241 |#1|))) (-15 -3600 ((-1241 |#1|) (-1241 |#1|))) (-15 -2239 ((-1241 |#1|) (-1241 |#1|))) (-15 -4099 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2895 ((-112) |#2| |#2|)) (-15 -2102 ((-112))) (-15 -3271 ((-758))) (-15 -4324 ((-758))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-758))) (-15 -1651 (|#1| (-1241 (-402 |#3|)))) (-15 -1651 (|#1| (-1241 (-402 |#3|)) (-1241 |#1|)))) (-337 |#2| |#3| |#4|) (-1199) (-1217 |#2|) (-1217 (-402 |#3|))) (T -336)) +((-4324 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3271 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-2102 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-2895 (*1 *2 *3 *3) (-12 (-4 *3 (-1199)) (-4 *5 (-1217 *3)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) (-2535 (*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-4261 (*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *5 (-1199)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-5 *2 (-631 (-937 *5))) (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) (-4092 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-631 (-631 *4))) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))) +(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -4092 ((-631 (-631 |#2|)))) (-15 -2214 ((-631 (-937 |#2|)) (-1158))) (-15 -3889 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4261 ((-3 |#3| "failed"))) (-15 -2535 ((-3 |#3| "failed"))) (-15 -2064 (|#2| |#1| |#2| |#2|)) (-15 -2048 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4099 ((-112) |#1| |#3|)) (-15 -4099 ((-112) |#1| |#2|)) (-15 -1651 (|#1| (-1241 |#3|) |#3|)) (-15 -3293 ((-2 (|:| |num| (-1241 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2501 ((-1241 |#1|) (-1241 |#1|))) (-15 -3600 ((-1241 |#1|) (-1241 |#1|))) (-15 -2239 ((-1241 |#1|) (-1241 |#1|))) (-15 -4099 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2895 ((-112) |#2| |#2|)) (-15 -2102 ((-112))) (-15 -3271 ((-758))) (-15 -4324 ((-758))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -1553 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-758))) (-15 -1651 (|#1| (-1241 (-402 |#3|)))) (-15 -1651 (|#1| (-1241 (-402 |#3|)) (-1241 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3293 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 195)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 93 (|has| (-402 |#2|) (-358)))) (-1976 (($ $) 94 (|has| (-402 |#2|) (-358)))) (-1363 (((-112) $) 96 (|has| (-402 |#2|) (-358)))) (-1903 (((-675 (-402 |#2|)) (-1241 $)) 47) (((-675 (-402 |#2|))) 62)) (-1612 (((-402 |#2|) $) 53)) (-3205 (((-1168 (-906) (-758)) (-554)) 146 (|has| (-402 |#2|) (-344)))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 113 (|has| (-402 |#2|) (-358)))) (-1565 (((-413 $) $) 114 (|has| (-402 |#2|) (-358)))) (-2286 (((-112) $ $) 104 (|has| (-402 |#2|) (-358)))) (-1508 (((-758)) 87 (|has| (-402 |#2|) (-363)))) (-3626 (((-112)) 212)) (-2120 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 169 (|has| (-402 |#2|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 167 (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-3 (-402 |#2|) "failed") $) 164)) (-1668 (((-554) $) 168 (|has| (-402 |#2|) (-1023 (-554)))) (((-402 (-554)) $) 166 (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-402 |#2|) $) 165)) (-1651 (($ (-1241 (-402 |#2|)) (-1241 $)) 49) (($ (-1241 (-402 |#2|))) 65) (($ (-1241 |#2|) |#2|) 194)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-402 |#2|) (-344)))) (-3964 (($ $ $) 108 (|has| (-402 |#2|) (-358)))) (-3629 (((-675 (-402 |#2|)) $ (-1241 $)) 54) (((-675 (-402 |#2|)) $) 60)) (-3699 (((-675 (-554)) (-675 $)) 163 (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 162 (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-402 |#2|))) (|:| |vec| (-1241 (-402 |#2|)))) (-675 $) (-1241 $)) 161) (((-675 (-402 |#2|)) (-675 $)) 160)) (-2501 (((-1241 $) (-1241 $)) 200)) (-3676 (($ |#3|) 157) (((-3 $ "failed") (-402 |#3|)) 154 (|has| (-402 |#2|) (-358)))) (-1320 (((-3 $ "failed") $) 33)) (-4092 (((-631 (-631 |#1|))) 181 (|has| |#1| (-363)))) (-2895 (((-112) |#1| |#1|) 216)) (-4186 (((-906)) 55)) (-3353 (($) 90 (|has| (-402 |#2|) (-363)))) (-2568 (((-112)) 209)) (-1993 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-3943 (($ $ $) 107 (|has| (-402 |#2|) (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 102 (|has| (-402 |#2|) (-358)))) (-2048 (($ $) 187)) (-3157 (($) 148 (|has| (-402 |#2|) (-344)))) (-2754 (((-112) $) 149 (|has| (-402 |#2|) (-344)))) (-4122 (($ $ (-758)) 140 (|has| (-402 |#2|) (-344))) (($ $) 139 (|has| (-402 |#2|) (-344)))) (-3289 (((-112) $) 115 (|has| (-402 |#2|) (-358)))) (-2342 (((-906) $) 151 (|has| (-402 |#2|) (-344))) (((-820 (-906)) $) 137 (|has| (-402 |#2|) (-344)))) (-3248 (((-112) $) 31)) (-4324 (((-758)) 219)) (-3600 (((-1241 $) (-1241 $)) 201)) (-3274 (((-402 |#2|) $) 52)) (-2214 (((-631 (-937 |#1|)) (-1158)) 182 (|has| |#1| (-358)))) (-3339 (((-3 $ "failed") $) 141 (|has| (-402 |#2|) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 111 (|has| (-402 |#2|) (-358)))) (-3361 ((|#3| $) 45 (|has| (-402 |#2|) (-358)))) (-3830 (((-906) $) 89 (|has| (-402 |#2|) (-363)))) (-3662 ((|#3| $) 155)) (-2475 (($ (-631 $)) 100 (|has| (-402 |#2|) (-358))) (($ $ $) 99 (|has| (-402 |#2|) (-358)))) (-1613 (((-1140) $) 9)) (-4132 (((-675 (-402 |#2|))) 196)) (-2519 (((-675 (-402 |#2|))) 198)) (-2483 (($ $) 116 (|has| (-402 |#2|) (-358)))) (-2488 (($ (-1241 |#2|) |#2|) 192)) (-1835 (((-675 (-402 |#2|))) 197)) (-3470 (((-675 (-402 |#2|))) 199)) (-3368 (((-2 (|:| |num| (-675 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1579 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 193)) (-1279 (((-1241 $)) 205)) (-3358 (((-1241 $)) 206)) (-2141 (((-112) $) 204)) (-4099 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3834 (($) 142 (|has| (-402 |#2|) (-344)) CONST)) (-2717 (($ (-906)) 88 (|has| (-402 |#2|) (-363)))) (-4261 (((-3 |#2| "failed")) 184)) (-2768 (((-1102) $) 10)) (-3271 (((-758)) 218)) (-4137 (($) 159)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 101 (|has| (-402 |#2|) (-358)))) (-2510 (($ (-631 $)) 98 (|has| (-402 |#2|) (-358))) (($ $ $) 97 (|has| (-402 |#2|) (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 145 (|has| (-402 |#2|) (-344)))) (-2270 (((-413 $) $) 112 (|has| (-402 |#2|) (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 109 (|has| (-402 |#2|) (-358)))) (-3919 (((-3 $ "failed") $ $) 92 (|has| (-402 |#2|) (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 103 (|has| (-402 |#2|) (-358)))) (-2072 (((-758) $) 105 (|has| (-402 |#2|) (-358)))) (-2064 ((|#1| $ |#1| |#1|) 186)) (-2535 (((-3 |#2| "failed")) 185)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 106 (|has| (-402 |#2|) (-358)))) (-1495 (((-402 |#2|) (-1241 $)) 48) (((-402 |#2|)) 61)) (-3316 (((-758) $) 150 (|has| (-402 |#2|) (-344))) (((-3 (-758) "failed") $ $) 138 (|has| (-402 |#2|) (-344)))) (-1553 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) 122 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 121 (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-631 (-1158)) (-631 (-758))) 129 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158) (-758)) 130 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-631 (-1158))) 131 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158)) 132 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-758)) 134 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 136 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2092 (((-675 (-402 |#2|)) (-1241 $) (-1 (-402 |#2|) (-402 |#2|))) 153 (|has| (-402 |#2|) (-358)))) (-4318 ((|#3|) 158)) (-3944 (($) 147 (|has| (-402 |#2|) (-344)))) (-3656 (((-1241 (-402 |#2|)) $ (-1241 $)) 51) (((-675 (-402 |#2|)) (-1241 $) (-1241 $)) 50) (((-1241 (-402 |#2|)) $) 67) (((-675 (-402 |#2|)) (-1241 $)) 66)) (-2927 (((-1241 (-402 |#2|)) $) 64) (($ (-1241 (-402 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 144 (|has| (-402 |#2|) (-344)))) (-2239 (((-1241 $) (-1241 $)) 202)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 |#2|)) 38) (($ (-402 (-554))) 86 (-3994 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1023 (-402 (-554)))))) (($ $) 91 (|has| (-402 |#2|) (-358)))) (-2084 (($ $) 143 (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) 44 (|has| (-402 |#2|) (-143)))) (-3109 ((|#3| $) 46)) (-2261 (((-758)) 28)) (-3809 (((-112)) 215)) (-2394 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3782 (((-1241 $)) 68)) (-1909 (((-112) $ $) 95 (|has| (-402 |#2|) (-358)))) (-3889 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-2102 (((-112)) 217)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) 124 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 123 (|has| (-402 |#2|) (-358))) (($ $ (-631 (-1158)) (-631 (-758))) 125 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158) (-758)) 126 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-631 (-1158))) 127 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-1158)) 128 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) (-3726 (|has| (-402 |#2|) (-885 (-1158))) (|has| (-402 |#2|) (-358))))) (($ $ (-758)) 133 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 135 (-3994 (-3726 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3726 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 120 (|has| (-402 |#2|) (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 117 (|has| (-402 |#2|) (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 |#2|)) 40) (($ (-402 |#2|) $) 39) (($ (-402 (-554)) $) 119 (|has| (-402 |#2|) (-358))) (($ $ (-402 (-554))) 118 (|has| (-402 |#2|) (-358))))) +(((-337 |#1| |#2| |#3|) (-138) (-1199) (-1217 |t#1|) (-1217 (-402 |t#2|))) (T -337)) +((-4324 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758)))) (-3271 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758)))) (-2102 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2895 (*1 *2 *3 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-3809 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2394 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2394 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-3626 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2120 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2120 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-2568 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-1993 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-1993 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-3358 (*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1279 (*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-3470 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-2519 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-1835 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-4132 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4))))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4))))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3))))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4))))) (-2488 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3))))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-2 (|:| |num| (-675 *5)) (|:| |den| *5))))) (-4099 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) (-4099 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))))) (-2064 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))))) (-2535 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3)))) (-4261 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3)))) (-3889 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1199)) (-4 *6 (-1217 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-337 *4 *5 *6)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *4 (-358)) (-5 *2 (-631 (-937 *4))))) (-4092 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-631 (-631 *3)))))) +(-13 (-711 (-402 |t#2|) |t#3|) (-10 -8 (-15 -4324 ((-758))) (-15 -3271 ((-758))) (-15 -2102 ((-112))) (-15 -2895 ((-112) |t#1| |t#1|)) (-15 -3809 ((-112))) (-15 -2394 ((-112) |t#1|)) (-15 -2394 ((-112) |t#2|)) (-15 -3626 ((-112))) (-15 -2120 ((-112) |t#1|)) (-15 -2120 ((-112) |t#2|)) (-15 -2568 ((-112))) (-15 -1993 ((-112) |t#1|)) (-15 -1993 ((-112) |t#2|)) (-15 -3358 ((-1241 $))) (-15 -1279 ((-1241 $))) (-15 -2141 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -2239 ((-1241 $) (-1241 $))) (-15 -3600 ((-1241 $) (-1241 $))) (-15 -2501 ((-1241 $) (-1241 $))) (-15 -3470 ((-675 (-402 |t#2|)))) (-15 -2519 ((-675 (-402 |t#2|)))) (-15 -1835 ((-675 (-402 |t#2|)))) (-15 -4132 ((-675 (-402 |t#2|)))) (-15 -3293 ((-2 (|:| |num| (-1241 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1651 ($ (-1241 |t#2|) |t#2|)) (-15 -1579 ((-2 (|:| |num| (-1241 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2488 ($ (-1241 |t#2|) |t#2|)) (-15 -3368 ((-2 (|:| |num| (-675 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4099 ((-112) $ |t#1|)) (-15 -4099 ((-112) $ |t#2|)) (-15 -1553 ($ $ (-1 |t#2| |t#2|))) (-15 -2048 ($ $)) (-15 -2064 (|t#1| $ |t#1| |t#1|)) (-15 -2535 ((-3 |t#2| "failed"))) (-15 -4261 ((-3 |t#2| "failed"))) (-15 -3889 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-358)) (-15 -2214 ((-631 (-937 |t#1|)) (-1158))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -4092 ((-631 (-631 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-38 #1=(-402 |#2|)) . T) ((-38 $) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-102) . T) ((-111 #0# #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-143))) ((-145) |has| (-402 |#2|) (-145)) ((-604 #0#) -3994 (|has| (-402 |#2|) (-1023 (-402 (-554)))) (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-604 #1#) . T) ((-604 (-554)) . T) ((-604 $) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-601 (-848)) . T) ((-170) . T) ((-602 |#3|) . T) ((-227 #1#) |has| (-402 |#2|) (-358)) ((-229) -3994 (|has| (-402 |#2|) (-344)) (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358)))) ((-239) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-285) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-302) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-358) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-397) |has| (-402 |#2|) (-344)) ((-363) -3994 (|has| (-402 |#2|) (-363)) (|has| (-402 |#2|) (-344))) ((-344) |has| (-402 |#2|) (-344)) ((-365 #1# |#3|) . T) ((-404 #1# |#3|) . T) ((-372 #1#) . T) ((-406 #1#) . T) ((-446) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-546) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-634 #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-634 #1#) . T) ((-634 $) . T) ((-627 #1#) . T) ((-627 (-554)) |has| (-402 |#2|) (-627 (-554))) ((-704 #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-704 #1#) . T) ((-704 $) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-711 #1# |#3|) . T) ((-713) . T) ((-885 (-1158)) -12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158)))) ((-905) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1023 (-402 (-554))) |has| (-402 |#2|) (-1023 (-402 (-554)))) ((-1023 #1#) . T) ((-1023 (-554)) |has| (-402 |#2|) (-1023 (-554))) ((-1040 #0#) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1040 #1#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| (-402 |#2|) (-344)) ((-1199) -3994 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-895 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-895 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-895 |#1|) "failed") $) NIL)) (-1668 (((-895 |#1|) $) NIL)) (-1651 (($ (-1241 (-895 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-895 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-895 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-895 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-895 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-895 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-3274 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-895 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-895 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-895 |#1|) (-363)))) (-3933 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363)))) (-3025 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-1154 (-895 |#1|)) "failed") $ $) NIL (|has| (-895 |#1|) (-363)))) (-2300 (($ $ (-1154 (-895 |#1|))) NIL (|has| (-895 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-895 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-1714 (((-943 (-1102))) NIL)) (-4137 (($) NIL (|has| (-895 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-895 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-895 |#1|))) NIL)) (-3944 (($) NIL (|has| (-895 |#1|) (-363)))) (-2288 (($) NIL (|has| (-895 |#1|) (-363)))) (-3656 (((-1241 (-895 |#1|)) $) NIL) (((-675 (-895 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-895 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-895 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-895 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-895 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-895 |#1|)) NIL) (($ (-895 |#1|) $) NIL))) +(((-338 |#1| |#2|) (-13 (-324 (-895 |#1|)) (-10 -7 (-15 -1714 ((-943 (-1102)))))) (-906) (-906)) (T -338)) +((-1714 (*1 *2) (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-338 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906))))) +(-13 (-324 (-895 |#1|)) (-10 -7 (-15 -1714 ((-943 (-1102)))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 44)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 41 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 115)) (-1668 ((|#1| $) 86)) (-1651 (($ (-1241 |#1|)) 104)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) 98 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 129 (|has| |#1| (-363)))) (-2754 (((-112) $) 48 (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) 45 (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) 131 (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) 90) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) 139 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 146)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 71 (|has| |#1| (-363)))) (-2070 (((-112) $) 118)) (-2768 (((-1102) $) NIL)) (-1714 (((-943 (-1102))) 42)) (-4137 (($) 127 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 93 (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) 67) (((-906)) 68)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) 130 (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) 125 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) 96)) (-3944 (($) 128 (|has| |#1| (-363)))) (-2288 (($) 136 (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 59) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) 142) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 75)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 138)) (-3782 (((-1241 $)) 117) (((-1241 $) (-906)) 73)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 49 T CONST)) (-2014 (($) 46 T CONST)) (-1811 (($ $) 81 (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) 47)) (-1752 (($ $ $) 144) (($ $ |#1|) 145)) (-1744 (($ $) 126) (($ $ $) NIL)) (-1735 (($ $ $) 61)) (** (($ $ (-906)) 148) (($ $ (-758)) 149) (($ $ (-554)) 147)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 77) (($ $ $) 76) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-339 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102)))))) (-344) (-1154 |#1|)) (T -339)) +((-1714 (*1 *2) (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344)) (-14 *4 (-1154 *3))))) +(-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102)))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) NIL) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-1714 (((-943 (-1102))) NIL)) (-4137 (($) NIL (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) NIL)) (-3944 (($) NIL (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) NIL)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-340 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102)))))) (-344) (-906)) (T -340)) +((-1714 (*1 *2) (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906))))) +(-13 (-324 |#1|) (-10 -7 (-15 -1714 ((-943 (-1102)))))) +((-2437 (((-758) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) 42)) (-2534 (((-943 (-1102)) (-1154 |#1|)) 85)) (-2269 (((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) (-1154 |#1|)) 78)) (-4205 (((-675 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) 86)) (-3879 (((-3 (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) "failed") (-906)) 13)) (-3052 (((-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) (-906)) 18))) +(((-341 |#1|) (-10 -7 (-15 -2534 ((-943 (-1102)) (-1154 |#1|))) (-15 -2269 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) (-1154 |#1|))) (-15 -4205 ((-675 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2437 ((-758) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -3879 ((-3 (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) "failed") (-906))) (-15 -3052 ((-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) (-906)))) (-344)) (T -341)) +((-3052 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-3 (-1154 *4) (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3879 (*1 *2 *3) (|partial| -12 (-5 *3 (-906)) (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-4 *4 (-344)) (-5 *2 (-758)) (-5 *1 (-341 *4)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-4 *4 (-344)) (-5 *2 (-675 *4)) (-5 *1 (-341 *4)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-5 *1 (-341 *4)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-943 (-1102))) (-5 *1 (-341 *4))))) +(-10 -7 (-15 -2534 ((-943 (-1102)) (-1154 |#1|))) (-15 -2269 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) (-1154 |#1|))) (-15 -4205 ((-675 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2437 ((-758) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -3879 ((-3 (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) "failed") (-906))) (-15 -3052 ((-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) (-906)))) +((-3075 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -3075 (|#3| |#1|)) (-15 -3075 (|#1| |#3|))) (-324 |#2|) (-344) (-324 |#2|)) (T -342)) +((-3075 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3)) (-4 *3 (-324 *4)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2)) (-4 *3 (-324 *4))))) +(-10 -7 (-15 -3075 (|#3| |#1|)) (-15 -3075 (|#1| |#3|))) +((-2754 (((-112) $) 51)) (-2342 (((-820 (-906)) $) 21) (((-906) $) 52)) (-3339 (((-3 $ "failed") $) 16)) (-3834 (($) 9)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 93)) (-3316 (((-3 (-758) "failed") $ $) 71) (((-758) $) 60)) (-1553 (($ $ (-758)) NIL) (($ $) 8)) (-3944 (($) 44)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 34)) (-2084 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-343 |#1|) (-10 -8 (-15 -2342 ((-906) |#1|)) (-15 -3316 ((-758) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3944 (|#1|)) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2084 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -3316 ((-3 (-758) "failed") |#1| |#1|)) (-15 -2342 ((-820 (-906)) |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)))) (-344)) (T -343)) +NIL +(-10 -8 (-15 -2342 ((-906) |#1|)) (-15 -3316 ((-758) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -3944 (|#1|)) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2084 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -3316 ((-3 (-758) "failed") |#1| |#1|)) (-15 -2342 ((-820 (-906)) |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3205 (((-1168 (-906) (-758)) (-554)) 94)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-1508 (((-758)) 104)) (-4087 (($) 17 T CONST)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3353 (($) 107)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3157 (($) 92)) (-2754 (((-112) $) 91)) (-4122 (($ $) 80) (($ $ (-758)) 79)) (-3289 (((-112) $) 72)) (-2342 (((-820 (-906)) $) 82) (((-906) $) 89)) (-3248 (((-112) $) 31)) (-3339 (((-3 $ "failed") $) 103)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-3830 (((-906) $) 106)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3834 (($) 102 T CONST)) (-2717 (($ (-906)) 105)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 95)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-3 (-758) "failed") $ $) 81) (((-758) $) 90)) (-1553 (($ $ (-758)) 100) (($ $) 98)) (-3944 (($) 93)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 96)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2084 (((-3 $ "failed") $) 83) (($ $) 97)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-758)) 101) (($ $) 99)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68))) +(((-344) (-138)) (T -344)) +((-2084 (*1 *1 *1) (-4 *1 (-344))) (-4158 (*1 *2 *3) (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-344)) (-5 *2 (-1241 *1)))) (-3725 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))))) (-3205 (*1 *2 *3) (-12 (-4 *1 (-344)) (-5 *3 (-554)) (-5 *2 (-1168 (-906) (-758))))) (-3944 (*1 *1) (-4 *1 (-344))) (-3157 (*1 *1) (-4 *1 (-344))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-758)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-906)))) (-2723 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-397) (-363) (-1133) (-229) (-10 -8 (-15 -2084 ($ $)) (-15 -4158 ((-3 (-1241 $) "failed") (-675 $))) (-15 -3725 ((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554)))))) (-15 -3205 ((-1168 (-906) (-758)) (-554))) (-15 -3944 ($)) (-15 -3157 ($)) (-15 -2754 ((-112) $)) (-15 -3316 ((-758) $)) (-15 -2342 ((-906) $)) (-15 -2723 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-229) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) . T) ((-363) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) . T) ((-1199) . T)) +((-2062 (((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) |#1|) 53)) (-3358 (((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))) 51))) +(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) |#1|))) (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))) (-1217 |#1|) (-404 |#1| |#2|)) (T -345)) +((-2062 (*1 *2 *3) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3358 (*1 *2) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) +(-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-895 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2437 (((-758)) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-895 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-895 |#1|) "failed") $) NIL)) (-1668 (((-895 |#1|) $) NIL)) (-1651 (($ (-1241 (-895 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-895 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-895 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-895 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-895 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-895 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-3274 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-895 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-895 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-895 |#1|) (-363)))) (-3933 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363)))) (-3025 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-1154 (-895 |#1|)) "failed") $ $) NIL (|has| (-895 |#1|) (-363)))) (-2300 (($ $ (-1154 (-895 |#1|))) NIL (|has| (-895 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-895 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-2030 (((-1241 (-631 (-2 (|:| -2794 (-895 |#1|)) (|:| -2717 (-1102)))))) NIL)) (-2611 (((-675 (-895 |#1|))) NIL)) (-4137 (($) NIL (|has| (-895 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-895 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-895 |#1|))) NIL)) (-3944 (($) NIL (|has| (-895 |#1|) (-363)))) (-2288 (($) NIL (|has| (-895 |#1|) (-363)))) (-3656 (((-1241 (-895 |#1|)) $) NIL) (((-675 (-895 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-895 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-895 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-895 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-895 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-895 |#1|)) NIL) (($ (-895 |#1|) $) NIL))) +(((-346 |#1| |#2|) (-13 (-324 (-895 |#1|)) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 (-895 |#1|)) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 (-895 |#1|)))) (-15 -2437 ((-758))))) (-906) (-906)) (T -346)) +((-2030 (*1 *2) (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 (-895 *3)) (|:| -2717 (-1102)))))) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-2611 (*1 *2) (-12 (-5 *2 (-675 (-895 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-2437 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906))))) +(-13 (-324 (-895 |#1|)) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 (-895 |#1|)) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 (-895 |#1|)))) (-15 -2437 ((-758))))) +((-3062 (((-112) $ $) 61)) (-1695 (((-112) $) 74)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) 92) (($ $ (-906)) 90 (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 148 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2437 (((-758)) 89)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) 162 (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 112)) (-1668 ((|#1| $) 91)) (-1651 (($ (-1241 |#1|)) 58)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) 158 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 149 (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) 98 (|has| |#1| (-363)))) (-2693 (((-112) $) 175 (|has| |#1| (-363)))) (-3274 ((|#1| $) 94) (($ $ (-906)) 93 (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) 189) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) 134 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) 73 (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) 70 (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) 82 (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) 69 (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 192)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 137 (|has| |#1| (-363)))) (-2070 (((-112) $) 108)) (-2768 (((-1102) $) NIL)) (-2030 (((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) 83)) (-2611 (((-675 |#1|)) 87)) (-4137 (($) 96 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 150 (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) 151)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) 62)) (-4318 (((-1154 |#1|)) 152)) (-3944 (($) 133 (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 106) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) 124) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 57)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 156)) (-3782 (((-1241 $)) 172) (((-1241 $) (-906)) 101)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 117 T CONST)) (-2014 (($) 33 T CONST)) (-1811 (($ $) 107 (|has| |#1| (-363))) (($ $ (-758)) 99 (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) 183)) (-1752 (($ $ $) 104) (($ $ |#1|) 105)) (-1744 (($ $) 177) (($ $ $) 181)) (-1735 (($ $ $) 179)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 138)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 186) (($ $ $) 142) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-347 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758))))) (-344) (-3 (-1154 |#1|) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (T -347)) +((-2030 (*1 *2) (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) *2)))) (-2611 (*1 *2) (-12 (-5 *2 (-675 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))))) (-2437 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))))))) +(-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2437 (((-758)) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) NIL) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-2030 (((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102)))))) NIL)) (-2611 (((-675 |#1|)) NIL)) (-4137 (($) NIL (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) NIL)) (-3944 (($) NIL (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) NIL)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-348 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758))))) (-344) (-906)) (T -348)) +((-2030 (*1 *2) (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))) (-2611 (*1 *2) (-12 (-5 *2 (-675 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906)))) (-2437 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906))))) +(-13 (-324 |#1|) (-10 -7 (-15 -2030 ((-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))))) (-15 -2611 ((-675 |#1|))) (-15 -2437 ((-758))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-895 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-895 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-895 |#1|) "failed") $) NIL)) (-1668 (((-895 |#1|) $) NIL)) (-1651 (($ (-1241 (-895 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-895 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-895 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-895 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-895 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-895 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-895 |#1|) (-363)))) (-3274 (((-895 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-895 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-895 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-895 |#1|) (-363)))) (-3933 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363)))) (-3025 (((-1154 (-895 |#1|)) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-1154 (-895 |#1|)) "failed") $ $) NIL (|has| (-895 |#1|) (-363)))) (-2300 (($ $ (-1154 (-895 |#1|))) NIL (|has| (-895 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-895 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-895 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| (-895 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-895 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-895 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-895 |#1|))) NIL)) (-3944 (($) NIL (|has| (-895 |#1|) (-363)))) (-2288 (($) NIL (|has| (-895 |#1|) (-363)))) (-3656 (((-1241 (-895 |#1|)) $) NIL) (((-675 (-895 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-895 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-895 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-895 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-895 |#1|) (-143)) (|has| (-895 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-895 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-895 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-895 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-895 |#1|)) NIL) (($ (-895 |#1|) $) NIL))) +(((-349 |#1| |#2|) (-324 (-895 |#1|)) (-906) (-906)) (T -349)) +NIL +(-324 (-895 |#1|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) 120 (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) 140 (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 93)) (-1668 ((|#1| $) 90)) (-1651 (($ (-1241 |#1|)) 85)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) 82 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 42 (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) 121 (|has| |#1| (-363)))) (-2693 (((-112) $) 74 (|has| |#1| (-363)))) (-3274 ((|#1| $) 39) (($ $ (-906)) 43 (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) 65) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) 97 (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) 95 (|has| |#1| (-363)))) (-2070 (((-112) $) 142)) (-2768 (((-1102) $) NIL)) (-4137 (($) 36 (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 115 (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) 139)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) 59)) (-4318 (((-1154 |#1|)) 88)) (-3944 (($) 126 (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) 53) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) 138) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 87)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 144)) (-3782 (((-1241 $)) 109) (((-1241 $) (-906)) 49)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 111 T CONST)) (-2014 (($) 32 T CONST)) (-1811 (($ $) 68 (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) 107)) (-1752 (($ $ $) 99) (($ $ |#1|) 100)) (-1744 (($ $) 80) (($ $ $) 105)) (-1735 (($ $ $) 103)) (** (($ $ (-906)) NIL) (($ $ (-758)) 44) (($ $ (-554)) 130)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 78) (($ $ $) 56) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-350 |#1| |#2|) (-324 |#1|) (-344) (-1154 |#1|)) (T -350)) +NIL +(-324 |#1|) +((-1586 ((|#1| (-1154 |#2|)) 52))) +(((-351 |#1| |#2|) (-10 -7 (-15 -1586 (|#1| (-1154 |#2|)))) (-13 (-397) (-10 -7 (-15 -3075 (|#1| |#2|)) (-15 -3830 ((-906) |#1|)) (-15 -3782 ((-1241 |#1|) (-906))) (-15 -1811 (|#1| |#1|)))) (-344)) (T -351)) +((-1586 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-4 *2 (-13 (-397) (-10 -7 (-15 -3075 (*2 *4)) (-15 -3830 ((-906) *2)) (-15 -3782 ((-1241 *2) (-906))) (-15 -1811 (*2 *2))))) (-5 *1 (-351 *2 *4))))) +(-10 -7 (-15 -1586 (|#1| (-1154 |#2|)))) +((-4311 (((-943 (-1154 |#1|)) (-1154 |#1|)) 36)) (-3353 (((-1154 |#1|) (-906) (-906)) 113) (((-1154 |#1|) (-906)) 112)) (-2754 (((-112) (-1154 |#1|)) 84)) (-4284 (((-906) (-906)) 71)) (-3385 (((-906) (-906)) 74)) (-3325 (((-906) (-906)) 69)) (-2693 (((-112) (-1154 |#1|)) 88)) (-1328 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 101)) (-3112 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 104)) (-2931 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 103)) (-1958 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 102)) (-3936 (((-3 (-1154 |#1|) "failed") (-1154 |#1|)) 98)) (-2764 (((-1154 |#1|) (-1154 |#1|)) 62)) (-3821 (((-1154 |#1|) (-906)) 107)) (-3491 (((-1154 |#1|) (-906)) 110)) (-2771 (((-1154 |#1|) (-906)) 109)) (-3763 (((-1154 |#1|) (-906)) 108)) (-1329 (((-1154 |#1|) (-906)) 105))) +(((-352 |#1|) (-10 -7 (-15 -2754 ((-112) (-1154 |#1|))) (-15 -2693 ((-112) (-1154 |#1|))) (-15 -3325 ((-906) (-906))) (-15 -4284 ((-906) (-906))) (-15 -3385 ((-906) (-906))) (-15 -1329 ((-1154 |#1|) (-906))) (-15 -3821 ((-1154 |#1|) (-906))) (-15 -3763 ((-1154 |#1|) (-906))) (-15 -2771 ((-1154 |#1|) (-906))) (-15 -3491 ((-1154 |#1|) (-906))) (-15 -3936 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1328 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1958 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -2931 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3112 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3353 ((-1154 |#1|) (-906))) (-15 -3353 ((-1154 |#1|) (-906) (-906))) (-15 -2764 ((-1154 |#1|) (-1154 |#1|))) (-15 -4311 ((-943 (-1154 |#1|)) (-1154 |#1|)))) (-344)) (T -352)) +((-4311 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-943 (-1154 *4))) (-5 *1 (-352 *4)) (-5 *3 (-1154 *4)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3353 (*1 *2 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3112 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-2931 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1958 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1328 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3936 (*1 *2 *2) (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-4284 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4))))) +(-10 -7 (-15 -2754 ((-112) (-1154 |#1|))) (-15 -2693 ((-112) (-1154 |#1|))) (-15 -3325 ((-906) (-906))) (-15 -4284 ((-906) (-906))) (-15 -3385 ((-906) (-906))) (-15 -1329 ((-1154 |#1|) (-906))) (-15 -3821 ((-1154 |#1|) (-906))) (-15 -3763 ((-1154 |#1|) (-906))) (-15 -2771 ((-1154 |#1|) (-906))) (-15 -3491 ((-1154 |#1|) (-906))) (-15 -3936 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1328 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -1958 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -2931 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3112 ((-3 (-1154 |#1|) "failed") (-1154 |#1|))) (-15 -3353 ((-1154 |#1|) (-906))) (-15 -3353 ((-1154 |#1|) (-906) (-906))) (-15 -2764 ((-1154 |#1|) (-1154 |#1|))) (-15 -4311 ((-943 (-1154 |#1|)) (-1154 |#1|)))) +((-1625 (((-3 (-631 |#3|) "failed") (-631 |#3|) |#3|) 34))) +(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -1625 ((-3 (-631 |#3|) "failed") (-631 |#3|) |#3|))) (-344) (-1217 |#1|) (-1217 |#2|)) (T -353)) +((-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3))))) +(-10 -7 (-15 -1625 ((-3 (-631 |#3|) "failed") (-631 |#3|) |#3|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| |#1| (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| |#1| (-363)))) (-2754 (((-112) $) NIL (|has| |#1| (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| |#1| (-363))) (((-820 (-906)) $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| |#1| (-363)))) (-2693 (((-112) $) NIL (|has| |#1| (-363)))) (-3274 ((|#1| $) NIL) (($ $ (-906)) NIL (|has| |#1| (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 |#1|) $) NIL) (((-1154 $) $ (-906)) NIL (|has| |#1| (-363)))) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3933 (((-1154 |#1|) $) NIL (|has| |#1| (-363)))) (-3025 (((-1154 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1154 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-1154 |#1|)) NIL (|has| |#1| (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| |#1| (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| |#1| (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 |#1|)) NIL)) (-3944 (($) NIL (|has| |#1| (-363)))) (-2288 (($) NIL (|has| |#1| (-363)))) (-3656 (((-1241 |#1|) $) NIL) (((-675 |#1|) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) NIL)) (-2084 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1787 (($ $) NIL (|has| |#1| (-363))) (($ $ (-758)) NIL (|has| |#1| (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-354 |#1| |#2|) (-324 |#1|) (-344) (-906)) (T -354)) +NIL +(-324 |#1|) +((-3286 (((-112) (-631 (-937 |#1|))) 34)) (-3486 (((-631 (-937 |#1|)) (-631 (-937 |#1|))) 46)) (-2526 (((-3 (-631 (-937 |#1|)) "failed") (-631 (-937 |#1|))) 41))) +(((-355 |#1| |#2|) (-10 -7 (-15 -3286 ((-112) (-631 (-937 |#1|)))) (-15 -2526 ((-3 (-631 (-937 |#1|)) "failed") (-631 (-937 |#1|)))) (-15 -3486 ((-631 (-937 |#1|)) (-631 (-937 |#1|))))) (-446) (-631 (-1158))) (T -355)) +((-3486 (*1 *2 *2) (-12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-631 (-1158))))) (-2526 (*1 *2 *2) (|partial| -12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-631 (-1158))))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-112)) (-5 *1 (-355 *4 *5)) (-14 *5 (-631 (-1158)))))) +(-10 -7 (-15 -3286 ((-112) (-631 (-937 |#1|)))) (-15 -2526 ((-3 (-631 (-937 |#1|)) "failed") (-631 (-937 |#1|)))) (-15 -3486 ((-631 (-937 |#1|)) (-631 (-937 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) 15)) (-3195 ((|#1| $ (-554)) NIL)) (-2370 (((-554) $ (-554)) NIL)) (-3563 (($ (-1 |#1| |#1|) $) 32)) (-4098 (($ (-1 (-554) (-554)) $) 24)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 26)) (-2768 (((-1102) $) NIL)) (-2316 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $) 28)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 38) (($ |#1|) NIL)) (-2014 (($) 9 T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ |#1| (-554)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-356 |#1|) (-13 (-467) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-554))) (-15 -1508 ((-758) $)) (-15 -2370 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-554) (-554)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $)))) (-1082)) (T -356)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) (-2370 (*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082)))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-554) (-554))) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-356 *3)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-554))))) (-5 *1 (-356 *3)) (-4 *3 (-1082))))) +(-13 (-467) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-554))) (-15 -1508 ((-758) $)) (-15 -2370 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-554) (-554)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-554)))) $)))) +((-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 13)) (-1976 (($ $) 14)) (-1565 (((-413 $) $) 30)) (-3289 (((-112) $) 26)) (-2483 (($ $) 19)) (-2510 (($ $ $) 23) (($ (-631 $)) NIL)) (-2270 (((-413 $) $) 31)) (-3919 (((-3 $ "failed") $ $) 22)) (-2072 (((-758) $) 25)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 35)) (-1909 (((-112) $ $) 16)) (-1752 (($ $ $) 33))) +(((-357 |#1|) (-10 -8 (-15 -1752 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|))) (-358)) (T -357)) +NIL +(-10 -8 (-15 -1752 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68))) +(((-358) (-138)) (T -358)) +((-1752 (*1 *1 *1 *1) (-4 *1 (-358)))) +(-13 (-302) (-1199) (-239) (-10 -8 (-15 -1752 ($ $ $)) (-6 -4371) (-6 -4365))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-3062 (((-112) $ $) 7)) (-3719 ((|#2| $ |#2|) 13)) (-1875 (($ $ (-1140)) 18)) (-3416 ((|#2| $) 14)) (-1303 (($ |#1|) 20) (($ |#1| (-1140)) 19)) (-4309 ((|#1| $) 16)) (-1613 (((-1140) $) 9)) (-1597 (((-1140) $) 15)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-3745 (($ $) 17)) (-1658 (((-112) $ $) 6))) +(((-359 |#1| |#2|) (-138) (-1082) (-1082)) (T -359)) +((-1303 (*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-1303 (*1 *1 *2 *3) (-12 (-5 *3 (-1140)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1082)) (-4 *4 (-1082)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-1140)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3719 (*1 *2 *1 *2) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -1303 ($ |t#1|)) (-15 -1303 ($ |t#1| (-1140))) (-15 -1875 ($ $ (-1140))) (-15 -3745 ($ $)) (-15 -4309 (|t#1| $)) (-15 -1597 ((-1140) $)) (-15 -3416 (|t#2| $)) (-15 -3719 (|t#2| $ |t#2|)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-3719 ((|#1| $ |#1|) 30)) (-1875 (($ $ (-1140)) 22)) (-4266 (((-3 |#1| "failed") $) 29)) (-3416 ((|#1| $) 27)) (-1303 (($ (-383)) 21) (($ (-383) (-1140)) 20)) (-4309 (((-383) $) 24)) (-1613 (((-1140) $) NIL)) (-1597 (((-1140) $) 25)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19)) (-3745 (($ $) 23)) (-1658 (((-112) $ $) 18))) +(((-360 |#1|) (-13 (-359 (-383) |#1|) (-10 -8 (-15 -4266 ((-3 |#1| "failed") $)))) (-1082)) (T -360)) +((-4266 (*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1082))))) +(-13 (-359 (-383) |#1|) (-10 -8 (-15 -4266 ((-3 |#1| "failed") $)))) +((-4251 (((-1241 (-675 |#2|)) (-1241 $)) 61)) (-3321 (((-675 |#2|) (-1241 $)) 120)) (-4206 ((|#2| $) 32)) (-3970 (((-675 |#2|) $ (-1241 $)) 123)) (-3754 (((-3 $ "failed") $) 75)) (-3976 ((|#2| $) 35)) (-3343 (((-1154 |#2|) $) 83)) (-3640 ((|#2| (-1241 $)) 106)) (-4231 (((-1154 |#2|) $) 28)) (-1397 (((-112)) 100)) (-1651 (($ (-1241 |#2|) (-1241 $)) 113)) (-1320 (((-3 $ "failed") $) 79)) (-2545 (((-112)) 95)) (-1765 (((-112)) 90)) (-1573 (((-112)) 53)) (-2871 (((-675 |#2|) (-1241 $)) 118)) (-3115 ((|#2| $) 31)) (-3826 (((-675 |#2|) $ (-1241 $)) 122)) (-1605 (((-3 $ "failed") $) 73)) (-2620 ((|#2| $) 34)) (-3760 (((-1154 |#2|) $) 82)) (-3063 ((|#2| (-1241 $)) 104)) (-2541 (((-1154 |#2|) $) 26)) (-3074 (((-112)) 99)) (-3953 (((-112)) 92)) (-4193 (((-112)) 51)) (-2366 (((-112)) 87)) (-1944 (((-112)) 101)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) 111)) (-3349 (((-112)) 97)) (-1444 (((-631 (-1241 |#2|))) 86)) (-3454 (((-112)) 98)) (-2945 (((-112)) 96)) (-2760 (((-112)) 46)) (-3206 (((-112)) 102))) +(((-361 |#1| |#2|) (-10 -8 (-15 -3343 ((-1154 |#2|) |#1|)) (-15 -3760 ((-1154 |#2|) |#1|)) (-15 -1444 ((-631 (-1241 |#2|)))) (-15 -3754 ((-3 |#1| "failed") |#1|)) (-15 -1605 ((-3 |#1| "failed") |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 -1765 ((-112))) (-15 -3953 ((-112))) (-15 -2545 ((-112))) (-15 -4193 ((-112))) (-15 -1573 ((-112))) (-15 -2366 ((-112))) (-15 -3206 ((-112))) (-15 -1944 ((-112))) (-15 -1397 ((-112))) (-15 -3074 ((-112))) (-15 -2760 ((-112))) (-15 -3454 ((-112))) (-15 -2945 ((-112))) (-15 -3349 ((-112))) (-15 -4231 ((-1154 |#2|) |#1|)) (-15 -2541 ((-1154 |#2|) |#1|)) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3976 (|#2| |#1|)) (-15 -2620 (|#2| |#1|)) (-15 -4206 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|)))) (-362 |#2|) (-170)) (T -361)) +((-3349 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2945 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3454 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2760 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3074 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1397 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1944 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3206 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2366 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1573 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4193 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-2545 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3953 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1765 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-631 (-1241 *4))) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) +(-10 -8 (-15 -3343 ((-1154 |#2|) |#1|)) (-15 -3760 ((-1154 |#2|) |#1|)) (-15 -1444 ((-631 (-1241 |#2|)))) (-15 -3754 ((-3 |#1| "failed") |#1|)) (-15 -1605 ((-3 |#1| "failed") |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 -1765 ((-112))) (-15 -3953 ((-112))) (-15 -2545 ((-112))) (-15 -4193 ((-112))) (-15 -1573 ((-112))) (-15 -2366 ((-112))) (-15 -3206 ((-112))) (-15 -1944 ((-112))) (-15 -1397 ((-112))) (-15 -3074 ((-112))) (-15 -2760 ((-112))) (-15 -3454 ((-112))) (-15 -2945 ((-112))) (-15 -3349 ((-112))) (-15 -4231 ((-1154 |#2|) |#1|)) (-15 -2541 ((-1154 |#2|) |#1|)) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3976 (|#2| |#1|)) (-15 -2620 (|#2| |#1|)) (-15 -4206 (|#2| |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3646 (((-3 $ "failed")) 37 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4251 (((-1241 (-675 |#1|)) (-1241 $)) 78)) (-4047 (((-1241 $)) 81)) (-4087 (($) 17 T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 40 (|has| |#1| (-546)))) (-3447 (((-3 $ "failed")) 38 (|has| |#1| (-546)))) (-3321 (((-675 |#1|) (-1241 $)) 65)) (-4206 ((|#1| $) 74)) (-3970 (((-675 |#1|) $ (-1241 $)) 76)) (-3754 (((-3 $ "failed") $) 45 (|has| |#1| (-546)))) (-2080 (($ $ (-906)) 28)) (-3976 ((|#1| $) 72)) (-3343 (((-1154 |#1|) $) 42 (|has| |#1| (-546)))) (-3640 ((|#1| (-1241 $)) 67)) (-4231 (((-1154 |#1|) $) 63)) (-1397 (((-112)) 57)) (-1651 (($ (-1241 |#1|) (-1241 $)) 69)) (-1320 (((-3 $ "failed") $) 47 (|has| |#1| (-546)))) (-4186 (((-906)) 80)) (-3911 (((-112)) 54)) (-4326 (($ $ (-906)) 33)) (-2545 (((-112)) 50)) (-1765 (((-112)) 48)) (-1573 (((-112)) 52)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 41 (|has| |#1| (-546)))) (-3899 (((-3 $ "failed")) 39 (|has| |#1| (-546)))) (-2871 (((-675 |#1|) (-1241 $)) 66)) (-3115 ((|#1| $) 75)) (-3826 (((-675 |#1|) $ (-1241 $)) 77)) (-1605 (((-3 $ "failed") $) 46 (|has| |#1| (-546)))) (-1297 (($ $ (-906)) 29)) (-2620 ((|#1| $) 73)) (-3760 (((-1154 |#1|) $) 43 (|has| |#1| (-546)))) (-3063 ((|#1| (-1241 $)) 68)) (-2541 (((-1154 |#1|) $) 64)) (-3074 (((-112)) 58)) (-1613 (((-1140) $) 9)) (-3953 (((-112)) 49)) (-4193 (((-112)) 51)) (-2366 (((-112)) 53)) (-2768 (((-1102) $) 10)) (-1944 (((-112)) 56)) (-3656 (((-1241 |#1|) $ (-1241 $)) 71) (((-675 |#1|) (-1241 $) (-1241 $)) 70)) (-3107 (((-631 (-937 |#1|)) (-1241 $)) 79)) (-1856 (($ $ $) 25)) (-3349 (((-112)) 62)) (-3075 (((-848) $) 11)) (-1444 (((-631 (-1241 |#1|))) 44 (|has| |#1| (-546)))) (-3499 (($ $ $ $) 26)) (-3454 (((-112)) 60)) (-1870 (($ $ $) 24)) (-2945 (((-112)) 61)) (-2760 (((-112)) 59)) (-3206 (((-112)) 55)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-362 |#1|) (-138) (-170)) (T -362)) +((-4047 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-362 *3)))) (-4186 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-906)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-631 (-937 *4))))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1241 (-675 *4))))) (-3826 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-3970 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1241 *4)))) (-3656 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3)))) (-3349 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2945 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3454 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2760 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3074 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1397 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1944 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3206 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3911 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2366 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1573 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4193 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-2545 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3953 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1765 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1320 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-1605 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-3754 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) (-1444 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) (-5 *2 (-631 (-1241 *3))))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) (-5 *2 (-1154 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) (-5 *2 (-1154 *3)))) (-1660 (*1 *2) (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1)))) (-4 *1 (-362 *3)))) (-1558 (*1 *2) (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1)))) (-4 *1 (-362 *3)))) (-3899 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))) (-3447 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))) (-3646 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170))))) +(-13 (-731 |t#1|) (-10 -8 (-15 -4047 ((-1241 $))) (-15 -4186 ((-906))) (-15 -3107 ((-631 (-937 |t#1|)) (-1241 $))) (-15 -4251 ((-1241 (-675 |t#1|)) (-1241 $))) (-15 -3826 ((-675 |t#1|) $ (-1241 $))) (-15 -3970 ((-675 |t#1|) $ (-1241 $))) (-15 -3115 (|t#1| $)) (-15 -4206 (|t#1| $)) (-15 -2620 (|t#1| $)) (-15 -3976 (|t#1| $)) (-15 -3656 ((-1241 |t#1|) $ (-1241 $))) (-15 -3656 ((-675 |t#1|) (-1241 $) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|) (-1241 $))) (-15 -3063 (|t#1| (-1241 $))) (-15 -3640 (|t#1| (-1241 $))) (-15 -2871 ((-675 |t#1|) (-1241 $))) (-15 -3321 ((-675 |t#1|) (-1241 $))) (-15 -2541 ((-1154 |t#1|) $)) (-15 -4231 ((-1154 |t#1|) $)) (-15 -3349 ((-112))) (-15 -2945 ((-112))) (-15 -3454 ((-112))) (-15 -2760 ((-112))) (-15 -3074 ((-112))) (-15 -1397 ((-112))) (-15 -1944 ((-112))) (-15 -3206 ((-112))) (-15 -3911 ((-112))) (-15 -2366 ((-112))) (-15 -1573 ((-112))) (-15 -4193 ((-112))) (-15 -2545 ((-112))) (-15 -3953 ((-112))) (-15 -1765 ((-112))) (IF (|has| |t#1| (-546)) (PROGN (-15 -1320 ((-3 $ "failed") $)) (-15 -1605 ((-3 $ "failed") $)) (-15 -3754 ((-3 $ "failed") $)) (-15 -1444 ((-631 (-1241 |t#1|)))) (-15 -3760 ((-1154 |t#1|) $)) (-15 -3343 ((-1154 |t#1|) $)) (-15 -1660 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -3899 ((-3 $ "failed"))) (-15 -3447 ((-3 $ "failed"))) (-15 -3646 ((-3 $ "failed"))) (-6 -4370)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-707) . T) ((-731 |#1|) . T) ((-748) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-1508 (((-758)) 16)) (-3353 (($) 13)) (-3830 (((-906) $) 14)) (-1613 (((-1140) $) 9)) (-2717 (($ (-906)) 15)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-363) (-138)) (T -363)) +((-1508 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-758)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-363)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-906)))) (-3353 (*1 *1) (-4 *1 (-363)))) +(-13 (-1082) (-10 -8 (-15 -1508 ((-758))) (-15 -2717 ($ (-906))) (-15 -3830 ((-906) $)) (-15 -3353 ($)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-1903 (((-675 |#2|) (-1241 $)) 40)) (-1651 (($ (-1241 |#2|) (-1241 $)) 34)) (-3629 (((-675 |#2|) $ (-1241 $)) 42)) (-1495 ((|#2| (-1241 $)) 13)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) 25))) +(((-364 |#1| |#2| |#3|) (-10 -8 (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|)))) (-365 |#2| |#3|) (-170) (-1217 |#2|)) (T -364)) +NIL +(-10 -8 (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1903 (((-675 |#1|) (-1241 $)) 47)) (-1612 ((|#1| $) 53)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49)) (-3629 (((-675 |#1|) $ (-1241 $)) 54)) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-906)) 55)) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 52)) (-3361 ((|#2| $) 45 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1495 ((|#1| (-1241 $)) 48)) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38)) (-2084 (((-3 $ "failed") $) 44 (|has| |#1| (-143)))) (-3109 ((|#2| $) 46)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-365 |#1| |#2|) (-138) (-170) (-1217 |t#1|)) (T -365)) +((-4186 (*1 *2) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-906)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *4)))) (-3656 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170)) (-4 *1 (-365 *4 *5)) (-4 *5 (-1217 *4)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1217 *2)) (-4 *2 (-170)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1217 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -4186 ((-906))) (-15 -3629 ((-675 |t#1|) $ (-1241 $))) (-15 -1612 (|t#1| $)) (-15 -3274 (|t#1| $)) (-15 -3656 ((-1241 |t#1|) $ (-1241 $))) (-15 -3656 ((-675 |t#1|) (-1241 $) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|) (-1241 $))) (-15 -1495 (|t#1| (-1241 $))) (-15 -1903 ((-675 |t#1|) (-1241 $))) (-15 -3109 (|t#2| $)) (IF (|has| |t#1| (-358)) (-15 -3361 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-4159 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3676 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2879 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1195) (-368 |#1|) (-1195) (-368 |#3|)) (T -366)) +((-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5))))) +(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4015 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2576 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3303 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3799 (($ $) 25)) (-1484 (((-554) (-1 (-112) |#2|) $) NIL) (((-554) |#2| $) 11) (((-554) |#2| $ (-554)) NIL)) (-3717 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-367 |#1| |#2|) (-10 -8 (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3303 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-368 |#2|) (-1195)) (T -367)) +NIL +(-10 -8 (-15 -2576 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3717 (|#1| |#1| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3303 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-368 |#1|) (-138) (-1195)) (T -368)) +((-3717 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)))) (-3303 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-4015 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-1484 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195)) (-5 *2 (-554)))) (-1484 (*1 *2 *3 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-554)))) (-1484 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) (-3303 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-836)) (-5 *2 (-112)))) (-3553 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-3920 (*1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195)))) (-2576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4374)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) (-2576 (*1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836))))) +(-13 (-637 |t#1|) (-10 -8 (-6 -4373) (-15 -3717 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3799 ($ $)) (-15 -3303 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4015 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1484 ((-554) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -1484 ((-554) |t#1| $)) (-15 -1484 ((-554) |t#1| $ (-554)))) |%noBranch|) (IF (|has| |t#1| (-836)) (PROGN (-6 (-836)) (-15 -3717 ($ $ $)) (-15 -3303 ($ $)) (-15 -4015 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4374)) (PROGN (-15 -3553 ($ $ $ (-554))) (-15 -3920 ($ $)) (-15 -2576 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-836)) (-15 -2576 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T)) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1654 (((-631 |#1|) $) 32)) (-3151 (($ $ (-758)) 33)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3567 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 36)) (-3898 (($ $) 34)) (-3637 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 37)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2386 (($ $ |#1| $) 31) (($ $ (-631 |#1|) (-631 $)) 30)) (-3308 (((-758) $) 38)) (-3089 (($ $ $) 29)) (-3075 (((-848) $) 11) (($ |#1|) 41) (((-1256 |#1| |#2|) $) 40) (((-1265 |#1| |#2|) $) 39)) (-1490 ((|#2| (-1265 |#1| |#2|) $) 42)) (-2004 (($) 18 T CONST)) (-2341 (($ (-658 |#1|)) 35)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#2|) 28 (|has| |#2| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-369 |#1| |#2|) (-138) (-836) (-170)) (T -369)) +((-1490 (*1 *2 *3 *1) (-12 (-5 *3 (-1265 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-836)) (-4 *2 (-170)))) (-3075 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-1256 *3 *4)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-1265 *3 *4)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-758)))) (-3637 (*1 *2 *2 *1) (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-3567 (*1 *2 *2 *1) (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *2 (-631 *3)))) (-2386 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-836)) (-4 *5 (-170))))) +(-13 (-622 |t#2|) (-10 -8 (-15 -1490 (|t#2| (-1265 |t#1| |t#2|) $)) (-15 -3075 ($ |t#1|)) (-15 -3075 ((-1256 |t#1| |t#2|) $)) (-15 -3075 ((-1265 |t#1| |t#2|) $)) (-15 -3308 ((-758) $)) (-15 -3637 ((-1265 |t#1| |t#2|) (-1265 |t#1| |t#2|) $)) (-15 -3567 ((-1265 |t#1| |t#2|) (-1265 |t#1| |t#2|) $)) (-15 -2341 ($ (-658 |t#1|))) (-15 -3898 ($ $)) (-15 -3151 ($ $ (-758))) (-15 -1654 ((-631 |t#1|) $)) (-15 -2386 ($ $ |t#1| $)) (-15 -2386 ($ $ (-631 |t#1|) (-631 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#2|) . T) ((-622 |#2|) . T) ((-704 |#2|) . T) ((-1040 |#2|) . T) ((-1082) . T)) +((-2331 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-4077 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1619 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-370 |#1| |#2|) (-10 -7 (-15 -4077 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1619 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2331 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1195) (-13 (-368 |#1|) (-10 -7 (-6 -4374)))) (T -370)) +((-2331 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))) (-1619 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))))) (-4077 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374))))))) +(-10 -7 (-15 -4077 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1619 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2331 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3699 (((-675 |#2|) (-675 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 22) (((-675 (-554)) (-675 $)) 14))) +(((-371 |#1| |#2|) (-10 -8 (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 |#2|) (-675 |#1|)))) (-372 |#2|) (-1034)) (T -371)) +NIL +(-10 -8 (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 |#2|) (-675 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3699 (((-675 |#1|) (-675 $)) 36) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 35) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 43 (|has| |#1| (-627 (-554)))) (((-675 (-554)) (-675 $)) 42 (|has| |#1| (-627 (-554))))) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-372 |#1|) (-138) (-1034)) (T -372)) +NIL +(-13 (-627 |t#1|) (-10 -7 (IF (|has| |t#1| (-627 (-554))) (-6 (-627 (-554))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2007 (((-631 (-289 (-937 (-167 |#1|)))) (-289 (-402 (-937 (-167 (-554))))) |#1|) 51) (((-631 (-289 (-937 (-167 |#1|)))) (-402 (-937 (-167 (-554)))) |#1|) 50) (((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-289 (-402 (-937 (-167 (-554)))))) |#1|) 47) (((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-402 (-937 (-167 (-554))))) |#1|) 41)) (-3900 (((-631 (-631 (-167 |#1|))) (-631 (-402 (-937 (-167 (-554))))) (-631 (-1158)) |#1|) 30) (((-631 (-167 |#1|)) (-402 (-937 (-167 (-554)))) |#1|) 18))) +(((-373 |#1|) (-10 -7 (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-289 (-402 (-937 (-167 (-554)))))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-289 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -3900 ((-631 (-167 |#1|)) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -3900 ((-631 (-631 (-167 |#1|))) (-631 (-402 (-937 (-167 (-554))))) (-631 (-1158)) |#1|))) (-13 (-358) (-834))) (T -373)) +((-3900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554)))))) (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 (-167 *5)))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-834))))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-167 (-554))))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 (-167 (-554)))))) (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-167 (-554))))) (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-289 (-402 (-937 (-167 (-554))))))) (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) (-2007 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554)))))) (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834)))))) +(-10 -7 (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -2007 ((-631 (-631 (-289 (-937 (-167 |#1|))))) (-631 (-289 (-402 (-937 (-167 (-554)))))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -2007 ((-631 (-289 (-937 (-167 |#1|)))) (-289 (-402 (-937 (-167 (-554))))) |#1|)) (-15 -3900 ((-631 (-167 |#1|)) (-402 (-937 (-167 (-554)))) |#1|)) (-15 -3900 ((-631 (-631 (-167 |#1|))) (-631 (-402 (-937 (-167 (-554))))) (-631 (-1158)) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 33)) (-3831 (((-554) $) 55)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1557 (($ $) 110)) (-3023 (($ $) 82)) (-4200 (($ $) 71)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) 44)) (-2286 (((-112) $ $) NIL)) (-3003 (($ $) 80)) (-4177 (($ $) 69)) (-4219 (((-554) $) 64)) (-1648 (($ $ (-554)) 62)) (-3046 (($ $) NIL)) (-2916 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2087 (($ $) 112)) (-2784 (((-3 (-554) "failed") $) 189) (((-3 (-402 (-554)) "failed") $) 185)) (-1668 (((-554) $) 187) (((-402 (-554)) $) 183)) (-3964 (($ $ $) NIL)) (-3419 (((-554) $ $) 102)) (-1320 (((-3 $ "failed") $) 114)) (-1824 (((-402 (-554)) $ (-758)) 190) (((-402 (-554)) $ (-758) (-758)) 182)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2276 (((-906)) 73) (((-906) (-906)) 98 (|has| $ (-6 -4364)))) (-2745 (((-112) $) 106)) (-2844 (($) 40)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL)) (-1574 (((-1246) (-758)) 152)) (-2073 (((-1246)) 157) (((-1246) (-758)) 158)) (-3047 (((-1246)) 159) (((-1246) (-758)) 160)) (-3485 (((-1246)) 155) (((-1246) (-758)) 156)) (-2342 (((-554) $) 58)) (-3248 (((-112) $) 104)) (-3734 (($ $ (-554)) NIL)) (-4085 (($ $) 48)) (-3274 (($ $) NIL)) (-4304 (((-112) $) 35)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL) (($) NIL (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-2706 (($ $ $) NIL) (($) 99 (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-1837 (((-554) $) 17)) (-3187 (($) 87) (($ $) 92)) (-4062 (($) 91) (($ $) 93)) (-2395 (($ $) 83)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 116)) (-3845 (((-906) (-554)) 43 (|has| $ (-6 -4364)))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) 53)) (-4339 (($ $) 109)) (-3302 (($ (-554) (-554)) 107) (($ (-554) (-554) (-906)) 108)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1407 (((-554) $) 19)) (-2311 (($) 94)) (-1333 (($ $) 79)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-906)) 100) (((-906) (-906)) 101 (|has| $ (-6 -4364)))) (-1553 (($ $ (-758)) NIL) (($ $) 115)) (-4353 (((-906) (-554)) 47 (|has| $ (-6 -4364)))) (-3057 (($ $) NIL)) (-2926 (($ $) NIL)) (-3034 (($ $) NIL)) (-4213 (($ $) NIL)) (-3014 (($ $) 81)) (-4188 (($ $) 70)) (-2927 (((-374) $) 175) (((-221) $) 177) (((-877 (-374)) $) NIL) (((-1140) $) 162) (((-530) $) 173) (($ (-221)) 181)) (-3075 (((-848) $) 164) (($ (-554)) 186) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-554)) 186) (($ (-402 (-554))) NIL) (((-221) $) 178)) (-2261 (((-758)) NIL)) (-2755 (($ $) 111)) (-3219 (((-906)) 54) (((-906) (-906)) 66 (|has| $ (-6 -4364)))) (-3462 (((-906)) 103)) (-3096 (($ $) 86)) (-2959 (($ $) 46) (($ $ $) 52)) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) 84)) (-2938 (($ $) 37)) (-3120 (($ $) NIL)) (-2981 (($ $) NIL)) (-2908 (($ $) NIL)) (-2991 (($ $) NIL)) (-3108 (($ $) NIL)) (-2969 (($ $) NIL)) (-3083 (($ $) 85)) (-2948 (($ $) 49)) (-1700 (($ $) 51)) (-2004 (($) 34 T CONST)) (-2014 (($) 38 T CONST)) (-4048 (((-1140) $) 27) (((-1140) $ (-112)) 29) (((-1246) (-809) $) 30) (((-1246) (-809) $ (-112)) 31)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 39)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 42)) (-1752 (($ $ $) 45) (($ $ (-554)) 41)) (-1744 (($ $) 36) (($ $ $) 50)) (-1735 (($ $ $) 61)) (** (($ $ (-906)) 67) (($ $ (-758)) NIL) (($ $ (-554)) 88) (($ $ (-402 (-554))) 125) (($ $ $) 117)) (* (($ (-906) $) 65) (($ (-758) $) NIL) (($ (-554) $) 68) (($ $ $) 60) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-374) (-13 (-399) (-229) (-602 (-1140)) (-815) (-601 (-221)) (-1180) (-602 (-530)) (-606 (-221)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -4085 ($ $)) (-15 -3419 ((-554) $ $)) (-15 -1648 ($ $ (-554))) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758))) (-15 -3187 ($)) (-15 -4062 ($)) (-15 -2311 ($)) (-15 -2959 ($ $ $)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -3047 ((-1246))) (-15 -3047 ((-1246) (-758))) (-15 -3485 ((-1246))) (-15 -3485 ((-1246) (-758))) (-15 -2073 ((-1246))) (-15 -2073 ((-1246) (-758))) (-15 -1574 ((-1246) (-758))) (-6 -4364) (-6 -4356)))) (T -374)) +((** (*1 *1 *1 *1) (-5 *1 (-374))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) (-4085 (*1 *1 *1) (-5 *1 (-374))) (-3419 (*1 *2 *1 *1) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) (-1824 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374)))) (-1824 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374)))) (-3187 (*1 *1) (-5 *1 (-374))) (-4062 (*1 *1) (-5 *1 (-374))) (-2311 (*1 *1) (-5 *1 (-374))) (-2959 (*1 *1 *1 *1) (-5 *1 (-374))) (-3187 (*1 *1 *1) (-5 *1 (-374))) (-4062 (*1 *1 *1) (-5 *1 (-374))) (-3047 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) (-3485 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) (-2073 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374))))) +(-13 (-399) (-229) (-602 (-1140)) (-815) (-601 (-221)) (-1180) (-602 (-530)) (-606 (-221)) (-10 -8 (-15 -1752 ($ $ (-554))) (-15 ** ($ $ $)) (-15 -4085 ($ $)) (-15 -3419 ((-554) $ $)) (-15 -1648 ($ $ (-554))) (-15 -1824 ((-402 (-554)) $ (-758))) (-15 -1824 ((-402 (-554)) $ (-758) (-758))) (-15 -3187 ($)) (-15 -4062 ($)) (-15 -2311 ($)) (-15 -2959 ($ $ $)) (-15 -3187 ($ $)) (-15 -4062 ($ $)) (-15 -3047 ((-1246))) (-15 -3047 ((-1246) (-758))) (-15 -3485 ((-1246))) (-15 -3485 ((-1246) (-758))) (-15 -2073 ((-1246))) (-15 -2073 ((-1246) (-758))) (-15 -1574 ((-1246) (-758))) (-6 -4364) (-6 -4356))) +((-1900 (((-631 (-289 (-937 |#1|))) (-289 (-402 (-937 (-554)))) |#1|) 46) (((-631 (-289 (-937 |#1|))) (-402 (-937 (-554))) |#1|) 45) (((-631 (-631 (-289 (-937 |#1|)))) (-631 (-289 (-402 (-937 (-554))))) |#1|) 42) (((-631 (-631 (-289 (-937 |#1|)))) (-631 (-402 (-937 (-554)))) |#1|) 36)) (-3619 (((-631 |#1|) (-402 (-937 (-554))) |#1|) 20) (((-631 (-631 |#1|)) (-631 (-402 (-937 (-554)))) (-631 (-1158)) |#1|) 30))) +(((-375 |#1|) (-10 -7 (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-402 (-937 (-554)))) |#1|)) (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-289 (-402 (-937 (-554))))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-402 (-937 (-554))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-289 (-402 (-937 (-554)))) |#1|)) (-15 -3619 ((-631 (-631 |#1|)) (-631 (-402 (-937 (-554)))) (-631 (-1158)) |#1|)) (-15 -3619 ((-631 |#1|) (-402 (-937 (-554))) |#1|))) (-13 (-834) (-358))) (T -375)) +((-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-402 (-937 (-554))))) (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 (-554))))) (-5 *2 (-631 (-289 (-937 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 (-289 (-937 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-289 (-402 (-937 (-554)))))) (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 (-554))))) (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358)))))) +(-10 -7 (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-402 (-937 (-554)))) |#1|)) (-15 -1900 ((-631 (-631 (-289 (-937 |#1|)))) (-631 (-289 (-402 (-937 (-554))))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-402 (-937 (-554))) |#1|)) (-15 -1900 ((-631 (-289 (-937 |#1|))) (-289 (-402 (-937 (-554)))) |#1|)) (-15 -3619 ((-631 (-631 |#1|)) (-631 (-402 (-937 (-554)))) (-631 (-1158)) |#1|)) (-15 -3619 ((-631 |#1|) (-402 (-937 (-554))) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 26)) (-1668 ((|#2| $) 28)) (-2550 (($ $) NIL)) (-2122 (((-758) $) 10)) (-3910 (((-631 $) $) 20)) (-3580 (((-112) $) NIL)) (-3738 (($ |#2| |#1|) 18)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2518 ((|#2| $) 15)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 45) (($ |#2|) 27)) (-1893 (((-631 |#1|) $) 17)) (-1779 ((|#1| $ |#2|) 47)) (-2004 (($) 29 T CONST)) (-2407 (((-631 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-376 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1034) (-836)) (T -376)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836))))) +(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#2| "failed") $) 44)) (-1668 ((|#2| $) 45)) (-2550 (($ $) 30)) (-2122 (((-758) $) 34)) (-3910 (((-631 $) $) 35)) (-3580 (((-112) $) 38)) (-3738 (($ |#2| |#1|) 39)) (-2879 (($ (-1 |#1| |#1|) $) 40)) (-2428 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2518 ((|#2| $) 33)) (-2530 ((|#1| $) 32)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ |#2|) 43)) (-1893 (((-631 |#1|) $) 36)) (-1779 ((|#1| $ |#2|) 41)) (-2004 (($) 18 T CONST)) (-2407 (((-631 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-377 |#1| |#2|) (-138) (-1034) (-1082)) (T -377)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082)))) (-1779 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)))) (-3738 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-112)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 *3)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 *1)) (-4 *1 (-377 *3 *4)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-758)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082))))) +(-13 (-111 |t#1| |t#1|) (-1023 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1779 (|t#1| $ |t#2|)) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -3738 ($ |t#2| |t#1|)) (-15 -3580 ((-112) $)) (-15 -2407 ((-631 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1893 ((-631 |t#1|) $)) (-15 -3910 ((-631 $) $)) (-15 -2122 ((-758) $)) (-15 -2518 (|t#2| $)) (-15 -2530 (|t#1| $)) (-15 -2428 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2550 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-704 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) |has| |#1| (-170)) ((-1023 |#2|) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-675 (-685))) 14) (($ (-631 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 11))) +(((-378) (-138)) (T -378)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-675 (-685))) (-4 *1 (-378)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-378)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-378))))) +(-13 (-390) (-10 -8 (-15 -3075 ($ (-675 (-685)))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))))) +(((-601 (-848)) . T) ((-390) . T) ((-1195) . T)) +((-2784 (((-3 $ "failed") (-675 (-311 (-374)))) 21) (((-3 $ "failed") (-675 (-311 (-554)))) 19) (((-3 $ "failed") (-675 (-937 (-374)))) 17) (((-3 $ "failed") (-675 (-937 (-554)))) 15) (((-3 $ "failed") (-675 (-402 (-937 (-374))))) 13) (((-3 $ "failed") (-675 (-402 (-937 (-554))))) 11)) (-1668 (($ (-675 (-311 (-374)))) 22) (($ (-675 (-311 (-554)))) 20) (($ (-675 (-937 (-374)))) 18) (($ (-675 (-937 (-554)))) 16) (($ (-675 (-402 (-937 (-374))))) 14) (($ (-675 (-402 (-937 (-554))))) 12)) (-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-631 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 23))) +(((-379) (-138)) (T -379)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-379)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379))))) +(-13 (-390) (-10 -8 (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -1668 ($ (-675 (-311 (-374))))) (-15 -2784 ((-3 $ "failed") (-675 (-311 (-374))))) (-15 -1668 ($ (-675 (-311 (-554))))) (-15 -2784 ((-3 $ "failed") (-675 (-311 (-554))))) (-15 -1668 ($ (-675 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-675 (-937 (-374))))) (-15 -1668 ($ (-675 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-675 (-937 (-554))))) (-15 -1668 ($ (-675 (-402 (-937 (-374)))))) (-15 -2784 ((-3 $ "failed") (-675 (-402 (-937 (-374)))))) (-15 -1668 ($ (-675 (-402 (-937 (-554)))))) (-15 -2784 ((-3 $ "failed") (-675 (-402 (-937 (-554)))))))) +(((-601 (-848)) . T) ((-390) . T) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 28)) (-2004 (($) 12 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-380 |#1| |#2|) (-13 (-111 |#1| |#1|) (-503 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|))) (-1034) (-836)) (T -380)) +NIL +(-13 (-111 |#1| |#1|) (-503 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-704 |#1|)) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1508 (((-758) $) 59)) (-4087 (($) NIL T CONST)) (-3567 (((-3 $ "failed") $ $) 61)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-4146 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3248 (((-112) $) 15)) (-3195 ((|#1| $ (-554)) NIL)) (-2370 (((-758) $ (-554)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-3563 (($ (-1 |#1| |#1|) $) 38)) (-4098 (($ (-1 (-758) (-758)) $) 35)) (-3637 (((-3 $ "failed") $ $) 50)) (-1613 (((-1140) $) NIL)) (-1919 (($ $ $) 26)) (-2129 (($ $ $) 24)) (-2768 (((-1102) $) NIL)) (-2316 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $) 32)) (-2259 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3075 (((-848) $) 22) (($ |#1|) NIL)) (-2014 (($) 9 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 41)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) 63 (|has| |#1| (-836)))) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ |#1| (-758)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-381 |#1|) (-13 (-713) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -2259 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-758) (-758)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-1082)) (T -381)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-2129 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-1919 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-3637 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-3567 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-2259 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-4146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758))))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-381 *4)) (-4 *4 (-1082)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-381 *2)) (-4 *2 (-1082)))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-758) (-758))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-381 *3))))) +(-13 (-713) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -2259 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -4098 ($ (-1 (-758) (-758)) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 48)) (-1668 (((-554) $) 49)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-4223 (($ $ $) 55)) (-2706 (($ $ $) 54)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-554)) 47)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 52)) (-1686 (((-112) $ $) 51)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 53)) (-1676 (((-112) $ $) 50)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-382) (-138)) (T -382)) +NIL +(-13 (-546) (-836) (-1023 (-554))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-836) . T) ((-1023 (-554)) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-2629 (((-112) $) 20)) (-2262 (((-112) $) 19)) (-3180 (($ (-1140) (-1140) (-1140)) 21)) (-4309 (((-1140) $) 16)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2587 (($ (-1140) (-1140) (-1140)) 14)) (-3458 (((-1140) $) 17)) (-2512 (((-112) $) 18)) (-2209 (((-1140) $) 15)) (-3075 (((-848) $) 12) (($ (-1140)) 13) (((-1140) $) 9)) (-1658 (((-112) $ $) 7))) +(((-383) (-384)) (T -383)) +NIL +(-384) +((-3062 (((-112) $ $) 7)) (-2629 (((-112) $) 16)) (-2262 (((-112) $) 17)) (-3180 (($ (-1140) (-1140) (-1140)) 15)) (-4309 (((-1140) $) 20)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2587 (($ (-1140) (-1140) (-1140)) 22)) (-3458 (((-1140) $) 19)) (-2512 (((-112) $) 18)) (-2209 (((-1140) $) 21)) (-3075 (((-848) $) 11) (($ (-1140)) 24) (((-1140) $) 23)) (-1658 (((-112) $ $) 6))) +(((-384) (-138)) (T -384)) +((-2587 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3180 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384))))) +(-13 (-1082) (-484 (-1140)) (-10 -8 (-15 -2587 ($ (-1140) (-1140) (-1140))) (-15 -2209 ((-1140) $)) (-15 -4309 ((-1140) $)) (-15 -3458 ((-1140) $)) (-15 -2512 ((-112) $)) (-15 -2262 ((-112) $)) (-15 -2629 ((-112) $)) (-15 -3180 ($ (-1140) (-1140) (-1140))))) +(((-102) . T) ((-604 #0=(-1140)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2825 (((-848) $) 50)) (-4087 (($) NIL T CONST)) (-2080 (($ $ (-906)) NIL)) (-4326 (($ $ (-906)) NIL)) (-1297 (($ $ (-906)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($ (-758)) 26)) (-3330 (((-758)) 17)) (-2196 (((-848) $) 52)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) NIL)) (-3499 (($ $ $ $) NIL)) (-1870 (($ $ $) NIL)) (-2004 (($) 20 T CONST)) (-1658 (((-112) $ $) 28)) (-1744 (($ $) 34) (($ $ $) 36)) (-1735 (($ $ $) 37)) (** (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-385 |#1| |#2| |#3|) (-13 (-731 |#3|) (-10 -8 (-15 -3330 ((-758))) (-15 -2196 ((-848) $)) (-15 -2825 ((-848) $)) (-15 -4137 ($ (-758))))) (-758) (-758) (-170)) (T -385)) +((-3330 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758)) (-14 *4 (-758)) (-4 *5 (-170)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758)) (-14 *4 (-758)) (-4 *5 (-170)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) +(-13 (-731 |#3|) (-10 -8 (-15 -3330 ((-758))) (-15 -2196 ((-848) $)) (-15 -2825 ((-848) $)) (-15 -4137 ($ (-758))))) +((-1673 (((-1140)) 10)) (-3995 (((-1129 (-1140))) 28)) (-1382 (((-1246) (-1140)) 25) (((-1246) (-383)) 24)) (-1393 (((-1246)) 26)) (-2039 (((-1129 (-1140))) 27))) +(((-386) (-10 -7 (-15 -2039 ((-1129 (-1140)))) (-15 -3995 ((-1129 (-1140)))) (-15 -1393 ((-1246))) (-15 -1382 ((-1246) (-383))) (-15 -1382 ((-1246) (-1140))) (-15 -1673 ((-1140))))) (T -386)) +((-1673 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-386)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-386)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-386)))) (-1393 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-386)))) (-3995 (*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386)))) (-2039 (*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386))))) +(-10 -7 (-15 -2039 ((-1129 (-1140)))) (-15 -3995 ((-1129 (-1140)))) (-15 -1393 ((-1246))) (-15 -1382 ((-1246) (-383))) (-15 -1382 ((-1246) (-1140))) (-15 -1673 ((-1140)))) +((-2342 (((-758) (-331 |#1| |#2| |#3| |#4|)) 16))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|)))) (-13 (-363) (-358)) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -387)) +((-2342 (*1 *2 *3) (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) (-5 *2 (-758)) (-5 *1 (-387 *4 *5 *6 *7))))) +(-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|)))) +((-3075 (((-389) |#1|) 11))) +(((-388 |#1|) (-10 -7 (-15 -3075 ((-389) |#1|))) (-1082)) (T -388)) +((-3075 (*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1082))))) +(-10 -7 (-15 -3075 ((-389) |#1|))) +((-3062 (((-112) $ $) NIL)) (-3917 (((-631 (-1140)) $ (-631 (-1140))) 38)) (-2090 (((-631 (-1140)) $ (-631 (-1140))) 39)) (-3570 (((-631 (-1140)) $ (-631 (-1140))) 40)) (-3298 (((-631 (-1140)) $) 35)) (-3180 (($) 23)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4080 (((-631 (-1140)) $) 36)) (-1741 (((-631 (-1140)) $) 37)) (-2524 (((-1246) $ (-554)) 33) (((-1246) $) 34)) (-2927 (($ (-848) (-554)) 30)) (-3075 (((-848) $) 42) (($ (-848)) 25)) (-1658 (((-112) $ $) NIL))) +(((-389) (-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -4080 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -2090 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140))))))) (T -389)) +((-2927 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-389)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-389)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-389)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-3180 (*1 *1) (-5 *1 (-389))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-3570 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-2090 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) (-3917 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))) +(-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -4080 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -2090 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140)))))) +((-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8))) +(((-390) (-138)) (T -390)) +((-1405 (*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1246))))) +(-13 (-1195) (-601 (-848)) (-10 -8 (-15 -1405 ((-1246) $)))) +(((-601 (-848)) . T) ((-1195) . T)) +((-2784 (((-3 $ "failed") (-311 (-374))) 21) (((-3 $ "failed") (-311 (-554))) 19) (((-3 $ "failed") (-937 (-374))) 17) (((-3 $ "failed") (-937 (-554))) 15) (((-3 $ "failed") (-402 (-937 (-374)))) 13) (((-3 $ "failed") (-402 (-937 (-554)))) 11)) (-1668 (($ (-311 (-374))) 22) (($ (-311 (-554))) 20) (($ (-937 (-374))) 18) (($ (-937 (-554))) 16) (($ (-402 (-937 (-374)))) 14) (($ (-402 (-937 (-554)))) 12)) (-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-631 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 23))) +(((-391) (-138)) (T -391)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-391)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-554))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-374))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-374))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-554))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391))))) +(-13 (-390) (-10 -8 (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -1668 ($ (-311 (-374)))) (-15 -2784 ((-3 $ "failed") (-311 (-374)))) (-15 -1668 ($ (-311 (-554)))) (-15 -2784 ((-3 $ "failed") (-311 (-554)))) (-15 -1668 ($ (-937 (-374)))) (-15 -2784 ((-3 $ "failed") (-937 (-374)))) (-15 -1668 ($ (-937 (-554)))) (-15 -2784 ((-3 $ "failed") (-937 (-554)))) (-15 -1668 ($ (-402 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-374))))) (-15 -1668 ($ (-402 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-402 (-937 (-554))))))) +(((-601 (-848)) . T) ((-390) . T) ((-1195) . T)) +((-4127 (((-631 (-1140)) (-631 (-1140))) 9)) (-1405 (((-1246) (-383)) 27)) (-4191 (((-1086) (-1158) (-631 (-1158)) (-1161) (-631 (-1158))) 60) (((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)) (-1158)) 35) (((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158))) 34))) +(((-392) (-10 -7 (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)))) (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)) (-1158))) (-15 -4191 ((-1086) (-1158) (-631 (-1158)) (-1161) (-631 (-1158)))) (-15 -1405 ((-1246) (-383))) (-15 -4127 ((-631 (-1140)) (-631 (-1140)))))) (T -392)) +((-4127 (*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-392)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-392)))) (-4191 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-631 (-1158))) (-5 *5 (-1161)) (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-392)))) (-4191 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158))))) (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-392)))) (-4191 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158))))) (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-392))))) +(-10 -7 (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)))) (-15 -4191 ((-1086) (-1158) (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158)))) (-631 (-631 (-3 (|:| |array| (-631 (-1158))) (|:| |scalar| (-1158))))) (-631 (-1158)) (-1158))) (-15 -4191 ((-1086) (-1158) (-631 (-1158)) (-1161) (-631 (-1158)))) (-15 -1405 ((-1246) (-383))) (-15 -4127 ((-631 (-1140)) (-631 (-1140))))) +((-1405 (((-1246) $) 38)) (-3075 (((-848) $) 98) (($ (-325)) 100) (($ (-631 (-325))) 99) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 97) (($ (-311 (-687))) 54) (($ (-311 (-685))) 73) (($ (-311 (-680))) 86) (($ (-289 (-311 (-687)))) 68) (($ (-289 (-311 (-685)))) 81) (($ (-289 (-311 (-680)))) 94) (($ (-311 (-554))) 104) (($ (-311 (-374))) 117) (($ (-311 (-167 (-374)))) 130) (($ (-289 (-311 (-554)))) 112) (($ (-289 (-311 (-374)))) 125) (($ (-289 (-311 (-167 (-374))))) 138))) +(((-393 |#1| |#2| |#3| |#4|) (-13 (-390) (-10 -8 (-15 -3075 ($ (-325))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -3075 ($ (-311 (-687)))) (-15 -3075 ($ (-311 (-685)))) (-15 -3075 ($ (-311 (-680)))) (-15 -3075 ($ (-289 (-311 (-687))))) (-15 -3075 ($ (-289 (-311 (-685))))) (-15 -3075 ($ (-289 (-311 (-680))))) (-15 -3075 ($ (-311 (-554)))) (-15 -3075 ($ (-311 (-374)))) (-15 -3075 ($ (-311 (-167 (-374))))) (-15 -3075 ($ (-289 (-311 (-554))))) (-15 -3075 ($ (-289 (-311 (-374))))) (-15 -3075 ($ (-289 (-311 (-167 (-374)))))))) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-1162)) (T -393)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-687))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-685))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-680))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-687)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-685)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-680)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-554)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-14 *5 (-631 (-1158))) (-14 *6 (-1162))))) +(-13 (-390) (-10 -8 (-15 -3075 ($ (-325))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -3075 ($ (-311 (-687)))) (-15 -3075 ($ (-311 (-685)))) (-15 -3075 ($ (-311 (-680)))) (-15 -3075 ($ (-289 (-311 (-687))))) (-15 -3075 ($ (-289 (-311 (-685))))) (-15 -3075 ($ (-289 (-311 (-680))))) (-15 -3075 ($ (-311 (-554)))) (-15 -3075 ($ (-311 (-374)))) (-15 -3075 ($ (-311 (-167 (-374))))) (-15 -3075 ($ (-289 (-311 (-554))))) (-15 -3075 ($ (-289 (-311 (-374))))) (-15 -3075 ($ (-289 (-311 (-167 (-374)))))))) +((-3062 (((-112) $ $) NIL)) (-2988 ((|#2| $) 36)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3755 (($ (-402 |#2|)) 85)) (-1836 (((-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))) $) 37)) (-1553 (($ $) 32) (($ $ (-758)) 34)) (-2927 (((-402 |#2|) $) 46)) (-3089 (($ (-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|)))) 31)) (-3075 (((-848) $) 120)) (-1787 (($ $) 33) (($ $ (-758)) 35)) (-1658 (((-112) $ $) NIL)) (-1735 (($ |#2| $) 39))) +(((-394 |#1| |#2|) (-13 (-1082) (-602 (-402 |#2|)) (-10 -8 (-15 -1735 ($ |#2| $)) (-15 -3755 ($ (-402 |#2|))) (-15 -2988 (|#2| $)) (-15 -1836 ((-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))))) (-15 -1553 ($ $)) (-15 -1787 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -1787 ($ $ (-758))))) (-13 (-358) (-145)) (-1217 |#1|)) (T -394)) +((-1735 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1217 *3)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-2988 (*1 *2 *1) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))) (-1836 (*1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4)))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4)))) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-1553 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1217 *2)))) (-1787 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1217 *2)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3))))) +(-13 (-1082) (-602 (-402 |#2|)) (-10 -8 (-15 -1735 ($ |#2| $)) (-15 -3755 ($ (-402 |#2|))) (-15 -2988 (|#2| $)) (-15 -1836 ((-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -1407 (-758)) (|:| -1608 |#2|) (|:| |num| |#2|))))) (-15 -1553 ($ $)) (-15 -1787 ($ $)) (-15 -1553 ($ $ (-758))) (-15 -1787 ($ $ (-758))))) +((-3062 (((-112) $ $) 9 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 15 (|has| |#1| (-871 (-374)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 14 (|has| |#1| (-871 (-554))))) (-1613 (((-1140) $) 13 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-2768 (((-1102) $) 12 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-3075 (((-848) $) 11 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))))) (-1658 (((-112) $ $) 10 (-3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374))))))) +(((-395 |#1|) (-138) (-1195)) (T -395)) +NIL +(-13 (-1195) (-10 -7 (IF (|has| |t#1| (-871 (-554))) (-6 (-871 (-554))) |%noBranch|) (IF (|has| |t#1| (-871 (-374))) (-6 (-871 (-374))) |%noBranch|))) +(((-102) -3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))) ((-601 (-848)) -3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-1082) -3994 (|has| |#1| (-871 (-554))) (|has| |#1| (-871 (-374)))) ((-1195) . T)) +((-4122 (($ $) 10) (($ $ (-758)) 11))) +(((-396 |#1|) (-10 -8 (-15 -4122 (|#1| |#1| (-758))) (-15 -4122 (|#1| |#1|))) (-397)) (T -396)) +NIL +(-10 -8 (-15 -4122 (|#1| |#1| (-758))) (-15 -4122 (|#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-4122 (($ $) 80) (($ $ (-758)) 79)) (-3289 (((-112) $) 72)) (-2342 (((-820 (-906)) $) 82)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-3 (-758) "failed") $ $) 81)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67)) (-2084 (((-3 $ "failed") $) 83)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68))) +(((-397) (-138)) (T -397)) +((-2342 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-820 (-906))))) (-3316 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-758)))) (-4122 (*1 *1 *1) (-4 *1 (-397))) (-4122 (*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-758))))) +(-13 (-358) (-143) (-10 -8 (-15 -2342 ((-820 (-906)) $)) (-15 -3316 ((-3 (-758) "failed") $ $)) (-15 -4122 ($ $)) (-15 -4122 ($ $ (-758))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-3302 (($ (-554) (-554)) 11) (($ (-554) (-554) (-906)) NIL)) (-1378 (((-906)) 16) (((-906) (-906)) NIL))) +(((-398 |#1|) (-10 -8 (-15 -1378 ((-906) (-906))) (-15 -1378 ((-906))) (-15 -3302 (|#1| (-554) (-554) (-906))) (-15 -3302 (|#1| (-554) (-554)))) (-399)) (T -398)) +((-1378 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399))))) +(-10 -8 (-15 -1378 ((-906) (-906))) (-15 -1378 ((-906))) (-15 -3302 (|#1| (-554) (-554) (-906))) (-15 -3302 (|#1| (-554) (-554)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 (((-554) $) 90)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-1557 (($ $) 88)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 98)) (-2286 (((-112) $ $) 60)) (-4219 (((-554) $) 115)) (-4087 (($) 17 T CONST)) (-2087 (($ $) 87)) (-2784 (((-3 (-554) "failed") $) 103) (((-3 (-402 (-554)) "failed") $) 100)) (-1668 (((-554) $) 104) (((-402 (-554)) $) 101)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-2276 (((-906)) 131) (((-906) (-906)) 128 (|has| $ (-6 -4364)))) (-2745 (((-112) $) 113)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 94)) (-2342 (((-554) $) 137)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 97)) (-3274 (($ $) 93)) (-4304 (((-112) $) 114)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-4223 (($ $ $) 112) (($) 125 (-12 (-4081 (|has| $ (-6 -4364))) (-4081 (|has| $ (-6 -4356)))))) (-2706 (($ $ $) 111) (($) 124 (-12 (-4081 (|has| $ (-6 -4364))) (-4081 (|has| $ (-6 -4356)))))) (-1837 (((-554) $) 134)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3845 (((-906) (-554)) 127 (|has| $ (-6 -4364)))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3722 (($ $) 89)) (-4339 (($ $) 91)) (-3302 (($ (-554) (-554)) 139) (($ (-554) (-554) (-906)) 138)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-1407 (((-554) $) 135)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-1378 (((-906)) 132) (((-906) (-906)) 129 (|has| $ (-6 -4364)))) (-4353 (((-906) (-554)) 126 (|has| $ (-6 -4364)))) (-2927 (((-374) $) 106) (((-221) $) 105) (((-877 (-374)) $) 95)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ (-554)) 102) (($ (-402 (-554))) 99)) (-2261 (((-758)) 28)) (-2755 (($ $) 92)) (-3219 (((-906)) 133) (((-906) (-906)) 130 (|has| $ (-6 -4364)))) (-3462 (((-906)) 136)) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 116)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 109)) (-1686 (((-112) $ $) 108)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 110)) (-1676 (((-112) $ $) 107)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 96)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68))) +(((-399) (-138)) (T -399)) +((-3302 (*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-399)))) (-3302 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-4 *1 (-399)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) (-3462 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) (-3219 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-1378 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-2276 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399)) (-5 *2 (-906)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399)) (-5 *2 (-906)))) (-4223 (*1 *1) (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364))) (-4081 (|has| *1 (-6 -4356))))) (-2706 (*1 *1) (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364))) (-4081 (|has| *1 (-6 -4356)))))) +(-13 (-1043) (-10 -8 (-6 -4333) (-15 -3302 ($ (-554) (-554))) (-15 -3302 ($ (-554) (-554) (-906))) (-15 -2342 ((-554) $)) (-15 -3462 ((-906))) (-15 -1407 ((-554) $)) (-15 -1837 ((-554) $)) (-15 -3219 ((-906))) (-15 -1378 ((-906))) (-15 -2276 ((-906))) (IF (|has| $ (-6 -4364)) (PROGN (-15 -3219 ((-906) (-906))) (-15 -1378 ((-906) (-906))) (-15 -2276 ((-906) (-906))) (-15 -3845 ((-906) (-554))) (-15 -4353 ((-906) (-554)))) |%noBranch|) (IF (|has| $ (-6 -4356)) |%noBranch| (IF (|has| $ (-6 -4364)) |%noBranch| (PROGN (-15 -4223 ($)) (-15 -2706 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-221)) . T) ((-602 (-374)) . T) ((-602 (-877 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-871 (-374)) . T) ((-905) . T) ((-987) . T) ((-1007) . T) ((-1043) . T) ((-1023 (-402 (-554))) . T) ((-1023 (-554)) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-2879 (((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)) 20))) +(((-400 |#1| |#2|) (-10 -7 (-15 -2879 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) (-546) (-546)) (T -400)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-546)) (-4 *6 (-546)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6))))) +(-10 -7 (-15 -2879 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) +((-2879 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 13))) +(((-401 |#1| |#2|) (-10 -7 (-15 -2879 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-546) (-546)) (T -401)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-546)) (-4 *6 (-546)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6))))) +(-10 -7 (-15 -2879 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 13)) (-3831 ((|#1| $) 21 (|has| |#1| (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| |#1| (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 17) (((-3 (-1158) "failed") $) NIL (|has| |#1| (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) 70 (|has| |#1| (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554))))) (-1668 ((|#1| $) 15) (((-1158) $) NIL (|has| |#1| (-1023 (-1158)))) (((-402 (-554)) $) 67 (|has| |#1| (-1023 (-554)))) (((-554) $) NIL (|has| |#1| (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 50)) (-3353 (($) NIL (|has| |#1| (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| |#1| (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| |#1| (-871 (-374))))) (-3248 (((-112) $) 64)) (-3472 (($ $) NIL)) (-2810 ((|#1| $) 71)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-4304 (((-112) $) NIL (|has| |#1| (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 97)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| |#1| (-302)))) (-4339 ((|#1| $) 28 (|has| |#1| (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 135 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 131 (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) NIL)) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3623 (($ $) NIL)) (-2822 ((|#1| $) 73)) (-2927 (((-877 (-554)) $) NIL (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#1| (-602 (-877 (-374))))) (((-530) $) NIL (|has| |#1| (-602 (-530)))) (((-374) $) NIL (|has| |#1| (-1007))) (((-221) $) NIL (|has| |#1| (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 10) (($ (-1158)) NIL (|has| |#1| (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) 99 (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 100)) (-2755 ((|#1| $) 26 (|has| |#1| (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| |#1| (-807)))) (-2004 (($) 22 T CONST)) (-2014 (($) 8 T CONST)) (-4048 (((-1140) $) 43 (-12 (|has| |#1| (-539)) (|has| |#1| (-815)))) (((-1140) $ (-112)) 44 (-12 (|has| |#1| (-539)) (|has| |#1| (-815)))) (((-1246) (-809) $) 45 (-12 (|has| |#1| (-539)) (|has| |#1| (-815)))) (((-1246) (-809) $ (-112)) 46 (-12 (|has| |#1| (-539)) (|has| |#1| (-815))))) (-1787 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 56)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) 24 (|has| |#1| (-836)))) (-1752 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1744 (($ $) 25) (($ $ $) 55)) (-1735 (($ $ $) 53)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 125)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 60) (($ $ $) 57) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-402 |#1|) (-13 (-977 |#1|) (-10 -7 (IF (|has| |#1| (-539)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4360)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4371)) (-6 -4360) |%noBranch|) |%noBranch|) |%noBranch|))) (-546)) (T -402)) +NIL +(-13 (-977 |#1|) (-10 -7 (IF (|has| |#1| (-539)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4360)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4371)) (-6 -4360) |%noBranch|) |%noBranch|) |%noBranch|))) +((-1903 (((-675 |#2|) (-1241 $)) NIL) (((-675 |#2|)) 18)) (-1651 (($ (-1241 |#2|) (-1241 $)) NIL) (($ (-1241 |#2|)) 24)) (-3629 (((-675 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) $) 38)) (-3361 ((|#3| $) 60)) (-1495 ((|#2| (-1241 $)) NIL) ((|#2|) 20)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $) 22) (((-675 |#2|) (-1241 $)) 36)) (-2927 (((-1241 |#2|) $) 11) (($ (-1241 |#2|)) 13)) (-3109 ((|#3| $) 52))) +(((-403 |#1| |#2| |#3|) (-10 -8 (-15 -3629 ((-675 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -1903 ((-675 |#2|))) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 (|#3| |#1|)) (-15 -3109 (|#3| |#1|)) (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|)))) (-404 |#2| |#3|) (-170) (-1217 |#2|)) (T -403)) +((-1903 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)) (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5)))) (-1495 (*1 *2) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4)) (-4 *3 (-404 *2 *4))))) +(-10 -8 (-15 -3629 ((-675 |#2|) |#1|)) (-15 -1495 (|#2|)) (-15 -1903 ((-675 |#2|))) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3361 (|#3| |#1|)) (-15 -3109 (|#3| |#1|)) (-15 -1903 ((-675 |#2|) (-1241 |#1|))) (-15 -1495 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3629 ((-675 |#2|) |#1| (-1241 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1903 (((-675 |#1|) (-1241 $)) 47) (((-675 |#1|)) 62)) (-1612 ((|#1| $) 53)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49) (($ (-1241 |#1|)) 65)) (-3629 (((-675 |#1|) $ (-1241 $)) 54) (((-675 |#1|) $) 60)) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-906)) 55)) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 52)) (-3361 ((|#2| $) 45 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1495 ((|#1| (-1241 $)) 48) ((|#1|) 61)) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50) (((-1241 |#1|) $) 67) (((-675 |#1|) (-1241 $)) 66)) (-2927 (((-1241 |#1|) $) 64) (($ (-1241 |#1|)) 63)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38)) (-2084 (((-3 $ "failed") $) 44 (|has| |#1| (-143)))) (-3109 ((|#2| $) 46)) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 68)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-404 |#1| |#2|) (-138) (-170) (-1217 |t#1|)) (T -404)) +((-3782 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *1)) (-4 *1 (-404 *3 *4)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *3)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1217 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *3)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1217 *3)))) (-1903 (*1 *2) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-675 *3)))) (-1495 (*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-675 *3))))) +(-13 (-365 |t#1| |t#2|) (-10 -8 (-15 -3782 ((-1241 $))) (-15 -3656 ((-1241 |t#1|) $)) (-15 -3656 ((-675 |t#1|) (-1241 $))) (-15 -1651 ($ (-1241 |t#1|))) (-15 -2927 ((-1241 |t#1|) $)) (-15 -2927 ($ (-1241 |t#1|))) (-15 -1903 ((-675 |t#1|))) (-15 -1495 (|t#1|)) (-15 -3629 ((-675 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-365 |#1| |#2|) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) 27) (((-3 (-554) "failed") $) 19)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) 24) (((-554) $) 14)) (-3075 (($ |#2|) NIL) (($ (-402 (-554))) 22) (($ (-554)) 11))) +(((-405 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| (-554))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|))) (-406 |#2|) (-1195)) (T -405)) +NIL +(-10 -8 (-15 -3075 (|#1| (-554))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|))) +((-2784 (((-3 |#1| "failed") $) 9) (((-3 (-402 (-554)) "failed") $) 16 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 13 (|has| |#1| (-1023 (-554))))) (-1668 ((|#1| $) 8) (((-402 (-554)) $) 17 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 14 (|has| |#1| (-1023 (-554))))) (-3075 (($ |#1|) 6) (($ (-402 (-554))) 15 (|has| |#1| (-1023 (-402 (-554))))) (($ (-554)) 12 (|has| |#1| (-1023 (-554)))))) +(((-406 |#1|) (-138) (-1195)) (T -406)) +NIL +(-13 (-1023 |t#1|) (-10 -7 (IF (|has| |t#1| (-1023 (-554))) (-6 (-1023 (-554))) |%noBranch|) (IF (|has| |t#1| (-1023 (-402 (-554)))) (-6 (-1023 (-402 (-554)))) |%noBranch|))) +(((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 #1=(-554)) |has| |#1| (-1023 (-554))) ((-604 |#1|) . T) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 #1#) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T)) +((-2879 (((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)) 33))) +(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) (-302) (-977 |#1|) (-1217 |#2|) (-13 (-404 |#2| |#3|) (-1023 |#2|)) (-302) (-977 |#5|) (-1217 |#6|) (-13 (-404 |#6| |#7|) (-1023 |#6|))) (T -407)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) (-4 *6 (-977 *5)) (-4 *7 (-1217 *6)) (-4 *8 (-13 (-404 *6 *7) (-1023 *6))) (-4 *9 (-302)) (-4 *10 (-977 *9)) (-4 *11 (-1217 *10)) (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-404 *10 *11) (-1023 *10)))))) +(-10 -7 (-15 -2879 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) +((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-2795 ((|#4| (-758) (-1241 |#4|)) 56)) (-3248 (((-112) $) NIL)) (-2810 (((-1241 |#4|) $) 17)) (-3274 ((|#2| $) 54)) (-4194 (($ $) 139)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 100)) (-3822 (($ (-1241 |#4|)) 99)) (-2768 (((-1102) $) NIL)) (-2822 ((|#1| $) 18)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 134)) (-3782 (((-1241 |#4|) $) 129)) (-2014 (($) 11 T CONST)) (-1658 (((-112) $ $) 40)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 122)) (* (($ $ $) 121))) +(((-408 |#1| |#2| |#3| |#4|) (-13 (-467) (-10 -8 (-15 -3822 ($ (-1241 |#4|))) (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -2810 ((-1241 |#4|) $)) (-15 -2822 (|#1| $)) (-15 -4194 ($ $)) (-15 -2795 (|#4| (-758) (-1241 |#4|))))) (-302) (-977 |#1|) (-1217 |#2|) (-13 (-404 |#2| |#3|) (-1023 |#2|))) (T -408)) +((-3822 (*1 *1 *2) (-12 (-5 *2 (-1241 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *3 (-302)) (-5 *1 (-408 *3 *4 *5 *6)))) (-3782 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))))) (-3274 (*1 *2 *1) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1023 *2))))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) (-4 *2 (-302)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3))))) (-4194 (*1 *1 *1) (-12 (-4 *2 (-302)) (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-1241 *2)) (-4 *5 (-302)) (-4 *6 (-977 *5)) (-4 *2 (-13 (-404 *6 *7) (-1023 *6))) (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1217 *6))))) +(-13 (-467) (-10 -8 (-15 -3822 ($ (-1241 |#4|))) (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -2810 ((-1241 |#4|) $)) (-15 -2822 (|#1| $)) (-15 -4194 ($ $)) (-15 -2795 (|#4| (-758) (-1241 |#4|))))) +((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3274 ((|#2| $) 61)) (-1665 (($ (-1241 |#4|)) 25) (($ (-408 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1023 |#2|)))) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 34)) (-3782 (((-1241 |#4|) $) 26)) (-2014 (($) 23 T CONST)) (-1658 (((-112) $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ $ $) 72))) +(((-409 |#1| |#2| |#3| |#4| |#5|) (-13 (-713) (-10 -8 (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -1665 ($ (-1241 |#4|))) (IF (|has| |#4| (-1023 |#2|)) (-15 -1665 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-302) (-977 |#1|) (-1217 |#2|) (-404 |#2| |#3|) (-1241 |#4|)) (T -409)) +((-3782 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-4 *6 (-404 *4 *5)) (-14 *7 *2))) (-3274 (*1 *2 *1) (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4)) (-14 *6 (-1241 *5)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1241 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1023 *4)) (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *6 (-404 *4 *5)) (-14 *7 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7))))) +(-13 (-713) (-10 -8 (-15 -3782 ((-1241 |#4|) $)) (-15 -3274 (|#2| $)) (-15 -1665 ($ (-1241 |#4|))) (IF (|has| |#4| (-1023 |#2|)) (-15 -1665 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2879 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-410 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) (-412 |#2|) (-170) (-412 |#4|) (-170)) (T -410)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5))))) +(-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) +((-3646 (((-3 $ "failed")) 86)) (-4251 (((-1241 (-675 |#2|)) (-1241 $)) NIL) (((-1241 (-675 |#2|))) 91)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 85)) (-3447 (((-3 $ "failed")) 84)) (-3321 (((-675 |#2|) (-1241 $)) NIL) (((-675 |#2|)) 102)) (-3970 (((-675 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) $) 110)) (-4027 (((-1154 (-937 |#2|))) 55)) (-3640 ((|#2| (-1241 $)) NIL) ((|#2|) 106)) (-1651 (($ (-1241 |#2|) (-1241 $)) NIL) (($ (-1241 |#2|)) 112)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 83)) (-3899 (((-3 $ "failed")) 75)) (-2871 (((-675 |#2|) (-1241 $)) NIL) (((-675 |#2|)) 100)) (-3826 (((-675 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) $) 108)) (-3415 (((-1154 (-937 |#2|))) 54)) (-3063 ((|#2| (-1241 $)) NIL) ((|#2|) 104)) (-3656 (((-1241 |#2|) $ (-1241 $)) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $) 111) (((-675 |#2|) (-1241 $)) 118)) (-2927 (((-1241 |#2|) $) 96) (($ (-1241 |#2|)) 98)) (-3107 (((-631 (-937 |#2|)) (-1241 $)) NIL) (((-631 (-937 |#2|))) 94)) (-1485 (($ (-675 |#2|) $) 90))) +(((-411 |#1| |#2|) (-10 -8 (-15 -1485 (|#1| (-675 |#2|) |#1|)) (-15 -4027 ((-1154 (-937 |#2|)))) (-15 -3415 ((-1154 (-937 |#2|)))) (-15 -3970 ((-675 |#2|) |#1|)) (-15 -3826 ((-675 |#2|) |#1|)) (-15 -3321 ((-675 |#2|))) (-15 -2871 ((-675 |#2|))) (-15 -3640 (|#2|)) (-15 -3063 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3107 ((-631 (-937 |#2|)))) (-15 -4251 ((-1241 (-675 |#2|)))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3646 ((-3 |#1| "failed"))) (-15 -3447 ((-3 |#1| "failed"))) (-15 -3899 ((-3 |#1| "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -1660 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|))) (-15 -3107 ((-631 (-937 |#2|)) (-1241 |#1|)))) (-412 |#2|) (-170)) (T -411)) +((-4251 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-631 (-937 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3063 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-3640 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-2871 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3321 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-3415 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-4027 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4))))) +(-10 -8 (-15 -1485 (|#1| (-675 |#2|) |#1|)) (-15 -4027 ((-1154 (-937 |#2|)))) (-15 -3415 ((-1154 (-937 |#2|)))) (-15 -3970 ((-675 |#2|) |#1|)) (-15 -3826 ((-675 |#2|) |#1|)) (-15 -3321 ((-675 |#2|))) (-15 -2871 ((-675 |#2|))) (-15 -3640 (|#2|)) (-15 -3063 (|#2|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -1651 (|#1| (-1241 |#2|))) (-15 -3107 ((-631 (-937 |#2|)))) (-15 -4251 ((-1241 (-675 |#2|)))) (-15 -3656 ((-675 |#2|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1|)) (-15 -3646 ((-3 |#1| "failed"))) (-15 -3447 ((-3 |#1| "failed"))) (-15 -3899 ((-3 |#1| "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -1660 ((-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed"))) (-15 -3321 ((-675 |#2|) (-1241 |#1|))) (-15 -2871 ((-675 |#2|) (-1241 |#1|))) (-15 -3640 (|#2| (-1241 |#1|))) (-15 -3063 (|#2| (-1241 |#1|))) (-15 -1651 (|#1| (-1241 |#2|) (-1241 |#1|))) (-15 -3656 ((-675 |#2|) (-1241 |#1|) (-1241 |#1|))) (-15 -3656 ((-1241 |#2|) |#1| (-1241 |#1|))) (-15 -3970 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -3826 ((-675 |#2|) |#1| (-1241 |#1|))) (-15 -4251 ((-1241 (-675 |#2|)) (-1241 |#1|))) (-15 -3107 ((-631 (-937 |#2|)) (-1241 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3646 (((-3 $ "failed")) 37 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4251 (((-1241 (-675 |#1|)) (-1241 $)) 78) (((-1241 (-675 |#1|))) 100)) (-4047 (((-1241 $)) 81)) (-4087 (($) 17 T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 40 (|has| |#1| (-546)))) (-3447 (((-3 $ "failed")) 38 (|has| |#1| (-546)))) (-3321 (((-675 |#1|) (-1241 $)) 65) (((-675 |#1|)) 92)) (-4206 ((|#1| $) 74)) (-3970 (((-675 |#1|) $ (-1241 $)) 76) (((-675 |#1|) $) 90)) (-3754 (((-3 $ "failed") $) 45 (|has| |#1| (-546)))) (-4027 (((-1154 (-937 |#1|))) 88 (|has| |#1| (-358)))) (-2080 (($ $ (-906)) 28)) (-3976 ((|#1| $) 72)) (-3343 (((-1154 |#1|) $) 42 (|has| |#1| (-546)))) (-3640 ((|#1| (-1241 $)) 67) ((|#1|) 94)) (-4231 (((-1154 |#1|) $) 63)) (-1397 (((-112)) 57)) (-1651 (($ (-1241 |#1|) (-1241 $)) 69) (($ (-1241 |#1|)) 98)) (-1320 (((-3 $ "failed") $) 47 (|has| |#1| (-546)))) (-4186 (((-906)) 80)) (-3911 (((-112)) 54)) (-4326 (($ $ (-906)) 33)) (-2545 (((-112)) 50)) (-1765 (((-112)) 48)) (-1573 (((-112)) 52)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) 41 (|has| |#1| (-546)))) (-3899 (((-3 $ "failed")) 39 (|has| |#1| (-546)))) (-2871 (((-675 |#1|) (-1241 $)) 66) (((-675 |#1|)) 93)) (-3115 ((|#1| $) 75)) (-3826 (((-675 |#1|) $ (-1241 $)) 77) (((-675 |#1|) $) 91)) (-1605 (((-3 $ "failed") $) 46 (|has| |#1| (-546)))) (-3415 (((-1154 (-937 |#1|))) 89 (|has| |#1| (-358)))) (-1297 (($ $ (-906)) 29)) (-2620 ((|#1| $) 73)) (-3760 (((-1154 |#1|) $) 43 (|has| |#1| (-546)))) (-3063 ((|#1| (-1241 $)) 68) ((|#1|) 95)) (-2541 (((-1154 |#1|) $) 64)) (-3074 (((-112)) 58)) (-1613 (((-1140) $) 9)) (-3953 (((-112)) 49)) (-4193 (((-112)) 51)) (-2366 (((-112)) 53)) (-2768 (((-1102) $) 10)) (-1944 (((-112)) 56)) (-2064 ((|#1| $ (-554)) 101)) (-3656 (((-1241 |#1|) $ (-1241 $)) 71) (((-675 |#1|) (-1241 $) (-1241 $)) 70) (((-1241 |#1|) $) 103) (((-675 |#1|) (-1241 $)) 102)) (-2927 (((-1241 |#1|) $) 97) (($ (-1241 |#1|)) 96)) (-3107 (((-631 (-937 |#1|)) (-1241 $)) 79) (((-631 (-937 |#1|))) 99)) (-1856 (($ $ $) 25)) (-3349 (((-112)) 62)) (-3075 (((-848) $) 11)) (-3782 (((-1241 $)) 104)) (-1444 (((-631 (-1241 |#1|))) 44 (|has| |#1| (-546)))) (-3499 (($ $ $ $) 26)) (-3454 (((-112)) 60)) (-1485 (($ (-675 |#1|) $) 87)) (-1870 (($ $ $) 24)) (-2945 (((-112)) 61)) (-2760 (((-112)) 59)) (-3206 (((-112)) 55)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-412 |#1|) (-138) (-170)) (T -412)) +((-3782 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-412 *3)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170)) (-5 *2 (-675 *4)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-4251 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 (-675 *3))))) (-3107 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-631 (-937 *3))))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-3063 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-3640 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2871 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3321 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3)))) (-3415 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1154 (-937 *3))))) (-4027 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1154 (-937 *3))))) (-1485 (*1 *1 *2 *1) (-12 (-5 *2 (-675 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170))))) +(-13 (-362 |t#1|) (-10 -8 (-15 -3782 ((-1241 $))) (-15 -3656 ((-1241 |t#1|) $)) (-15 -3656 ((-675 |t#1|) (-1241 $))) (-15 -2064 (|t#1| $ (-554))) (-15 -4251 ((-1241 (-675 |t#1|)))) (-15 -3107 ((-631 (-937 |t#1|)))) (-15 -1651 ($ (-1241 |t#1|))) (-15 -2927 ((-1241 |t#1|) $)) (-15 -2927 ($ (-1241 |t#1|))) (-15 -3063 (|t#1|)) (-15 -3640 (|t#1|)) (-15 -2871 ((-675 |t#1|))) (-15 -3321 ((-675 |t#1|))) (-15 -3826 ((-675 |t#1|) $)) (-15 -3970 ((-675 |t#1|) $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -3415 ((-1154 (-937 |t#1|)))) (-15 -4027 ((-1154 (-937 |t#1|))))) |%noBranch|) (-15 -1485 ($ (-675 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-362 |#1|) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-707) . T) ((-731 |#1|) . T) ((-748) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 45)) (-2668 (($ $) 60)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 148)) (-1976 (($ $) NIL)) (-1363 (((-112) $) 39)) (-3646 ((|#1| $) 13)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-1199)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-1199)))) (-1791 (($ |#1| (-554)) 34)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 118)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 58)) (-1320 (((-3 $ "failed") $) 133)) (-1623 (((-3 (-402 (-554)) "failed") $) 66 (|has| |#1| (-539)))) (-2069 (((-112) $) 62 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 73 (|has| |#1| (-539)))) (-3414 (($ |#1| (-554)) 36)) (-3289 (((-112) $) 154 (|has| |#1| (-1199)))) (-3248 (((-112) $) 46)) (-1423 (((-758) $) 41)) (-3244 (((-3 "nil" "sqfr" "irred" "prime") $ (-554)) 139)) (-3195 ((|#1| $ (-554)) 138)) (-2103 (((-554) $ (-554)) 137)) (-1912 (($ |#1| (-554)) 33)) (-2879 (($ (-1 |#1| |#1|) $) 145)) (-1642 (($ |#1| (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554))))) 61)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-3863 (($ |#1| (-554)) 35)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) 149 (|has| |#1| (-446)))) (-1683 (($ |#1| (-554) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2316 (((-631 (-2 (|:| -2270 |#1|) (|:| -1407 (-554)))) $) 57)) (-2333 (((-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))) $) 12)) (-2270 (((-413 $) $) NIL (|has| |#1| (-1199)))) (-3919 (((-3 $ "failed") $ $) 140)) (-1407 (((-554) $) 134)) (-1845 ((|#1| $) 59)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 82 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 88 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) $) NIL (|has| |#1| (-508 (-1158) $))) (($ $ (-631 (-1158)) (-631 $)) 89 (|has| |#1| (-508 (-1158) $))) (($ $ (-631 (-289 $))) 85 (|has| |#1| (-304 $))) (($ $ (-289 $)) NIL (|has| |#1| (-304 $))) (($ $ $ $) NIL (|has| |#1| (-304 $))) (($ $ (-631 $) (-631 $)) NIL (|has| |#1| (-304 $)))) (-2064 (($ $ |#1|) 74 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-281 $ $)))) (-1553 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-2927 (((-530) $) 30 (|has| |#1| (-602 (-530)))) (((-374) $) 95 (|has| |#1| (-1007))) (((-221) $) 98 (|has| |#1| (-1007)))) (-3075 (((-848) $) 116) (($ (-554)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554)))))) (-2261 (((-758)) 51)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 43 T CONST)) (-2014 (($) 42 T CONST)) (-1787 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1658 (((-112) $ $) 99)) (-1744 (($ $) 130) (($ $ $) NIL)) (-1735 (($ $ $) 142)) (** (($ $ (-906)) NIL) (($ $ (-758)) 105)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-413 |#1|) (-13 (-546) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -1845 (|#1| $)) (-15 -1407 ((-554) $)) (-15 -1642 ($ |#1| (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))))) (-15 -2333 ((-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))) $)) (-15 -1912 ($ |#1| (-554))) (-15 -2316 ((-631 (-2 (|:| -2270 |#1|) (|:| -1407 (-554)))) $)) (-15 -3863 ($ |#1| (-554))) (-15 -2103 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3244 ((-3 "nil" "sqfr" "irred" "prime") $ (-554))) (-15 -1423 ((-758) $)) (-15 -3414 ($ |#1| (-554))) (-15 -1791 ($ |#1| (-554))) (-15 -1683 ($ |#1| (-554) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3646 (|#1| $)) (-15 -2668 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |#1| (-1199)) (-6 (-1199)) |%noBranch|) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-508 (-1158) $)) (-6 (-508 (-1158) $)) |%noBranch|))) (-546)) (T -413)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-546)) (-5 *1 (-413 *3)))) (-1845 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-1642 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-554))))) (-4 *2 (-546)) (-5 *1 (-413 *2)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-554))))) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-1912 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -1407 (-554))))) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-3863 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2103 (*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *4)) (-4 *4 (-546)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) (-3414 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-1791 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-1683 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-554)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-3646 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2668 (*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546))))) +(-13 (-546) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -1845 (|#1| $)) (-15 -1407 ((-554) $)) (-15 -1642 ($ |#1| (-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))))) (-15 -2333 ((-631 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-554)))) $)) (-15 -1912 ($ |#1| (-554))) (-15 -2316 ((-631 (-2 (|:| -2270 |#1|) (|:| -1407 (-554)))) $)) (-15 -3863 ($ |#1| (-554))) (-15 -2103 ((-554) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3244 ((-3 "nil" "sqfr" "irred" "prime") $ (-554))) (-15 -1423 ((-758) $)) (-15 -3414 ($ |#1| (-554))) (-15 -1791 ($ |#1| (-554))) (-15 -1683 ($ |#1| (-554) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3646 (|#1| $)) (-15 -2668 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |#1| (-1199)) (-6 (-1199)) |%noBranch|) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-508 (-1158) $)) (-6 (-508 (-1158) $)) |%noBranch|))) +((-3792 (((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|)) 21)) (-2148 (((-413 |#1|) (-413 |#1|) (-413 |#1|)) 16))) +(((-414 |#1|) (-10 -7 (-15 -3792 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2148 ((-413 |#1|) (-413 |#1|) (-413 |#1|)))) (-546)) (T -414)) +((-2148 (*1 *2 *2 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-546)) (-5 *1 (-414 *3)))) (-3792 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-546)) (-5 *2 (-413 *4)) (-5 *1 (-414 *4))))) +(-10 -7 (-15 -3792 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2148 ((-413 |#1|) (-413 |#1|) (-413 |#1|)))) +((-1733 ((|#2| |#2|) 166)) (-3980 (((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112)) 57))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3980 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112))) (-15 -1733 (|#2| |#2|))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|)) (-1158) |#2|) (T -415)) +((-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1180) (-425 *3))) (-14 *4 (-1158)) (-14 *5 *2))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-14 *6 (-1158)) (-14 *7 *3)))) +(-10 -7 (-15 -3980 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112))) (-15 -1733 (|#2| |#2|))) +((-2879 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1034) (-836)) (-425 |#1|) (-13 (-1034) (-836)) (-425 |#3|)) (T -416)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1034) (-836))) (-4 *6 (-13 (-1034) (-836))) (-4 *2 (-425 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) +(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|))) +((-1733 ((|#2| |#2|) 90)) (-4224 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140)) 48)) (-3220 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140)) 154))) +(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4224 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -3220 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -1733 (|#2| |#2|))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|) (-10 -8 (-15 -3075 ($ |#3|)))) (-834) (-13 (-1219 |#2| |#3|) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $)))) (-968 |#4|) (-1158)) (T -417)) +((-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *2 (-13 (-27) (-1180) (-425 *3) (-10 -8 (-15 -3075 ($ *4))))) (-4 *4 (-834)) (-4 *5 (-13 (-1219 *2 *4) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-968 *5)) (-14 *7 (-1158)))) (-3220 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7))))) (-4 *7 (-834)) (-4 *8 (-13 (-1219 *3 *7) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8)) (-14 *10 (-1158)))) (-4224 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7))))) (-4 *7 (-834)) (-4 *8 (-13 (-1219 *3 *7) (-358) (-1180) (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8)) (-14 *10 (-1158))))) +(-10 -7 (-15 -4224 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -3220 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140))))) |#2| (-112) (-1140))) (-15 -1733 (|#2| |#2|))) +((-4159 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3676 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2879 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1082) (-420 |#1|) (-1082) (-420 |#3|)) (T -418)) +((-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1082)) (-4 *5 (-1082)) (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1082)) (-4 *2 (-1082)) (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5))))) +(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4159 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3509 (($) 44)) (-3382 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3775 (($ $ $) 39)) (-2411 (((-112) $ $) 28)) (-1508 (((-758)) 47)) (-1489 (($ (-631 |#2|)) 20) (($) NIL)) (-3353 (($) 53)) (-1334 (((-112) $ $) 13)) (-4223 ((|#2| $) 61)) (-2706 ((|#2| $) 59)) (-3830 (((-906) $) 55)) (-3977 (($ $ $) 35)) (-2717 (($ (-906)) 50)) (-3372 (($ $ |#2|) NIL) (($ $ $) 38)) (-2777 (((-758) (-1 (-112) |#2|) $) NIL) (((-758) |#2| $) 26)) (-3089 (($ (-631 |#2|)) 24)) (-3043 (($ $) 46)) (-3075 (((-848) $) 33)) (-3813 (((-758) $) 21)) (-2332 (($ (-631 |#2|)) 19) (($) NIL)) (-1658 (((-112) $ $) 16))) +(((-419 |#1| |#2|) (-10 -8 (-15 -1508 ((-758))) (-15 -2717 (|#1| (-906))) (-15 -3830 ((-906) |#1|)) (-15 -3353 (|#1|)) (-15 -4223 (|#2| |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -3509 (|#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3813 ((-758) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1334 ((-112) |#1| |#1|)) (-15 -2332 (|#1|)) (-15 -2332 (|#1| (-631 |#2|))) (-15 -1489 (|#1|)) (-15 -1489 (|#1| (-631 |#2|))) (-15 -3977 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|))) (-420 |#2|) (-1082)) (T -419)) +((-1508 (*1 *2) (-12 (-4 *4 (-1082)) (-5 *2 (-758)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))) +(-10 -8 (-15 -1508 ((-758))) (-15 -2717 (|#1| (-906))) (-15 -3830 ((-906) |#1|)) (-15 -3353 (|#1|)) (-15 -4223 (|#2| |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -3509 (|#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3813 ((-758) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1334 ((-112) |#1| |#1|)) (-15 -2332 (|#1|)) (-15 -2332 (|#1| (-631 |#2|))) (-15 -1489 (|#1|)) (-15 -1489 (|#1| (-631 |#2|))) (-15 -3977 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -2411 ((-112) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|))) +((-3062 (((-112) $ $) 19)) (-3509 (($) 67 (|has| |#1| (-363)))) (-3382 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3775 (($ $ $) 78)) (-2411 (((-112) $ $) 79)) (-3019 (((-112) $ (-758)) 8)) (-1508 (((-758)) 61 (|has| |#1| (-363)))) (-1489 (($ (-631 |#1|)) 74) (($) 73)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-3353 (($) 64 (|has| |#1| (-363)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 70)) (-2230 (((-112) $ (-758)) 9)) (-4223 ((|#1| $) 65 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2706 ((|#1| $) 66 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3830 (((-906) $) 63 (|has| |#1| (-363)))) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22)) (-3977 (($ $ $) 75)) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2717 (($ (-906)) 62 (|has| |#1| (-363)))) (-2768 (((-1102) $) 21)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-3372 (($ $ |#1|) 77) (($ $ $) 76)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3043 (($ $) 68 (|has| |#1| (-363)))) (-3075 (((-848) $) 18)) (-3813 (((-758) $) 69)) (-2332 (($ (-631 |#1|)) 72) (($) 71)) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-420 |#1|) (-138) (-1082)) (T -420)) +((-3813 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1082)) (-5 *2 (-758)))) (-3043 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-363)))) (-3509 (*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1082)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836))))) +(-13 (-225 |t#1|) (-1080 |t#1|) (-10 -8 (-6 -4373) (-15 -3813 ((-758) $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-15 -3043 ($ $)) (-15 -3509 ($))) |%noBranch|) (IF (|has| |t#1| (-836)) (PROGN (-15 -2706 (|t#1| $)) (-15 -4223 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-225 |#1|) . T) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-363) |has| |#1| (-363)) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1080 |#1|) . T) ((-1082) . T) ((-1195) . T)) +((-3247 (((-575 |#2|) |#2| (-1158)) 36)) (-1918 (((-575 |#2|) |#2| (-1158)) 20)) (-3355 ((|#2| |#2| (-1158)) 25))) +(((-421 |#1| |#2|) (-10 -7 (-15 -1918 ((-575 |#2|) |#2| (-1158))) (-15 -3247 ((-575 |#2|) |#2| (-1158))) (-15 -3355 (|#2| |#2| (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-29 |#1|))) (T -421)) +((-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1180) (-29 *4))))) (-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1180) (-29 *5))))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1180) (-29 *5)))))) +(-10 -7 (-15 -1918 ((-575 |#2|) |#2| (-1158))) (-15 -3247 ((-575 |#2|) |#2| (-1158))) (-15 -3355 (|#2| |#2| (-1158)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-4010 (($ |#2| |#1|) 35)) (-3260 (($ |#2| |#1|) 33)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-326 |#2|)) 25)) (-2261 (((-758)) NIL)) (-2004 (($) 10 T CONST)) (-2014 (($) 16 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 34)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4360)) (IF (|has| |#1| (-6 -4360)) (-6 -4360) |%noBranch|) |%noBranch|) (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-326 |#2|))) (-15 -4010 ($ |#2| |#1|)) (-15 -3260 ($ |#2| |#1|)))) (-13 (-170) (-38 (-402 (-554)))) (-13 (-836) (-21))) (T -422)) +((-3075 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-554))))) (-4 *3 (-13 (-836) (-21))))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-836) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))))) (-4010 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))) (-4 *2 (-13 (-836) (-21))))) (-3260 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))) (-4 *2 (-13 (-836) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4360)) (IF (|has| |#1| (-6 -4360)) (-6 -4360) |%noBranch|) |%noBranch|) (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-326 |#2|))) (-15 -4010 ($ |#2| |#1|)) (-15 -3260 ($ |#2| |#1|)))) +((-2279 (((-3 |#2| (-631 |#2|)) |#2| (-1158)) 109))) +(((-423 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 |#2| (-631 |#2|)) |#2| (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-29 |#1|))) (T -423)) +((-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 *3 (-631 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1180) (-944) (-29 *5)))))) +(-10 -7 (-15 -2279 ((-3 |#2| (-631 |#2|)) |#2| (-1158)))) +((-2405 (((-631 (-1158)) $) 72)) (-2237 (((-402 (-1154 $)) $ (-600 $)) 273)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) 237)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 (-1158) "failed") $) 75) (((-3 (-554) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-402 (-937 |#2|)) "failed") $) 324) (((-3 (-937 |#2|) "failed") $) 235) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-600 $) $) NIL) (((-1158) $) 30) (((-554) $) NIL) ((|#2| $) 231) (((-402 (-937 |#2|)) $) 305) (((-937 |#2|) $) 232) (((-402 (-554)) $) NIL)) (-3086 (((-114) (-114)) 47)) (-3472 (($ $) 87)) (-3310 (((-3 (-600 $) "failed") $) 228)) (-2227 (((-631 (-600 $)) $) 229)) (-3778 (((-3 (-631 $) "failed") $) 247)) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) 254)) (-2433 (((-3 (-631 $) "failed") $) 245)) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 264)) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) 251) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) 219)) (-2492 (((-112) $) 19)) (-2505 ((|#2| $) 21)) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) 236) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 96) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1158)) 57) (($ $ (-631 (-1158))) 240) (($ $) 241) (($ $ (-114) $ (-1158)) 60) (($ $ (-631 (-114)) (-631 $) (-1158)) 67) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) 107) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) 242) (($ $ (-1158) (-758) (-1 $ (-631 $))) 94) (($ $ (-1158) (-758) (-1 $ $)) 93)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) 106)) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) 238)) (-3623 (($ $) 284)) (-2927 (((-877 (-554)) $) 257) (((-877 (-374)) $) 261) (($ (-413 $)) 320) (((-530) $) NIL)) (-3075 (((-848) $) 239) (($ (-600 $)) 84) (($ (-1158)) 26) (($ |#2|) NIL) (($ (-1107 |#2| (-600 $))) NIL) (($ (-402 |#2|)) 289) (($ (-937 (-402 |#2|))) 329) (($ (-402 (-937 (-402 |#2|)))) 301) (($ (-402 (-937 |#2|))) 295) (($ $) NIL) (($ (-937 |#2|)) 185) (($ (-402 (-554))) 334) (($ (-554)) NIL)) (-2261 (((-758)) 79)) (-1902 (((-112) (-114)) 41)) (-3155 (($ (-1158) $) 33) (($ (-1158) $ $) 34) (($ (-1158) $ $ $) 35) (($ (-1158) $ $ $ $) 36) (($ (-1158) (-631 $)) 39)) (* (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL))) +(((-424 |#1| |#2|) (-10 -8 (-15 * (|#1| (-906) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3075 (|#1| (-554))) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-937 |#2|))) (-15 -2784 ((-3 (-937 |#2|) "failed") |#1|)) (-15 -1668 ((-937 |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3075 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-937 |#2|)))) (-15 -2784 ((-3 (-402 (-937 |#2|)) "failed") |#1|)) (-15 -1668 ((-402 (-937 |#2|)) |#1|)) (-15 -2237 ((-402 (-1154 |#1|)) |#1| (-600 |#1|))) (-15 -3075 (|#1| (-402 (-937 (-402 |#2|))))) (-15 -3075 (|#1| (-937 (-402 |#2|)))) (-15 -3075 (|#1| (-402 |#2|))) (-15 -3623 (|#1| |#1|)) (-15 -2927 (|#1| (-413 |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| |#1|)))) (-15 -2920 ((-3 (-2 (|:| |val| |#1|) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-1158))) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-114))) (-15 -3472 (|#1| |#1|)) (-15 -3075 (|#1| (-1107 |#2| (-600 |#1|)))) (-15 -2863 ((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 |#1|))) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 |#1|) (-1158))) (-15 -2386 (|#1| |#1| (-114) |#1| (-1158))) (-15 -2386 (|#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1158)))) (-15 -2386 (|#1| |#1| (-1158))) (-15 -3155 (|#1| (-1158) (-631 |#1|))) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1|)) (-15 -2405 ((-631 (-1158)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -2227 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -3075 (|#1| (-600 |#1|))) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|)) (-15 -3075 ((-848) |#1|))) (-425 |#2|) (-836)) (T -424)) +((-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-836)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) (-2261 (*1 *2) (-12 (-4 *4 (-836)) (-5 *2 (-758)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) +(-10 -8 (-15 * (|#1| (-906) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3075 (|#1| (-554))) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-937 |#2|))) (-15 -2784 ((-3 (-937 |#2|) "failed") |#1|)) (-15 -1668 ((-937 |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3075 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -3075 (|#1| (-402 (-937 |#2|)))) (-15 -2784 ((-3 (-402 (-937 |#2|)) "failed") |#1|)) (-15 -1668 ((-402 (-937 |#2|)) |#1|)) (-15 -2237 ((-402 (-1154 |#1|)) |#1| (-600 |#1|))) (-15 -3075 (|#1| (-402 (-937 (-402 |#2|))))) (-15 -3075 (|#1| (-937 (-402 |#2|)))) (-15 -3075 (|#1| (-402 |#2|))) (-15 -3623 (|#1| |#1|)) (-15 -2927 (|#1| (-413 |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-758) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-758)) (-631 (-1 |#1| |#1|)))) (-15 -2920 ((-3 (-2 (|:| |val| |#1|) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-1158))) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1| (-114))) (-15 -3472 (|#1| |#1|)) (-15 -3075 (|#1| (-1107 |#2| (-600 |#1|)))) (-15 -2863 ((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 |#1|))) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 |#1|)) (|:| -1407 (-554))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 |#1|) (-1158))) (-15 -2386 (|#1| |#1| (-114) |#1| (-1158))) (-15 -2386 (|#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1158)))) (-15 -2386 (|#1| |#1| (-1158))) (-15 -3155 (|#1| (-1158) (-631 |#1|))) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1| |#1|)) (-15 -3155 (|#1| (-1158) |#1|)) (-15 -2405 ((-631 (-1158)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-114) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-114)) (-631 (-1 |#1| |#1|)))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| |#1|))) (-15 -2386 (|#1| |#1| (-1158) (-1 |#1| (-631 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| (-631 |#1|))))) (-15 -2386 (|#1| |#1| (-631 (-1158)) (-631 (-1 |#1| |#1|)))) (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -2227 ((-631 (-600 |#1|)) |#1|)) (-15 -3310 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -3380 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -3380 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3380 (|#1| |#1| (-289 |#1|))) (-15 -2064 (|#1| (-114) (-631 |#1|))) (-15 -2064 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1| |#1|)) (-15 -2064 (|#1| (-114) |#1|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2386 (|#1| |#1| (-631 (-600 |#1|)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-600 |#1|) |#1|)) (-15 -3075 (|#1| (-600 |#1|))) (-15 -2784 ((-3 (-600 |#1|) "failed") |#1|)) (-15 -1668 ((-600 |#1|) |#1|)) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 114 (|has| |#1| (-25)))) (-2405 (((-631 (-1158)) $) 201)) (-2237 (((-402 (-1154 $)) $ (-600 $)) 169 (|has| |#1| (-546)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 141 (|has| |#1| (-546)))) (-1976 (($ $) 142 (|has| |#1| (-546)))) (-1363 (((-112) $) 144 (|has| |#1| (-546)))) (-2143 (((-631 (-600 $)) $) 44)) (-2934 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3380 (($ $ (-289 $)) 56) (($ $ (-631 (-289 $))) 55) (($ $ (-631 (-600 $)) (-631 $)) 54)) (-3278 (($ $) 161 (|has| |#1| (-546)))) (-1565 (((-413 $) $) 162 (|has| |#1| (-546)))) (-2286 (((-112) $ $) 152 (|has| |#1| (-546)))) (-4087 (($) 102 (-3994 (|has| |#1| (-1094)) (|has| |#1| (-25))) CONST)) (-2784 (((-3 (-600 $) "failed") $) 69) (((-3 (-1158) "failed") $) 214) (((-3 (-554) "failed") $) 208 (|has| |#1| (-1023 (-554)))) (((-3 |#1| "failed") $) 205) (((-3 (-402 (-937 |#1|)) "failed") $) 167 (|has| |#1| (-546))) (((-3 (-937 |#1|) "failed") $) 121 (|has| |#1| (-1034))) (((-3 (-402 (-554)) "failed") $) 96 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 (((-600 $) $) 70) (((-1158) $) 215) (((-554) $) 207 (|has| |#1| (-1023 (-554)))) ((|#1| $) 206) (((-402 (-937 |#1|)) $) 168 (|has| |#1| (-546))) (((-937 |#1|) $) 122 (|has| |#1| (-1034))) (((-402 (-554)) $) 97 (-3994 (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554))))))) (-3964 (($ $ $) 156 (|has| |#1| (-546)))) (-3699 (((-675 (-554)) (-675 $)) 135 (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 134 (-3726 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 133 (|has| |#1| (-1034))) (((-675 |#1|) (-675 $)) 132 (|has| |#1| (-1034)))) (-1320 (((-3 $ "failed") $) 104 (|has| |#1| (-1094)))) (-3943 (($ $ $) 155 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 150 (|has| |#1| (-546)))) (-3289 (((-112) $) 163 (|has| |#1| (-546)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 210 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 209 (|has| |#1| (-871 (-374))))) (-1342 (($ $) 51) (($ (-631 $)) 50)) (-3489 (((-631 (-114)) $) 43)) (-3086 (((-114) (-114)) 42)) (-3248 (((-112) $) 103 (|has| |#1| (-1094)))) (-3273 (((-112) $) 22 (|has| $ (-1023 (-554))))) (-3472 (($ $) 184 (|has| |#1| (-1034)))) (-2810 (((-1107 |#1| (-600 $)) $) 185 (|has| |#1| (-1034)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 159 (|has| |#1| (-546)))) (-1823 (((-1154 $) (-600 $)) 25 (|has| $ (-1034)))) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-2879 (($ (-1 $ $) (-600 $)) 36)) (-3310 (((-3 (-600 $) "failed") $) 46)) (-2475 (($ (-631 $)) 148 (|has| |#1| (-546))) (($ $ $) 147 (|has| |#1| (-546)))) (-1613 (((-1140) $) 9)) (-2227 (((-631 (-600 $)) $) 45)) (-1408 (($ (-114) $) 38) (($ (-114) (-631 $)) 37)) (-3778 (((-3 (-631 $) "failed") $) 190 (|has| |#1| (-1094)))) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $) 181 (|has| |#1| (-1034)))) (-2433 (((-3 (-631 $) "failed") $) 188 (|has| |#1| (-25)))) (-2863 (((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3160 (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $) 189 (|has| |#1| (-1094))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114)) 183 (|has| |#1| (-1034))) (((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158)) 182 (|has| |#1| (-1034)))) (-2640 (((-112) $ (-114)) 40) (((-112) $ (-1158)) 39)) (-2483 (($ $) 106 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-3323 (((-758) $) 47)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 203)) (-2505 ((|#1| $) 202)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 149 (|has| |#1| (-546)))) (-2510 (($ (-631 $)) 146 (|has| |#1| (-546))) (($ $ $) 145 (|has| |#1| (-546)))) (-2041 (((-112) $ $) 35) (((-112) $ (-1158)) 34)) (-2270 (((-413 $) $) 160 (|has| |#1| (-546)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-546))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 157 (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ $) 140 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 151 (|has| |#1| (-546)))) (-1795 (((-112) $) 23 (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) 67) (($ $ (-631 (-600 $)) (-631 $)) 66) (($ $ (-631 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-631 $) (-631 $)) 62) (($ $ (-631 (-1158)) (-631 (-1 $ $))) 33) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) 32) (($ $ (-1158) (-1 $ (-631 $))) 31) (($ $ (-1158) (-1 $ $)) 30) (($ $ (-631 (-114)) (-631 (-1 $ $))) 29) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) 28) (($ $ (-114) (-1 $ (-631 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1158)) 195 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158))) 194 (|has| |#1| (-602 (-530)))) (($ $) 193 (|has| |#1| (-602 (-530)))) (($ $ (-114) $ (-1158)) 192 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-114)) (-631 $) (-1158)) 191 (|has| |#1| (-602 (-530)))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $))) 180 (|has| |#1| (-1034))) (($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $)))) 179 (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ (-631 $))) 178 (|has| |#1| (-1034))) (($ $ (-1158) (-758) (-1 $ $)) 177 (|has| |#1| (-1034)))) (-2072 (((-758) $) 153 (|has| |#1| (-546)))) (-2064 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-631 $)) 57)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 154 (|has| |#1| (-546)))) (-3862 (($ $) 49) (($ $ $) 48)) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 126 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 125 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 124 (|has| |#1| (-1034))) (($ $ (-1158)) 123 (|has| |#1| (-1034)))) (-3623 (($ $) 174 (|has| |#1| (-546)))) (-2822 (((-1107 |#1| (-600 $)) $) 175 (|has| |#1| (-546)))) (-4318 (($ $) 24 (|has| $ (-1034)))) (-2927 (((-877 (-554)) $) 212 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 211 (|has| |#1| (-602 (-877 (-374))))) (($ (-413 $)) 176 (|has| |#1| (-546))) (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3992 (($ $ $) 109 (|has| |#1| (-467)))) (-1856 (($ $ $) 110 (|has| |#1| (-467)))) (-3075 (((-848) $) 11) (($ (-600 $)) 68) (($ (-1158)) 213) (($ |#1|) 204) (($ (-1107 |#1| (-600 $))) 186 (|has| |#1| (-1034))) (($ (-402 |#1|)) 172 (|has| |#1| (-546))) (($ (-937 (-402 |#1|))) 171 (|has| |#1| (-546))) (($ (-402 (-937 (-402 |#1|)))) 170 (|has| |#1| (-546))) (($ (-402 (-937 |#1|))) 166 (|has| |#1| (-546))) (($ $) 139 (|has| |#1| (-546))) (($ (-937 |#1|)) 120 (|has| |#1| (-1034))) (($ (-402 (-554))) 95 (-3994 (|has| |#1| (-546)) (-12 (|has| |#1| (-1023 (-554))) (|has| |#1| (-546))) (|has| |#1| (-1023 (-402 (-554)))))) (($ (-554)) 94 (-3994 (|has| |#1| (-1034)) (|has| |#1| (-1023 (-554)))))) (-2084 (((-3 $ "failed") $) 136 (|has| |#1| (-143)))) (-2261 (((-758)) 131 (|has| |#1| (-1034)))) (-4125 (($ $) 53) (($ (-631 $)) 52)) (-1902 (((-112) (-114)) 41)) (-1909 (((-112) $ $) 143 (|has| |#1| (-546)))) (-3155 (($ (-1158) $) 200) (($ (-1158) $ $) 199) (($ (-1158) $ $ $) 198) (($ (-1158) $ $ $ $) 197) (($ (-1158) (-631 $)) 196)) (-2004 (($) 113 (|has| |#1| (-25)) CONST)) (-2014 (($) 101 (|has| |#1| (-1094)) CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 130 (|has| |#1| (-1034))) (($ $ (-1158) (-758)) 129 (|has| |#1| (-1034))) (($ $ (-631 (-1158))) 128 (|has| |#1| (-1034))) (($ $ (-1158)) 127 (|has| |#1| (-1034)))) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1752 (($ (-1107 |#1| (-600 $)) (-1107 |#1| (-600 $))) 173 (|has| |#1| (-546))) (($ $ $) 107 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546))))) (-1744 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1735 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-554)) 108 (-3994 (|has| |#1| (-467)) (|has| |#1| (-546)))) (($ $ (-758)) 105 (|has| |#1| (-1094))) (($ $ (-906)) 100 (|has| |#1| (-1094)))) (* (($ (-402 (-554)) $) 165 (|has| |#1| (-546))) (($ $ (-402 (-554))) 164 (|has| |#1| (-546))) (($ |#1| $) 138 (|has| |#1| (-170))) (($ $ |#1|) 137 (|has| |#1| (-170))) (($ (-554) $) 119 (|has| |#1| (-21))) (($ (-758) $) 115 (|has| |#1| (-25))) (($ (-906) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1094))))) +(((-425 |#1|) (-138) (-836)) (T -425)) +((-2492 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-112)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-631 (-1158))))) (-3155 (*1 *1 *2 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 *1)) (-4 *1 (-425 *4)) (-4 *4 (-836)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-602 (-530))))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1158))) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-602 (-530))))) (-2386 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-602 (-530))))) (-2386 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1158)) (-4 *1 (-425 *4)) (-4 *4 (-836)) (-4 *4 (-602 (-530))))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 *1)) (-5 *4 (-1158)) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-602 (-530))))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-425 *3)))) (-3160 (*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) (-4 *1 (-425 *3)))) (-2433 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-425 *3)))) (-2863 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -1490 (-554)) (|:| |var| (-600 *1)))) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-1034)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1))) (-4 *1 (-425 *3)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-1034)))) (-3160 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1034)) (-4 *4 (-836)) (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) (-4 *1 (-425 *4)))) (-3160 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-1034)) (-4 *4 (-836)) (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) (-4 *1 (-425 *4)))) (-2920 (*1 *2 *1) (|partial| -12 (-4 *3 (-1034)) (-4 *3 (-836)) (-5 *2 (-2 (|:| |val| *1) (|:| -1407 (-554)))) (-4 *1 (-425 *3)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758))) (-5 *4 (-631 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758))) (-5 *4 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 (-631 *1))) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2386 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 *1)) (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-546)) (-4 *3 (-836)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-546)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1))) (-4 *1 (-425 *3)))) (-3623 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-546)))) (-1752 (*1 *1 *2 *2) (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-937 (-402 *3))) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-402 *3)))) (-4 *3 (-546)) (-4 *3 (-836)) (-4 *1 (-425 *3)))) (-2237 (*1 *2 *1 *3) (-12 (-5 *3 (-600 *1)) (-4 *1 (-425 *4)) (-4 *4 (-836)) (-4 *4 (-546)) (-5 *2 (-402 (-1154 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-1094))))) +(-13 (-297) (-1023 (-1158)) (-869 |t#1|) (-395 |t#1|) (-406 |t#1|) (-10 -8 (-15 -2492 ((-112) $)) (-15 -2505 (|t#1| $)) (-15 -2405 ((-631 (-1158)) $)) (-15 -3155 ($ (-1158) $)) (-15 -3155 ($ (-1158) $ $)) (-15 -3155 ($ (-1158) $ $ $)) (-15 -3155 ($ (-1158) $ $ $ $)) (-15 -3155 ($ (-1158) (-631 $))) (IF (|has| |t#1| (-602 (-530))) (PROGN (-6 (-602 (-530))) (-15 -2386 ($ $ (-1158))) (-15 -2386 ($ $ (-631 (-1158)))) (-15 -2386 ($ $)) (-15 -2386 ($ $ (-114) $ (-1158))) (-15 -2386 ($ $ (-631 (-114)) (-631 $) (-1158)))) |%noBranch|) (IF (|has| |t#1| (-1094)) (PROGN (-6 (-713)) (-15 ** ($ $ (-758))) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-467)) (-6 (-467)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -2863 ((-3 (-2 (|:| -1490 (-554)) (|:| |var| (-600 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1034)) (PROGN (-6 (-1034)) (-6 (-1023 (-937 |t#1|))) (-6 (-885 (-1158))) (-6 (-372 |t#1|)) (-15 -3075 ($ (-1107 |t#1| (-600 $)))) (-15 -2810 ((-1107 |t#1| (-600 $)) $)) (-15 -3472 ($ $)) (-15 -3160 ((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-114))) (-15 -3160 ((-3 (-2 (|:| |var| (-600 $)) (|:| -1407 (-554))) "failed") $ (-1158))) (-15 -2920 ((-3 (-2 (|:| |val| $) (|:| -1407 (-554))) "failed") $)) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ $)))) (-15 -2386 ($ $ (-631 (-1158)) (-631 (-758)) (-631 (-1 $ (-631 $))))) (-15 -2386 ($ $ (-1158) (-758) (-1 $ (-631 $)))) (-15 -2386 ($ $ (-1158) (-758) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-6 (-358)) (-6 (-1023 (-402 (-937 |t#1|)))) (-15 -2927 ($ (-413 $))) (-15 -2822 ((-1107 |t#1| (-600 $)) $)) (-15 -3623 ($ $)) (-15 -1752 ($ (-1107 |t#1| (-600 $)) (-1107 |t#1| (-600 $)))) (-15 -3075 ($ (-402 |t#1|))) (-15 -3075 ($ (-937 (-402 |t#1|)))) (-15 -3075 ($ (-402 (-937 (-402 |t#1|))))) (-15 -2237 ((-402 (-1154 $)) $ (-600 $))) (IF (|has| |t#1| (-1023 (-554))) (-6 (-1023 (-402 (-554)))) |%noBranch|)) |%noBranch|))) +(((-21) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-402 (-554))) |has| |#1| (-546)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-546)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-546)) ((-130) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-546))) ((-604 #1=(-402 (-937 |#1|))) |has| |#1| (-546)) ((-604 (-554)) -3994 (|has| |#1| (-1034)) (|has| |#1| (-1023 (-554))) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-604 #2=(-600 $)) . T) ((-604 #3=(-937 |#1|)) |has| |#1| (-1034)) ((-604 #4=(-1158)) . T) ((-604 |#1|) . T) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) |has| |#1| (-546)) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-239) |has| |#1| (-546)) ((-285) |has| |#1| (-546)) ((-302) |has| |#1| (-546)) ((-304 $) . T) ((-297) . T) ((-358) |has| |#1| (-546)) ((-372 |#1|) |has| |#1| (-1034)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) |has| |#1| (-546)) ((-467) |has| |#1| (-467)) ((-508 (-600 $) $) . T) ((-508 $ $) . T) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-546)) ((-634 |#1|) |has| |#1| (-170)) ((-634 $) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-627 (-554)) -12 (|has| |#1| (-627 (-554))) (|has| |#1| (-1034))) ((-627 |#1|) |has| |#1| (-1034)) ((-704 #0#) |has| |#1| (-546)) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) -3994 (|has| |#1| (-1094)) (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-836) . T) ((-885 (-1158)) |has| |#1| (-1034)) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-905) |has| |#1| (-546)) ((-1023 (-402 (-554))) -3994 (|has| |#1| (-1023 (-402 (-554)))) (-12 (|has| |#1| (-546)) (|has| |#1| (-1023 (-554))))) ((-1023 #1#) |has| |#1| (-546)) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #2#) . T) ((-1023 #3#) |has| |#1| (-1034)) ((-1023 #4#) . T) ((-1023 |#1|) . T) ((-1040 #0#) |has| |#1| (-546)) ((-1040 |#1|) |has| |#1| (-170)) ((-1040 $) |has| |#1| (-546)) ((-1034) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1041) -3994 (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1094) -3994 (|has| |#1| (-1094)) (|has| |#1| (-1034)) (|has| |#1| (-546)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1082) . T) ((-1195) . T) ((-1199) |has| |#1| (-546))) +((-1738 ((|#2| |#2| |#2|) 33)) (-3086 (((-114) (-114)) 44)) (-3527 ((|#2| |#2|) 66)) (-1519 ((|#2| |#2|) 69)) (-2696 ((|#2| |#2|) 32)) (-1943 ((|#2| |#2| |#2|) 35)) (-1952 ((|#2| |#2| |#2|) 37)) (-3586 ((|#2| |#2| |#2|) 34)) (-3746 ((|#2| |#2| |#2|) 36)) (-1902 (((-112) (-114)) 42)) (-2973 ((|#2| |#2|) 39)) (-1959 ((|#2| |#2|) 38)) (-1700 ((|#2| |#2|) 27)) (-3628 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-4280 ((|#2| |#2| |#2|) 31))) +(((-426 |#1| |#2|) (-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1700 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3628 (|#2| |#2| |#2|)) (-15 -4280 (|#2| |#2| |#2|)) (-15 -2696 (|#2| |#2|)) (-15 -1738 (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -1943 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2|)) (-15 -1959 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -3527 (|#2| |#2|))) (-13 (-836) (-546)) (-425 |#1|)) (T -426)) +((-3527 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-2973 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1959 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1952 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1943 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3586 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1738 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-2696 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-4280 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3628 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1700 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *4)) (-4 *4 (-425 *3)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4))))) +(-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1700 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3628 (|#2| |#2| |#2|)) (-15 -4280 (|#2| |#2| |#2|)) (-15 -2696 (|#2| |#2|)) (-15 -1738 (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -1943 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2|)) (-15 -1959 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -3527 (|#2| |#2|))) +((-3157 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1154 |#2|)) (|:| |pol2| (-1154 |#2|)) (|:| |prim| (-1154 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-631 (-1154 |#2|))) (|:| |prim| (-1154 |#2|))) (-631 |#2|)) 61))) +(((-427 |#1| |#2|) (-10 -7 (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-631 (-1154 |#2|))) (|:| |prim| (-1154 |#2|))) (-631 |#2|))) (IF (|has| |#2| (-27)) (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1154 |#2|)) (|:| |pol2| (-1154 |#2|)) (|:| |prim| (-1154 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-546) (-836) (-145)) (-425 |#1|)) (T -427)) +((-3157 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-546) (-836) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1154 *3)) (|:| |pol2| (-1154 *3)) (|:| |prim| (-1154 *3)))) (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-546) (-836) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-631 (-1154 *5))) (|:| |prim| (-1154 *5)))) (-5 *1 (-427 *4 *5))))) +(-10 -7 (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-631 (-1154 |#2|))) (|:| |prim| (-1154 |#2|))) (-631 |#2|))) (IF (|has| |#2| (-27)) (-15 -3157 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1154 |#2|)) (|:| |pol2| (-1154 |#2|)) (|:| |prim| (-1154 |#2|))) |#2| |#2|)) |%noBranch|)) +((-4316 (((-1246)) 19)) (-2235 (((-1154 (-402 (-554))) |#2| (-600 |#2|)) 41) (((-402 (-554)) |#2|) 25))) +(((-428 |#1| |#2|) (-10 -7 (-15 -2235 ((-402 (-554)) |#2|)) (-15 -2235 ((-1154 (-402 (-554))) |#2| (-600 |#2|))) (-15 -4316 ((-1246)))) (-13 (-836) (-546) (-1023 (-554))) (-425 |#1|)) (T -428)) +((-4316 (*1 *2) (-12 (-4 *3 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-1246)) (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *4 (-600 *3)) (-4 *3 (-425 *5)) (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-428 *5 *3)))) (-2235 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-402 (-554))) (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4))))) +(-10 -7 (-15 -2235 ((-402 (-554)) |#2|)) (-15 -2235 ((-1154 (-402 (-554))) |#2| (-600 |#2|))) (-15 -4316 ((-1246)))) +((-1809 (((-112) $) 28)) (-3671 (((-112) $) 30)) (-1289 (((-112) $) 31)) (-3713 (((-112) $) 34)) (-2450 (((-112) $) 29)) (-2994 (((-112) $) 33)) (-3075 (((-848) $) 18) (($ (-1140)) 27) (($ (-1158)) 23) (((-1158) $) 22) (((-1086) $) 21)) (-2669 (((-112) $) 32)) (-1658 (((-112) $ $) 15))) +(((-429) (-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1140))) (-15 -3075 ($ (-1158))) (-15 -3075 ((-1158) $)) (-15 -3075 ((-1086) $)) (-15 -1809 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -1289 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3713 ((-112) $)) (-15 -2669 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -1658 ((-112) $ $))))) (T -429)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-429)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-429)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-429)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-429)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1658 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1140))) (-15 -3075 ($ (-1158))) (-15 -3075 ((-1158) $)) (-15 -3075 ((-1086) $)) (-15 -1809 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -1289 ((-112) $)) (-15 -2994 ((-112) $)) (-15 -3713 ((-112) $)) (-15 -2669 ((-112) $)) (-15 -3671 ((-112) $)) (-15 -1658 ((-112) $ $)))) +((-2688 (((-3 (-413 (-1154 (-402 (-554)))) "failed") |#3|) 70)) (-1828 (((-413 |#3|) |#3|) 34)) (-2720 (((-3 (-413 (-1154 (-48))) "failed") |#3|) 46 (|has| |#2| (-1023 (-48))))) (-2253 (((-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))) |#3|) 37))) +(((-430 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-413 |#3|) |#3|)) (-15 -2688 ((-3 (-413 (-1154 (-402 (-554)))) "failed") |#3|)) (-15 -2253 ((-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))) |#3|)) (IF (|has| |#2| (-1023 (-48))) (-15 -2720 ((-3 (-413 (-1154 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-546) (-836) (-1023 (-554))) (-425 |#1|) (-1217 |#2|)) (T -430)) +((-2720 (*1 *2 *3) (|partial| -12 (-4 *5 (-1023 (-48))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1154 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-2253 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-2688 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1154 (-402 (-554))))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5))))) +(-10 -7 (-15 -1828 ((-413 |#3|) |#3|)) (-15 -2688 ((-3 (-413 (-1154 (-402 (-554)))) "failed") |#3|)) (-15 -2253 ((-3 (|:| |overq| (-1154 (-402 (-554)))) (|:| |overan| (-1154 (-48))) (|:| -4156 (-112))) |#3|)) (IF (|has| |#2| (-1023 (-48))) (-15 -2720 ((-3 (-413 (-1154 (-48))) "failed") |#3|)) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-3719 (((-1140) $ (-1140)) NIL)) (-1875 (($ $ (-1140)) NIL)) (-3416 (((-1140) $) NIL)) (-1737 (((-383) (-383) (-383)) 17) (((-383) (-383)) 15)) (-1303 (($ (-383)) NIL) (($ (-383) (-1140)) NIL)) (-4309 (((-383) $) NIL)) (-1613 (((-1140) $) NIL)) (-1597 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2493 (((-1246) (-1140)) 9)) (-1973 (((-1246) (-1140)) 10)) (-3840 (((-1246)) 11)) (-3075 (((-848) $) NIL)) (-3745 (($ $) 35)) (-1658 (((-112) $ $) NIL))) +(((-431) (-13 (-359 (-383) (-1140)) (-10 -7 (-15 -1737 ((-383) (-383) (-383))) (-15 -1737 ((-383) (-383))) (-15 -2493 ((-1246) (-1140))) (-15 -1973 ((-1246) (-1140))) (-15 -3840 ((-1246)))))) (T -431)) +((-1737 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431)))) (-3840 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-431))))) +(-13 (-359 (-383) (-1140)) (-10 -7 (-15 -1737 ((-383) (-383) (-383))) (-15 -1737 ((-383) (-383))) (-15 -2493 ((-1246) (-1140))) (-15 -1973 ((-1246) (-1140))) (-15 -3840 ((-1246))))) +((-3062 (((-112) $ $) NIL)) (-1854 (((-3 (|:| |fst| (-429)) (|:| -2053 "void")) $) 11)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2371 (($) 32)) (-3011 (($) 38)) (-3318 (($) 34)) (-3588 (($) 36)) (-2192 (($) 33)) (-3162 (($) 35)) (-2105 (($) 37)) (-3989 (((-112) $) 8)) (-3525 (((-631 (-937 (-554))) $) 19)) (-3089 (($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-112)) 27) (($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-937 (-554))) (-112)) 28)) (-3075 (((-848) $) 23) (($ (-429)) 29)) (-1658 (((-112) $ $) NIL))) +(((-432) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-429))) (-15 -1854 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3525 ((-631 (-937 (-554))) $)) (-15 -3989 ((-112) $)) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-112))) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-937 (-554))) (-112))) (-15 -2371 ($)) (-15 -2192 ($)) (-15 -3318 ($)) (-15 -3011 ($)) (-15 -3162 ($)) (-15 -3588 ($)) (-15 -2105 ($))))) (T -432)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *1 (-432)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-631 (-937 (-554)))) (-5 *1 (-432)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432)))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *3 (-631 (-1158))) (-5 *4 (-112)) (-5 *1 (-432)))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-112)) (-5 *1 (-432)))) (-2371 (*1 *1) (-5 *1 (-432))) (-2192 (*1 *1) (-5 *1 (-432))) (-3318 (*1 *1) (-5 *1 (-432))) (-3011 (*1 *1) (-5 *1 (-432))) (-3162 (*1 *1) (-5 *1 (-432))) (-3588 (*1 *1) (-5 *1 (-432))) (-2105 (*1 *1) (-5 *1 (-432)))) +(-13 (-1082) (-10 -8 (-15 -3075 ($ (-429))) (-15 -1854 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3525 ((-631 (-937 (-554))) $)) (-15 -3989 ((-112) $)) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-1158)) (-112))) (-15 -3089 ($ (-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-631 (-937 (-554))) (-112))) (-15 -2371 ($)) (-15 -2192 ($)) (-15 -3318 ($)) (-15 -3011 ($)) (-15 -3162 ($)) (-15 -3588 ($)) (-15 -2105 ($)))) +((-3062 (((-112) $ $) NIL)) (-4309 (((-1158) $) 8)) (-1613 (((-1140) $) 16)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 13))) +(((-433 |#1|) (-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $)))) (-1158)) (T -433)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-433 *3)) (-14 *3 *2)))) +(-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $)))) +((-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-1241 (-685))) 14) (($ (-631 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 11))) +(((-434) (-138)) (T -434)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-685))) (-4 *1 (-434)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-434)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-434))))) +(-13 (-390) (-10 -8 (-15 -3075 ($ (-1241 (-685)))) (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))))) +(((-601 (-848)) . T) ((-390) . T) ((-1195) . T)) +((-2784 (((-3 $ "failed") (-1241 (-311 (-374)))) 21) (((-3 $ "failed") (-1241 (-311 (-554)))) 19) (((-3 $ "failed") (-1241 (-937 (-374)))) 17) (((-3 $ "failed") (-1241 (-937 (-554)))) 15) (((-3 $ "failed") (-1241 (-402 (-937 (-374))))) 13) (((-3 $ "failed") (-1241 (-402 (-937 (-554))))) 11)) (-1668 (($ (-1241 (-311 (-374)))) 22) (($ (-1241 (-311 (-554)))) 20) (($ (-1241 (-937 (-374)))) 18) (($ (-1241 (-937 (-554)))) 16) (($ (-1241 (-402 (-937 (-374))))) 14) (($ (-1241 (-402 (-937 (-554))))) 12)) (-1405 (((-1246) $) 7)) (-3075 (((-848) $) 8) (($ (-631 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) 23))) +(((-435) (-138)) (T -435)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-435)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435))))) +(-13 (-390) (-10 -8 (-15 -3075 ($ (-631 (-325)))) (-15 -3075 ($ (-325))) (-15 -3075 ($ (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325)))))) (-15 -1668 ($ (-1241 (-311 (-374))))) (-15 -2784 ((-3 $ "failed") (-1241 (-311 (-374))))) (-15 -1668 ($ (-1241 (-311 (-554))))) (-15 -2784 ((-3 $ "failed") (-1241 (-311 (-554))))) (-15 -1668 ($ (-1241 (-937 (-374))))) (-15 -2784 ((-3 $ "failed") (-1241 (-937 (-374))))) (-15 -1668 ($ (-1241 (-937 (-554))))) (-15 -2784 ((-3 $ "failed") (-1241 (-937 (-554))))) (-15 -1668 ($ (-1241 (-402 (-937 (-374)))))) (-15 -2784 ((-3 $ "failed") (-1241 (-402 (-937 (-374)))))) (-15 -1668 ($ (-1241 (-402 (-937 (-554)))))) (-15 -2784 ((-3 $ "failed") (-1241 (-402 (-937 (-554)))))))) +(((-601 (-848)) . T) ((-390) . T) ((-1195) . T)) +((-2255 (((-112)) 17)) (-3945 (((-112) (-112)) 18)) (-2502 (((-112)) 13)) (-3934 (((-112) (-112)) 14)) (-3772 (((-112)) 15)) (-3793 (((-112) (-112)) 16)) (-2639 (((-906) (-906)) 21) (((-906)) 20)) (-1423 (((-758) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554))))) 42)) (-1413 (((-906) (-906)) 23) (((-906)) 22)) (-2884 (((-2 (|:| -3654 (-554)) (|:| -2316 (-631 |#1|))) |#1|) 62)) (-1642 (((-413 |#1|) (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554))))))) 126)) (-3938 (((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)) 152)) (-4091 (((-413 |#1|) |#1| (-758) (-758)) 165) (((-413 |#1|) |#1| (-631 (-758)) (-758)) 162) (((-413 |#1|) |#1| (-631 (-758))) 164) (((-413 |#1|) |#1| (-758)) 163) (((-413 |#1|) |#1|) 161)) (-3102 (((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758) (-112)) 167) (((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758)) 168) (((-3 |#1| "failed") (-906) |#1| (-631 (-758))) 170) (((-3 |#1| "failed") (-906) |#1| (-758)) 169) (((-3 |#1| "failed") (-906) |#1|) 171)) (-2270 (((-413 |#1|) |#1| (-758) (-758)) 160) (((-413 |#1|) |#1| (-631 (-758)) (-758)) 156) (((-413 |#1|) |#1| (-631 (-758))) 158) (((-413 |#1|) |#1| (-758)) 157) (((-413 |#1|) |#1|) 155)) (-1773 (((-112) |#1|) 37)) (-3880 (((-724 (-758)) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554))))) 67)) (-1451 (((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112) (-1084 (-758)) (-758)) 154))) +(((-436 |#1|) (-10 -7 (-15 -1642 ((-413 |#1|) (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))))) (-15 -3880 ((-724 (-758)) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -1413 ((-906))) (-15 -1413 ((-906) (-906))) (-15 -2639 ((-906))) (-15 -2639 ((-906) (-906))) (-15 -1423 ((-758) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -2884 ((-2 (|:| -3654 (-554)) (|:| -2316 (-631 |#1|))) |#1|)) (-15 -2255 ((-112))) (-15 -3945 ((-112) (-112))) (-15 -2502 ((-112))) (-15 -3934 ((-112) (-112))) (-15 -1773 ((-112) |#1|)) (-15 -3772 ((-112))) (-15 -3793 ((-112) (-112))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1| (-758))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -2270 ((-413 |#1|) |#1| (-758) (-758))) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1| (-758))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -4091 ((-413 |#1|) |#1| (-758) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1|)) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758) (-112))) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112))) (-15 -1451 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112) (-1084 (-758)) (-758)))) (-1217 (-554))) (T -436)) +((-1451 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1084 (-758))) (-5 *6 (-758)) (-5 *2 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-906)) (-5 *4 (-758)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-3102 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-906)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) (-4091 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3772 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1773 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2502 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2255 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2884 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3654 (-554)) (|:| -2316 (-631 *3)))) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554))))) (-4 *4 (-1217 (-554))) (-5 *2 (-758)) (-5 *1 (-436 *4)))) (-2639 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-2639 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-1413 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554))))) (-4 *4 (-1217 (-554))) (-5 *2 (-724 (-758))) (-5 *1 (-436 *4)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *4) (|:| -4218 (-554))))))) (-4 *4 (-1217 (-554))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4))))) +(-10 -7 (-15 -1642 ((-413 |#1|) (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))))) (-15 -3880 ((-724 (-758)) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -1413 ((-906))) (-15 -1413 ((-906) (-906))) (-15 -2639 ((-906))) (-15 -2639 ((-906) (-906))) (-15 -1423 ((-758) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))))) (-15 -2884 ((-2 (|:| -3654 (-554)) (|:| -2316 (-631 |#1|))) |#1|)) (-15 -2255 ((-112))) (-15 -3945 ((-112) (-112))) (-15 -2502 ((-112))) (-15 -3934 ((-112) (-112))) (-15 -1773 ((-112) |#1|)) (-15 -3772 ((-112))) (-15 -3793 ((-112) (-112))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -2270 ((-413 |#1|) |#1| (-758))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -2270 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -2270 ((-413 |#1|) |#1| (-758) (-758))) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1| (-758))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)))) (-15 -4091 ((-413 |#1|) |#1| (-631 (-758)) (-758))) (-15 -4091 ((-413 |#1|) |#1| (-758) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1|)) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758))) (-15 -3102 ((-3 |#1| "failed") (-906) |#1| (-631 (-758)) (-758) (-112))) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112))) (-15 -1451 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112) (-1084 (-758)) (-758)))) +((-1575 (((-554) |#2|) 48) (((-554) |#2| (-758)) 47)) (-3846 (((-554) |#2|) 55)) (-2663 ((|#3| |#2|) 25)) (-3274 ((|#3| |#2| (-906)) 14)) (-2577 ((|#3| |#2|) 15)) (-1462 ((|#3| |#2|) 9)) (-3323 ((|#3| |#2|) 10)) (-2788 ((|#3| |#2| (-906)) 62) ((|#3| |#2|) 30)) (-3757 (((-554) |#2|) 57))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -3757 ((-554) |#2|)) (-15 -2788 (|#3| |#2|)) (-15 -2788 (|#3| |#2| (-906))) (-15 -3846 ((-554) |#2|)) (-15 -1575 ((-554) |#2| (-758))) (-15 -1575 ((-554) |#2|)) (-15 -3274 (|#3| |#2| (-906))) (-15 -2663 (|#3| |#2|)) (-15 -1462 (|#3| |#2|)) (-15 -3323 (|#3| |#2|)) (-15 -2577 (|#3| |#2|))) (-1034) (-1217 |#1|) (-13 (-399) (-1023 |#1|) (-358) (-1180) (-279))) (T -437)) +((-2577 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-2663 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5)))) (-1575 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1217 *4)) (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))) (-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1217 *5)) (-4 *6 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1217 *4)) (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))))) (-2788 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5)))) (-2788 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1217 *4)) (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))))) +(-10 -7 (-15 -3757 ((-554) |#2|)) (-15 -2788 (|#3| |#2|)) (-15 -2788 (|#3| |#2| (-906))) (-15 -3846 ((-554) |#2|)) (-15 -1575 ((-554) |#2| (-758))) (-15 -1575 ((-554) |#2|)) (-15 -3274 (|#3| |#2| (-906))) (-15 -2663 (|#3| |#2|)) (-15 -1462 (|#3| |#2|)) (-15 -3323 (|#3| |#2|)) (-15 -2577 (|#3| |#2|))) +((-3364 ((|#2| (-1241 |#1|)) 36)) (-3009 ((|#2| |#2| |#1|) 49)) (-3864 ((|#2| |#2| |#1|) 41)) (-3799 ((|#2| |#2|) 38)) (-2682 (((-112) |#2|) 30)) (-3294 (((-631 |#2|) (-906) (-413 |#2|)) 17)) (-3102 ((|#2| (-906) (-413 |#2|)) 21)) (-3880 (((-724 (-758)) (-413 |#2|)) 25))) +(((-438 |#1| |#2|) (-10 -7 (-15 -2682 ((-112) |#2|)) (-15 -3364 (|#2| (-1241 |#1|))) (-15 -3799 (|#2| |#2|)) (-15 -3864 (|#2| |#2| |#1|)) (-15 -3009 (|#2| |#2| |#1|)) (-15 -3880 ((-724 (-758)) (-413 |#2|))) (-15 -3102 (|#2| (-906) (-413 |#2|))) (-15 -3294 ((-631 |#2|) (-906) (-413 |#2|)))) (-1034) (-1217 |#1|)) (T -438)) +((-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-413 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-1034)) (-5 *2 (-631 *6)) (-5 *1 (-438 *5 *6)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-413 *2)) (-4 *2 (-1217 *5)) (-5 *1 (-438 *5 *2)) (-4 *5 (-1034)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1034)) (-5 *2 (-724 (-758))) (-5 *1 (-438 *4 *5)))) (-3009 (*1 *2 *2 *3) (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) (-3864 (*1 *2 *2 *3) (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-1034)) (-4 *2 (-1217 *4)) (-5 *1 (-438 *4 *2)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -2682 ((-112) |#2|)) (-15 -3364 (|#2| (-1241 |#1|))) (-15 -3799 (|#2| |#2|)) (-15 -3864 (|#2| |#2| |#1|)) (-15 -3009 (|#2| |#2| |#1|)) (-15 -3880 ((-724 (-758)) (-413 |#2|))) (-15 -3102 (|#2| (-906) (-413 |#2|))) (-15 -3294 ((-631 |#2|) (-906) (-413 |#2|)))) +((-1999 (((-758)) 41)) (-4013 (((-758)) 23 (|has| |#1| (-399))) (((-758) (-758)) 22 (|has| |#1| (-399)))) (-2838 (((-554) |#1|) 18 (|has| |#1| (-399)))) (-1901 (((-554) |#1|) 20 (|has| |#1| (-399)))) (-1639 (((-758)) 40) (((-758) (-758)) 39)) (-3828 ((|#1| (-758) (-554)) 29)) (-1921 (((-1246)) 43))) +(((-439 |#1|) (-10 -7 (-15 -3828 (|#1| (-758) (-554))) (-15 -1639 ((-758) (-758))) (-15 -1639 ((-758))) (-15 -1999 ((-758))) (-15 -1921 ((-1246))) (IF (|has| |#1| (-399)) (PROGN (-15 -1901 ((-554) |#1|)) (-15 -2838 ((-554) |#1|)) (-15 -4013 ((-758) (-758))) (-15 -4013 ((-758)))) |%noBranch|)) (-1034)) (T -439)) +((-4013 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-2838 (*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-1901 (*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) (-1921 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-1999 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-1639 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-554)) (-5 *1 (-439 *2)) (-4 *2 (-1034))))) +(-10 -7 (-15 -3828 (|#1| (-758) (-554))) (-15 -1639 ((-758) (-758))) (-15 -1639 ((-758))) (-15 -1999 ((-758))) (-15 -1921 ((-1246))) (IF (|has| |#1| (-399)) (PROGN (-15 -1901 ((-554) |#1|)) (-15 -2838 ((-554) |#1|)) (-15 -4013 ((-758) (-758))) (-15 -4013 ((-758)))) |%noBranch|)) +((-1635 (((-631 (-554)) (-554)) 61)) (-3289 (((-112) (-167 (-554))) 65)) (-2270 (((-413 (-167 (-554))) (-167 (-554))) 60))) +(((-440) (-10 -7 (-15 -2270 ((-413 (-167 (-554))) (-167 (-554)))) (-15 -1635 ((-631 (-554)) (-554))) (-15 -3289 ((-112) (-167 (-554)))))) (T -440)) +((-3289 (*1 *2 *3) (-12 (-5 *3 (-167 (-554))) (-5 *2 (-112)) (-5 *1 (-440)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-440)) (-5 *3 (-554)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 (-167 (-554)))) (-5 *1 (-440)) (-5 *3 (-167 (-554)))))) +(-10 -7 (-15 -2270 ((-413 (-167 (-554))) (-167 (-554)))) (-15 -1635 ((-631 (-554)) (-554))) (-15 -3289 ((-112) (-167 (-554))))) +((-3759 ((|#4| |#4| (-631 |#4|)) 61)) (-3425 (((-631 |#4|) (-631 |#4|) (-1140) (-1140)) 17) (((-631 |#4|) (-631 |#4|) (-1140)) 16) (((-631 |#4|) (-631 |#4|)) 11))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 (|#4| |#4| (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140) (-1140)))) (-302) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -441)) +((-3425 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3425 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *7)))) (-3425 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-441 *3 *4 *5 *6)))) (-3759 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *2))))) +(-10 -7 (-15 -3759 (|#4| |#4| (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3425 ((-631 |#4|) (-631 |#4|) (-1140) (-1140)))) +((-1969 (((-631 (-631 |#4|)) (-631 |#4|) (-112)) 73) (((-631 (-631 |#4|)) (-631 |#4|)) 72) (((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|) (-112)) 66) (((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|)) 67)) (-3789 (((-631 (-631 |#4|)) (-631 |#4|) (-112)) 42) (((-631 (-631 |#4|)) (-631 |#4|)) 63))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-112)))) (-13 (-302) (-145)) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -442)) +((-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-1969 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) +(-10 -7 (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -3789 ((-631 (-631 |#4|)) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-631 |#4|) (-112))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|))) (-15 -1969 ((-631 (-631 |#4|)) (-631 |#4|) (-112)))) +((-3290 (((-758) |#4|) 12)) (-4069 (((-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))) |#4| (-758) (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)))) 31)) (-3098 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2558 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2542 ((|#4| |#4| (-631 |#4|)) 40)) (-1960 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-631 |#4|)) 70)) (-1927 (((-1246) |#4|) 42)) (-2636 (((-1246) (-631 |#4|)) 51)) (-2882 (((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554)) 48)) (-1445 (((-1246) (-554)) 79)) (-3401 (((-631 |#4|) (-631 |#4|)) 77)) (-1962 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)) |#4| (-758)) 25)) (-2684 (((-554) |#4|) 78)) (-2421 ((|#4| |#4|) 29)) (-2181 (((-631 |#4|) (-631 |#4|) (-554) (-554)) 56)) (-3221 (((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554) (-554)) 89)) (-3783 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3501 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-4112 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2157 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1497 (((-112) |#2| |#2|) 57)) (-1374 (((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4220 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1797 ((|#4| |#4| (-631 |#4|)) 71))) +(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1797 (|#4| |#4| (-631 |#4|))) (-15 -2542 (|#4| |#4| (-631 |#4|))) (-15 -2181 ((-631 |#4|) (-631 |#4|) (-554) (-554))) (-15 -3501 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1497 ((-112) |#2| |#2|)) (-15 -4220 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1374 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2157 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4112 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1960 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-631 |#4|))) (-15 -2421 (|#4| |#4|)) (-15 -4069 ((-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))) |#4| (-758) (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))))) (-15 -2558 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3098 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3401 ((-631 |#4|) (-631 |#4|))) (-15 -2684 ((-554) |#4|)) (-15 -1927 ((-1246) |#4|)) (-15 -2882 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554))) (-15 -3221 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554) (-554))) (-15 -2636 ((-1246) (-631 |#4|))) (-15 -1445 ((-1246) (-554))) (-15 -3783 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1962 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)) |#4| (-758))) (-15 -3290 ((-758) |#4|))) (-446) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -443)) +((-3290 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-1962 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-758)) (|:| -2598 *4))) (-5 *5 (-758)) (-4 *4 (-934 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-443 *6 *7 *8 *4)))) (-3783 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *7)))) (-3221 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *4)))) (-2882 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *4)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-554)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))) (-3098 (*1 *2 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-780)) (-4 *2 (-934 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *4 (-446)) (-4 *6 (-836)))) (-4069 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 *3)))) (-5 *4 (-758)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *3)))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-443 *5 *6 *7 *3)))) (-4112 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-758)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-780)) (-4 *6 (-934 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-836)) (-5 *1 (-443 *4 *3 *5 *6)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1374 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-780)) (-4 *3 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *3)))) (-4220 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5)))) (-1497 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2181 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2542 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2)))) (-1797 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2))))) +(-10 -7 (-15 -1797 (|#4| |#4| (-631 |#4|))) (-15 -2542 (|#4| |#4| (-631 |#4|))) (-15 -2181 ((-631 |#4|) (-631 |#4|) (-554) (-554))) (-15 -3501 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1497 ((-112) |#2| |#2|)) (-15 -4220 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1374 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2157 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4112 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1960 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-631 |#4|))) (-15 -2421 (|#4| |#4|)) (-15 -4069 ((-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))) |#4| (-758) (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|))))) (-15 -2558 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3098 ((-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-631 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3401 ((-631 |#4|) (-631 |#4|))) (-15 -2684 ((-554) |#4|)) (-15 -1927 ((-1246) |#4|)) (-15 -2882 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554))) (-15 -3221 ((-554) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-554) (-554) (-554) (-554))) (-15 -2636 ((-1246) (-631 |#4|))) (-15 -1445 ((-1246) (-554))) (-15 -3783 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1962 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-758)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-758)) (|:| -2598 |#4|)) |#4| (-758))) (-15 -3290 ((-758) |#4|))) +((-2246 ((|#4| |#4| (-631 |#4|)) 22 (|has| |#1| (-358)))) (-3486 (((-631 |#4|) (-631 |#4|) (-1140) (-1140)) 41) (((-631 |#4|) (-631 |#4|) (-1140)) 40) (((-631 |#4|) (-631 |#4|)) 35))) +(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3486 ((-631 |#4|) (-631 |#4|))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140) (-1140))) (IF (|has| |#1| (-358)) (-15 -2246 (|#4| |#4| (-631 |#4|))) |%noBranch|)) (-446) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -444)) +((-2246 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-444 *4 *5 *6 *2)))) (-3486 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3486 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-444 *3 *4 *5 *6))))) +(-10 -7 (-15 -3486 ((-631 |#4|) (-631 |#4|))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140))) (-15 -3486 ((-631 |#4|) (-631 |#4|) (-1140) (-1140))) (IF (|has| |#1| (-358)) (-15 -2246 (|#4| |#4| (-631 |#4|))) |%noBranch|)) +((-2475 (($ $ $) 14) (($ (-631 $)) 21)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 41)) (-2510 (($ $ $) NIL) (($ (-631 $)) 22))) +(((-445 |#1|) (-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2475 (|#1| (-631 |#1|))) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|))) (-446)) (T -445)) +NIL +(-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -2475 (|#1| (-631 |#1|))) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -2510 (|#1| |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-446) (-138)) (T -446)) +((-2510 (*1 *1 *1 *1) (-4 *1 (-446))) (-2510 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446)))) (-2475 (*1 *1 *1 *1) (-4 *1 (-446))) (-2475 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-446))))) +(-13 (-546) (-10 -8 (-15 -2510 ($ $ $)) (-15 -2510 ($ (-631 $))) (-15 -2475 ($ $ $)) (-15 -2475 ($ (-631 $))) (-15 -3077 ((-1154 $) (-1154 $) (-1154 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 (-402 (-937 |#1|)))) (-1241 $)) NIL) (((-1241 (-675 (-402 (-937 |#1|))))) NIL)) (-4047 (((-1241 $)) NIL)) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL)) (-3447 (((-3 $ "failed")) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-3321 (((-675 (-402 (-937 |#1|))) (-1241 $)) NIL) (((-675 (-402 (-937 |#1|)))) NIL)) (-4206 (((-402 (-937 |#1|)) $) NIL)) (-3970 (((-675 (-402 (-937 |#1|))) $ (-1241 $)) NIL) (((-675 (-402 (-937 |#1|))) $) NIL)) (-3754 (((-3 $ "failed") $) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-4027 (((-1154 (-937 (-402 (-937 |#1|))))) NIL (|has| (-402 (-937 |#1|)) (-358))) (((-1154 (-402 (-937 |#1|)))) 84 (|has| |#1| (-546)))) (-2080 (($ $ (-906)) NIL)) (-3976 (((-402 (-937 |#1|)) $) NIL)) (-3343 (((-1154 (-402 (-937 |#1|))) $) 82 (|has| (-402 (-937 |#1|)) (-546)))) (-3640 (((-402 (-937 |#1|)) (-1241 $)) NIL) (((-402 (-937 |#1|))) NIL)) (-4231 (((-1154 (-402 (-937 |#1|))) $) NIL)) (-1397 (((-112)) NIL)) (-1651 (($ (-1241 (-402 (-937 |#1|))) (-1241 $)) 103) (($ (-1241 (-402 (-937 |#1|)))) NIL)) (-1320 (((-3 $ "failed") $) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-4186 (((-906)) NIL)) (-3911 (((-112)) NIL)) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL)) (-1765 (((-112)) NIL)) (-1573 (((-112)) NIL)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL)) (-3899 (((-3 $ "failed")) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-2871 (((-675 (-402 (-937 |#1|))) (-1241 $)) NIL) (((-675 (-402 (-937 |#1|)))) NIL)) (-3115 (((-402 (-937 |#1|)) $) NIL)) (-3826 (((-675 (-402 (-937 |#1|))) $ (-1241 $)) NIL) (((-675 (-402 (-937 |#1|))) $) NIL)) (-1605 (((-3 $ "failed") $) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-3415 (((-1154 (-937 (-402 (-937 |#1|))))) NIL (|has| (-402 (-937 |#1|)) (-358))) (((-1154 (-402 (-937 |#1|)))) 83 (|has| |#1| (-546)))) (-1297 (($ $ (-906)) NIL)) (-2620 (((-402 (-937 |#1|)) $) NIL)) (-3760 (((-1154 (-402 (-937 |#1|))) $) 77 (|has| (-402 (-937 |#1|)) (-546)))) (-3063 (((-402 (-937 |#1|)) (-1241 $)) NIL) (((-402 (-937 |#1|))) NIL)) (-2541 (((-1154 (-402 (-937 |#1|))) $) NIL)) (-3074 (((-112)) NIL)) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL)) (-4193 (((-112)) NIL)) (-2366 (((-112)) NIL)) (-2768 (((-1102) $) NIL)) (-1736 (((-402 (-937 |#1|)) $ $) 71 (|has| |#1| (-546)))) (-1581 (((-402 (-937 |#1|)) $) 93 (|has| |#1| (-546)))) (-3172 (((-402 (-937 |#1|)) $) 95 (|has| |#1| (-546)))) (-4255 (((-1154 (-402 (-937 |#1|))) $) 88 (|has| |#1| (-546)))) (-1998 (((-402 (-937 |#1|))) 72 (|has| |#1| (-546)))) (-1843 (((-402 (-937 |#1|)) $ $) 64 (|has| |#1| (-546)))) (-3591 (((-402 (-937 |#1|)) $) 92 (|has| |#1| (-546)))) (-2319 (((-402 (-937 |#1|)) $) 94 (|has| |#1| (-546)))) (-3188 (((-1154 (-402 (-937 |#1|))) $) 87 (|has| |#1| (-546)))) (-4250 (((-402 (-937 |#1|))) 68 (|has| |#1| (-546)))) (-1304 (($) 101) (($ (-1158)) 107) (($ (-1241 (-1158))) 106) (($ (-1241 $)) 96) (($ (-1158) (-1241 $)) 105) (($ (-1241 (-1158)) (-1241 $)) 104)) (-1944 (((-112)) NIL)) (-2064 (((-402 (-937 |#1|)) $ (-554)) NIL)) (-3656 (((-1241 (-402 (-937 |#1|))) $ (-1241 $)) 98) (((-675 (-402 (-937 |#1|))) (-1241 $) (-1241 $)) NIL) (((-1241 (-402 (-937 |#1|))) $) 40) (((-675 (-402 (-937 |#1|))) (-1241 $)) NIL)) (-2927 (((-1241 (-402 (-937 |#1|))) $) NIL) (($ (-1241 (-402 (-937 |#1|)))) 37)) (-3107 (((-631 (-937 (-402 (-937 |#1|)))) (-1241 $)) NIL) (((-631 (-937 (-402 (-937 |#1|))))) NIL) (((-631 (-937 |#1|)) (-1241 $)) 99 (|has| |#1| (-546))) (((-631 (-937 |#1|))) 100 (|has| |#1| (-546)))) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL)) (-3075 (((-848) $) NIL) (($ (-1241 (-402 (-937 |#1|)))) NIL)) (-3782 (((-1241 $)) 60)) (-1444 (((-631 (-1241 (-402 (-937 |#1|))))) NIL (|has| (-402 (-937 |#1|)) (-546)))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL)) (-1485 (($ (-675 (-402 (-937 |#1|))) $) NIL)) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL)) (-2760 (((-112)) NIL)) (-3206 (((-112)) NIL)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) 97)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 56) (($ $ (-402 (-937 |#1|))) NIL) (($ (-402 (-937 |#1|)) $) NIL) (($ (-1124 |#2| (-402 (-937 |#1|))) $) NIL))) +(((-447 |#1| |#2| |#3| |#4|) (-13 (-412 (-402 (-937 |#1|))) (-634 (-1124 |#2| (-402 (-937 |#1|)))) (-10 -8 (-15 -3075 ($ (-1241 (-402 (-937 |#1|))))) (-15 -1660 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1304 ($)) (-15 -1304 ($ (-1158))) (-15 -1304 ($ (-1241 (-1158)))) (-15 -1304 ($ (-1241 $))) (-15 -1304 ($ (-1158) (-1241 $))) (-15 -1304 ($ (-1241 (-1158)) (-1241 $))) (IF (|has| |#1| (-546)) (PROGN (-15 -3415 ((-1154 (-402 (-937 |#1|))))) (-15 -3188 ((-1154 (-402 (-937 |#1|))) $)) (-15 -3591 ((-402 (-937 |#1|)) $)) (-15 -2319 ((-402 (-937 |#1|)) $)) (-15 -4027 ((-1154 (-402 (-937 |#1|))))) (-15 -4255 ((-1154 (-402 (-937 |#1|))) $)) (-15 -1581 ((-402 (-937 |#1|)) $)) (-15 -3172 ((-402 (-937 |#1|)) $)) (-15 -1843 ((-402 (-937 |#1|)) $ $)) (-15 -4250 ((-402 (-937 |#1|)))) (-15 -1736 ((-402 (-937 |#1|)) $ $)) (-15 -1998 ((-402 (-937 |#1|)))) (-15 -3107 ((-631 (-937 |#1|)) (-1241 $))) (-15 -3107 ((-631 (-937 |#1|))))) |%noBranch|))) (-170) (-906) (-631 (-1158)) (-1241 (-675 |#1|))) (T -447)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 *3)))) (-4 *3 (-170)) (-14 *6 (-1241 (-675 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))))) (-1660 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -3782 (-631 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1558 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -3782 (-631 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1) (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-906)) (-14 *4 (-631 (-1158))) (-14 *5 (-1241 (-675 *2))))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 *2)) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1241 (-1158))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-1241 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1304 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906)) (-14 *6 (-631 *2)) (-14 *7 (-1241 (-675 *4))))) (-1304 (*1 *1 *2 *3) (-12 (-5 *2 (-1241 (-1158))) (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906)) (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4))))) (-3415 (*1 *2) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-4027 (*1 *2) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1843 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-4250 (*1 *2) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1736 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-1998 (*1 *2) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *2 (-631 (-937 *4))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-546)) (-4 *4 (-170)) (-14 *5 (-906)) (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4))))) (-3107 (*1 *2) (-12 (-5 *2 (-631 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(-13 (-412 (-402 (-937 |#1|))) (-634 (-1124 |#2| (-402 (-937 |#1|)))) (-10 -8 (-15 -3075 ($ (-1241 (-402 (-937 |#1|))))) (-15 -1660 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1558 ((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed"))) (-15 -1304 ($)) (-15 -1304 ($ (-1158))) (-15 -1304 ($ (-1241 (-1158)))) (-15 -1304 ($ (-1241 $))) (-15 -1304 ($ (-1158) (-1241 $))) (-15 -1304 ($ (-1241 (-1158)) (-1241 $))) (IF (|has| |#1| (-546)) (PROGN (-15 -3415 ((-1154 (-402 (-937 |#1|))))) (-15 -3188 ((-1154 (-402 (-937 |#1|))) $)) (-15 -3591 ((-402 (-937 |#1|)) $)) (-15 -2319 ((-402 (-937 |#1|)) $)) (-15 -4027 ((-1154 (-402 (-937 |#1|))))) (-15 -4255 ((-1154 (-402 (-937 |#1|))) $)) (-15 -1581 ((-402 (-937 |#1|)) $)) (-15 -3172 ((-402 (-937 |#1|)) $)) (-15 -1843 ((-402 (-937 |#1|)) $ $)) (-15 -4250 ((-402 (-937 |#1|)))) (-15 -1736 ((-402 (-937 |#1|)) $ $)) (-15 -1998 ((-402 (-937 |#1|)))) (-15 -3107 ((-631 (-937 |#1|)) (-1241 $))) (-15 -3107 ((-631 (-937 |#1|))))) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 13)) (-2405 (((-631 (-850 |#1|)) $) 75)) (-2237 (((-1154 $) $ (-850 |#1|)) 46) (((-1154 |#2|) $) 118)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) 21) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 44) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) 42) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2026 (($ $ (-631 (-554))) 80)) (-2550 (($ $) 68)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| |#3| $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 58)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) 123) (($ (-1154 $) (-850 |#1|)) 52)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) 59)) (-2383 (($ |#2| |#3|) 28) (($ $ (-850 |#1|) (-758)) 30) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 ((|#3| $) NIL) (((-758) $ (-850 |#1|)) 50) (((-631 (-758)) $ (-631 (-850 |#1|))) 57)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 |#3| |#3|) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) 39)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) 41)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 40)) (-2505 ((|#2| $) 116)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) 128 (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) 87) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) 90) (($ $ (-850 |#1|) $) 85) (($ $ (-631 (-850 |#1|)) (-631 $)) 106)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) 53) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 ((|#3| $) 67) (((-758) $ (-850 |#1|)) 37) (((-631 (-758)) $ (-631 (-850 |#1|))) 56)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) 125 (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) 145) (($ (-554)) NIL) (($ |#2|) 86) (($ (-850 |#1|)) 31) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ |#3|) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) 17 T CONST)) (-2014 (($) 25 T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) 64 (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 111)) (** (($ $ (-906)) NIL) (($ $ (-758)) 109)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 29) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-448 |#1| |#2| |#3|) (-13 (-934 |#2| |#3| (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) (-631 (-1158)) (-1034) (-234 (-2563 |#1|) (-758))) (T -448)) +((-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-14 *3 (-631 (-1158))) (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-234 (-2563 *3) (-758)))))) +(-13 (-934 |#2| |#3| (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) +((-3251 (((-112) |#1| (-631 |#2|)) 69)) (-2555 (((-3 (-1241 (-631 |#2|)) "failed") (-758) |#1| (-631 |#2|)) 78)) (-3798 (((-3 (-631 |#2|) "failed") |#2| |#1| (-1241 (-631 |#2|))) 80)) (-1877 ((|#2| |#2| |#1|) 28)) (-2527 (((-758) |#2| (-631 |#2|)) 20))) +(((-449 |#1| |#2|) (-10 -7 (-15 -1877 (|#2| |#2| |#1|)) (-15 -2527 ((-758) |#2| (-631 |#2|))) (-15 -2555 ((-3 (-1241 (-631 |#2|)) "failed") (-758) |#1| (-631 |#2|))) (-15 -3798 ((-3 (-631 |#2|) "failed") |#2| |#1| (-1241 (-631 |#2|)))) (-15 -3251 ((-112) |#1| (-631 |#2|)))) (-302) (-1217 |#1|)) (T -449)) +((-3251 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *5)) (-4 *5 (-1217 *3)) (-4 *3 (-302)) (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))) (-3798 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1241 (-631 *3))) (-4 *4 (-302)) (-5 *2 (-631 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1217 *4)))) (-2555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-758)) (-4 *4 (-302)) (-4 *6 (-1217 *4)) (-5 *2 (-1241 (-631 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-631 *6)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-302)) (-5 *2 (-758)) (-5 *1 (-449 *5 *3)))) (-1877 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1217 *3))))) +(-10 -7 (-15 -1877 (|#2| |#2| |#1|)) (-15 -2527 ((-758) |#2| (-631 |#2|))) (-15 -2555 ((-3 (-1241 (-631 |#2|)) "failed") (-758) |#1| (-631 |#2|))) (-15 -3798 ((-3 (-631 |#2|) "failed") |#2| |#1| (-1241 (-631 |#2|)))) (-15 -3251 ((-112) |#1| (-631 |#2|)))) +((-2270 (((-413 |#5|) |#5|) 24))) +(((-450 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2270 ((-413 |#5|) |#5|))) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158))))) (-780) (-546) (-546) (-934 |#4| |#2| |#1|)) (T -450)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *5 (-780)) (-4 *7 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-546)) (-4 *3 (-934 *7 *5 *4))))) +(-10 -7 (-15 -2270 ((-413 |#5|) |#5|))) +((-2774 ((|#3|) 37)) (-3077 (((-1154 |#4|) (-1154 |#4|) (-1154 |#4|)) 33))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3077 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2774 (|#3|))) (-780) (-836) (-894) (-934 |#3| |#1| |#2|)) (T -451)) +((-2774 (*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894)) (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-894)) (-5 *1 (-451 *3 *4 *5 *6))))) +(-10 -7 (-15 -3077 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2774 (|#3|))) +((-2270 (((-413 (-1154 |#1|)) (-1154 |#1|)) 43))) +(((-452 |#1|) (-10 -7 (-15 -2270 ((-413 (-1154 |#1|)) (-1154 |#1|)))) (-302)) (T -452)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1154 *4))) (-5 *1 (-452 *4)) (-5 *3 (-1154 *4))))) +(-10 -7 (-15 -2270 ((-413 (-1154 |#1|)) (-1154 |#1|)))) +((-2444 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-758))) 42) (((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-758))) 41) (((-52) |#2| (-1158) (-289 |#2|)) 35) (((-52) (-1 |#2| (-554)) (-289 |#2|)) 28)) (-4175 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 80) (((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 79) (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554))) 78) (((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554))) 77) (((-52) |#2| (-1158) (-289 |#2|)) 72) (((-52) (-1 |#2| (-554)) (-289 |#2|)) 71)) (-2463 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 66) (((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))) 64)) (-2454 (((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554))) 48) (((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554))) 47))) +(((-453 |#1| |#2|) (-10 -7 (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-758)))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-758)))) (-15 -2454 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -2454 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -2463 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -2463 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -453)) +((-4175 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554)))) (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8))) (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-4175 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8)) (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554))) (-4 *8 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-4175 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-4175 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554))) (-4 *7 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-4175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) (-2463 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554)))) (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8))) (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-2463 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8)) (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554))) (-4 *8 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-2454 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554))) (-4 *7 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-2444 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-758))) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-2444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-758))) (-4 *7 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-2444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6))))) +(-10 -7 (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -2444 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-758)))) (-15 -2444 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-758)))) (-15 -2454 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -2454 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -2463 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -2463 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|))) (-15 -4175 ((-52) (-1 |#2| (-554)) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-554)))) (-15 -4175 ((-52) (-1 |#2| (-402 (-554))) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554)))) (-15 -4175 ((-52) |#2| (-1158) (-289 |#2|) (-1208 (-402 (-554))) (-402 (-554))))) +((-1877 ((|#2| |#2| |#1|) 15)) (-4185 (((-631 |#2|) |#2| (-631 |#2|) |#1| (-906)) 69)) (-4291 (((-2 (|:| |plist| (-631 |#2|)) (|:| |modulo| |#1|)) |#2| (-631 |#2|) |#1| (-906)) 60))) +(((-454 |#1| |#2|) (-10 -7 (-15 -4291 ((-2 (|:| |plist| (-631 |#2|)) (|:| |modulo| |#1|)) |#2| (-631 |#2|) |#1| (-906))) (-15 -4185 ((-631 |#2|) |#2| (-631 |#2|) |#1| (-906))) (-15 -1877 (|#2| |#2| |#1|))) (-302) (-1217 |#1|)) (T -454)) +((-1877 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1217 *3)))) (-4185 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-631 *3)) (-5 *5 (-906)) (-4 *3 (-1217 *4)) (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))) (-4291 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-906)) (-4 *5 (-302)) (-4 *3 (-1217 *5)) (-5 *2 (-2 (|:| |plist| (-631 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) (-5 *4 (-631 *3))))) +(-10 -7 (-15 -4291 ((-2 (|:| |plist| (-631 |#2|)) (|:| |modulo| |#1|)) |#2| (-631 |#2|) |#1| (-906))) (-15 -4185 ((-631 |#2|) |#2| (-631 |#2|) |#1| (-906))) (-15 -1877 (|#2| |#2| |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 28)) (-2327 (($ |#3|) 25)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) 32)) (-1898 (($ |#2| |#4| $) 33)) (-2383 (($ |#2| (-700 |#3| |#4| |#5|)) 24)) (-2518 (((-700 |#3| |#4| |#5|) $) 15)) (-4245 ((|#3| $) 19)) (-1448 ((|#4| $) 17)) (-2530 ((|#2| $) 29)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-3610 (($ |#2| |#3| |#4|) 26)) (-2004 (($) 36 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 34)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-455 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-704 |#6|) (-704 |#2|) (-10 -8 (-15 -2530 (|#2| $)) (-15 -2518 ((-700 |#3| |#4| |#5|) $)) (-15 -1448 (|#4| $)) (-15 -4245 (|#3| $)) (-15 -2550 ($ $)) (-15 -2383 ($ |#2| (-700 |#3| |#4| |#5|))) (-15 -2327 ($ |#3|)) (-15 -3610 ($ |#2| |#3| |#4|)) (-15 -1898 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-631 (-1158)) (-170) (-836) (-234 (-2563 |#1|) (-758)) (-1 (-112) (-2 (|:| -2717 |#3|) (|:| -1407 |#4|)) (-2 (|:| -2717 |#3|) (|:| -1407 |#4|))) (-934 |#2| |#4| (-850 |#1|))) (T -455)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *6 (-234 (-2563 *3) (-758))) (-14 *7 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) (-2 (|:| -2717 *5) (|:| -1407 *6)))) (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-836)) (-4 *2 (-934 *4 *6 (-850 *3))))) (-2530 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *5 (-234 (-2563 *3) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5)) (-2 (|:| -2717 *4) (|:| -1407 *5)))) (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-836)) (-4 *7 (-934 *2 *5 (-850 *3))))) (-2518 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *6 (-234 (-2563 *3) (-758))) (-14 *7 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) (-2 (|:| -2717 *5) (|:| -1407 *6)))) (-5 *2 (-700 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-836)) (-4 *8 (-934 *4 *6 (-850 *3))))) (-1448 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *2)) (-2 (|:| -2717 *5) (|:| -1407 *2)))) (-4 *2 (-234 (-2563 *3) (-758))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) (-4 *5 (-836)) (-4 *7 (-934 *4 *2 (-850 *3))))) (-4245 (*1 *2 *1) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *5 (-234 (-2563 *3) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5)) (-2 (|:| -2717 *2) (|:| -1407 *5)))) (-4 *2 (-836)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *7 (-934 *4 *5 (-850 *3))))) (-2550 (*1 *1 *1) (-12 (-14 *2 (-631 (-1158))) (-4 *3 (-170)) (-4 *5 (-234 (-2563 *2) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5)) (-2 (|:| -2717 *4) (|:| -1407 *5)))) (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-836)) (-4 *7 (-934 *3 *5 (-850 *2))))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-700 *5 *6 *7)) (-4 *5 (-836)) (-4 *6 (-234 (-2563 *4) (-758))) (-14 *7 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) (-2 (|:| -2717 *5) (|:| -1407 *6)))) (-14 *4 (-631 (-1158))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-934 *2 *6 (-850 *4))))) (-2327 (*1 *1 *2) (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) (-4 *5 (-234 (-2563 *3) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5)) (-2 (|:| -2717 *2) (|:| -1407 *5)))) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-836)) (-4 *7 (-934 *4 *5 (-850 *3))))) (-3610 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-631 (-1158))) (-4 *2 (-170)) (-4 *4 (-234 (-2563 *5) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *4)) (-2 (|:| -2717 *3) (|:| -1407 *4)))) (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-836)) (-4 *7 (-934 *2 *4 (-850 *5))))) (-1898 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-631 (-1158))) (-4 *2 (-170)) (-4 *3 (-234 (-2563 *4) (-758))) (-14 *6 (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *3)) (-2 (|:| -2717 *5) (|:| -1407 *3)))) (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-836)) (-4 *7 (-934 *2 *3 (-850 *4)))))) +(-13 (-704 |#6|) (-704 |#2|) (-10 -8 (-15 -2530 (|#2| $)) (-15 -2518 ((-700 |#3| |#4| |#5|) $)) (-15 -1448 (|#4| $)) (-15 -4245 (|#3| $)) (-15 -2550 ($ $)) (-15 -2383 ($ |#2| (-700 |#3| |#4| |#5|))) (-15 -2327 ($ |#3|)) (-15 -3610 ($ |#2| |#3| |#4|)) (-15 -1898 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3991 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3991 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-780) (-836) (-546) (-934 |#3| |#1| |#2|) (-13 (-1023 (-402 (-554))) (-358) (-10 -8 (-15 -3075 ($ |#4|)) (-15 -2810 (|#4| $)) (-15 -2822 (|#4| $))))) (T -456)) +((-3991 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-836)) (-4 *5 (-780)) (-4 *6 (-546)) (-4 *7 (-934 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1023 (-402 (-554))) (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))))) +(-10 -7 (-15 -3991 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3062 (((-112) $ $) NIL)) (-2405 (((-631 |#3|) $) 41)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) NIL (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 47)) (-1668 (($ (-631 |#4|)) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373)))) (-2466 (((-631 |#4|) $) 18 (|has| $ (-6 -4373)))) (-3954 ((|#3| $) 45)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 14 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-2768 (((-1102) $) NIL)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 39)) (-4240 (($) 17)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 16)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530)))) (($ (-631 |#4|)) 49)) (-3089 (($ (-631 |#4|)) 13)) (-2538 (($ $ |#3|) NIL)) (-2384 (($ $ |#3|) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 38) (((-631 |#4|) $) 48)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 30)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-457 |#1| |#2| |#3| |#4|) (-13 (-961 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2927 ($ (-631 |#4|))) (-6 -4373) (-6 -4374))) (-1034) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -457)) +((-2927 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-457 *3 *4 *5 *6))))) +(-13 (-961 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2927 ($ (-631 |#4|))) (-6 -4373) (-6 -4374))) +((-2004 (($) 11)) (-2014 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-458 |#1| |#2| |#3|) (-10 -8 (-15 -2014 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2004 (|#1|))) (-459 |#2| |#3|) (-170) (-23)) (T -458)) +NIL +(-10 -8 (-15 -2014 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2004 (|#1|))) +((-3062 (((-112) $ $) 7)) (-2784 (((-3 |#1| "failed") $) 26)) (-1668 ((|#1| $) 27)) (-4264 (($ $ $) 23)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 ((|#2| $) 19)) (-3075 (((-848) $) 11) (($ |#1|) 25)) (-2004 (($) 18 T CONST)) (-2014 (($) 24 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 15) (($ $ $) 13)) (-1735 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-459 |#1| |#2|) (-138) (-170) (-23)) (T -459)) +((-2014 (*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4264 (*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-464 |t#1| |t#2|) (-1023 |t#1|) (-10 -8 (-15 (-2014) ($) -2397) (-15 -4264 ($ $ $)))) +(((-102) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-464 |#1| |#2|) . T) ((-1023 |#1|) . T) ((-1082) . T)) +((-1463 (((-1241 (-1241 (-554))) (-1241 (-1241 (-554))) (-906)) 18)) (-2465 (((-1241 (-1241 (-554))) (-906)) 16))) +(((-460) (-10 -7 (-15 -1463 ((-1241 (-1241 (-554))) (-1241 (-1241 (-554))) (-906))) (-15 -2465 ((-1241 (-1241 (-554))) (-906))))) (T -460)) +((-2465 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 (-554)))) (-5 *1 (-460)))) (-1463 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 (-1241 (-554)))) (-5 *3 (-906)) (-5 *1 (-460))))) +(-10 -7 (-15 -1463 ((-1241 (-1241 (-554))) (-1241 (-1241 (-554))) (-906))) (-15 -2465 ((-1241 (-1241 (-554))) (-906)))) +((-3902 (((-554) (-554)) 30) (((-554)) 22)) (-2477 (((-554) (-554)) 26) (((-554)) 18)) (-4179 (((-554) (-554)) 28) (((-554)) 20)) (-4004 (((-112) (-112)) 12) (((-112)) 10)) (-3326 (((-112) (-112)) 11) (((-112)) 9)) (-1979 (((-112) (-112)) 24) (((-112)) 15))) +(((-461) (-10 -7 (-15 -3326 ((-112))) (-15 -4004 ((-112))) (-15 -3326 ((-112) (-112))) (-15 -4004 ((-112) (-112))) (-15 -1979 ((-112))) (-15 -4179 ((-554))) (-15 -2477 ((-554))) (-15 -3902 ((-554))) (-15 -1979 ((-112) (-112))) (-15 -4179 ((-554) (-554))) (-15 -2477 ((-554) (-554))) (-15 -3902 ((-554) (-554))))) (T -461)) +((-3902 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-2477 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3902 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-2477 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-4179 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) (-1979 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-4004 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3326 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(-10 -7 (-15 -3326 ((-112))) (-15 -4004 ((-112))) (-15 -3326 ((-112) (-112))) (-15 -4004 ((-112) (-112))) (-15 -1979 ((-112))) (-15 -4179 ((-554))) (-15 -2477 ((-554))) (-15 -3902 ((-554))) (-15 -1979 ((-112) (-112))) (-15 -4179 ((-554) (-554))) (-15 -2477 ((-554) (-554))) (-15 -3902 ((-554) (-554)))) +((-3062 (((-112) $ $) NIL)) (-2079 (((-631 (-374)) $) 28) (((-631 (-374)) $ (-631 (-374))) 95)) (-2289 (((-631 (-1076 (-374))) $) 16) (((-631 (-1076 (-374))) $ (-631 (-1076 (-374)))) 92)) (-2248 (((-631 (-631 (-928 (-221)))) (-631 (-631 (-928 (-221)))) (-631 (-859))) 44)) (-3471 (((-631 (-631 (-928 (-221)))) $) 88)) (-4136 (((-1246) $ (-928 (-221)) (-859)) 107)) (-2637 (($ $) 87) (($ (-631 (-631 (-928 (-221))))) 98) (($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906))) 97) (($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)) (-631 (-258))) 99)) (-1613 (((-1140) $) NIL)) (-2564 (((-554) $) 69)) (-2768 (((-1102) $) NIL)) (-2018 (($) 96)) (-2144 (((-631 (-221)) (-631 (-631 (-928 (-221))))) 54)) (-3257 (((-1246) $ (-631 (-928 (-221))) (-859) (-859) (-906)) 101) (((-1246) $ (-928 (-221))) 103) (((-1246) $ (-928 (-221)) (-859) (-859) (-906)) 102)) (-3075 (((-848) $) 113) (($ (-631 (-631 (-928 (-221))))) 108)) (-3642 (((-1246) $ (-928 (-221))) 106)) (-1658 (((-112) $ $) NIL))) +(((-462) (-13 (-1082) (-10 -8 (-15 -2018 ($)) (-15 -2637 ($ $)) (-15 -2637 ($ (-631 (-631 (-928 (-221)))))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)) (-631 (-258)))) (-15 -3471 ((-631 (-631 (-928 (-221)))) $)) (-15 -2564 ((-554) $)) (-15 -2289 ((-631 (-1076 (-374))) $)) (-15 -2289 ((-631 (-1076 (-374))) $ (-631 (-1076 (-374))))) (-15 -2079 ((-631 (-374)) $)) (-15 -2079 ((-631 (-374)) $ (-631 (-374)))) (-15 -3257 ((-1246) $ (-631 (-928 (-221))) (-859) (-859) (-906))) (-15 -3257 ((-1246) $ (-928 (-221)))) (-15 -3257 ((-1246) $ (-928 (-221)) (-859) (-859) (-906))) (-15 -3642 ((-1246) $ (-928 (-221)))) (-15 -4136 ((-1246) $ (-928 (-221)) (-859))) (-15 -3075 ($ (-631 (-631 (-928 (-221)))))) (-15 -3075 ((-848) $)) (-15 -2248 ((-631 (-631 (-928 (-221)))) (-631 (-631 (-928 (-221)))) (-631 (-859)))) (-15 -2144 ((-631 (-221)) (-631 (-631 (-928 (-221))))))))) (T -462)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-462)))) (-2018 (*1 *1) (-5 *1 (-462))) (-2637 (*1 *1 *1) (-5 *1 (-462))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) (-2637 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) (-5 *4 (-631 (-906))) (-5 *1 (-462)))) (-2637 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) (-5 *4 (-631 (-906))) (-5 *5 (-631 (-258))) (-5 *1 (-462)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-462)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462)))) (-2289 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462)))) (-2079 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462)))) (-3257 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3257 (*1 *2 *1 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3257 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3642 (*1 *2 *1 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462)))) (-4136 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-462)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) (-2248 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) (-5 *1 (-462)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-631 (-221))) (-5 *1 (-462))))) +(-13 (-1082) (-10 -8 (-15 -2018 ($)) (-15 -2637 ($ $)) (-15 -2637 ($ (-631 (-631 (-928 (-221)))))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)))) (-15 -2637 ($ (-631 (-631 (-928 (-221)))) (-631 (-859)) (-631 (-859)) (-631 (-906)) (-631 (-258)))) (-15 -3471 ((-631 (-631 (-928 (-221)))) $)) (-15 -2564 ((-554) $)) (-15 -2289 ((-631 (-1076 (-374))) $)) (-15 -2289 ((-631 (-1076 (-374))) $ (-631 (-1076 (-374))))) (-15 -2079 ((-631 (-374)) $)) (-15 -2079 ((-631 (-374)) $ (-631 (-374)))) (-15 -3257 ((-1246) $ (-631 (-928 (-221))) (-859) (-859) (-906))) (-15 -3257 ((-1246) $ (-928 (-221)))) (-15 -3257 ((-1246) $ (-928 (-221)) (-859) (-859) (-906))) (-15 -3642 ((-1246) $ (-928 (-221)))) (-15 -4136 ((-1246) $ (-928 (-221)) (-859))) (-15 -3075 ($ (-631 (-631 (-928 (-221)))))) (-15 -3075 ((-848) $)) (-15 -2248 ((-631 (-631 (-928 (-221)))) (-631 (-631 (-928 (-221)))) (-631 (-859)))) (-15 -2144 ((-631 (-221)) (-631 (-631 (-928 (-221)))))))) +((-1744 (($ $) NIL) (($ $ $) 11))) +(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|))) (-464 |#2| |#3|) (-170) (-23)) (T -463)) +NIL +(-10 -8 (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 ((|#2| $) 19)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 15) (($ $ $) 13)) (-1735 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-464 |#1| |#2|) (-138) (-170) (-23)) (T -464)) +((-3308 (*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2004 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1744 (*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-1082) (-10 -8 (-15 -3308 (|t#2| $)) (-15 (-2004) ($) -2397) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1744 ($ $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2236 (((-3 (-631 (-475 |#1| |#2|)) "failed") (-631 (-475 |#1| |#2|)) (-631 (-850 |#1|))) 92)) (-3901 (((-631 (-631 (-243 |#1| |#2|))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))) 90)) (-2689 (((-2 (|:| |dpolys| (-631 (-243 |#1| |#2|))) (|:| |coords| (-631 (-554)))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))) 61))) +(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -3901 ((-631 (-631 (-243 |#1| |#2|))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2236 ((-3 (-631 (-475 |#1| |#2|)) "failed") (-631 (-475 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2689 ((-2 (|:| |dpolys| (-631 (-243 |#1| |#2|))) (|:| |coords| (-631 (-554)))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))))) (-631 (-1158)) (-446) (-446)) (T -465)) +((-2689 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-2 (|:| |dpolys| (-631 (-243 *5 *6))) (|:| |coords| (-631 (-554))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446)))) (-2236 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-631 (-850 *4))) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) (-4 *6 (-446)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-631 (-631 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446))))) +(-10 -7 (-15 -3901 ((-631 (-631 (-243 |#1| |#2|))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2236 ((-3 (-631 (-475 |#1| |#2|)) "failed") (-631 (-475 |#1| |#2|)) (-631 (-850 |#1|)))) (-15 -2689 ((-2 (|:| |dpolys| (-631 (-243 |#1| |#2|))) (|:| |coords| (-631 (-554)))) (-631 (-243 |#1| |#2|)) (-631 (-850 |#1|))))) +((-1320 (((-3 $ "failed") $) 11)) (-3992 (($ $ $) 18)) (-1856 (($ $ $) 19)) (-1752 (($ $ $) 9)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 17))) +(((-466 |#1|) (-10 -8 (-15 -1856 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906)))) (-467)) (T -466)) +NIL +(-10 -8 (-15 -1856 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-4087 (($) 18 T CONST)) (-1320 (((-3 $ "failed") $) 15)) (-3248 (((-112) $) 17)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 24)) (-2768 (((-1102) $) 10)) (-3992 (($ $ $) 21)) (-1856 (($ $ $) 20)) (-3075 (((-848) $) 11)) (-2014 (($) 19 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 23)) (** (($ $ (-906)) 13) (($ $ (-758)) 16) (($ $ (-554)) 22)) (* (($ $ $) 14))) +(((-467) (-138)) (T -467)) +((-2483 (*1 *1 *1) (-4 *1 (-467))) (-1752 (*1 *1 *1 *1) (-4 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-554)))) (-3992 (*1 *1 *1 *1) (-4 *1 (-467))) (-1856 (*1 *1 *1 *1) (-4 *1 (-467)))) +(-13 (-713) (-10 -8 (-15 -2483 ($ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ (-554))) (-6 -4370) (-15 -3992 ($ $ $)) (-15 -1856 ($ $ $)))) +(((-102) . T) ((-601 (-848)) . T) ((-713) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 17)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) NIL) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 22)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 26 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 33 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 27 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) 25 (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $ (-1237 |#2|)) 15)) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1237 |#2|)) NIL) (($ (-1226 |#1| |#2| |#3|)) 9) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 18)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 24)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-468 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -3075 ($ (-1226 |#1| |#2| |#3|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -468)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1222 |#1|) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -3075 ($ (-1226 |#1| |#2| |#3|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) 18)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 19)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 16)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-469 |#1| |#2| |#3| |#4|) (-1171 |#1| |#2|) (-1082) (-1082) (-1171 |#1| |#2|) |#2|) (T -469)) +NIL +(-1171 |#1| |#2|) +((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) NIL)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) 26 (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 39)) (-2930 ((|#4| |#4| $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-2466 (((-631 |#4|) $) 16 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 33)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 17 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2597 (((-3 |#4| "failed") $) 37)) (-2627 (((-631 |#4|) $) NIL)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 35)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) 47)) (-4282 (($ $ |#4|) NIL)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 13)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 12)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 20)) (-2538 (($ $ |#3|) 42)) (-2384 (($ $ |#3|) 44)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 31) (((-631 |#4|) $) 40)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-3536 (((-112) |#3| $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-470 |#1| |#2| |#3| |#4|) (-1188 |#1| |#2| |#3| |#4|) (-546) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -470)) +NIL +(-1188 |#1| |#2| |#3| |#4|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2844 (($) 18)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-2927 (((-374) $) 22) (((-221) $) 25) (((-402 (-1154 (-554))) $) 19) (((-530) $) 52)) (-3075 (((-848) $) 50) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (((-221) $) 24) (((-374) $) 21)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 36 T CONST)) (-2014 (($) 11 T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-471) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))) (-1007) (-601 (-221)) (-601 (-374)) (-602 (-402 (-1154 (-554)))) (-602 (-530)) (-10 -8 (-15 -2844 ($))))) (T -471)) +((-2844 (*1 *1) (-5 *1 (-471)))) +(-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))) (-1007) (-601 (-221)) (-601 (-374)) (-602 (-402 (-1154 (-554)))) (-602 (-530)) (-10 -8 (-15 -2844 ($)))) +((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-472) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -472)) +((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472))))) +(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $)))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) 16)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 20)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 18)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) 13)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 19)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 11 (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) 15 (|has| $ (-6 -4373))))) +(((-473 |#1| |#2| |#3|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082) (-1140)) (T -473)) +NIL +(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) +((-2195 (((-554) (-554) (-554)) 7)) (-2401 (((-112) (-554) (-554) (-554) (-554)) 11)) (-1814 (((-1241 (-631 (-554))) (-758) (-758)) 23))) +(((-474) (-10 -7 (-15 -2195 ((-554) (-554) (-554))) (-15 -2401 ((-112) (-554) (-554) (-554) (-554))) (-15 -1814 ((-1241 (-631 (-554))) (-758) (-758))))) (T -474)) +((-1814 (*1 *2 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1241 (-631 (-554)))) (-5 *1 (-474)))) (-2401 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-474)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-474))))) +(-10 -7 (-15 -2195 ((-554) (-554) (-554))) (-15 -2401 ((-112) (-554) (-554) (-554) (-554))) (-15 -1814 ((-1241 (-631 (-554))) (-758) (-758)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-850 |#1|)) $) NIL)) (-2237 (((-1154 $) $ (-850 |#1|)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2026 (($ $ (-631 (-554))) NIL)) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-476 (-2563 |#1|) (-758)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) NIL) (($ (-1154 $) (-850 |#1|)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-476 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 (((-476 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-476 (-2563 |#1|) (-758)) (-476 (-2563 |#1|) (-758))) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) NIL) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) NIL) (($ $ (-850 |#1|) $) NIL) (($ $ (-631 (-850 |#1|)) (-631 $)) NIL)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 (((-476 (-2563 |#1|) (-758)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-850 |#1|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-476 (-2563 |#1|) (-758))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-475 |#1| |#2|) (-13 (-934 |#2| (-476 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) (-631 (-1158)) (-1034)) (T -475)) +((-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-475 *3 *4)) (-14 *3 (-631 (-1158))) (-4 *4 (-1034))))) +(-13 (-934 |#2| (-476 (-2563 |#1|) (-758)) (-850 |#1|)) (-10 -8 (-15 -2026 ($ $ (-631 (-554)))))) +((-3062 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1695 (((-112) $) NIL (|has| |#2| (-130)))) (-2327 (($ (-906)) NIL (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#2| (-363)))) (-4219 (((-554) $) NIL (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) NIL (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) NIL (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) NIL (|has| |#2| (-713)))) (-3353 (($) NIL (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) 11)) (-2745 (((-112) $) NIL (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#2| (-713)))) (-4304 (((-112) $) NIL (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#2| (-363)))) (-2768 (((-1102) $) NIL (|has| |#2| (-1082)))) (-1539 ((|#2| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) NIL)) (-3748 ((|#2| $ $) NIL (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) NIL)) (-3330 (((-133)) NIL (|has| |#2| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#2|) $) NIL) (($ (-554)) NIL (-3994 (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) NIL (|has| |#2| (-1082))) (((-848) $) NIL (|has| |#2| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#2| (-834)))) (-2004 (($) NIL (|has| |#2| (-130)) CONST)) (-2014 (($) NIL (|has| |#2| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1658 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1676 (((-112) $ $) 15 (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $ $) NIL (|has| |#2| (-1034))) (($ $) NIL (|has| |#2| (-1034)))) (-1735 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-758)) NIL (|has| |#2| (-713))) (($ $ (-906)) NIL (|has| |#2| (-713)))) (* (($ (-554) $) NIL (|has| |#2| (-1034))) (($ $ $) NIL (|has| |#2| (-713))) (($ $ |#2|) NIL (|has| |#2| (-713))) (($ |#2| $) NIL (|has| |#2| (-713))) (($ (-758) $) NIL (|has| |#2| (-130))) (($ (-906) $) NIL (|has| |#2| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-476 |#1| |#2|) (-234 |#1| |#2|) (-758) (-780)) (T -476)) +NIL +(-234 |#1| |#2|) +((-3062 (((-112) $ $) NIL)) (-1322 (((-631 (-500)) $) 11)) (-4309 (((-500) $) 10)) (-1613 (((-1140) $) NIL)) (-1681 (($ (-500) (-631 (-500))) 9)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-477) (-13 (-1065) (-10 -8 (-15 -1681 ($ (-500) (-631 (-500)))) (-15 -4309 ((-500) $)) (-15 -1322 ((-631 (-500)) $))))) (T -477)) +((-1681 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-500))) (-5 *2 (-500)) (-5 *1 (-477)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-477)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-631 (-500))) (-5 *1 (-477))))) +(-13 (-1065) (-10 -8 (-15 -1681 ($ (-500) (-631 (-500)))) (-15 -4309 ((-500) $)) (-15 -1322 ((-631 (-500)) $)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3606 (($ $ $) 32)) (-3717 (($ $ $) 31)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2706 ((|#1| $) 26)) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 27)) (-2045 (($ |#1| $) 10)) (-1347 (($ (-631 |#1|)) 12)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2152 ((|#1| $) 23)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 9)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 29)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) 21 (|has| $ (-6 -4373))))) +(((-478 |#1|) (-13 (-953 |#1|) (-10 -8 (-15 -1347 ($ (-631 |#1|))))) (-836)) (T -478)) +((-1347 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-478 *3))))) +(-13 (-953 |#1|) (-10 -8 (-15 -1347 ($ (-631 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ $) 69)) (-3868 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-3822 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 44)) (-2768 (((-1102) $) NIL)) (-4137 (((-3 |#4| "failed") $) 107)) (-1861 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-554)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3678 (((-2 (|:| -3142 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3075 (((-848) $) 102)) (-2004 (($) 33 T CONST)) (-1658 (((-112) $ $) 109)) (-1744 (($ $) 72) (($ $ $) NIL)) (-1735 (($ $ $) 70)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 73))) +(((-479 |#1| |#2| |#3| |#4|) (-330 |#1| |#2| |#3| |#4|) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -479)) +NIL +(-330 |#1| |#2| |#3| |#4|) +((-1624 (((-554) (-631 (-554))) 30)) (-1424 ((|#1| (-631 |#1|)) 56)) (-1637 (((-631 |#1|) (-631 |#1|)) 57)) (-2681 (((-631 |#1|) (-631 |#1|)) 59)) (-2510 ((|#1| (-631 |#1|)) 58)) (-3276 (((-631 (-554)) (-631 |#1|)) 33))) +(((-480 |#1|) (-10 -7 (-15 -2510 (|#1| (-631 |#1|))) (-15 -1424 (|#1| (-631 |#1|))) (-15 -2681 ((-631 |#1|) (-631 |#1|))) (-15 -1637 ((-631 |#1|) (-631 |#1|))) (-15 -3276 ((-631 (-554)) (-631 |#1|))) (-15 -1624 ((-554) (-631 (-554))))) (-1217 (-554))) (T -480)) +((-1624 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-554)) (-5 *1 (-480 *4)) (-4 *4 (-1217 *2)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1217 (-554))) (-5 *2 (-631 (-554))) (-5 *1 (-480 *4)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554))))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554)))))) +(-10 -7 (-15 -2510 (|#1| (-631 |#1|))) (-15 -1424 (|#1| (-631 |#1|))) (-15 -2681 ((-631 |#1|) (-631 |#1|))) (-15 -1637 ((-631 |#1|) (-631 |#1|))) (-15 -3276 ((-631 (-554)) (-631 |#1|))) (-15 -1624 ((-554) (-631 (-554))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-554) $) NIL (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2808 (($ (-402 (-554))) 9)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) NIL)) (-4339 (((-554) $) NIL (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 8) (($ (-554)) NIL) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL) (((-989 16) $) 10)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-554) $) NIL (|has| (-554) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1752 (($ $ $) NIL) (($ (-554) (-554)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) NIL) (($ $ (-554)) NIL))) +(((-481) (-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 16)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -2808 ($ (-402 (-554))))))) (T -481)) +((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481))))) +(-13 (-977 (-554)) (-601 (-402 (-554))) (-601 (-989 16)) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -2808 ($ (-402 (-554)))))) +((-2379 (((-631 |#2|) $) 23)) (-3068 (((-112) |#2| $) 28)) (-2845 (((-112) (-1 (-112) |#2|) $) 21)) (-2386 (($ $ (-631 (-289 |#2|))) 13) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-631 |#2|) (-631 |#2|)) NIL)) (-2777 (((-758) (-1 (-112) |#2|) $) 22) (((-758) |#2| $) 26)) (-3075 (((-848) $) 37)) (-2438 (((-112) (-1 (-112) |#2|) $) 20)) (-1658 (((-112) $ $) 31)) (-2563 (((-758) $) 17))) +(((-482 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2379 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|))) (-483 |#2|) (-1195)) (T -482)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#2| |#2|)) (-15 -2386 (|#1| |#1| (-289 |#2|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#2|)))) (-15 -3068 ((-112) |#2| |#1|)) (-15 -2777 ((-758) |#2| |#1|)) (-15 -2379 ((-631 |#2|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-483 |#1|) (-138) (-1195)) (T -483)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1195)))) (-2849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4374)) (-4 *1 (-483 *3)) (-4 *3 (-1195)))) (-2438 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-2845 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-2777 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) (-4 *4 (-1195)) (-5 *2 (-758)))) (-2466 (*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))) (-2379 (*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))) (-2777 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-758)))) (-3068 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) (IF (|has| |t#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |t#1| (-1082)) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4374)) (-15 -2849 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4373)) (PROGN (-15 -2438 ((-112) (-1 (-112) |t#1|) $)) (-15 -2845 ((-112) (-1 (-112) |t#1|) $)) (-15 -2777 ((-758) (-1 (-112) |t#1|) $)) (-15 -2466 ((-631 |t#1|) $)) (-15 -2379 ((-631 |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -2777 ((-758) |t#1| $)) (-15 -3068 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-3075 ((|#1| $) 6) (($ |#1|) 9))) +(((-484 |#1|) (-138) (-1195)) (T -484)) +NIL +(-13 (-601 |t#1|) (-604 |t#1|)) +(((-604 |#1|) . T) ((-601 |#1|) . T)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2621 (($ (-1140)) 8)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14) (((-1140) $) 11)) (-1658 (((-112) $ $) 10))) +(((-485) (-13 (-1082) (-601 (-1140)) (-10 -8 (-15 -2621 ($ (-1140)))))) (T -485)) +((-2621 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-485))))) +(-13 (-1082) (-601 (-1140)) (-10 -8 (-15 -2621 ($ (-1140))))) +((-3023 (($ $) 15)) (-3003 (($ $) 24)) (-3046 (($ $) 12)) (-3057 (($ $) 10)) (-3034 (($ $) 17)) (-3014 (($ $) 22))) +(((-486 |#1|) (-10 -8 (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|))) (-487)) (T -486)) +NIL +(-10 -8 (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|))) +((-3023 (($ $) 11)) (-3003 (($ $) 10)) (-3046 (($ $) 9)) (-3057 (($ $) 8)) (-3034 (($ $) 7)) (-3014 (($ $) 6))) +(((-487) (-138)) (T -487)) +((-3023 (*1 *1 *1) (-4 *1 (-487))) (-3003 (*1 *1 *1) (-4 *1 (-487))) (-3046 (*1 *1 *1) (-4 *1 (-487))) (-3057 (*1 *1 *1) (-4 *1 (-487))) (-3034 (*1 *1 *1) (-4 *1 (-487))) (-3014 (*1 *1 *1) (-4 *1 (-487)))) +(-13 (-10 -8 (-15 -3014 ($ $)) (-15 -3034 ($ $)) (-15 -3057 ($ $)) (-15 -3046 ($ $)) (-15 -3003 ($ $)) (-15 -3023 ($ $)))) +((-2270 (((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)) 42))) +(((-488 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)))) (-358) (-1217 |#1|) (-13 (-358) (-145) (-711 |#1| |#2|)) (-1217 |#3|)) (T -488)) +((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-4 *7 (-13 (-358) (-145) (-711 *5 *6))) (-5 *2 (-413 *3)) (-5 *1 (-488 *5 *6 *7 *3)) (-4 *3 (-1217 *7))))) +(-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)))) +((-3062 (((-112) $ $) NIL)) (-2719 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3856 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-1695 (((-112) $) 39)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2940 (((-112) $ $) 64)) (-2143 (((-631 (-600 $)) $) 48)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3380 (($ $ (-289 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3613 (((-631 $) (-1154 $) (-1158)) NIL) (((-631 $) (-1154 $)) NIL) (((-631 $) (-937 $)) NIL)) (-3625 (($ (-1154 $) (-1158)) NIL) (($ (-1154 $)) NIL) (($ (-937 $)) NIL)) (-2784 (((-3 (-600 $) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL)) (-1668 (((-600 $) $) NIL) (((-554) $) NIL) (((-402 (-554)) $) 50)) (-3964 (($ $ $) NIL)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-402 (-554)))) (|:| |vec| (-1241 (-402 (-554))))) (-675 $) (-1241 $)) NIL) (((-675 (-402 (-554))) (-675 $)) NIL)) (-3676 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-1342 (($ $) NIL) (($ (-631 $)) NIL)) (-3489 (((-631 (-114)) $) NIL)) (-3086 (((-114) (-114)) NIL)) (-3248 (((-112) $) 42)) (-3273 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2810 (((-1107 (-554) (-600 $)) $) 37)) (-3734 (($ $ (-554)) NIL)) (-3274 (((-1154 $) (-1154 $) (-600 $)) 78) (((-1154 $) (-1154 $) (-631 (-600 $))) 55) (($ $ (-600 $)) 67) (($ $ (-631 (-600 $))) 68)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1823 (((-1154 $) (-600 $)) 65 (|has| $ (-1034)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 $ $) (-600 $)) NIL)) (-3310 (((-3 (-600 $) "failed") $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2227 (((-631 (-600 $)) $) NIL)) (-1408 (($ (-114) $) NIL) (($ (-114) (-631 $)) NIL)) (-2640 (((-112) $ (-114)) NIL) (((-112) $ (-1158)) NIL)) (-2483 (($ $) NIL)) (-3323 (((-758) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2041 (((-112) $ $) NIL) (((-112) $ (-1158)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL (|has| $ (-1023 (-554))))) (-2386 (($ $ (-600 $) $) NIL) (($ $ (-631 (-600 $)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-1158)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-1158) (-1 $ (-631 $))) NIL) (($ $ (-1158) (-1 $ $)) NIL) (($ $ (-631 (-114)) (-631 (-1 $ $))) NIL) (($ $ (-631 (-114)) (-631 (-1 $ (-631 $)))) NIL) (($ $ (-114) (-1 $ (-631 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2072 (((-758) $) NIL)) (-2064 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-631 $)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3862 (($ $) NIL) (($ $ $) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) 36)) (-2822 (((-1107 (-554) (-600 $)) $) 20)) (-4318 (($ $) NIL (|has| $ (-1034)))) (-2927 (((-374) $) 92) (((-221) $) 100) (((-167 (-374)) $) 108)) (-3075 (((-848) $) NIL) (($ (-600 $)) NIL) (($ (-402 (-554))) NIL) (($ $) NIL) (($ (-554)) NIL) (($ (-1107 (-554) (-600 $))) 21)) (-2261 (((-758)) NIL)) (-4125 (($ $) NIL) (($ (-631 $)) NIL)) (-1902 (((-112) (-114)) 84)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 10 T CONST)) (-2014 (($) 22 T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 24)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1752 (($ $ $) 44)) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-402 (-554))) NIL) (($ $ (-554)) 46) (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ $ $) 27) (($ (-554) $) NIL) (($ (-758) $) NIL) (($ (-906) $) NIL))) +(((-489) (-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -2940 ((-112) $ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $))))))) (T -489)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) (-3676 (*1 *1 *1) (-5 *1 (-489))) (-2940 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-489)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-600 (-489))) (-5 *1 (-489)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-631 (-600 (-489)))) (-5 *1 (-489)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-600 (-489))) (-5 *1 (-489)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-489)))) (-5 *1 (-489))))) +(-13 (-297) (-27) (-1023 (-554)) (-1023 (-402 (-554))) (-627 (-554)) (-1007) (-627 (-402 (-554))) (-145) (-602 (-167 (-374))) (-229) (-10 -8 (-15 -3075 ($ (-1107 (-554) (-600 $)))) (-15 -2810 ((-1107 (-554) (-600 $)) $)) (-15 -2822 ((-1107 (-554) (-600 $)) $)) (-15 -3676 ($ $)) (-15 -2940 ((-112) $ $)) (-15 -3274 ((-1154 $) (-1154 $) (-600 $))) (-15 -3274 ((-1154 $) (-1154 $) (-631 (-600 $)))) (-15 -3274 ($ $ (-600 $))) (-15 -3274 ($ $ (-631 (-600 $)))))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 25 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 22 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 21)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 14)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 12 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) 23 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) 10 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 13)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 24) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 9 (|has| $ (-6 -4373))))) +(((-490 |#1| |#2|) (-19 |#1|) (-1195) (-554)) (T -490)) NIL (-19 |#1|) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) (-553) |#1|) NIL)) (-3924 (($ $ (-553) (-489 |#1| |#3|)) NIL)) (-2359 (($ $ (-553) (-489 |#1| |#2|)) NIL)) (-3820 (($) NIL T CONST)) (-3894 (((-489 |#1| |#3|) $ (-553)) NIL)) (-2515 ((|#1| $ (-553) (-553) |#1|) NIL)) (-2441 ((|#1| $ (-553) (-553)) NIL)) (-1408 (((-630 |#1|) $) NIL)) (-4253 (((-757) $) NIL)) (-3202 (($ (-757) (-757) |#1|) NIL)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3510 (((-553) $) NIL)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-4275 (((-553) $) NIL)) (-3223 (((-553) $) NIL)) (-2503 (($ (-1 |#1| |#1|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) (-553)) NIL) ((|#1| $ (-553) (-553) |#1|) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-1355 (((-489 |#1| |#2|) $ (-553)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-490 |#1| |#2| |#3|) (-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) (-1192) (-553) (-553)) (T -490)) -NIL -(-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) -((-2429 (((-630 (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) (-757) (-757)) 27)) (-2667 (((-630 (-1151 |#1|)) |#1| (-757) (-757) (-757)) 34)) (-4228 (((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) (-630 |#3|) (-630 (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) (-757)) 85))) -(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -2667 ((-630 (-1151 |#1|)) |#1| (-757) (-757) (-757))) (-15 -2429 ((-630 (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) (-757) (-757))) (-15 -4228 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) (-630 |#3|) (-630 (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) (-757)))) (-343) (-1214 |#1|) (-1214 |#2|)) (T -491)) -((-4228 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 (-2 (|:| -4124 (-674 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-674 *7))))) (-5 *5 (-757)) (-4 *8 (-1214 *7)) (-4 *7 (-1214 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -4124 (-674 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-674 *7)))) (-5 *1 (-491 *6 *7 *8)))) (-2429 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-757)) (-4 *5 (-343)) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-2 (|:| -4124 (-674 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-674 *6))))) (-5 *1 (-491 *5 *6 *7)) (-5 *3 (-2 (|:| -4124 (-674 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-674 *6)))) (-4 *7 (-1214 *6)))) (-2667 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-757)) (-4 *3 (-343)) (-4 *5 (-1214 *3)) (-5 *2 (-630 (-1151 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1214 *5))))) -(-10 -7 (-15 -2667 ((-630 (-1151 |#1|)) |#1| (-757) (-757) (-757))) (-15 -2429 ((-630 (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) (-757) (-757))) (-15 -4228 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) (-630 |#3|) (-630 (-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) (-757)))) -((-2079 (((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) (-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) (-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|)))) 62)) (-3132 ((|#1| (-674 |#1|) |#1| (-757)) 25)) (-2439 (((-757) (-757) (-757)) 30)) (-1409 (((-674 |#1|) (-674 |#1|) (-674 |#1|)) 42)) (-3891 (((-674 |#1|) (-674 |#1|) (-674 |#1|) |#1|) 50) (((-674 |#1|) (-674 |#1|) (-674 |#1|)) 47)) (-3814 ((|#1| (-674 |#1|) (-674 |#1|) |#1| (-553)) 29)) (-4193 ((|#1| (-674 |#1|)) 18))) -(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -4193 (|#1| (-674 |#1|))) (-15 -3132 (|#1| (-674 |#1|) |#1| (-757))) (-15 -3814 (|#1| (-674 |#1|) (-674 |#1|) |#1| (-553))) (-15 -2439 ((-757) (-757) (-757))) (-15 -3891 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -3891 ((-674 |#1|) (-674 |#1|) (-674 |#1|) |#1|)) (-15 -1409 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -2079 ((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) (-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) (-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|)))))) (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $)))) (-1214 |#1|) (-403 |#1| |#2|)) (T -492)) -((-2079 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-674 *3)))) (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1409 (*1 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3891 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-674 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3891 (*1 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2439 (*1 *2 *2 *2) (-12 (-5 *2 (-757)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3814 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-674 *2)) (-5 *4 (-553)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *5 (-1214 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3132 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-674 *2)) (-5 *4 (-757)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-4 *5 (-1214 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-674 *2)) (-4 *4 (-1214 *2)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) -(-10 -7 (-15 -4193 (|#1| (-674 |#1|))) (-15 -3132 (|#1| (-674 |#1|) |#1| (-757))) (-15 -3814 (|#1| (-674 |#1|) (-674 |#1|) |#1| (-553))) (-15 -2439 ((-757) (-757) (-757))) (-15 -3891 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -3891 ((-674 |#1|) (-674 |#1|) (-674 |#1|) |#1|)) (-15 -1409 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -2079 ((-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) (-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|))) (-2 (|:| -4124 (-674 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-674 |#1|)))))) -((-3096 (((-111) $ $) NIL)) (-2965 (($ $) NIL)) (-2370 (($ $ $) 35)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) $) NIL (|has| (-111) (-833))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1587 (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| (-111) (-833)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4370)))) (-2990 (($ $) NIL (|has| (-111) (-833))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-1490 (((-111) $ (-1205 (-553)) (-111)) NIL (|has| $ (-6 -4370))) (((-111) $ (-553) (-111)) 36 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2575 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2654 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2515 (((-111) $ (-553) (-111)) NIL (|has| $ (-6 -4370)))) (-2441 (((-111) $ (-553)) NIL)) (-1478 (((-553) (-111) $ (-553)) NIL (|has| (-111) (-1079))) (((-553) (-111) $) NIL (|has| (-111) (-1079))) (((-553) (-1 (-111) (-111)) $) NIL)) (-1408 (((-630 (-111)) $) NIL (|has| $ (-6 -4369)))) (-3063 (($ $ $) 33)) (-2826 (($ $) NIL)) (-1772 (($ $ $) NIL)) (-3202 (($ (-757) (-111)) 23)) (-2592 (($ $ $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 8 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL)) (-3160 (($ $ $) NIL (|has| (-111) (-833))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-2195 (((-630 (-111)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL)) (-2503 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1774 (($ $ $ (-553)) NIL) (($ (-111) $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-111) $) NIL (|has| (-553) (-833)))) (-3016 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-2858 (($ $ (-111)) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-111)) (-630 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079)))) (($ $ (-630 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079))))) (-1912 (((-630 (-111)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 24)) (-2046 (($ $ (-1205 (-553))) NIL) (((-111) $ (-553)) 18) (((-111) $ (-553) (-111)) NIL)) (-2005 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2796 (((-757) (-111) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-111) (-1079)))) (((-757) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) 25)) (-1524 (((-529) $) NIL (|has| (-111) (-601 (-529))))) (-3121 (($ (-630 (-111))) NIL)) (-4325 (($ (-630 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-3110 (((-845) $) 22)) (-3296 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4369)))) (-3726 (($ $ $) 31)) (-2007 (($ $ $) NIL)) (-2278 (($ $ $) 39)) (-2290 (($ $) 37)) (-2267 (($ $ $) 38)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 26)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 27)) (-1996 (($ $ $) NIL)) (-2563 (((-757) $) 10 (|has| $ (-6 -4369))))) -(((-493 |#1|) (-13 (-122) (-10 -8 (-15 -2290 ($ $)) (-15 -2278 ($ $ $)) (-15 -2267 ($ $ $)))) (-553)) (T -493)) -((-2290 (*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-553)))) (-2278 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-553)))) (-2267 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-553))))) -(-13 (-122) (-10 -8 (-15 -2290 ($ $)) (-15 -2278 ($ $ $)) (-15 -2267 ($ $ $)))) -((-3673 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1151 |#4|)) 35)) (-4183 (((-1151 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1151 |#4|)) 22)) (-2070 (((-3 (-674 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-674 (-1151 |#4|))) 46)) (-3198 (((-1151 (-1151 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4183 (|#2| (-1 |#1| |#4|) (-1151 |#4|))) (-15 -4183 ((-1151 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3673 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1151 |#4|))) (-15 -2070 ((-3 (-674 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-674 (-1151 |#4|)))) (-15 -3198 ((-1151 (-1151 |#4|)) (-1 |#4| |#1|) |#3|))) (-1031) (-1214 |#1|) (-1214 |#2|) (-1031)) (T -494)) -((-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1031)) (-4 *7 (-1031)) (-4 *6 (-1214 *5)) (-5 *2 (-1151 (-1151 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1214 *6)))) (-2070 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-674 (-1151 *8))) (-4 *5 (-1031)) (-4 *8 (-1031)) (-4 *6 (-1214 *5)) (-5 *2 (-674 *6)) (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1214 *6)))) (-3673 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1151 *7)) (-4 *5 (-1031)) (-4 *7 (-1031)) (-4 *2 (-1214 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1214 *2)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1031)) (-4 *7 (-1031)) (-4 *4 (-1214 *5)) (-5 *2 (-1151 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1214 *4)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1151 *7)) (-4 *5 (-1031)) (-4 *7 (-1031)) (-4 *2 (-1214 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1214 *2))))) -(-10 -7 (-15 -4183 (|#2| (-1 |#1| |#4|) (-1151 |#4|))) (-15 -4183 ((-1151 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3673 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1151 |#4|))) (-15 -2070 ((-3 (-674 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-674 (-1151 |#4|)))) (-15 -3198 ((-1151 (-1151 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3096 (((-111) $ $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2602 (((-1243) $) 19)) (-2046 (((-1137) $ (-1155)) 23)) (-2524 (((-1243) $) 15)) (-3110 (((-845) $) 21) (($ (-1137)) 20)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 9)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 8))) -(((-495) (-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $)) (-15 -3110 ($ (-1137)))))) (T -495)) -((-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1137)) (-5 *1 (-495)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-495)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-495)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-495))))) -(-13 (-833) (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) (-15 -2602 ((-1243) $)) (-15 -3110 ($ (-1137))))) -((-4320 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3632 ((|#1| |#4|) 10)) (-1623 ((|#3| |#4|) 17))) -(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3632 (|#1| |#4|)) (-15 -1623 (|#3| |#4|)) (-15 -4320 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-545) (-974 |#1|) (-367 |#1|) (-367 |#2|)) (T -496)) -((-4320 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) (-1623 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) (-4 *2 (-367 *4)) (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-496 *2 *4 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-367 *4))))) -(-10 -7 (-15 -3632 (|#1| |#4|)) (-15 -1623 (|#3| |#4|)) (-15 -4320 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3096 (((-111) $ $) NIL)) (-1540 (((-111) $ (-630 |#3|)) 104) (((-111) $) 105)) (-3769 (((-111) $) 148)) (-2126 (($ $ |#4|) 96) (($ $ |#4| (-630 |#3|)) 100)) (-3784 (((-1144 (-630 (-934 |#1|)) (-630 (-288 (-934 |#1|)))) (-630 |#4|)) 141 (|has| |#3| (-601 (-1155))))) (-2666 (($ $ $) 90) (($ $ |#4|) 88)) (-1848 (((-111) $) 147)) (-1488 (($ $) 108)) (-1735 (((-1137) $) NIL)) (-1475 (($ $ $) 82) (($ (-630 $)) 84)) (-2194 (((-111) |#4| $) 107)) (-4319 (((-111) $ $) 71)) (-1773 (($ (-630 |#4|)) 89)) (-2786 (((-1099) $) NIL)) (-2780 (($ (-630 |#4|)) 145)) (-2300 (((-111) $) 146)) (-1296 (($ $) 73)) (-2953 (((-630 |#4|) $) 57)) (-3517 (((-2 (|:| |mval| (-674 |#1|)) (|:| |invmval| (-674 |#1|)) (|:| |genIdeal| $)) $ (-630 |#3|)) NIL)) (-2560 (((-111) |#4| $) 76)) (-1337 (((-553) $ (-630 |#3|)) 109) (((-553) $) 110)) (-3110 (((-845) $) 144) (($ (-630 |#4|)) 85)) (-1971 (($ (-2 (|:| |mval| (-674 |#1|)) (|:| |invmval| (-674 |#1|)) (|:| |genIdeal| $))) NIL)) (-1617 (((-111) $ $) 72)) (-1700 (($ $ $) 92)) (** (($ $ (-757)) 95)) (* (($ $ $) 94))) -(((-497 |#1| |#2| |#3| |#4|) (-13 (-1079) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-757))) (-15 -1700 ($ $ $)) (-15 -1848 ((-111) $)) (-15 -3769 ((-111) $)) (-15 -2560 ((-111) |#4| $)) (-15 -4319 ((-111) $ $)) (-15 -2194 ((-111) |#4| $)) (-15 -1540 ((-111) $ (-630 |#3|))) (-15 -1540 ((-111) $)) (-15 -1475 ($ $ $)) (-15 -1475 ($ (-630 $))) (-15 -2666 ($ $ $)) (-15 -2666 ($ $ |#4|)) (-15 -1296 ($ $)) (-15 -3517 ((-2 (|:| |mval| (-674 |#1|)) (|:| |invmval| (-674 |#1|)) (|:| |genIdeal| $)) $ (-630 |#3|))) (-15 -1971 ($ (-2 (|:| |mval| (-674 |#1|)) (|:| |invmval| (-674 |#1|)) (|:| |genIdeal| $)))) (-15 -1337 ((-553) $ (-630 |#3|))) (-15 -1337 ((-553) $)) (-15 -1488 ($ $)) (-15 -1773 ($ (-630 |#4|))) (-15 -2780 ($ (-630 |#4|))) (-15 -2300 ((-111) $)) (-15 -2953 ((-630 |#4|) $)) (-15 -3110 ($ (-630 |#4|))) (-15 -2126 ($ $ |#4|)) (-15 -2126 ($ $ |#4| (-630 |#3|))) (IF (|has| |#3| (-601 (-1155))) (-15 -3784 ((-1144 (-630 (-934 |#1|)) (-630 (-288 (-934 |#1|)))) (-630 |#4|))) |%noBranch|))) (-357) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -497)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (-1848 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-3769 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-2560 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6)))) (-4319 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-2194 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6)))) (-1540 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6)))) (-1540 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (-1475 (*1 *1 *2) (-12 (-5 *2 (-630 (-497 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-2666 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (-2666 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-931 *3 *4 *5)))) (-1296 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |mval| (-674 *4)) (|:| |invmval| (-674 *4)) (|:| |genIdeal| (-497 *4 *5 *6 *7)))) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-674 *3)) (|:| |invmval| (-674 *3)) (|:| |genIdeal| (-497 *3 *4 *5 *6)))) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-1337 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) (-5 *2 (-553)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6)))) (-1337 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-553)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-1488 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2300 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-2953 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *6)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2126 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-931 *3 *4 *5)))) (-2126 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-931 *4 *5 *6)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *5 *6)) (-4 *6 (-601 (-1155))) (-4 *4 (-357)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1144 (-630 (-934 *4)) (-630 (-288 (-934 *4))))) (-5 *1 (-497 *4 *5 *6 *7))))) -(-13 (-1079) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-757))) (-15 -1700 ($ $ $)) (-15 -1848 ((-111) $)) (-15 -3769 ((-111) $)) (-15 -2560 ((-111) |#4| $)) (-15 -4319 ((-111) $ $)) (-15 -2194 ((-111) |#4| $)) (-15 -1540 ((-111) $ (-630 |#3|))) (-15 -1540 ((-111) $)) (-15 -1475 ($ $ $)) (-15 -1475 ($ (-630 $))) (-15 -2666 ($ $ $)) (-15 -2666 ($ $ |#4|)) (-15 -1296 ($ $)) (-15 -3517 ((-2 (|:| |mval| (-674 |#1|)) (|:| |invmval| (-674 |#1|)) (|:| |genIdeal| $)) $ (-630 |#3|))) (-15 -1971 ($ (-2 (|:| |mval| (-674 |#1|)) (|:| |invmval| (-674 |#1|)) (|:| |genIdeal| $)))) (-15 -1337 ((-553) $ (-630 |#3|))) (-15 -1337 ((-553) $)) (-15 -1488 ($ $)) (-15 -1773 ($ (-630 |#4|))) (-15 -2780 ($ (-630 |#4|))) (-15 -2300 ((-111) $)) (-15 -2953 ((-630 |#4|) $)) (-15 -3110 ($ (-630 |#4|))) (-15 -2126 ($ $ |#4|)) (-15 -2126 ($ $ |#4| (-630 |#3|))) (IF (|has| |#3| (-601 (-1155))) (-15 -3784 ((-1144 (-630 (-934 |#1|)) (-630 (-288 (-934 |#1|)))) (-630 |#4|))) |%noBranch|))) -((-1493 (((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) 149)) (-4261 (((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) 150)) (-1336 (((-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) 108)) (-3119 (((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) NIL)) (-3133 (((-630 (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) 152)) (-3415 (((-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-630 (-847 |#1|))) 164))) -(((-498 |#1| |#2|) (-10 -7 (-15 -1493 ((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -4261 ((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -3119 ((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -1336 ((-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -3133 ((-630 (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -3415 ((-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-630 (-847 |#1|))))) (-630 (-1155)) (-757)) (T -498)) -((-3415 (*1 *2 *2 *3) (-12 (-5 *2 (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) (-242 *4 (-401 (-553))))) (-5 *3 (-630 (-847 *4))) (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *1 (-498 *4 *5)))) (-3133 (*1 *2 *3) (-12 (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-630 (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) (-242 *4 (-401 (-553)))))) (-5 *1 (-498 *4 *5)) (-5 *3 (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) (-242 *4 (-401 (-553))))))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-497 (-401 (-553)) (-235 *4 (-757)) (-847 *3) (-242 *3 (-401 (-553))))) (-14 *3 (-630 (-1155))) (-14 *4 (-757)) (-5 *1 (-498 *3 *4)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) (-242 *4 (-401 (-553))))) (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-498 *4 *5)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) (-242 *4 (-401 (-553))))) (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-498 *4 *5)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) (-242 *4 (-401 (-553))))) (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-111)) (-5 *1 (-498 *4 *5))))) -(-10 -7 (-15 -1493 ((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -4261 ((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -3119 ((-111) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -1336 ((-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -3133 ((-630 (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553))))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))))) (-15 -3415 ((-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-497 (-401 (-553)) (-235 |#2| (-757)) (-847 |#1|) (-242 |#1| (-401 (-553)))) (-630 (-847 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 11) (($ (-1160)) NIL) (((-1160) $) NIL) (((-1155) $) 8)) (-1617 (((-111) $ $) NIL))) -(((-499) (-13 (-1062) (-600 (-1155)))) (T -499)) -NIL -(-13 (-1062) (-600 (-1155))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-3481 (($ |#1| |#2|) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1277 ((|#2| $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1988 (($) 12 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) 11) (($ $ $) 24)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 18))) -(((-500 |#1| |#2|) (-13 (-21) (-502 |#1| |#2|)) (-21) (-833)) (T -500)) -NIL -(-13 (-21) (-502 |#1| |#2|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 12)) (-3820 (($) NIL T CONST)) (-3678 (($ $) 28)) (-3481 (($ |#1| |#2|) 25)) (-1482 (($ (-1 |#1| |#1|) $) 27)) (-1277 ((|#2| $) NIL)) (-3655 ((|#1| $) 29)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1988 (($) 10 T CONST)) (-1617 (((-111) $ $) NIL)) (-1700 (($ $ $) 18)) (* (($ (-903) $) NIL) (($ (-757) $) 23))) -(((-501 |#1| |#2|) (-13 (-23) (-502 |#1| |#2|)) (-23) (-833)) (T -501)) -NIL -(-13 (-23) (-502 |#1| |#2|)) -((-3096 (((-111) $ $) 7)) (-3678 (($ $) 13)) (-3481 (($ |#1| |#2|) 16)) (-1482 (($ (-1 |#1| |#1|) $) 17)) (-1277 ((|#2| $) 14)) (-3655 ((|#1| $) 15)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-502 |#1| |#2|) (-137) (-1079) (-833)) (T -502)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-833)))) (-3481 (*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-833)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-833)) (-4 *2 (-1079)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-833)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-833))))) -(-13 (-1079) (-10 -8 (-15 -1482 ($ (-1 |t#1| |t#1|) $)) (-15 -3481 ($ |t#1| |t#2|)) (-15 -3655 (|t#1| $)) (-15 -1277 (|t#2| $)) (-15 -3678 ($ $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-3481 (($ |#1| |#2|) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1277 ((|#2| $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1988 (($) NIL T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 13)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL))) -(((-503 |#1| |#2|) (-13 (-778) (-502 |#1| |#2|)) (-778) (-833)) (T -503)) -NIL -(-13 (-778) (-502 |#1| |#2|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2345 (($ $ $) 16)) (-2910 (((-3 $ "failed") $ $) 13)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-3481 (($ |#1| |#2|) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1277 ((|#2| $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL)) (-1988 (($) NIL T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL))) -(((-504 |#1| |#2|) (-13 (-779) (-502 |#1| |#2|)) (-779) (-833)) (T -504)) -NIL -(-13 (-779) (-502 |#1| |#2|)) -((-3096 (((-111) $ $) NIL)) (-3678 (($ $) 25)) (-3481 (($ |#1| |#2|) 22)) (-1482 (($ (-1 |#1| |#1|) $) 24)) (-1277 ((|#2| $) 27)) (-3655 ((|#1| $) 26)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 21)) (-1617 (((-111) $ $) 14))) -(((-505 |#1| |#2|) (-502 |#1| |#2|) (-1079) (-833)) (T -505)) -NIL -(-502 |#1| |#2|) -((-2356 (($ $ (-630 |#2|) (-630 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-506 |#1| |#2| |#3|) (-10 -8 (-15 -2356 (|#1| |#1| |#2| |#3|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#3|)))) (-507 |#2| |#3|) (-1079) (-1192)) (T -506)) -NIL -(-10 -8 (-15 -2356 (|#1| |#1| |#2| |#3|)) (-15 -2356 (|#1| |#1| (-630 |#2|) (-630 |#3|)))) -((-2356 (($ $ (-630 |#1|) (-630 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-507 |#1| |#2|) (-137) (-1079) (-1192)) (T -507)) -((-2356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1192)))) (-2356 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1192))))) -(-13 (-10 -8 (-15 -2356 ($ $ |t#1| |t#2|)) (-15 -2356 ($ $ (-630 |t#1|) (-630 |t#2|))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 16)) (-2140 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))) $) 18)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2571 (((-757) $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-3111 ((|#1| $ (-553)) 23)) (-2776 ((|#2| $ (-553)) 21)) (-3589 (($ (-1 |#1| |#1|) $) 46)) (-2894 (($ (-1 |#2| |#2|) $) 43)) (-1735 (((-1137) $) NIL)) (-2460 (($ $ $) 53 (|has| |#2| (-778)))) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 42) (($ |#1|) NIL)) (-1624 ((|#2| |#1| $) 49)) (-1988 (($) 11 T CONST)) (-1617 (((-111) $ $) 29)) (-1700 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-903) $) NIL) (($ (-757) $) 36) (($ |#2| |#1|) 31))) -(((-508 |#1| |#2| |#3|) (-317 |#1| |#2|) (-1079) (-129) |#2|) (T -508)) -NIL -(-317 |#1| |#2|) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-2576 (((-111) (-111)) 25)) (-1490 ((|#1| $ (-553) |#1|) 28 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) |#1|) $) 52)) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2873 (($ $) 56 (|has| |#1| (-1079)))) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) NIL (|has| |#1| (-1079))) (($ (-1 (-111) |#1|) $) 44)) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-2301 (($ $ (-553)) 13)) (-2673 (((-757) $) 11)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 23)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 21 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1750 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) 20 (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2636 (($ $ $ (-553)) 51) (($ |#1| $ (-553)) 37)) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-1575 (($ (-630 |#1|)) 29)) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) 19 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 40)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 16)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) 33) (($ $ (-1205 (-553))) NIL)) (-3231 (($ $ (-1205 (-553))) 50) (($ $ (-553)) 45)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) 41 (|has| $ (-6 -4370)))) (-1508 (($ $) 32)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-2269 (($ $ $) 42) (($ $ |#1|) 39)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) 17 (|has| $ (-6 -4369))))) -(((-509 |#1| |#2|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -1575 ($ (-630 |#1|))) (-15 -2673 ((-757) $)) (-15 -2301 ($ $ (-553))) (-15 -2576 ((-111) (-111))))) (-1192) (-553)) (T -509)) -((-1575 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-509 *3 *4)) (-14 *4 (-553)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1192)) (-14 *4 (-553)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1192)) (-14 *4 *2))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1192)) (-14 *4 (-553))))) -(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -1575 ($ (-630 |#1|))) (-15 -2673 ((-757) $)) (-15 -2301 ($ $ (-553))) (-15 -2576 ((-111) (-111))))) -((-3096 (((-111) $ $) NIL)) (-3445 (((-1114) $) 11)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2970 (((-1114) $) 13)) (-3870 (((-1114) $) 9)) (-3110 (((-845) $) 21) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-510) (-13 (-1062) (-10 -8 (-15 -3870 ((-1114) $)) (-15 -3445 ((-1114) $)) (-15 -2970 ((-1114) $))))) (T -510)) -((-3870 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-510)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-510)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-510))))) -(-13 (-1062) (-10 -8 (-15 -3870 ((-1114) $)) (-15 -3445 ((-1114) $)) (-15 -2970 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 (((-570 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-570 |#1|) (-362)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-570 |#1|) (-362)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL (|has| (-570 |#1|) (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-570 |#1|) "failed") $) NIL)) (-2707 (((-570 |#1|) $) NIL)) (-3461 (($ (-1238 (-570 |#1|))) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-570 |#1|) (-362)))) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-570 |#1|) (-362)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL (|has| (-570 |#1|) (-362)))) (-3637 (((-111) $) NIL (|has| (-570 |#1|) (-362)))) (-1808 (($ $ (-757)) NIL (-3988 (|has| (-570 |#1|) (-142)) (|has| (-570 |#1|) (-362)))) (($ $) NIL (-3988 (|has| (-570 |#1|) (-142)) (|has| (-570 |#1|) (-362))))) (-3119 (((-111) $) NIL)) (-2968 (((-903) $) NIL (|has| (-570 |#1|) (-362))) (((-819 (-903)) $) NIL (-3988 (|has| (-570 |#1|) (-142)) (|has| (-570 |#1|) (-362))))) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| (-570 |#1|) (-362)))) (-2574 (((-111) $) NIL (|has| (-570 |#1|) (-362)))) (-3560 (((-570 |#1|) $) NIL) (($ $ (-903)) NIL (|has| (-570 |#1|) (-362)))) (-2502 (((-3 $ "failed") $) NIL (|has| (-570 |#1|) (-362)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 (-570 |#1|)) $) NIL) (((-1151 $) $ (-903)) NIL (|has| (-570 |#1|) (-362)))) (-3796 (((-903) $) NIL (|has| (-570 |#1|) (-362)))) (-3194 (((-1151 (-570 |#1|)) $) NIL (|has| (-570 |#1|) (-362)))) (-3540 (((-1151 (-570 |#1|)) $) NIL (|has| (-570 |#1|) (-362))) (((-3 (-1151 (-570 |#1|)) "failed") $ $) NIL (|has| (-570 |#1|) (-362)))) (-4036 (($ $ (-1151 (-570 |#1|))) NIL (|has| (-570 |#1|) (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-570 |#1|) (-362)) CONST)) (-2735 (($ (-903)) NIL (|has| (-570 |#1|) (-362)))) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-4093 (($) NIL (|has| (-570 |#1|) (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-570 |#1|) (-362)))) (-3355 (((-412 $) $) NIL)) (-4043 (((-819 (-903))) NIL) (((-903)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-757) $) NIL (|has| (-570 |#1|) (-362))) (((-3 (-757) "failed") $ $) NIL (-3988 (|has| (-570 |#1|) (-142)) (|has| (-570 |#1|) (-362))))) (-1337 (((-132)) NIL)) (-1330 (($ $) NIL (|has| (-570 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-570 |#1|) (-362)))) (-3872 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1394 (((-1151 (-570 |#1|))) NIL)) (-1469 (($) NIL (|has| (-570 |#1|) (-362)))) (-3407 (($) NIL (|has| (-570 |#1|) (-362)))) (-2855 (((-1238 (-570 |#1|)) $) NIL) (((-674 (-570 |#1|)) (-1238 $)) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| (-570 |#1|) (-362)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-570 |#1|)) NIL)) (-2941 (($ $) NIL (|has| (-570 |#1|) (-362))) (((-3 $ "failed") $) NIL (-3988 (|has| (-570 |#1|) (-142)) (|has| (-570 |#1|) (-362))))) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL) (((-1238 $) (-903)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $) NIL (|has| (-570 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-570 |#1|) (-362)))) (-1780 (($ $) NIL (|has| (-570 |#1|) (-362))) (($ $ (-757)) NIL (|has| (-570 |#1|) (-362)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL) (($ $ (-570 |#1|)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ $ (-570 |#1|)) NIL) (($ (-570 |#1|) $) NIL))) -(((-511 |#1| |#2|) (-323 (-570 |#1|)) (-903) (-903)) (T -511)) -NIL -(-323 (-570 |#1|)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) (-553) |#1|) 35)) (-3924 (($ $ (-553) |#4|) NIL)) (-2359 (($ $ (-553) |#5|) NIL)) (-3820 (($) NIL T CONST)) (-3894 ((|#4| $ (-553)) NIL)) (-2515 ((|#1| $ (-553) (-553) |#1|) 34)) (-2441 ((|#1| $ (-553) (-553)) 32)) (-1408 (((-630 |#1|) $) NIL)) (-4253 (((-757) $) 28)) (-3202 (($ (-757) (-757) |#1|) 25)) (-4265 (((-757) $) 30)) (-3703 (((-111) $ (-757)) NIL)) (-3510 (((-553) $) 26)) (-4116 (((-553) $) 27)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-4275 (((-553) $) 29)) (-3223 (((-553) $) 31)) (-2503 (($ (-1 |#1| |#1|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) 38 (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 14)) (-3222 (($) 16)) (-2046 ((|#1| $ (-553) (-553)) 33) ((|#1| $ (-553) (-553) |#1|) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-1355 ((|#5| $ (-553)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-512 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1192) (-553) (-553) (-367 |#1|) (-367 |#1|)) (T -512)) -NIL -(-56 |#1| |#4| |#5|) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-1787 (($ $) NIL)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) 59 (|has| $ (-6 -4370)))) (-2768 (((-111) $) NIL (|has| |#1| (-833))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1587 (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4370)))) (-2990 (($ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-2314 (($ $ $) 23 (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) 21 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4370))) (($ $ "rest" $) 24 (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) |#1|) $) NIL)) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2123 ((|#1| $) NIL)) (-3820 (($) NIL T CONST)) (-1467 (($ $) 28 (|has| $ (-6 -4370)))) (-3239 (($ $) 29)) (-2616 (($ $) 18) (($ $ (-757)) 32)) (-2873 (($ $) 55 (|has| |#1| (-1079)))) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) NIL (|has| |#1| (-1079))) (($ (-1 (-111) |#1|) $) NIL)) (-2575 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-3145 (((-111) $) NIL)) (-1478 (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079))) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) (-1 (-111) |#1|) $) NIL)) (-1408 (((-630 |#1|) $) 27 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 31 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1750 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-3160 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2480 (($ |#1|) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1735 (((-1137) $) 51 (|has| |#1| (-1079)))) (-2594 ((|#1| $) NIL) (($ $ (-757)) NIL)) (-2636 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1774 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) 13) (($ $ (-757)) NIL)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-1411 (((-111) $) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 12)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) 17)) (-3222 (($) 16)) (-2046 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1205 (-553))) NIL) ((|#1| $ (-553)) NIL) ((|#1| $ (-553) |#1|) NIL)) (-3558 (((-553) $ $) NIL)) (-3231 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2005 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-1510 (((-111) $) 34)) (-2383 (($ $) NIL)) (-1566 (($ $) NIL (|has| $ (-6 -4370)))) (-2586 (((-757) $) NIL)) (-4321 (($ $) 36)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) 35)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 26)) (-2269 (($ $ $) 54) (($ $ |#1|) NIL)) (-4325 (($ $ $) NIL) (($ |#1| $) 10) (($ (-630 $)) NIL) (($ $ |#1|) NIL)) (-3110 (((-845) $) 46 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 48 (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) 9 (|has| $ (-6 -4369))))) -(((-513 |#1| |#2|) (-651 |#1|) (-1192) (-553)) (T -513)) -NIL -(-651 |#1|) -((-3639 ((|#4| |#4|) 27)) (-2409 (((-757) |#4|) 32)) (-2016 (((-757) |#4|) 33)) (-1888 (((-630 |#3|) |#4|) 40 (|has| |#3| (-6 -4370)))) (-1614 (((-3 |#4| "failed") |#4|) 51)) (-2689 ((|#4| |#4|) 44)) (-1938 ((|#1| |#4|) 43))) -(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3639 (|#4| |#4|)) (-15 -2409 ((-757) |#4|)) (-15 -2016 ((-757) |#4|)) (IF (|has| |#3| (-6 -4370)) (-15 -1888 ((-630 |#3|) |#4|)) |%noBranch|) (-15 -1938 (|#1| |#4|)) (-15 -2689 (|#4| |#4|)) (-15 -1614 ((-3 |#4| "failed") |#4|))) (-357) (-367 |#1|) (-367 |#1|) (-672 |#1| |#2| |#3|)) (T -514)) -((-1614 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-672 *2 *4 *5)))) (-1888 (*1 *2 *3) (-12 (|has| *6 (-6 -4370)) (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-630 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-757)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-757)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(-10 -7 (-15 -3639 (|#4| |#4|)) (-15 -2409 ((-757) |#4|)) (-15 -2016 ((-757) |#4|)) (IF (|has| |#3| (-6 -4370)) (-15 -1888 ((-630 |#3|) |#4|)) |%noBranch|) (-15 -1938 (|#1| |#4|)) (-15 -2689 (|#4| |#4|)) (-15 -1614 ((-3 |#4| "failed") |#4|))) -((-3639 ((|#8| |#4|) 20)) (-1888 (((-630 |#3|) |#4|) 29 (|has| |#7| (-6 -4370)))) (-1614 (((-3 |#8| "failed") |#4|) 23))) -(((-515 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3639 (|#8| |#4|)) (-15 -1614 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4370)) (-15 -1888 ((-630 |#3|) |#4|)) |%noBranch|)) (-545) (-367 |#1|) (-367 |#1|) (-672 |#1| |#2| |#3|) (-974 |#1|) (-367 |#5|) (-367 |#5|) (-672 |#5| |#6| |#7|)) (T -515)) -((-1888 (*1 *2 *3) (-12 (|has| *9 (-6 -4370)) (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-974 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-630 *6)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-672 *4 *5 *6)) (-4 *10 (-672 *7 *8 *9)))) (-1614 (*1 *2 *3) (|partial| -12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-974 *4)) (-4 *2 (-672 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-672 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-974 *4)) (-4 *2 (-672 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-672 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))) -(-10 -7 (-15 -3639 (|#8| |#4|)) (-15 -1614 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4370)) (-15 -1888 ((-630 |#3|) |#4|)) |%noBranch|)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2247 (($ (-757) (-757)) NIL)) (-1954 (($ $ $) NIL)) (-1605 (($ (-589 |#1| |#3|)) NIL) (($ $) NIL)) (-2986 (((-111) $) NIL)) (-2199 (($ $ (-553) (-553)) 12)) (-4239 (($ $ (-553) (-553)) NIL)) (-1418 (($ $ (-553) (-553) (-553) (-553)) NIL)) (-1756 (($ $) NIL)) (-2086 (((-111) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2017 (($ $ (-553) (-553) $) NIL)) (-1490 ((|#1| $ (-553) (-553) |#1|) NIL) (($ $ (-630 (-553)) (-630 (-553)) $) NIL)) (-3924 (($ $ (-553) (-589 |#1| |#3|)) NIL)) (-2359 (($ $ (-553) (-589 |#1| |#2|)) NIL)) (-3747 (($ (-757) |#1|) NIL)) (-3820 (($) NIL T CONST)) (-3639 (($ $) 21 (|has| |#1| (-301)))) (-3894 (((-589 |#1| |#3|) $ (-553)) NIL)) (-2409 (((-757) $) 24 (|has| |#1| (-545)))) (-2515 ((|#1| $ (-553) (-553) |#1|) NIL)) (-2441 ((|#1| $ (-553) (-553)) NIL)) (-1408 (((-630 |#1|) $) NIL)) (-2016 (((-757) $) 26 (|has| |#1| (-545)))) (-1888 (((-630 (-589 |#1| |#2|)) $) 29 (|has| |#1| (-545)))) (-4253 (((-757) $) NIL)) (-3202 (($ (-757) (-757) |#1|) NIL)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3714 ((|#1| $) 19 (|has| |#1| (-6 (-4371 "*"))))) (-3510 (((-553) $) 10)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-4275 (((-553) $) 11)) (-3223 (((-553) $) NIL)) (-3394 (($ (-630 (-630 |#1|))) NIL)) (-2503 (($ (-1 |#1| |#1|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2384 (((-630 (-630 |#1|)) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1614 (((-3 $ "failed") $) 33 (|has| |#1| (-357)))) (-1798 (($ $ $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) (-553)) NIL) ((|#1| $ (-553) (-553) |#1|) NIL) (($ $ (-630 (-553)) (-630 (-553))) NIL)) (-1325 (($ (-630 |#1|)) NIL) (($ (-630 $)) NIL)) (-1564 (((-111) $) NIL)) (-1938 ((|#1| $) 17 (|has| |#1| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-1355 (((-589 |#1| |#2|) $ (-553)) NIL)) (-3110 (($ (-589 |#1| |#2|)) NIL) (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-4172 (((-111) $) NIL)) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-553) $) NIL) (((-589 |#1| |#2|) $ (-589 |#1| |#2|)) NIL) (((-589 |#1| |#3|) (-589 |#1| |#3|) $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-516 |#1| |#2| |#3|) (-672 |#1| (-589 |#1| |#3|) (-589 |#1| |#2|)) (-1031) (-553) (-553)) (T -516)) -NIL -(-672 |#1| (-589 |#1| |#3|) (-589 |#1| |#2|)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-4205 (((-630 (-1191)) $) 13)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20) (($ (-1160)) NIL) (((-1160) $) NIL) (($ (-630 (-1191))) 11)) (-1617 (((-111) $ $) NIL))) -(((-517) (-13 (-1062) (-10 -8 (-15 -3110 ($ (-630 (-1191)))) (-15 -4205 ((-630 (-1191)) $))))) (T -517)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-517)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-517))))) -(-13 (-1062) (-10 -8 (-15 -3110 ($ (-630 (-1191)))) (-15 -4205 ((-630 (-1191)) $)))) -((-3096 (((-111) $ $) NIL)) (-4056 (((-1114) $) 14)) (-1735 (((-1137) $) NIL)) (-3094 (((-1155) $) 11)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 21) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-518) (-13 (-1062) (-10 -8 (-15 -3094 ((-1155) $)) (-15 -4056 ((-1114) $))))) (T -518)) -((-3094 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-518)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-518))))) -(-13 (-1062) (-10 -8 (-15 -3094 ((-1155) $)) (-15 -4056 ((-1114) $)))) -((-2778 (((-1099) $ (-127)) 17))) -(((-519 |#1|) (-10 -8 (-15 -2778 ((-1099) |#1| (-127)))) (-520)) (T -519)) -NIL -(-10 -8 (-15 -2778 ((-1099) |#1| (-127)))) -((-2778 (((-1099) $ (-127)) 7)) (-3931 (((-1099) $) 8)) (-2407 (($ $) 6))) -(((-520) (-137)) (T -520)) -((-3931 (*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1099)))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-127)) (-5 *2 (-1099))))) -(-13 (-170) (-10 -8 (-15 -3931 ((-1099) $)) (-15 -2778 ((-1099) $ (-127))))) -(((-170) . T)) -((-4312 (((-1151 |#1|) (-757)) 76)) (-1576 (((-1238 |#1|) (-1238 |#1|) (-903)) 69)) (-1274 (((-1243) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) |#1|) 84)) (-3475 (((-1238 |#1|) (-1238 |#1|) (-757)) 36)) (-3031 (((-1238 |#1|) (-903)) 71)) (-1440 (((-1238 |#1|) (-1238 |#1|) (-553)) 24)) (-4252 (((-1151 |#1|) (-1238 |#1|)) 77)) (-2157 (((-1238 |#1|) (-903)) 95)) (-2574 (((-111) (-1238 |#1|)) 80)) (-3560 (((-1238 |#1|) (-1238 |#1|) (-903)) 62)) (-3568 (((-1151 |#1|) (-1238 |#1|)) 89)) (-3796 (((-903) (-1238 |#1|)) 59)) (-3610 (((-1238 |#1|) (-1238 |#1|)) 30)) (-2735 (((-1238 |#1|) (-903) (-903)) 97)) (-3739 (((-1238 |#1|) (-1238 |#1|) (-1099) (-1099)) 23)) (-2137 (((-1238 |#1|) (-1238 |#1|) (-757) (-1099)) 37)) (-4124 (((-1238 (-1238 |#1|)) (-903)) 94)) (-1723 (((-1238 |#1|) (-1238 |#1|) (-1238 |#1|)) 81)) (** (((-1238 |#1|) (-1238 |#1|) (-553)) 45)) (* (((-1238 |#1|) (-1238 |#1|) (-1238 |#1|)) 25))) -(((-521 |#1|) (-10 -7 (-15 -1274 ((-1243) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) |#1|)) (-15 -3031 ((-1238 |#1|) (-903))) (-15 -2735 ((-1238 |#1|) (-903) (-903))) (-15 -4252 ((-1151 |#1|) (-1238 |#1|))) (-15 -4312 ((-1151 |#1|) (-757))) (-15 -2137 ((-1238 |#1|) (-1238 |#1|) (-757) (-1099))) (-15 -3475 ((-1238 |#1|) (-1238 |#1|) (-757))) (-15 -3739 ((-1238 |#1|) (-1238 |#1|) (-1099) (-1099))) (-15 -1440 ((-1238 |#1|) (-1238 |#1|) (-553))) (-15 ** ((-1238 |#1|) (-1238 |#1|) (-553))) (-15 * ((-1238 |#1|) (-1238 |#1|) (-1238 |#1|))) (-15 -1723 ((-1238 |#1|) (-1238 |#1|) (-1238 |#1|))) (-15 -3560 ((-1238 |#1|) (-1238 |#1|) (-903))) (-15 -1576 ((-1238 |#1|) (-1238 |#1|) (-903))) (-15 -3610 ((-1238 |#1|) (-1238 |#1|))) (-15 -3796 ((-903) (-1238 |#1|))) (-15 -2574 ((-111) (-1238 |#1|))) (-15 -4124 ((-1238 (-1238 |#1|)) (-903))) (-15 -2157 ((-1238 |#1|) (-903))) (-15 -3568 ((-1151 |#1|) (-1238 |#1|)))) (-343)) (T -521)) -((-3568 (*1 *2 *3) (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-1151 *4)) (-5 *1 (-521 *4)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1238 *4)) (-5 *1 (-521 *4)) (-4 *4 (-343)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1238 (-1238 *4))) (-5 *1 (-521 *4)) (-4 *4 (-343)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-521 *4)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-903)) (-5 *1 (-521 *4)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-343)) (-5 *1 (-521 *3)))) (-1576 (*1 *2 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-903)) (-4 *4 (-343)) (-5 *1 (-521 *4)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-903)) (-4 *4 (-343)) (-5 *1 (-521 *4)))) (-1723 (*1 *2 *2 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-343)) (-5 *1 (-521 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-343)) (-5 *1 (-521 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-553)) (-4 *4 (-343)) (-5 *1 (-521 *4)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-553)) (-4 *4 (-343)) (-5 *1 (-521 *4)))) (-3739 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-1099)) (-4 *4 (-343)) (-5 *1 (-521 *4)))) (-3475 (*1 *2 *2 *3) (-12 (-5 *2 (-1238 *4)) (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-521 *4)))) (-2137 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1238 *5)) (-5 *3 (-757)) (-5 *4 (-1099)) (-4 *5 (-343)) (-5 *1 (-521 *5)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1151 *4)) (-5 *1 (-521 *4)) (-4 *4 (-343)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-1151 *4)) (-5 *1 (-521 *4)))) (-2735 (*1 *2 *3 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1238 *4)) (-5 *1 (-521 *4)) (-4 *4 (-343)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1238 *4)) (-5 *1 (-521 *4)) (-4 *4 (-343)))) (-1274 (*1 *2 *3 *4) (-12 (-5 *3 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) (-4 *4 (-343)) (-5 *2 (-1243)) (-5 *1 (-521 *4))))) -(-10 -7 (-15 -1274 ((-1243) (-1238 (-630 (-2 (|:| -2821 |#1|) (|:| -2735 (-1099))))) |#1|)) (-15 -3031 ((-1238 |#1|) (-903))) (-15 -2735 ((-1238 |#1|) (-903) (-903))) (-15 -4252 ((-1151 |#1|) (-1238 |#1|))) (-15 -4312 ((-1151 |#1|) (-757))) (-15 -2137 ((-1238 |#1|) (-1238 |#1|) (-757) (-1099))) (-15 -3475 ((-1238 |#1|) (-1238 |#1|) (-757))) (-15 -3739 ((-1238 |#1|) (-1238 |#1|) (-1099) (-1099))) (-15 -1440 ((-1238 |#1|) (-1238 |#1|) (-553))) (-15 ** ((-1238 |#1|) (-1238 |#1|) (-553))) (-15 * ((-1238 |#1|) (-1238 |#1|) (-1238 |#1|))) (-15 -1723 ((-1238 |#1|) (-1238 |#1|) (-1238 |#1|))) (-15 -3560 ((-1238 |#1|) (-1238 |#1|) (-903))) (-15 -1576 ((-1238 |#1|) (-1238 |#1|) (-903))) (-15 -3610 ((-1238 |#1|) (-1238 |#1|))) (-15 -3796 ((-903) (-1238 |#1|))) (-15 -2574 ((-111) (-1238 |#1|))) (-15 -4124 ((-1238 (-1238 |#1|)) (-903))) (-15 -2157 ((-1238 |#1|) (-903))) (-15 -3568 ((-1151 |#1|) (-1238 |#1|)))) -((-2778 (((-1099) $ (-127)) NIL)) (-3931 (((-1099) $) 21)) (-2597 (((-1099) $ (-1099)) 25)) (-1478 (((-1099) $) 24)) (-2465 (((-111) $) 19)) (-2871 (($ (-382)) 12) (($ (-1137)) 14)) (-3956 (((-111) $) 22)) (-3110 (((-845) $) 28)) (-2407 (($ $) 23))) -(((-522) (-13 (-520) (-600 (-845)) (-10 -8 (-15 -2871 ($ (-382))) (-15 -2871 ($ (-1137))) (-15 -3956 ((-111) $)) (-15 -2465 ((-111) $)) (-15 -1478 ((-1099) $)) (-15 -2597 ((-1099) $ (-1099)))))) (T -522)) -((-2871 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-522)))) (-2871 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-522)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-522)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-522)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-522)))) (-2597 (*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-522))))) -(-13 (-520) (-600 (-845)) (-10 -8 (-15 -2871 ($ (-382))) (-15 -2871 ($ (-1137))) (-15 -3956 ((-111) $)) (-15 -2465 ((-111) $)) (-15 -1478 ((-1099) $)) (-15 -2597 ((-1099) $ (-1099))))) -((-3856 (((-1 |#1| |#1|) |#1|) 11)) (-1964 (((-1 |#1| |#1|)) 10))) -(((-523 |#1|) (-10 -7 (-15 -1964 ((-1 |#1| |#1|))) (-15 -3856 ((-1 |#1| |#1|) |#1|))) (-13 (-712) (-25))) (T -523)) -((-3856 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-712) (-25))))) (-1964 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-712) (-25)))))) -(-10 -7 (-15 -1964 ((-1 |#1| |#1|))) (-15 -3856 ((-1 |#1| |#1|) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2345 (($ $ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-3481 (($ (-757) |#1|) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 (-757) (-757)) $) NIL)) (-1277 ((|#1| $) NIL)) (-3655 (((-757) $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20)) (-1988 (($) NIL T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL))) -(((-524 |#1|) (-13 (-779) (-502 (-757) |#1|)) (-833)) (T -524)) -NIL -(-13 (-779) (-502 (-757) |#1|)) -((-4064 (((-630 |#2|) (-1151 |#1|) |#3|) 83)) (-3513 (((-630 (-2 (|:| |outval| |#2|) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 |#2|))))) (-674 |#1|) |#3| (-1 (-412 (-1151 |#1|)) (-1151 |#1|))) 100)) (-1699 (((-1151 |#1|) (-674 |#1|)) 95))) -(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -1699 ((-1151 |#1|) (-674 |#1|))) (-15 -4064 ((-630 |#2|) (-1151 |#1|) |#3|)) (-15 -3513 ((-630 (-2 (|:| |outval| |#2|) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 |#2|))))) (-674 |#1|) |#3| (-1 (-412 (-1151 |#1|)) (-1151 |#1|))))) (-357) (-357) (-13 (-357) (-831))) (T -525)) -((-3513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *6)) (-5 *5 (-1 (-412 (-1151 *6)) (-1151 *6))) (-4 *6 (-357)) (-5 *2 (-630 (-2 (|:| |outval| *7) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 *7)))))) (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-831))))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *5)) (-4 *5 (-357)) (-5 *2 (-630 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-831))))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-674 *4)) (-4 *4 (-357)) (-5 *2 (-1151 *4)) (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-831)))))) -(-10 -7 (-15 -1699 ((-1151 |#1|) (-674 |#1|))) (-15 -4064 ((-630 |#2|) (-1151 |#1|) |#3|)) (-15 -3513 ((-630 (-2 (|:| |outval| |#2|) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 |#2|))))) (-674 |#1|) |#3| (-1 (-412 (-1151 |#1|)) (-1151 |#1|))))) -((-3688 (((-1099) $ (-127)) 25)) (-1865 (((-1099) $ (-128)) 27)) (-2778 (((-1099) $ (-127)) 23)) (-3931 (((-1099) $) 24)) (-3081 (((-111) $) 17)) (-4123 (((-3 $ "failed") (-568) (-936)) 10) (((-3 $ "failed") (-484) (-936)) 13)) (-3110 (((-845) $) 35)) (-2407 (($ $) 22))) -(((-526) (-13 (-753 (-568)) (-600 (-845)) (-10 -8 (-15 -4123 ((-3 $ "failed") (-484) (-936)))))) (T -526)) -((-4123 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *3 (-936)) (-5 *1 (-526))))) -(-13 (-753 (-568)) (-600 (-845)) (-10 -8 (-15 -4123 ((-3 $ "failed") (-484) (-936))))) -((-1664 (((-826 (-553))) 12)) (-1674 (((-826 (-553))) 14)) (-4007 (((-819 (-553))) 9))) -(((-527) (-10 -7 (-15 -4007 ((-819 (-553)))) (-15 -1664 ((-826 (-553)))) (-15 -1674 ((-826 (-553)))))) (T -527)) -((-1674 (*1 *2) (-12 (-5 *2 (-826 (-553))) (-5 *1 (-527)))) (-1664 (*1 *2) (-12 (-5 *2 (-826 (-553))) (-5 *1 (-527)))) (-4007 (*1 *2) (-12 (-5 *2 (-819 (-553))) (-5 *1 (-527))))) -(-10 -7 (-15 -4007 ((-819 (-553)))) (-15 -1664 ((-826 (-553)))) (-15 -1674 ((-826 (-553))))) -((-2678 (((-529) (-1155)) 15)) (-4101 ((|#1| (-529)) 20))) -(((-528 |#1|) (-10 -7 (-15 -2678 ((-529) (-1155))) (-15 -4101 (|#1| (-529)))) (-1192)) (T -528)) -((-4101 (*1 *2 *3) (-12 (-5 *3 (-529)) (-5 *1 (-528 *2)) (-4 *2 (-1192)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-529)) (-5 *1 (-528 *4)) (-4 *4 (-1192))))) -(-10 -7 (-15 -2678 ((-529) (-1155))) (-15 -4101 (|#1| (-529)))) -((-3096 (((-111) $ $) NIL)) (-1483 (((-1137) $) 47)) (-3115 (((-111) $) 43)) (-3444 (((-1155) $) 44)) (-3851 (((-111) $) 41)) (-3950 (((-1137) $) 42)) (-1973 (($ (-1137)) 48)) (-4178 (((-111) $) NIL)) (-4099 (((-111) $) NIL)) (-1845 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-2322 (($ $ (-630 (-1155))) 20)) (-4101 (((-52) $) 22)) (-2339 (((-111) $) NIL)) (-3468 (((-553) $) NIL)) (-2786 (((-1099) $) NIL)) (-2333 (($ $ (-630 (-1155)) (-1155)) 60)) (-1819 (((-111) $) NIL)) (-3293 (((-220) $) NIL)) (-1803 (($ $) 38)) (-1473 (((-845) $) NIL)) (-2662 (((-111) $ $) NIL)) (-2046 (($ $ (-553)) NIL) (($ $ (-630 (-553))) NIL)) (-3431 (((-630 $) $) 28)) (-4293 (((-1155) (-630 $)) 49)) (-1524 (($ (-1137)) NIL) (($ (-1155)) 18) (($ (-553)) 8) (($ (-220)) 25) (($ (-845)) NIL) (($ (-630 $)) 56) (((-1083) $) 11) (($ (-1083)) 12)) (-2765 (((-1155) (-1155) (-630 $)) 52)) (-3110 (((-845) $) 46)) (-2504 (($ $) 51)) (-2491 (($ $) 50)) (-1424 (($ $ (-630 $)) 57)) (-3197 (((-111) $) 27)) (-1988 (($) 9 T CONST)) (-1997 (($) 10 T CONST)) (-1617 (((-111) $ $) 61)) (-1723 (($ $ $) 66)) (-1700 (($ $ $) 62)) (** (($ $ (-757)) 65) (($ $ (-553)) 64)) (* (($ $ $) 63)) (-2563 (((-553) $) NIL))) -(((-529) (-13 (-1082 (-1137) (-1155) (-553) (-220) (-845)) (-601 (-1083)) (-10 -8 (-15 -4101 ((-52) $)) (-15 -1524 ($ (-1083))) (-15 -1424 ($ $ (-630 $))) (-15 -2333 ($ $ (-630 (-1155)) (-1155))) (-15 -2322 ($ $ (-630 (-1155)))) (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 -1723 ($ $ $)) (-15 ** ($ $ (-757))) (-15 ** ($ $ (-553))) (-15 0 ($) -3879) (-15 1 ($) -3879) (-15 -1803 ($ $)) (-15 -1483 ((-1137) $)) (-15 -1973 ($ (-1137))) (-15 -4293 ((-1155) (-630 $))) (-15 -2765 ((-1155) (-1155) (-630 $)))))) (T -529)) -((-4101 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-529)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-529)))) (-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-529))) (-5 *1 (-529)))) (-2333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-1155)) (-5 *1 (-529)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-529)))) (-1700 (*1 *1 *1 *1) (-5 *1 (-529))) (* (*1 *1 *1 *1) (-5 *1 (-529))) (-1723 (*1 *1 *1 *1) (-5 *1 (-529))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-529)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-529)))) (-1988 (*1 *1) (-5 *1 (-529))) (-1997 (*1 *1) (-5 *1 (-529))) (-1803 (*1 *1 *1) (-5 *1 (-529))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-529)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-529)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-630 (-529))) (-5 *2 (-1155)) (-5 *1 (-529)))) (-2765 (*1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-529))) (-5 *1 (-529))))) -(-13 (-1082 (-1137) (-1155) (-553) (-220) (-845)) (-601 (-1083)) (-10 -8 (-15 -4101 ((-52) $)) (-15 -1524 ($ (-1083))) (-15 -1424 ($ $ (-630 $))) (-15 -2333 ($ $ (-630 (-1155)) (-1155))) (-15 -2322 ($ $ (-630 (-1155)))) (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 -1723 ($ $ $)) (-15 ** ($ $ (-757))) (-15 ** ($ $ (-553))) (-15 (-1988) ($) -3879) (-15 (-1997) ($) -3879) (-15 -1803 ($ $)) (-15 -1483 ((-1137) $)) (-15 -1973 ($ (-1137))) (-15 -4293 ((-1155) (-630 $))) (-15 -2765 ((-1155) (-1155) (-630 $))))) -((-3257 ((|#2| |#2|) 17)) (-1687 ((|#2| |#2|) 13)) (-4168 ((|#2| |#2| (-553) (-553)) 20)) (-1902 ((|#2| |#2|) 15))) -(((-530 |#1| |#2|) (-10 -7 (-15 -1687 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -4168 (|#2| |#2| (-553) (-553)))) (-13 (-545) (-144)) (-1229 |#1|)) (T -530)) -((-4168 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-553)) (-4 *4 (-13 (-545) (-144))) (-5 *1 (-530 *4 *2)) (-4 *2 (-1229 *4)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1229 *3)))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1229 *3)))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -1687 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -4168 (|#2| |#2| (-553) (-553)))) -((-4184 (((-630 (-288 (-934 |#2|))) (-630 |#2|) (-630 (-1155))) 32)) (-2376 (((-630 |#2|) (-934 |#1|) |#3|) 53) (((-630 |#2|) (-1151 |#1|) |#3|) 52)) (-2396 (((-630 (-630 |#2|)) (-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155)) |#3|) 88))) -(((-531 |#1| |#2| |#3|) (-10 -7 (-15 -2376 ((-630 |#2|) (-1151 |#1|) |#3|)) (-15 -2376 ((-630 |#2|) (-934 |#1|) |#3|)) (-15 -2396 ((-630 (-630 |#2|)) (-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155)) |#3|)) (-15 -4184 ((-630 (-288 (-934 |#2|))) (-630 |#2|) (-630 (-1155))))) (-445) (-357) (-13 (-357) (-831))) (T -531)) -((-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 (-1155))) (-4 *6 (-357)) (-5 *2 (-630 (-288 (-934 *6)))) (-5 *1 (-531 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-13 (-357) (-831))))) (-2396 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-630 (-934 *6))) (-5 *4 (-630 (-1155))) (-4 *6 (-445)) (-5 *2 (-630 (-630 *7))) (-5 *1 (-531 *6 *7 *5)) (-4 *7 (-357)) (-4 *5 (-13 (-357) (-831))))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-934 *5)) (-4 *5 (-445)) (-5 *2 (-630 *6)) (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-831))))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *5)) (-4 *5 (-445)) (-5 *2 (-630 *6)) (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-831)))))) -(-10 -7 (-15 -2376 ((-630 |#2|) (-1151 |#1|) |#3|)) (-15 -2376 ((-630 |#2|) (-934 |#1|) |#3|)) (-15 -2396 ((-630 (-630 |#2|)) (-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155)) |#3|)) (-15 -4184 ((-630 (-288 (-934 |#2|))) (-630 |#2|) (-630 (-1155))))) -((-3668 ((|#2| |#2| |#1|) 17)) (-3164 ((|#2| (-630 |#2|)) 27)) (-1815 ((|#2| (-630 |#2|)) 46))) -(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3164 (|#2| (-630 |#2|))) (-15 -1815 (|#2| (-630 |#2|))) (-15 -3668 (|#2| |#2| |#1|))) (-301) (-1214 |#1|) |#1| (-1 |#1| |#1| (-757))) (T -532)) -((-3668 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-757))) (-5 *1 (-532 *3 *2 *4 *5)) (-4 *2 (-1214 *3)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-532 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-757))))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-532 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-757)))))) -(-10 -7 (-15 -3164 (|#2| (-630 |#2|))) (-15 -1815 (|#2| (-630 |#2|))) (-15 -3668 (|#2| |#2| |#1|))) -((-3355 (((-412 (-1151 |#4|)) (-1151 |#4|) (-1 (-412 (-1151 |#3|)) (-1151 |#3|))) 79) (((-412 |#4|) |#4| (-1 (-412 (-1151 |#3|)) (-1151 |#3|))) 168))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 |#4|) |#4| (-1 (-412 (-1151 |#3|)) (-1151 |#3|)))) (-15 -3355 ((-412 (-1151 |#4|)) (-1151 |#4|) (-1 (-412 (-1151 |#3|)) (-1151 |#3|))))) (-833) (-779) (-13 (-301) (-144)) (-931 |#3| |#2| |#1|)) (T -533)) -((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1151 *7)) (-1151 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-833)) (-4 *6 (-779)) (-4 *8 (-931 *7 *6 *5)) (-5 *2 (-412 (-1151 *8))) (-5 *1 (-533 *5 *6 *7 *8)) (-5 *3 (-1151 *8)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1151 *7)) (-1151 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-833)) (-4 *6 (-779)) (-5 *2 (-412 *3)) (-5 *1 (-533 *5 *6 *7 *3)) (-4 *3 (-931 *7 *6 *5))))) -(-10 -7 (-15 -3355 ((-412 |#4|) |#4| (-1 (-412 (-1151 |#3|)) (-1151 |#3|)))) (-15 -3355 ((-412 (-1151 |#4|)) (-1151 |#4|) (-1 (-412 (-1151 |#3|)) (-1151 |#3|))))) -((-3257 ((|#4| |#4|) 74)) (-1687 ((|#4| |#4|) 70)) (-4168 ((|#4| |#4| (-553) (-553)) 76)) (-1902 ((|#4| |#4|) 72))) -(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1687 (|#4| |#4|)) (-15 -1902 (|#4| |#4|)) (-15 -3257 (|#4| |#4|)) (-15 -4168 (|#4| |#4| (-553) (-553)))) (-13 (-357) (-362) (-601 (-553))) (-1214 |#1|) (-710 |#1| |#2|) (-1229 |#3|)) (T -534)) -((-4168 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-553)) (-4 *4 (-13 (-357) (-362) (-601 *3))) (-4 *5 (-1214 *4)) (-4 *6 (-710 *4 *5)) (-5 *1 (-534 *4 *5 *6 *2)) (-4 *2 (-1229 *6)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-4 *4 (-1214 *3)) (-4 *5 (-710 *3 *4)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-1229 *5)))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-4 *4 (-1214 *3)) (-4 *5 (-710 *3 *4)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-1229 *5)))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-4 *4 (-1214 *3)) (-4 *5 (-710 *3 *4)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-1229 *5))))) -(-10 -7 (-15 -1687 (|#4| |#4|)) (-15 -1902 (|#4| |#4|)) (-15 -3257 (|#4| |#4|)) (-15 -4168 (|#4| |#4| (-553) (-553)))) -((-3257 ((|#2| |#2|) 27)) (-1687 ((|#2| |#2|) 23)) (-4168 ((|#2| |#2| (-553) (-553)) 29)) (-1902 ((|#2| |#2|) 25))) -(((-535 |#1| |#2|) (-10 -7 (-15 -1687 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -4168 (|#2| |#2| (-553) (-553)))) (-13 (-357) (-362) (-601 (-553))) (-1229 |#1|)) (T -535)) -((-4168 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-553)) (-4 *4 (-13 (-357) (-362) (-601 *3))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1229 *4)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1229 *3)))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1229 *3)))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -1687 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -4168 (|#2| |#2| (-553) (-553)))) -((-3523 (((-3 (-553) "failed") |#2| |#1| (-1 (-3 (-553) "failed") |#1|)) 14) (((-3 (-553) "failed") |#2| |#1| (-553) (-1 (-3 (-553) "failed") |#1|)) 13) (((-3 (-553) "failed") |#2| (-553) (-1 (-3 (-553) "failed") |#1|)) 26))) -(((-536 |#1| |#2|) (-10 -7 (-15 -3523 ((-3 (-553) "failed") |#2| (-553) (-1 (-3 (-553) "failed") |#1|))) (-15 -3523 ((-3 (-553) "failed") |#2| |#1| (-553) (-1 (-3 (-553) "failed") |#1|))) (-15 -3523 ((-3 (-553) "failed") |#2| |#1| (-1 (-3 (-553) "failed") |#1|)))) (-1031) (-1214 |#1|)) (T -536)) -((-3523 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-553) "failed") *4)) (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-536 *4 *3)) (-4 *3 (-1214 *4)))) (-3523 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-553) "failed") *4)) (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-536 *4 *3)) (-4 *3 (-1214 *4)))) (-3523 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-553) "failed") *5)) (-4 *5 (-1031)) (-5 *2 (-553)) (-5 *1 (-536 *5 *3)) (-4 *3 (-1214 *5))))) -(-10 -7 (-15 -3523 ((-3 (-553) "failed") |#2| (-553) (-1 (-3 (-553) "failed") |#1|))) (-15 -3523 ((-3 (-553) "failed") |#2| |#1| (-553) (-1 (-3 (-553) "failed") |#1|))) (-15 -3523 ((-3 (-553) "failed") |#2| |#1| (-1 (-3 (-553) "failed") |#1|)))) -((-4227 (($ $ $) 79)) (-2708 (((-412 $) $) 47)) (-1399 (((-3 (-553) "failed") $) 59)) (-2707 (((-553) $) 37)) (-3458 (((-3 (-401 (-553)) "failed") $) 74)) (-4323 (((-111) $) 24)) (-1672 (((-401 (-553)) $) 72)) (-3119 (((-111) $) 50)) (-3405 (($ $ $ $) 86)) (-4270 (((-111) $) 16)) (-2340 (($ $ $) 57)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 69)) (-2502 (((-3 $ "failed") $) 64)) (-3871 (($ $) 23)) (-3563 (($ $ $) 84)) (-1945 (($) 60)) (-3757 (($ $) 53)) (-3355 (((-412 $) $) 45)) (-3781 (((-111) $) 14)) (-3384 (((-757) $) 28)) (-1330 (($ $ (-757)) NIL) (($ $) 10)) (-1508 (($ $) 17)) (-1524 (((-553) $) NIL) (((-529) $) 36) (((-874 (-553)) $) 40) (((-373) $) 31) (((-220) $) 33)) (-1999 (((-757)) 8)) (-3694 (((-111) $ $) 20)) (-1737 (($ $ $) 55))) -(((-537 |#1|) (-10 -8 (-15 -3563 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -4227 (|#1| |#1| |#1|)) (-15 -3694 ((-111) |#1| |#1|)) (-15 -3781 ((-111) |#1|)) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -1524 ((-220) |#1|)) (-15 -1524 ((-373) |#1|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -1737 (|#1| |#1| |#1|)) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1524 ((-553) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -4270 ((-111) |#1|)) (-15 -3384 ((-757) |#1|)) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -3119 ((-111) |#1|)) (-15 -1999 ((-757)))) (-538)) (T -537)) -((-1999 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-537 *3)) (-4 *3 (-538))))) -(-10 -8 (-15 -3563 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -4227 (|#1| |#1| |#1|)) (-15 -3694 ((-111) |#1| |#1|)) (-15 -3781 ((-111) |#1|)) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -1524 ((-220) |#1|)) (-15 -1524 ((-373) |#1|)) (-15 -2340 (|#1| |#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -1737 (|#1| |#1| |#1|)) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1524 ((-553) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -4270 ((-111) |#1|)) (-15 -3384 ((-757) |#1|)) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -3119 ((-111) |#1|)) (-15 -1999 ((-757)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-4227 (($ $ $) 85)) (-2910 (((-3 $ "failed") $ $) 19)) (-2464 (($ $ $ $) 74)) (-1536 (($ $) 52)) (-2708 (((-412 $) $) 53)) (-4349 (((-111) $ $) 125)) (-2125 (((-553) $) 114)) (-1608 (($ $ $) 88)) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 106)) (-2707 (((-553) $) 107)) (-3973 (($ $ $) 129)) (-2077 (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 104) (((-674 (-553)) (-674 $)) 103)) (-2982 (((-3 $ "failed") $) 33)) (-3458 (((-3 (-401 (-553)) "failed") $) 82)) (-4323 (((-111) $) 84)) (-1672 (((-401 (-553)) $) 83)) (-3031 (($) 81) (($ $) 80)) (-3952 (($ $ $) 128)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 123)) (-3119 (((-111) $) 54)) (-3405 (($ $ $ $) 72)) (-2084 (($ $ $) 86)) (-4270 (((-111) $) 116)) (-2340 (($ $ $) 97)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 100)) (-1848 (((-111) $) 31)) (-1850 (((-111) $) 92)) (-2502 (((-3 $ "failed") $) 94)) (-2797 (((-111) $) 115)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 132)) (-4322 (($ $ $ $) 73)) (-1824 (($ $ $) 117)) (-1975 (($ $ $) 118)) (-3871 (($ $) 76)) (-1899 (($ $) 89)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3563 (($ $ $) 71)) (-1945 (($) 93 T CONST)) (-3802 (($ $) 78)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3757 (($ $) 98)) (-3355 (((-412 $) $) 51)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 130)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 124)) (-3781 (((-111) $) 91)) (-3384 (((-757) $) 126)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 127)) (-1330 (($ $ (-757)) 111) (($ $) 109)) (-3163 (($ $) 77)) (-1508 (($ $) 79)) (-1524 (((-553) $) 108) (((-529) $) 102) (((-874 (-553)) $) 101) (((-373) $) 96) (((-220) $) 95)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-553)) 105)) (-1999 (((-757)) 28)) (-3694 (((-111) $ $) 87)) (-1737 (($ $ $) 99)) (-2959 (($) 90)) (-1639 (((-111) $ $) 40)) (-4028 (($ $ $ $) 75)) (-3466 (($ $) 113)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-757)) 112) (($ $) 110)) (-1669 (((-111) $ $) 120)) (-1648 (((-111) $ $) 121)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 119)) (-1636 (((-111) $ $) 122)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-538) (-137)) (T -538)) -((-1850 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) (-2959 (*1 *1) (-4 *1 (-538))) (-1899 (*1 *1 *1) (-4 *1 (-538))) (-1608 (*1 *1 *1 *1) (-4 *1 (-538))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) (-2084 (*1 *1 *1 *1) (-4 *1 (-538))) (-4227 (*1 *1 *1 *1) (-4 *1 (-538))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-401 (-553))))) (-3458 (*1 *2 *1) (|partial| -12 (-4 *1 (-538)) (-5 *2 (-401 (-553))))) (-3031 (*1 *1) (-4 *1 (-538))) (-3031 (*1 *1 *1) (-4 *1 (-538))) (-1508 (*1 *1 *1) (-4 *1 (-538))) (-3802 (*1 *1 *1) (-4 *1 (-538))) (-3163 (*1 *1 *1) (-4 *1 (-538))) (-3871 (*1 *1 *1) (-4 *1 (-538))) (-4028 (*1 *1 *1 *1 *1) (-4 *1 (-538))) (-2464 (*1 *1 *1 *1 *1) (-4 *1 (-538))) (-4322 (*1 *1 *1 *1 *1) (-4 *1 (-538))) (-3405 (*1 *1 *1 *1 *1) (-4 *1 (-538))) (-3563 (*1 *1 *1 *1) (-4 *1 (-538)))) -(-13 (-1196) (-301) (-806) (-228) (-601 (-553)) (-1020 (-553)) (-626 (-553)) (-601 (-529)) (-601 (-874 (-553))) (-868 (-553)) (-140) (-1004) (-144) (-1130) (-10 -8 (-15 -1850 ((-111) $)) (-15 -3781 ((-111) $)) (-6 -4368) (-15 -2959 ($)) (-15 -1899 ($ $)) (-15 -1608 ($ $ $)) (-15 -3694 ((-111) $ $)) (-15 -2084 ($ $ $)) (-15 -4227 ($ $ $)) (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $)) (-15 -3031 ($)) (-15 -3031 ($ $)) (-15 -1508 ($ $)) (-15 -3802 ($ $)) (-15 -3163 ($ $)) (-15 -3871 ($ $)) (-15 -4028 ($ $ $ $)) (-15 -2464 ($ $ $ $)) (-15 -4322 ($ $ $ $)) (-15 -3405 ($ $ $ $)) (-15 -3563 ($ $ $)) (-6 -4367))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-140) . T) ((-169) . T) ((-601 (-220)) . T) ((-601 (-373)) . T) ((-601 (-529)) . T) ((-601 (-553)) . T) ((-601 (-874 (-553))) . T) ((-228) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-545) . T) ((-633 $) . T) ((-626 (-553)) . T) ((-703 $) . T) ((-712) . T) ((-777) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-806) . T) ((-831) . T) ((-833) . T) ((-868 (-553)) . T) ((-902) . T) ((-1004) . T) ((-1020 (-553)) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) . T) ((-1196) . T)) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#2| $ |#1| |#2|) NIL)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) NIL)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3729 (((-630 |#1|) $) NIL)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1901 (((-630 |#1|) $) NIL)) (-3594 (((-111) |#1| $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-539 |#1| |#2| |#3|) (-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) (-1079) (-1079) (-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369)))) (T -539)) -NIL -(-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) -((-4277 (((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-1 (-1151 |#2|) (-1151 |#2|))) 51))) -(((-540 |#1| |#2|) (-10 -7 (-15 -4277 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-1 (-1151 |#2|) (-1151 |#2|))))) (-13 (-833) (-545)) (-13 (-27) (-424 |#1|))) (T -540)) -((-4277 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-1 (-1151 *3) (-1151 *3))) (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-833) (-545))) (-5 *2 (-574 *3)) (-5 *1 (-540 *6 *3))))) -(-10 -7 (-15 -4277 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-1 (-1151 |#2|) (-1151 |#2|))))) -((-3400 (((-574 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-2452 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-3593 (((-574 |#5|) |#5| (-1 |#3| |#3|)) 201))) -(((-541 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3593 ((-574 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3400 ((-574 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2452 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-833) (-545) (-1020 (-553))) (-13 (-27) (-424 |#1|)) (-1214 |#2|) (-1214 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -541)) -((-2452 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-4 *7 (-1214 (-401 *6))) (-5 *1 (-541 *4 *5 *6 *7 *2)) (-4 *2 (-336 *5 *6 *7)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1214 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-833) (-545) (-1020 (-553)))) (-4 *8 (-1214 (-401 *7))) (-5 *2 (-574 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8)))) (-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1214 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-833) (-545) (-1020 (-553)))) (-4 *8 (-1214 (-401 *7))) (-5 *2 (-574 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8))))) -(-10 -7 (-15 -3593 ((-574 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3400 ((-574 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2452 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1923 (((-111) (-553) (-553)) 10)) (-3841 (((-553) (-553)) 7)) (-2810 (((-553) (-553) (-553)) 8))) -(((-542) (-10 -7 (-15 -3841 ((-553) (-553))) (-15 -2810 ((-553) (-553) (-553))) (-15 -1923 ((-111) (-553) (-553))))) (T -542)) -((-1923 (*1 *2 *3 *3) (-12 (-5 *3 (-553)) (-5 *2 (-111)) (-5 *1 (-542)))) (-2810 (*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-542)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-542))))) -(-10 -7 (-15 -3841 ((-553) (-553))) (-15 -2810 ((-553) (-553) (-553))) (-15 -1923 ((-111) (-553) (-553)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-4030 ((|#1| $) 62)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2380 (($ $) 92)) (-2246 (($ $) 75)) (-2345 ((|#1| $) 63)) (-2910 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 74)) (-2357 (($ $) 91)) (-2224 (($ $) 76)) (-2403 (($ $) 90)) (-2268 (($ $) 77)) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 70)) (-2707 (((-553) $) 71)) (-2982 (((-3 $ "failed") $) 33)) (-3285 (($ |#1| |#1|) 67)) (-4270 (((-111) $) 61)) (-3996 (($) 102)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 73)) (-2797 (((-111) $) 60)) (-1824 (($ $ $) 108)) (-1975 (($ $ $) 107)) (-2366 (($ $) 99)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-4070 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-401 (-553))) 65)) (-2401 ((|#1| $) 64)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3929 (((-3 $ "failed") $ $) 43)) (-2743 (($ $) 100)) (-2414 (($ $) 89)) (-2279 (($ $) 78)) (-2392 (($ $) 88)) (-2257 (($ $) 79)) (-2368 (($ $) 87)) (-2234 (($ $) 80)) (-3753 (((-111) $ |#1|) 59)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-553)) 69)) (-1999 (((-757)) 28)) (-2447 (($ $) 98)) (-2313 (($ $) 86)) (-1639 (((-111) $ $) 40)) (-2425 (($ $) 97)) (-2291 (($ $) 85)) (-3791 (($ $) 96)) (-2336 (($ $) 84)) (-2570 (($ $) 95)) (-2346 (($ $) 83)) (-3780 (($ $) 94)) (-2324 (($ $) 82)) (-2435 (($ $) 93)) (-2302 (($ $) 81)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 105)) (-1648 (((-111) $ $) 104)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 106)) (-1636 (((-111) $ $) 103)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ $) 101) (($ $ (-401 (-553))) 72)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-543 |#1|) (-137) (-13 (-398) (-1177))) (T -543)) -((-4070 (*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) (-3285 (*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) (-4070 (*1 *1 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))) (-5 *2 (-111)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))) (-5 *2 (-111)))) (-3753 (*1 *2 *1 *3) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))) (-5 *2 (-111))))) -(-13 (-445) (-833) (-1177) (-984) (-1020 (-553)) (-10 -8 (-6 -4327) (-15 -4070 ($ |t#1| |t#1|)) (-15 -3285 ($ |t#1| |t#1|)) (-15 -4070 ($ |t#1|)) (-15 -4070 ($ (-401 (-553)))) (-15 -2401 (|t#1| $)) (-15 -2345 (|t#1| $)) (-15 -4030 (|t#1| $)) (-15 -4270 ((-111) $)) (-15 -2797 ((-111) $)) (-15 -3753 ((-111) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-278) . T) ((-284) . T) ((-445) . T) ((-486) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-833) . T) ((-984) . T) ((-1020 (-553)) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1177) . T) ((-1180) . T)) -((-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 9)) (-1968 (($ $) 11)) (-2028 (((-111) $) 18)) (-2982 (((-3 $ "failed") $) 16)) (-1639 (((-111) $ $) 20))) -(((-544 |#1|) (-10 -8 (-15 -2028 ((-111) |#1|)) (-15 -1639 ((-111) |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -2020 ((-2 (|:| -3908 |#1|) (|:| -4356 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|))) (-545)) (T -544)) -NIL -(-10 -8 (-15 -2028 ((-111) |#1|)) (-15 -1639 ((-111) |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -2020 ((-2 (|:| -3908 |#1|) (|:| -4356 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ $) 43)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-545) (-137)) (T -545)) -((-3929 (*1 *1 *1 *1) (|partial| -4 *1 (-545))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3908 *1) (|:| -4356 *1) (|:| |associate| *1))) (-4 *1 (-545)))) (-1968 (*1 *1 *1) (-4 *1 (-545))) (-1639 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-111)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-111))))) -(-13 (-169) (-38 $) (-284) (-10 -8 (-15 -3929 ((-3 $ "failed") $ $)) (-15 -2020 ((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $)) (-15 -1968 ($ $)) (-15 -1639 ((-111) $ $)) (-15 -2028 ((-111) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3289 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1155) (-630 |#2|)) 37)) (-4206 (((-574 |#2|) |#2| (-1155)) 62)) (-3959 (((-3 |#2| "failed") |#2| (-1155)) 152)) (-3765 (((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1155) (-599 |#2|) (-630 (-599 |#2|))) 155)) (-1354 (((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1155) |#2|) 40))) -(((-546 |#1| |#2|) (-10 -7 (-15 -1354 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1155) |#2|)) (-15 -3289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1155) (-630 |#2|))) (-15 -3959 ((-3 |#2| "failed") |#2| (-1155))) (-15 -4206 ((-574 |#2|) |#2| (-1155))) (-15 -3765 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1155) (-599 |#2|) (-630 (-599 |#2|))))) (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -546)) -((-3765 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1155)) (-5 *6 (-630 (-599 *3))) (-5 *5 (-599 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *7))) (-4 *7 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) (-5 *1 (-546 *7 *3)))) (-4206 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-574 *3)) (-5 *1 (-546 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-3959 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-546 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) (-3289 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *6 *3)))) (-1354 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1155)) (-4 *5 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) (-5 *1 (-546 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) -(-10 -7 (-15 -1354 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1155) |#2|)) (-15 -3289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1155) (-630 |#2|))) (-15 -3959 ((-3 |#2| "failed") |#2| (-1155))) (-15 -4206 ((-574 |#2|) |#2| (-1155))) (-15 -3765 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1155) (-599 |#2|) (-630 (-599 |#2|))))) -((-2708 (((-412 |#1|) |#1|) 18)) (-3355 (((-412 |#1|) |#1|) 33)) (-3677 (((-3 |#1| "failed") |#1|) 44)) (-1331 (((-412 |#1|) |#1|) 51))) -(((-547 |#1|) (-10 -7 (-15 -3355 ((-412 |#1|) |#1|)) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -1331 ((-412 |#1|) |#1|)) (-15 -3677 ((-3 |#1| "failed") |#1|))) (-538)) (T -547)) -((-3677 (*1 *2 *2) (|partial| -12 (-5 *1 (-547 *2)) (-4 *2 (-538)))) (-1331 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-547 *3)) (-4 *3 (-538)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-547 *3)) (-4 *3 (-538)))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-547 *3)) (-4 *3 (-538))))) -(-10 -7 (-15 -3355 ((-412 |#1|) |#1|)) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -1331 ((-412 |#1|) |#1|)) (-15 -3677 ((-3 |#1| "failed") |#1|))) -((-4315 (($) 9)) (-1956 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 35)) (-3729 (((-630 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 32)) (-2636 (($ (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1769 (($ (-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3256 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-1912 (((-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-4057 (((-1243)) 12))) -(((-548) (-10 -8 (-15 -4315 ($)) (-15 -4057 ((-1243))) (-15 -3729 ((-630 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -1769 ($ (-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2636 ($ (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1956 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1912 ((-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3256 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -548)) -((-3256 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-548)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-548)))) (-1956 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-548)))) (-2636 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-548)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-548)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-548)))) (-4057 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-548)))) (-4315 (*1 *1) (-5 *1 (-548)))) -(-10 -8 (-15 -4315 ($)) (-15 -4057 ((-1243))) (-15 -3729 ((-630 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -1769 ($ (-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2636 ($ (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1956 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1912 ((-630 (-2 (|:| -2578 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3256 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1135 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1457 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-3322 (((-1151 (-401 (-1151 |#2|))) |#2| (-599 |#2|) (-599 |#2|) (-1151 |#2|)) 32)) (-2489 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|) |#2| (-1151 |#2|)) 110)) (-3684 (((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|))) 80) (((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) |#2| (-1151 |#2|)) 52)) (-2605 (((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| (-599 |#2|) |#2| (-401 (-1151 |#2|))) 87) (((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| |#2| (-1151 |#2|)) 109)) (-3687 (((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)) (-599 |#2|) |#2| (-401 (-1151 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)) |#2| (-1151 |#2|)) 111)) (-3338 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|))) 128 (|has| |#3| (-641 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) |#2| (-1151 |#2|)) 127 (|has| |#3| (-641 |#2|)))) (-3493 ((|#2| (-1151 (-401 (-1151 |#2|))) (-599 |#2|) |#2|) 50)) (-2643 (((-1151 (-401 (-1151 |#2|))) (-1151 |#2|) (-599 |#2|)) 31))) -(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -3684 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) |#2| (-1151 |#2|))) (-15 -3684 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -2605 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| |#2| (-1151 |#2|))) (-15 -2605 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -2489 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|) |#2| (-1151 |#2|))) (-15 -2489 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)) |#2| (-1151 |#2|))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)) (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -3322 ((-1151 (-401 (-1151 |#2|))) |#2| (-599 |#2|) (-599 |#2|) (-1151 |#2|))) (-15 -3493 (|#2| (-1151 (-401 (-1151 |#2|))) (-599 |#2|) |#2|)) (-15 -2643 ((-1151 (-401 (-1151 |#2|))) (-1151 |#2|) (-599 |#2|))) (IF (|has| |#3| (-641 |#2|)) (PROGN (-15 -3338 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) |#2| (-1151 |#2|))) (-15 -3338 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|))))) |%noBranch|)) (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553))) (-13 (-424 |#1|) (-27) (-1177)) (-1079)) (T -549)) -((-3338 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-401 (-1151 *4))) (-4 *4 (-13 (-424 *7) (-27) (-1177))) (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-641 *4)) (-4 *3 (-1079)))) (-3338 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-1151 *4)) (-4 *4 (-13 (-424 *7) (-27) (-1177))) (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-641 *4)) (-4 *3 (-1079)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1177))) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-1151 (-401 (-1151 *6)))) (-5 *1 (-549 *5 *6 *7)) (-5 *3 (-1151 *6)) (-4 *7 (-1079)))) (-3493 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1151 (-401 (-1151 *2)))) (-5 *4 (-599 *2)) (-4 *2 (-13 (-424 *5) (-27) (-1177))) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1079)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-1151 (-401 (-1151 *3)))) (-5 *1 (-549 *6 *3 *7)) (-5 *5 (-1151 *3)) (-4 *7 (-1079)))) (-3687 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1155))) (-5 *5 (-401 (-1151 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1079)))) (-3687 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1155))) (-5 *5 (-1151 *2)) (-4 *2 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1079)))) (-2489 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-630 *3)) (-5 *6 (-401 (-1151 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1177))) (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1079)))) (-2489 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-630 *3)) (-5 *6 (-1151 *3)) (-4 *3 (-13 (-424 *7) (-27) (-1177))) (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1079)))) (-2605 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-401 (-1151 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079)))) (-2605 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-1151 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079)))) (-3684 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-401 (-1151 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-574 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079)))) (-3684 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-1151 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-574 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079))))) -(-10 -7 (-15 -3684 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) |#2| (-1151 |#2|))) (-15 -3684 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -2605 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| |#2| (-1151 |#2|))) (-15 -2605 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -2489 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|) |#2| (-1151 |#2|))) (-15 -2489 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)) |#2| (-1151 |#2|))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)) (-599 |#2|) |#2| (-401 (-1151 |#2|)))) (-15 -3322 ((-1151 (-401 (-1151 |#2|))) |#2| (-599 |#2|) (-599 |#2|) (-1151 |#2|))) (-15 -3493 (|#2| (-1151 (-401 (-1151 |#2|))) (-599 |#2|) |#2|)) (-15 -2643 ((-1151 (-401 (-1151 |#2|))) (-1151 |#2|) (-599 |#2|))) (IF (|has| |#3| (-641 |#2|)) (PROGN (-15 -3338 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) |#2| (-1151 |#2|))) (-15 -3338 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-401 (-1151 |#2|))))) |%noBranch|)) -((-3588 (((-553) (-553) (-757)) 66)) (-3564 (((-553) (-553)) 65)) (-1584 (((-553) (-553)) 64)) (-2606 (((-553) (-553)) 69)) (-2925 (((-553) (-553) (-553)) 49)) (-1630 (((-553) (-553) (-553)) 46)) (-2537 (((-401 (-553)) (-553)) 20)) (-4188 (((-553) (-553)) 21)) (-4241 (((-553) (-553)) 58)) (-2661 (((-553) (-553)) 32)) (-1844 (((-630 (-553)) (-553)) 63)) (-4228 (((-553) (-553) (-553) (-553) (-553)) 44)) (-1635 (((-401 (-553)) (-553)) 41))) -(((-550) (-10 -7 (-15 -1635 ((-401 (-553)) (-553))) (-15 -4228 ((-553) (-553) (-553) (-553) (-553))) (-15 -1844 ((-630 (-553)) (-553))) (-15 -2661 ((-553) (-553))) (-15 -4241 ((-553) (-553))) (-15 -4188 ((-553) (-553))) (-15 -2537 ((-401 (-553)) (-553))) (-15 -1630 ((-553) (-553) (-553))) (-15 -2925 ((-553) (-553) (-553))) (-15 -2606 ((-553) (-553))) (-15 -1584 ((-553) (-553))) (-15 -3564 ((-553) (-553))) (-15 -3588 ((-553) (-553) (-757))))) (T -550)) -((-3588 (*1 *2 *2 *3) (-12 (-5 *2 (-553)) (-5 *3 (-757)) (-5 *1 (-550)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-2925 (*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-1630 (*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-2537 (*1 *2 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-550)) (-5 *3 (-553)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-1844 (*1 *2 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-550)) (-5 *3 (-553)))) (-4228 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-550)) (-5 *3 (-553))))) -(-10 -7 (-15 -1635 ((-401 (-553)) (-553))) (-15 -4228 ((-553) (-553) (-553) (-553) (-553))) (-15 -1844 ((-630 (-553)) (-553))) (-15 -2661 ((-553) (-553))) (-15 -4241 ((-553) (-553))) (-15 -4188 ((-553) (-553))) (-15 -2537 ((-401 (-553)) (-553))) (-15 -1630 ((-553) (-553) (-553))) (-15 -2925 ((-553) (-553) (-553))) (-15 -2606 ((-553) (-553))) (-15 -1584 ((-553) (-553))) (-15 -3564 ((-553) (-553))) (-15 -3588 ((-553) (-553) (-757)))) -((-3554 (((-2 (|:| |answer| |#4|) (|:| -4246 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3554 ((-2 (|:| |answer| |#4|) (|:| -4246 |#4|)) |#4| (-1 |#2| |#2|)))) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -551)) -((-3554 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) (-4 *7 (-1214 (-401 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4246 *3))) (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7))))) -(-10 -7 (-15 -3554 ((-2 (|:| |answer| |#4|) (|:| -4246 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3554 (((-2 (|:| |answer| (-401 |#2|)) (|:| -4246 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 18))) -(((-552 |#1| |#2|) (-10 -7 (-15 -3554 ((-2 (|:| |answer| (-401 |#2|)) (|:| -4246 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1214 |#1|)) (T -552)) -((-3554 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| (-401 *6)) (|:| -4246 (-401 *6)) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-552 *5 *6)) (-5 *3 (-401 *6))))) -(-10 -7 (-15 -3554 ((-2 (|:| |answer| (-401 |#2|)) (|:| -4246 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 25)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 88)) (-1968 (($ $) 89)) (-2028 (((-111) $) NIL)) (-4227 (($ $ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2464 (($ $ $ $) 43)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL)) (-1608 (($ $ $) 82)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL)) (-2707 (((-553) $) NIL)) (-3973 (($ $ $) 81)) (-2077 (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 62) (((-674 (-553)) (-674 $)) 58)) (-2982 (((-3 $ "failed") $) 85)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL)) (-4323 (((-111) $) NIL)) (-1672 (((-401 (-553)) $) NIL)) (-3031 (($) 64) (($ $) 65)) (-3952 (($ $ $) 80)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-3405 (($ $ $ $) NIL)) (-2084 (($ $ $) 55)) (-4270 (((-111) $) NIL)) (-2340 (($ $ $) NIL)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL)) (-1848 (((-111) $) 26)) (-1850 (((-111) $) 75)) (-2502 (((-3 $ "failed") $) NIL)) (-2797 (((-111) $) 35)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-4322 (($ $ $ $) 44)) (-1824 (($ $ $) 77)) (-1975 (($ $ $) 76)) (-3871 (($ $) NIL)) (-1899 (($ $) 41)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) 54)) (-3563 (($ $ $) NIL)) (-1945 (($) NIL T CONST)) (-3802 (($ $) 31)) (-2786 (((-1099) $) 34)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 119)) (-2508 (($ $ $) 86) (($ (-630 $)) NIL)) (-3757 (($ $) NIL)) (-3355 (((-412 $) $) 105)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3929 (((-3 $ "failed") $ $) 84)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3781 (((-111) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 79)) (-1330 (($ $ (-757)) NIL) (($ $) NIL)) (-3163 (($ $) 32)) (-1508 (($ $) 30)) (-1524 (((-553) $) 40) (((-529) $) 52) (((-874 (-553)) $) NIL) (((-373) $) 47) (((-220) $) 49) (((-1137) $) 53)) (-3110 (((-845) $) 38) (($ (-553)) 39) (($ $) NIL) (($ (-553)) 39)) (-1999 (((-757)) NIL)) (-3694 (((-111) $ $) NIL)) (-1737 (($ $ $) NIL)) (-2959 (($) 29)) (-1639 (((-111) $ $) NIL)) (-4028 (($ $ $ $) 42)) (-3466 (($ $) 63)) (-1988 (($) 27 T CONST)) (-1997 (($) 28 T CONST)) (-3205 (((-1137) $) 20) (((-1137) $ (-111)) 22) (((-1243) (-808) $) 23) (((-1243) (-808) $ (-111)) 24)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 66)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 67)) (-1711 (($ $) 68) (($ $ $) 70)) (-1700 (($ $ $) 69)) (** (($ $ (-903)) NIL) (($ $ (-757)) 74)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 72) (($ $ $) 71))) -(((-553) (-13 (-538) (-601 (-1137)) (-814) (-10 -8 (-15 -3031 ($ $)) (-6 -4356) (-6 -4361) (-6 -4357) (-6 -4351)))) (T -553)) -((-3031 (*1 *1 *1) (-5 *1 (-553)))) -(-13 (-538) (-601 (-1137)) (-814) (-10 -8 (-15 -3031 ($ $)) (-6 -4356) (-6 -4361) (-6 -4357) (-6 -4351))) -((-1309 (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))) (-755) (-1043)) 108) (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))) (-755)) 110)) (-3406 (((-3 (-1017) "failed") (-310 (-373)) (-1071 (-826 (-373))) (-1155)) 172) (((-3 (-1017) "failed") (-310 (-373)) (-1071 (-826 (-373))) (-1137)) 171) (((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373) (-373) (-1043)) 176) (((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373) (-373)) 177) (((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373)) 178) (((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373))))) 179) (((-1017) (-310 (-373)) (-1073 (-826 (-373)))) 167) (((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373)) 166) (((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373) (-373)) 162) (((-1017) (-755)) 155) (((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373) (-373) (-1043)) 161))) -(((-554) (-10 -7 (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373) (-373) (-1043))) (-15 -3406 ((-1017) (-755))) (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373) (-373) (-1043))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))) (-755))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))) (-755) (-1043))) (-15 -3406 ((-3 (-1017) "failed") (-310 (-373)) (-1071 (-826 (-373))) (-1137))) (-15 -3406 ((-3 (-1017) "failed") (-310 (-373)) (-1071 (-826 (-373))) (-1155))))) (T -554)) -((-3406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1071 (-826 (-373)))) (-5 *5 (-1155)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1071 (-826 (-373)))) (-5 *5 (-1137)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-1309 (*1 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-1043)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) (-5 *1 (-554)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) (-5 *5 (-373)) (-5 *6 (-1043)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1017)) (-5 *1 (-554)))) (-3406 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) (-5 *5 (-373)) (-5 *6 (-1043)) (-5 *2 (-1017)) (-5 *1 (-554))))) -(-10 -7 (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373) (-373) (-1043))) (-15 -3406 ((-1017) (-755))) (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-1073 (-826 (-373))))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373) (-373))) (-15 -3406 ((-1017) (-310 (-373)) (-630 (-1073 (-826 (-373)))) (-373) (-373) (-1043))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))) (-755))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017))) (-755) (-1043))) (-15 -3406 ((-3 (-1017) "failed") (-310 (-373)) (-1071 (-826 (-373))) (-1137))) (-15 -3406 ((-3 (-1017) "failed") (-310 (-373)) (-1071 (-826 (-373))) (-1155)))) -((-3993 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|)) 183)) (-3709 (((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|)) 98)) (-3453 (((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2|) 179)) (-4044 (((-3 |#2| "failed") |#2| |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155))) 188)) (-1909 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-1155)) 196 (|has| |#3| (-641 |#2|))))) -(((-555 |#1| |#2| |#3|) (-10 -7 (-15 -3709 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|))) (-15 -3453 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2|)) (-15 -3993 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|))) (-15 -4044 ((-3 |#2| "failed") |#2| |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)))) (IF (|has| |#3| (-641 |#2|)) (-15 -1909 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-1155))) |%noBranch|)) (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553))) (-13 (-424 |#1|) (-27) (-1177)) (-1079)) (T -555)) -((-1909 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-1155)) (-4 *4 (-13 (-424 *7) (-27) (-1177))) (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-555 *7 *4 *3)) (-4 *3 (-641 *4)) (-4 *3 (-1079)))) (-4044 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1155))) (-4 *2 (-13 (-424 *5) (-27) (-1177))) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *1 (-555 *5 *2 *6)) (-4 *6 (-1079)))) (-3993 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-630 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1177))) (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6 *3 *7)) (-4 *7 (-1079)))) (-3453 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1177))) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3 *6)) (-4 *6 (-1079)))) (-3709 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1177))) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) (-5 *2 (-574 *3)) (-5 *1 (-555 *5 *3 *6)) (-4 *6 (-1079))))) -(-10 -7 (-15 -3709 ((-574 |#2|) |#2| (-599 |#2|) (-599 |#2|))) (-15 -3453 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2|)) (-15 -3993 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-630 |#2|))) (-15 -4044 ((-3 |#2| "failed") |#2| |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1155)))) (IF (|has| |#3| (-641 |#2|)) (-15 -1909 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4124 (-630 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-1155))) |%noBranch|)) -((-4119 (((-2 (|:| -3124 |#2|) (|:| |nconst| |#2|)) |#2| (-1155)) 64)) (-3724 (((-3 |#2| "failed") |#2| (-1155) (-826 |#2|) (-826 |#2|)) 164 (-12 (|has| |#2| (-1118)) (|has| |#1| (-601 (-874 (-553)))) (|has| |#1| (-868 (-553))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155)) 147 (-12 (|has| |#2| (-616)) (|has| |#1| (-601 (-874 (-553)))) (|has| |#1| (-868 (-553)))))) (-2541 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155)) 148 (-12 (|has| |#2| (-616)) (|has| |#1| (-601 (-874 (-553)))) (|has| |#1| (-868 (-553))))))) -(((-556 |#1| |#2|) (-10 -7 (-15 -4119 ((-2 (|:| -3124 |#2|) (|:| |nconst| |#2|)) |#2| (-1155))) (IF (|has| |#1| (-601 (-874 (-553)))) (IF (|has| |#1| (-868 (-553))) (PROGN (IF (|has| |#2| (-616)) (PROGN (-15 -2541 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155))) (-15 -3724 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155)))) |%noBranch|) (IF (|has| |#2| (-1118)) (-15 -3724 ((-3 |#2| "failed") |#2| (-1155) (-826 |#2|) (-826 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-833) (-1020 (-553)) (-445) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -556)) -((-3724 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1155)) (-5 *4 (-826 *2)) (-4 *2 (-1118)) (-4 *2 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-601 (-874 (-553)))) (-4 *5 (-868 (-553))) (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) (-5 *1 (-556 *5 *2)))) (-3724 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1155)) (-4 *5 (-601 (-874 (-553)))) (-4 *5 (-868 (-553))) (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-556 *5 *3)) (-4 *3 (-616)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-2541 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1155)) (-4 *5 (-601 (-874 (-553)))) (-4 *5 (-868 (-553))) (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-556 *5 *3)) (-4 *3 (-616)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-4119 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) (-5 *2 (-2 (|:| -3124 *3) (|:| |nconst| *3))) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) -(-10 -7 (-15 -4119 ((-2 (|:| -3124 |#2|) (|:| |nconst| |#2|)) |#2| (-1155))) (IF (|has| |#1| (-601 (-874 (-553)))) (IF (|has| |#1| (-868 (-553))) (PROGN (IF (|has| |#2| (-616)) (PROGN (-15 -2541 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155))) (-15 -3724 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155)))) |%noBranch|) (IF (|has| |#2| (-1118)) (-15 -3724 ((-3 |#2| "failed") |#2| (-1155) (-826 |#2|) (-826 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3972 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-630 (-401 |#2|))) 41)) (-3406 (((-574 (-401 |#2|)) (-401 |#2|)) 28)) (-1498 (((-3 (-401 |#2|) "failed") (-401 |#2|)) 17)) (-1287 (((-3 (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|)) 48))) -(((-557 |#1| |#2|) (-10 -7 (-15 -3406 ((-574 (-401 |#2|)) (-401 |#2|))) (-15 -1498 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -1287 ((-3 (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -3972 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-630 (-401 |#2|))))) (-13 (-357) (-144) (-1020 (-553))) (-1214 |#1|)) (T -557)) -((-3972 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-630 (-401 *6))) (-5 *3 (-401 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *5 *6)))) (-1287 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| -2388 (-401 *5)) (|:| |coeff| (-401 *5)))) (-5 *1 (-557 *4 *5)) (-5 *3 (-401 *5)))) (-1498 (*1 *2 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-13 (-357) (-144) (-1020 (-553)))) (-5 *1 (-557 *3 *4)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) (-4 *5 (-1214 *4)) (-5 *2 (-574 (-401 *5))) (-5 *1 (-557 *4 *5)) (-5 *3 (-401 *5))))) -(-10 -7 (-15 -3406 ((-574 (-401 |#2|)) (-401 |#2|))) (-15 -1498 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -1287 ((-3 (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -3972 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-630 (-401 |#2|))))) -((-1892 (((-3 (-553) "failed") |#1|) 14)) (-2339 (((-111) |#1|) 13)) (-3468 (((-553) |#1|) 9))) -(((-558 |#1|) (-10 -7 (-15 -3468 ((-553) |#1|)) (-15 -2339 ((-111) |#1|)) (-15 -1892 ((-3 (-553) "failed") |#1|))) (-1020 (-553))) (T -558)) -((-1892 (*1 *2 *3) (|partial| -12 (-5 *2 (-553)) (-5 *1 (-558 *3)) (-4 *3 (-1020 *2)))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-558 *3)) (-4 *3 (-1020 (-553))))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-553)) (-5 *1 (-558 *3)) (-4 *3 (-1020 *2))))) -(-10 -7 (-15 -3468 ((-553) |#1|)) (-15 -2339 ((-111) |#1|)) (-15 -1892 ((-3 (-553) "failed") |#1|))) -((-3067 (((-3 (-2 (|:| |mainpart| (-401 (-934 |#1|))) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 (-934 |#1|))) (|:| |logand| (-401 (-934 |#1|))))))) "failed") (-401 (-934 |#1|)) (-1155) (-630 (-401 (-934 |#1|)))) 48)) (-2622 (((-574 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-1155)) 28)) (-4307 (((-3 (-401 (-934 |#1|)) "failed") (-401 (-934 |#1|)) (-1155)) 23)) (-2600 (((-3 (-2 (|:| -2388 (-401 (-934 |#1|))) (|:| |coeff| (-401 (-934 |#1|)))) "failed") (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|))) 35))) -(((-559 |#1|) (-10 -7 (-15 -2622 ((-574 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-1155))) (-15 -4307 ((-3 (-401 (-934 |#1|)) "failed") (-401 (-934 |#1|)) (-1155))) (-15 -3067 ((-3 (-2 (|:| |mainpart| (-401 (-934 |#1|))) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 (-934 |#1|))) (|:| |logand| (-401 (-934 |#1|))))))) "failed") (-401 (-934 |#1|)) (-1155) (-630 (-401 (-934 |#1|))))) (-15 -2600 ((-3 (-2 (|:| -2388 (-401 (-934 |#1|))) (|:| |coeff| (-401 (-934 |#1|)))) "failed") (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|))))) (-13 (-545) (-1020 (-553)) (-144))) (T -559)) -((-2600 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-1020 (-553)) (-144))) (-5 *2 (-2 (|:| -2388 (-401 (-934 *5))) (|:| |coeff| (-401 (-934 *5))))) (-5 *1 (-559 *5)) (-5 *3 (-401 (-934 *5))))) (-3067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-630 (-401 (-934 *6)))) (-5 *3 (-401 (-934 *6))) (-4 *6 (-13 (-545) (-1020 (-553)) (-144))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6)))) (-4307 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-401 (-934 *4))) (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-1020 (-553)) (-144))) (-5 *1 (-559 *4)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-1020 (-553)) (-144))) (-5 *2 (-574 (-401 (-934 *5)))) (-5 *1 (-559 *5)) (-5 *3 (-401 (-934 *5)))))) -(-10 -7 (-15 -2622 ((-574 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-1155))) (-15 -4307 ((-3 (-401 (-934 |#1|)) "failed") (-401 (-934 |#1|)) (-1155))) (-15 -3067 ((-3 (-2 (|:| |mainpart| (-401 (-934 |#1|))) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 (-934 |#1|))) (|:| |logand| (-401 (-934 |#1|))))))) "failed") (-401 (-934 |#1|)) (-1155) (-630 (-401 (-934 |#1|))))) (-15 -2600 ((-3 (-2 (|:| -2388 (-401 (-934 |#1|))) (|:| |coeff| (-401 (-934 |#1|)))) "failed") (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|))))) -((-3096 (((-111) $ $) 58)) (-3769 (((-111) $) 36)) (-4030 ((|#1| $) 30)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) 62)) (-2380 (($ $) 122)) (-2246 (($ $) 102)) (-2345 ((|#1| $) 28)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL)) (-2357 (($ $) 124)) (-2224 (($ $) 98)) (-2403 (($ $) 126)) (-2268 (($ $) 106)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) 77)) (-2707 (((-553) $) 79)) (-2982 (((-3 $ "failed") $) 61)) (-3285 (($ |#1| |#1|) 26)) (-4270 (((-111) $) 33)) (-3996 (($) 88)) (-1848 (((-111) $) 43)) (-2406 (($ $ (-553)) NIL)) (-2797 (((-111) $) 34)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-2366 (($ $) 90)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-4070 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-401 (-553))) 76)) (-2401 ((|#1| $) 27)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) 64) (($ (-630 $)) NIL)) (-3929 (((-3 $ "failed") $ $) 63)) (-2743 (($ $) 92)) (-2414 (($ $) 130)) (-2279 (($ $) 104)) (-2392 (($ $) 132)) (-2257 (($ $) 108)) (-2368 (($ $) 128)) (-2234 (($ $) 100)) (-3753 (((-111) $ |#1|) 31)) (-3110 (((-845) $) 84) (($ (-553)) 66) (($ $) NIL) (($ (-553)) 66)) (-1999 (((-757)) 86)) (-2447 (($ $) 144)) (-2313 (($ $) 114)) (-1639 (((-111) $ $) NIL)) (-2425 (($ $) 142)) (-2291 (($ $) 110)) (-3791 (($ $) 140)) (-2336 (($ $) 120)) (-2570 (($ $) 138)) (-2346 (($ $) 118)) (-3780 (($ $) 136)) (-2324 (($ $) 116)) (-2435 (($ $) 134)) (-2302 (($ $) 112)) (-1988 (($) 21 T CONST)) (-1997 (($) 10 T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 37)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 35)) (-1711 (($ $) 41) (($ $ $) 42)) (-1700 (($ $ $) 40)) (** (($ $ (-903)) 54) (($ $ (-757)) NIL) (($ $ $) 94) (($ $ (-401 (-553))) 146)) (* (($ (-903) $) 51) (($ (-757) $) NIL) (($ (-553) $) 50) (($ $ $) 48))) -(((-560 |#1|) (-543 |#1|) (-13 (-398) (-1177))) (T -560)) -NIL -(-543 |#1|) -((-3013 (((-3 (-630 (-1151 (-553))) "failed") (-630 (-1151 (-553))) (-1151 (-553))) 24))) -(((-561) (-10 -7 (-15 -3013 ((-3 (-630 (-1151 (-553))) "failed") (-630 (-1151 (-553))) (-1151 (-553)))))) (T -561)) -((-3013 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-1151 (-553)))) (-5 *3 (-1151 (-553))) (-5 *1 (-561))))) -(-10 -7 (-15 -3013 ((-3 (-630 (-1151 (-553))) "failed") (-630 (-1151 (-553))) (-1151 (-553))))) -((-1554 (((-630 (-599 |#2|)) (-630 (-599 |#2|)) (-1155)) 19)) (-4146 (((-630 (-599 |#2|)) (-630 |#2|) (-1155)) 23)) (-3368 (((-630 (-599 |#2|)) (-630 (-599 |#2|)) (-630 (-599 |#2|))) 11)) (-1987 ((|#2| |#2| (-1155)) 54 (|has| |#1| (-545)))) (-3075 ((|#2| |#2| (-1155)) 78 (-12 (|has| |#2| (-278)) (|has| |#1| (-445))))) (-1959 (((-599 |#2|) (-599 |#2|) (-630 (-599 |#2|)) (-1155)) 25)) (-3386 (((-599 |#2|) (-630 (-599 |#2|))) 24)) (-1827 (((-574 |#2|) |#2| (-1155) (-1 (-574 |#2|) |#2| (-1155)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155))) 103 (-12 (|has| |#2| (-278)) (|has| |#2| (-616)) (|has| |#2| (-1020 (-1155))) (|has| |#1| (-601 (-874 (-553)))) (|has| |#1| (-445)) (|has| |#1| (-868 (-553))))))) -(((-562 |#1| |#2|) (-10 -7 (-15 -1554 ((-630 (-599 |#2|)) (-630 (-599 |#2|)) (-1155))) (-15 -3386 ((-599 |#2|) (-630 (-599 |#2|)))) (-15 -1959 ((-599 |#2|) (-599 |#2|) (-630 (-599 |#2|)) (-1155))) (-15 -3368 ((-630 (-599 |#2|)) (-630 (-599 |#2|)) (-630 (-599 |#2|)))) (-15 -4146 ((-630 (-599 |#2|)) (-630 |#2|) (-1155))) (IF (|has| |#1| (-545)) (-15 -1987 (|#2| |#2| (-1155))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -3075 (|#2| |#2| (-1155))) (IF (|has| |#1| (-601 (-874 (-553)))) (IF (|has| |#1| (-868 (-553))) (IF (|has| |#2| (-616)) (IF (|has| |#2| (-1020 (-1155))) (-15 -1827 ((-574 |#2|) |#2| (-1155) (-1 (-574 |#2|) |#2| (-1155)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-833) (-424 |#1|)) (T -562)) -((-1827 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-574 *3) *3 (-1155))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1155))) (-4 *3 (-278)) (-4 *3 (-616)) (-4 *3 (-1020 *4)) (-4 *3 (-424 *7)) (-5 *4 (-1155)) (-4 *7 (-601 (-874 (-553)))) (-4 *7 (-445)) (-4 *7 (-868 (-553))) (-4 *7 (-833)) (-5 *2 (-574 *3)) (-5 *1 (-562 *7 *3)))) (-3075 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-445)) (-4 *4 (-833)) (-5 *1 (-562 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4)))) (-1987 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-545)) (-4 *4 (-833)) (-5 *1 (-562 *4 *2)) (-4 *2 (-424 *4)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6)) (-5 *4 (-1155)) (-4 *6 (-424 *5)) (-4 *5 (-833)) (-5 *2 (-630 (-599 *6))) (-5 *1 (-562 *5 *6)))) (-3368 (*1 *2 *2 *2) (-12 (-5 *2 (-630 (-599 *4))) (-4 *4 (-424 *3)) (-4 *3 (-833)) (-5 *1 (-562 *3 *4)))) (-1959 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-630 (-599 *6))) (-5 *4 (-1155)) (-5 *2 (-599 *6)) (-4 *6 (-424 *5)) (-4 *5 (-833)) (-5 *1 (-562 *5 *6)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-630 (-599 *5))) (-4 *4 (-833)) (-5 *2 (-599 *5)) (-5 *1 (-562 *4 *5)) (-4 *5 (-424 *4)))) (-1554 (*1 *2 *2 *3) (-12 (-5 *2 (-630 (-599 *5))) (-5 *3 (-1155)) (-4 *5 (-424 *4)) (-4 *4 (-833)) (-5 *1 (-562 *4 *5))))) -(-10 -7 (-15 -1554 ((-630 (-599 |#2|)) (-630 (-599 |#2|)) (-1155))) (-15 -3386 ((-599 |#2|) (-630 (-599 |#2|)))) (-15 -1959 ((-599 |#2|) (-599 |#2|) (-630 (-599 |#2|)) (-1155))) (-15 -3368 ((-630 (-599 |#2|)) (-630 (-599 |#2|)) (-630 (-599 |#2|)))) (-15 -4146 ((-630 (-599 |#2|)) (-630 |#2|) (-1155))) (IF (|has| |#1| (-545)) (-15 -1987 (|#2| |#2| (-1155))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -3075 (|#2| |#2| (-1155))) (IF (|has| |#1| (-601 (-874 (-553)))) (IF (|has| |#1| (-868 (-553))) (IF (|has| |#2| (-616)) (IF (|has| |#2| (-1020 (-1155))) (-15 -1827 ((-574 |#2|) |#2| (-1155) (-1 (-574 |#2|) |#2| (-1155)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1155)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2034 (((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-630 |#1|) "failed") (-553) |#1| |#1|)) 172)) (-2589 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-630 (-401 |#2|))) 148)) (-1876 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-630 (-401 |#2|))) 145)) (-4059 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1745 (((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3626 (((-3 (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|)) 175)) (-1319 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|)) 178)) (-2076 (((-2 (|:| |ir| (-574 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 84)) (-1353 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2843 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|) (-630 (-401 |#2|))) 152)) (-3009 (((-3 (-610 |#1| |#2|) "failed") (-610 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|)) 137)) (-2510 (((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|)) 162)) (-2981 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|) (-401 |#2|)) 183))) -(((-563 |#1| |#2|) (-10 -7 (-15 -1745 ((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2510 ((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|))) (-15 -2034 ((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-630 |#1|) "failed") (-553) |#1| |#1|))) (-15 -1319 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -2981 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|) (-401 |#2|))) (-15 -2589 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-630 (-401 |#2|)))) (-15 -2843 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|) (-630 (-401 |#2|)))) (-15 -3626 ((-3 (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -1876 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-630 (-401 |#2|)))) (-15 -4059 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3009 ((-3 (-610 |#1| |#2|) "failed") (-610 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|))) (-15 -2076 ((-2 (|:| |ir| (-574 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1353 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-357) (-1214 |#1|)) (T -563)) -((-1353 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-563 *5 *3)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |ir| (-574 (-401 *6))) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-401 *6)))) (-3009 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-610 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3323 *4) (|:| |sol?| (-111))) (-553) *4)) (-4 *4 (-357)) (-4 *5 (-1214 *4)) (-5 *1 (-563 *4 *5)))) (-4059 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2388 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-357)) (-5 *1 (-563 *4 *2)) (-4 *2 (-1214 *4)))) (-1876 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-630 (-401 *7))) (-4 *7 (-1214 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *7)))) (-3626 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -2388 (-401 *6)) (|:| |coeff| (-401 *6)))) (-5 *1 (-563 *5 *6)) (-5 *3 (-401 *6)))) (-2843 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3323 *7) (|:| |sol?| (-111))) (-553) *7)) (-5 *6 (-630 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1214 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-563 *7 *8)))) (-2589 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2388 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-630 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1214 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-563 *7 *8)))) (-2981 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3323 *6) (|:| |sol?| (-111))) (-553) *6)) (-4 *6 (-357)) (-4 *7 (-1214 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -2388 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7)))) (-1319 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2388 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1214 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -2388 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7)))) (-2034 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-630 *6) "failed") (-553) *6 *6)) (-4 *6 (-357)) (-4 *7 (-1214 *6)) (-5 *2 (-2 (|:| |answer| (-574 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7)))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3323 *6) (|:| |sol?| (-111))) (-553) *6)) (-4 *6 (-357)) (-4 *7 (-1214 *6)) (-5 *2 (-2 (|:| |answer| (-574 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7)))) (-1745 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2388 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1214 *6)) (-5 *2 (-2 (|:| |answer| (-574 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7))))) -(-10 -7 (-15 -1745 ((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2510 ((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|))) (-15 -2034 ((-2 (|:| |answer| (-574 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-630 |#1|) "failed") (-553) |#1| |#1|))) (-15 -1319 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -2981 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|) (-401 |#2|))) (-15 -2589 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-630 (-401 |#2|)))) (-15 -2843 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|) (-630 (-401 |#2|)))) (-15 -3626 ((-3 (-2 (|:| -2388 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -1876 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-630 (-401 |#2|)))) (-15 -4059 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3009 ((-3 (-610 |#1| |#2|) "failed") (-610 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3323 |#1|) (|:| |sol?| (-111))) (-553) |#1|))) (-15 -2076 ((-2 (|:| |ir| (-574 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1353 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2331 (((-3 |#2| "failed") |#2| (-1155) (-1155)) 10))) -(((-564 |#1| |#2|) (-10 -7 (-15 -2331 ((-3 |#2| "failed") |#2| (-1155) (-1155)))) (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-941) (-1118) (-29 |#1|))) (T -564)) -((-2331 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1155)) (-4 *4 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-564 *4 *2)) (-4 *2 (-13 (-1177) (-941) (-1118) (-29 *4)))))) -(-10 -7 (-15 -2331 ((-3 |#2| "failed") |#2| (-1155) (-1155)))) -((-3688 (((-1099) $ (-127)) 12)) (-1865 (((-1099) $ (-128)) 11)) (-2778 (((-1099) $ (-127)) 7)) (-3931 (((-1099) $) 8)) (-2407 (($ $) 6))) -(((-565) (-137)) (T -565)) -NIL -(-13 (-520) (-843)) -(((-170) . T) ((-520) . T) ((-843) . T)) -((-3688 (((-1099) $ (-127)) NIL)) (-1865 (((-1099) $ (-128)) NIL)) (-2778 (((-1099) $ (-127)) NIL)) (-3931 (((-1099) $) NIL)) (-2465 (((-111) $) NIL)) (-1704 (($ (-382)) 14) (($ (-1137)) 16)) (-3110 (((-845) $) NIL)) (-2407 (($ $) NIL))) -(((-566) (-13 (-565) (-600 (-845)) (-10 -8 (-15 -1704 ($ (-382))) (-15 -1704 ($ (-1137))) (-15 -2465 ((-111) $))))) (T -566)) -((-1704 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-566)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-566)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-566))))) -(-13 (-565) (-600 (-845)) (-10 -8 (-15 -1704 ($ (-382))) (-15 -1704 ($ (-1137))) (-15 -2465 ((-111) $)))) -((-3096 (((-111) $ $) NIL)) (-3706 (($) 7 T CONST)) (-1735 (((-1137) $) NIL)) (-1425 (($) 6 T CONST)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 14)) (-1641 (($) 8 T CONST)) (-1617 (((-111) $ $) 10))) -(((-567) (-13 (-1079) (-10 -8 (-15 -1425 ($) -3879) (-15 -3706 ($) -3879) (-15 -1641 ($) -3879)))) (T -567)) -((-1425 (*1 *1) (-5 *1 (-567))) (-3706 (*1 *1) (-5 *1 (-567))) (-1641 (*1 *1) (-5 *1 (-567)))) -(-13 (-1079) (-10 -8 (-15 -1425 ($) -3879) (-15 -3706 ($) -3879) (-15 -1641 ($) -3879))) -((-3096 (((-111) $ $) NIL)) (-1884 (((-3 $ "failed") (-484)) 13)) (-1735 (((-1137) $) NIL)) (-3383 (($ (-1137)) 9)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 28)) (-2237 (((-208 4 (-128)) $) 16)) (-1617 (((-111) $ $) 19))) -(((-568) (-13 (-1079) (-10 -8 (-15 -3383 ($ (-1137))) (-15 -2237 ((-208 4 (-128)) $)) (-15 -1884 ((-3 $ "failed") (-484)))))) (T -568)) -((-3383 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-568)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-568)))) (-1884 (*1 *1 *2) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-568))))) -(-13 (-1079) (-10 -8 (-15 -3383 ($ (-1137))) (-15 -2237 ((-208 4 (-128)) $)) (-15 -1884 ((-3 $ "failed") (-484))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-553)) 66)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-4257 (($ (-1151 (-553)) (-553)) 72)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 58)) (-2220 (($ $) 34)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2968 (((-757) $) 15)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2326 (((-553)) 29)) (-2420 (((-553) $) 32)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3089 (($ $ (-553)) 21)) (-3929 (((-3 $ "failed") $ $) 59)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) 16)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 61)) (-2989 (((-1135 (-553)) $) 18)) (-2980 (($ $) 23)) (-3110 (((-845) $) 87) (($ (-553)) 52) (($ $) NIL)) (-1999 (((-757)) 14)) (-1639 (((-111) $ $) NIL)) (-4327 (((-553) $ (-553)) 36)) (-1988 (($) 35 T CONST)) (-1997 (($) 19 T CONST)) (-1617 (((-111) $ $) 39)) (-1711 (($ $) 51) (($ $ $) 37)) (-1700 (($ $ $) 50)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 54) (($ $ $) 55))) -(((-569 |#1| |#2|) (-851 |#1|) (-553) (-111)) (T -569)) -NIL -(-851 |#1|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 21)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 (($ $ (-903)) NIL (|has| $ (-362))) (($ $) NIL)) (-3555 (((-1165 (-903) (-757)) (-553)) 47)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 $ "failed") $) 75)) (-2707 (($ $) 74)) (-3461 (($ (-1238 $)) 73)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 32)) (-3031 (($) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) 49)) (-3637 (((-111) $) NIL)) (-1808 (($ $) NIL) (($ $ (-757)) NIL)) (-3119 (((-111) $) NIL)) (-2968 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1848 (((-111) $) NIL)) (-2157 (($) 37 (|has| $ (-362)))) (-2574 (((-111) $) NIL (|has| $ (-362)))) (-3560 (($ $ (-903)) NIL (|has| $ (-362))) (($ $) NIL)) (-2502 (((-3 $ "failed") $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 $) $ (-903)) NIL (|has| $ (-362))) (((-1151 $) $) 83)) (-3796 (((-903) $) 55)) (-3194 (((-1151 $) $) NIL (|has| $ (-362)))) (-3540 (((-3 (-1151 $) "failed") $ $) NIL (|has| $ (-362))) (((-1151 $) $) NIL (|has| $ (-362)))) (-4036 (($ $ (-1151 $)) NIL (|has| $ (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL T CONST)) (-2735 (($ (-903)) 48)) (-1657 (((-111) $) 67)) (-2786 (((-1099) $) NIL)) (-4093 (($) 19 (|has| $ (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 42)) (-3355 (((-412 $) $) NIL)) (-4043 (((-903)) 66) (((-819 (-903))) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-3 (-757) "failed") $ $) NIL) (((-757) $) NIL)) (-1337 (((-132)) NIL)) (-1330 (($ $ (-757)) NIL) (($ $) NIL)) (-3872 (((-903) $) 65) (((-819 (-903)) $) NIL)) (-1394 (((-1151 $)) 82)) (-1469 (($) 54)) (-3407 (($) 38 (|has| $ (-362)))) (-2855 (((-674 $) (-1238 $)) NIL) (((-1238 $) $) 71)) (-1524 (((-553) $) 28)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) 30) (($ $) NIL) (($ (-401 (-553))) NIL)) (-2941 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1999 (((-757)) 39)) (-4124 (((-1238 $) (-903)) 77) (((-1238 $)) 76)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) 22 T CONST)) (-1997 (($) 18 T CONST)) (-1950 (($ $ (-757)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 26)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 61) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-570 |#1|) (-13 (-343) (-323 $) (-601 (-553))) (-903)) (T -570)) -NIL -(-13 (-343) (-323 $) (-601 (-553))) -((-3083 (((-1243) (-1137)) 10))) -(((-571) (-10 -7 (-15 -3083 ((-1243) (-1137))))) (T -571)) -((-3083 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-571))))) -(-10 -7 (-15 -3083 ((-1243) (-1137)))) -((-3446 (((-574 |#2|) (-574 |#2|)) 40)) (-3873 (((-630 |#2|) (-574 |#2|)) 42)) (-3279 ((|#2| (-574 |#2|)) 48))) -(((-572 |#1| |#2|) (-10 -7 (-15 -3446 ((-574 |#2|) (-574 |#2|))) (-15 -3873 ((-630 |#2|) (-574 |#2|))) (-15 -3279 (|#2| (-574 |#2|)))) (-13 (-445) (-1020 (-553)) (-833) (-626 (-553))) (-13 (-29 |#1|) (-1177))) (T -572)) -((-3279 (*1 *2 *3) (-12 (-5 *3 (-574 *2)) (-4 *2 (-13 (-29 *4) (-1177))) (-5 *1 (-572 *4 *2)) (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-574 *5)) (-4 *5 (-13 (-29 *4) (-1177))) (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *2 (-630 *5)) (-5 *1 (-572 *4 *5)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-574 *4)) (-4 *4 (-13 (-29 *3) (-1177))) (-4 *3 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *1 (-572 *3 *4))))) -(-10 -7 (-15 -3446 ((-574 |#2|) (-574 |#2|))) (-15 -3873 ((-630 |#2|) (-574 |#2|))) (-15 -3279 (|#2| (-574 |#2|)))) -((-1482 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-574 |#2|) (-1 |#2| |#1|) (-574 |#1|)) 30))) -(((-573 |#1| |#2|) (-10 -7 (-15 -1482 ((-574 |#2|) (-1 |#2| |#1|) (-574 |#1|))) (-15 -1482 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1482 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1482 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-357) (-357)) (T -573)) -((-1482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-573 *5 *6)))) (-1482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-573 *5 *2)))) (-1482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2388 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| -2388 *6) (|:| |coeff| *6))) (-5 *1 (-573 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-574 *5)) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-574 *6)) (-5 *1 (-573 *5 *6))))) -(-10 -7 (-15 -1482 ((-574 |#2|) (-1 |#2| |#1|) (-574 |#1|))) (-15 -1482 ((-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2388 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1482 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1482 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 69)) (-2707 ((|#1| $) NIL)) (-2388 ((|#1| $) 26)) (-3775 (((-630 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3085 (($ |#1| (-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 |#1|)) (|:| |logand| (-1151 |#1|)))) (-630 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-4246 (((-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 |#1|)) (|:| |logand| (-1151 |#1|)))) $) 27)) (-1735 (((-1137) $) NIL)) (-3144 (($ |#1| |#1|) 33) (($ |#1| (-1155)) 44 (|has| |#1| (-1020 (-1155))))) (-2786 (((-1099) $) NIL)) (-4336 (((-111) $) 30)) (-1330 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1155)) 82 (|has| |#1| (-882 (-1155))))) (-3110 (((-845) $) 96) (($ |#1|) 25)) (-1988 (($) 16 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) 15) (($ $ $) NIL)) (-1700 (($ $ $) 78)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 14) (($ (-401 (-553)) $) 36) (($ $ (-401 (-553))) NIL))) -(((-574 |#1|) (-13 (-703 (-401 (-553))) (-1020 |#1|) (-10 -8 (-15 -3085 ($ |#1| (-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 |#1|)) (|:| |logand| (-1151 |#1|)))) (-630 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2388 (|#1| $)) (-15 -4246 ((-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 |#1|)) (|:| |logand| (-1151 |#1|)))) $)) (-15 -3775 ((-630 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4336 ((-111) $)) (-15 -3144 ($ |#1| |#1|)) (-15 -1330 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-882 (-1155))) (-15 -1330 (|#1| $ (-1155))) |%noBranch|) (IF (|has| |#1| (-1020 (-1155))) (-15 -3144 ($ |#1| (-1155))) |%noBranch|))) (-357)) (T -574)) -((-3085 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 *2)) (|:| |logand| (-1151 *2))))) (-5 *4 (-630 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-357)) (-5 *1 (-574 *2)))) (-2388 (*1 *2 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-357)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 *3)) (|:| |logand| (-1151 *3))))) (-5 *1 (-574 *3)) (-4 *3 (-357)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-574 *3)) (-4 *3 (-357)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-357)))) (-3144 (*1 *1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-357)))) (-1330 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-574 *2)) (-4 *2 (-357)))) (-1330 (*1 *2 *1 *3) (-12 (-4 *2 (-357)) (-4 *2 (-882 *3)) (-5 *1 (-574 *2)) (-5 *3 (-1155)))) (-3144 (*1 *1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *1 (-574 *2)) (-4 *2 (-1020 *3)) (-4 *2 (-357))))) -(-13 (-703 (-401 (-553))) (-1020 |#1|) (-10 -8 (-15 -3085 ($ |#1| (-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 |#1|)) (|:| |logand| (-1151 |#1|)))) (-630 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2388 (|#1| $)) (-15 -4246 ((-630 (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 |#1|)) (|:| |logand| (-1151 |#1|)))) $)) (-15 -3775 ((-630 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4336 ((-111) $)) (-15 -3144 ($ |#1| |#1|)) (-15 -1330 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-882 (-1155))) (-15 -1330 (|#1| $ (-1155))) |%noBranch|) (IF (|has| |#1| (-1020 (-1155))) (-15 -3144 ($ |#1| (-1155))) |%noBranch|))) -((-1563 (((-111) |#1|) 16)) (-3459 (((-3 |#1| "failed") |#1|) 14)) (-2595 (((-2 (|:| -2959 |#1|) (|:| -2692 (-757))) |#1|) 31) (((-3 |#1| "failed") |#1| (-757)) 18)) (-3035 (((-111) |#1| (-757)) 19)) (-1312 ((|#1| |#1|) 32)) (-3488 ((|#1| |#1| (-757)) 34))) -(((-575 |#1|) (-10 -7 (-15 -3035 ((-111) |#1| (-757))) (-15 -2595 ((-3 |#1| "failed") |#1| (-757))) (-15 -2595 ((-2 (|:| -2959 |#1|) (|:| -2692 (-757))) |#1|)) (-15 -3488 (|#1| |#1| (-757))) (-15 -1563 ((-111) |#1|)) (-15 -3459 ((-3 |#1| "failed") |#1|)) (-15 -1312 (|#1| |#1|))) (-538)) (T -575)) -((-1312 (*1 *2 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-538)))) (-3459 (*1 *2 *2) (|partial| -12 (-5 *1 (-575 *2)) (-4 *2 (-538)))) (-1563 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-575 *3)) (-4 *3 (-538)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *3 (-757)) (-5 *1 (-575 *2)) (-4 *2 (-538)))) (-2595 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2959 *3) (|:| -2692 (-757)))) (-5 *1 (-575 *3)) (-4 *3 (-538)))) (-2595 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-757)) (-5 *1 (-575 *2)) (-4 *2 (-538)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-5 *2 (-111)) (-5 *1 (-575 *3)) (-4 *3 (-538))))) -(-10 -7 (-15 -3035 ((-111) |#1| (-757))) (-15 -2595 ((-3 |#1| "failed") |#1| (-757))) (-15 -2595 ((-2 (|:| -2959 |#1|) (|:| -2692 (-757))) |#1|)) (-15 -3488 (|#1| |#1| (-757))) (-15 -1563 ((-111) |#1|)) (-15 -3459 ((-3 |#1| "failed") |#1|)) (-15 -1312 (|#1| |#1|))) -((-3027 (((-1151 |#1|) (-903)) 27))) -(((-576 |#1|) (-10 -7 (-15 -3027 ((-1151 |#1|) (-903)))) (-343)) (T -576)) -((-3027 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-576 *4)) (-4 *4 (-343))))) -(-10 -7 (-15 -3027 ((-1151 |#1|) (-903)))) -((-3446 (((-574 (-401 (-934 |#1|))) (-574 (-401 (-934 |#1|)))) 27)) (-3406 (((-3 (-310 |#1|) (-630 (-310 |#1|))) (-401 (-934 |#1|)) (-1155)) 34 (|has| |#1| (-144)))) (-3873 (((-630 (-310 |#1|)) (-574 (-401 (-934 |#1|)))) 19)) (-2169 (((-310 |#1|) (-401 (-934 |#1|)) (-1155)) 32 (|has| |#1| (-144)))) (-3279 (((-310 |#1|) (-574 (-401 (-934 |#1|)))) 21))) -(((-577 |#1|) (-10 -7 (-15 -3446 ((-574 (-401 (-934 |#1|))) (-574 (-401 (-934 |#1|))))) (-15 -3873 ((-630 (-310 |#1|)) (-574 (-401 (-934 |#1|))))) (-15 -3279 ((-310 |#1|) (-574 (-401 (-934 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -3406 ((-3 (-310 |#1|) (-630 (-310 |#1|))) (-401 (-934 |#1|)) (-1155))) (-15 -2169 ((-310 |#1|) (-401 (-934 |#1|)) (-1155)))) |%noBranch|)) (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (T -577)) -((-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *2 (-310 *5)) (-5 *1 (-577 *5)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *2 (-3 (-310 *5) (-630 (-310 *5)))) (-5 *1 (-577 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-574 (-401 (-934 *4)))) (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *2 (-310 *4)) (-5 *1 (-577 *4)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-574 (-401 (-934 *4)))) (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *2 (-630 (-310 *4))) (-5 *1 (-577 *4)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-574 (-401 (-934 *3)))) (-4 *3 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) (-5 *1 (-577 *3))))) -(-10 -7 (-15 -3446 ((-574 (-401 (-934 |#1|))) (-574 (-401 (-934 |#1|))))) (-15 -3873 ((-630 (-310 |#1|)) (-574 (-401 (-934 |#1|))))) (-15 -3279 ((-310 |#1|) (-574 (-401 (-934 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -3406 ((-3 (-310 |#1|) (-630 (-310 |#1|))) (-401 (-934 |#1|)) (-1155))) (-15 -2169 ((-310 |#1|) (-401 (-934 |#1|)) (-1155)))) |%noBranch|)) -((-3410 (((-630 (-674 (-553))) (-630 (-553)) (-630 (-887 (-553)))) 46) (((-630 (-674 (-553))) (-630 (-553))) 47) (((-674 (-553)) (-630 (-553)) (-887 (-553))) 42)) (-1828 (((-757) (-630 (-553))) 40))) -(((-578) (-10 -7 (-15 -1828 ((-757) (-630 (-553)))) (-15 -3410 ((-674 (-553)) (-630 (-553)) (-887 (-553)))) (-15 -3410 ((-630 (-674 (-553))) (-630 (-553)))) (-15 -3410 ((-630 (-674 (-553))) (-630 (-553)) (-630 (-887 (-553))))))) (T -578)) -((-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-553))) (-5 *4 (-630 (-887 (-553)))) (-5 *2 (-630 (-674 (-553)))) (-5 *1 (-578)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-630 (-674 (-553)))) (-5 *1 (-578)))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-553))) (-5 *4 (-887 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-578)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-757)) (-5 *1 (-578))))) -(-10 -7 (-15 -1828 ((-757) (-630 (-553)))) (-15 -3410 ((-674 (-553)) (-630 (-553)) (-887 (-553)))) (-15 -3410 ((-630 (-674 (-553))) (-630 (-553)))) (-15 -3410 ((-630 (-674 (-553))) (-630 (-553)) (-630 (-887 (-553)))))) -((-3844 (((-630 |#5|) |#5| (-111)) 73)) (-3524 (((-111) |#5| (-630 |#5|)) 30))) -(((-579 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3844 ((-630 |#5|) |#5| (-111))) (-15 -3524 ((-111) |#5| (-630 |#5|)))) (-13 (-301) (-144)) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -579)) -((-3524 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-579 *5 *6 *7 *8 *3)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-630 *3)) (-5 *1 (-579 *5 *6 *7 *8 *3)) (-4 *3 (-1088 *5 *6 *7 *8))))) -(-10 -7 (-15 -3844 ((-630 |#5|) |#5| (-111))) (-15 -3524 ((-111) |#5| (-630 |#5|)))) -((-3096 (((-111) $ $) NIL)) (-1314 (((-1114) $) 11)) (-1301 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-580) (-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $))))) (T -580)) -((-1301 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-580)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-580))))) -(-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $)))) -((-3096 (((-111) $ $) NIL (|has| (-141) (-1079)))) (-3968 (($ $) 34)) (-3913 (($ $) NIL)) (-2009 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-1272 (((-111) $ $) 51)) (-4324 (((-111) $ $ (-553)) 46)) (-3446 (((-630 $) $ (-141)) 60) (((-630 $) $ (-138)) 61)) (-2768 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-833)))) (-1587 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| (-141) (-833))))) (-2990 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 (((-141) $ (-553) (-141)) 45 (|has| $ (-6 -4370))) (((-141) $ (-1205 (-553)) (-141)) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2168 (($ $ (-141)) 64) (($ $ (-138)) 65)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2691 (($ $ (-1205 (-553)) $) 44)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2575 (($ (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4369))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2515 (((-141) $ (-553) (-141)) NIL (|has| $ (-6 -4370)))) (-2441 (((-141) $ (-553)) NIL)) (-1294 (((-111) $ $) 72)) (-1478 (((-553) (-1 (-111) (-141)) $) NIL) (((-553) (-141) $) NIL (|has| (-141) (-1079))) (((-553) (-141) $ (-553)) 48 (|has| (-141) (-1079))) (((-553) $ $ (-553)) 47) (((-553) (-138) $ (-553)) 50)) (-1408 (((-630 (-141)) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) (-141)) 9)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 28 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| (-141) (-833)))) (-3160 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-833)))) (-2195 (((-630 (-141)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2958 (((-553) $) 42 (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-141) (-833)))) (-1529 (((-111) $ $ (-141)) 73)) (-1794 (((-757) $ $ (-141)) 70)) (-2503 (($ (-1 (-141) (-141)) $) 33 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-2477 (($ $) 37)) (-2924 (($ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-2179 (($ $ (-141)) 62) (($ $ (-138)) 63)) (-1735 (((-1137) $) 38 (|has| (-141) (-1079)))) (-1774 (($ (-141) $ (-553)) NIL) (($ $ $ (-553)) 23)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-553) $) 69) (((-1099) $) NIL (|has| (-141) (-1079)))) (-2603 (((-141) $) NIL (|has| (-553) (-833)))) (-3016 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-2858 (($ $ (-141)) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-630 (-141)) (-630 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-1912 (((-630 (-141)) $) NIL)) (-3586 (((-111) $) 12)) (-3222 (($) 10)) (-2046 (((-141) $ (-553) (-141)) NIL) (((-141) $ (-553)) 52) (($ $ (-1205 (-553))) 21) (($ $ $) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369))) (((-757) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2530 (($ $ $ (-553)) 66 (|has| $ (-6 -4370)))) (-1508 (($ $) 17)) (-1524 (((-529) $) NIL (|has| (-141) (-601 (-529))))) (-3121 (($ (-630 (-141))) NIL)) (-4325 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) 16) (($ (-630 $)) 67)) (-3110 (($ (-141)) NIL) (((-845) $) 27 (|has| (-141) (-600 (-845))))) (-3296 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| (-141) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-141) (-833)))) (-1617 (((-111) $ $) 14 (|has| (-141) (-1079)))) (-1659 (((-111) $ $) NIL (|has| (-141) (-833)))) (-1636 (((-111) $ $) 15 (|has| (-141) (-833)))) (-2563 (((-757) $) 13 (|has| $ (-6 -4369))))) -(((-581 |#1|) (-13 (-1123) (-10 -8 (-15 -2786 ((-553) $)))) (-553)) (T -581)) -((-2786 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-581 *3)) (-14 *3 *2)))) -(-13 (-1123) (-10 -8 (-15 -2786 ((-553) $)))) -((-2868 (((-2 (|:| |num| |#4|) (|:| |den| (-553))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-553))) |#4| |#2| (-1073 |#4|)) 32))) -(((-582 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 ((-2 (|:| |num| |#4|) (|:| |den| (-553))) |#4| |#2| (-1073 |#4|))) (-15 -2868 ((-2 (|:| |num| |#4|) (|:| |den| (-553))) |#4| |#2|))) (-779) (-833) (-545) (-931 |#3| |#1| |#2|)) (T -582)) -((-2868 (*1 *2 *3 *4) (-12 (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-553)))) (-5 *1 (-582 *5 *4 *6 *3)) (-4 *3 (-931 *6 *5 *4)))) (-2868 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073 *3)) (-4 *3 (-931 *7 *6 *4)) (-4 *6 (-779)) (-4 *4 (-833)) (-4 *7 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-553)))) (-5 *1 (-582 *6 *4 *7 *3))))) -(-10 -7 (-15 -2868 ((-2 (|:| |num| |#4|) (|:| |den| (-553))) |#4| |#2| (-1073 |#4|))) (-15 -2868 ((-2 (|:| |num| |#4|) (|:| |den| (-553))) |#4| |#2|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 63)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-553)) 54) (($ $ (-553) (-553)) 55)) (-2140 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) 60)) (-1600 (($ $) 100)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1651 (((-845) (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) (-1008 (-826 (-553))) (-1155) |#1| (-401 (-553))) 224)) (-1779 (($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) 34)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-4008 (((-111) $) NIL)) (-2968 (((-553) $) 58) (((-553) $ (-553)) 59)) (-1848 (((-111) $) NIL)) (-2166 (($ $ (-903)) 76)) (-2341 (($ (-1 |#1| (-553)) $) 73)) (-1298 (((-111) $) 25)) (-3481 (($ |#1| (-553)) 22) (($ $ (-1061) (-553)) NIL) (($ $ (-630 (-1061)) (-630 (-553))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) 67)) (-2259 (($ (-1008 (-826 (-553))) (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) 13)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-3406 (($ $) 150 (|has| |#1| (-38 (-401 (-553)))))) (-3824 (((-3 $ "failed") $ $ (-111)) 99)) (-3600 (($ $ $) 108)) (-2786 (((-1099) $) NIL)) (-4280 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) 15)) (-2071 (((-1008 (-826 (-553))) $) 14)) (-3089 (($ $ (-553)) 45)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-553)))))) (-2046 ((|#1| $ (-553)) 57) (($ $ $) NIL (|has| (-553) (-1091)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-553) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (-3872 (((-553) $) NIL)) (-2980 (($ $) 46)) (-3110 (((-845) $) NIL) (($ (-553)) 28) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 27 (|has| |#1| (-169)))) (-1624 ((|#1| $ (-553)) 56)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) 37)) (-4010 ((|#1| $) NIL)) (-1764 (($ $) 186 (|has| |#1| (-38 (-401 (-553)))))) (-2377 (($ $) 158 (|has| |#1| (-38 (-401 (-553)))))) (-2651 (($ $) 190 (|has| |#1| (-38 (-401 (-553)))))) (-1775 (($ $) 163 (|has| |#1| (-38 (-401 (-553)))))) (-3137 (($ $) 189 (|has| |#1| (-38 (-401 (-553)))))) (-1479 (($ $) 162 (|has| |#1| (-38 (-401 (-553)))))) (-2869 (($ $ (-401 (-553))) 166 (|has| |#1| (-38 (-401 (-553)))))) (-3274 (($ $ |#1|) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2849 (($ $) 192 (|has| |#1| (-38 (-401 (-553)))))) (-3494 (($ $) 149 (|has| |#1| (-38 (-401 (-553)))))) (-3023 (($ $) 191 (|has| |#1| (-38 (-401 (-553)))))) (-1588 (($ $) 164 (|has| |#1| (-38 (-401 (-553)))))) (-4065 (($ $) 187 (|has| |#1| (-38 (-401 (-553)))))) (-2047 (($ $) 160 (|has| |#1| (-38 (-401 (-553)))))) (-3055 (($ $) 188 (|has| |#1| (-38 (-401 (-553)))))) (-3185 (($ $) 161 (|has| |#1| (-38 (-401 (-553)))))) (-1627 (($ $) 197 (|has| |#1| (-38 (-401 (-553)))))) (-1445 (($ $) 173 (|has| |#1| (-38 (-401 (-553)))))) (-3889 (($ $) 194 (|has| |#1| (-38 (-401 (-553)))))) (-3252 (($ $) 168 (|has| |#1| (-38 (-401 (-553)))))) (-3628 (($ $) 201 (|has| |#1| (-38 (-401 (-553)))))) (-3433 (($ $) 177 (|has| |#1| (-38 (-401 (-553)))))) (-3607 (($ $) 203 (|has| |#1| (-38 (-401 (-553)))))) (-3718 (($ $) 179 (|has| |#1| (-38 (-401 (-553)))))) (-2367 (($ $) 199 (|has| |#1| (-38 (-401 (-553)))))) (-4023 (($ $) 175 (|has| |#1| (-38 (-401 (-553)))))) (-1373 (($ $) 196 (|has| |#1| (-38 (-401 (-553)))))) (-3265 (($ $) 171 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-4327 ((|#1| $ (-553)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-553)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-1988 (($) 29 T CONST)) (-1997 (($) 38 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-553) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (-1617 (((-111) $ $) 65)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) 84) (($ $ $) 64)) (-1700 (($ $ $) 81)) (** (($ $ (-903)) NIL) (($ $ (-757)) 103)) (* (($ (-903) $) 89) (($ (-757) $) 87) (($ (-553) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-583 |#1|) (-13 (-1216 |#1| (-553)) (-10 -8 (-15 -2259 ($ (-1008 (-826 (-553))) (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))))) (-15 -2071 ((-1008 (-826 (-553))) $)) (-15 -4280 ((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $)) (-15 -1779 ($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))))) (-15 -1298 ((-111) $)) (-15 -2341 ($ (-1 |#1| (-553)) $)) (-15 -3824 ((-3 $ "failed") $ $ (-111))) (-15 -1600 ($ $)) (-15 -3600 ($ $ $)) (-15 -1651 ((-845) (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) (-1008 (-826 (-553))) (-1155) |#1| (-401 (-553)))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $)) (-15 -3274 ($ $ |#1|)) (-15 -2869 ($ $ (-401 (-553)))) (-15 -3494 ($ $)) (-15 -2849 ($ $)) (-15 -1775 ($ $)) (-15 -3185 ($ $)) (-15 -2377 ($ $)) (-15 -2047 ($ $)) (-15 -1479 ($ $)) (-15 -1588 ($ $)) (-15 -3252 ($ $)) (-15 -3265 ($ $)) (-15 -1445 ($ $)) (-15 -4023 ($ $)) (-15 -3433 ($ $)) (-15 -3718 ($ $)) (-15 -2651 ($ $)) (-15 -3055 ($ $)) (-15 -1764 ($ $)) (-15 -4065 ($ $)) (-15 -3137 ($ $)) (-15 -3023 ($ $)) (-15 -3889 ($ $)) (-15 -1373 ($ $)) (-15 -1627 ($ $)) (-15 -2367 ($ $)) (-15 -3628 ($ $)) (-15 -3607 ($ $))) |%noBranch|))) (-1031)) (T -583)) -((-1298 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1031)))) (-2259 (*1 *1 *2 *3) (-12 (-5 *2 (-1008 (-826 (-553)))) (-5 *3 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *4)))) (-4 *4 (-1031)) (-5 *1 (-583 *4)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1008 (-826 (-553)))) (-5 *1 (-583 *3)) (-4 *3 (-1031)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *3)))) (-5 *1 (-583 *3)) (-4 *3 (-1031)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *3)))) (-4 *3 (-1031)) (-5 *1 (-583 *3)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-553))) (-4 *3 (-1031)) (-5 *1 (-583 *3)))) (-3824 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1031)))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1031)))) (-3600 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1031)))) (-1651 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *6)))) (-5 *4 (-1008 (-826 (-553)))) (-5 *5 (-1155)) (-5 *7 (-401 (-553))) (-4 *6 (-1031)) (-5 *2 (-845)) (-5 *1 (-583 *6)))) (-3406 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-583 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1031)))) (-3494 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-2849 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1775 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3185 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-2047 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1479 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1588 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3252 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3265 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-4023 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3718 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-2651 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1764 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-4065 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3889 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1373 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) (-3607 (*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(-13 (-1216 |#1| (-553)) (-10 -8 (-15 -2259 ($ (-1008 (-826 (-553))) (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))))) (-15 -2071 ((-1008 (-826 (-553))) $)) (-15 -4280 ((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $)) (-15 -1779 ($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))))) (-15 -1298 ((-111) $)) (-15 -2341 ($ (-1 |#1| (-553)) $)) (-15 -3824 ((-3 $ "failed") $ $ (-111))) (-15 -1600 ($ $)) (-15 -3600 ($ $ $)) (-15 -1651 ((-845) (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) (-1008 (-826 (-553))) (-1155) |#1| (-401 (-553)))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $)) (-15 -3274 ($ $ |#1|)) (-15 -2869 ($ $ (-401 (-553)))) (-15 -3494 ($ $)) (-15 -2849 ($ $)) (-15 -1775 ($ $)) (-15 -3185 ($ $)) (-15 -2377 ($ $)) (-15 -2047 ($ $)) (-15 -1479 ($ $)) (-15 -1588 ($ $)) (-15 -3252 ($ $)) (-15 -3265 ($ $)) (-15 -1445 ($ $)) (-15 -4023 ($ $)) (-15 -3433 ($ $)) (-15 -3718 ($ $)) (-15 -2651 ($ $)) (-15 -3055 ($ $)) (-15 -1764 ($ $)) (-15 -4065 ($ $)) (-15 -3137 ($ $)) (-15 -3023 ($ $)) (-15 -3889 ($ $)) (-15 -1373 ($ $)) (-15 -1627 ($ $)) (-15 -2367 ($ $)) (-15 -3628 ($ $)) (-15 -3607 ($ $))) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1779 (($ (-1135 |#1|)) 9)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 42)) (-4008 (((-111) $) 52)) (-2968 (((-757) $) 55) (((-757) $ (-757)) 54)) (-1848 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ $) 44 (|has| |#1| (-545)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-1135 |#1|) $) 23)) (-1999 (((-757)) 51)) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) 10 T CONST)) (-1997 (($) 14 T CONST)) (-1617 (((-111) $ $) 22)) (-1711 (($ $) 30) (($ $ $) 16)) (-1700 (($ $ $) 25)) (** (($ $ (-903)) NIL) (($ $ (-757)) 49)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-553)) 36))) -(((-584 |#1|) (-13 (-1031) (-10 -8 (-15 -3987 ((-1135 |#1|) $)) (-15 -1779 ($ (-1135 |#1|))) (-15 -4008 ((-111) $)) (-15 -2968 ((-757) $)) (-15 -2968 ((-757) $ (-757))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-553))) (IF (|has| |#1| (-545)) (-6 (-545)) |%noBranch|))) (-1031)) (T -584)) -((-3987 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-584 *3)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) (-2968 (*1 *2 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1031)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1031)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-584 *3)) (-4 *3 (-1031))))) -(-13 (-1031) (-10 -8 (-15 -3987 ((-1135 |#1|) $)) (-15 -1779 ($ (-1135 |#1|))) (-15 -4008 ((-111) $)) (-15 -2968 ((-757) $)) (-15 -2968 ((-757) $ (-757))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-553))) (IF (|has| |#1| (-545)) (-6 (-545)) |%noBranch|))) -((-1482 (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 15))) -(((-585 |#1| |#2|) (-10 -7 (-15 -1482 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)))) (-1192) (-1192)) (T -585)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-588 *6)) (-5 *1 (-585 *5 *6))))) -(-10 -7 (-15 -1482 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)))) -((-1482 (((-1135 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-1135 |#2|)) 20) (((-1135 |#3|) (-1 |#3| |#1| |#2|) (-1135 |#1|) (-588 |#2|)) 19) (((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|)) 18))) -(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -1482 ((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|))) (-15 -1482 ((-1135 |#3|) (-1 |#3| |#1| |#2|) (-1135 |#1|) (-588 |#2|))) (-15 -1482 ((-1135 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-1135 |#2|)))) (-1192) (-1192) (-1192)) (T -586)) -((-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-1135 *7)) (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-1135 *8)) (-5 *1 (-586 *6 *7 *8)))) (-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1135 *6)) (-5 *5 (-588 *7)) (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-1135 *8)) (-5 *1 (-586 *6 *7 *8)))) (-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-588 *7)) (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-588 *8)) (-5 *1 (-586 *6 *7 *8))))) -(-10 -7 (-15 -1482 ((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|))) (-15 -1482 ((-1135 |#3|) (-1 |#3| |#1| |#2|) (-1135 |#1|) (-588 |#2|))) (-15 -1482 ((-1135 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-1135 |#2|)))) -((-2218 ((|#3| |#3| (-630 (-599 |#3|)) (-630 (-1155))) 55)) (-2154 (((-166 |#2|) |#3|) 117)) (-3720 ((|#3| (-166 |#2|)) 44)) (-3229 ((|#2| |#3|) 19)) (-2128 ((|#3| |#2|) 33))) -(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3720 (|#3| (-166 |#2|))) (-15 -3229 (|#2| |#3|)) (-15 -2128 (|#3| |#2|)) (-15 -2154 ((-166 |#2|) |#3|)) (-15 -2218 (|#3| |#3| (-630 (-599 |#3|)) (-630 (-1155))))) (-13 (-545) (-833)) (-13 (-424 |#1|) (-984) (-1177)) (-13 (-424 (-166 |#1|)) (-984) (-1177))) (T -587)) -((-2218 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-630 (-599 *2))) (-5 *4 (-630 (-1155))) (-4 *2 (-13 (-424 (-166 *5)) (-984) (-1177))) (-4 *5 (-13 (-545) (-833))) (-5 *1 (-587 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-984) (-1177))))) (-2154 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833))) (-5 *2 (-166 *5)) (-5 *1 (-587 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-984) (-1177))) (-4 *3 (-13 (-424 (-166 *4)) (-984) (-1177))))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833))) (-4 *2 (-13 (-424 (-166 *4)) (-984) (-1177))) (-5 *1 (-587 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-984) (-1177))))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-833))) (-4 *2 (-13 (-424 *4) (-984) (-1177))) (-5 *1 (-587 *4 *2 *3)) (-4 *3 (-13 (-424 (-166 *4)) (-984) (-1177))))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-984) (-1177))) (-4 *4 (-13 (-545) (-833))) (-4 *2 (-13 (-424 (-166 *4)) (-984) (-1177))) (-5 *1 (-587 *4 *5 *2))))) -(-10 -7 (-15 -3720 (|#3| (-166 |#2|))) (-15 -3229 (|#2| |#3|)) (-15 -2128 (|#3| |#2|)) (-15 -2154 ((-166 |#2|) |#3|)) (-15 -2218 (|#3| |#3| (-630 (-599 |#3|)) (-630 (-1155))))) -((-3905 (($ (-1 (-111) |#1|) $) 17)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-4337 (($ (-1 |#1| |#1|) |#1|) 9)) (-3885 (($ (-1 (-111) |#1|) $) 13)) (-3895 (($ (-1 (-111) |#1|) $) 15)) (-3121 (((-1135 |#1|) $) 18)) (-3110 (((-845) $) NIL))) -(((-588 |#1|) (-13 (-600 (-845)) (-10 -8 (-15 -1482 ($ (-1 |#1| |#1|) $)) (-15 -3885 ($ (-1 (-111) |#1|) $)) (-15 -3895 ($ (-1 (-111) |#1|) $)) (-15 -3905 ($ (-1 (-111) |#1|) $)) (-15 -4337 ($ (-1 |#1| |#1|) |#1|)) (-15 -3121 ((-1135 |#1|) $)))) (-1192)) (T -588)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) (-3895 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) (-3905 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) (-4337 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-588 *3)) (-4 *3 (-1192))))) -(-13 (-600 (-845)) (-10 -8 (-15 -1482 ($ (-1 |#1| |#1|) $)) (-15 -3885 ($ (-1 (-111) |#1|) $)) (-15 -3895 ($ (-1 (-111) |#1|) $)) (-15 -3905 ($ (-1 (-111) |#1|) $)) (-15 -4337 ($ (-1 |#1| |#1|) |#1|)) (-15 -3121 ((-1135 |#1|) $)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2247 (($ (-757)) NIL (|has| |#1| (-23)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1903 (((-674 |#1|) $ $) NIL (|has| |#1| (-1031)))) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3312 ((|#1| $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1031))))) (-3786 (((-111) $ (-757)) NIL)) (-1899 ((|#1| $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1031))))) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-1449 ((|#1| $ $) NIL (|has| |#1| (-1031)))) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2533 (($ $ $) NIL (|has| |#1| (-1031)))) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1711 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1700 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-553) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-712))) (($ $ |#1|) NIL (|has| |#1| (-712)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-589 |#1| |#2|) (-1236 |#1|) (-1192) (-553)) (T -589)) -NIL -(-1236 |#1|) -((-1683 (((-1243) $ |#2| |#2|) 36)) (-2800 ((|#2| $) 23)) (-2958 ((|#2| $) 21)) (-2503 (($ (-1 |#3| |#3|) $) 32)) (-1482 (($ (-1 |#3| |#3|) $) 30)) (-2603 ((|#3| $) 26)) (-2858 (($ $ |#3|) 33)) (-2053 (((-111) |#3| $) 17)) (-1912 (((-630 |#3|) $) 15)) (-2046 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-590 |#1| |#2| |#3|) (-10 -8 (-15 -1683 ((-1243) |#1| |#2| |#2|)) (-15 -2858 (|#1| |#1| |#3|)) (-15 -2603 (|#3| |#1|)) (-15 -2800 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -2053 ((-111) |#3| |#1|)) (-15 -1912 ((-630 |#3|) |#1|)) (-15 -2046 (|#3| |#1| |#2|)) (-15 -2046 (|#3| |#1| |#2| |#3|)) (-15 -2503 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1482 (|#1| (-1 |#3| |#3|) |#1|))) (-591 |#2| |#3|) (-1079) (-1192)) (T -590)) -NIL -(-10 -8 (-15 -1683 ((-1243) |#1| |#2| |#2|)) (-15 -2858 (|#1| |#1| |#3|)) (-15 -2603 (|#3| |#1|)) (-15 -2800 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -2053 ((-111) |#3| |#1|)) (-15 -1912 ((-630 |#3|) |#1|)) (-15 -2046 (|#3| |#1| |#2|)) (-15 -2046 (|#3| |#1| |#2| |#3|)) (-15 -2503 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1482 (|#1| (-1 |#3| |#3|) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#2| (-1079)))) (-1683 (((-1243) $ |#1| |#1|) 40 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4370)))) (-3820 (($) 7 T CONST)) (-2515 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) 51)) (-1408 (((-630 |#2|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2800 ((|#1| $) 43 (|has| |#1| (-833)))) (-2195 (((-630 |#2|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-2958 ((|#1| $) 44 (|has| |#1| (-833)))) (-2503 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#2| (-1079)))) (-1901 (((-630 |#1|) $) 46)) (-3594 (((-111) |#1| $) 47)) (-2786 (((-1099) $) 21 (|has| |#2| (-1079)))) (-2603 ((|#2| $) 42 (|has| |#1| (-833)))) (-2858 (($ $ |#2|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2796 (((-757) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4369))) (((-757) |#2| $) 28 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#2| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#2| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-591 |#1| |#2|) (-137) (-1079) (-1192)) (T -591)) -((-1912 (*1 *2 *1) (-12 (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) (-5 *2 (-630 *4)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) (-5 *2 (-111)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) (-5 *2 (-630 *3)))) (-2053 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-591 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-111)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-591 *2 *3)) (-4 *3 (-1192)) (-4 *2 (-1079)) (-4 *2 (-833)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-591 *2 *3)) (-4 *3 (-1192)) (-4 *2 (-1079)) (-4 *2 (-833)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-591 *3 *2)) (-4 *3 (-1079)) (-4 *3 (-833)) (-4 *2 (-1192)))) (-2858 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-591 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) (-1683 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) (-5 *2 (-1243))))) -(-13 (-482 |t#2|) (-282 |t#1| |t#2|) (-10 -8 (-15 -1912 ((-630 |t#2|) $)) (-15 -3594 ((-111) |t#1| $)) (-15 -1901 ((-630 |t#1|) $)) (IF (|has| |t#2| (-1079)) (IF (|has| $ (-6 -4369)) (-15 -2053 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-833)) (PROGN (-15 -2958 (|t#1| $)) (-15 -2800 (|t#1| $)) (-15 -2603 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4370)) (PROGN (-15 -2858 ($ $ |t#2|)) (-15 -1683 ((-1243) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1079)) ((-600 (-845)) -3988 (|has| |#2| (-1079)) (|has| |#2| (-600 (-845)))) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-482 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-1079) |has| |#2| (-1079)) ((-1192) . T)) -((-3110 (((-845) $) 19) (($ (-128)) 13) (((-128) $) 14))) -(((-592) (-13 (-600 (-845)) (-483 (-128)))) (T -592)) -NIL -(-13 (-600 (-845)) (-483 (-128))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL) (($ (-1160)) NIL) (((-1160) $) NIL) (((-1191) $) 14) (($ (-630 (-1191))) 13)) (-4053 (((-630 (-1191)) $) 10)) (-1617 (((-111) $ $) NIL))) -(((-593) (-13 (-1062) (-600 (-1191)) (-10 -8 (-15 -3110 ($ (-630 (-1191)))) (-15 -4053 ((-630 (-1191)) $))))) (T -593)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-593)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-593))))) -(-13 (-1062) (-600 (-1191)) (-10 -8 (-15 -3110 ($ (-630 (-1191)))) (-15 -4053 ((-630 (-1191)) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3908 (((-3 $ "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3836 (((-1238 (-674 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1238 (-674 |#1|)) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2110 (((-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-3820 (($) NIL T CONST)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2836 (((-3 $ "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3874 (((-674 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2124 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1791 (((-674 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) $ (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-1766 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3203 (((-1151 (-934 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1658 (($ $ (-903)) NIL)) (-2764 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3261 (((-1151 |#1|) $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3153 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-3834 (((-1151 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-2992 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3461 (($ (-1238 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1238 |#1|) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2982 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2409 (((-903)) NIL (|has| |#2| (-361 |#1|)))) (-2758 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3418 (($ $ (-903)) NIL)) (-3307 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4108 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3756 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2757 (((-3 $ "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2593 (((-674 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2146 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-4128 (((-674 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) $ (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-3011 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3574 (((-1151 (-934 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1341 (($ $ (-903)) NIL)) (-1591 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-2083 (((-1151 |#1|) $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3236 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2555 (((-1151 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-1516 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1735 (((-1137) $) NIL)) (-4139 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2122 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1881 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2786 (((-1099) $) NIL)) (-4311 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2046 ((|#1| $ (-553)) NIL (|has| |#2| (-411 |#1|)))) (-2855 (((-674 |#1|) (-1238 $)) NIL (|has| |#2| (-411 |#1|))) (((-1238 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) (-1238 $) (-1238 $)) NIL (|has| |#2| (-361 |#1|))) (((-1238 |#1|) $ (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-1524 (($ (-1238 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1238 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-1836 (((-630 (-934 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-630 (-934 |#1|)) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-1957 (($ $ $) NIL)) (-1339 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3110 (((-845) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4124 (((-1238 $)) NIL (|has| |#2| (-411 |#1|)))) (-1417 (((-630 (-1238 |#1|))) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2840 (($ $ $ $) NIL)) (-4215 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2549 (($ (-674 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-1634 (($ $ $) NIL)) (-2911 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3949 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2488 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1988 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) 24)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-594 |#1| |#2|) (-13 (-730 |#1|) (-600 |#2|) (-10 -8 (-15 -3110 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-730 |#1|)) (T -594)) -((-3110 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-594 *3 *2)) (-4 *2 (-730 *3))))) -(-13 (-730 |#1|) (-600 |#2|) (-10 -8 (-15 -3110 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3172 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) 33)) (-3190 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL) (($) NIL)) (-1683 (((-1243) $ (-1137) (-1137)) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-1137) |#1|) 43)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#1| "failed") (-1137) $) 46)) (-3820 (($) NIL T CONST)) (-3985 (($ $ (-1137)) 24)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079))))) (-3986 (((-3 |#1| "failed") (-1137) $) 47) (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (($ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (|has| $ (-6 -4369)))) (-2575 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (($ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079))))) (-2654 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079))))) (-3131 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) 32)) (-2515 ((|#1| $ (-1137) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-1137)) NIL)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369))) (((-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-3485 (($ $) 48)) (-2984 (($ (-382)) 22) (($ (-382) (-1137)) 21)) (-4298 (((-382) $) 34)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-1137) $) NIL (|has| (-1137) (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369))) (((-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (((-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079))))) (-2958 (((-1137) $) NIL (|has| (-1137) (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-3729 (((-630 (-1137)) $) 39)) (-1570 (((-111) (-1137) $) NIL)) (-4086 (((-1137) $) 35)) (-1376 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL)) (-1901 (((-630 (-1137)) $) NIL)) (-3594 (((-111) (-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 ((|#1| $) NIL (|has| (-1137) (-833)))) (-3016 (((-3 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) "failed") (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-630 (-288 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 37)) (-2046 ((|#1| $ (-1137) |#1|) NIL) ((|#1| $ (-1137)) 42)) (-3093 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL) (($) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (((-757) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (((-757) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL)) (-3110 (((-845) $) 20)) (-2407 (($ $) 25)) (-2711 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 19)) (-2563 (((-757) $) 41 (|has| $ (-6 -4369))))) -(((-595 |#1|) (-13 (-358 (-382) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) (-1168 (-1137) |#1|) (-10 -8 (-6 -4369) (-15 -3485 ($ $)))) (-1079)) (T -595)) -((-3485 (*1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1079))))) -(-13 (-358 (-382) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) (-1168 (-1137) |#1|) (-10 -8 (-6 -4369) (-15 -3485 ($ $)))) -((-1832 (((-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) $) 15)) (-3729 (((-630 |#2|) $) 19)) (-1570 (((-111) |#2| $) 12))) -(((-596 |#1| |#2| |#3|) (-10 -8 (-15 -3729 ((-630 |#2|) |#1|)) (-15 -1570 ((-111) |#2| |#1|)) (-15 -1832 ((-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|))) (-597 |#2| |#3|) (-1079) (-1079)) (T -596)) -NIL -(-10 -8 (-15 -3729 ((-630 |#2|) |#1|)) (-15 -1570 ((-111) |#2| |#1|)) (-15 -1832 ((-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|))) -((-3096 (((-111) $ $) 19 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 55 (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) 61)) (-3820 (($) 7 T CONST)) (-2638 (($ $) 58 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 46 (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) 62)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 54 (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 56 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 53 (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 52 (|has| $ (-6 -4369)))) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-3729 (((-630 |#1|) $) 63)) (-1570 (((-111) |#1| $) 64)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 39)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 40)) (-2786 (((-1099) $) 21 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 51)) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 41)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) 26 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 25 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 24 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 23 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3093 (($) 49) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 48)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 31 (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 50)) (-3110 (((-845) $) 18 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 42)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-597 |#1| |#2|) (-137) (-1079) (-1079)) (T -597)) -((-1570 (*1 *2 *3 *1) (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-5 *2 (-111)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-5 *2 (-630 *3)))) (-3986 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079)))) (-2972 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079))))) -(-13 (-224 (-2 (|:| -2578 |t#1|) (|:| -3256 |t#2|))) (-10 -8 (-15 -1570 ((-111) |t#1| $)) (-15 -3729 ((-630 |t#1|) $)) (-15 -3986 ((-3 |t#2| "failed") |t#1| $)) (-15 -2972 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((-101) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) ((-600 (-845)) -3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845)))) ((-148 #0#) . T) ((-601 (-529)) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))) ((-224 #0#) . T) ((-230 #0#) . T) ((-303 #0#) -12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-482 #0#) . T) ((-507 #0# #0#) -12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-1079) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) ((-1192) . T)) -((-3520 (((-599 |#2|) |#1|) 15)) (-2946 (((-3 |#1| "failed") (-599 |#2|)) 19))) -(((-598 |#1| |#2|) (-10 -7 (-15 -3520 ((-599 |#2|) |#1|)) (-15 -2946 ((-3 |#1| "failed") (-599 |#2|)))) (-833) (-833)) (T -598)) -((-2946 (*1 *2 *3) (|partial| -12 (-5 *3 (-599 *4)) (-4 *4 (-833)) (-4 *2 (-833)) (-5 *1 (-598 *2 *4)))) (-3520 (*1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *1 (-598 *3 *4)) (-4 *3 (-833)) (-4 *4 (-833))))) -(-10 -7 (-15 -3520 ((-599 |#2|) |#1|)) (-15 -2946 ((-3 |#1| "failed") (-599 |#2|)))) -((-3096 (((-111) $ $) NIL)) (-1321 (((-3 (-1155) "failed") $) 37)) (-3965 (((-1243) $ (-757)) 26)) (-1478 (((-757) $) 25)) (-4180 (((-113) $) 12)) (-4298 (((-1155) $) 20)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-4040 (($ (-113) (-630 |#1|) (-757)) 30) (($ (-1155)) 31)) (-1288 (((-111) $ (-113)) 18) (((-111) $ (-1155)) 16)) (-2304 (((-757) $) 22)) (-2786 (((-1099) $) NIL)) (-1524 (((-874 (-553)) $) 77 (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) 84 (|has| |#1| (-601 (-874 (-373))))) (((-529) $) 69 (|has| |#1| (-601 (-529))))) (-3110 (((-845) $) 55)) (-3928 (((-630 |#1|) $) 24)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 41)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 42))) -(((-599 |#1|) (-13 (-130) (-866 |#1|) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -4180 ((-113) $)) (-15 -3928 ((-630 |#1|) $)) (-15 -2304 ((-757) $)) (-15 -4040 ($ (-113) (-630 |#1|) (-757))) (-15 -4040 ($ (-1155))) (-15 -1321 ((-3 (-1155) "failed") $)) (-15 -1288 ((-111) $ (-113))) (-15 -1288 ((-111) $ (-1155))) (IF (|has| |#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|))) (-833)) (T -599)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) (-4040 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-630 *5)) (-5 *4 (-757)) (-4 *5 (-833)) (-5 *1 (-599 *5)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) (-1321 (*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-599 *4)) (-4 *4 (-833)))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-111)) (-5 *1 (-599 *4)) (-4 *4 (-833))))) -(-13 (-130) (-866 |#1|) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -4180 ((-113) $)) (-15 -3928 ((-630 |#1|) $)) (-15 -2304 ((-757) $)) (-15 -4040 ($ (-113) (-630 |#1|) (-757))) (-15 -4040 ($ (-1155))) (-15 -1321 ((-3 (-1155) "failed") $)) (-15 -1288 ((-111) $ (-113))) (-15 -1288 ((-111) $ (-1155))) (IF (|has| |#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|))) -((-3110 ((|#1| $) 6))) -(((-600 |#1|) (-137) (-1192)) (T -600)) -((-3110 (*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1192))))) -(-13 (-10 -8 (-15 -3110 (|t#1| $)))) -((-1524 ((|#1| $) 6))) -(((-601 |#1|) (-137) (-1192)) (T -601)) -((-1524 (*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1192))))) -(-13 (-10 -8 (-15 -1524 (|t#1| $)))) -((-3402 (((-3 (-1151 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)) 15) (((-3 (-1151 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 16))) -(((-602 |#1| |#2|) (-10 -7 (-15 -3402 ((-3 (-1151 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -3402 ((-3 (-1151 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) (-13 (-144) (-27) (-1020 (-553)) (-1020 (-401 (-553)))) (-1214 |#1|)) (T -602)) -((-3402 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-144) (-27) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-1151 (-401 *6))) (-5 *1 (-602 *5 *6)) (-5 *3 (-401 *6)))) (-3402 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-144) (-27) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *2 (-1151 (-401 *5))) (-5 *1 (-602 *4 *5)) (-5 *3 (-401 *5))))) -(-10 -7 (-15 -3402 ((-3 (-1151 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -3402 ((-3 (-1151 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) -((-3110 (($ |#1|) 6))) -(((-603 |#1|) (-137) (-1192)) (T -603)) -((-3110 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1192))))) -(-13 (-10 -8 (-15 -3110 ($ |t#1|)))) -((-3096 (((-111) $ $) NIL)) (-2676 (($) 11 T CONST)) (-3715 (($) 12 T CONST)) (-3063 (($ $ $) 24)) (-2826 (($ $) 22)) (-1735 (((-1137) $) NIL)) (-1451 (($ $ $) 25)) (-2786 (((-1099) $) NIL)) (-2522 (($) 10 T CONST)) (-3603 (($ $ $) 26)) (-3110 (((-845) $) 30)) (-3192 (((-111) $ (|[\|\|]| -2522)) 19) (((-111) $ (|[\|\|]| -2676)) 21) (((-111) $ (|[\|\|]| -3715)) 17)) (-3726 (($ $ $) 23)) (-1617 (((-111) $ $) 15))) -(((-604) (-13 (-949) (-10 -8 (-15 -2522 ($) -3879) (-15 -2676 ($) -3879) (-15 -3715 ($) -3879) (-15 -3192 ((-111) $ (|[\|\|]| -2522))) (-15 -3192 ((-111) $ (|[\|\|]| -2676))) (-15 -3192 ((-111) $ (|[\|\|]| -3715)))))) (T -604)) -((-2522 (*1 *1) (-5 *1 (-604))) (-2676 (*1 *1) (-5 *1 (-604))) (-3715 (*1 *1) (-5 *1 (-604))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2522)) (-5 *2 (-111)) (-5 *1 (-604)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2676)) (-5 *2 (-111)) (-5 *1 (-604)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3715)) (-5 *2 (-111)) (-5 *1 (-604))))) -(-13 (-949) (-10 -8 (-15 -2522 ($) -3879) (-15 -2676 ($) -3879) (-15 -3715 ($) -3879) (-15 -3192 ((-111) $ (|[\|\|]| -2522))) (-15 -3192 ((-111) $ (|[\|\|]| -2676))) (-15 -3192 ((-111) $ (|[\|\|]| -3715))))) -((-1524 (($ |#1|) 6))) -(((-605 |#1|) (-137) (-1192)) (T -605)) -((-1524 (*1 *1 *2) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1192))))) -(-13 (-10 -8 (-15 -1524 ($ |t#1|)))) -((-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) 10))) -(((-606 |#1| |#2|) (-10 -8 (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-607 |#2|) (-1031)) (T -606)) -NIL -(-10 -8 (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 36)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-607 |#1|) (-137) (-1031)) (T -607)) -((-3110 (*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1031))))) -(-13 (-1031) (-633 |t#1|) (-10 -8 (-15 -3110 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2125 (((-553) $) NIL (|has| |#1| (-831)))) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4270 (((-111) $) NIL (|has| |#1| (-831)))) (-1848 (((-111) $) NIL)) (-3963 ((|#1| $) 13)) (-2797 (((-111) $) NIL (|has| |#1| (-831)))) (-1824 (($ $ $) NIL (|has| |#1| (-831)))) (-1975 (($ $ $) NIL (|has| |#1| (-831)))) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3974 ((|#3| $) 15)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) NIL)) (-1999 (((-757)) 20)) (-3466 (($ $) NIL (|has| |#1| (-831)))) (-1988 (($) NIL T CONST)) (-1997 (($) 12 T CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1723 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-608 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-831)) (-6 (-831)) |%noBranch|) (-15 -1723 ($ $ |#3|)) (-15 -1723 ($ |#1| |#3|)) (-15 -3963 (|#1| $)) (-15 -3974 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-712) |#2|)) (T -608)) -((-1723 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-712) *4)))) (-1723 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-712) *4)))) (-3963 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-608 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-712) *3)))) (-3974 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-712) *4)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-831)) (-6 (-831)) |%noBranch|) (-15 -1723 ($ $ |#3|)) (-15 -1723 ($ |#1| |#3|)) (-15 -3963 (|#1| $)) (-15 -3974 (|#3| $)))) -((-4233 ((|#2| |#2| (-1155) (-1155)) 18))) -(((-609 |#1| |#2|) (-10 -7 (-15 -4233 (|#2| |#2| (-1155) (-1155)))) (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-941) (-29 |#1|))) (T -609)) -((-4233 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-609 *4 *2)) (-4 *2 (-13 (-1177) (-941) (-29 *4)))))) -(-10 -7 (-15 -4233 (|#2| |#2| (-1155) (-1155)))) -((-3096 (((-111) $ $) 56)) (-3769 (((-111) $) 52)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2355 ((|#1| $) 49)) (-2910 (((-3 $ "failed") $ $) NIL)) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2436 (((-2 (|:| -3980 $) (|:| -4118 (-401 |#2|))) (-401 |#2|)) 97 (|has| |#1| (-357)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) 24)) (-2982 (((-3 $ "failed") $) 75)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-2968 (((-553) $) 19)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) 36)) (-3481 (($ |#1| (-553)) 21)) (-3655 ((|#1| $) 51)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) 87 (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ $) 79)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-3384 (((-757) $) 99 (|has| |#1| (-357)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 98 (|has| |#1| (-357)))) (-1330 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3872 (((-553) $) 34)) (-1524 (((-401 |#2|) $) 42)) (-3110 (((-845) $) 62) (($ (-553)) 32) (($ $) NIL) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) 31) (($ |#2|) 22)) (-1624 ((|#1| $ (-553)) 63)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) 29)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 9 T CONST)) (-1997 (($) 12 T CONST)) (-1780 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-1617 (((-111) $ $) 17)) (-1711 (($ $) 46) (($ $ $) NIL)) (-1700 (($ $ $) 76)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 26) (($ $ $) 44))) -(((-610 |#1| |#2|) (-13 (-226 |#2|) (-545) (-601 (-401 |#2|)) (-405 |#1|) (-1020 |#2|) (-10 -8 (-15 -1298 ((-111) $)) (-15 -3872 ((-553) $)) (-15 -2968 ((-553) $)) (-15 -3678 ($ $)) (-15 -3655 (|#1| $)) (-15 -2355 (|#1| $)) (-15 -1624 (|#1| $ (-553))) (-15 -3481 ($ |#1| (-553))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -2436 ((-2 (|:| -3980 $) (|:| -4118 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) (-545) (-1214 |#1|)) (T -610)) -((-1298 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-111)) (-5 *1 (-610 *3 *4)) (-4 *4 (-1214 *3)))) (-3872 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-553)) (-5 *1 (-610 *3 *4)) (-4 *4 (-1214 *3)))) (-2968 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-553)) (-5 *1 (-610 *3 *4)) (-4 *4 (-1214 *3)))) (-3678 (*1 *1 *1) (-12 (-4 *2 (-545)) (-5 *1 (-610 *2 *3)) (-4 *3 (-1214 *2)))) (-3655 (*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-610 *2 *3)) (-4 *3 (-1214 *2)))) (-2355 (*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-610 *2 *3)) (-4 *3 (-1214 *2)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *2 (-545)) (-5 *1 (-610 *2 *4)) (-4 *4 (-1214 *2)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-4 *2 (-545)) (-5 *1 (-610 *2 *4)) (-4 *4 (-1214 *2)))) (-2436 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-545)) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| -3980 (-610 *4 *5)) (|:| -4118 (-401 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-401 *5))))) -(-13 (-226 |#2|) (-545) (-601 (-401 |#2|)) (-405 |#1|) (-1020 |#2|) (-10 -8 (-15 -1298 ((-111) $)) (-15 -3872 ((-553) $)) (-15 -2968 ((-553) $)) (-15 -3678 ($ $)) (-15 -3655 (|#1| $)) (-15 -2355 (|#1| $)) (-15 -1624 (|#1| $ (-553))) (-15 -3481 ($ |#1| (-553))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -2436 ((-2 (|:| -3980 $) (|:| -4118 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) -((-3247 (((-630 |#6|) (-630 |#4|) (-111)) 47)) (-3616 ((|#6| |#6|) 40))) -(((-611 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3616 (|#6| |#6|)) (-15 -3247 ((-630 |#6|) (-630 |#4|) (-111)))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|) (-1088 |#1| |#2| |#3| |#4|)) (T -611)) -((-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 *10)) (-5 *1 (-611 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *10 (-1088 *5 *6 *7 *8)))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *1 (-611 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *2 (-1088 *3 *4 *5 *6))))) -(-10 -7 (-15 -3616 (|#6| |#6|)) (-15 -3247 ((-630 |#6|) (-630 |#4|) (-111)))) -((-1390 (((-111) |#3| (-757) (-630 |#3|)) 23)) (-1526 (((-3 (-2 (|:| |polfac| (-630 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-630 (-1151 |#3|)))) "failed") |#3| (-630 (-1151 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3713 (-630 (-2 (|:| |irr| |#4|) (|:| -3220 (-553)))))) (-630 |#3|) (-630 |#1|) (-630 |#3|)) 55))) -(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 ((-111) |#3| (-757) (-630 |#3|))) (-15 -1526 ((-3 (-2 (|:| |polfac| (-630 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-630 (-1151 |#3|)))) "failed") |#3| (-630 (-1151 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3713 (-630 (-2 (|:| |irr| |#4|) (|:| -3220 (-553)))))) (-630 |#3|) (-630 |#1|) (-630 |#3|)))) (-833) (-779) (-301) (-931 |#3| |#2| |#1|)) (T -612)) -((-1526 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3713 (-630 (-2 (|:| |irr| *10) (|:| -3220 (-553))))))) (-5 *6 (-630 *3)) (-5 *7 (-630 *8)) (-4 *8 (-833)) (-4 *3 (-301)) (-4 *10 (-931 *3 *9 *8)) (-4 *9 (-779)) (-5 *2 (-2 (|:| |polfac| (-630 *10)) (|:| |correct| *3) (|:| |corrfact| (-630 (-1151 *3))))) (-5 *1 (-612 *8 *9 *3 *10)) (-5 *4 (-630 (-1151 *3))))) (-1390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-757)) (-5 *5 (-630 *3)) (-4 *3 (-301)) (-4 *6 (-833)) (-4 *7 (-779)) (-5 *2 (-111)) (-5 *1 (-612 *6 *7 *3 *8)) (-4 *8 (-931 *3 *7 *6))))) -(-10 -7 (-15 -1390 ((-111) |#3| (-757) (-630 |#3|))) (-15 -1526 ((-3 (-2 (|:| |polfac| (-630 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-630 (-1151 |#3|)))) "failed") |#3| (-630 (-1151 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3713 (-630 (-2 (|:| |irr| |#4|) (|:| -3220 (-553)))))) (-630 |#3|) (-630 |#1|) (-630 |#3|)))) -((-3096 (((-111) $ $) NIL)) (-1314 (((-1114) $) 11)) (-1301 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-613) (-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $))))) (T -613)) -((-1301 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-613)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-613))))) -(-13 (-1062) (-10 -8 (-15 -1301 ((-1114) $)) (-15 -1314 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-2694 (((-630 |#1|) $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-3189 (($ $) 67)) (-2366 (((-649 |#1| |#2|) $) 52)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 70)) (-3602 (((-630 (-288 |#2|)) $ $) 33)) (-2786 (((-1099) $) NIL)) (-2743 (($ (-649 |#1| |#2|)) 48)) (-3199 (($ $ $) NIL)) (-1957 (($ $ $) NIL)) (-3110 (((-845) $) 58) (((-1253 |#1| |#2|) $) NIL) (((-1258 |#1| |#2|) $) 66)) (-1997 (($) 53 T CONST)) (-3962 (((-630 (-2 (|:| |k| (-657 |#1|)) (|:| |c| |#2|))) $) 31)) (-1709 (((-630 (-649 |#1| |#2|)) (-630 |#1|)) 65)) (-1569 (((-630 (-2 (|:| |k| (-875 |#1|)) (|:| |c| |#2|))) $) 37)) (-1617 (((-111) $ $) 54)) (-1723 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ $ $) 44))) -(((-614 |#1| |#2| |#3|) (-13 (-466) (-10 -8 (-15 -2743 ($ (-649 |#1| |#2|))) (-15 -2366 ((-649 |#1| |#2|) $)) (-15 -1569 ((-630 (-2 (|:| |k| (-875 |#1|)) (|:| |c| |#2|))) $)) (-15 -3110 ((-1253 |#1| |#2|) $)) (-15 -3110 ((-1258 |#1| |#2|) $)) (-15 -3189 ($ $)) (-15 -2694 ((-630 |#1|) $)) (-15 -1709 ((-630 (-649 |#1| |#2|)) (-630 |#1|))) (-15 -3962 ((-630 (-2 (|:| |k| (-657 |#1|)) (|:| |c| |#2|))) $)) (-15 -3602 ((-630 (-288 |#2|)) $ $)))) (-833) (-13 (-169) (-703 (-401 (-553)))) (-903)) (T -614)) -((-2743 (*1 *1 *2) (-12 (-5 *2 (-649 *3 *4)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-5 *1 (-614 *3 *4 *5)) (-14 *5 (-903)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-649 *3 *4)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |k| (-875 *3)) (|:| |c| *4)))) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1253 *3 *4)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) (-3189 (*1 *1 *1) (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-833)) (-4 *3 (-13 (-169) (-703 (-401 (-553))))) (-14 *4 (-903)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-833)) (-5 *2 (-630 (-649 *4 *5))) (-5 *1 (-614 *4 *5 *6)) (-4 *5 (-13 (-169) (-703 (-401 (-553))))) (-14 *6 (-903)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |k| (-657 *3)) (|:| |c| *4)))) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) (-3602 (*1 *2 *1 *1) (-12 (-5 *2 (-630 (-288 *4))) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903))))) -(-13 (-466) (-10 -8 (-15 -2743 ($ (-649 |#1| |#2|))) (-15 -2366 ((-649 |#1| |#2|) $)) (-15 -1569 ((-630 (-2 (|:| |k| (-875 |#1|)) (|:| |c| |#2|))) $)) (-15 -3110 ((-1253 |#1| |#2|) $)) (-15 -3110 ((-1258 |#1| |#2|) $)) (-15 -3189 ($ $)) (-15 -2694 ((-630 |#1|) $)) (-15 -1709 ((-630 (-649 |#1| |#2|)) (-630 |#1|))) (-15 -3962 ((-630 (-2 (|:| |k| (-657 |#1|)) (|:| |c| |#2|))) $)) (-15 -3602 ((-630 (-288 |#2|)) $ $)))) -((-3247 (((-630 (-1125 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|)))) (-630 (-766 |#1| (-847 |#2|))) (-111)) 72) (((-630 (-1028 |#1| |#2|)) (-630 (-766 |#1| (-847 |#2|))) (-111)) 58)) (-1333 (((-111) (-630 (-766 |#1| (-847 |#2|)))) 23)) (-3565 (((-630 (-1125 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|)))) (-630 (-766 |#1| (-847 |#2|))) (-111)) 71)) (-3331 (((-630 (-1028 |#1| |#2|)) (-630 (-766 |#1| (-847 |#2|))) (-111)) 57)) (-1296 (((-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|)))) 27)) (-3305 (((-3 (-630 (-766 |#1| (-847 |#2|))) "failed") (-630 (-766 |#1| (-847 |#2|)))) 26))) -(((-615 |#1| |#2|) (-10 -7 (-15 -1333 ((-111) (-630 (-766 |#1| (-847 |#2|))))) (-15 -3305 ((-3 (-630 (-766 |#1| (-847 |#2|))) "failed") (-630 (-766 |#1| (-847 |#2|))))) (-15 -1296 ((-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|))))) (-15 -3331 ((-630 (-1028 |#1| |#2|)) (-630 (-766 |#1| (-847 |#2|))) (-111))) (-15 -3565 ((-630 (-1125 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|)))) (-630 (-766 |#1| (-847 |#2|))) (-111))) (-15 -3247 ((-630 (-1028 |#1| |#2|)) (-630 (-766 |#1| (-847 |#2|))) (-111))) (-15 -3247 ((-630 (-1125 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|)))) (-630 (-766 |#1| (-847 |#2|))) (-111)))) (-445) (-630 (-1155))) (T -615)) -((-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1125 *5 (-524 (-847 *6)) (-847 *6) (-766 *5 (-847 *6))))) (-5 *1 (-615 *5 *6)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-615 *5 *6)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1125 *5 (-524 (-847 *6)) (-847 *6) (-766 *5 (-847 *6))))) (-5 *1 (-615 *5 *6)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-615 *5 *6)))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-630 (-766 *3 (-847 *4)))) (-4 *3 (-445)) (-14 *4 (-630 (-1155))) (-5 *1 (-615 *3 *4)))) (-3305 (*1 *2 *2) (|partial| -12 (-5 *2 (-630 (-766 *3 (-847 *4)))) (-4 *3 (-445)) (-14 *4 (-630 (-1155))) (-5 *1 (-615 *3 *4)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-630 (-766 *4 (-847 *5)))) (-4 *4 (-445)) (-14 *5 (-630 (-1155))) (-5 *2 (-111)) (-5 *1 (-615 *4 *5))))) -(-10 -7 (-15 -1333 ((-111) (-630 (-766 |#1| (-847 |#2|))))) (-15 -3305 ((-3 (-630 (-766 |#1| (-847 |#2|))) "failed") (-630 (-766 |#1| (-847 |#2|))))) (-15 -1296 ((-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|))))) (-15 -3331 ((-630 (-1028 |#1| |#2|)) (-630 (-766 |#1| (-847 |#2|))) (-111))) (-15 -3565 ((-630 (-1125 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|)))) (-630 (-766 |#1| (-847 |#2|))) (-111))) (-15 -3247 ((-630 (-1028 |#1| |#2|)) (-630 (-766 |#1| (-847 |#2|))) (-111))) (-15 -3247 ((-630 (-1125 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|)))) (-630 (-766 |#1| (-847 |#2|))) (-111)))) -((-2380 (($ $) 38)) (-2246 (($ $) 21)) (-2357 (($ $) 37)) (-2224 (($ $) 22)) (-2403 (($ $) 36)) (-2268 (($ $) 23)) (-3996 (($) 48)) (-2366 (($ $) 45)) (-2445 (($ $) 17)) (-3144 (($ $ (-1071 $)) 7) (($ $ (-1155)) 6)) (-2743 (($ $) 46)) (-2183 (($ $) 15)) (-2214 (($ $) 16)) (-2414 (($ $) 35)) (-2279 (($ $) 24)) (-2392 (($ $) 34)) (-2257 (($ $) 25)) (-2368 (($ $) 33)) (-2234 (($ $) 26)) (-2447 (($ $) 44)) (-2313 (($ $) 32)) (-2425 (($ $) 43)) (-2291 (($ $) 31)) (-3791 (($ $) 42)) (-2336 (($ $) 30)) (-2570 (($ $) 41)) (-2346 (($ $) 29)) (-3780 (($ $) 40)) (-2324 (($ $) 28)) (-2435 (($ $) 39)) (-2302 (($ $) 27)) (-3327 (($ $) 19)) (-1741 (($ $) 20)) (-2029 (($ $) 18)) (** (($ $ $) 47))) -(((-616) (-137)) (T -616)) -((-1741 (*1 *1 *1) (-4 *1 (-616))) (-3327 (*1 *1 *1) (-4 *1 (-616))) (-2029 (*1 *1 *1) (-4 *1 (-616))) (-2445 (*1 *1 *1) (-4 *1 (-616))) (-2214 (*1 *1 *1) (-4 *1 (-616))) (-2183 (*1 *1 *1) (-4 *1 (-616)))) -(-13 (-941) (-1177) (-10 -8 (-15 -1741 ($ $)) (-15 -3327 ($ $)) (-15 -2029 ($ $)) (-15 -2445 ($ $)) (-15 -2214 ($ $)) (-15 -2183 ($ $)))) -(((-35) . T) ((-94) . T) ((-278) . T) ((-486) . T) ((-941) . T) ((-1177) . T) ((-1180) . T)) -((-4180 (((-113) (-113)) 83)) (-2445 ((|#2| |#2|) 30)) (-3144 ((|#2| |#2| (-1071 |#2|)) 79) ((|#2| |#2| (-1155)) 52)) (-2183 ((|#2| |#2|) 29)) (-2214 ((|#2| |#2|) 31)) (-2274 (((-111) (-113)) 34)) (-3327 ((|#2| |#2|) 26)) (-1741 ((|#2| |#2|) 28)) (-2029 ((|#2| |#2|) 27))) -(((-617 |#1| |#2|) (-10 -7 (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -1741 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2445 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -2214 (|#2| |#2|)) (-15 -3144 (|#2| |#2| (-1155))) (-15 -3144 (|#2| |#2| (-1071 |#2|)))) (-13 (-833) (-545)) (-13 (-424 |#1|) (-984) (-1177))) (T -617)) -((-3144 (*1 *2 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-13 (-424 *4) (-984) (-1177))) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-617 *4 *2)))) (-3144 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-424 *4) (-984) (-1177))))) (-2214 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) (-4 *2 (-13 (-424 *3) (-984) (-1177))))) (-2183 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) (-4 *2 (-13 (-424 *3) (-984) (-1177))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) (-4 *2 (-13 (-424 *3) (-984) (-1177))))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) (-4 *2 (-13 (-424 *3) (-984) (-1177))))) (-3327 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) (-4 *2 (-13 (-424 *3) (-984) (-1177))))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) (-4 *2 (-13 (-424 *3) (-984) (-1177))))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *4)) (-4 *4 (-13 (-424 *3) (-984) (-1177))))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-617 *4 *5)) (-4 *5 (-13 (-424 *4) (-984) (-1177)))))) -(-10 -7 (-15 -2274 ((-111) (-113))) (-15 -4180 ((-113) (-113))) (-15 -1741 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2445 (|#2| |#2|)) (-15 -2183 (|#2| |#2|)) (-15 -2214 (|#2| |#2|)) (-15 -3144 (|#2| |#2| (-1155))) (-15 -3144 (|#2| |#2| (-1071 |#2|)))) -((-1837 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 53)) (-1363 (((-630 (-242 |#1| |#2|)) (-630 (-474 |#1| |#2|))) 68)) (-1633 (((-474 |#1| |#2|) (-630 (-474 |#1| |#2|)) (-847 |#1|)) 70) (((-474 |#1| |#2|) (-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)) (-847 |#1|)) 69)) (-1601 (((-2 (|:| |gblist| (-630 (-242 |#1| |#2|))) (|:| |gvlist| (-630 (-553)))) (-630 (-474 |#1| |#2|))) 108)) (-2601 (((-630 (-474 |#1| |#2|)) (-847 |#1|) (-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|))) 83)) (-3350 (((-2 (|:| |glbase| (-630 (-242 |#1| |#2|))) (|:| |glval| (-630 (-553)))) (-630 (-242 |#1| |#2|))) 118)) (-4132 (((-1238 |#2|) (-474 |#1| |#2|) (-630 (-474 |#1| |#2|))) 58)) (-2054 (((-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|))) 41)) (-2240 (((-242 |#1| |#2|) (-242 |#1| |#2|) (-630 (-242 |#1| |#2|))) 50)) (-2131 (((-242 |#1| |#2|) (-630 |#2|) (-242 |#1| |#2|) (-630 (-242 |#1| |#2|))) 91))) -(((-618 |#1| |#2|) (-10 -7 (-15 -1601 ((-2 (|:| |gblist| (-630 (-242 |#1| |#2|))) (|:| |gvlist| (-630 (-553)))) (-630 (-474 |#1| |#2|)))) (-15 -3350 ((-2 (|:| |glbase| (-630 (-242 |#1| |#2|))) (|:| |glval| (-630 (-553)))) (-630 (-242 |#1| |#2|)))) (-15 -1363 ((-630 (-242 |#1| |#2|)) (-630 (-474 |#1| |#2|)))) (-15 -1633 ((-474 |#1| |#2|) (-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)) (-847 |#1|))) (-15 -1633 ((-474 |#1| |#2|) (-630 (-474 |#1| |#2|)) (-847 |#1|))) (-15 -2054 ((-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)))) (-15 -4132 ((-1238 |#2|) (-474 |#1| |#2|) (-630 (-474 |#1| |#2|)))) (-15 -2131 ((-242 |#1| |#2|) (-630 |#2|) (-242 |#1| |#2|) (-630 (-242 |#1| |#2|)))) (-15 -2601 ((-630 (-474 |#1| |#2|)) (-847 |#1|) (-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)))) (-15 -2240 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-630 (-242 |#1| |#2|)))) (-15 -1837 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) (-630 (-1155)) (-445)) (T -618)) -((-1837 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *2 (-474 *4 *5)) (-5 *1 (-618 *4 *5)))) (-2240 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *1 (-618 *4 *5)))) (-2601 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-630 (-474 *4 *5))) (-5 *3 (-847 *4)) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *1 (-618 *4 *5)))) (-2131 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 (-242 *5 *6))) (-4 *6 (-445)) (-5 *2 (-242 *5 *6)) (-14 *5 (-630 (-1155))) (-5 *1 (-618 *5 *6)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) (-14 *5 (-630 (-1155))) (-4 *6 (-445)) (-5 *2 (-1238 *6)) (-5 *1 (-618 *5 *6)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-630 (-474 *3 *4))) (-14 *3 (-630 (-1155))) (-4 *4 (-445)) (-5 *1 (-618 *3 *4)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-474 *5 *6))) (-5 *4 (-847 *5)) (-14 *5 (-630 (-1155))) (-5 *2 (-474 *5 *6)) (-5 *1 (-618 *5 *6)) (-4 *6 (-445)))) (-1633 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-630 (-474 *5 *6))) (-5 *4 (-847 *5)) (-14 *5 (-630 (-1155))) (-5 *2 (-474 *5 *6)) (-5 *1 (-618 *5 *6)) (-4 *6 (-445)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-630 (-474 *4 *5))) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *2 (-630 (-242 *4 *5))) (-5 *1 (-618 *4 *5)))) (-3350 (*1 *2 *3) (-12 (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |glbase| (-630 (-242 *4 *5))) (|:| |glval| (-630 (-553))))) (-5 *1 (-618 *4 *5)) (-5 *3 (-630 (-242 *4 *5))))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-630 (-474 *4 *5))) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |gblist| (-630 (-242 *4 *5))) (|:| |gvlist| (-630 (-553))))) (-5 *1 (-618 *4 *5))))) -(-10 -7 (-15 -1601 ((-2 (|:| |gblist| (-630 (-242 |#1| |#2|))) (|:| |gvlist| (-630 (-553)))) (-630 (-474 |#1| |#2|)))) (-15 -3350 ((-2 (|:| |glbase| (-630 (-242 |#1| |#2|))) (|:| |glval| (-630 (-553)))) (-630 (-242 |#1| |#2|)))) (-15 -1363 ((-630 (-242 |#1| |#2|)) (-630 (-474 |#1| |#2|)))) (-15 -1633 ((-474 |#1| |#2|) (-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)) (-847 |#1|))) (-15 -1633 ((-474 |#1| |#2|) (-630 (-474 |#1| |#2|)) (-847 |#1|))) (-15 -2054 ((-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)))) (-15 -4132 ((-1238 |#2|) (-474 |#1| |#2|) (-630 (-474 |#1| |#2|)))) (-15 -2131 ((-242 |#1| |#2|) (-630 |#2|) (-242 |#1| |#2|) (-630 (-242 |#1| |#2|)))) (-15 -2601 ((-630 (-474 |#1| |#2|)) (-847 |#1|) (-630 (-474 |#1| |#2|)) (-630 (-474 |#1| |#2|)))) (-15 -2240 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-630 (-242 |#1| |#2|)))) (-15 -1837 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) NIL)) (-1683 (((-1243) $ (-1137) (-1137)) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 (((-52) $ (-1137) (-52)) 16) (((-52) $ (-1155) (-52)) 17)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 (-52) "failed") (-1137) $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079))))) (-3986 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-3 (-52) "failed") (-1137) $) NIL)) (-2575 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $ (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (((-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $ (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2515 (((-52) $ (-1137) (-52)) NIL (|has| $ (-6 -4370)))) (-2441 (((-52) $ (-1137)) NIL)) (-1408 (((-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-630 (-52)) $) NIL (|has| $ (-6 -4369)))) (-3485 (($ $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-1137) $) NIL (|has| (-1137) (-833)))) (-2195 (((-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-630 (-52)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079))))) (-2958 (((-1137) $) NIL (|has| (-1137) (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4370))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1434 (($ (-382)) 9)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079))))) (-3729 (((-630 (-1137)) $) NIL)) (-1570 (((-111) (-1137) $) NIL)) (-1376 (((-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL)) (-2636 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL)) (-1901 (((-630 (-1137)) $) NIL)) (-3594 (((-111) (-1137) $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079))))) (-2603 (((-52) $) NIL (|has| (-1137) (-833)))) (-3016 (((-3 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) "failed") (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL)) (-2858 (($ $ (-52)) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (($ $ (-288 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (($ $ (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (($ $ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (($ $ (-630 (-52)) (-630 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-630 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079))))) (-1912 (((-630 (-52)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 (((-52) $ (-1137)) 14) (((-52) $ (-1137) (-52)) NIL) (((-52) $ (-1155)) 15)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079)))) (((-757) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079)))) (((-757) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-52) (-600 (-845))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 (-52))) (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-619) (-13 (-1168 (-1137) (-52)) (-10 -8 (-15 -1434 ($ (-382))) (-15 -3485 ($ $)) (-15 -2046 ((-52) $ (-1155))) (-15 -1490 ((-52) $ (-1155) (-52)))))) (T -619)) -((-1434 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-619)))) (-3485 (*1 *1 *1) (-5 *1 (-619))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-619)))) (-1490 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1155)) (-5 *1 (-619))))) -(-13 (-1168 (-1137) (-52)) (-10 -8 (-15 -1434 ($ (-382))) (-15 -3485 ($ $)) (-15 -2046 ((-52) $ (-1155))) (-15 -1490 ((-52) $ (-1155) (-52))))) -((-1723 (($ $ |#2|) 10))) -(((-620 |#1| |#2|) (-10 -8 (-15 -1723 (|#1| |#1| |#2|))) (-621 |#2|) (-169)) (T -620)) -NIL -(-10 -8 (-15 -1723 (|#1| |#1| |#2|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3121 (($ $ $) 29)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 28 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-621 |#1|) (-137) (-169)) (T -621)) -((-3121 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2)) (-4 *2 (-169)))) (-1723 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) -(-13 (-703 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3121 ($ $ $)) (IF (|has| |t#1| (-357)) (-15 -1723 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-703 |#1|) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3908 (((-3 $ "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3836 (((-1238 (-674 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1238 (-674 |#1|)) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2110 (((-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-3820 (($) NIL T CONST)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2836 (((-3 $ "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3874 (((-674 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2124 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1791 (((-674 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) $ (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-1766 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3203 (((-1151 (-934 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1658 (($ $ (-903)) NIL)) (-2764 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3261 (((-1151 |#1|) $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3153 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-3834 (((-1151 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-2992 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3461 (($ (-1238 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1238 |#1|) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2982 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2409 (((-903)) NIL (|has| |#2| (-361 |#1|)))) (-2758 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3418 (($ $ (-903)) NIL)) (-3307 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4108 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3756 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2757 (((-3 $ "failed")) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2593 (((-674 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2146 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-4128 (((-674 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) $ (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-3011 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3574 (((-1151 (-934 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1341 (($ $ (-903)) NIL)) (-1591 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-2083 (((-1151 |#1|) $) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-3236 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-2555 (((-1151 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-1516 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1735 (((-1137) $) NIL)) (-4139 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2122 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1881 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2786 (((-1099) $) NIL)) (-4311 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2046 ((|#1| $ (-553)) NIL (|has| |#2| (-411 |#1|)))) (-2855 (((-674 |#1|) (-1238 $)) NIL (|has| |#2| (-411 |#1|))) (((-1238 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-674 |#1|) (-1238 $) (-1238 $)) NIL (|has| |#2| (-361 |#1|))) (((-1238 |#1|) $ (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-1524 (($ (-1238 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1238 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-1836 (((-630 (-934 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-630 (-934 |#1|)) (-1238 $)) NIL (|has| |#2| (-361 |#1|)))) (-1957 (($ $ $) NIL)) (-1339 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3110 (((-845) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4124 (((-1238 $)) NIL (|has| |#2| (-411 |#1|)))) (-1417 (((-630 (-1238 |#1|))) NIL (-3988 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-545)))))) (-2840 (($ $ $ $) NIL)) (-4215 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2549 (($ (-674 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-1634 (($ $ $) NIL)) (-2911 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3949 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2488 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1988 (($) 15 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) 17)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-622 |#1| |#2|) (-13 (-730 |#1|) (-600 |#2|) (-10 -8 (-15 -3110 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-730 |#1|)) (T -622)) -((-3110 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-622 *3 *2)) (-4 *2 (-730 *3))))) -(-13 (-730 |#1|) (-600 |#2|) (-10 -8 (-15 -3110 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) -((-4174 (((-3 (-826 |#2|) "failed") |#2| (-288 |#2|) (-1137)) 82) (((-3 (-826 |#2|) (-2 (|:| |leftHandLimit| (-3 (-826 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-826 |#2|) "failed"))) "failed") |#2| (-288 (-826 |#2|))) 104)) (-3521 (((-3 (-819 |#2|) "failed") |#2| (-288 (-819 |#2|))) 109))) -(((-623 |#1| |#2|) (-10 -7 (-15 -4174 ((-3 (-826 |#2|) (-2 (|:| |leftHandLimit| (-3 (-826 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-826 |#2|) "failed"))) "failed") |#2| (-288 (-826 |#2|)))) (-15 -3521 ((-3 (-819 |#2|) "failed") |#2| (-288 (-819 |#2|)))) (-15 -4174 ((-3 (-826 |#2|) "failed") |#2| (-288 |#2|) (-1137)))) (-13 (-445) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -623)) -((-4174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1137)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-826 *3)) (-5 *1 (-623 *6 *3)))) (-3521 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-819 *3))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-819 *3)) (-5 *1 (-623 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))))) (-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-826 *3))) (-4 *3 (-13 (-27) (-1177) (-424 *5))) (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-3 (-826 *3) (-2 (|:| |leftHandLimit| (-3 (-826 *3) "failed")) (|:| |rightHandLimit| (-3 (-826 *3) "failed"))) "failed")) (-5 *1 (-623 *5 *3))))) -(-10 -7 (-15 -4174 ((-3 (-826 |#2|) (-2 (|:| |leftHandLimit| (-3 (-826 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-826 |#2|) "failed"))) "failed") |#2| (-288 (-826 |#2|)))) (-15 -3521 ((-3 (-819 |#2|) "failed") |#2| (-288 (-819 |#2|)))) (-15 -4174 ((-3 (-826 |#2|) "failed") |#2| (-288 |#2|) (-1137)))) -((-4174 (((-3 (-826 (-401 (-934 |#1|))) "failed") (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))) (-1137)) 80) (((-3 (-826 (-401 (-934 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed"))) "failed") (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|)))) 20) (((-3 (-826 (-401 (-934 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed"))) "failed") (-401 (-934 |#1|)) (-288 (-826 (-934 |#1|)))) 35)) (-3521 (((-819 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|)))) 23) (((-819 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-288 (-819 (-934 |#1|)))) 43))) -(((-624 |#1|) (-10 -7 (-15 -4174 ((-3 (-826 (-401 (-934 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed"))) "failed") (-401 (-934 |#1|)) (-288 (-826 (-934 |#1|))))) (-15 -4174 ((-3 (-826 (-401 (-934 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed"))) "failed") (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))))) (-15 -3521 ((-819 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-288 (-819 (-934 |#1|))))) (-15 -3521 ((-819 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))))) (-15 -4174 ((-3 (-826 (-401 (-934 |#1|))) "failed") (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))) (-1137)))) (-445)) (T -624)) -((-4174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-401 (-934 *6)))) (-5 *5 (-1137)) (-5 *3 (-401 (-934 *6))) (-4 *6 (-445)) (-5 *2 (-826 *3)) (-5 *1 (-624 *6)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-934 *5)))) (-5 *3 (-401 (-934 *5))) (-4 *5 (-445)) (-5 *2 (-819 *3)) (-5 *1 (-624 *5)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-819 (-934 *5)))) (-4 *5 (-445)) (-5 *2 (-819 (-401 (-934 *5)))) (-5 *1 (-624 *5)) (-5 *3 (-401 (-934 *5))))) (-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-934 *5)))) (-5 *3 (-401 (-934 *5))) (-4 *5 (-445)) (-5 *2 (-3 (-826 *3) (-2 (|:| |leftHandLimit| (-3 (-826 *3) "failed")) (|:| |rightHandLimit| (-3 (-826 *3) "failed"))) "failed")) (-5 *1 (-624 *5)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-826 (-934 *5)))) (-4 *5 (-445)) (-5 *2 (-3 (-826 (-401 (-934 *5))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 *5))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 *5))) "failed"))) "failed")) (-5 *1 (-624 *5)) (-5 *3 (-401 (-934 *5)))))) -(-10 -7 (-15 -4174 ((-3 (-826 (-401 (-934 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed"))) "failed") (-401 (-934 |#1|)) (-288 (-826 (-934 |#1|))))) (-15 -4174 ((-3 (-826 (-401 (-934 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-826 (-401 (-934 |#1|))) "failed"))) "failed") (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))))) (-15 -3521 ((-819 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-288 (-819 (-934 |#1|))))) (-15 -3521 ((-819 (-401 (-934 |#1|))) (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))))) (-15 -4174 ((-3 (-826 (-401 (-934 |#1|))) "failed") (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))) (-1137)))) -((-3762 (((-3 (-1238 (-401 |#1|)) "failed") (-1238 |#2|) |#2|) 57 (-2826 (|has| |#1| (-357)))) (((-3 (-1238 |#1|) "failed") (-1238 |#2|) |#2|) 42 (|has| |#1| (-357)))) (-1740 (((-111) (-1238 |#2|)) 30)) (-3767 (((-3 (-1238 |#1|) "failed") (-1238 |#2|)) 33))) -(((-625 |#1| |#2|) (-10 -7 (-15 -1740 ((-111) (-1238 |#2|))) (-15 -3767 ((-3 (-1238 |#1|) "failed") (-1238 |#2|))) (IF (|has| |#1| (-357)) (-15 -3762 ((-3 (-1238 |#1|) "failed") (-1238 |#2|) |#2|)) (-15 -3762 ((-3 (-1238 (-401 |#1|)) "failed") (-1238 |#2|) |#2|)))) (-545) (-626 |#1|)) (T -625)) -((-3762 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 *5)) (-2826 (-4 *5 (-357))) (-4 *5 (-545)) (-5 *2 (-1238 (-401 *5))) (-5 *1 (-625 *5 *4)))) (-3762 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 *5)) (-4 *5 (-357)) (-4 *5 (-545)) (-5 *2 (-1238 *5)) (-5 *1 (-625 *5 *4)))) (-3767 (*1 *2 *3) (|partial| -12 (-5 *3 (-1238 *5)) (-4 *5 (-626 *4)) (-4 *4 (-545)) (-5 *2 (-1238 *4)) (-5 *1 (-625 *4 *5)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1238 *5)) (-4 *5 (-626 *4)) (-4 *4 (-545)) (-5 *2 (-111)) (-5 *1 (-625 *4 *5))))) -(-10 -7 (-15 -1740 ((-111) (-1238 |#2|))) (-15 -3767 ((-3 (-1238 |#1|) "failed") (-1238 |#2|))) (IF (|has| |#1| (-357)) (-15 -3762 ((-3 (-1238 |#1|) "failed") (-1238 |#2|) |#2|)) (-15 -3762 ((-3 (-1238 (-401 |#1|)) "failed") (-1238 |#2|) |#2|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2077 (((-674 |#1|) (-674 $)) 36) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 35)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-626 |#1|) (-137) (-1031)) (T -626)) -((-2077 (*1 *2 *3) (-12 (-5 *3 (-674 *1)) (-4 *1 (-626 *4)) (-4 *4 (-1031)) (-5 *2 (-674 *4)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *1)) (-5 *4 (-1238 *1)) (-4 *1 (-626 *5)) (-4 *5 (-1031)) (-5 *2 (-2 (|:| -3344 (-674 *5)) (|:| |vec| (-1238 *5))))))) -(-13 (-1031) (-10 -8 (-15 -2077 ((-674 |t#1|) (-674 $))) (-15 -2077 ((-2 (|:| -3344 (-674 |t#1|)) (|:| |vec| (-1238 |t#1|))) (-674 $) (-1238 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1794 ((|#2| (-630 |#1|) (-630 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-630 |#1|) (-630 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|) |#2|) 17) ((|#2| (-630 |#1|) (-630 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|)) 12))) -(((-627 |#1| |#2|) (-10 -7 (-15 -1794 ((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|))) (-15 -1794 (|#2| (-630 |#1|) (-630 |#2|) |#1|)) (-15 -1794 ((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|) |#2|)) (-15 -1794 (|#2| (-630 |#1|) (-630 |#2|) |#1| |#2|)) (-15 -1794 ((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|) (-1 |#2| |#1|))) (-15 -1794 (|#2| (-630 |#1|) (-630 |#2|) |#1| (-1 |#2| |#1|)))) (-1079) (-1192)) (T -627)) -((-1794 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1079)) (-4 *2 (-1192)) (-5 *1 (-627 *5 *2)))) (-1794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-630 *5)) (-5 *4 (-630 *6)) (-4 *5 (-1079)) (-4 *6 (-1192)) (-5 *1 (-627 *5 *6)))) (-1794 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *2)) (-4 *5 (-1079)) (-4 *2 (-1192)) (-5 *1 (-627 *5 *2)))) (-1794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 *5)) (-4 *6 (-1079)) (-4 *5 (-1192)) (-5 *2 (-1 *5 *6)) (-5 *1 (-627 *6 *5)))) (-1794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *2)) (-4 *5 (-1079)) (-4 *2 (-1192)) (-5 *1 (-627 *5 *2)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *6)) (-4 *5 (-1079)) (-4 *6 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *6))))) -(-10 -7 (-15 -1794 ((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|))) (-15 -1794 (|#2| (-630 |#1|) (-630 |#2|) |#1|)) (-15 -1794 ((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|) |#2|)) (-15 -1794 (|#2| (-630 |#1|) (-630 |#2|) |#1| |#2|)) (-15 -1794 ((-1 |#2| |#1|) (-630 |#1|) (-630 |#2|) (-1 |#2| |#1|))) (-15 -1794 (|#2| (-630 |#1|) (-630 |#2|) |#1| (-1 |#2| |#1|)))) -((-3215 (((-630 |#2|) (-1 |#2| |#1| |#2|) (-630 |#1|) |#2|) 16)) (-2654 ((|#2| (-1 |#2| |#1| |#2|) (-630 |#1|) |#2|) 18)) (-1482 (((-630 |#2|) (-1 |#2| |#1|) (-630 |#1|)) 13))) -(((-628 |#1| |#2|) (-10 -7 (-15 -3215 ((-630 |#2|) (-1 |#2| |#1| |#2|) (-630 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-630 |#1|) |#2|)) (-15 -1482 ((-630 |#2|) (-1 |#2| |#1|) (-630 |#1|)))) (-1192) (-1192)) (T -628)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-630 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-630 *6)) (-5 *1 (-628 *5 *6)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-630 *5)) (-4 *5 (-1192)) (-4 *2 (-1192)) (-5 *1 (-628 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-630 *6)) (-4 *6 (-1192)) (-4 *5 (-1192)) (-5 *2 (-630 *5)) (-5 *1 (-628 *6 *5))))) -(-10 -7 (-15 -3215 ((-630 |#2|) (-1 |#2| |#1| |#2|) (-630 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-630 |#1|) |#2|)) (-15 -1482 ((-630 |#2|) (-1 |#2| |#1|) (-630 |#1|)))) -((-1482 (((-630 |#3|) (-1 |#3| |#1| |#2|) (-630 |#1|) (-630 |#2|)) 13))) -(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -1482 ((-630 |#3|) (-1 |#3| |#1| |#2|) (-630 |#1|) (-630 |#2|)))) (-1192) (-1192) (-1192)) (T -629)) -((-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-630 *6)) (-5 *5 (-630 *7)) (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-630 *8)) (-5 *1 (-629 *6 *7 *8))))) -(-10 -7 (-15 -1482 ((-630 |#3|) (-1 |#3| |#1| |#2|) (-630 |#1|) (-630 |#2|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-1787 (($ $) NIL)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) $) NIL (|has| |#1| (-833))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1587 (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-2990 (($ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-2314 (($ $ $) NIL (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "rest" $) NIL (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-2540 (($ $ $) 32 (|has| |#1| (-1079)))) (-2529 (($ $ $) 34 (|has| |#1| (-1079)))) (-2516 (($ $ $) 37 (|has| |#1| (-1079)))) (-2955 (($ (-1 (-111) |#1|) $) NIL)) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2123 ((|#1| $) NIL)) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2616 (($ $) NIL) (($ $ (-757)) NIL)) (-2873 (($ $) NIL (|has| |#1| (-1079)))) (-2638 (($ $) 31 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) NIL (|has| |#1| (-1079))) (($ (-1 (-111) |#1|) $) NIL)) (-2575 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-3145 (((-111) $) NIL)) (-1478 (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079))) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) (-1 (-111) |#1|) $) NIL)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3180 (((-111) $) 9)) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-4289 (($) 7)) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1750 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3160 (($ $ $) NIL (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2480 (($ |#1|) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2594 ((|#1| $) NIL) (($ $ (-757)) NIL)) (-2636 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1774 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL) (($ $ (-757)) NIL)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-1411 (((-111) $) NIL)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1205 (-553))) NIL) ((|#1| $ (-553)) 36) ((|#1| $ (-553) |#1|) NIL)) (-3558 (((-553) $ $) NIL)) (-3231 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-2005 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-1510 (((-111) $) NIL)) (-2383 (($ $) NIL)) (-1566 (($ $) NIL (|has| $ (-6 -4370)))) (-2586 (((-757) $) NIL)) (-4321 (($ $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) 45 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-2386 (($ |#1| $) 10)) (-2269 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4325 (($ $ $) 30) (($ |#1| $) NIL) (($ (-630 $)) NIL) (($ $ |#1|) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2495 (($ $ $) 11)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3205 (((-1137) $) 26 (|has| |#1| (-814))) (((-1137) $ (-111)) 27 (|has| |#1| (-814))) (((-1243) (-808) $) 28 (|has| |#1| (-814))) (((-1243) (-808) $ (-111)) 29 (|has| |#1| (-814)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-630 |#1|) (-13 (-651 |#1|) (-10 -8 (-15 -4289 ($)) (-15 -3180 ((-111) $)) (-15 -2386 ($ |#1| $)) (-15 -2495 ($ $ $)) (IF (|has| |#1| (-1079)) (PROGN (-15 -2540 ($ $ $)) (-15 -2529 ($ $ $)) (-15 -2516 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|))) (-1192)) (T -630)) -((-4289 (*1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1192)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-630 *3)) (-4 *3 (-1192)))) (-2386 (*1 *1 *2 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1192)))) (-2495 (*1 *1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1192)))) (-2540 (*1 *1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-1192)))) (-2529 (*1 *1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-1192)))) (-2516 (*1 *1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-1192))))) -(-13 (-651 |#1|) (-10 -8 (-15 -4289 ($)) (-15 -3180 ((-111) $)) (-15 -2386 ($ |#1| $)) (-15 -2495 ($ $ $)) (IF (|has| |#1| (-1079)) (PROGN (-15 -2540 ($ $ $)) (-15 -2529 ($ $ $)) (-15 -2516 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-814)) (-6 (-814)) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 11) (($ (-1160)) NIL) (((-1160) $) NIL) ((|#1| $) 8)) (-1617 (((-111) $ $) NIL))) -(((-631 |#1|) (-13 (-1062) (-600 |#1|)) (-1079)) (T -631)) -NIL -(-13 (-1062) (-600 |#1|)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2626 (($ |#1| |#1| $) 43)) (-1511 (((-111) $ (-757)) NIL)) (-2955 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2873 (($ $) 45)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) 52 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 9 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 37)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1376 ((|#1| $) 46)) (-2636 (($ |#1| $) 26) (($ |#1| $ (-757)) 42)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2949 ((|#1| $) 48)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 21)) (-3222 (($) 25)) (-3401 (((-111) $) 50)) (-3390 (((-630 (-2 (|:| -3256 |#1|) (|:| -2796 (-757)))) $) 59)) (-3093 (($) 23) (($ (-630 |#1|)) 18)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) 56 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 19)) (-1524 (((-529) $) 34 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-3110 (((-845) $) 14 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 22)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 61 (|has| |#1| (-1079)))) (-2563 (((-757) $) 16 (|has| $ (-6 -4369))))) -(((-632 |#1|) (-13 (-680 |#1|) (-10 -8 (-6 -4369) (-15 -3401 ((-111) $)) (-15 -2626 ($ |#1| |#1| $)))) (-1079)) (T -632)) -((-3401 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-632 *3)) (-4 *3 (-1079)))) (-2626 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-1079))))) -(-13 (-680 |#1|) (-10 -8 (-6 -4369) (-15 -3401 ((-111) $)) (-15 -2626 ($ |#1| |#1| $)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#1| $) 23))) -(((-633 |#1|) (-137) (-1038)) (T -633)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1038))))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2557 (($ $ (-554) (-490 |#1| |#3|)) NIL)) (-1464 (($ $ (-554) (-490 |#1| |#2|)) NIL)) (-4087 (($) NIL T CONST)) (-3519 (((-490 |#1| |#3|) $ (-554)) NIL)) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-490 |#1| |#2|) $ (-554)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-491 |#1| |#2| |#3|) (-57 |#1| (-490 |#1| |#3|) (-490 |#1| |#2|)) (-1195) (-554) (-554)) (T -491)) +NIL +(-57 |#1| (-490 |#1| |#3|) (-490 |#1| |#2|)) +((-3950 (((-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-758) (-758)) 27)) (-2333 (((-631 (-1154 |#1|)) |#1| (-758) (-758) (-758)) 34)) (-3589 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-631 |#3|) (-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-758)) 85))) +(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -2333 ((-631 (-1154 |#1|)) |#1| (-758) (-758) (-758))) (-15 -3950 ((-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-758) (-758))) (-15 -3589 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-631 |#3|) (-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-758)))) (-344) (-1217 |#1|) (-1217 |#2|)) (T -492)) +((-3589 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-675 *7))))) (-5 *5 (-758)) (-4 *8 (-1217 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-675 *7)))) (-5 *1 (-492 *6 *7 *8)))) (-3950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-758)) (-4 *5 (-344)) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-675 *6))))) (-5 *1 (-492 *5 *6 *7)) (-5 *3 (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-675 *6)))) (-4 *7 (-1217 *6)))) (-2333 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-758)) (-4 *3 (-344)) (-4 *5 (-1217 *3)) (-5 *2 (-631 (-1154 *3))) (-5 *1 (-492 *3 *5 *6)) (-4 *6 (-1217 *5))))) +(-10 -7 (-15 -2333 ((-631 (-1154 |#1|)) |#1| (-758) (-758) (-758))) (-15 -3950 ((-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-758) (-758))) (-15 -3589 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) (-631 |#3|) (-631 (-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) (-758)))) +((-3720 (((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))) 62)) (-3428 ((|#1| (-675 |#1|) |#1| (-758)) 25)) (-4053 (((-758) (-758) (-758)) 30)) (-1367 (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 42)) (-3498 (((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|) 50) (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 47)) (-4016 ((|#1| (-675 |#1|) (-675 |#1|) |#1| (-554)) 29)) (-3238 ((|#1| (-675 |#1|)) 18))) +(((-493 |#1| |#2| |#3|) (-10 -7 (-15 -3238 (|#1| (-675 |#1|))) (-15 -3428 (|#1| (-675 |#1|) |#1| (-758))) (-15 -4016 (|#1| (-675 |#1|) (-675 |#1|) |#1| (-554))) (-15 -4053 ((-758) (-758) (-758))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -1367 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3720 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))))) (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $)))) (-1217 |#1|) (-404 |#1| |#2|)) (T -493)) +((-3720 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3498 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3498 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-4053 (*1 *2 *2 *2) (-12 (-5 *2 (-758)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-4016 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-675 *2)) (-5 *4 (-554)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-3428 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-675 *2)) (-5 *4 (-758)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-675 *2)) (-4 *4 (-1217 *2)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) (-5 *1 (-493 *2 *4 *5)) (-4 *5 (-404 *2 *4))))) +(-10 -7 (-15 -3238 (|#1| (-675 |#1|))) (-15 -3428 (|#1| (-675 |#1|) |#1| (-758))) (-15 -4016 (|#1| (-675 |#1|) (-675 |#1|) |#1| (-554))) (-15 -4053 ((-758) (-758) (-758))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3498 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -1367 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3720 ((-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|))) (-2 (|:| -3782 (-675 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-675 |#1|)))))) +((-3062 (((-112) $ $) NIL)) (-1285 (($ $) NIL)) (-4066 (($ $ $) 35)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| (-112) (-836))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-112) (-836)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-112) $ (-1208 (-554)) (-112)) NIL (|has| $ (-6 -4374))) (((-112) $ (-554) (-112)) 36 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2574 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-3676 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2862 (((-112) $ (-554) (-112)) NIL (|has| $ (-6 -4374)))) (-2796 (((-112) $ (-554)) NIL)) (-1484 (((-554) (-112) $ (-554)) NIL (|has| (-112) (-1082))) (((-554) (-112) $) NIL (|has| (-112) (-1082))) (((-554) (-1 (-112) (-112)) $) NIL)) (-2466 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3038 (($ $ $) 33)) (-4081 (($ $) NIL)) (-3811 (($ $ $) NIL)) (-3180 (($ (-758) (-112)) 23)) (-2860 (($ $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 8 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL)) (-3717 (($ $ $) NIL (|has| (-112) (-836))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2379 (((-631 (-112)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL)) (-2849 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ (-112) $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-112) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2441 (($ $ (-112)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-112)) (-631 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082)))) (($ $ (-631 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082))))) (-2625 (((-631 (-112)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 24)) (-2064 (($ $ (-1208 (-554))) NIL) (((-112) $ (-554)) 18) (((-112) $ (-554) (-112)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2777 (((-758) (-112) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-112) (-1082)))) (((-758) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) 25)) (-2927 (((-530) $) NIL (|has| (-112) (-602 (-530))))) (-3089 (($ (-631 (-112))) NIL)) (-4323 (($ (-631 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3075 (((-848) $) 22)) (-2438 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4373)))) (-3726 (($ $ $) 31)) (-2140 (($ $ $) NIL)) (-2307 (($ $ $) 39)) (-2318 (($ $) 37)) (-2297 (($ $ $) 38)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 26)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 27)) (-2130 (($ $ $) NIL)) (-2563 (((-758) $) 10 (|has| $ (-6 -4373))))) +(((-494 |#1|) (-13 (-123) (-10 -8 (-15 -2318 ($ $)) (-15 -2307 ($ $ $)) (-15 -2297 ($ $ $)))) (-554)) (T -494)) +((-2318 (*1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) (-2307 (*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) (-2297 (*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554))))) +(-13 (-123) (-10 -8 (-15 -2318 ($ $)) (-15 -2307 ($ $ $)) (-15 -2297 ($ $ $)))) +((-1929 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1154 |#4|)) 35)) (-3118 (((-1154 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1154 |#4|)) 22)) (-3622 (((-3 (-675 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-675 (-1154 |#4|))) 46)) (-3978 (((-1154 (-1154 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3118 (|#2| (-1 |#1| |#4|) (-1154 |#4|))) (-15 -3118 ((-1154 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1929 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1154 |#4|))) (-15 -3622 ((-3 (-675 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-675 (-1154 |#4|)))) (-15 -3978 ((-1154 (-1154 |#4|)) (-1 |#4| |#1|) |#3|))) (-1034) (-1217 |#1|) (-1217 |#2|) (-1034)) (T -495)) +((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *6 (-1217 *5)) (-5 *2 (-1154 (-1154 *7))) (-5 *1 (-495 *5 *6 *4 *7)) (-4 *4 (-1217 *6)))) (-3622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-675 (-1154 *8))) (-4 *5 (-1034)) (-4 *8 (-1034)) (-4 *6 (-1217 *5)) (-5 *2 (-675 *6)) (-5 *1 (-495 *5 *6 *7 *8)) (-4 *7 (-1217 *6)))) (-1929 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1154 *7)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-495 *5 *2 *6 *7)) (-4 *6 (-1217 *2)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *4 (-1217 *5)) (-5 *2 (-1154 *7)) (-5 *1 (-495 *5 *4 *6 *7)) (-4 *6 (-1217 *4)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1154 *7)) (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-495 *5 *2 *6 *7)) (-4 *6 (-1217 *2))))) +(-10 -7 (-15 -3118 (|#2| (-1 |#1| |#4|) (-1154 |#4|))) (-15 -3118 ((-1154 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1929 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1154 |#4|))) (-15 -3622 ((-3 (-675 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-675 (-1154 |#4|)))) (-15 -3978 ((-1154 (-1154 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2941 (((-1246) $) 19)) (-2064 (((-1140) $ (-1158)) 23)) (-2524 (((-1246) $) 15)) (-3075 (((-848) $) 21) (($ (-1140)) 20)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 9)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 8))) +(((-496) (-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -3075 ($ (-1140)))))) (T -496)) +((-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1140)) (-5 *1 (-496)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-496))))) +(-13 (-836) (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) (-15 -2941 ((-1246) $)) (-15 -3075 ($ (-1140))))) +((-2037 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2715 ((|#1| |#4|) 10)) (-1770 ((|#3| |#4|) 17))) +(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2715 (|#1| |#4|)) (-15 -1770 (|#3| |#4|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-546) (-977 |#1|) (-368 |#1|) (-368 |#2|)) (T -497)) +((-2037 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-4 *2 (-368 *4)) (-5 *1 (-497 *4 *5 *2 *3)) (-4 *3 (-368 *5)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-497 *2 *4 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-368 *4))))) +(-10 -7 (-15 -2715 (|#1| |#4|)) (-15 -1770 (|#3| |#4|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3062 (((-112) $ $) NIL)) (-3331 (((-112) $ (-631 |#3|)) 104) (((-112) $) 105)) (-1695 (((-112) $) 148)) (-4229 (($ $ |#4|) 96) (($ $ |#4| (-631 |#3|)) 100)) (-3710 (((-1147 (-631 (-937 |#1|)) (-631 (-289 (-937 |#1|)))) (-631 |#4|)) 141 (|has| |#3| (-602 (-1158))))) (-2325 (($ $ $) 90) (($ $ |#4|) 88)) (-3248 (((-112) $) 147)) (-4094 (($ $) 108)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 82) (($ (-631 $)) 84)) (-3602 (((-112) |#4| $) 107)) (-2028 (((-112) $ $) 71)) (-3822 (($ (-631 |#4|)) 89)) (-2768 (((-1102) $) NIL)) (-4148 (($ (-631 |#4|)) 145)) (-2118 (((-112) $) 146)) (-3486 (($ $) 73)) (-2201 (((-631 |#4|) $) 57)) (-4063 (((-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)) $ (-631 |#3|)) NIL)) (-2594 (((-112) |#4| $) 76)) (-3330 (((-554) $ (-631 |#3|)) 109) (((-554) $) 110)) (-3075 (((-848) $) 144) (($ (-631 |#4|)) 85)) (-2005 (($ (-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $))) NIL)) (-1658 (((-112) $ $) 72)) (-1735 (($ $ $) 92)) (** (($ $ (-758)) 95)) (* (($ $ $) 94))) +(((-498 |#1| |#2| |#3| |#4|) (-13 (-1082) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 -1735 ($ $ $)) (-15 -3248 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -2594 ((-112) |#4| $)) (-15 -2028 ((-112) $ $)) (-15 -3602 ((-112) |#4| $)) (-15 -3331 ((-112) $ (-631 |#3|))) (-15 -3331 ((-112) $)) (-15 -3977 ($ $ $)) (-15 -3977 ($ (-631 $))) (-15 -2325 ($ $ $)) (-15 -2325 ($ $ |#4|)) (-15 -3486 ($ $)) (-15 -4063 ((-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)) $ (-631 |#3|))) (-15 -2005 ($ (-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)))) (-15 -3330 ((-554) $ (-631 |#3|))) (-15 -3330 ((-554) $)) (-15 -4094 ($ $)) (-15 -3822 ($ (-631 |#4|))) (-15 -4148 ($ (-631 |#4|))) (-15 -2118 ((-112) $)) (-15 -2201 ((-631 |#4|) $)) (-15 -3075 ($ (-631 |#4|))) (-15 -4229 ($ $ |#4|)) (-15 -4229 ($ $ |#4| (-631 |#3|))) (IF (|has| |#3| (-602 (-1158))) (-15 -3710 ((-1147 (-631 (-937 |#1|)) (-631 (-289 (-937 |#1|)))) (-631 |#4|))) |%noBranch|))) (-358) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -498)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3248 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-1695 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-2594 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-2028 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3602 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3977 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-631 (-498 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-2325 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-2325 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) (-3486 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-4063 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *2 (-2 (|:| |mval| (-675 *4)) (|:| |invmval| (-675 *4)) (|:| |genIdeal| (-498 *4 *5 *6 *7)))) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-675 *3)) (|:| |invmval| (-675 *3)) (|:| |genIdeal| (-498 *3 *4 *5 *6)))) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3330 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *2 (-554)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) (-3330 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-4094 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3822 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-2201 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *6)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) (-4229 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-934 *4 *5 *6)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *6 (-602 (-1158))) (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1147 (-631 (-937 *4)) (-631 (-289 (-937 *4))))) (-5 *1 (-498 *4 *5 *6 *7))))) +(-13 (-1082) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 -1735 ($ $ $)) (-15 -3248 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -2594 ((-112) |#4| $)) (-15 -2028 ((-112) $ $)) (-15 -3602 ((-112) |#4| $)) (-15 -3331 ((-112) $ (-631 |#3|))) (-15 -3331 ((-112) $)) (-15 -3977 ($ $ $)) (-15 -3977 ($ (-631 $))) (-15 -2325 ($ $ $)) (-15 -2325 ($ $ |#4|)) (-15 -3486 ($ $)) (-15 -4063 ((-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)) $ (-631 |#3|))) (-15 -2005 ($ (-2 (|:| |mval| (-675 |#1|)) (|:| |invmval| (-675 |#1|)) (|:| |genIdeal| $)))) (-15 -3330 ((-554) $ (-631 |#3|))) (-15 -3330 ((-554) $)) (-15 -4094 ($ $)) (-15 -3822 ($ (-631 |#4|))) (-15 -4148 ($ (-631 |#4|))) (-15 -2118 ((-112) $)) (-15 -2201 ((-631 |#4|) $)) (-15 -3075 ($ (-631 |#4|))) (-15 -4229 ($ $ |#4|)) (-15 -4229 ($ $ |#4| (-631 |#3|))) (IF (|has| |#3| (-602 (-1158))) (-15 -3710 ((-1147 (-631 (-937 |#1|)) (-631 (-289 (-937 |#1|)))) (-631 |#4|))) |%noBranch|))) +((-4144 (((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 149)) (-2667 (((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 150)) (-3679 (((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 108)) (-3289 (((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) NIL)) (-3440 (((-631 (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) 152)) (-4295 (((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-631 (-850 |#1|))) 164))) +(((-499 |#1| |#2|) (-10 -7 (-15 -4144 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -2667 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3289 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3679 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3440 ((-631 (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -4295 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-631 (-850 |#1|))))) (-631 (-1158)) (-758)) (T -499)) +((-4295 (*1 *2 *2 *3) (-12 (-5 *2 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-5 *3 (-631 (-850 *4))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *1 (-499 *4 *5)))) (-3440 (*1 *2 *3) (-12 (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-631 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554)))))) (-5 *1 (-499 *4 *5)) (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-498 (-402 (-554)) (-236 *4 (-758)) (-850 *3) (-243 *3 (-402 (-554))))) (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-499 *3 *4)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) (-5 *1 (-499 *4 *5)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) (-5 *1 (-499 *4 *5)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) (-243 *4 (-402 (-554))))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) (-5 *1 (-499 *4 *5))))) +(-10 -7 (-15 -4144 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -2667 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3289 ((-112) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3679 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -3440 ((-631 (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554))))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))))) (-15 -4295 ((-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-498 (-402 (-554)) (-236 |#2| (-758)) (-850 |#1|) (-243 |#1| (-402 (-554)))) (-631 (-850 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11) (($ (-1163)) NIL) (((-1163) $) NIL) (((-1158) $) 8)) (-1658 (((-112) $ $) NIL))) +(((-500) (-13 (-1065) (-601 (-1158)))) (T -500)) +NIL +(-13 (-1065) (-601 (-1158))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) 12 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) 11) (($ $ $) 24)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 18))) +(((-501 |#1| |#2|) (-13 (-21) (-503 |#1| |#2|)) (-21) (-836)) (T -501)) +NIL +(-13 (-21) (-503 |#1| |#2|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 12)) (-4087 (($) NIL T CONST)) (-2550 (($ $) 28)) (-2383 (($ |#1| |#2|) 25)) (-2879 (($ (-1 |#1| |#1|) $) 27)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) 29)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) 10 T CONST)) (-1658 (((-112) $ $) NIL)) (-1735 (($ $ $) 18)) (* (($ (-906) $) NIL) (($ (-758) $) 23))) +(((-502 |#1| |#2|) (-13 (-23) (-503 |#1| |#2|)) (-23) (-836)) (T -502)) +NIL +(-13 (-23) (-503 |#1| |#2|)) +((-3062 (((-112) $ $) 7)) (-2550 (($ $) 13)) (-2383 (($ |#1| |#2|) 16)) (-2879 (($ (-1 |#1| |#1|) $) 17)) (-1975 ((|#2| $) 14)) (-2530 ((|#1| $) 15)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-503 |#1| |#2|) (-138) (-1082) (-836)) (T -503)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-836)))) (-2383 (*1 *1 *2 *3) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1082)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-503 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-836)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836))))) +(-13 (-1082) (-10 -8 (-15 -2879 ($ (-1 |t#1| |t#1|) $)) (-15 -2383 ($ |t#1| |t#2|)) (-15 -2530 (|t#1| $)) (-15 -1975 (|t#2| $)) (-15 -2550 ($ $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 13)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL))) +(((-504 |#1| |#2|) (-13 (-779) (-503 |#1| |#2|)) (-779) (-836)) (T -504)) +NIL +(-13 (-779) (-503 |#1| |#2|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1349 (($ $ $) 16)) (-2934 (((-3 $ "failed") $ $) 13)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1975 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL))) +(((-505 |#1| |#2|) (-13 (-780) (-503 |#1| |#2|)) (-780) (-836)) (T -505)) +NIL +(-13 (-780) (-503 |#1| |#2|)) +((-3062 (((-112) $ $) NIL)) (-2550 (($ $) 25)) (-2383 (($ |#1| |#2|) 22)) (-2879 (($ (-1 |#1| |#1|) $) 24)) (-1975 ((|#2| $) 27)) (-2530 ((|#1| $) 26)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21)) (-1658 (((-112) $ $) 14))) +(((-506 |#1| |#2|) (-503 |#1| |#2|) (-1082) (-836)) (T -506)) +NIL +(-503 |#1| |#2|) +((-2386 (($ $ (-631 |#2|) (-631 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-507 |#1| |#2| |#3|) (-10 -8 (-15 -2386 (|#1| |#1| |#2| |#3|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#3|)))) (-508 |#2| |#3|) (-1082) (-1195)) (T -507)) +NIL +(-10 -8 (-15 -2386 (|#1| |#1| |#2| |#3|)) (-15 -2386 (|#1| |#1| (-631 |#2|) (-631 |#3|)))) +((-2386 (($ $ (-631 |#1|) (-631 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-508 |#1| |#2|) (-138) (-1082) (-1195)) (T -508)) +((-2386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *5)) (-4 *1 (-508 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1195)))) (-2386 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1195))))) +(-13 (-10 -8 (-15 -2386 ($ $ |t#1| |t#2|)) (-15 -2386 ($ $ (-631 |t#1|) (-631 |t#2|))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 16)) (-3042 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $) 18)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-3195 ((|#1| $ (-554)) 23)) (-4097 ((|#2| $ (-554)) 21)) (-3563 (($ (-1 |#1| |#1|) $) 46)) (-2781 (($ (-1 |#2| |#2|) $) 43)) (-1613 (((-1140) $) NIL)) (-4244 (($ $ $) 53 (|has| |#2| (-779)))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 42) (($ |#1|) NIL)) (-1779 ((|#2| |#1| $) 49)) (-2004 (($) 11 T CONST)) (-1658 (((-112) $ $) 29)) (-1735 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-906) $) NIL) (($ (-758) $) 36) (($ |#2| |#1|) 31))) +(((-509 |#1| |#2| |#3|) (-318 |#1| |#2|) (-1082) (-130) |#2|) (T -509)) +NIL +(-318 |#1| |#2|) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-2703 (((-112) (-112)) 25)) (-1501 ((|#1| $ (-554) |#1|) 28 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) 52)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-2593 (($ $) 56 (|has| |#1| (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) 44)) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2127 (($ $ (-554)) 13)) (-2375 (((-758) $) 11)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 23)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 21 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) 20 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2045 (($ $ $ (-554)) 51) (($ |#1| $ (-554)) 37)) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2457 (($ (-631 |#1|)) 29)) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) 19 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 40)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 16)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 33) (($ $ (-1208 (-554))) NIL)) (-3029 (($ $ (-1208 (-554))) 50) (($ $ (-554)) 45)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) 41 (|has| $ (-6 -4374)))) (-1521 (($ $) 32)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-1853 (($ $ $) 42) (($ $ |#1|) 39)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 17 (|has| $ (-6 -4373))))) +(((-510 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112))))) (-1195) (-554)) (T -510)) +((-2457 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-510 *3 *4)) (-14 *4 (-554)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-554)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 *2))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-554))))) +(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2457 ($ (-631 |#1|))) (-15 -2375 ((-758) $)) (-15 -2127 ($ $ (-554))) (-15 -2703 ((-112) (-112))))) +((-3062 (((-112) $ $) NIL)) (-1503 (((-1117) $) 11)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2364 (((-1117) $) 13)) (-4294 (((-1117) $) 9)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-511) (-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $)) (-15 -1503 ((-1117) $)) (-15 -2364 ((-1117) $))))) (T -511)) +((-4294 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511))))) +(-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $)) (-15 -1503 ((-1117) $)) (-15 -2364 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (((-571 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-571 |#1|) (-363)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL (|has| (-571 |#1|) (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-571 |#1|) "failed") $) NIL)) (-1668 (((-571 |#1|) $) NIL)) (-1651 (($ (-1241 (-571 |#1|))) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-571 |#1|) (-363)))) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-571 |#1|) (-363)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL (|has| (-571 |#1|) (-363)))) (-2754 (((-112) $) NIL (|has| (-571 |#1|) (-363)))) (-4122 (($ $ (-758)) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363)))) (($ $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-3289 (((-112) $) NIL)) (-2342 (((-906) $) NIL (|has| (-571 |#1|) (-363))) (((-820 (-906)) $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| (-571 |#1|) (-363)))) (-2693 (((-112) $) NIL (|has| (-571 |#1|) (-363)))) (-3274 (((-571 |#1|) $) NIL) (($ $ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-571 |#1|) (-363)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 (-571 |#1|)) $) NIL) (((-1154 $) $ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-3830 (((-906) $) NIL (|has| (-571 |#1|) (-363)))) (-3933 (((-1154 (-571 |#1|)) $) NIL (|has| (-571 |#1|) (-363)))) (-3025 (((-1154 (-571 |#1|)) $) NIL (|has| (-571 |#1|) (-363))) (((-3 (-1154 (-571 |#1|)) "failed") $ $) NIL (|has| (-571 |#1|) (-363)))) (-2300 (($ $ (-1154 (-571 |#1|))) NIL (|has| (-571 |#1|) (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-571 |#1|) (-363)) CONST)) (-2717 (($ (-906)) NIL (|has| (-571 |#1|) (-363)))) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| (-571 |#1|) (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-571 |#1|) (-363)))) (-2270 (((-413 $) $) NIL)) (-2365 (((-820 (-906))) NIL) (((-906)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-758) $) NIL (|has| (-571 |#1|) (-363))) (((-3 (-758) "failed") $ $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-3330 (((-133)) NIL)) (-1553 (($ $) NIL (|has| (-571 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-571 |#1|) (-363)))) (-3308 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-4318 (((-1154 (-571 |#1|))) NIL)) (-3944 (($) NIL (|has| (-571 |#1|) (-363)))) (-2288 (($) NIL (|has| (-571 |#1|) (-363)))) (-3656 (((-1241 (-571 |#1|)) $) NIL) (((-675 (-571 |#1|)) (-1241 $)) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-571 |#1|) (-363)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-571 |#1|)) NIL)) (-2084 (($ $) NIL (|has| (-571 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3994 (|has| (-571 |#1|) (-143)) (|has| (-571 |#1|) (-363))))) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL) (((-1241 $) (-906)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $) NIL (|has| (-571 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-571 |#1|) (-363)))) (-1787 (($ $) NIL (|has| (-571 |#1|) (-363))) (($ $ (-758)) NIL (|has| (-571 |#1|) (-363)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL) (($ $ (-571 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-571 |#1|)) NIL) (($ (-571 |#1|) $) NIL))) +(((-512 |#1| |#2|) (-324 (-571 |#1|)) (-906) (-906)) (T -512)) +NIL +(-324 (-571 |#1|)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) 35)) (-2557 (($ $ (-554) |#4|) NIL)) (-1464 (($ $ (-554) |#5|) NIL)) (-4087 (($) NIL T CONST)) (-3519 ((|#4| $ (-554)) NIL)) (-2862 ((|#1| $ (-554) (-554) |#1|) 34)) (-2796 ((|#1| $ (-554) (-554)) 32)) (-2466 (((-631 |#1|) $) NIL)) (-4130 (((-758) $) 28)) (-3180 (($ (-758) (-758) |#1|) 25)) (-4143 (((-758) $) 30)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) 26)) (-1817 (((-554) $) 27)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) 29)) (-4249 (((-554) $) 31)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) 38 (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 16)) (-2064 ((|#1| $ (-554) (-554)) 33) ((|#1| $ (-554) (-554) |#1|) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 ((|#5| $ (-554)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-513 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1195) (-554) (-554) (-368 |#1|) (-368 |#1|)) (T -513)) +NIL +(-57 |#1| |#4| |#5|) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 59 (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) 23 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 21 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4374))) (($ $ "rest" $) 24 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-3920 (($ $) 28 (|has| $ (-6 -4374)))) (-3799 (($ $) 29)) (-1551 (($ $) 18) (($ $ (-758)) 32)) (-2593 (($ $) 55 (|has| |#1| (-1082)))) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082))) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) NIL)) (-2466 (((-631 |#1|) $) 27 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 31 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3717 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1416 (($ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) 51 (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) 13) (($ $ (-758)) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 12)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) 17)) (-4240 (($) 16)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) NIL) ((|#1| $ (-554) |#1|) NIL)) (-3250 (((-554) $ $) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-3008 (((-112) $) 34)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) 36)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) 35)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 26)) (-1853 (($ $ $) 54) (($ $ |#1|) NIL)) (-4323 (($ $ $) NIL) (($ |#1| $) 10) (($ (-631 $)) NIL) (($ $ |#1|) NIL)) (-3075 (((-848) $) 46 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 48 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 9 (|has| $ (-6 -4373))))) +(((-514 |#1| |#2|) (-652 |#1|) (-1195) (-554)) (T -514)) +NIL +(-652 |#1|) +((-2775 ((|#4| |#4|) 27)) (-4186 (((-758) |#4|) 32)) (-4332 (((-758) |#4|) 33)) (-2412 (((-631 |#3|) |#4|) 40 (|has| |#3| (-6 -4374)))) (-2843 (((-3 |#4| "failed") |#4|) 51)) (-1375 ((|#4| |#4|) 44)) (-2870 ((|#1| |#4|) 43))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2775 (|#4| |#4|)) (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (IF (|has| |#3| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|) (-15 -2870 (|#1| |#4|)) (-15 -1375 (|#4| |#4|)) (-15 -2843 ((-3 |#4| "failed") |#4|))) (-358) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -515)) +((-2843 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-1375 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2870 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) (-2412 (*1 *2 *3) (-12 (|has| *6 (-6 -4374)) (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4332 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(-10 -7 (-15 -2775 (|#4| |#4|)) (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (IF (|has| |#3| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|) (-15 -2870 (|#1| |#4|)) (-15 -1375 (|#4| |#4|)) (-15 -2843 ((-3 |#4| "failed") |#4|))) +((-2775 ((|#8| |#4|) 20)) (-2412 (((-631 |#3|) |#4|) 29 (|has| |#7| (-6 -4374)))) (-2843 (((-3 |#8| "failed") |#4|) 23))) +(((-516 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2775 (|#8| |#4|)) (-15 -2843 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|)) (-546) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|) (-977 |#1|) (-368 |#5|) (-368 |#5|) (-673 |#5| |#6| |#7|)) (T -516)) +((-2412 (*1 *2 *3) (-12 (|has| *9 (-6 -4374)) (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)) (-5 *2 (-631 *6)) (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-673 *4 *5 *6)) (-4 *10 (-673 *7 *8 *9)))) (-2843 (*1 *2 *3) (|partial| -12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9)) (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) (-2775 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9)) (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7))))) +(-10 -7 (-15 -2775 (|#8| |#4|)) (-15 -2843 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4374)) (-15 -2412 ((-631 |#3|) |#4|)) |%noBranch|)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) NIL)) (-1846 (($ $ $) NIL)) (-2757 (($ (-590 |#1| |#3|)) NIL) (($ $) NIL)) (-1350 (((-112) $) NIL)) (-2416 (($ $ (-554) (-554)) 12)) (-3705 (($ $ (-554) (-554)) NIL)) (-1458 (($ $ (-554) (-554) (-554) (-554)) NIL)) (-3657 (($ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4345 (($ $ (-554) (-554) $) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) NIL)) (-2557 (($ $ (-554) (-590 |#1| |#3|)) NIL)) (-1464 (($ $ (-554) (-590 |#1| |#2|)) NIL)) (-1475 (($ (-758) |#1|) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 21 (|has| |#1| (-302)))) (-3519 (((-590 |#1| |#3|) $ (-554)) NIL)) (-4186 (((-758) $) 24 (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) NIL)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4332 (((-758) $) 26 (|has| |#1| (-546)))) (-2412 (((-631 (-590 |#1| |#2|)) $) 29 (|has| |#1| (-546)))) (-4130 (((-758) $) NIL)) (-3180 (($ (-758) (-758) |#1|) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#1| $) 19 (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) 10)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) 11)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#1|))) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1679 (((-631 (-631 |#1|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) 33 (|has| |#1| (-358)))) (-4041 (($ $ $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554))) NIL)) (-3198 (($ (-631 |#1|)) NIL) (($ (-631 $)) NIL)) (-2361 (((-112) $) NIL)) (-2870 ((|#1| $) 17 (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3259 (((-590 |#1| |#2|) $ (-554)) NIL)) (-3075 (($ (-590 |#1| |#2|)) NIL) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-554) $) NIL) (((-590 |#1| |#2|) $ (-590 |#1| |#2|)) NIL) (((-590 |#1| |#3|) (-590 |#1| |#3|) $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-517 |#1| |#2| |#3|) (-673 |#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) (-1034) (-554) (-554)) (T -517)) +NIL +(-673 |#1| (-590 |#1| |#3|) (-590 |#1| |#2|)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-3351 (((-631 (-1194)) $) 13)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-1163)) NIL) (((-1163) $) NIL) (($ (-631 (-1194))) 11)) (-1658 (((-112) $ $) NIL))) +(((-518) (-13 (-1065) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -3351 ((-631 (-1194)) $))))) (T -518)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518))))) +(-13 (-1065) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -3351 ((-631 (-1194)) $)))) +((-3062 (((-112) $ $) NIL)) (-1309 (((-1117) $) 14)) (-1613 (((-1140) $) NIL)) (-4320 (((-1158) $) 11)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-519) (-13 (-1065) (-10 -8 (-15 -4320 ((-1158) $)) (-15 -1309 ((-1117) $))))) (T -519)) +((-4320 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-519)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-519))))) +(-13 (-1065) (-10 -8 (-15 -4320 ((-1158) $)) (-15 -1309 ((-1117) $)))) +((-4120 (((-1102) $ (-128)) 17))) +(((-520 |#1|) (-10 -8 (-15 -4120 ((-1102) |#1| (-128)))) (-521)) (T -520)) +NIL +(-10 -8 (-15 -4120 ((-1102) |#1| (-128)))) +((-4120 (((-1102) $ (-128)) 7)) (-2614 (((-1102) $) 8)) (-3745 (($ $) 6))) +(((-521) (-138)) (T -521)) +((-2614 (*1 *2 *1) (-12 (-4 *1 (-521)) (-5 *2 (-1102)))) (-4120 (*1 *2 *1 *3) (-12 (-4 *1 (-521)) (-5 *3 (-128)) (-5 *2 (-1102))))) +(-13 (-171) (-10 -8 (-15 -2614 ((-1102) $)) (-15 -4120 ((-1102) $ (-128))))) +(((-171) . T)) +((-1955 (((-1154 |#1|) (-758)) 76)) (-1612 (((-1241 |#1|) (-1241 |#1|) (-906)) 69)) (-1940 (((-1246) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) |#1|) 84)) (-1771 (((-1241 |#1|) (-1241 |#1|) (-758)) 36)) (-3353 (((-1241 |#1|) (-906)) 71)) (-3651 (((-1241 |#1|) (-1241 |#1|) (-554)) 24)) (-2598 (((-1154 |#1|) (-1241 |#1|)) 77)) (-3227 (((-1241 |#1|) (-906)) 95)) (-2693 (((-112) (-1241 |#1|)) 80)) (-3274 (((-1241 |#1|) (-1241 |#1|) (-906)) 62)) (-3361 (((-1154 |#1|) (-1241 |#1|)) 89)) (-3830 (((-906) (-1241 |#1|)) 59)) (-2483 (((-1241 |#1|) (-1241 |#1|)) 30)) (-2717 (((-1241 |#1|) (-906) (-906)) 97)) (-1394 (((-1241 |#1|) (-1241 |#1|) (-1102) (-1102)) 23)) (-3020 (((-1241 |#1|) (-1241 |#1|) (-758) (-1102)) 37)) (-3782 (((-1241 (-1241 |#1|)) (-906)) 94)) (-1752 (((-1241 |#1|) (-1241 |#1|) (-1241 |#1|)) 81)) (** (((-1241 |#1|) (-1241 |#1|) (-554)) 45)) (* (((-1241 |#1|) (-1241 |#1|) (-1241 |#1|)) 25))) +(((-522 |#1|) (-10 -7 (-15 -1940 ((-1246) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) |#1|)) (-15 -3353 ((-1241 |#1|) (-906))) (-15 -2717 ((-1241 |#1|) (-906) (-906))) (-15 -2598 ((-1154 |#1|) (-1241 |#1|))) (-15 -1955 ((-1154 |#1|) (-758))) (-15 -3020 ((-1241 |#1|) (-1241 |#1|) (-758) (-1102))) (-15 -1771 ((-1241 |#1|) (-1241 |#1|) (-758))) (-15 -1394 ((-1241 |#1|) (-1241 |#1|) (-1102) (-1102))) (-15 -3651 ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 ** ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 * ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -1752 ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -3274 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -1612 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -2483 ((-1241 |#1|) (-1241 |#1|))) (-15 -3830 ((-906) (-1241 |#1|))) (-15 -2693 ((-112) (-1241 |#1|))) (-15 -3782 ((-1241 (-1241 |#1|)) (-906))) (-15 -3227 ((-1241 |#1|) (-906))) (-15 -3361 ((-1154 |#1|) (-1241 |#1|)))) (-344)) (T -522)) +((-3361 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 *4))) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-522 *4)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-906)) (-5 *1 (-522 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-1752 (*1 *2 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-3651 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-1394 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1102)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-1771 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-522 *4)))) (-3020 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1241 *5)) (-5 *3 (-758)) (-5 *4 (-1102)) (-4 *5 (-344)) (-5 *1 (-522 *5)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) (-4 *4 (-344)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) (-4 *4 (-344)) (-5 *2 (-1246)) (-5 *1 (-522 *4))))) +(-10 -7 (-15 -1940 ((-1246) (-1241 (-631 (-2 (|:| -2794 |#1|) (|:| -2717 (-1102))))) |#1|)) (-15 -3353 ((-1241 |#1|) (-906))) (-15 -2717 ((-1241 |#1|) (-906) (-906))) (-15 -2598 ((-1154 |#1|) (-1241 |#1|))) (-15 -1955 ((-1154 |#1|) (-758))) (-15 -3020 ((-1241 |#1|) (-1241 |#1|) (-758) (-1102))) (-15 -1771 ((-1241 |#1|) (-1241 |#1|) (-758))) (-15 -1394 ((-1241 |#1|) (-1241 |#1|) (-1102) (-1102))) (-15 -3651 ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 ** ((-1241 |#1|) (-1241 |#1|) (-554))) (-15 * ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -1752 ((-1241 |#1|) (-1241 |#1|) (-1241 |#1|))) (-15 -3274 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -1612 ((-1241 |#1|) (-1241 |#1|) (-906))) (-15 -2483 ((-1241 |#1|) (-1241 |#1|))) (-15 -3830 ((-906) (-1241 |#1|))) (-15 -2693 ((-112) (-1241 |#1|))) (-15 -3782 ((-1241 (-1241 |#1|)) (-906))) (-15 -3227 ((-1241 |#1|) (-906))) (-15 -3361 ((-1154 |#1|) (-1241 |#1|)))) +((-4120 (((-1102) $ (-128)) NIL)) (-2614 (((-1102) $) 21)) (-2890 (((-1102) $ (-1102)) 25)) (-1484 (((-1102) $) 24)) (-2993 (((-112) $) 19)) (-2569 (($ (-383)) 12) (($ (-1140)) 14)) (-2814 (((-112) $) 22)) (-3075 (((-848) $) 28)) (-3745 (($ $) 23))) +(((-523) (-13 (-521) (-601 (-848)) (-10 -8 (-15 -2569 ($ (-383))) (-15 -2569 ($ (-1140))) (-15 -2814 ((-112) $)) (-15 -2993 ((-112) $)) (-15 -1484 ((-1102) $)) (-15 -2890 ((-1102) $ (-1102)))))) (T -523)) +((-2569 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-523)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-523)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-523)))) (-2890 (*1 *2 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-523))))) +(-13 (-521) (-601 (-848)) (-10 -8 (-15 -2569 ($ (-383))) (-15 -2569 ($ (-1140))) (-15 -2814 ((-112) $)) (-15 -2993 ((-112) $)) (-15 -1484 ((-1102) $)) (-15 -2890 ((-1102) $ (-1102))))) +((-1831 (((-1 |#1| |#1|) |#1|) 11)) (-1928 (((-1 |#1| |#1|)) 10))) +(((-524 |#1|) (-10 -7 (-15 -1928 ((-1 |#1| |#1|))) (-15 -1831 ((-1 |#1| |#1|) |#1|))) (-13 (-713) (-25))) (T -524)) +((-1831 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25))))) (-1928 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25)))))) +(-10 -7 (-15 -1928 ((-1 |#1| |#1|))) (-15 -1831 ((-1 |#1| |#1|) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1349 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-2383 (($ (-758) |#1|) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 (-758) (-758)) $) NIL)) (-1975 ((|#1| $) NIL)) (-2530 (((-758) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20)) (-2004 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL))) +(((-525 |#1|) (-13 (-780) (-503 (-758) |#1|)) (-836)) (T -525)) +NIL +(-13 (-780) (-503 (-758) |#1|)) +((-1390 (((-631 |#2|) (-1154 |#1|) |#3|) 83)) (-4021 (((-631 (-2 (|:| |outval| |#2|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#2|))))) (-675 |#1|) |#3| (-1 (-413 (-1154 |#1|)) (-1154 |#1|))) 100)) (-1296 (((-1154 |#1|) (-675 |#1|)) 95))) +(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -1296 ((-1154 |#1|) (-675 |#1|))) (-15 -1390 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -4021 ((-631 (-2 (|:| |outval| |#2|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#2|))))) (-675 |#1|) |#3| (-1 (-413 (-1154 |#1|)) (-1154 |#1|))))) (-358) (-358) (-13 (-358) (-834))) (T -526)) +((-4021 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *6)) (-5 *5 (-1 (-413 (-1154 *6)) (-1154 *6))) (-4 *6 (-358)) (-5 *2 (-631 (-2 (|:| |outval| *7) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 *7)))))) (-5 *1 (-526 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-834))))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-358)) (-5 *2 (-631 *6)) (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-675 *4)) (-4 *4 (-358)) (-5 *2 (-1154 *4)) (-5 *1 (-526 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-834)))))) +(-10 -7 (-15 -1296 ((-1154 |#1|) (-675 |#1|))) (-15 -1390 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -4021 ((-631 (-2 (|:| |outval| |#2|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#2|))))) (-675 |#1|) |#3| (-1 (-413 (-1154 |#1|)) (-1154 |#1|))))) +((-2077 (((-1102) $ (-128)) 25)) (-3451 (((-1102) $ (-129)) 27)) (-4120 (((-1102) $ (-128)) 23)) (-2614 (((-1102) $) 24)) (-4203 (((-112) $) 17)) (-3769 (((-3 $ "failed") (-569) (-939)) 10) (((-3 $ "failed") (-485) (-939)) 13)) (-3075 (((-848) $) 35)) (-3745 (($ $) 22))) +(((-527) (-13 (-754 (-569)) (-601 (-848)) (-10 -8 (-15 -3769 ((-3 $ "failed") (-485) (-939)))))) (T -527)) +((-3769 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *3 (-939)) (-5 *1 (-527))))) +(-13 (-754 (-569)) (-601 (-848)) (-10 -8 (-15 -3769 ((-3 $ "failed") (-485) (-939))))) +((-1701 (((-829 (-554))) 12)) (-1713 (((-829 (-554))) 14)) (-2855 (((-820 (-554))) 9))) +(((-528) (-10 -7 (-15 -2855 ((-820 (-554)))) (-15 -1701 ((-829 (-554)))) (-15 -1713 ((-829 (-554)))))) (T -528)) +((-1713 (*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528)))) (-1701 (*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528)))) (-2855 (*1 *2) (-12 (-5 *2 (-820 (-554))) (-5 *1 (-528))))) +(-10 -7 (-15 -2855 ((-820 (-554)))) (-15 -1701 ((-829 (-554)))) (-15 -1713 ((-829 (-554))))) +((-4346 (((-530) (-1158)) 15)) (-2936 ((|#1| (-530)) 20))) +(((-529 |#1|) (-10 -7 (-15 -4346 ((-530) (-1158))) (-15 -2936 (|#1| (-530)))) (-1195)) (T -529)) +((-2936 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-529 *2)) (-4 *2 (-1195)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-530)) (-5 *1 (-529 *4)) (-4 *4 (-1195))))) +(-10 -7 (-15 -4346 ((-530) (-1158))) (-15 -2936 (|#1| (-530)))) +((-3062 (((-112) $ $) NIL)) (-4046 (((-1140) $) 47)) (-3237 (((-112) $) 43)) (-3450 (((-1158) $) 44)) (-3117 (((-112) $) 41)) (-3942 (((-1140) $) 42)) (-2025 (($ (-1140)) 48)) (-3072 (((-112) $) NIL)) (-1703 (((-112) $) NIL)) (-3207 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-1607 (($ $ (-631 (-1158))) 20)) (-2936 (((-52) $) 22)) (-1289 (((-112) $) NIL)) (-3476 (((-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-2367 (($ $ (-631 (-1158)) (-1158)) 60)) (-2947 (((-112) $) NIL)) (-3302 (((-221) $) NIL)) (-2249 (($ $) 38)) (-1533 (((-848) $) NIL)) (-4329 (((-112) $ $) NIL)) (-2064 (($ $ (-554)) NIL) (($ $ (-631 (-554))) NIL)) (-2344 (((-631 $) $) 28)) (-2154 (((-1158) (-631 $)) 49)) (-2927 (($ (-1140)) NIL) (($ (-1158)) 18) (($ (-554)) 8) (($ (-221)) 25) (($ (-848)) NIL) (($ (-631 $)) 56) (((-1086) $) 11) (($ (-1086)) 12)) (-1356 (((-1158) (-1158) (-631 $)) 52)) (-3075 (((-848) $) 46)) (-1438 (($ $) 51)) (-1427 (($ $) 50)) (-1522 (($ $ (-631 $)) 57)) (-3967 (((-112) $) 27)) (-2004 (($) 9 T CONST)) (-2014 (($) 10 T CONST)) (-1658 (((-112) $ $) 61)) (-1752 (($ $ $) 66)) (-1735 (($ $ $) 62)) (** (($ $ (-758)) 65) (($ $ (-554)) 64)) (* (($ $ $) 63)) (-2563 (((-554) $) NIL))) +(((-530) (-13 (-1085 (-1140) (-1158) (-554) (-221) (-848)) (-602 (-1086)) (-10 -8 (-15 -2936 ((-52) $)) (-15 -2927 ($ (-1086))) (-15 -1522 ($ $ (-631 $))) (-15 -2367 ($ $ (-631 (-1158)) (-1158))) (-15 -1607 ($ $ (-631 (-1158)))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ (-554))) (-15 0 ($) -2397) (-15 1 ($) -2397) (-15 -2249 ($ $)) (-15 -4046 ((-1140) $)) (-15 -2025 ($ (-1140))) (-15 -2154 ((-1158) (-631 $))) (-15 -1356 ((-1158) (-1158) (-631 $)))))) (T -530)) +((-2936 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-530)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-530)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-530))) (-5 *1 (-530)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1158)) (-5 *1 (-530)))) (-1607 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-530)))) (-1735 (*1 *1 *1 *1) (-5 *1 (-530))) (* (*1 *1 *1 *1) (-5 *1 (-530))) (-1752 (*1 *1 *1 *1) (-5 *1 (-530))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-530)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-530)))) (-2004 (*1 *1) (-5 *1 (-530))) (-2014 (*1 *1) (-5 *1 (-530))) (-2249 (*1 *1 *1) (-5 *1 (-530))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-530)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-530)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-631 (-530))) (-5 *2 (-1158)) (-5 *1 (-530)))) (-1356 (*1 *2 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-530))) (-5 *1 (-530))))) +(-13 (-1085 (-1140) (-1158) (-554) (-221) (-848)) (-602 (-1086)) (-10 -8 (-15 -2936 ((-52) $)) (-15 -2927 ($ (-1086))) (-15 -1522 ($ $ (-631 $))) (-15 -2367 ($ $ (-631 (-1158)) (-1158))) (-15 -1607 ($ $ (-631 (-1158)))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ (-554))) (-15 (-2004) ($) -2397) (-15 (-2014) ($) -2397) (-15 -2249 ($ $)) (-15 -4046 ((-1140) $)) (-15 -2025 ($ (-1140))) (-15 -2154 ((-1158) (-631 $))) (-15 -1356 ((-1158) (-1158) (-631 $))))) +((-3292 ((|#2| |#2|) 17)) (-4260 ((|#2| |#2|) 13)) (-4263 ((|#2| |#2| (-554) (-554)) 20)) (-2539 ((|#2| |#2|) 15))) +(((-531 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554)))) (-13 (-546) (-145)) (-1232 |#1|)) (T -531)) +((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-531 *4 *2)) (-4 *2 (-1232 *4)))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1232 *3)))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1232 *3)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554)))) +((-3132 (((-631 (-289 (-937 |#2|))) (-631 |#2|) (-631 (-1158))) 32)) (-1614 (((-631 |#2|) (-937 |#1|) |#3|) 53) (((-631 |#2|) (-1154 |#1|) |#3|) 52)) (-1772 (((-631 (-631 |#2|)) (-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)) |#3|) 88))) +(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -1614 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -1614 ((-631 |#2|) (-937 |#1|) |#3|)) (-15 -1772 ((-631 (-631 |#2|)) (-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)) |#3|)) (-15 -3132 ((-631 (-289 (-937 |#2|))) (-631 |#2|) (-631 (-1158))))) (-446) (-358) (-13 (-358) (-834))) (T -532)) +((-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1158))) (-4 *6 (-358)) (-5 *2 (-631 (-289 (-937 *6)))) (-5 *1 (-532 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-13 (-358) (-834))))) (-1772 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-631 (-631 *7))) (-5 *1 (-532 *6 *7 *5)) (-4 *7 (-358)) (-4 *5 (-13 (-358) (-834))))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-937 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834)))))) +(-10 -7 (-15 -1614 ((-631 |#2|) (-1154 |#1|) |#3|)) (-15 -1614 ((-631 |#2|) (-937 |#1|) |#3|)) (-15 -1772 ((-631 (-631 |#2|)) (-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)) |#3|)) (-15 -3132 ((-631 (-289 (-937 |#2|))) (-631 |#2|) (-631 (-1158))))) +((-1877 ((|#2| |#2| |#1|) 17)) (-3643 ((|#2| (-631 |#2|)) 27)) (-4212 ((|#2| (-631 |#2|)) 46))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 (|#2| (-631 |#2|))) (-15 -4212 (|#2| (-631 |#2|))) (-15 -1877 (|#2| |#2| |#1|))) (-302) (-1217 |#1|) |#1| (-1 |#1| |#1| (-758))) (T -533)) +((-1877 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-758))) (-5 *1 (-533 *3 *2 *4 *5)) (-4 *2 (-1217 *3)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758))))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758)))))) +(-10 -7 (-15 -3643 (|#2| (-631 |#2|))) (-15 -4212 (|#2| (-631 |#2|))) (-15 -1877 (|#2| |#2| |#1|))) +((-2270 (((-413 (-1154 |#4|)) (-1154 |#4|) (-1 (-413 (-1154 |#3|)) (-1154 |#3|))) 79) (((-413 |#4|) |#4| (-1 (-413 (-1154 |#3|)) (-1154 |#3|))) 168))) +(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 (-1154 |#3|)) (-1154 |#3|)))) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|) (-1 (-413 (-1154 |#3|)) (-1154 |#3|))))) (-836) (-780) (-13 (-302) (-145)) (-934 |#3| |#2| |#1|)) (T -534)) +((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *8 (-934 *7 *6 *5)) (-5 *2 (-413 (-1154 *8))) (-5 *1 (-534 *5 *6 *7 *8)) (-5 *3 (-1154 *8)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780)) (-5 *2 (-413 *3)) (-5 *1 (-534 *5 *6 *7 *3)) (-4 *3 (-934 *7 *6 *5))))) +(-10 -7 (-15 -2270 ((-413 |#4|) |#4| (-1 (-413 (-1154 |#3|)) (-1154 |#3|)))) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|) (-1 (-413 (-1154 |#3|)) (-1154 |#3|))))) +((-3292 ((|#4| |#4|) 74)) (-4260 ((|#4| |#4|) 70)) (-4263 ((|#4| |#4| (-554) (-554)) 76)) (-2539 ((|#4| |#4|) 72))) +(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4260 (|#4| |#4|)) (-15 -2539 (|#4| |#4|)) (-15 -3292 (|#4| |#4|)) (-15 -4263 (|#4| |#4| (-554) (-554)))) (-13 (-358) (-363) (-602 (-554))) (-1217 |#1|) (-711 |#1| |#2|) (-1232 |#3|)) (T -535)) +((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3))) (-4 *5 (-1217 *4)) (-4 *6 (-711 *4 *5)) (-5 *1 (-535 *4 *5 *6 *2)) (-4 *2 (-1232 *6)))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5))))) +(-10 -7 (-15 -4260 (|#4| |#4|)) (-15 -2539 (|#4| |#4|)) (-15 -3292 (|#4| |#4|)) (-15 -4263 (|#4| |#4| (-554) (-554)))) +((-3292 ((|#2| |#2|) 27)) (-4260 ((|#2| |#2|) 23)) (-4263 ((|#2| |#2| (-554) (-554)) 29)) (-2539 ((|#2| |#2|) 25))) +(((-536 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554)))) (-13 (-358) (-363) (-602 (-554))) (-1232 |#1|)) (T -536)) +((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3))) (-5 *1 (-536 *4 *2)) (-4 *2 (-1232 *4)))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1232 *3)))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1232 *3)))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -4260 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -4263 (|#2| |#2| (-554) (-554)))) +((-4139 (((-3 (-554) "failed") |#2| |#1| (-1 (-3 (-554) "failed") |#1|)) 14) (((-3 (-554) "failed") |#2| |#1| (-554) (-1 (-3 (-554) "failed") |#1|)) 13) (((-3 (-554) "failed") |#2| (-554) (-1 (-3 (-554) "failed") |#1|)) 26))) +(((-537 |#1| |#2|) (-10 -7 (-15 -4139 ((-3 (-554) "failed") |#2| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-1 (-3 (-554) "failed") |#1|)))) (-1034) (-1217 |#1|)) (T -537)) +((-4139 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4)))) (-4139 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4)))) (-4139 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-554) "failed") *5)) (-4 *5 (-1034)) (-5 *2 (-554)) (-5 *1 (-537 *5 *3)) (-4 *3 (-1217 *5))))) +(-10 -7 (-15 -4139 ((-3 (-554) "failed") |#2| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-554) (-1 (-3 (-554) "failed") |#1|))) (-15 -4139 ((-3 (-554) "failed") |#2| |#1| (-1 (-3 (-554) "failed") |#1|)))) +((-3575 (($ $ $) 79)) (-1565 (((-413 $) $) 47)) (-2784 (((-3 (-554) "failed") $) 59)) (-1668 (((-554) $) 37)) (-1623 (((-3 (-402 (-554)) "failed") $) 74)) (-2069 (((-112) $) 24)) (-2197 (((-402 (-554)) $) 72)) (-3289 (((-112) $) 50)) (-2267 (($ $ $ $) 86)) (-2745 (((-112) $) 16)) (-1295 (($ $ $) 57)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 69)) (-3339 (((-3 $ "failed") $) 64)) (-3882 (($ $) 23)) (-3297 (($ $ $) 84)) (-3834 (($) 60)) (-1582 (($ $) 53)) (-2270 (((-413 $) $) 45)) (-1795 (((-112) $) 14)) (-2072 (((-758) $) 28)) (-1553 (($ $ (-758)) NIL) (($ $) 10)) (-1521 (($ $) 17)) (-2927 (((-554) $) NIL) (((-530) $) 36) (((-877 (-554)) $) 40) (((-374) $) 31) (((-221) $) 33)) (-2261 (((-758)) 8)) (-2134 (((-112) $ $) 20)) (-1629 (($ $ $) 55))) +(((-538 |#1|) (-10 -8 (-15 -3297 (|#1| |#1| |#1|)) (-15 -2267 (|#1| |#1| |#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2134 ((-112) |#1| |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -1629 (|#1| |#1| |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2927 ((-554) |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2745 ((-112) |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -2261 ((-758)))) (-539)) (T -538)) +((-2261 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-538 *3)) (-4 *3 (-539))))) +(-10 -8 (-15 -3297 (|#1| |#1| |#1|)) (-15 -2267 (|#1| |#1| |#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2134 ((-112) |#1| |#1|)) (-15 -1795 ((-112) |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -1295 (|#1| |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -1629 (|#1| |#1| |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2927 ((-554) |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2745 ((-112) |#1|)) (-15 -2072 ((-758) |#1|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -2261 ((-758)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3575 (($ $ $) 85)) (-2934 (((-3 $ "failed") $ $) 19)) (-4278 (($ $ $ $) 74)) (-3278 (($ $) 52)) (-1565 (((-413 $) $) 53)) (-2286 (((-112) $ $) 125)) (-4219 (((-554) $) 114)) (-1648 (($ $ $) 88)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 106)) (-1668 (((-554) $) 107)) (-3964 (($ $ $) 129)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 104) (((-675 (-554)) (-675 $)) 103)) (-1320 (((-3 $ "failed") $) 33)) (-1623 (((-3 (-402 (-554)) "failed") $) 82)) (-2069 (((-112) $) 84)) (-2197 (((-402 (-554)) $) 83)) (-3353 (($) 81) (($ $) 80)) (-3943 (($ $ $) 128)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 123)) (-3289 (((-112) $) 54)) (-2267 (($ $ $ $) 72)) (-3773 (($ $ $) 86)) (-2745 (((-112) $) 116)) (-1295 (($ $ $) 97)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 100)) (-3248 (((-112) $) 31)) (-3273 (((-112) $) 92)) (-3339 (((-3 $ "failed") $) 94)) (-4304 (((-112) $) 115)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 132)) (-2057 (($ $ $ $) 73)) (-4223 (($ $ $) 117)) (-2706 (($ $ $) 118)) (-3882 (($ $) 76)) (-2577 (($ $) 89)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-3297 (($ $ $) 71)) (-3834 (($) 93 T CONST)) (-1786 (($ $) 78)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-1582 (($ $) 98)) (-2270 (((-413 $) $) 51)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 130)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 124)) (-1795 (((-112) $) 91)) (-2072 (((-758) $) 126)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 127)) (-1553 (($ $ (-758)) 111) (($ $) 109)) (-3690 (($ $) 77)) (-1521 (($ $) 79)) (-2927 (((-554) $) 108) (((-530) $) 102) (((-877 (-554)) $) 101) (((-374) $) 96) (((-221) $) 95)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-554)) 105)) (-2261 (((-758)) 28)) (-2134 (((-112) $ $) 87)) (-1629 (($ $ $) 99)) (-3462 (($) 90)) (-1909 (((-112) $ $) 40)) (-2225 (($ $ $ $) 75)) (-1700 (($ $) 113)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-758)) 112) (($ $) 110)) (-1708 (((-112) $ $) 120)) (-1686 (((-112) $ $) 121)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 119)) (-1676 (((-112) $ $) 122)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-539) (-138)) (T -539)) +((-3273 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-3462 (*1 *1) (-4 *1 (-539))) (-2577 (*1 *1 *1) (-4 *1 (-539))) (-1648 (*1 *1 *1 *1) (-4 *1 (-539))) (-2134 (*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-3773 (*1 *1 *1 *1) (-4 *1 (-539))) (-3575 (*1 *1 *1 *1) (-4 *1 (-539))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-539)) (-5 *2 (-402 (-554))))) (-3353 (*1 *1) (-4 *1 (-539))) (-3353 (*1 *1 *1) (-4 *1 (-539))) (-1521 (*1 *1 *1) (-4 *1 (-539))) (-1786 (*1 *1 *1) (-4 *1 (-539))) (-3690 (*1 *1 *1) (-4 *1 (-539))) (-3882 (*1 *1 *1) (-4 *1 (-539))) (-2225 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-4278 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-2057 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-2267 (*1 *1 *1 *1 *1) (-4 *1 (-539))) (-3297 (*1 *1 *1 *1) (-4 *1 (-539)))) +(-13 (-1199) (-302) (-807) (-229) (-602 (-554)) (-1023 (-554)) (-627 (-554)) (-602 (-530)) (-602 (-877 (-554))) (-871 (-554)) (-141) (-1007) (-145) (-1133) (-10 -8 (-15 -3273 ((-112) $)) (-15 -1795 ((-112) $)) (-6 -4372) (-15 -3462 ($)) (-15 -2577 ($ $)) (-15 -1648 ($ $ $)) (-15 -2134 ((-112) $ $)) (-15 -3773 ($ $ $)) (-15 -3575 ($ $ $)) (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $)) (-15 -3353 ($)) (-15 -3353 ($ $)) (-15 -1521 ($ $)) (-15 -1786 ($ $)) (-15 -3690 ($ $)) (-15 -3882 ($ $)) (-15 -2225 ($ $ $ $)) (-15 -4278 ($ $ $ $)) (-15 -2057 ($ $ $ $)) (-15 -2267 ($ $ $ $)) (-15 -3297 ($ $ $)) (-6 -4371))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-141) . T) ((-170) . T) ((-602 (-221)) . T) ((-602 (-374)) . T) ((-602 (-530)) . T) ((-602 (-554)) . T) ((-602 (-877 (-554))) . T) ((-229) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-627 (-554)) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-807) . T) ((-834) . T) ((-836) . T) ((-871 (-554)) . T) ((-905) . T) ((-1007) . T) ((-1023 (-554)) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) . T) ((-1199) . T)) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-540 |#1| |#2| |#3|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373)))) (T -540)) +NIL +(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) +((-2809 (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-1 (-1154 |#2|) (-1154 |#2|))) 51))) +(((-541 |#1| |#2|) (-10 -7 (-15 -2809 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-1 (-1154 |#2|) (-1154 |#2|))))) (-13 (-836) (-546)) (-13 (-27) (-425 |#1|))) (T -541)) +((-2809 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-600 *3)) (-5 *5 (-1 (-1154 *3) (-1154 *3))) (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-836) (-546))) (-5 *2 (-575 *3)) (-5 *1 (-541 *6 *3))))) +(-10 -7 (-15 -2809 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-1 (-1154 |#2|) (-1154 |#2|))))) +((-2210 (((-575 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-4178 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-3608 (((-575 |#5|) |#5| (-1 |#3| |#3|)) 201))) +(((-542 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3608 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2210 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4178 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-836) (-546) (-1023 (-554))) (-13 (-27) (-425 |#1|)) (-1217 |#2|) (-1217 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -542)) +((-4178 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-27) (-425 *4))) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-4 *7 (-1217 (-402 *6))) (-5 *1 (-542 *4 *5 *6 *7 *2)) (-4 *2 (-337 *5 *6 *7)))) (-2210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7))) (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7))) (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8))))) +(-10 -7 (-15 -3608 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2210 ((-575 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4178 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2732 (((-112) (-554) (-554)) 10)) (-4292 (((-554) (-554)) 7)) (-3164 (((-554) (-554) (-554)) 8))) +(((-543) (-10 -7 (-15 -4292 ((-554) (-554))) (-15 -3164 ((-554) (-554) (-554))) (-15 -2732 ((-112) (-554) (-554))))) (T -543)) +((-2732 (*1 *2 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-543)))) (-3164 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543))))) +(-10 -7 (-15 -4292 ((-554) (-554))) (-15 -3164 ((-554) (-554) (-554))) (-15 -2732 ((-112) (-554) (-554)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-4026 ((|#1| $) 62)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3023 (($ $) 92)) (-4200 (($ $) 75)) (-1349 ((|#1| $) 63)) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $) 74)) (-3003 (($ $) 91)) (-4177 (($ $) 76)) (-3046 (($ $) 90)) (-2916 (($ $) 77)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 70)) (-1668 (((-554) $) 71)) (-1320 (((-3 $ "failed") $) 33)) (-3603 (($ |#1| |#1|) 67)) (-2745 (((-112) $) 61)) (-2844 (($) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 73)) (-4304 (((-112) $) 60)) (-4223 (($ $ $) 108)) (-2706 (($ $ $) 107)) (-2395 (($ $) 99)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-1449 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-402 (-554))) 65)) (-3703 ((|#1| $) 64)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3919 (((-3 $ "failed") $ $) 43)) (-1333 (($ $) 100)) (-3057 (($ $) 89)) (-2926 (($ $) 78)) (-3034 (($ $) 88)) (-4213 (($ $) 79)) (-3014 (($ $) 87)) (-4188 (($ $) 80)) (-1543 (((-112) $ |#1|) 59)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-554)) 69)) (-2261 (((-758)) 28)) (-3096 (($ $) 98)) (-2959 (($ $) 86)) (-1909 (((-112) $ $) 40)) (-3069 (($ $) 97)) (-2938 (($ $) 85)) (-3120 (($ $) 96)) (-2981 (($ $) 84)) (-2908 (($ $) 95)) (-2991 (($ $) 83)) (-3108 (($ $) 94)) (-2969 (($ $) 82)) (-3083 (($ $) 93)) (-2948 (($ $) 81)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 105)) (-1686 (((-112) $ $) 104)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 106)) (-1676 (((-112) $ $) 103)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ $) 101) (($ $ (-402 (-554))) 72)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-544 |#1|) (-138) (-13 (-399) (-1180))) (T -544)) +((-1449 (*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-3603 (*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-1449 (*1 *1 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))) (-1543 (*1 *2 *1 *3) (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112))))) +(-13 (-446) (-836) (-1180) (-987) (-1023 (-554)) (-10 -8 (-6 -4333) (-15 -1449 ($ |t#1| |t#1|)) (-15 -3603 ($ |t#1| |t#1|)) (-15 -1449 ($ |t#1|)) (-15 -1449 ($ (-402 (-554)))) (-15 -3703 (|t#1| $)) (-15 -1349 (|t#1| $)) (-15 -4026 (|t#1| $)) (-15 -2745 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -1543 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-279) . T) ((-285) . T) ((-446) . T) ((-487) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-836) . T) ((-987) . T) ((-1023 (-554)) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) . T) ((-1183) . T)) +((-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 9)) (-1976 (($ $) 11)) (-1363 (((-112) $) 18)) (-1320 (((-3 $ "failed") $) 16)) (-1909 (((-112) $ $) 20))) +(((-545 |#1|) (-10 -8 (-15 -1363 ((-112) |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|))) (-546)) (T -545)) +NIL +(-10 -8 (-15 -1363 ((-112) |#1|)) (-15 -1909 ((-112) |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1292 ((-2 (|:| -3646 |#1|) (|:| -4360 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-546) (-138)) (T -546)) +((-3919 (*1 *1 *1 *1) (|partial| -4 *1 (-546))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3646 *1) (|:| -4360 *1) (|:| |associate| *1))) (-4 *1 (-546)))) (-1976 (*1 *1 *1) (-4 *1 (-546))) (-1909 (*1 *2 *1 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112))))) +(-13 (-170) (-38 $) (-285) (-10 -8 (-15 -3919 ((-3 $ "failed") $ $)) (-15 -1292 ((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $)) (-15 -1976 ($ $)) (-15 -1909 ((-112) $ $)) (-15 -1363 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2399 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1158) (-631 |#2|)) 37)) (-3363 (((-575 |#2|) |#2| (-1158)) 62)) (-2846 (((-3 |#2| "failed") |#2| (-1158)) 152)) (-1657 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) (-600 |#2|) (-631 (-600 |#2|))) 155)) (-3246 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) |#2|) 40))) +(((-547 |#1| |#2|) (-10 -7 (-15 -3246 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) |#2|)) (-15 -2399 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1158) (-631 |#2|))) (-15 -2846 ((-3 |#2| "failed") |#2| (-1158))) (-15 -3363 ((-575 |#2|) |#2| (-1158))) (-15 -1657 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) (-600 |#2|) (-631 (-600 |#2|))))) (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -547)) +((-1657 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1158)) (-5 *6 (-631 (-600 *3))) (-5 *5 (-600 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *7))) (-4 *7 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-547 *7 *3)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-547 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2846 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-547 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2399 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *6 *3)))) (-3246 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-547 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) +(-10 -7 (-15 -3246 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) |#2|)) (-15 -2399 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1158) (-631 |#2|))) (-15 -2846 ((-3 |#2| "failed") |#2| (-1158))) (-15 -3363 ((-575 |#2|) |#2| (-1158))) (-15 -1657 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1158) (-600 |#2|) (-631 (-600 |#2|))))) +((-1565 (((-413 |#1|) |#1|) 18)) (-2270 (((-413 |#1|) |#1|) 33)) (-1978 (((-3 |#1| "failed") |#1|) 44)) (-3264 (((-413 |#1|) |#1|) 51))) +(((-548 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3264 ((-413 |#1|) |#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|))) (-539)) (T -548)) +((-1978 (*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-539)))) (-3264 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539))))) +(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3264 ((-413 |#1|) |#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|))) +((-1988 (($) 9)) (-1963 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 35)) (-2944 (((-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 32)) (-2045 (($ (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3776 (($ (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2701 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-2625 (((-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1319 (((-1246)) 12))) +(((-549) (-10 -8 (-15 -1988 ($)) (-15 -1319 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3776 ($ (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1963 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2625 ((-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2701 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -549)) +((-2701 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-549)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-549)))) (-1963 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-549)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-549)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-549)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-549)))) (-1319 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-549)))) (-1988 (*1 *1) (-5 *1 (-549)))) +(-10 -8 (-15 -1988 ($)) (-15 -1319 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3776 ($ (-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1963 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2625 ((-631 (-2 (|:| -2564 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2701 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-2237 (((-1154 (-402 (-1154 |#2|))) |#2| (-600 |#2|) (-600 |#2|) (-1154 |#2|)) 32)) (-3222 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) |#2| (-1154 |#2|)) 110)) (-2036 (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 80) (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|)) 52)) (-2949 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| (-600 |#2|) |#2| (-402 (-1154 |#2|))) 87) (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| |#2| (-1154 |#2|)) 109)) (-2066 (((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) |#2| (-1154 |#2|)) 111)) (-2812 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))) 128 (|has| |#3| (-642 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|)) 127 (|has| |#3| (-642 |#2|)))) (-2393 ((|#2| (-1154 (-402 (-1154 |#2|))) (-600 |#2|) |#2|) 50)) (-3662 (((-1154 (-402 (-1154 |#2|))) (-1154 |#2|) (-600 |#2|)) 31))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| |#2| (-1154 |#2|))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) |#2| (-1154 |#2|))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) |#2| (-1154 |#2|))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2237 ((-1154 (-402 (-1154 |#2|))) |#2| (-600 |#2|) (-600 |#2|) (-1154 |#2|))) (-15 -2393 (|#2| (-1154 (-402 (-1154 |#2|))) (-600 |#2|) |#2|)) (-15 -3662 ((-1154 (-402 (-1154 |#2|))) (-1154 |#2|) (-600 |#2|))) (IF (|has| |#3| (-642 |#2|)) (PROGN (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))))) |%noBranch|)) (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))) (-13 (-425 |#1|) (-27) (-1180)) (-1082)) (T -550)) +((-2812 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-600 *4)) (-5 *6 (-402 (-1154 *4))) (-4 *4 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) (-2812 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-600 *4)) (-5 *6 (-1154 *4)) (-4 *4 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-600 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-1154 (-402 (-1154 *6)))) (-5 *1 (-550 *5 *6 *7)) (-5 *3 (-1154 *6)) (-4 *7 (-1082)))) (-2393 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1154 (-402 (-1154 *2)))) (-5 *4 (-600 *2)) (-4 *2 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1082)))) (-2237 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-1154 (-402 (-1154 *3)))) (-5 *1 (-550 *6 *3 *7)) (-5 *5 (-1154 *3)) (-4 *7 (-1082)))) (-2066 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-600 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-5 *5 (-402 (-1154 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082)))) (-2066 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-600 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-5 *5 (-1154 *2)) (-4 *2 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082)))) (-3222 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-5 *6 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082)))) (-3222 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-5 *6 (-1154 *3)) (-4 *3 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082)))) (-2949 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) (-2949 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) (-2036 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) (-2036 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082))))) +(-10 -7 (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2036 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| |#2| (-1154 |#2|))) (-15 -2949 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2| (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) |#2| (-1154 |#2|))) (-15 -3222 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) |#2| (-1154 |#2|))) (-15 -2066 ((-3 |#2| "failed") |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)) (-600 |#2|) |#2| (-402 (-1154 |#2|)))) (-15 -2237 ((-1154 (-402 (-1154 |#2|))) |#2| (-600 |#2|) (-600 |#2|) (-1154 |#2|))) (-15 -2393 (|#2| (-1154 (-402 (-1154 |#2|))) (-600 |#2|) |#2|)) (-15 -3662 ((-1154 (-402 (-1154 |#2|))) (-1154 |#2|) (-600 |#2|))) (IF (|has| |#3| (-642 |#2|)) (PROGN (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) |#2| (-1154 |#2|))) (-15 -2812 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-600 |#2|) |#2| (-402 (-1154 |#2|))))) |%noBranch|)) +((-3554 (((-554) (-554) (-758)) 66)) (-3314 (((-554) (-554)) 65)) (-2544 (((-554) (-554)) 64)) (-2960 (((-554) (-554)) 69)) (-1926 (((-554) (-554) (-554)) 49)) (-1832 (((-554) (-554) (-554)) 46)) (-3617 (((-402 (-554)) (-554)) 20)) (-3183 (((-554) (-554)) 21)) (-2476 (((-554) (-554)) 58)) (-2285 (((-554) (-554)) 32)) (-3192 (((-631 (-554)) (-554)) 63)) (-3589 (((-554) (-554) (-554) (-554) (-554)) 44)) (-1880 (((-402 (-554)) (-554)) 41))) +(((-551) (-10 -7 (-15 -1880 ((-402 (-554)) (-554))) (-15 -3589 ((-554) (-554) (-554) (-554) (-554))) (-15 -3192 ((-631 (-554)) (-554))) (-15 -2285 ((-554) (-554))) (-15 -2476 ((-554) (-554))) (-15 -3183 ((-554) (-554))) (-15 -3617 ((-402 (-554)) (-554))) (-15 -1832 ((-554) (-554) (-554))) (-15 -1926 ((-554) (-554) (-554))) (-15 -2960 ((-554) (-554))) (-15 -2544 ((-554) (-554))) (-15 -3314 ((-554) (-554))) (-15 -3554 ((-554) (-554) (-758))))) (T -551)) +((-3554 (*1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-758)) (-5 *1 (-551)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2544 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-1832 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-3617 (*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-3192 (*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))) (-3589 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554))))) +(-10 -7 (-15 -1880 ((-402 (-554)) (-554))) (-15 -3589 ((-554) (-554) (-554) (-554) (-554))) (-15 -3192 ((-631 (-554)) (-554))) (-15 -2285 ((-554) (-554))) (-15 -2476 ((-554) (-554))) (-15 -3183 ((-554) (-554))) (-15 -3617 ((-402 (-554)) (-554))) (-15 -1832 ((-554) (-554) (-554))) (-15 -1926 ((-554) (-554) (-554))) (-15 -2960 ((-554) (-554))) (-15 -2544 ((-554) (-554))) (-15 -3314 ((-554) (-554))) (-15 -3554 ((-554) (-554) (-758)))) +((-3193 (((-2 (|:| |answer| |#4|) (|:| -2533 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3193 ((-2 (|:| |answer| |#4|) (|:| -2533 |#4|)) |#4| (-1 |#2| |#2|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -552)) +((-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-4 *7 (-1217 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2533 *3))) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7))))) +(-10 -7 (-15 -3193 ((-2 (|:| |answer| |#4|) (|:| -2533 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3193 (((-2 (|:| |answer| (-402 |#2|)) (|:| -2533 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 18))) +(((-553 |#1| |#2|) (-10 -7 (-15 -3193 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2533 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1217 |#1|)) (T -553)) +((-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| (-402 *6)) (|:| -2533 (-402 *6)) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-553 *5 *6)) (-5 *3 (-402 *6))))) +(-10 -7 (-15 -3193 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2533 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 25)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 88)) (-1976 (($ $) 89)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) 43)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) 82)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL)) (-1668 (((-554) $) NIL)) (-3964 (($ $ $) 81)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 62) (((-675 (-554)) (-675 $)) 58)) (-1320 (((-3 $ "failed") $) 85)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($) 64) (($ $) 65)) (-3943 (($ $ $) 80)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) 55)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) 26)) (-3273 (((-112) $) 75)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) 35)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) 44)) (-4223 (($ $ $) 77)) (-2706 (($ $ $) 76)) (-3882 (($ $) NIL)) (-2577 (($ $) 41)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) 54)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) 31)) (-2768 (((-1102) $) 34)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 119)) (-2510 (($ $ $) 86) (($ (-631 $)) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) 105)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) 84)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 79)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3690 (($ $) 32)) (-1521 (($ $) 30)) (-2927 (((-554) $) 40) (((-530) $) 52) (((-877 (-554)) $) NIL) (((-374) $) 47) (((-221) $) 49) (((-1140) $) 53)) (-3075 (((-848) $) 38) (($ (-554)) 39) (($ $) NIL) (($ (-554)) 39)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) 29)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) 42)) (-1700 (($ $) 63)) (-2004 (($) 27 T CONST)) (-2014 (($) 28 T CONST)) (-4048 (((-1140) $) 20) (((-1140) $ (-112)) 22) (((-1246) (-809) $) 23) (((-1246) (-809) $ (-112)) 24)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 66)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 67)) (-1744 (($ $) 68) (($ $ $) 70)) (-1735 (($ $ $) 69)) (** (($ $ (-906)) NIL) (($ $ (-758)) 74)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 72) (($ $ $) 71))) +(((-554) (-13 (-539) (-602 (-1140)) (-815) (-10 -8 (-15 -3353 ($ $)) (-6 -4360) (-6 -4365) (-6 -4361) (-6 -4355)))) (T -554)) +((-3353 (*1 *1 *1) (-5 *1 (-554)))) +(-13 (-539) (-602 (-1140)) (-815) (-10 -8 (-15 -3353 ($ $)) (-6 -4360) (-6 -4365) (-6 -4361) (-6 -4355))) +((-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756) (-1046)) 108) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756)) 110)) (-2279 (((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1158)) 172) (((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1140)) 171) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374) (-1046)) 176) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374)) 177) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374)) 178) (((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374))))) 179) (((-1020) (-311 (-374)) (-1076 (-829 (-374)))) 167) (((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374)) 166) (((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374)) 162) (((-1020) (-756)) 155) (((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374) (-1046)) 161))) +(((-555) (-10 -7 (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374) (-1046))) (-15 -2279 ((-1020) (-756))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374) (-1046))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756) (-1046))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1140))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1158))))) (T -555)) +((-2279 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374)))) (-5 *5 (-1158)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374)))) (-5 *5 (-1140)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) (-5 *1 (-555)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1020)) (-5 *1 (-555)))) (-2279 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555))))) +(-10 -7 (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374) (-1046))) (-15 -2279 ((-1020) (-756))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-1076 (-829 (-374))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374))) (-15 -2279 ((-1020) (-311 (-374)) (-631 (-1076 (-829 (-374)))) (-374) (-374) (-1046))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020))) (-756) (-1046))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1140))) (-15 -2279 ((-3 (-1020) "failed") (-311 (-374)) (-1074 (-829 (-374))) (-1158)))) +((-1938 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|)) 183)) (-2284 (((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|)) 98)) (-1587 (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2|) 179)) (-2373 (((-3 |#2| "failed") |#2| |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158))) 188)) (-2606 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-1158)) 196 (|has| |#3| (-642 |#2|))))) +(((-556 |#1| |#2| |#3|) (-10 -7 (-15 -2284 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|))) (-15 -1587 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2|)) (-15 -1938 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|))) (-15 -2373 ((-3 |#2| "failed") |#2| |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)))) (IF (|has| |#3| (-642 |#2|)) (-15 -2606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-1158))) |%noBranch|)) (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554))) (-13 (-425 |#1|) (-27) (-1180)) (-1082)) (T -556)) +((-2606 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-600 *4)) (-5 *6 (-1158)) (-4 *4 (-13 (-425 *7) (-27) (-1180))) (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) (-2373 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-600 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-4 *2 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *1 (-556 *5 *2 *6)) (-4 *6 (-1082)))) (-1938 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) (-1587 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082)))) (-2284 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1180))) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-575 *3)) (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082))))) +(-10 -7 (-15 -2284 ((-575 |#2|) |#2| (-600 |#2|) (-600 |#2|))) (-15 -1587 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-600 |#2|) (-600 |#2|) |#2|)) (-15 -1938 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-600 |#2|) (-600 |#2|) (-631 |#2|))) (-15 -2373 ((-3 |#2| "failed") |#2| |#2| |#2| (-600 |#2|) (-600 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1158)))) (IF (|has| |#3| (-642 |#2|)) (-15 -2606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3782 (-631 |#2|))) |#3| |#2| (-600 |#2|) (-600 |#2|) (-1158))) |%noBranch|)) +((-3735 (((-2 (|:| -3341 |#2|) (|:| |nconst| |#2|)) |#2| (-1158)) 64)) (-4347 (((-3 |#2| "failed") |#2| (-1158) (-829 |#2|) (-829 |#2|)) 164 (-12 (|has| |#2| (-1121)) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-871 (-554))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)) 147 (-12 (|has| |#2| (-617)) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-871 (-554)))))) (-2413 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)) 148 (-12 (|has| |#2| (-617)) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-871 (-554))))))) +(((-557 |#1| |#2|) (-10 -7 (-15 -3735 ((-2 (|:| -3341 |#2|) (|:| |nconst| |#2|)) |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (PROGN (IF (|has| |#2| (-617)) (PROGN (-15 -2413 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158))) (-15 -4347 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) (IF (|has| |#2| (-1121)) (-15 -4347 ((-3 |#2| "failed") |#2| (-1158) (-829 |#2|) (-829 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-836) (-1023 (-554)) (-446) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -557)) +((-4347 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1158)) (-5 *4 (-829 *2)) (-4 *2 (-1121)) (-4 *2 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *1 (-557 *5 *2)))) (-4347 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-617)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-2413 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-617)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) (-5 *2 (-2 (|:| -3341 *3) (|:| |nconst| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) +(-10 -7 (-15 -3735 ((-2 (|:| -3341 |#2|) (|:| |nconst| |#2|)) |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (PROGN (IF (|has| |#2| (-617)) (PROGN (-15 -2413 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158))) (-15 -4347 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) (IF (|has| |#2| (-1121)) (-15 -4347 ((-3 |#2| "failed") |#2| (-1158) (-829 |#2|) (-829 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2935 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-631 (-402 |#2|))) 41)) (-2279 (((-575 (-402 |#2|)) (-402 |#2|)) 28)) (-2901 (((-3 (-402 |#2|) "failed") (-402 |#2|)) 17)) (-2633 (((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|)) 48))) +(((-558 |#1| |#2|) (-10 -7 (-15 -2279 ((-575 (-402 |#2|)) (-402 |#2|))) (-15 -2901 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2633 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2935 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-631 (-402 |#2|))))) (-13 (-358) (-145) (-1023 (-554))) (-1217 |#1|)) (T -558)) +((-2935 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-631 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *5 *6)))) (-2633 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -1709 (-402 *5)) (|:| |coeff| (-402 *5)))) (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5)))) (-2901 (*1 *2 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145) (-1023 (-554)))) (-5 *1 (-558 *3 *4)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-575 (-402 *5))) (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5))))) +(-10 -7 (-15 -2279 ((-575 (-402 |#2|)) (-402 |#2|))) (-15 -2901 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2633 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2935 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-631 (-402 |#2|))))) +((-2443 (((-3 (-554) "failed") |#1|) 14)) (-1289 (((-112) |#1|) 13)) (-3476 (((-554) |#1|) 9))) +(((-559 |#1|) (-10 -7 (-15 -3476 ((-554) |#1|)) (-15 -1289 ((-112) |#1|)) (-15 -2443 ((-3 (-554) "failed") |#1|))) (-1023 (-554))) (T -559)) +((-2443 (*1 *2 *3) (|partial| -12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2)))) (-1289 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-559 *3)) (-4 *3 (-1023 (-554))))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2))))) +(-10 -7 (-15 -3476 ((-554) |#1|)) (-15 -1289 ((-112) |#1|)) (-15 -2443 ((-3 (-554) "failed") |#1|))) +((-4044 (((-3 (-2 (|:| |mainpart| (-402 (-937 |#1|))) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 (-937 |#1|))) (|:| |logand| (-402 (-937 |#1|))))))) "failed") (-402 (-937 |#1|)) (-1158) (-631 (-402 (-937 |#1|)))) 48)) (-1918 (((-575 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-1158)) 28)) (-1908 (((-3 (-402 (-937 |#1|)) "failed") (-402 (-937 |#1|)) (-1158)) 23)) (-2917 (((-3 (-2 (|:| -1709 (-402 (-937 |#1|))) (|:| |coeff| (-402 (-937 |#1|)))) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))) 35))) +(((-560 |#1|) (-10 -7 (-15 -1918 ((-575 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1908 ((-3 (-402 (-937 |#1|)) "failed") (-402 (-937 |#1|)) (-1158))) (-15 -4044 ((-3 (-2 (|:| |mainpart| (-402 (-937 |#1|))) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 (-937 |#1|))) (|:| |logand| (-402 (-937 |#1|))))))) "failed") (-402 (-937 |#1|)) (-1158) (-631 (-402 (-937 |#1|))))) (-15 -2917 ((-3 (-2 (|:| -1709 (-402 (-937 |#1|))) (|:| |coeff| (-402 (-937 |#1|)))) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))))) (-13 (-546) (-1023 (-554)) (-145))) (T -560)) +((-2917 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-1023 (-554)) (-145))) (-5 *2 (-2 (|:| -1709 (-402 (-937 *5))) (|:| |coeff| (-402 (-937 *5))))) (-5 *1 (-560 *5)) (-5 *3 (-402 (-937 *5))))) (-4044 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 (-402 (-937 *6)))) (-5 *3 (-402 (-937 *6))) (-4 *6 (-13 (-546) (-1023 (-554)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6)))) (-1908 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-1023 (-554)) (-145))) (-5 *1 (-560 *4)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-1023 (-554)) (-145))) (-5 *2 (-575 (-402 (-937 *5)))) (-5 *1 (-560 *5)) (-5 *3 (-402 (-937 *5)))))) +(-10 -7 (-15 -1918 ((-575 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1908 ((-3 (-402 (-937 |#1|)) "failed") (-402 (-937 |#1|)) (-1158))) (-15 -4044 ((-3 (-2 (|:| |mainpart| (-402 (-937 |#1|))) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 (-937 |#1|))) (|:| |logand| (-402 (-937 |#1|))))))) "failed") (-402 (-937 |#1|)) (-1158) (-631 (-402 (-937 |#1|))))) (-15 -2917 ((-3 (-2 (|:| -1709 (-402 (-937 |#1|))) (|:| |coeff| (-402 (-937 |#1|)))) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))))) +((-3062 (((-112) $ $) 58)) (-1695 (((-112) $) 36)) (-4026 ((|#1| $) 30)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) 62)) (-3023 (($ $) 122)) (-4200 (($ $) 102)) (-1349 ((|#1| $) 28)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL)) (-3003 (($ $) 124)) (-4177 (($ $) 98)) (-3046 (($ $) 126)) (-2916 (($ $) 106)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) 77)) (-1668 (((-554) $) 79)) (-1320 (((-3 $ "failed") $) 61)) (-3603 (($ |#1| |#1|) 26)) (-2745 (((-112) $) 33)) (-2844 (($) 88)) (-3248 (((-112) $) 43)) (-3734 (($ $ (-554)) NIL)) (-4304 (((-112) $) 34)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2395 (($ $) 90)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-1449 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-402 (-554))) 76)) (-3703 ((|#1| $) 27)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) 64) (($ (-631 $)) NIL)) (-3919 (((-3 $ "failed") $ $) 63)) (-1333 (($ $) 92)) (-3057 (($ $) 130)) (-2926 (($ $) 104)) (-3034 (($ $) 132)) (-4213 (($ $) 108)) (-3014 (($ $) 128)) (-4188 (($ $) 100)) (-1543 (((-112) $ |#1|) 31)) (-3075 (((-848) $) 84) (($ (-554)) 66) (($ $) NIL) (($ (-554)) 66)) (-2261 (((-758)) 86)) (-3096 (($ $) 144)) (-2959 (($ $) 114)) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) 142)) (-2938 (($ $) 110)) (-3120 (($ $) 140)) (-2981 (($ $) 120)) (-2908 (($ $) 138)) (-2991 (($ $) 118)) (-3108 (($ $) 136)) (-2969 (($ $) 116)) (-3083 (($ $) 134)) (-2948 (($ $) 112)) (-2004 (($) 21 T CONST)) (-2014 (($) 10 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 37)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 35)) (-1744 (($ $) 41) (($ $ $) 42)) (-1735 (($ $ $) 40)) (** (($ $ (-906)) 54) (($ $ (-758)) NIL) (($ $ $) 94) (($ $ (-402 (-554))) 146)) (* (($ (-906) $) 51) (($ (-758) $) NIL) (($ (-554) $) 50) (($ $ $) 48))) +(((-561 |#1|) (-544 |#1|) (-13 (-399) (-1180))) (T -561)) +NIL +(-544 |#1|) +((-1625 (((-3 (-631 (-1154 (-554))) "failed") (-631 (-1154 (-554))) (-1154 (-554))) 24))) +(((-562) (-10 -7 (-15 -1625 ((-3 (-631 (-1154 (-554))) "failed") (-631 (-1154 (-554))) (-1154 (-554)))))) (T -562)) +((-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 (-554)))) (-5 *3 (-1154 (-554))) (-5 *1 (-562))))) +(-10 -7 (-15 -1625 ((-3 (-631 (-1154 (-554))) "failed") (-631 (-1154 (-554))) (-1154 (-554))))) +((-3494 (((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-1158)) 19)) (-4023 (((-631 (-600 |#2|)) (-631 |#2|) (-1158)) 23)) (-3382 (((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-631 (-600 |#2|))) 11)) (-2155 ((|#2| |#2| (-1158)) 54 (|has| |#1| (-546)))) (-4128 ((|#2| |#2| (-1158)) 78 (-12 (|has| |#2| (-279)) (|has| |#1| (-446))))) (-1876 (((-600 |#2|) (-600 |#2|) (-631 (-600 |#2|)) (-1158)) 25)) (-2091 (((-600 |#2|) (-631 (-600 |#2|))) 24)) (-3013 (((-575 |#2|) |#2| (-1158) (-1 (-575 |#2|) |#2| (-1158)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158))) 103 (-12 (|has| |#2| (-279)) (|has| |#2| (-617)) (|has| |#2| (-1023 (-1158))) (|has| |#1| (-602 (-877 (-554)))) (|has| |#1| (-446)) (|has| |#1| (-871 (-554))))))) +(((-563 |#1| |#2|) (-10 -7 (-15 -3494 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-1158))) (-15 -2091 ((-600 |#2|) (-631 (-600 |#2|)))) (-15 -1876 ((-600 |#2|) (-600 |#2|) (-631 (-600 |#2|)) (-1158))) (-15 -3382 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-631 (-600 |#2|)))) (-15 -4023 ((-631 (-600 |#2|)) (-631 |#2|) (-1158))) (IF (|has| |#1| (-546)) (-15 -2155 (|#2| |#2| (-1158))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -4128 (|#2| |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (IF (|has| |#2| (-617)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3013 ((-575 |#2|) |#2| (-1158) (-1 (-575 |#2|) |#2| (-1158)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-836) (-425 |#1|)) (T -563)) +((-3013 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-575 *3) *3 (-1158))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1158))) (-4 *3 (-279)) (-4 *3 (-617)) (-4 *3 (-1023 *4)) (-4 *3 (-425 *7)) (-5 *4 (-1158)) (-4 *7 (-602 (-877 (-554)))) (-4 *7 (-446)) (-4 *7 (-871 (-554))) (-4 *7 (-836)) (-5 *2 (-575 *3)) (-5 *1 (-563 *7 *3)))) (-4128 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-446)) (-4 *4 (-836)) (-5 *1 (-563 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4)))) (-2155 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-546)) (-4 *4 (-836)) (-5 *1 (-563 *4 *2)) (-4 *2 (-425 *4)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-1158)) (-4 *6 (-425 *5)) (-4 *5 (-836)) (-5 *2 (-631 (-600 *6))) (-5 *1 (-563 *5 *6)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-631 (-600 *4))) (-4 *4 (-425 *3)) (-4 *3 (-836)) (-5 *1 (-563 *3 *4)))) (-1876 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-631 (-600 *6))) (-5 *4 (-1158)) (-5 *2 (-600 *6)) (-4 *6 (-425 *5)) (-4 *5 (-836)) (-5 *1 (-563 *5 *6)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-631 (-600 *5))) (-4 *4 (-836)) (-5 *2 (-600 *5)) (-5 *1 (-563 *4 *5)) (-4 *5 (-425 *4)))) (-3494 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-600 *5))) (-5 *3 (-1158)) (-4 *5 (-425 *4)) (-4 *4 (-836)) (-5 *1 (-563 *4 *5))))) +(-10 -7 (-15 -3494 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-1158))) (-15 -2091 ((-600 |#2|) (-631 (-600 |#2|)))) (-15 -1876 ((-600 |#2|) (-600 |#2|) (-631 (-600 |#2|)) (-1158))) (-15 -3382 ((-631 (-600 |#2|)) (-631 (-600 |#2|)) (-631 (-600 |#2|)))) (-15 -4023 ((-631 (-600 |#2|)) (-631 |#2|) (-1158))) (IF (|has| |#1| (-546)) (-15 -2155 (|#2| |#2| (-1158))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -4128 (|#2| |#2| (-1158))) (IF (|has| |#1| (-602 (-877 (-554)))) (IF (|has| |#1| (-871 (-554))) (IF (|has| |#2| (-617)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3013 ((-575 |#2|) |#2| (-1158) (-1 (-575 |#2|) |#2| (-1158)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1158)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1428 (((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-631 |#1|) "failed") (-554) |#1| |#1|)) 172)) (-2828 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-631 (-402 |#2|))) 148)) (-3541 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-631 (-402 |#2|))) 145)) (-1341 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1699 (((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2656 (((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|)) 175)) (-3134 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|)) 178)) (-3689 (((-2 (|:| |ir| (-575 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 84)) (-1805 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3530 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-631 (-402 |#2|))) 152)) (-1588 (((-3 (-611 |#1| |#2|) "failed") (-611 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|)) 137)) (-3394 (((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|)) 162)) (-1311 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-402 |#2|)) 183))) +(((-564 |#1| |#2|) (-10 -7 (-15 -1699 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3394 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -1428 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-631 |#1|) "failed") (-554) |#1| |#1|))) (-15 -3134 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -1311 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-402 |#2|))) (-15 -2828 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-631 (-402 |#2|)))) (-15 -3530 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-631 (-402 |#2|)))) (-15 -2656 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3541 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-631 (-402 |#2|)))) (-15 -1341 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1588 ((-3 (-611 |#1| |#2|) "failed") (-611 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -3689 ((-2 (|:| |ir| (-575 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1805 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-358) (-1217 |#1|)) (T -564)) +((-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-564 *5 *3)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |ir| (-575 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6)))) (-1588 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-611 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112))) (-554) *4)) (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *1 (-564 *4 *5)))) (-1341 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-358)) (-5 *1 (-564 *4 *2)) (-4 *2 (-1217 *4)))) (-3541 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-631 (-402 *7))) (-4 *7 (-1217 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *6 *7)))) (-2656 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -1709 (-402 *6)) (|:| |coeff| (-402 *6)))) (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6)))) (-3530 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3324 *7) (|:| |sol?| (-112))) (-554) *7)) (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-564 *7 *8)))) (-2828 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1709 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-564 *7 *8)))) (-1311 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554) *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-3134 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-1428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-631 *6) "failed") (-554) *6 *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-3394 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554) *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7)))) (-1699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7))))) +(-10 -7 (-15 -1699 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3394 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -1428 ((-2 (|:| |answer| (-575 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-631 |#1|) "failed") (-554) |#1| |#1|))) (-15 -3134 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -1311 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-402 |#2|))) (-15 -2828 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-631 (-402 |#2|)))) (-15 -3530 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|) (-631 (-402 |#2|)))) (-15 -2656 ((-3 (-2 (|:| -1709 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3541 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-631 (-402 |#2|)))) (-15 -1341 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1588 ((-3 (-611 |#1| |#2|) "failed") (-611 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3324 |#1|) (|:| |sol?| (-112))) (-554) |#1|))) (-15 -3689 ((-2 (|:| |ir| (-575 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1805 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-4317 (((-3 |#2| "failed") |#2| (-1158) (-1158)) 10))) +(((-565 |#1| |#2|) (-10 -7 (-15 -4317 ((-3 |#2| "failed") |#2| (-1158) (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-1121) (-29 |#1|))) (T -565)) +((-4317 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-1180) (-944) (-1121) (-29 *4)))))) +(-10 -7 (-15 -4317 ((-3 |#2| "failed") |#2| (-1158) (-1158)))) +((-2077 (((-1102) $ (-128)) 12)) (-3451 (((-1102) $ (-129)) 11)) (-4120 (((-1102) $ (-128)) 7)) (-2614 (((-1102) $) 8)) (-3745 (($ $) 6))) +(((-566) (-138)) (T -566)) +NIL +(-13 (-521) (-846)) +(((-171) . T) ((-521) . T) ((-846) . T)) +((-2077 (((-1102) $ (-128)) NIL)) (-3451 (((-1102) $ (-129)) NIL)) (-4120 (((-1102) $ (-128)) NIL)) (-2614 (((-1102) $) NIL)) (-2993 (((-112) $) NIL)) (-1338 (($ (-383)) 14) (($ (-1140)) 16)) (-3075 (((-848) $) NIL)) (-3745 (($ $) NIL))) +(((-567) (-13 (-566) (-601 (-848)) (-10 -8 (-15 -1338 ($ (-383))) (-15 -1338 ($ (-1140))) (-15 -2993 ((-112) $))))) (T -567)) +((-1338 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-567)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-567)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567))))) +(-13 (-566) (-601 (-848)) (-10 -8 (-15 -1338 ($ (-383))) (-15 -1338 ($ (-1140))) (-15 -2993 ((-112) $)))) +((-3062 (((-112) $ $) NIL)) (-2182 (($) 7 T CONST)) (-1613 (((-1140) $) NIL)) (-1431 (($) 6 T CONST)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14)) (-1934 (($) 8 T CONST)) (-1658 (((-112) $ $) 10))) +(((-568) (-13 (-1082) (-10 -8 (-15 -1431 ($) -2397) (-15 -2182 ($) -2397) (-15 -1934 ($) -2397)))) (T -568)) +((-1431 (*1 *1) (-5 *1 (-568))) (-2182 (*1 *1) (-5 *1 (-568))) (-1934 (*1 *1) (-5 *1 (-568)))) +(-13 (-1082) (-10 -8 (-15 -1431 ($) -2397) (-15 -2182 ($) -2397) (-15 -1934 ($) -2397))) +((-3062 (((-112) $ $) NIL)) (-1879 (((-3 $ "failed") (-485)) 13)) (-1613 (((-1140) $) NIL)) (-2059 (($ (-1140)) 9)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 28)) (-2749 (((-209 4 (-129)) $) 16)) (-1658 (((-112) $ $) 19))) +(((-569) (-13 (-1082) (-10 -8 (-15 -2059 ($ (-1140))) (-15 -2749 ((-209 4 (-129)) $)) (-15 -1879 ((-3 $ "failed") (-485)))))) (T -569)) +((-2059 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-569)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-209 4 (-129))) (-5 *1 (-569)))) (-1879 (*1 *1 *2) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-569))))) +(-13 (-1082) (-10 -8 (-15 -2059 ($ (-1140))) (-15 -2749 ((-209 4 (-129)) $)) (-15 -1879 ((-3 $ "failed") (-485))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $ (-554)) 66)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2638 (($ (-1154 (-554)) (-554)) 72)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 58)) (-2612 (($ $) 34)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-2342 (((-758) $) 15)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 (((-554)) 29)) (-3859 (((-554) $) 32)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4282 (($ $ (-554)) 21)) (-3919 (((-3 $ "failed") $ $) 59)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) 16)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 61)) (-1378 (((-1138 (-554)) $) 18)) (-1300 (($ $) 23)) (-3075 (((-848) $) 87) (($ (-554)) 52) (($ $) NIL)) (-2261 (((-758)) 14)) (-1909 (((-112) $ $) NIL)) (-4333 (((-554) $ (-554)) 36)) (-2004 (($) 35 T CONST)) (-2014 (($) 19 T CONST)) (-1658 (((-112) $ $) 39)) (-1744 (($ $) 51) (($ $ $) 37)) (-1735 (($ $ $) 50)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 54) (($ $ $) 55))) +(((-570 |#1| |#2|) (-854 |#1|) (-554) (-112)) (T -570)) +NIL +(-854 |#1|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 21)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) 47)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 $ "failed") $) 75)) (-1668 (($ $) 74)) (-1651 (($ (-1241 $)) 73)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 32)) (-3353 (($) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) 49)) (-2754 (((-112) $) NIL)) (-4122 (($ $) NIL) (($ $ (-758)) NIL)) (-3289 (((-112) $) NIL)) (-2342 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-3248 (((-112) $) NIL)) (-3227 (($) 37 (|has| $ (-363)))) (-2693 (((-112) $) NIL (|has| $ (-363)))) (-3274 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 $) $ (-906)) NIL (|has| $ (-363))) (((-1154 $) $) 83)) (-3830 (((-906) $) 55)) (-3933 (((-1154 $) $) NIL (|has| $ (-363)))) (-3025 (((-3 (-1154 $) "failed") $ $) NIL (|has| $ (-363))) (((-1154 $) $) NIL (|has| $ (-363)))) (-2300 (($ $ (-1154 $)) NIL (|has| $ (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL T CONST)) (-2717 (($ (-906)) 48)) (-2070 (((-112) $) 67)) (-2768 (((-1102) $) NIL)) (-4137 (($) 19 (|has| $ (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 42)) (-2270 (((-413 $) $) NIL)) (-2365 (((-906)) 66) (((-820 (-906))) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-3 (-758) "failed") $ $) NIL) (((-758) $) NIL)) (-3330 (((-133)) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3308 (((-906) $) 65) (((-820 (-906)) $) NIL)) (-4318 (((-1154 $)) 82)) (-3944 (($) 54)) (-2288 (($) 38 (|has| $ (-363)))) (-3656 (((-675 $) (-1241 $)) NIL) (((-1241 $) $) 71)) (-2927 (((-554) $) 28)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) 30) (($ $) NIL) (($ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2261 (((-758)) 39)) (-3782 (((-1241 $) (-906)) 77) (((-1241 $)) 76)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) 22 T CONST)) (-2014 (($) 18 T CONST)) (-1811 (($ $ (-758)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 26)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 61) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-571 |#1|) (-13 (-344) (-324 $) (-602 (-554))) (-906)) (T -571)) +NIL +(-13 (-344) (-324 $) (-602 (-554))) +((-4226 (((-1246) (-1140)) 10))) +(((-572) (-10 -7 (-15 -4226 ((-1246) (-1140))))) (T -572)) +((-4226 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-572))))) +(-10 -7 (-15 -4226 ((-1246) (-1140)))) +((-1515 (((-575 |#2|) (-575 |#2|)) 40)) (-1845 (((-631 |#2|) (-575 |#2|)) 42)) (-3537 ((|#2| (-575 |#2|)) 48))) +(((-573 |#1| |#2|) (-10 -7 (-15 -1515 ((-575 |#2|) (-575 |#2|))) (-15 -1845 ((-631 |#2|) (-575 |#2|))) (-15 -3537 (|#2| (-575 |#2|)))) (-13 (-446) (-1023 (-554)) (-836) (-627 (-554))) (-13 (-29 |#1|) (-1180))) (T -573)) +((-3537 (*1 *2 *3) (-12 (-5 *3 (-575 *2)) (-4 *2 (-13 (-29 *4) (-1180))) (-5 *1 (-573 *4 *2)) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-575 *5)) (-4 *5 (-13 (-29 *4) (-1180))) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-631 *5)) (-5 *1 (-573 *4 *5)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-575 *4)) (-4 *4 (-13 (-29 *3) (-1180))) (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *1 (-573 *3 *4))))) +(-10 -7 (-15 -1515 ((-575 |#2|) (-575 |#2|))) (-15 -1845 ((-631 |#2|) (-575 |#2|))) (-15 -3537 (|#2| (-575 |#2|)))) +((-2879 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-575 |#2|) (-1 |#2| |#1|) (-575 |#1|)) 30))) +(((-574 |#1| |#2|) (-10 -7 (-15 -2879 ((-575 |#2|) (-1 |#2| |#1|) (-575 |#1|))) (-15 -2879 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2879 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2879 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-358) (-358)) (T -574)) +((-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-574 *5 *6)))) (-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-574 *5 *2)))) (-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1709 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -1709 *6) (|:| |coeff| *6))) (-5 *1 (-574 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-575 *5)) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-575 *6)) (-5 *1 (-574 *5 *6))))) +(-10 -7 (-15 -2879 ((-575 |#2|) (-1 |#2| |#1|) (-575 |#1|))) (-15 -2879 ((-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1709 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2879 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2879 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 69)) (-1668 ((|#1| $) NIL)) (-1709 ((|#1| $) 26)) (-1751 (((-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-4246 (($ |#1| (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) (-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2533 (((-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) $) 27)) (-1613 (((-1140) $) NIL)) (-3546 (($ |#1| |#1|) 33) (($ |#1| (-1158)) 44 (|has| |#1| (-1023 (-1158))))) (-2768 (((-1102) $) NIL)) (-2158 (((-112) $) 30)) (-1553 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1158)) 82 (|has| |#1| (-885 (-1158))))) (-3075 (((-848) $) 96) (($ |#1|) 25)) (-2004 (($) 16 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) 15) (($ $ $) NIL)) (-1735 (($ $ $) 78)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 14) (($ (-402 (-554)) $) 36) (($ $ (-402 (-554))) NIL))) +(((-575 |#1|) (-13 (-704 (-402 (-554))) (-1023 |#1|) (-10 -8 (-15 -4246 ($ |#1| (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) (-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1709 (|#1| $)) (-15 -2533 ((-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) $)) (-15 -1751 ((-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2158 ((-112) $)) (-15 -3546 ($ |#1| |#1|)) (-15 -1553 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-885 (-1158))) (-15 -1553 (|#1| $ (-1158))) |%noBranch|) (IF (|has| |#1| (-1023 (-1158))) (-15 -3546 ($ |#1| (-1158))) |%noBranch|))) (-358)) (T -575)) +((-4246 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *2)) (|:| |logand| (-1154 *2))))) (-5 *4 (-631 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) (-5 *1 (-575 *2)))) (-1709 (*1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *3)) (|:| |logand| (-1154 *3))))) (-5 *1 (-575 *3)) (-4 *3 (-358)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-575 *3)) (-4 *3 (-358)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-358)))) (-3546 (*1 *1 *2 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358)))) (-1553 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-575 *2)) (-4 *2 (-358)))) (-1553 (*1 *2 *1 *3) (-12 (-4 *2 (-358)) (-4 *2 (-885 *3)) (-5 *1 (-575 *2)) (-5 *3 (-1158)))) (-3546 (*1 *1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *1 (-575 *2)) (-4 *2 (-1023 *3)) (-4 *2 (-358))))) +(-13 (-704 (-402 (-554))) (-1023 |#1|) (-10 -8 (-15 -4246 ($ |#1| (-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) (-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1709 (|#1| $)) (-15 -2533 ((-631 (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 |#1|)) (|:| |logand| (-1154 |#1|)))) $)) (-15 -1751 ((-631 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2158 ((-112) $)) (-15 -3546 ($ |#1| |#1|)) (-15 -1553 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-885 (-1158))) (-15 -1553 (|#1| $ (-1158))) |%noBranch|) (IF (|has| |#1| (-1023 (-1158))) (-15 -3546 ($ |#1| (-1158))) |%noBranch|))) +((-2349 (((-112) |#1|) 16)) (-1630 (((-3 |#1| "failed") |#1|) 14)) (-2880 (((-2 (|:| -3462 |#1|) (|:| -1407 (-758))) |#1|) 31) (((-3 |#1| "failed") |#1| (-758)) 18)) (-1816 (((-112) |#1| (-758)) 19)) (-3060 ((|#1| |#1|) 32)) (-3764 ((|#1| |#1| (-758)) 34))) +(((-576 |#1|) (-10 -7 (-15 -1816 ((-112) |#1| (-758))) (-15 -2880 ((-3 |#1| "failed") |#1| (-758))) (-15 -2880 ((-2 (|:| -3462 |#1|) (|:| -1407 (-758))) |#1|)) (-15 -3764 (|#1| |#1| (-758))) (-15 -2349 ((-112) |#1|)) (-15 -1630 ((-3 |#1| "failed") |#1|)) (-15 -3060 (|#1| |#1|))) (-539)) (T -576)) +((-3060 (*1 *2 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-1630 (*1 *2 *2) (|partial| -12 (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-2880 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3462 *3) (|:| -1407 (-758)))) (-5 *1 (-576 *3)) (-4 *3 (-539)))) (-2880 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539))))) +(-10 -7 (-15 -1816 ((-112) |#1| (-758))) (-15 -2880 ((-3 |#1| "failed") |#1| (-758))) (-15 -2880 ((-2 (|:| -3462 |#1|) (|:| -1407 (-758))) |#1|)) (-15 -3764 (|#1| |#1| (-758))) (-15 -2349 ((-112) |#1|)) (-15 -1630 ((-3 |#1| "failed") |#1|)) (-15 -3060 (|#1| |#1|))) +((-1756 (((-1154 |#1|) (-906)) 27))) +(((-577 |#1|) (-10 -7 (-15 -1756 ((-1154 |#1|) (-906)))) (-344)) (T -577)) +((-1756 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-577 *4)) (-4 *4 (-344))))) +(-10 -7 (-15 -1756 ((-1154 |#1|) (-906)))) +((-1515 (((-575 (-402 (-937 |#1|))) (-575 (-402 (-937 |#1|)))) 27)) (-2279 (((-3 (-311 |#1|) (-631 (-311 |#1|))) (-402 (-937 |#1|)) (-1158)) 34 (|has| |#1| (-145)))) (-1845 (((-631 (-311 |#1|)) (-575 (-402 (-937 |#1|)))) 19)) (-3355 (((-311 |#1|) (-402 (-937 |#1|)) (-1158)) 32 (|has| |#1| (-145)))) (-3537 (((-311 |#1|) (-575 (-402 (-937 |#1|)))) 21))) +(((-578 |#1|) (-10 -7 (-15 -1515 ((-575 (-402 (-937 |#1|))) (-575 (-402 (-937 |#1|))))) (-15 -1845 ((-631 (-311 |#1|)) (-575 (-402 (-937 |#1|))))) (-15 -3537 ((-311 |#1|) (-575 (-402 (-937 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2279 ((-3 (-311 |#1|) (-631 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -3355 ((-311 |#1|) (-402 (-937 |#1|)) (-1158)))) |%noBranch|)) (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (T -578)) +((-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-311 *5)) (-5 *1 (-578 *5)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-3 (-311 *5) (-631 (-311 *5)))) (-5 *1 (-578 *5)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-575 (-402 (-937 *4)))) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-311 *4)) (-5 *1 (-578 *4)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-575 (-402 (-937 *4)))) (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *2 (-631 (-311 *4))) (-5 *1 (-578 *4)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-575 (-402 (-937 *3)))) (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) (-5 *1 (-578 *3))))) +(-10 -7 (-15 -1515 ((-575 (-402 (-937 |#1|))) (-575 (-402 (-937 |#1|))))) (-15 -1845 ((-631 (-311 |#1|)) (-575 (-402 (-937 |#1|))))) (-15 -3537 ((-311 |#1|) (-575 (-402 (-937 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2279 ((-3 (-311 |#1|) (-631 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -3355 ((-311 |#1|) (-402 (-937 |#1|)) (-1158)))) |%noBranch|)) +((-2320 (((-631 (-675 (-554))) (-631 (-554)) (-631 (-890 (-554)))) 46) (((-631 (-675 (-554))) (-631 (-554))) 47) (((-675 (-554)) (-631 (-554)) (-890 (-554))) 42)) (-3022 (((-758) (-631 (-554))) 40))) +(((-579) (-10 -7 (-15 -3022 ((-758) (-631 (-554)))) (-15 -2320 ((-675 (-554)) (-631 (-554)) (-890 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)) (-631 (-890 (-554))))))) (T -579)) +((-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-554))) (-5 *4 (-631 (-890 (-554)))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-579)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-579)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-554))) (-5 *4 (-890 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-579)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-758)) (-5 *1 (-579))))) +(-10 -7 (-15 -3022 ((-758) (-631 (-554)))) (-15 -2320 ((-675 (-554)) (-631 (-554)) (-890 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -2320 ((-631 (-675 (-554))) (-631 (-554)) (-631 (-890 (-554)))))) +((-3032 (((-631 |#5|) |#5| (-112)) 73)) (-4153 (((-112) |#5| (-631 |#5|)) 30))) +(((-580 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3032 ((-631 |#5|) |#5| (-112))) (-15 -4153 ((-112) |#5| (-631 |#5|)))) (-13 (-302) (-145)) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -580)) +((-4153 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-580 *5 *6 *7 *8 *3)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-631 *3)) (-5 *1 (-580 *5 *6 *7 *8 *3)) (-4 *3 (-1091 *5 *6 *7 *8))))) +(-10 -7 (-15 -3032 ((-631 |#5|) |#5| (-112))) (-15 -4153 ((-112) |#5| (-631 |#5|)))) +((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-581) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -581)) +((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581))))) +(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $)))) +((-3062 (((-112) $ $) NIL (|has| (-142) (-1082)))) (-2905 (($ $) 34)) (-2451 (($ $) NIL)) (-4274 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) 51)) (-3756 (((-112) $ $ (-554)) 46)) (-1515 (((-631 $) $ (-142)) 60) (((-631 $) $ (-139)) 61)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-142) (-836))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-142) $ (-554) (-142)) 45 (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2190 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1395 (($ $ (-1208 (-554)) $) 44)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2574 (($ (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) NIL (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) NIL)) (-3802 (((-112) $ $) 72)) (-1484 (((-554) (-1 (-112) (-142)) $) NIL) (((-554) (-142) $) NIL (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) 48 (|has| (-142) (-1082))) (((-554) $ $ (-554)) 47) (((-554) (-139) $ (-554)) 50)) (-2466 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) 9)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 28 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2256 (((-554) $) 42 (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) 73)) (-3814 (((-758) $ $ (-142)) 70)) (-2849 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3110 (($ $) 37)) (-1913 (($ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2203 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-1613 (((-1140) $) 38 (|has| (-142) (-1082)))) (-1782 (($ (-142) $ (-554)) NIL) (($ $ $ (-554)) 23)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-554) $) 69) (((-1102) $) NIL (|has| (-142) (-1082)))) (-1539 (((-142) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2441 (($ $ (-142)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) NIL)) (-3543 (((-112) $) 12)) (-4240 (($) 10)) (-2064 (((-142) $ (-554) (-142)) NIL) (((-142) $ (-554)) 52) (($ $ (-1208 (-554))) 21) (($ $ $) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (((-758) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3553 (($ $ $ (-554)) 66 (|has| $ (-6 -4374)))) (-1521 (($ $) 17)) (-2927 (((-530) $) NIL (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) NIL)) (-4323 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-631 $)) 67)) (-3075 (($ (-142)) NIL) (((-848) $) 27 (|has| (-142) (-601 (-848))))) (-2438 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1658 (((-112) $ $) 14 (|has| (-142) (-1082)))) (-1697 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1676 (((-112) $ $) 15 (|has| (-142) (-836)))) (-2563 (((-758) $) 13 (|has| $ (-6 -4373))))) +(((-582 |#1|) (-13 (-1126) (-10 -8 (-15 -2768 ((-554) $)))) (-554)) (T -582)) +((-2768 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-582 *3)) (-14 *3 *2)))) +(-13 (-1126) (-10 -8 (-15 -2768 ((-554) $)))) +((-1688 (((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2| (-1076 |#4|)) 32))) +(((-583 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2| (-1076 |#4|))) (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2|))) (-780) (-836) (-546) (-934 |#3| |#1| |#2|)) (T -583)) +((-1688 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-546)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554)))) (-5 *1 (-583 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1076 *3)) (-4 *3 (-934 *7 *6 *4)) (-4 *6 (-780)) (-4 *4 (-836)) (-4 *7 (-546)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554)))) (-5 *1 (-583 *6 *4 *7 *3))))) +(-10 -7 (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2| (-1076 |#4|))) (-15 -1688 ((-2 (|:| |num| |#4|) (|:| |den| (-554))) |#4| |#2|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 63)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 54) (($ $ (-554) (-554)) 55)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 60)) (-2707 (($ $) 100)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2020 (((-848) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) (-1011 (-829 (-554))) (-1158) |#1| (-402 (-554))) 224)) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 34)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) NIL)) (-2342 (((-554) $) 58) (((-554) $ (-554)) 59)) (-3248 (((-112) $) NIL)) (-3333 (($ $ (-906)) 76)) (-1310 (($ (-1 |#1| (-554)) $) 73)) (-3580 (((-112) $) 25)) (-2383 (($ |#1| (-554)) 22) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 67)) (-2932 (($ (-1011 (-829 (-554))) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 13)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $) 150 (|has| |#1| (-38 (-402 (-554)))))) (-4121 (((-3 $ "failed") $ $ (-112)) 99)) (-2429 (($ $ $) 108)) (-2768 (((-1102) $) NIL)) (-2841 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 15)) (-3632 (((-1011 (-829 (-554))) $) 14)) (-4282 (($ $ (-554)) 45)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-554)))))) (-2064 ((|#1| $ (-554)) 57) (($ $ $) NIL (|has| (-554) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-3308 (((-554) $) NIL)) (-1300 (($ $) 46)) (-3075 (((-848) $) NIL) (($ (-554)) 28) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 27 (|has| |#1| (-170)))) (-1779 ((|#1| $ (-554)) 56)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 37)) (-1608 ((|#1| $) NIL)) (-3732 (($ $) 186 (|has| |#1| (-38 (-402 (-554)))))) (-1622 (($ $) 158 (|has| |#1| (-38 (-402 (-554)))))) (-2179 (($ $) 190 (|has| |#1| (-38 (-402 (-554)))))) (-3832 (($ $) 163 (|has| |#1| (-38 (-402 (-554)))))) (-3480 (($ $) 189 (|has| |#1| (-38 (-402 (-554)))))) (-4012 (($ $) 162 (|has| |#1| (-38 (-402 (-554)))))) (-2547 (($ $ (-402 (-554))) 166 (|has| |#1| (-38 (-402 (-554)))))) (-3495 (($ $ |#1|) 146 (|has| |#1| (-38 (-402 (-554)))))) (-3593 (($ $) 192 (|has| |#1| (-38 (-402 (-554)))))) (-3823 (($ $) 149 (|has| |#1| (-38 (-402 (-554)))))) (-1721 (($ $) 191 (|has| |#1| (-38 (-402 (-554)))))) (-2589 (($ $) 164 (|has| |#1| (-38 (-402 (-554)))))) (-1399 (($ $) 187 (|has| |#1| (-38 (-402 (-554)))))) (-1552 (($ $) 160 (|has| |#1| (-38 (-402 (-554)))))) (-3916 (($ $) 188 (|has| |#1| (-38 (-402 (-554)))))) (-3852 (($ $) 161 (|has| |#1| (-38 (-402 (-554)))))) (-1806 (($ $) 197 (|has| |#1| (-38 (-402 (-554)))))) (-3707 (($ $) 173 (|has| |#1| (-38 (-402 (-554)))))) (-3474 (($ $) 194 (|has| |#1| (-38 (-402 (-554)))))) (-3242 (($ $) 168 (|has| |#1| (-38 (-402 (-554)))))) (-2675 (($ $) 201 (|has| |#1| (-38 (-402 (-554)))))) (-1376 (($ $) 177 (|has| |#1| (-38 (-402 (-554)))))) (-2495 (($ $) 203 (|has| |#1| (-38 (-402 (-554)))))) (-2357 (($ $) 179 (|has| |#1| (-38 (-402 (-554)))))) (-1547 (($ $) 199 (|has| |#1| (-38 (-402 (-554)))))) (-2164 (($ $) 175 (|has| |#1| (-38 (-402 (-554)))))) (-2335 (($ $) 196 (|has| |#1| (-38 (-402 (-554)))))) (-3389 (($ $) 171 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-4333 ((|#1| $ (-554)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2004 (($) 29 T CONST)) (-2014 (($) 38 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-1658 (((-112) $ $) 65)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) 84) (($ $ $) 64)) (-1735 (($ $ $) 81)) (** (($ $ (-906)) NIL) (($ $ (-758)) 103)) (* (($ (-906) $) 89) (($ (-758) $) 87) (($ (-554) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-584 |#1|) (-13 (-1219 |#1| (-554)) (-10 -8 (-15 -2932 ($ (-1011 (-829 (-554))) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3632 ((-1011 (-829 (-554))) $)) (-15 -2841 ((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $)) (-15 -4175 ($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3580 ((-112) $)) (-15 -1310 ($ (-1 |#1| (-554)) $)) (-15 -4121 ((-3 $ "failed") $ $ (-112))) (-15 -2707 ($ $)) (-15 -2429 ($ $ $)) (-15 -2020 ((-848) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) (-1011 (-829 (-554))) (-1158) |#1| (-402 (-554)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (-15 -3495 ($ $ |#1|)) (-15 -2547 ($ $ (-402 (-554)))) (-15 -3823 ($ $)) (-15 -3593 ($ $)) (-15 -3832 ($ $)) (-15 -3852 ($ $)) (-15 -1622 ($ $)) (-15 -1552 ($ $)) (-15 -4012 ($ $)) (-15 -2589 ($ $)) (-15 -3242 ($ $)) (-15 -3389 ($ $)) (-15 -3707 ($ $)) (-15 -2164 ($ $)) (-15 -1376 ($ $)) (-15 -2357 ($ $)) (-15 -2179 ($ $)) (-15 -3916 ($ $)) (-15 -3732 ($ $)) (-15 -1399 ($ $)) (-15 -3480 ($ $)) (-15 -1721 ($ $)) (-15 -3474 ($ $)) (-15 -2335 ($ $)) (-15 -1806 ($ $)) (-15 -1547 ($ $)) (-15 -2675 ($ $)) (-15 -2495 ($ $))) |%noBranch|))) (-1034)) (T -584)) +((-3580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-2932 (*1 *1 *2 *3) (-12 (-5 *2 (-1011 (-829 (-554)))) (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *4)))) (-4 *4 (-1034)) (-5 *1 (-584 *4)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-1011 (-829 (-554)))) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) (-4 *3 (-1034)) (-5 *1 (-584 *3)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-584 *3)))) (-4121 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) (-2707 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034)))) (-2429 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034)))) (-2020 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *6)))) (-5 *4 (-1011 (-829 (-554)))) (-5 *5 (-1158)) (-5 *7 (-402 (-554))) (-4 *6 (-1034)) (-5 *2 (-848)) (-5 *1 (-584 *6)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2547 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-584 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1034)))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3832 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1622 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1552 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-4012 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2589 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3242 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3389 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3707 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1376 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3916 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1399 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3480 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-3474 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1806 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-1547 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2675 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) (-2495 (*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(-13 (-1219 |#1| (-554)) (-10 -8 (-15 -2932 ($ (-1011 (-829 (-554))) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3632 ((-1011 (-829 (-554))) $)) (-15 -2841 ((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $)) (-15 -4175 ($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))))) (-15 -3580 ((-112) $)) (-15 -1310 ($ (-1 |#1| (-554)) $)) (-15 -4121 ((-3 $ "failed") $ $ (-112))) (-15 -2707 ($ $)) (-15 -2429 ($ $ $)) (-15 -2020 ((-848) (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) (-1011 (-829 (-554))) (-1158) |#1| (-402 (-554)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (-15 -3495 ($ $ |#1|)) (-15 -2547 ($ $ (-402 (-554)))) (-15 -3823 ($ $)) (-15 -3593 ($ $)) (-15 -3832 ($ $)) (-15 -3852 ($ $)) (-15 -1622 ($ $)) (-15 -1552 ($ $)) (-15 -4012 ($ $)) (-15 -2589 ($ $)) (-15 -3242 ($ $)) (-15 -3389 ($ $)) (-15 -3707 ($ $)) (-15 -2164 ($ $)) (-15 -1376 ($ $)) (-15 -2357 ($ $)) (-15 -2179 ($ $)) (-15 -3916 ($ $)) (-15 -3732 ($ $)) (-15 -1399 ($ $)) (-15 -3480 ($ $)) (-15 -1721 ($ $)) (-15 -3474 ($ $)) (-15 -2335 ($ $)) (-15 -1806 ($ $)) (-15 -1547 ($ $)) (-15 -2675 ($ $)) (-15 -2495 ($ $))) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4175 (($ (-1138 |#1|)) 9)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) 42)) (-2051 (((-112) $) 52)) (-2342 (((-758) $) 55) (((-758) $ (-758)) 54)) (-3248 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ $) 44 (|has| |#1| (-546)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-1138 |#1|) $) 23)) (-2261 (((-758)) 51)) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 10 T CONST)) (-2014 (($) 14 T CONST)) (-1658 (((-112) $ $) 22)) (-1744 (($ $) 30) (($ $ $) 16)) (-1735 (($ $ $) 25)) (** (($ $ (-906)) NIL) (($ $ (-758)) 49)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-554)) 36))) +(((-585 |#1|) (-13 (-1034) (-10 -8 (-15 -1893 ((-1138 |#1|) $)) (-15 -4175 ($ (-1138 |#1|))) (-15 -2051 ((-112) $)) (-15 -2342 ((-758) $)) (-15 -2342 ((-758) $ (-758))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-554))) (IF (|has| |#1| (-546)) (-6 (-546)) |%noBranch|))) (-1034)) (T -585)) +((-1893 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-585 *3)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (-2342 (*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-585 *3)) (-4 *3 (-1034))))) +(-13 (-1034) (-10 -8 (-15 -1893 ((-1138 |#1|) $)) (-15 -4175 ($ (-1138 |#1|))) (-15 -2051 ((-112) $)) (-15 -2342 ((-758) $)) (-15 -2342 ((-758) $ (-758))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-554))) (IF (|has| |#1| (-546)) (-6 (-546)) |%noBranch|))) +((-2879 (((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)) 15))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2879 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) (-1195) (-1195)) (T -586)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-589 *6)) (-5 *1 (-586 *5 *6))))) +(-10 -7 (-15 -2879 ((-589 |#2|) (-1 |#2| |#1|) (-589 |#1|)))) +((-2879 (((-1138 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-1138 |#2|)) 20) (((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-589 |#2|)) 19) (((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|)) 18))) +(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-1138 |#2|)))) (-1195) (-1195) (-1195)) (T -587)) +((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-1138 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) (-5 *1 (-587 *6 *7 *8)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) (-5 *1 (-587 *6 *7 *8)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-589 *8)) (-5 *1 (-587 *6 *7 *8))))) +(-10 -7 (-15 -2879 ((-589 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-589 |#2|))) (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-589 |#1|) (-1138 |#2|)))) +((-2590 ((|#3| |#3| (-631 (-600 |#3|)) (-631 (-1158))) 55)) (-3189 (((-167 |#2|) |#3|) 117)) (-2376 ((|#3| (-167 |#2|)) 44)) (-3010 ((|#2| |#3|) 19)) (-4248 ((|#3| |#2|) 33))) +(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -2376 (|#3| (-167 |#2|))) (-15 -3010 (|#2| |#3|)) (-15 -4248 (|#3| |#2|)) (-15 -3189 ((-167 |#2|) |#3|)) (-15 -2590 (|#3| |#3| (-631 (-600 |#3|)) (-631 (-1158))))) (-13 (-546) (-836)) (-13 (-425 |#1|) (-987) (-1180)) (-13 (-425 (-167 |#1|)) (-987) (-1180))) (T -588)) +((-2590 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-631 (-1158))) (-4 *2 (-13 (-425 (-167 *5)) (-987) (-1180))) (-4 *5 (-13 (-546) (-836))) (-5 *1 (-588 *5 *6 *2)) (-4 *6 (-13 (-425 *5) (-987) (-1180))))) (-3189 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836))) (-5 *2 (-167 *5)) (-5 *1 (-588 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-987) (-1180))) (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836))) (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180))) (-5 *1 (-588 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-987) (-1180))))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-836))) (-4 *2 (-13 (-425 *4) (-987) (-1180))) (-5 *1 (-588 *4 *2 *3)) (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180))) (-4 *4 (-13 (-546) (-836))) (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180))) (-5 *1 (-588 *4 *5 *2))))) +(-10 -7 (-15 -2376 (|#3| (-167 |#2|))) (-15 -3010 (|#2| |#3|)) (-15 -4248 (|#3| |#2|)) (-15 -3189 ((-167 |#2|) |#3|)) (-15 -2590 (|#3| |#3| (-631 (-600 |#3|)) (-631 (-1158))))) +((-1871 (($ (-1 (-112) |#1|) $) 17)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1814 (($ (-1 |#1| |#1|) |#1|) 9)) (-1852 (($ (-1 (-112) |#1|) $) 13)) (-1862 (($ (-1 (-112) |#1|) $) 15)) (-3089 (((-1138 |#1|) $) 18)) (-3075 (((-848) $) NIL))) +(((-589 |#1|) (-13 (-601 (-848)) (-10 -8 (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)) (-15 -1871 ($ (-1 (-112) |#1|) $)) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -3089 ((-1138 |#1|) $)))) (-1195)) (T -589)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1862 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1871 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-1814 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1195))))) +(-13 (-601 (-848)) (-10 -8 (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)) (-15 -1871 ($ (-1 (-112) |#1|) $)) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -3089 ((-1138 |#1|) $)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758)) NIL (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) NIL (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2579 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-3731 (((-112) $ (-758)) NIL)) (-2577 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3748 ((|#1| $ $) NIL (|has| |#1| (-1034)))) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3574 (($ $ $) NIL (|has| |#1| (-1034)))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1735 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-554) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-713))) (($ $ |#1|) NIL (|has| |#1| (-713)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-590 |#1| |#2|) (-1239 |#1|) (-1195) (-554)) (T -590)) +NIL +(-1239 |#1|) +((-4233 (((-1246) $ |#2| |#2|) 36)) (-3044 ((|#2| $) 23)) (-2256 ((|#2| $) 21)) (-2849 (($ (-1 |#3| |#3|) $) 32)) (-2879 (($ (-1 |#3| |#3|) $) 30)) (-1539 ((|#3| $) 26)) (-2441 (($ $ |#3|) 33)) (-1609 (((-112) |#3| $) 17)) (-2625 (((-631 |#3|) $) 15)) (-2064 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-591 |#1| |#2| |#3|) (-10 -8 (-15 -4233 ((-1246) |#1| |#2| |#2|)) (-15 -2441 (|#1| |#1| |#3|)) (-15 -1539 (|#3| |#1|)) (-15 -3044 (|#2| |#1|)) (-15 -2256 (|#2| |#1|)) (-15 -1609 ((-112) |#3| |#1|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|))) (-592 |#2| |#3|) (-1082) (-1195)) (T -591)) +NIL +(-10 -8 (-15 -4233 ((-1246) |#1| |#2| |#2|)) (-15 -2441 (|#1| |#1| |#3|)) (-15 -1539 (|#3| |#1|)) (-15 -3044 (|#2| |#1|)) (-15 -2256 (|#2| |#1|)) (-15 -1609 ((-112) |#3| |#1|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#2| (-1082)))) (-4233 (((-1246) $ |#1| |#1|) 40 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-2862 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 51)) (-2466 (((-631 |#2|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-3044 ((|#1| $) 43 (|has| |#1| (-836)))) (-2379 (((-631 |#2|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2256 ((|#1| $) 44 (|has| |#1| (-836)))) (-2849 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#2| (-1082)))) (-2529 (((-631 |#1|) $) 46)) (-3618 (((-112) |#1| $) 47)) (-2768 (((-1102) $) 21 (|has| |#2| (-1082)))) (-1539 ((|#2| $) 42 (|has| |#1| (-836)))) (-2441 (($ $ |#2|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2777 (((-758) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4373))) (((-758) |#2| $) 28 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#2| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#2| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-592 |#1| |#2|) (-138) (-1082) (-1195)) (T -592)) +((-2625 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-631 *4)))) (-3618 (*1 *2 *3 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-112)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-631 *3)))) (-1609 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-592 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082)) (-4 *2 (-836)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082)) (-4 *2 (-836)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) (-4 *3 (-836)) (-4 *2 (-1195)))) (-2441 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) (-4233 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) (-5 *2 (-1246))))) +(-13 (-483 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -2625 ((-631 |t#2|) $)) (-15 -3618 ((-112) |t#1| $)) (-15 -2529 ((-631 |t#1|) $)) (IF (|has| |t#2| (-1082)) (IF (|has| $ (-6 -4373)) (-15 -1609 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-836)) (PROGN (-15 -2256 (|t#1| $)) (-15 -3044 (|t#1| $)) (-15 -1539 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4374)) (PROGN (-15 -2441 ($ $ |t#2|)) (-15 -4233 ((-1246) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1082)) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-601 (-848)))) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-483 |#2|) . T) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-1082) |has| |#2| (-1082)) ((-1195) . T)) +((-3075 (((-848) $) 19) (($ (-129)) 13) (((-129) $) 14))) +(((-593) (-13 (-601 (-848)) (-484 (-129)))) (T -593)) +NIL +(-13 (-601 (-848)) (-484 (-129))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-1163)) NIL) (((-1163) $) NIL) (((-1194) $) 14) (($ (-631 (-1194))) 13)) (-1868 (((-631 (-1194)) $) 10)) (-1658 (((-112) $ $) NIL))) +(((-594) (-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -1868 ((-631 (-1194)) $))))) (T -594)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594))))) +(-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-631 (-1194)))) (-15 -1868 ((-631 (-1194)) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1241 (-675 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4047 (((-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3447 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3321 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4206 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3970 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3754 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4027 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3343 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3640 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4231 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1397 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1651 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1241 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4186 (((-906)) NIL (|has| |#2| (-362 |#1|)))) (-3911 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1765 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1573 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3899 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2871 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3115 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3826 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1605 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3415 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3760 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3063 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2541 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-3074 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4193 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2366 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2064 ((|#1| $ (-554)) NIL (|has| |#2| (-412 |#1|)))) (-3656 (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $) (-1241 $)) NIL (|has| |#2| (-362 |#1|))) (((-1241 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2927 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3107 (((-631 (-937 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-631 (-937 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3075 (((-848) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3782 (((-1241 $)) NIL (|has| |#2| (-412 |#1|)))) (-1444 (((-631 (-1241 |#1|))) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1485 (($ (-675 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2760 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3206 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 24)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-595 |#1| |#2|) (-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-731 |#1|)) (T -595)) +((-3075 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-595 *3 *2)) (-4 *2 (-731 *3))))) +(-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-3719 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) 33)) (-3167 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL) (($) NIL)) (-4233 (((-1246) $ (-1140) (-1140)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-1140) |#1|) 43)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#1| "failed") (-1140) $) 46)) (-4087 (($) NIL T CONST)) (-1875 (($ $ (-1140)) 24)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-1884 (((-3 |#1| "failed") (-1140) $) 47) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (|has| $ (-6 -4373)))) (-2574 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-3676 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-3416 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) 32)) (-2862 ((|#1| $ (-1140) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-1140)) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-3733 (($ $) 48)) (-1303 (($ (-383)) 22) (($ (-383) (-1140)) 21)) (-4309 (((-383) $) 34)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373))) (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (((-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-2256 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2944 (((-631 (-1140)) $) 39)) (-2415 (((-112) (-1140) $) NIL)) (-1597 (((-1140) $) 35)) (-4150 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2529 (((-631 (-1140)) $) NIL)) (-3618 (((-112) (-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 ((|#1| $) NIL (|has| (-1140) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) "failed") (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-631 (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 37)) (-2064 ((|#1| $ (-1140) |#1|) NIL) ((|#1| $ (-1140)) 42)) (-4310 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL) (($) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (((-758) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-758) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-3075 (((-848) $) 20)) (-3745 (($ $) 25)) (-1591 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 19)) (-2563 (((-758) $) 41 (|has| $ (-6 -4373))))) +(((-596 |#1|) (-13 (-359 (-383) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-1171 (-1140) |#1|) (-10 -8 (-6 -4373) (-15 -3733 ($ $)))) (-1082)) (T -596)) +((-3733 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1082))))) +(-13 (-359 (-383) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-1171 (-1140) |#1|) (-10 -8 (-6 -4373) (-15 -3733 ($ $)))) +((-3068 (((-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 15)) (-2944 (((-631 |#2|) $) 19)) (-2415 (((-112) |#2| $) 12))) +(((-597 |#1| |#2| |#3|) (-10 -8 (-15 -2944 ((-631 |#2|) |#1|)) (-15 -2415 ((-112) |#2| |#1|)) (-15 -3068 ((-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|))) (-598 |#2| |#3|) (-1082) (-1082)) (T -597)) +NIL +(-10 -8 (-15 -2944 ((-631 |#2|) |#1|)) (-15 -2415 ((-112) |#2| |#1|)) (-15 -3068 ((-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|))) +((-3062 (((-112) $ $) 19 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 55 (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 61)) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 46 (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 54 (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 56 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 53 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2944 (((-631 |#1|) $) 63)) (-2415 (((-112) |#1| $) 64)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 39)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 40)) (-2768 (((-1102) $) 21 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 51)) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 41)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 26 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 25 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 24 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 23 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-4310 (($) 49) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 48)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 31 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 50)) (-3075 (((-848) $) 18 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 42)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-598 |#1| |#2|) (-138) (-1082) (-1082)) (T -598)) +((-2415 (*1 *2 *3 *1) (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-112)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-631 *3)))) (-1884 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-2937 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) +(-13 (-225 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|))) (-10 -8 (-15 -2415 ((-112) |t#1| $)) (-15 -2944 ((-631 |t#1|) $)) (-15 -1884 ((-3 |t#2| "failed") |t#1| $)) (-15 -2937 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-102) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) ((-601 (-848)) -3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))) ((-149 #0#) . T) ((-602 (-530)) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) ((-225 #0#) . T) ((-231 #0#) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-483 #0#) . T) ((-508 #0# #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-1082) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) ((-1195) . T)) +((-4100 (((-600 |#2|) |#1|) 15)) (-2132 (((-3 |#1| "failed") (-600 |#2|)) 19))) +(((-599 |#1| |#2|) (-10 -7 (-15 -4100 ((-600 |#2|) |#1|)) (-15 -2132 ((-3 |#1| "failed") (-600 |#2|)))) (-836) (-836)) (T -599)) +((-2132 (*1 *2 *3) (|partial| -12 (-5 *3 (-600 *4)) (-4 *4 (-836)) (-4 *2 (-836)) (-5 *1 (-599 *2 *4)))) (-4100 (*1 *2 *3) (-12 (-5 *2 (-600 *4)) (-5 *1 (-599 *3 *4)) (-4 *3 (-836)) (-4 *4 (-836))))) +(-10 -7 (-15 -4100 ((-600 |#2|) |#1|)) (-15 -2132 ((-3 |#1| "failed") (-600 |#2|)))) +((-3062 (((-112) $ $) NIL)) (-3159 (((-3 (-1158) "failed") $) 37)) (-2886 (((-1246) $ (-758)) 26)) (-1484 (((-758) $) 25)) (-3086 (((-114) $) 12)) (-4309 (((-1158) $) 20)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1408 (($ (-114) (-631 |#1|) (-758)) 30) (($ (-1158)) 31)) (-2640 (((-112) $ (-114)) 18) (((-112) $ (-1158)) 16)) (-3323 (((-758) $) 22)) (-2768 (((-1102) $) NIL)) (-2927 (((-877 (-554)) $) 77 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 84 (|has| |#1| (-602 (-877 (-374))))) (((-530) $) 69 (|has| |#1| (-602 (-530))))) (-3075 (((-848) $) 55)) (-2592 (((-631 |#1|) $) 24)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 41)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 42))) +(((-600 |#1|) (-13 (-131) (-869 |#1|) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -3086 ((-114) $)) (-15 -2592 ((-631 |#1|) $)) (-15 -3323 ((-758) $)) (-15 -1408 ($ (-114) (-631 |#1|) (-758))) (-15 -1408 ($ (-1158))) (-15 -3159 ((-3 (-1158) "failed") $)) (-15 -2640 ((-112) $ (-114))) (-15 -2640 ((-112) $ (-1158))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) (-836)) (T -600)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-1408 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-836)) (-5 *1 (-600 *5)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-3159 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836))))) +(-13 (-131) (-869 |#1|) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -3086 ((-114) $)) (-15 -2592 ((-631 |#1|) $)) (-15 -3323 ((-758) $)) (-15 -1408 ($ (-114) (-631 |#1|) (-758))) (-15 -1408 ($ (-1158))) (-15 -3159 ((-3 (-1158) "failed") $)) (-15 -2640 ((-112) $ (-114))) (-15 -2640 ((-112) $ (-1158))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) +((-3075 ((|#1| $) 6))) +(((-601 |#1|) (-138) (-1195)) (T -601)) +((-3075 (*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -3075 (|t#1| $)))) +((-2927 ((|#1| $) 6))) +(((-602 |#1|) (-138) (-1195)) (T -602)) +((-2927 (*1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -2927 (|t#1| $)))) +((-2233 (((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)) 15) (((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 16))) +(((-603 |#1| |#2|) (-10 -7 (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)))) (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -603)) +((-2233 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-1154 (-402 *6))) (-5 *1 (-603 *5 *6)) (-5 *3 (-402 *6)))) (-2233 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-1154 (-402 *5))) (-5 *1 (-603 *4 *5)) (-5 *3 (-402 *5))))) +(-10 -7 (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2233 ((-3 (-1154 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)))) +((-3075 (($ |#1|) 6))) +(((-604 |#1|) (-138) (-1195)) (T -604)) +((-3075 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -3075 ($ |t#1|)))) +((-3062 (((-112) $ $) NIL)) (-1638 (($) 11 T CONST)) (-3715 (($) 12 T CONST)) (-3038 (($ $ $) 24)) (-4081 (($ $) 22)) (-1613 (((-1140) $) NIL)) (-3771 (($ $ $) 25)) (-2768 (((-1102) $) NIL)) (-2521 (($) 10 T CONST)) (-2455 (($ $ $) 26)) (-3075 (((-848) $) 30)) (-3182 (((-112) $ (|[\|\|]| -2521)) 19) (((-112) $ (|[\|\|]| -1638)) 21) (((-112) $ (|[\|\|]| -3715)) 17)) (-3726 (($ $ $) 23)) (-1658 (((-112) $ $) 15))) +(((-605) (-13 (-952) (-10 -8 (-15 -2521 ($) -2397) (-15 -1638 ($) -2397) (-15 -3715 ($) -2397) (-15 -3182 ((-112) $ (|[\|\|]| -2521))) (-15 -3182 ((-112) $ (|[\|\|]| -1638))) (-15 -3182 ((-112) $ (|[\|\|]| -3715)))))) (T -605)) +((-2521 (*1 *1) (-5 *1 (-605))) (-1638 (*1 *1) (-5 *1 (-605))) (-3715 (*1 *1) (-5 *1 (-605))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2521)) (-5 *2 (-112)) (-5 *1 (-605)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1638)) (-5 *2 (-112)) (-5 *1 (-605)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3715)) (-5 *2 (-112)) (-5 *1 (-605))))) +(-13 (-952) (-10 -8 (-15 -2521 ($) -2397) (-15 -1638 ($) -2397) (-15 -3715 ($) -2397) (-15 -3182 ((-112) $ (|[\|\|]| -2521))) (-15 -3182 ((-112) $ (|[\|\|]| -1638))) (-15 -3182 ((-112) $ (|[\|\|]| -3715))))) +((-2927 (($ |#1|) 6))) +(((-606 |#1|) (-138) (-1195)) (T -606)) +((-2927 (*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -2927 ($ |t#1|)))) +((-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) 10))) +(((-607 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-608 |#2|) (-1034)) (T -607)) +NIL +(-10 -8 (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 36)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-608 |#1|) (-138) (-1034)) (T -608)) +((-3075 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1034))))) +(-13 (-1034) (-634 |t#1|) (-10 -8 (-15 -3075 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4219 (((-554) $) NIL (|has| |#1| (-834)))) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-2745 (((-112) $) NIL (|has| |#1| (-834)))) (-3248 (((-112) $) NIL)) (-2810 ((|#1| $) 13)) (-4304 (((-112) $) NIL (|has| |#1| (-834)))) (-4223 (($ $ $) NIL (|has| |#1| (-834)))) (-2706 (($ $ $) NIL (|has| |#1| (-834)))) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2822 ((|#3| $) 15)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL)) (-2261 (((-758)) 20)) (-1700 (($ $) NIL (|has| |#1| (-834)))) (-2004 (($) NIL T CONST)) (-2014 (($) 12 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1752 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-609 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-713) |#2|)) (T -609)) +((-1752 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-713) *4)))) (-1752 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-609 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-713) *4)))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-609 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-713) *3)))) (-2822 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4)) (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $)))) +((-3641 ((|#2| |#2| (-1158) (-1158)) 18))) +(((-610 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2| (-1158) (-1158)))) (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-944) (-29 |#1|))) (T -610)) +((-3641 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-610 *4 *2)) (-4 *2 (-13 (-1180) (-944) (-29 *4)))))) +(-10 -7 (-15 -3641 (|#2| |#2| (-1158) (-1158)))) +((-3062 (((-112) $ $) 56)) (-1695 (((-112) $) 52)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1446 ((|#1| $) 49)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4022 (((-2 (|:| -2988 $) (|:| -1836 (-402 |#2|))) (-402 |#2|)) 97 (|has| |#1| (-358)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 24)) (-1320 (((-3 $ "failed") $) 75)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2342 (((-554) $) 19)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) 36)) (-2383 (($ |#1| (-554)) 21)) (-2530 ((|#1| $) 51)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) 87 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ $) 79)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2072 (((-758) $) 99 (|has| |#1| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 98 (|has| |#1| (-358)))) (-1553 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3308 (((-554) $) 34)) (-2927 (((-402 |#2|) $) 42)) (-3075 (((-848) $) 62) (($ (-554)) 32) (($ $) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 31) (($ |#2|) 22)) (-1779 ((|#1| $ (-554)) 63)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 29)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 9 T CONST)) (-2014 (($) 12 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-1658 (((-112) $ $) 17)) (-1744 (($ $) 46) (($ $ $) NIL)) (-1735 (($ $ $) 76)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 26) (($ $ $) 44))) +(((-611 |#1| |#2|) (-13 (-227 |#2|) (-546) (-602 (-402 |#2|)) (-406 |#1|) (-1023 |#2|) (-10 -8 (-15 -3580 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2342 ((-554) $)) (-15 -2550 ($ $)) (-15 -2530 (|#1| $)) (-15 -1446 (|#1| $)) (-15 -1779 (|#1| $ (-554))) (-15 -2383 ($ |#1| (-554))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4022 ((-2 (|:| -2988 $) (|:| -1836 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) (-546) (-1217 |#1|)) (T -611)) +((-3580 (*1 *2 *1) (-12 (-4 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-611 *3 *4)) (-4 *4 (-1217 *3)))) (-3308 (*1 *2 *1) (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4)) (-4 *4 (-1217 *3)))) (-2342 (*1 *2 *1) (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4)) (-4 *4 (-1217 *3)))) (-2550 (*1 *1 *1) (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) (-2530 (*1 *2 *1) (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) (-1446 (*1 *2 *1) (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4)) (-4 *4 (-1217 *2)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4)) (-4 *4 (-1217 *2)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-546)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -2988 (-611 *4 *5)) (|:| -1836 (-402 *5)))) (-5 *1 (-611 *4 *5)) (-5 *3 (-402 *5))))) +(-13 (-227 |#2|) (-546) (-602 (-402 |#2|)) (-406 |#1|) (-1023 |#2|) (-10 -8 (-15 -3580 ((-112) $)) (-15 -3308 ((-554) $)) (-15 -2342 ((-554) $)) (-15 -2550 ($ $)) (-15 -2530 (|#1| $)) (-15 -1446 (|#1| $)) (-15 -1779 (|#1| $ (-554))) (-15 -2383 ($ |#1| (-554))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4022 ((-2 (|:| -2988 $) (|:| -1836 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) +((-3176 (((-631 |#6|) (-631 |#4|) (-112)) 47)) (-2570 ((|#6| |#6|) 40))) +(((-612 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2570 (|#6| |#6|)) (-15 -3176 ((-631 |#6|) (-631 |#4|) (-112)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|) (-1091 |#1| |#2| |#3| |#4|)) (T -612)) +((-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *10)) (-5 *1 (-612 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *10 (-1091 *5 *6 *7 *8)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-612 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *2 (-1091 *3 *4 *5 *6))))) +(-10 -7 (-15 -2570 (|#6| |#6|)) (-15 -3176 ((-631 |#6|) (-631 |#4|) (-112)))) +((-4279 (((-112) |#3| (-758) (-631 |#3|)) 23)) (-3174 (((-3 (-2 (|:| |polfac| (-631 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-631 (-1154 |#3|)))) "failed") |#3| (-631 (-1154 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2316 (-631 (-2 (|:| |irr| |#4|) (|:| -4218 (-554)))))) (-631 |#3|) (-631 |#1|) (-631 |#3|)) 55))) +(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4279 ((-112) |#3| (-758) (-631 |#3|))) (-15 -3174 ((-3 (-2 (|:| |polfac| (-631 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-631 (-1154 |#3|)))) "failed") |#3| (-631 (-1154 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2316 (-631 (-2 (|:| |irr| |#4|) (|:| -4218 (-554)))))) (-631 |#3|) (-631 |#1|) (-631 |#3|)))) (-836) (-780) (-302) (-934 |#3| |#2| |#1|)) (T -613)) +((-3174 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2316 (-631 (-2 (|:| |irr| *10) (|:| -4218 (-554))))))) (-5 *6 (-631 *3)) (-5 *7 (-631 *8)) (-4 *8 (-836)) (-4 *3 (-302)) (-4 *10 (-934 *3 *9 *8)) (-4 *9 (-780)) (-5 *2 (-2 (|:| |polfac| (-631 *10)) (|:| |correct| *3) (|:| |corrfact| (-631 (-1154 *3))))) (-5 *1 (-613 *8 *9 *3 *10)) (-5 *4 (-631 (-1154 *3))))) (-4279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-758)) (-5 *5 (-631 *3)) (-4 *3 (-302)) (-4 *6 (-836)) (-4 *7 (-780)) (-5 *2 (-112)) (-5 *1 (-613 *6 *7 *3 *8)) (-4 *8 (-934 *3 *7 *6))))) +(-10 -7 (-15 -4279 ((-112) |#3| (-758) (-631 |#3|))) (-15 -3174 ((-3 (-2 (|:| |polfac| (-631 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-631 (-1154 |#3|)))) "failed") |#3| (-631 (-1154 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2316 (-631 (-2 (|:| |irr| |#4|) (|:| -4218 (-554)))))) (-631 |#3|) (-631 |#1|) (-631 |#3|)))) +((-3062 (((-112) $ $) NIL)) (-3848 (((-1117) $) 11)) (-3836 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-614) (-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $))))) (T -614)) +((-3836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614))))) +(-13 (-1065) (-10 -8 (-15 -3836 ((-1117) $)) (-15 -3848 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3898 (($ $) 67)) (-2395 (((-650 |#1| |#2|) $) 52)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 70)) (-2445 (((-631 (-289 |#2|)) $ $) 33)) (-2768 (((-1102) $) NIL)) (-1333 (($ (-650 |#1| |#2|)) 48)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 58) (((-1256 |#1| |#2|) $) NIL) (((-1261 |#1| |#2|) $) 66)) (-2014 (($) 53 T CONST)) (-2868 (((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $) 31)) (-1377 (((-631 (-650 |#1| |#2|)) (-631 |#1|)) 65)) (-2407 (((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $) 37)) (-1658 (((-112) $ $) 54)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ $ $) 44))) +(((-615 |#1| |#2| |#3|) (-13 (-467) (-10 -8 (-15 -1333 ($ (-650 |#1| |#2|))) (-15 -2395 ((-650 |#1| |#2|) $)) (-15 -2407 ((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $)) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1261 |#1| |#2|) $)) (-15 -3898 ($ $)) (-15 -1654 ((-631 |#1|) $)) (-15 -1377 ((-631 (-650 |#1| |#2|)) (-631 |#1|))) (-15 -2868 ((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $)) (-15 -2445 ((-631 (-289 |#2|)) $ $)))) (-836) (-13 (-170) (-704 (-402 (-554)))) (-906)) (T -615)) +((-1333 (*1 *1 *2) (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-5 *1 (-615 *3 *4 *5)) (-14 *5 (-906)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-650 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| (-878 *3)) (|:| |c| *4)))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-615 *2 *3 *4)) (-4 *2 (-836)) (-4 *3 (-13 (-170) (-704 (-402 (-554))))) (-14 *4 (-906)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-650 *4 *5))) (-5 *1 (-615 *4 *5 *6)) (-4 *5 (-13 (-170) (-704 (-402 (-554))))) (-14 *6 (-906)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| (-658 *3)) (|:| |c| *4)))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) (-2445 (*1 *2 *1 *1) (-12 (-5 *2 (-631 (-289 *4))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))) +(-13 (-467) (-10 -8 (-15 -1333 ($ (-650 |#1| |#2|))) (-15 -2395 ((-650 |#1| |#2|) $)) (-15 -2407 ((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $)) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1261 |#1| |#2|) $)) (-15 -3898 ($ $)) (-15 -1654 ((-631 |#1|) $)) (-15 -1377 ((-631 (-650 |#1| |#2|)) (-631 |#1|))) (-15 -2868 ((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $)) (-15 -2445 ((-631 (-289 |#2|)) $ $)))) +((-3176 (((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)) 72) (((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112)) 58)) (-3286 (((-112) (-631 (-767 |#1| (-850 |#2|)))) 23)) (-3327 (((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)) 71)) (-2738 (((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112)) 57)) (-3486 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|)))) 27)) (-2526 (((-3 (-631 (-767 |#1| (-850 |#2|))) "failed") (-631 (-767 |#1| (-850 |#2|)))) 26))) +(((-616 |#1| |#2|) (-10 -7 (-15 -3286 ((-112) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2526 ((-3 (-631 (-767 |#1| (-850 |#2|))) "failed") (-631 (-767 |#1| (-850 |#2|))))) (-15 -3486 ((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2738 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3327 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)))) (-446) (-631 (-1158))) (T -616)) +((-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6))))) (-5 *1 (-616 *5 *6)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-616 *5 *6)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6))))) (-5 *1 (-616 *5 *6)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-616 *5 *6)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446)) (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4)))) (-2526 (*1 *2 *2) (|partial| -12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446)) (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-631 (-767 *4 (-850 *5)))) (-4 *4 (-446)) (-14 *5 (-631 (-1158))) (-5 *2 (-112)) (-5 *1 (-616 *4 *5))))) +(-10 -7 (-15 -3286 ((-112) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2526 ((-3 (-631 (-767 |#1| (-850 |#2|))) "failed") (-631 (-767 |#1| (-850 |#2|))))) (-15 -3486 ((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))))) (-15 -2738 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3327 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1031 |#1| |#2|)) (-631 (-767 |#1| (-850 |#2|))) (-112))) (-15 -3176 ((-631 (-1128 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|)))) (-631 (-767 |#1| (-850 |#2|))) (-112)))) +((-3023 (($ $) 38)) (-4200 (($ $) 21)) (-3003 (($ $) 37)) (-4177 (($ $) 22)) (-3046 (($ $) 36)) (-2916 (($ $) 23)) (-2844 (($) 48)) (-2395 (($ $) 45)) (-4145 (($ $) 17)) (-3546 (($ $ (-1074 $)) 7) (($ $ (-1158)) 6)) (-1333 (($ $) 46)) (-4124 (($ $) 15)) (-4164 (($ $) 16)) (-3057 (($ $) 35)) (-2926 (($ $) 24)) (-3034 (($ $) 34)) (-4213 (($ $) 25)) (-3014 (($ $) 33)) (-4188 (($ $) 26)) (-3096 (($ $) 44)) (-2959 (($ $) 32)) (-3069 (($ $) 43)) (-2938 (($ $) 31)) (-3120 (($ $) 42)) (-2981 (($ $) 30)) (-2908 (($ $) 41)) (-2991 (($ $) 29)) (-3108 (($ $) 40)) (-2969 (($ $) 28)) (-3083 (($ $) 39)) (-2948 (($ $) 27)) (-2697 (($ $) 19)) (-1667 (($ $) 20)) (-1373 (($ $) 18)) (** (($ $ $) 47))) +(((-617) (-138)) (T -617)) +((-1667 (*1 *1 *1) (-4 *1 (-617))) (-2697 (*1 *1 *1) (-4 *1 (-617))) (-1373 (*1 *1 *1) (-4 *1 (-617))) (-4145 (*1 *1 *1) (-4 *1 (-617))) (-4164 (*1 *1 *1) (-4 *1 (-617))) (-4124 (*1 *1 *1) (-4 *1 (-617)))) +(-13 (-944) (-1180) (-10 -8 (-15 -1667 ($ $)) (-15 -2697 ($ $)) (-15 -1373 ($ $)) (-15 -4145 ($ $)) (-15 -4164 ($ $)) (-15 -4124 ($ $)))) +(((-35) . T) ((-95) . T) ((-279) . T) ((-487) . T) ((-944) . T) ((-1180) . T) ((-1183) . T)) +((-3086 (((-114) (-114)) 83)) (-4145 ((|#2| |#2|) 30)) (-3546 ((|#2| |#2| (-1074 |#2|)) 79) ((|#2| |#2| (-1158)) 52)) (-4124 ((|#2| |#2|) 29)) (-4164 ((|#2| |#2|) 31)) (-1902 (((-112) (-114)) 34)) (-2697 ((|#2| |#2|) 26)) (-1667 ((|#2| |#2|) 28)) (-1373 ((|#2| |#2|) 27))) +(((-618 |#1| |#2|) (-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1667 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -4145 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -3546 (|#2| |#2| (-1158))) (-15 -3546 (|#2| |#2| (-1074 |#2|)))) (-13 (-836) (-546)) (-13 (-425 |#1|) (-987) (-1180))) (T -618)) +((-3546 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-987) (-1180))) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2)))) (-3546 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2)) (-4 *2 (-13 (-425 *4) (-987) (-1180))))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-4145 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) (-4 *2 (-13 (-425 *3) (-987) (-1180))))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *4)) (-4 *4 (-13 (-425 *3) (-987) (-1180))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-618 *4 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180)))))) +(-10 -7 (-15 -1902 ((-112) (-114))) (-15 -3086 ((-114) (-114))) (-15 -1667 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -4145 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -3546 (|#2| |#2| (-1158))) (-15 -3546 (|#2| |#2| (-1074 |#2|)))) +((-3119 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 53)) (-3907 (((-631 (-243 |#1| |#2|)) (-631 (-475 |#1| |#2|))) 68)) (-1860 (((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-850 |#1|)) 70) (((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)) (-850 |#1|)) 69)) (-2718 (((-2 (|:| |gblist| (-631 (-243 |#1| |#2|))) (|:| |gvlist| (-631 (-554)))) (-631 (-475 |#1| |#2|))) 108)) (-2928 (((-631 (-475 |#1| |#2|)) (-850 |#1|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|))) 83)) (-2922 (((-2 (|:| |glbase| (-631 (-243 |#1| |#2|))) (|:| |glval| (-631 (-554)))) (-631 (-243 |#1| |#2|))) 118)) (-3872 (((-1241 |#2|) (-475 |#1| |#2|) (-631 (-475 |#1| |#2|))) 58)) (-1618 (((-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|))) 41)) (-2779 (((-243 |#1| |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|))) 50)) (-2977 (((-243 |#1| |#2|) (-631 |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|))) 91))) +(((-619 |#1| |#2|) (-10 -7 (-15 -2718 ((-2 (|:| |gblist| (-631 (-243 |#1| |#2|))) (|:| |gvlist| (-631 (-554)))) (-631 (-475 |#1| |#2|)))) (-15 -2922 ((-2 (|:| |glbase| (-631 (-243 |#1| |#2|))) (|:| |glval| (-631 (-554)))) (-631 (-243 |#1| |#2|)))) (-15 -3907 ((-631 (-243 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1618 ((-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -3872 ((-1241 |#2|) (-475 |#1| |#2|) (-631 (-475 |#1| |#2|)))) (-15 -2977 ((-243 |#1| |#2|) (-631 |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -2928 ((-631 (-475 |#1| |#2|)) (-850 |#1|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -2779 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -3119 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) (-631 (-1158)) (-446)) (T -619)) +((-3119 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-475 *4 *5)) (-5 *1 (-619 *4 *5)))) (-2779 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5)))) (-2928 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-850 *4)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5)))) (-2977 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-243 *5 *6))) (-4 *6 (-446)) (-5 *2 (-243 *5 *6)) (-14 *5 (-631 (-1158))) (-5 *1 (-619 *5 *6)))) (-3872 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-1241 *6)) (-5 *1 (-619 *5 *6)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-631 (-475 *3 *4))) (-14 *3 (-631 (-1158))) (-4 *4 (-446)) (-5 *1 (-619 *3 *4)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5)) (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6)) (-4 *6 (-446)))) (-1860 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5)) (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6)) (-4 *6 (-446)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-631 (-243 *4 *5))) (-5 *1 (-619 *4 *5)))) (-2922 (*1 *2 *3) (-12 (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |glbase| (-631 (-243 *4 *5))) (|:| |glval| (-631 (-554))))) (-5 *1 (-619 *4 *5)) (-5 *3 (-631 (-243 *4 *5))))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |gblist| (-631 (-243 *4 *5))) (|:| |gvlist| (-631 (-554))))) (-5 *1 (-619 *4 *5))))) +(-10 -7 (-15 -2718 ((-2 (|:| |gblist| (-631 (-243 |#1| |#2|))) (|:| |gvlist| (-631 (-554)))) (-631 (-475 |#1| |#2|)))) (-15 -2922 ((-2 (|:| |glbase| (-631 (-243 |#1| |#2|))) (|:| |glval| (-631 (-554)))) (-631 (-243 |#1| |#2|)))) (-15 -3907 ((-631 (-243 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1860 ((-475 |#1| |#2|) (-631 (-475 |#1| |#2|)) (-850 |#1|))) (-15 -1618 ((-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -3872 ((-1241 |#2|) (-475 |#1| |#2|) (-631 (-475 |#1| |#2|)))) (-15 -2977 ((-243 |#1| |#2|) (-631 |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -2928 ((-631 (-475 |#1| |#2|)) (-850 |#1|) (-631 (-475 |#1| |#2|)) (-631 (-475 |#1| |#2|)))) (-15 -2779 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-631 (-243 |#1| |#2|)))) (-15 -3119 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-4233 (((-1246) $ (-1140) (-1140)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-52) $ (-1140) (-52)) 16) (((-52) $ (-1158) (-52)) 17)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 (-52) "failed") (-1140) $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-3 (-52) "failed") (-1140) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-52) $ (-1140) (-52)) NIL (|has| $ (-6 -4374)))) (-2796 (((-52) $ (-1140)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3733 (($ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2256 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1443 (($ (-383)) 9)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-2944 (((-631 (-1140)) $) NIL)) (-2415 (((-112) (-1140) $) NIL)) (-4150 (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL)) (-2529 (((-631 (-1140)) $) NIL)) (-3618 (((-112) (-1140) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-1539 (((-52) $) NIL (|has| (-1140) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) "failed") (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL)) (-2441 (($ $ (-52)) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-52)) (-631 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-631 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2625 (((-631 (-52)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-52) $ (-1140)) 14) (((-52) $ (-1140) (-52)) NIL) (((-52) $ (-1158)) 15)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082)))) (((-758) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082)))) (((-758) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-52) (-601 (-848))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 (-52))) (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-620) (-13 (-1171 (-1140) (-52)) (-10 -8 (-15 -1443 ($ (-383))) (-15 -3733 ($ $)) (-15 -2064 ((-52) $ (-1158))) (-15 -1501 ((-52) $ (-1158) (-52)))))) (T -620)) +((-1443 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-620)))) (-3733 (*1 *1 *1) (-5 *1 (-620))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-620)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1158)) (-5 *1 (-620))))) +(-13 (-1171 (-1140) (-52)) (-10 -8 (-15 -1443 ($ (-383))) (-15 -3733 ($ $)) (-15 -2064 ((-52) $ (-1158))) (-15 -1501 ((-52) $ (-1158) (-52))))) +((-1752 (($ $ |#2|) 10))) +(((-621 |#1| |#2|) (-10 -8 (-15 -1752 (|#1| |#1| |#2|))) (-622 |#2|) (-170)) (T -621)) +NIL +(-10 -8 (-15 -1752 (|#1| |#1| |#2|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3089 (($ $ $) 29)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 28 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-622 |#1|) (-138) (-170)) (T -622)) +((-3089 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) +(-13 (-704 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3089 ($ $ $)) (IF (|has| |t#1| (-358)) (-15 -1752 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1241 (-675 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4047 (((-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4087 (($) NIL T CONST)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3447 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3321 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4206 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3970 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3754 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4027 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3343 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3640 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-4231 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1397 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1651 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1241 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-4186 (((-906)) NIL (|has| |#2| (-362 |#1|)))) (-3911 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4326 (($ $ (-906)) NIL)) (-2545 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1765 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1573 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3899 (((-3 $ "failed")) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-2871 (((-675 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-3115 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3826 (((-675 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1605 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3415 (((-1154 (-937 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-3760 (((-1154 |#1|) $) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3063 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2541 (((-1154 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-3074 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4193 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2366 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2064 ((|#1| $ (-554)) NIL (|has| |#2| (-412 |#1|)))) (-3656 (((-675 |#1|) (-1241 $)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-675 |#1|) (-1241 $) (-1241 $)) NIL (|has| |#2| (-362 |#1|))) (((-1241 |#1|) $ (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-2927 (($ (-1241 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1241 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3107 (((-631 (-937 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-631 (-937 |#1|)) (-1241 $)) NIL (|has| |#2| (-362 |#1|)))) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3075 (((-848) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3782 (((-1241 $)) NIL (|has| |#2| (-412 |#1|)))) (-1444 (((-631 (-1241 |#1|))) NIL (-3994 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-546))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-546)))))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1485 (($ (-675 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2760 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3206 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2004 (($) 15 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 17)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-623 |#1| |#2|) (-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-731 |#1|)) (T -623)) +((-3075 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-623 *3 *2)) (-4 *2 (-731 *3))))) +(-13 (-731 |#1|) (-601 |#2|) (-10 -8 (-15 -3075 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) +((-4321 (((-3 (-829 |#2|) "failed") |#2| (-289 |#2|) (-1140)) 82) (((-3 (-829 |#2|) (-2 (|:| |leftHandLimit| (-3 (-829 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-829 |#2|) "failed"))) "failed") |#2| (-289 (-829 |#2|))) 104)) (-4113 (((-3 (-820 |#2|) "failed") |#2| (-289 (-820 |#2|))) 109))) +(((-624 |#1| |#2|) (-10 -7 (-15 -4321 ((-3 (-829 |#2|) (-2 (|:| |leftHandLimit| (-3 (-829 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-829 |#2|) "failed"))) "failed") |#2| (-289 (-829 |#2|)))) (-15 -4113 ((-3 (-820 |#2|) "failed") |#2| (-289 (-820 |#2|)))) (-15 -4321 ((-3 (-829 |#2|) "failed") |#2| (-289 |#2|) (-1140)))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -624)) +((-4321 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1140)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-829 *3)) (-5 *1 (-624 *6 *3)))) (-4113 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-289 (-820 *3))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-820 *3)) (-5 *1 (-624 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-829 *3))) (-4 *3 (-13 (-27) (-1180) (-425 *5))) (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-3 (-829 *3) (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed")) (|:| |rightHandLimit| (-3 (-829 *3) "failed"))) "failed")) (-5 *1 (-624 *5 *3))))) +(-10 -7 (-15 -4321 ((-3 (-829 |#2|) (-2 (|:| |leftHandLimit| (-3 (-829 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-829 |#2|) "failed"))) "failed") |#2| (-289 (-829 |#2|)))) (-15 -4113 ((-3 (-820 |#2|) "failed") |#2| (-289 (-820 |#2|)))) (-15 -4321 ((-3 (-829 |#2|) "failed") |#2| (-289 |#2|) (-1140)))) +((-4321 (((-3 (-829 (-402 (-937 |#1|))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))) (-1140)) 80) (((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|)))) 20) (((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-829 (-937 |#1|)))) 35)) (-4113 (((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|)))) 23) (((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-820 (-937 |#1|)))) 43))) +(((-625 |#1|) (-10 -7 (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-829 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-820 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))) (-1140)))) (-446)) (T -625)) +((-4321 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 (-402 (-937 *6)))) (-5 *5 (-1140)) (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-829 *3)) (-5 *1 (-625 *6)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-446)) (-5 *2 (-820 *3)) (-5 *1 (-625 *5)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-820 (-937 *5)))) (-4 *5 (-446)) (-5 *2 (-820 (-402 (-937 *5)))) (-5 *1 (-625 *5)) (-5 *3 (-402 (-937 *5))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-446)) (-5 *2 (-3 (-829 *3) (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed")) (|:| |rightHandLimit| (-3 (-829 *3) "failed"))) "failed")) (-5 *1 (-625 *5)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-829 (-937 *5)))) (-4 *5 (-446)) (-5 *2 (-3 (-829 (-402 (-937 *5))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 *5))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 *5))) "failed"))) "failed")) (-5 *1 (-625 *5)) (-5 *3 (-402 (-937 *5)))))) +(-10 -7 (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-829 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-829 (-402 (-937 |#1|))) "failed"))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-820 (-937 |#1|))))) (-15 -4113 ((-820 (-402 (-937 |#1|))) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -4321 ((-3 (-829 (-402 (-937 |#1|))) "failed") (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))) (-1140)))) +((-1627 (((-3 (-1241 (-402 |#1|)) "failed") (-1241 |#2|) |#2|) 57 (-4081 (|has| |#1| (-358)))) (((-3 (-1241 |#1|) "failed") (-1241 |#2|) |#2|) 42 (|has| |#1| (-358)))) (-1659 (((-112) (-1241 |#2|)) 30)) (-1674 (((-3 (-1241 |#1|) "failed") (-1241 |#2|)) 33))) +(((-626 |#1| |#2|) (-10 -7 (-15 -1659 ((-112) (-1241 |#2|))) (-15 -1674 ((-3 (-1241 |#1|) "failed") (-1241 |#2|))) (IF (|has| |#1| (-358)) (-15 -1627 ((-3 (-1241 |#1|) "failed") (-1241 |#2|) |#2|)) (-15 -1627 ((-3 (-1241 (-402 |#1|)) "failed") (-1241 |#2|) |#2|)))) (-546) (-627 |#1|)) (T -626)) +((-1627 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) (-4081 (-4 *5 (-358))) (-4 *5 (-546)) (-5 *2 (-1241 (-402 *5))) (-5 *1 (-626 *5 *4)))) (-1627 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) (-4 *5 (-358)) (-4 *5 (-546)) (-5 *2 (-1241 *5)) (-5 *1 (-626 *5 *4)))) (-1674 (*1 *2 *3) (|partial| -12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546)) (-5 *2 (-1241 *4)) (-5 *1 (-626 *4 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546)) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) +(-10 -7 (-15 -1659 ((-112) (-1241 |#2|))) (-15 -1674 ((-3 (-1241 |#1|) "failed") (-1241 |#2|))) (IF (|has| |#1| (-358)) (-15 -1627 ((-3 (-1241 |#1|) "failed") (-1241 |#2|) |#2|)) (-15 -1627 ((-3 (-1241 (-402 |#1|)) "failed") (-1241 |#2|) |#2|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3699 (((-675 |#1|) (-675 $)) 36) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 35)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-627 |#1|) (-138) (-1034)) (T -627)) +((-3699 (*1 *2 *3) (-12 (-5 *3 (-675 *1)) (-4 *1 (-627 *4)) (-4 *4 (-1034)) (-5 *2 (-675 *4)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *1)) (-5 *4 (-1241 *1)) (-4 *1 (-627 *5)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 *5))))))) +(-13 (-1034) (-10 -8 (-15 -3699 ((-675 |t#1|) (-675 $))) (-15 -3699 ((-2 (|:| -2866 (-675 |t#1|)) (|:| |vec| (-1241 |t#1|))) (-675 $) (-1241 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3814 ((|#2| (-631 |#1|) (-631 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-631 |#1|) (-631 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) |#2|) 17) ((|#2| (-631 |#1|) (-631 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|)) 12))) +(((-628 |#1| |#2|) (-10 -7 (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) |#2|)) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| |#2|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) (-1 |#2| |#1|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| (-1 |#2| |#1|)))) (-1082) (-1195)) (T -628)) +((-3814 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) (-3814 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *1 (-628 *5 *6)))) (-3814 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 *5)) (-4 *6 (-1082)) (-4 *5 (-1195)) (-5 *2 (-1 *5 *6)) (-5 *1 (-628 *6 *5)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-628 *5 *6))))) +(-10 -7 (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) |#2|)) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| |#2|)) (-15 -3814 ((-1 |#2| |#1|) (-631 |#1|) (-631 |#2|) (-1 |#2| |#1|))) (-15 -3814 (|#2| (-631 |#1|) (-631 |#2|) |#1| (-1 |#2| |#1|)))) +((-4159 (((-631 |#2|) (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|) 16)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|) 18)) (-2879 (((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)) 13))) +(((-629 |#1| |#2|) (-10 -7 (-15 -4159 ((-631 |#2|) (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)))) (-1195) (-1195)) (T -629)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-631 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-631 *6)) (-5 *1 (-629 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-631 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-629 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-631 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-631 *5)) (-5 *1 (-629 *6 *5))))) +(-10 -7 (-15 -4159 ((-631 |#2|) (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-631 |#1|) |#2|)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)))) +((-2879 (((-631 |#3|) (-1 |#3| |#1| |#2|) (-631 |#1|) (-631 |#2|)) 13))) +(((-630 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-631 |#3|) (-1 |#3| |#1| |#2|) (-631 |#1|) (-631 |#2|)))) (-1195) (-1195) (-1195)) (T -630)) +((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-631 *6)) (-5 *5 (-631 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-631 *8)) (-5 *1 (-630 *6 *7 *8))))) +(-10 -7 (-15 -2879 ((-631 |#3|) (-1 |#3| |#1| |#2|) (-631 |#1|) (-631 |#2|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) $) NIL (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2576 (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-3303 (($ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) NIL (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "rest" $) NIL (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-1472 (($ $ $) 32 (|has| |#1| (-1082)))) (-1460 (($ $ $) 34 (|has| |#1| (-1082)))) (-1450 (($ $ $) 37 (|has| |#1| (-1082)))) (-2220 (($ (-1 (-112) |#1|) $) NIL)) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1551 (($ $) NIL) (($ $ (-758)) NIL)) (-2593 (($ $) NIL (|has| |#1| (-1082)))) (-1571 (($ $) 31 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) NIL)) (-2574 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-1484 (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082))) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3168 (((-112) $) 9)) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4301 (($) 7)) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3606 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3717 (($ $ $) NIL (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1416 (($ |#1|) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-2045 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-1381 (((-112) $) NIL)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) 36) ((|#1| $ (-554) |#1|) NIL)) (-3250 (((-554) $ $) NIL)) (-3029 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-3008 (((-112) $) NIL)) (-1670 (($ $) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 45 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-2403 (($ |#1| $) 10)) (-1853 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4323 (($ $ $) 30) (($ |#1| $) NIL) (($ (-631 $)) NIL) (($ $ |#1|) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2497 (($ $ $) 11)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4048 (((-1140) $) 26 (|has| |#1| (-815))) (((-1140) $ (-112)) 27 (|has| |#1| (-815))) (((-1246) (-809) $) 28 (|has| |#1| (-815))) (((-1246) (-809) $ (-112)) 29 (|has| |#1| (-815)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-631 |#1|) (-13 (-652 |#1|) (-10 -8 (-15 -4301 ($)) (-15 -3168 ((-112) $)) (-15 -2403 ($ |#1| $)) (-15 -2497 ($ $ $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -1472 ($ $ $)) (-15 -1460 ($ $ $)) (-15 -1450 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-1195)) (T -631)) +((-4301 (*1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-631 *3)) (-4 *3 (-1195)))) (-2403 (*1 *1 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) (-1472 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))) (-1460 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)))) (-1450 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195))))) +(-13 (-652 |#1|) (-10 -8 (-15 -4301 ($)) (-15 -3168 ((-112) $)) (-15 -2403 ($ |#1| $)) (-15 -2497 ($ $ $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -1472 ($ $ $)) (-15 -1460 ($ $ $)) (-15 -1450 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11) (($ (-1163)) NIL) (((-1163) $) NIL) ((|#1| $) 8)) (-1658 (((-112) $ $) NIL))) +(((-632 |#1|) (-13 (-1065) (-601 |#1|)) (-1082)) (T -632)) +NIL +(-13 (-1065) (-601 |#1|)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1562 (($ |#1| |#1| $) 43)) (-3019 (((-112) $ (-758)) NIL)) (-2220 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2593 (($ $) 45)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) 52 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 9 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 37)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 46)) (-2045 (($ |#1| $) 26) (($ |#1| $ (-758)) 42)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2152 ((|#1| $) 48)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 21)) (-4240 (($) 25)) (-2221 (((-112) $) 50)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 59)) (-4310 (($) 23) (($ (-631 |#1|)) 18)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) 56 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 19)) (-2927 (((-530) $) 34 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-3075 (((-848) $) 14 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 22)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 61 (|has| |#1| (-1082)))) (-2563 (((-758) $) 16 (|has| $ (-6 -4373))))) +(((-633 |#1|) (-13 (-681 |#1|) (-10 -8 (-6 -4373) (-15 -2221 ((-112) $)) (-15 -1562 ($ |#1| |#1| $)))) (-1082)) (T -633)) +((-2221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-633 *3)) (-4 *3 (-1082)))) (-1562 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-1082))))) +(-13 (-681 |#1|) (-10 -8 (-6 -4373) (-15 -2221 ((-112) $)) (-15 -1562 ($ |#1| |#1| $)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23))) +(((-634 |#1|) (-138) (-1041)) (T -634)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1041))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-2571 (((-757) $) 15)) (-4199 (($ $ |#1|) 56)) (-1467 (($ $) 32)) (-3239 (($ $) 31)) (-1399 (((-3 |#1| "failed") $) 48)) (-2707 ((|#1| $) NIL)) (-2832 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3783 (((-845) $ (-1 (-845) (-845) (-845)) (-1 (-845) (-845) (-845)) (-553)) 46)) (-3111 ((|#1| $ (-553)) 30)) (-1360 ((|#2| $ (-553)) 29)) (-3589 (($ (-1 |#1| |#1|) $) 34)) (-3821 (($ (-1 |#2| |#2|) $) 38)) (-2493 (($) 10)) (-1904 (($ |#1| |#2|) 22)) (-4154 (($ (-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|)))) 23)) (-1732 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))) $) 13)) (-1420 (($ |#1| $) 57)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1907 (((-111) $ $) 60)) (-3110 (((-845) $) 19) (($ |#1|) 16)) (-1617 (((-111) $ $) 25))) -(((-634 |#1| |#2| |#3|) (-13 (-1079) (-1020 |#1|) (-10 -8 (-15 -3783 ((-845) $ (-1 (-845) (-845) (-845)) (-1 (-845) (-845) (-845)) (-553))) (-15 -1732 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))) $)) (-15 -1904 ($ |#1| |#2|)) (-15 -4154 ($ (-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))))) (-15 -1360 (|#2| $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3239 ($ $)) (-15 -1467 ($ $)) (-15 -2571 ((-757) $)) (-15 -2493 ($)) (-15 -4199 ($ $ |#1|)) (-15 -1420 ($ |#1| $)) (-15 -2832 ($ |#1| |#2| $)) (-15 -2832 ($ $ $)) (-15 -1907 ((-111) $ $)) (-15 -3821 ($ (-1 |#2| |#2|) $)) (-15 -3589 ($ (-1 |#1| |#1|) $)))) (-1079) (-23) |#2|) (T -634)) -((-3783 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-845) (-845) (-845))) (-5 *4 (-553)) (-5 *2 (-845)) (-5 *1 (-634 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-23)) (-14 *7 *6))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 *4)))) (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-23)) (-14 *5 *4))) (-1904 (*1 *1 *2 *3) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 *4)))) (-4 *3 (-1079)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-634 *3 *4 *5)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *2 (-23)) (-5 *1 (-634 *4 *2 *5)) (-4 *4 (-1079)) (-14 *5 *2))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *2 (-1079)) (-5 *1 (-634 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-1467 (*1 *1 *1) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-23)) (-14 *5 *4))) (-2493 (*1 *1) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-4199 (*1 *1 *1 *2) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-1420 (*1 *1 *2 *1) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-2832 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-2832 (*1 *1 *1 *1) (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) (-14 *4 *3))) (-1907 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-23)) (-14 *5 *4))) (-3821 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)))) (-3589 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-634 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1079) (-1020 |#1|) (-10 -8 (-15 -3783 ((-845) $ (-1 (-845) (-845) (-845)) (-1 (-845) (-845) (-845)) (-553))) (-15 -1732 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))) $)) (-15 -1904 ($ |#1| |#2|)) (-15 -4154 ($ (-630 (-2 (|:| |gen| |#1|) (|:| -2743 |#2|))))) (-15 -1360 (|#2| $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3239 ($ $)) (-15 -1467 ($ $)) (-15 -2571 ((-757) $)) (-15 -2493 ($)) (-15 -4199 ($ $ |#1|)) (-15 -1420 ($ |#1| $)) (-15 -2832 ($ |#1| |#2| $)) (-15 -2832 ($ $ $)) (-15 -1907 ((-111) $ $)) (-15 -3821 ($ (-1 |#2| |#2|) $)) (-15 -3589 ($ (-1 |#1| |#1|) $)))) -((-2958 (((-553) $) 24)) (-1774 (($ |#2| $ (-553)) 22) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) 12)) (-3594 (((-111) (-553) $) 15)) (-4325 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-630 $)) NIL))) -(((-635 |#1| |#2|) (-10 -8 (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -4325 (|#1| (-630 |#1|))) (-15 -4325 (|#1| |#1| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -2958 ((-553) |#1|)) (-15 -1901 ((-630 (-553)) |#1|)) (-15 -3594 ((-111) (-553) |#1|))) (-636 |#2|) (-1192)) (T -635)) -NIL -(-10 -8 (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -4325 (|#1| (-630 |#1|))) (-15 -4325 (|#1| |#1| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -2958 ((-553) |#1|)) (-15 -1901 ((-630 (-553)) |#1|)) (-15 -3594 ((-111) (-553) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) |#1|) 52 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2638 (($ $) 78 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 77 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 51)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 42 (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2858 (($ $ |#1|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) |#1|) 50) ((|#1| $ (-553)) 49) (($ $ (-1205 (-553))) 63)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 70)) (-4325 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-636 |#1|) (-137) (-1192)) (T -636)) -((-3202 (*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-4325 (*1 *1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1192)))) (-4325 (*1 *1 *2 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1192)))) (-4325 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1192)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-1482 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-1205 (-553))) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-2005 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-2005 (*1 *1 *1 *2) (-12 (-5 *2 (-1205 (-553))) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-1774 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-636 *2)) (-4 *2 (-1192)))) (-1774 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) (-1490 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1205 (-553))) (|has| *1 (-6 -4370)) (-4 *1 (-636 *2)) (-4 *2 (-1192))))) -(-13 (-591 (-553) |t#1|) (-148 |t#1|) (-10 -8 (-15 -3202 ($ (-757) |t#1|)) (-15 -4325 ($ $ |t#1|)) (-15 -4325 ($ |t#1| $)) (-15 -4325 ($ $ $)) (-15 -4325 ($ (-630 $))) (-15 -1482 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2046 ($ $ (-1205 (-553)))) (-15 -2005 ($ $ (-553))) (-15 -2005 ($ $ (-1205 (-553)))) (-15 -1774 ($ |t#1| $ (-553))) (-15 -1774 ($ $ $ (-553))) (IF (|has| $ (-6 -4370)) (-15 -1490 (|t#1| $ (-1205 (-553)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-1638 (((-3 |#2| "failed") |#3| |#2| (-1155) |#2| (-630 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) "failed") |#3| |#2| (-1155)) 44))) -(((-637 |#1| |#2| |#3|) (-10 -7 (-15 -1638 ((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) "failed") |#3| |#2| (-1155))) (-15 -1638 ((-3 |#2| "failed") |#3| |#2| (-1155) |#2| (-630 |#2|)))) (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144)) (-13 (-29 |#1|) (-1177) (-941)) (-641 |#2|)) (T -637)) -((-1638 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-630 *2)) (-4 *2 (-13 (-29 *6) (-1177) (-941))) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *1 (-637 *6 *2 *3)) (-4 *3 (-641 *2)))) (-1638 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1155)) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-4 *4 (-13 (-29 *6) (-1177) (-941))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4124 (-630 *4)))) (-5 *1 (-637 *6 *4 *3)) (-4 *3 (-641 *4))))) -(-10 -7 (-15 -1638 ((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) "failed") |#3| |#2| (-1155))) (-15 -1638 ((-3 |#2| "failed") |#3| |#2| (-1155) |#2| (-630 |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3665 (($ $) NIL (|has| |#1| (-357)))) (-2030 (($ $ $) NIL (|has| |#1| (-357)))) (-2185 (($ $ (-757)) NIL (|has| |#1| (-357)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1816 (($ $ $) NIL (|has| |#1| (-357)))) (-3321 (($ $ $) NIL (|has| |#1| (-357)))) (-1960 (($ $ $) NIL (|has| |#1| (-357)))) (-3875 (($ $ $) NIL (|has| |#1| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-1936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445)))) (-1848 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) NIL)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-2423 (((-757) $) NIL)) (-1717 (($ $ $) NIL (|has| |#1| (-357)))) (-3065 (($ $ $) NIL (|has| |#1| (-357)))) (-3335 (($ $ $) NIL (|has| |#1| (-357)))) (-1946 (($ $ $) NIL (|has| |#1| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3474 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-2046 ((|#1| $ |#1|) NIL)) (-3056 (($ $ $) NIL (|has| |#1| (-357)))) (-3872 (((-757) $) NIL)) (-4198 ((|#1| $) NIL (|has| |#1| (-445)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) NIL)) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) NIL)) (-1999 (((-757)) NIL)) (-2549 ((|#1| $ |#1| |#1|) NIL)) (-3977 (($ $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($) NIL)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-638 |#1|) (-641 |#1|) (-228)) (T -638)) -NIL -(-641 |#1|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3665 (($ $) NIL (|has| |#1| (-357)))) (-2030 (($ $ $) NIL (|has| |#1| (-357)))) (-2185 (($ $ (-757)) NIL (|has| |#1| (-357)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1816 (($ $ $) NIL (|has| |#1| (-357)))) (-3321 (($ $ $) NIL (|has| |#1| (-357)))) (-1960 (($ $ $) NIL (|has| |#1| (-357)))) (-3875 (($ $ $) NIL (|has| |#1| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-1936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445)))) (-1848 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) NIL)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-2423 (((-757) $) NIL)) (-1717 (($ $ $) NIL (|has| |#1| (-357)))) (-3065 (($ $ $) NIL (|has| |#1| (-357)))) (-3335 (($ $ $) NIL (|has| |#1| (-357)))) (-1946 (($ $ $) NIL (|has| |#1| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3474 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-2046 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3056 (($ $ $) NIL (|has| |#1| (-357)))) (-3872 (((-757) $) NIL)) (-4198 ((|#1| $) NIL (|has| |#1| (-445)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) NIL)) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) NIL)) (-1999 (((-757)) NIL)) (-2549 ((|#1| $ |#1| |#1|) NIL)) (-3977 (($ $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($) NIL)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-639 |#1| |#2|) (-13 (-641 |#1|) (-280 |#2| |#2|)) (-228) (-13 (-633 |#1|) (-10 -8 (-15 -1330 ($ $))))) (T -639)) -NIL -(-13 (-641 |#1|) (-280 |#2| |#2|)) -((-3665 (($ $) 26)) (-3977 (($ $) 24)) (-1780 (($) 12))) -(((-640 |#1| |#2|) (-10 -8 (-15 -3665 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -1780 (|#1|))) (-641 |#2|) (-1031)) (T -640)) -NIL -(-10 -8 (-15 -3665 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -1780 (|#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3665 (($ $) 81 (|has| |#1| (-357)))) (-2030 (($ $ $) 83 (|has| |#1| (-357)))) (-2185 (($ $ (-757)) 82 (|has| |#1| (-357)))) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1816 (($ $ $) 44 (|has| |#1| (-357)))) (-3321 (($ $ $) 45 (|has| |#1| (-357)))) (-1960 (($ $ $) 47 (|has| |#1| (-357)))) (-3875 (($ $ $) 42 (|has| |#1| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 41 (|has| |#1| (-357)))) (-1936 (((-3 $ "failed") $ $) 43 (|has| |#1| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 46 (|has| |#1| (-357)))) (-1399 (((-3 (-553) "failed") $) 74 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 71 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 68)) (-2707 (((-553) $) 73 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 70 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 69)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-1655 (($ $) 54 (|has| |#1| (-445)))) (-1848 (((-111) $) 31)) (-3481 (($ |#1| (-757)) 61)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 56 (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 57 (|has| |#1| (-545)))) (-2423 (((-757) $) 65)) (-1717 (($ $ $) 51 (|has| |#1| (-357)))) (-3065 (($ $ $) 52 (|has| |#1| (-357)))) (-3335 (($ $ $) 40 (|has| |#1| (-357)))) (-1946 (($ $ $) 49 (|has| |#1| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 48 (|has| |#1| (-357)))) (-3474 (((-3 $ "failed") $ $) 50 (|has| |#1| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 53 (|has| |#1| (-357)))) (-3655 ((|#1| $) 64)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-545)))) (-2046 ((|#1| $ |#1|) 86)) (-3056 (($ $ $) 80 (|has| |#1| (-357)))) (-3872 (((-757) $) 66)) (-4198 ((|#1| $) 55 (|has| |#1| (-445)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 72 (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) 67)) (-3987 (((-630 |#1|) $) 60)) (-1624 ((|#1| $ (-757)) 62)) (-1999 (((-757)) 28)) (-2549 ((|#1| $ |#1| |#1|) 59)) (-3977 (($ $) 84)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($) 85)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-641 |#1|) (-137) (-1031)) (T -641)) -((-1780 (*1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)))) (-3977 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)))) (-2030 (*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-2185 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-641 *3)) (-4 *3 (-1031)) (-4 *3 (-357)))) (-3665 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-3056 (*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(-13 (-835 |t#1|) (-280 |t#1| |t#1|) (-10 -8 (-15 -1780 ($)) (-15 -3977 ($ $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -2030 ($ $ $)) (-15 -2185 ($ $ (-757))) (-15 -3665 ($ $)) (-15 -3056 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-603 #0=(-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-280 |#1| |#1|) . T) ((-405 |#1|) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) |has| |#1| (-169)) ((-712) . T) ((-1020 #0#) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-835 |#1|) . T)) -((-3614 (((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|))) 74 (|has| |#1| (-27)))) (-3355 (((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|))) 73 (|has| |#1| (-27))) (((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|)) 17))) -(((-642 |#1| |#2|) (-10 -7 (-15 -3355 ((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3355 ((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|)))) (-15 -3614 ((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|))))) |%noBranch|)) (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553)))) (-1214 |#1|)) (T -642)) -((-3614 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *2 (-630 (-638 (-401 *5)))) (-5 *1 (-642 *4 *5)) (-5 *3 (-638 (-401 *5))))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *2 (-630 (-638 (-401 *5)))) (-5 *1 (-642 *4 *5)) (-5 *3 (-638 (-401 *5))))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-630 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-638 (-401 *6)))) (-5 *1 (-642 *5 *6)) (-5 *3 (-638 (-401 *6)))))) -(-10 -7 (-15 -3355 ((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3355 ((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|)))) (-15 -3614 ((-630 (-638 (-401 |#2|))) (-638 (-401 |#2|))))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3665 (($ $) NIL (|has| |#1| (-357)))) (-2030 (($ $ $) 28 (|has| |#1| (-357)))) (-2185 (($ $ (-757)) 31 (|has| |#1| (-357)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1816 (($ $ $) NIL (|has| |#1| (-357)))) (-3321 (($ $ $) NIL (|has| |#1| (-357)))) (-1960 (($ $ $) NIL (|has| |#1| (-357)))) (-3875 (($ $ $) NIL (|has| |#1| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-1936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445)))) (-1848 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) NIL)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-2423 (((-757) $) NIL)) (-1717 (($ $ $) NIL (|has| |#1| (-357)))) (-3065 (($ $ $) NIL (|has| |#1| (-357)))) (-3335 (($ $ $) NIL (|has| |#1| (-357)))) (-1946 (($ $ $) NIL (|has| |#1| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3474 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-2046 ((|#1| $ |#1|) 24)) (-3056 (($ $ $) 33 (|has| |#1| (-357)))) (-3872 (((-757) $) NIL)) (-4198 ((|#1| $) NIL (|has| |#1| (-445)))) (-3110 (((-845) $) 20) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) NIL)) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) NIL)) (-1999 (((-757)) NIL)) (-2549 ((|#1| $ |#1| |#1|) 23)) (-3977 (($ $) NIL)) (-1988 (($) 21 T CONST)) (-1997 (($) 8 T CONST)) (-1780 (($) NIL)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-643 |#1| |#2|) (-641 |#1|) (-1031) (-1 |#1| |#1|)) (T -643)) -NIL -(-641 |#1|) -((-2030 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2185 ((|#2| |#2| (-757) (-1 |#1| |#1|)) 40)) (-3056 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-644 |#1| |#2|) (-10 -7 (-15 -2030 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2185 (|#2| |#2| (-757) (-1 |#1| |#1|))) (-15 -3056 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-357) (-641 |#1|)) (T -644)) -((-3056 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-644 *4 *2)) (-4 *2 (-641 *4)))) (-2185 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-644 *5 *2)) (-4 *2 (-641 *5)))) (-2030 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-644 *4 *2)) (-4 *2 (-641 *4))))) -(-10 -7 (-15 -2030 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2185 (|#2| |#2| (-757) (-1 |#1| |#1|))) (-15 -3056 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2007 (($ $ $) 9))) -(((-645 |#1|) (-10 -8 (-15 -2007 (|#1| |#1| |#1|))) (-646)) (T -645)) -NIL -(-10 -8 (-15 -2007 (|#1| |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-2965 (($ $) 10)) (-2007 (($ $ $) 8)) (-1617 (((-111) $ $) 6)) (-1996 (($ $ $) 9))) -(((-646) (-137)) (T -646)) -((-2965 (*1 *1 *1) (-4 *1 (-646))) (-1996 (*1 *1 *1 *1) (-4 *1 (-646))) (-2007 (*1 *1 *1 *1) (-4 *1 (-646)))) -(-13 (-101) (-10 -8 (-15 -2965 ($ $)) (-15 -1996 ($ $ $)) (-15 -2007 ($ $ $)))) -(((-101) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 15)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-3963 ((|#1| $) 21)) (-1824 (($ $ $) NIL (|has| |#1| (-777)))) (-1975 (($ $ $) NIL (|has| |#1| (-777)))) (-1735 (((-1137) $) 46)) (-2786 (((-1099) $) NIL)) (-3974 ((|#3| $) 22)) (-3110 (((-845) $) 42)) (-1988 (($) 10 T CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-777)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-777)))) (-1617 (((-111) $ $) 20)) (-1659 (((-111) $ $) NIL (|has| |#1| (-777)))) (-1636 (((-111) $ $) 24 (|has| |#1| (-777)))) (-1723 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1711 (($ $) 17) (($ $ $) NIL)) (-1700 (($ $ $) 27)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-647 |#1| |#2| |#3|) (-13 (-703 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1723 ($ $ |#3|)) (-15 -1723 ($ |#1| |#3|)) (-15 -3963 (|#1| $)) (-15 -3974 (|#3| $)))) (-703 |#2|) (-169) (|SubsetCategory| (-712) |#2|)) (T -647)) -((-1723 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-703 *4)) (-4 *2 (|SubsetCategory| (-712) *4)))) (-1723 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-647 *2 *4 *3)) (-4 *2 (-703 *4)) (-4 *3 (|SubsetCategory| (-712) *4)))) (-3963 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-703 *3)) (-5 *1 (-647 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-712) *3)))) (-3974 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-712) *4)) (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-703 *4))))) -(-13 (-703 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1723 ($ $ |#3|)) (-15 -1723 ($ |#1| |#3|)) (-15 -3963 (|#1| $)) (-15 -3974 (|#3| $)))) -((-3764 (((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|)) 33))) -(((-648 |#1|) (-10 -7 (-15 -3764 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|)))) (-891)) (T -648)) -((-3764 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-1151 *4))) (-5 *3 (-1151 *4)) (-4 *4 (-891)) (-5 *1 (-648 *4))))) -(-10 -7 (-15 -3764 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2694 (((-630 |#1|) $) 82)) (-3245 (($ $ (-757)) 90)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1429 (((-1262 |#1| |#2|) (-1262 |#1| |#2|) $) 48)) (-1399 (((-3 (-657 |#1|) "failed") $) NIL)) (-2707 (((-657 |#1|) $) NIL)) (-3678 (($ $) 89)) (-1984 (((-757) $) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-1718 (($ (-657 |#1|) |#2|) 68)) (-3189 (($ $) 86)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1754 (((-1262 |#1| |#2|) (-1262 |#1| |#2|) $) 47)) (-1890 (((-2 (|:| |k| (-657 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3644 (((-657 |#1|) $) NIL)) (-3655 ((|#2| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2356 (($ $ |#1| $) 30) (($ $ (-630 |#1|) (-630 $)) 32)) (-3872 (((-757) $) 88)) (-3121 (($ $ $) 20) (($ (-657 |#1|) (-657 |#1|)) 77) (($ (-657 |#1|) $) 75) (($ $ (-657 |#1|)) 76)) (-3110 (((-845) $) NIL) (($ |#1|) 74) (((-1253 |#1| |#2|) $) 58) (((-1262 |#1| |#2|) $) 41) (($ (-657 |#1|)) 25)) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-657 |#1|)) NIL)) (-4120 ((|#2| (-1262 |#1| |#2|) $) 43)) (-1988 (($) 23 T CONST)) (-1569 (((-630 (-2 (|:| |k| (-657 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3010 (((-3 $ "failed") (-1253 |#1| |#2|)) 60)) (-4041 (($ (-657 |#1|)) 14)) (-1617 (((-111) $ $) 44)) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) 66) (($ $ $) NIL)) (-1700 (($ $ $) 29)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-657 |#1|)) NIL))) -(((-649 |#1| |#2|) (-13 (-368 |#1| |#2|) (-376 |#2| (-657 |#1|)) (-10 -8 (-15 -3010 ((-3 $ "failed") (-1253 |#1| |#2|))) (-15 -3121 ($ (-657 |#1|) (-657 |#1|))) (-15 -3121 ($ (-657 |#1|) $)) (-15 -3121 ($ $ (-657 |#1|))))) (-833) (-169)) (T -649)) -((-3010 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) (-5 *1 (-649 *3 *4)))) (-3121 (*1 *1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-5 *1 (-649 *3 *4)) (-4 *4 (-169)))) (-3121 (*1 *1 *2 *1) (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-5 *1 (-649 *3 *4)) (-4 *4 (-169)))) (-3121 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-5 *1 (-649 *3 *4)) (-4 *4 (-169))))) -(-13 (-368 |#1| |#2|) (-376 |#2| (-657 |#1|)) (-10 -8 (-15 -3010 ((-3 $ "failed") (-1253 |#1| |#2|))) (-15 -3121 ($ (-657 |#1|) (-657 |#1|))) (-15 -3121 ($ (-657 |#1|) $)) (-15 -3121 ($ $ (-657 |#1|))))) -((-2768 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-1587 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-2955 (($ (-1 (-111) |#2|) $) 28)) (-1467 (($ $) 56)) (-2873 (($ $) 64)) (-3986 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-2654 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1478 (((-553) |#2| $ (-553)) 61) (((-553) |#2| $) NIL) (((-553) (-1 (-111) |#2|) $) 47)) (-3202 (($ (-757) |#2|) 54)) (-1750 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-3160 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-1482 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2480 (($ |#2|) 15)) (-2636 (($ $ $ (-553)) 36) (($ |#2| $ (-553)) 34)) (-3016 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-3231 (($ $ (-1205 (-553))) 44) (($ $ (-553)) 38)) (-2530 (($ $ $ (-553)) 60)) (-1508 (($ $) 58)) (-1636 (((-111) $ $) 66))) -(((-650 |#1| |#2|) (-10 -8 (-15 -2480 (|#1| |#2|)) (-15 -3231 (|#1| |#1| (-553))) (-15 -3231 (|#1| |#1| (-1205 (-553)))) (-15 -3986 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2636 (|#1| |#2| |#1| (-553))) (-15 -2636 (|#1| |#1| |#1| (-553))) (-15 -1750 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2955 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3986 (|#1| |#2| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -1750 (|#1| |#1| |#1|)) (-15 -3160 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2768 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1478 ((-553) (-1 (-111) |#2|) |#1|)) (-15 -1478 ((-553) |#2| |#1|)) (-15 -1478 ((-553) |#2| |#1| (-553))) (-15 -3160 (|#1| |#1| |#1|)) (-15 -2768 ((-111) |#1|)) (-15 -2530 (|#1| |#1| |#1| (-553))) (-15 -1467 (|#1| |#1|)) (-15 -1587 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3016 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3202 (|#1| (-757) |#2|)) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1508 (|#1| |#1|))) (-651 |#2|) (-1192)) (T -650)) -NIL -(-10 -8 (-15 -2480 (|#1| |#2|)) (-15 -3231 (|#1| |#1| (-553))) (-15 -3231 (|#1| |#1| (-1205 (-553)))) (-15 -3986 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2636 (|#1| |#2| |#1| (-553))) (-15 -2636 (|#1| |#1| |#1| (-553))) (-15 -1750 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2955 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3986 (|#1| |#2| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -1750 (|#1| |#1| |#1|)) (-15 -3160 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2768 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1478 ((-553) (-1 (-111) |#2|) |#1|)) (-15 -1478 ((-553) |#2| |#1|)) (-15 -1478 ((-553) |#2| |#1| (-553))) (-15 -3160 (|#1| |#1| |#1|)) (-15 -2768 ((-111) |#1|)) (-15 -2530 (|#1| |#1| |#1| (-553))) (-15 -1467 (|#1| |#1|)) (-15 -1587 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3016 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3202 (|#1| (-757) |#2|)) (-15 -1482 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1508 (|#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-1787 (($ $) 67)) (-1683 (((-1243) $ (-553) (-553)) 97 (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) 52 (|has| $ (-6 -4370)))) (-2768 (((-111) $) 142 (|has| |#1| (-833))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-1587 (($ $) 146 (-12 (|has| |#1| (-833)) (|has| $ (-6 -4370)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4370)))) (-2990 (($ $) 141 (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-2314 (($ $ $) 56 (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) 54 (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) 58 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4370))) (($ $ "rest" $) 55 (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 117 (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) 86 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-2955 (($ (-1 (-111) |#1|) $) 129)) (-3905 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4369)))) (-2123 ((|#1| $) 66)) (-3820 (($) 7 T CONST)) (-1467 (($ $) 144 (|has| $ (-6 -4370)))) (-3239 (($ $) 134)) (-2616 (($ $) 73) (($ $ (-757)) 71)) (-2873 (($ $) 131 (|has| |#1| (-1079)))) (-2638 (($ $) 99 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 130 (|has| |#1| (-1079))) (($ (-1 (-111) |#1|) $) 125)) (-2575 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4369))) (($ |#1| $) 100 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2515 ((|#1| $ (-553) |#1|) 85 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 87)) (-3145 (((-111) $) 83)) (-1478 (((-553) |#1| $ (-553)) 139 (|has| |#1| (-1079))) (((-553) |#1| $) 138 (|has| |#1| (-1079))) (((-553) (-1 (-111) |#1|) $) 137)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-3202 (($ (-757) |#1|) 108)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 95 (|has| (-553) (-833)))) (-1824 (($ $ $) 147 (|has| |#1| (-833)))) (-1750 (($ $ $) 132 (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-3160 (($ $ $) 140 (|has| |#1| (-833))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 94 (|has| (-553) (-833)))) (-1975 (($ $ $) 148 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2480 (($ |#1|) 122)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2594 ((|#1| $) 70) (($ $ (-757)) 68)) (-2636 (($ $ $ (-553)) 127) (($ |#1| $ (-553)) 126)) (-1774 (($ $ $ (-553)) 116) (($ |#1| $ (-553)) 115)) (-1901 (((-630 (-553)) $) 92)) (-3594 (((-111) (-553) $) 91)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 76) (($ $ (-757)) 74)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2858 (($ $ |#1|) 96 (|has| $ (-6 -4370)))) (-1411 (((-111) $) 84)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 90)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1205 (-553))) 112) ((|#1| $ (-553)) 89) ((|#1| $ (-553) |#1|) 88)) (-3558 (((-553) $ $) 44)) (-3231 (($ $ (-1205 (-553))) 124) (($ $ (-553)) 123)) (-2005 (($ $ (-1205 (-553))) 114) (($ $ (-553)) 113)) (-1510 (((-111) $) 46)) (-2383 (($ $) 62)) (-1566 (($ $) 59 (|has| $ (-6 -4370)))) (-2586 (((-757) $) 63)) (-4321 (($ $) 64)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 143 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 98 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 107)) (-2269 (($ $ $) 61) (($ $ |#1|) 60)) (-4325 (($ $ $) 78) (($ |#1| $) 77) (($ (-630 $)) 110) (($ $ |#1|) 109)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 150 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 151 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-1659 (((-111) $ $) 149 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 152 (|has| |#1| (-833)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-651 |#1|) (-137) (-1192)) (T -651)) -((-2480 (*1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1192))))) -(-13 (-1128 |t#1|) (-367 |t#1|) (-276 |t#1|) (-10 -8 (-15 -2480 ($ |t#1|)))) -(((-34) . T) ((-101) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-276 |#1|) . T) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-833) |has| |#1| (-833)) ((-992 |#1|) . T) ((-1079) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-1128 |#1|) . T) ((-1192) . T) ((-1226 |#1|) . T)) -((-1638 (((-630 (-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|))))) (-630 (-630 |#1|)) (-630 (-1238 |#1|))) 22) (((-630 (-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|))))) (-674 |#1|) (-630 (-1238 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-630 (-630 |#1|)) (-1238 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-674 |#1|) (-1238 |#1|)) 14)) (-2409 (((-757) (-674 |#1|) (-1238 |#1|)) 30)) (-1958 (((-3 (-1238 |#1|) "failed") (-674 |#1|) (-1238 |#1|)) 24)) (-2660 (((-111) (-674 |#1|) (-1238 |#1|)) 27))) -(((-652 |#1|) (-10 -7 (-15 -1638 ((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-674 |#1|) (-1238 |#1|))) (-15 -1638 ((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-630 (-630 |#1|)) (-1238 |#1|))) (-15 -1638 ((-630 (-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|))))) (-674 |#1|) (-630 (-1238 |#1|)))) (-15 -1638 ((-630 (-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|))))) (-630 (-630 |#1|)) (-630 (-1238 |#1|)))) (-15 -1958 ((-3 (-1238 |#1|) "failed") (-674 |#1|) (-1238 |#1|))) (-15 -2660 ((-111) (-674 |#1|) (-1238 |#1|))) (-15 -2409 ((-757) (-674 |#1|) (-1238 |#1|)))) (-357)) (T -652)) -((-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)) (-4 *5 (-357)) (-5 *2 (-757)) (-5 *1 (-652 *5)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)) (-4 *5 (-357)) (-5 *2 (-111)) (-5 *1 (-652 *5)))) (-1958 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1238 *4)) (-5 *3 (-674 *4)) (-4 *4 (-357)) (-5 *1 (-652 *4)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-630 *5))) (-4 *5 (-357)) (-5 *2 (-630 (-2 (|:| |particular| (-3 (-1238 *5) "failed")) (|:| -4124 (-630 (-1238 *5)))))) (-5 *1 (-652 *5)) (-5 *4 (-630 (-1238 *5))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *5)) (-4 *5 (-357)) (-5 *2 (-630 (-2 (|:| |particular| (-3 (-1238 *5) "failed")) (|:| -4124 (-630 (-1238 *5)))))) (-5 *1 (-652 *5)) (-5 *4 (-630 (-1238 *5))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-630 *5))) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1238 *5) "failed")) (|:| -4124 (-630 (-1238 *5))))) (-5 *1 (-652 *5)) (-5 *4 (-1238 *5)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1238 *5) "failed")) (|:| -4124 (-630 (-1238 *5))))) (-5 *1 (-652 *5)) (-5 *4 (-1238 *5))))) -(-10 -7 (-15 -1638 ((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-674 |#1|) (-1238 |#1|))) (-15 -1638 ((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-630 (-630 |#1|)) (-1238 |#1|))) (-15 -1638 ((-630 (-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|))))) (-674 |#1|) (-630 (-1238 |#1|)))) (-15 -1638 ((-630 (-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|))))) (-630 (-630 |#1|)) (-630 (-1238 |#1|)))) (-15 -1958 ((-3 (-1238 |#1|) "failed") (-674 |#1|) (-1238 |#1|))) (-15 -2660 ((-111) (-674 |#1|) (-1238 |#1|))) (-15 -2409 ((-757) (-674 |#1|) (-1238 |#1|)))) -((-1638 (((-630 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|)))) |#4| (-630 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|))) |#4| |#3|) 45)) (-2409 (((-757) |#4| |#3|) 17)) (-1958 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2660 (((-111) |#4| |#3|) 13))) -(((-653 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1638 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|))) |#4| |#3|)) (-15 -1638 ((-630 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|)))) |#4| (-630 |#3|))) (-15 -1958 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2660 ((-111) |#4| |#3|)) (-15 -2409 ((-757) |#4| |#3|))) (-357) (-13 (-367 |#1|) (-10 -7 (-6 -4370))) (-13 (-367 |#1|) (-10 -7 (-6 -4370))) (-672 |#1| |#2| |#3|)) (T -653)) -((-2409 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-5 *2 (-757)) (-5 *1 (-653 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4)))) (-2660 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-5 *2 (-111)) (-5 *1 (-653 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4)))) (-1958 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-357)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4370)))) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370)))) (-5 *1 (-653 *4 *5 *2 *3)) (-4 *3 (-672 *4 *5 *2)))) (-1638 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-5 *2 (-630 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4124 (-630 *7))))) (-5 *1 (-653 *5 *6 *7 *3)) (-5 *4 (-630 *7)) (-4 *3 (-672 *5 *6 *7)))) (-1638 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-653 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4))))) -(-10 -7 (-15 -1638 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|))) |#4| |#3|)) (-15 -1638 ((-630 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|)))) |#4| (-630 |#3|))) (-15 -1958 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2660 ((-111) |#4| |#3|)) (-15 -2409 ((-757) |#4| |#3|))) -((-1653 (((-2 (|:| |particular| (-3 (-1238 (-401 |#4|)) "failed")) (|:| -4124 (-630 (-1238 (-401 |#4|))))) (-630 |#4|) (-630 |#3|)) 45))) -(((-654 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1653 ((-2 (|:| |particular| (-3 (-1238 (-401 |#4|)) "failed")) (|:| -4124 (-630 (-1238 (-401 |#4|))))) (-630 |#4|) (-630 |#3|)))) (-545) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -654)) -((-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *7)) (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-5 *2 (-2 (|:| |particular| (-3 (-1238 (-401 *8)) "failed")) (|:| -4124 (-630 (-1238 (-401 *8)))))) (-5 *1 (-654 *5 *6 *7 *8))))) -(-10 -7 (-15 -1653 ((-2 (|:| |particular| (-3 (-1238 (-401 |#4|)) "failed")) (|:| -4124 (-630 (-1238 (-401 |#4|))))) (-630 |#4|) (-630 |#3|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3908 (((-3 $ "failed")) NIL (|has| |#2| (-545)))) (-1576 ((|#2| $) NIL)) (-2986 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3836 (((-1238 (-674 |#2|))) NIL) (((-1238 (-674 |#2|)) (-1238 $)) NIL)) (-2086 (((-111) $) NIL)) (-2110 (((-1238 $)) 37)) (-1511 (((-111) $ (-757)) NIL)) (-3747 (($ |#2|) NIL)) (-3820 (($) NIL T CONST)) (-3639 (($ $) NIL (|has| |#2| (-301)))) (-3894 (((-235 |#1| |#2|) $ (-553)) NIL)) (-3450 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (|has| |#2| (-545)))) (-2836 (((-3 $ "failed")) NIL (|has| |#2| (-545)))) (-3874 (((-674 |#2|)) NIL) (((-674 |#2|) (-1238 $)) NIL)) (-2124 ((|#2| $) NIL)) (-1791 (((-674 |#2|) $) NIL) (((-674 |#2|) $ (-1238 $)) NIL)) (-1766 (((-3 $ "failed") $) NIL (|has| |#2| (-545)))) (-3203 (((-1151 (-934 |#2|))) NIL (|has| |#2| (-357)))) (-1658 (($ $ (-903)) NIL)) (-2764 ((|#2| $) NIL)) (-3261 (((-1151 |#2|) $) NIL (|has| |#2| (-545)))) (-3153 ((|#2|) NIL) ((|#2| (-1238 $)) NIL)) (-3834 (((-1151 |#2|) $) NIL)) (-2992 (((-111)) NIL)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 |#2| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) ((|#2| $) NIL)) (-3461 (($ (-1238 |#2|)) NIL) (($ (-1238 |#2|) (-1238 $)) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2409 (((-757) $) NIL (|has| |#2| (-545))) (((-903)) 38)) (-2441 ((|#2| $ (-553) (-553)) NIL)) (-2758 (((-111)) NIL)) (-3418 (($ $ (-903)) NIL)) (-1408 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL)) (-2016 (((-757) $) NIL (|has| |#2| (-545)))) (-1888 (((-630 (-235 |#1| |#2|)) $) NIL (|has| |#2| (-545)))) (-4253 (((-757) $) NIL)) (-3307 (((-111)) NIL)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3714 ((|#2| $) NIL (|has| |#2| (-6 (-4371 "*"))))) (-3510 (((-553) $) NIL)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-4275 (((-553) $) NIL)) (-3223 (((-553) $) NIL)) (-3394 (($ (-630 (-630 |#2|))) NIL)) (-2503 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2384 (((-630 (-630 |#2|)) $) NIL)) (-4108 (((-111)) NIL)) (-3756 (((-111)) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3462 (((-3 (-2 (|:| |particular| $) (|:| -4124 (-630 $))) "failed")) NIL (|has| |#2| (-545)))) (-2757 (((-3 $ "failed")) NIL (|has| |#2| (-545)))) (-2593 (((-674 |#2|)) NIL) (((-674 |#2|) (-1238 $)) NIL)) (-2146 ((|#2| $) NIL)) (-4128 (((-674 |#2|) $) NIL) (((-674 |#2|) $ (-1238 $)) NIL)) (-3011 (((-3 $ "failed") $) NIL (|has| |#2| (-545)))) (-3574 (((-1151 (-934 |#2|))) NIL (|has| |#2| (-357)))) (-1341 (($ $ (-903)) NIL)) (-1591 ((|#2| $) NIL)) (-2083 (((-1151 |#2|) $) NIL (|has| |#2| (-545)))) (-3236 ((|#2|) NIL) ((|#2| (-1238 $)) NIL)) (-2555 (((-1151 |#2|) $) NIL)) (-1516 (((-111)) NIL)) (-1735 (((-1137) $) NIL)) (-4139 (((-111)) NIL)) (-2122 (((-111)) NIL)) (-1881 (((-111)) NIL)) (-1614 (((-3 $ "failed") $) NIL (|has| |#2| (-357)))) (-2786 (((-1099) $) NIL)) (-4311 (((-111)) NIL)) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-3341 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ (-553) (-553) |#2|) NIL) ((|#2| $ (-553) (-553)) 22) ((|#2| $ (-553)) NIL)) (-1330 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-4193 ((|#2| $) NIL)) (-1325 (($ (-630 |#2|)) NIL)) (-1564 (((-111) $) NIL)) (-2421 (((-235 |#1| |#2|) $) NIL)) (-1938 ((|#2| $) NIL (|has| |#2| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1508 (($ $) NIL)) (-2855 (((-674 |#2|) (-1238 $)) NIL) (((-1238 |#2|) $) NIL) (((-674 |#2|) (-1238 $) (-1238 $)) NIL) (((-1238 |#2|) $ (-1238 $)) 25)) (-1524 (($ (-1238 |#2|)) NIL) (((-1238 |#2|) $) NIL)) (-1836 (((-630 (-934 |#2|))) NIL) (((-630 (-934 |#2|)) (-1238 $)) NIL)) (-1957 (($ $ $) NIL)) (-1339 (((-111)) NIL)) (-1355 (((-235 |#1| |#2|) $ (-553)) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#2| (-1020 (-401 (-553))))) (($ |#2|) NIL) (((-674 |#2|) $) NIL)) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) 36)) (-1417 (((-630 (-1238 |#2|))) NIL (|has| |#2| (-545)))) (-2840 (($ $ $ $) NIL)) (-4215 (((-111)) NIL)) (-2549 (($ (-674 |#2|) $) NIL)) (-3296 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-4172 (((-111) $) NIL)) (-1634 (($ $ $) NIL)) (-2911 (((-111)) NIL)) (-3949 (((-111)) NIL)) (-2488 (((-111)) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#2| (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) NIL) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-655 |#1| |#2|) (-13 (-1102 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-600 (-674 |#2|)) (-411 |#2|)) (-903) (-169)) (T -655)) -NIL -(-13 (-1102 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-600 (-674 |#2|)) (-411 |#2|)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3661 (((-630 (-1114)) $) 10)) (-3110 (((-845) $) 18) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-656) (-13 (-1062) (-10 -8 (-15 -3661 ((-630 (-1114)) $))))) (T -656)) -((-3661 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-656))))) -(-13 (-1062) (-10 -8 (-15 -3661 ((-630 (-1114)) $)))) -((-3096 (((-111) $ $) NIL)) (-2694 (((-630 |#1|) $) NIL)) (-3323 (($ $) 52)) (-1514 (((-111) $) NIL)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1708 (((-3 $ "failed") (-805 |#1|)) 23)) (-2158 (((-111) (-805 |#1|)) 15)) (-3983 (($ (-805 |#1|)) 24)) (-3385 (((-111) $ $) 30)) (-1899 (((-903) $) 37)) (-3313 (($ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3355 (((-630 $) (-805 |#1|)) 17)) (-3110 (((-845) $) 43) (($ |#1|) 34) (((-805 |#1|) $) 39) (((-662 |#1|) $) 44)) (-1275 (((-58 (-630 $)) (-630 |#1|) (-903)) 57)) (-4309 (((-630 $) (-630 |#1|) (-903)) 60)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 53)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 38))) -(((-657 |#1|) (-13 (-833) (-1020 |#1|) (-10 -8 (-15 -1514 ((-111) $)) (-15 -3313 ($ $)) (-15 -3323 ($ $)) (-15 -1899 ((-903) $)) (-15 -3385 ((-111) $ $)) (-15 -3110 ((-805 |#1|) $)) (-15 -3110 ((-662 |#1|) $)) (-15 -3355 ((-630 $) (-805 |#1|))) (-15 -2158 ((-111) (-805 |#1|))) (-15 -3983 ($ (-805 |#1|))) (-15 -1708 ((-3 $ "failed") (-805 |#1|))) (-15 -2694 ((-630 |#1|) $)) (-15 -1275 ((-58 (-630 $)) (-630 |#1|) (-903))) (-15 -4309 ((-630 $) (-630 |#1|) (-903))))) (-833)) (T -657)) -((-1514 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-833)))) (-3323 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-833)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) (-3385 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-805 *3)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-662 *3)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-805 *4)) (-4 *4 (-833)) (-5 *2 (-630 (-657 *4))) (-5 *1 (-657 *4)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-805 *4)) (-4 *4 (-833)) (-5 *2 (-111)) (-5 *1 (-657 *4)))) (-3983 (*1 *1 *2) (-12 (-5 *2 (-805 *3)) (-4 *3 (-833)) (-5 *1 (-657 *3)))) (-1708 (*1 *1 *2) (|partial| -12 (-5 *2 (-805 *3)) (-4 *3 (-833)) (-5 *1 (-657 *3)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) (-1275 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-903)) (-4 *5 (-833)) (-5 *2 (-58 (-630 (-657 *5)))) (-5 *1 (-657 *5)))) (-4309 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-903)) (-4 *5 (-833)) (-5 *2 (-630 (-657 *5))) (-5 *1 (-657 *5))))) -(-13 (-833) (-1020 |#1|) (-10 -8 (-15 -1514 ((-111) $)) (-15 -3313 ($ $)) (-15 -3323 ($ $)) (-15 -1899 ((-903) $)) (-15 -3385 ((-111) $ $)) (-15 -3110 ((-805 |#1|) $)) (-15 -3110 ((-662 |#1|) $)) (-15 -3355 ((-630 $) (-805 |#1|))) (-15 -2158 ((-111) (-805 |#1|))) (-15 -3983 ($ (-805 |#1|))) (-15 -1708 ((-3 $ "failed") (-805 |#1|))) (-15 -2694 ((-630 |#1|) $)) (-15 -1275 ((-58 (-630 $)) (-630 |#1|) (-903))) (-15 -4309 ((-630 $) (-630 |#1|) (-903))))) -((-2821 ((|#2| $) 76)) (-1787 (($ $) 96)) (-1511 (((-111) $ (-757)) 26)) (-2616 (($ $) 85) (($ $ (-757)) 88)) (-3145 (((-111) $) 97)) (-3167 (((-630 $) $) 72)) (-2284 (((-111) $ $) 71)) (-3703 (((-111) $ (-757)) 24)) (-2800 (((-553) $) 46)) (-2958 (((-553) $) 45)) (-3786 (((-111) $ (-757)) 22)) (-3862 (((-111) $) 74)) (-2594 ((|#2| $) 89) (($ $ (-757)) 92)) (-1774 (($ $ $ (-553)) 62) (($ |#2| $ (-553)) 61)) (-1901 (((-630 (-553)) $) 44)) (-3594 (((-111) (-553) $) 42)) (-2603 ((|#2| $) NIL) (($ $ (-757)) 84)) (-3089 (($ $ (-553)) 100)) (-1411 (((-111) $) 99)) (-3341 (((-111) (-1 (-111) |#2|) $) 32)) (-1912 (((-630 |#2|) $) 33)) (-2046 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1205 (-553))) 58) ((|#2| $ (-553)) 40) ((|#2| $ (-553) |#2|) 41)) (-3558 (((-553) $ $) 70)) (-2005 (($ $ (-1205 (-553))) 57) (($ $ (-553)) 51)) (-1510 (((-111) $) 66)) (-2383 (($ $) 81)) (-2586 (((-757) $) 80)) (-4321 (($ $) 79)) (-3121 (($ (-630 |#2|)) 37)) (-2980 (($ $) 101)) (-2860 (((-630 $) $) 69)) (-3743 (((-111) $ $) 68)) (-3296 (((-111) (-1 (-111) |#2|) $) 31)) (-1617 (((-111) $ $) 18)) (-2563 (((-757) $) 29))) -(((-658 |#1| |#2|) (-10 -8 (-15 -2980 (|#1| |#1|)) (-15 -3089 (|#1| |#1| (-553))) (-15 -3145 ((-111) |#1|)) (-15 -1411 ((-111) |#1|)) (-15 -2046 (|#2| |#1| (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553))) (-15 -1912 ((-630 |#2|) |#1|)) (-15 -3594 ((-111) (-553) |#1|)) (-15 -1901 ((-630 (-553)) |#1|)) (-15 -2958 ((-553) |#1|)) (-15 -2800 ((-553) |#1|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -2005 (|#1| |#1| (-553))) (-15 -2005 (|#1| |#1| (-1205 (-553)))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -2383 (|#1| |#1|)) (-15 -2586 ((-757) |#1|)) (-15 -4321 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2594 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "last")) (-15 -2594 (|#2| |#1|)) (-15 -2616 (|#1| |#1| (-757))) (-15 -2046 (|#1| |#1| "rest")) (-15 -2616 (|#1| |#1|)) (-15 -2603 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "first")) (-15 -2603 (|#2| |#1|)) (-15 -2284 ((-111) |#1| |#1|)) (-15 -3743 ((-111) |#1| |#1|)) (-15 -3558 ((-553) |#1| |#1|)) (-15 -1510 ((-111) |#1|)) (-15 -2046 (|#2| |#1| "value")) (-15 -2821 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -3167 ((-630 |#1|) |#1|)) (-15 -2860 ((-630 |#1|) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757)))) (-659 |#2|) (-1192)) (T -658)) -NIL -(-10 -8 (-15 -2980 (|#1| |#1|)) (-15 -3089 (|#1| |#1| (-553))) (-15 -3145 ((-111) |#1|)) (-15 -1411 ((-111) |#1|)) (-15 -2046 (|#2| |#1| (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553))) (-15 -1912 ((-630 |#2|) |#1|)) (-15 -3594 ((-111) (-553) |#1|)) (-15 -1901 ((-630 (-553)) |#1|)) (-15 -2958 ((-553) |#1|)) (-15 -2800 ((-553) |#1|)) (-15 -3121 (|#1| (-630 |#2|))) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -2005 (|#1| |#1| (-553))) (-15 -2005 (|#1| |#1| (-1205 (-553)))) (-15 -1774 (|#1| |#2| |#1| (-553))) (-15 -1774 (|#1| |#1| |#1| (-553))) (-15 -2383 (|#1| |#1|)) (-15 -2586 ((-757) |#1|)) (-15 -4321 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2594 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "last")) (-15 -2594 (|#2| |#1|)) (-15 -2616 (|#1| |#1| (-757))) (-15 -2046 (|#1| |#1| "rest")) (-15 -2616 (|#1| |#1|)) (-15 -2603 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "first")) (-15 -2603 (|#2| |#1|)) (-15 -2284 ((-111) |#1| |#1|)) (-15 -3743 ((-111) |#1| |#1|)) (-15 -3558 ((-553) |#1| |#1|)) (-15 -1510 ((-111) |#1|)) (-15 -2046 (|#2| |#1| "value")) (-15 -2821 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -3167 ((-630 |#1|) |#1|)) (-15 -2860 ((-630 |#1|) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -3341 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-1787 (($ $) 67)) (-1683 (((-1243) $ (-553) (-553)) 97 (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) 52 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-2314 (($ $ $) 56 (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) 54 (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) 58 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4370))) (($ $ "rest" $) 55 (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 117 (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) 86 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 102)) (-2123 ((|#1| $) 66)) (-3820 (($) 7 T CONST)) (-4242 (($ $) 124)) (-2616 (($ $) 73) (($ $ (-757)) 71)) (-2638 (($ $) 99 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 100 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 103)) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2515 ((|#1| $ (-553) |#1|) 85 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 87)) (-3145 (((-111) $) 83)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-2256 (((-757) $) 123)) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-3202 (($ (-757) |#1|) 108)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 95 (|has| (-553) (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 94 (|has| (-553) (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-3822 (($ $) 126)) (-2151 (((-111) $) 127)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2594 ((|#1| $) 70) (($ $ (-757)) 68)) (-1774 (($ $ $ (-553)) 116) (($ |#1| $ (-553)) 115)) (-1901 (((-630 (-553)) $) 92)) (-3594 (((-111) (-553) $) 91)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2361 ((|#1| $) 125)) (-2603 ((|#1| $) 76) (($ $ (-757)) 74)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2858 (($ $ |#1|) 96 (|has| $ (-6 -4370)))) (-3089 (($ $ (-553)) 122)) (-1411 (((-111) $) 84)) (-4038 (((-111) $) 128)) (-3036 (((-111) $) 129)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 90)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1205 (-553))) 112) ((|#1| $ (-553)) 89) ((|#1| $ (-553) |#1|) 88)) (-3558 (((-553) $ $) 44)) (-2005 (($ $ (-1205 (-553))) 114) (($ $ (-553)) 113)) (-1510 (((-111) $) 46)) (-2383 (($ $) 62)) (-1566 (($ $) 59 (|has| $ (-6 -4370)))) (-2586 (((-757) $) 63)) (-4321 (($ $) 64)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 98 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 107)) (-2269 (($ $ $) 61 (|has| $ (-6 -4370))) (($ $ |#1|) 60 (|has| $ (-6 -4370)))) (-4325 (($ $ $) 78) (($ |#1| $) 77) (($ (-630 $)) 110) (($ $ |#1|) 109)) (-2980 (($ $) 121)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-659 |#1|) (-137) (-1192)) (T -659)) -((-2575 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-659 *3)) (-4 *3 (-1192)))) (-3905 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-659 *3)) (-4 *3 (-1192)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) (-3822 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-757)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-659 *3)) (-4 *3 (-1192)))) (-2980 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192))))) -(-13 (-1128 |t#1|) (-10 -8 (-15 -2575 ($ (-1 (-111) |t#1|) $)) (-15 -3905 ($ (-1 (-111) |t#1|) $)) (-15 -3036 ((-111) $)) (-15 -4038 ((-111) $)) (-15 -2151 ((-111) $)) (-15 -3822 ($ $)) (-15 -2361 (|t#1| $)) (-15 -4242 ($ $)) (-15 -2256 ((-757) $)) (-15 -3089 ($ $ (-553))) (-15 -2980 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-992 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1128 |#1|) . T) ((-1192) . T) ((-1226 |#1|) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1364 (($ (-757) (-757) (-757)) 33 (|has| |#1| (-1031)))) (-1511 (((-111) $ (-757)) NIL)) (-4074 ((|#1| $ (-757) (-757) (-757) |#1|) 27)) (-3820 (($) NIL T CONST)) (-2832 (($ $ $) 37 (|has| |#1| (-1031)))) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2892 (((-1238 (-757)) $) 9)) (-3354 (($ (-1155) $ $) 22)) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1972 (($ (-757)) 35 (|has| |#1| (-1031)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-757) (-757) (-757)) 25)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3121 (($ (-630 (-630 (-630 |#1|)))) 44)) (-3110 (($ (-940 (-940 (-940 |#1|)))) 15) (((-940 (-940 (-940 |#1|))) $) 12) (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-660 |#1|) (-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1031)) (PROGN (-15 -1364 ($ (-757) (-757) (-757))) (-15 -1972 ($ (-757))) (-15 -2832 ($ $ $))) |%noBranch|) (-15 -3121 ($ (-630 (-630 (-630 |#1|))))) (-15 -2046 (|#1| $ (-757) (-757) (-757))) (-15 -4074 (|#1| $ (-757) (-757) (-757) |#1|)) (-15 -3110 ($ (-940 (-940 (-940 |#1|))))) (-15 -3110 ((-940 (-940 (-940 |#1|))) $)) (-15 -3354 ($ (-1155) $ $)) (-15 -2892 ((-1238 (-757)) $)))) (-1079)) (T -660)) -((-1364 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-757)) (-5 *1 (-660 *3)) (-4 *3 (-1031)) (-4 *3 (-1079)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-660 *3)) (-4 *3 (-1031)) (-4 *3 (-1079)))) (-2832 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1031)) (-4 *2 (-1079)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-630 *3)))) (-4 *3 (-1079)) (-5 *1 (-660 *3)))) (-2046 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-757)) (-5 *1 (-660 *2)) (-4 *2 (-1079)))) (-4074 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-660 *2)) (-4 *2 (-1079)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-940 (-940 (-940 *3)))) (-4 *3 (-1079)) (-5 *1 (-660 *3)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-940 (-940 (-940 *3)))) (-5 *1 (-660 *3)) (-4 *3 (-1079)))) (-3354 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-660 *3)) (-4 *3 (-1079)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-1238 (-757))) (-5 *1 (-660 *3)) (-4 *3 (-1079))))) -(-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1031)) (PROGN (-15 -1364 ($ (-757) (-757) (-757))) (-15 -1972 ($ (-757))) (-15 -2832 ($ $ $))) |%noBranch|) (-15 -3121 ($ (-630 (-630 (-630 |#1|))))) (-15 -2046 (|#1| $ (-757) (-757) (-757))) (-15 -4074 (|#1| $ (-757) (-757) (-757) |#1|)) (-15 -3110 ($ (-940 (-940 (-940 |#1|))))) (-15 -3110 ((-940 (-940 (-940 |#1|))) $)) (-15 -3354 ($ (-1155) $ $)) (-15 -2892 ((-1238 (-757)) $)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2117 (((-476) $) 10)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 21) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-1114) $) 12)) (-1617 (((-111) $ $) NIL))) -(((-661) (-13 (-1062) (-10 -8 (-15 -2117 ((-476) $)) (-15 -4310 ((-1114) $))))) (T -661)) -((-2117 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-661)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-661))))) -(-13 (-1062) (-10 -8 (-15 -2117 ((-476) $)) (-15 -4310 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-2694 (((-630 |#1|) $) 14)) (-3323 (($ $) 18)) (-1514 (((-111) $) 19)) (-1399 (((-3 |#1| "failed") $) 22)) (-2707 ((|#1| $) 20)) (-2616 (($ $) 36)) (-3189 (($ $) 24)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-3385 (((-111) $ $) 42)) (-1899 (((-903) $) 38)) (-3313 (($ $) 17)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 ((|#1| $) 35)) (-3110 (((-845) $) 31) (($ |#1|) 23) (((-805 |#1|) $) 27)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 12)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 40)) (* (($ $ $) 34))) -(((-662 |#1|) (-13 (-833) (-1020 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3110 ((-805 |#1|) $)) (-15 -2603 (|#1| $)) (-15 -3313 ($ $)) (-15 -1899 ((-903) $)) (-15 -3385 ((-111) $ $)) (-15 -3189 ($ $)) (-15 -2616 ($ $)) (-15 -1514 ((-111) $)) (-15 -3323 ($ $)) (-15 -2694 ((-630 |#1|) $)))) (-833)) (T -662)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-805 *3)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) (-2603 (*1 *2 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) (-3385 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) (-3189 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) (-3323 (*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-662 *3)) (-4 *3 (-833))))) -(-13 (-833) (-1020 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3110 ((-805 |#1|) $)) (-15 -2603 (|#1| $)) (-15 -3313 ($ $)) (-15 -1899 ((-903) $)) (-15 -3385 ((-111) $ $)) (-15 -3189 ($ $)) (-15 -2616 ($ $)) (-15 -1514 ((-111) $)) (-15 -3323 ($ $)) (-15 -2694 ((-630 |#1|) $)))) -((-2655 ((|#1| (-1 |#1| (-757) |#1|) (-757) |#1|) 11)) (-2669 ((|#1| (-1 |#1| |#1|) (-757) |#1|) 9))) -(((-663 |#1|) (-10 -7 (-15 -2669 (|#1| (-1 |#1| |#1|) (-757) |#1|)) (-15 -2655 (|#1| (-1 |#1| (-757) |#1|) (-757) |#1|))) (-1079)) (T -663)) -((-2655 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-757) *2)) (-5 *4 (-757)) (-4 *2 (-1079)) (-5 *1 (-663 *2)))) (-2669 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-757)) (-4 *2 (-1079)) (-5 *1 (-663 *2))))) -(-10 -7 (-15 -2669 (|#1| (-1 |#1| |#1|) (-757) |#1|)) (-15 -2655 (|#1| (-1 |#1| (-757) |#1|) (-757) |#1|))) -((-1758 ((|#2| |#1| |#2|) 9)) (-1747 ((|#1| |#1| |#2|) 8))) -(((-664 |#1| |#2|) (-10 -7 (-15 -1747 (|#1| |#1| |#2|)) (-15 -1758 (|#2| |#1| |#2|))) (-1079) (-1079)) (T -664)) -((-1758 (*1 *2 *3 *2) (-12 (-5 *1 (-664 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079)))) (-1747 (*1 *2 *2 *3) (-12 (-5 *1 (-664 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(-10 -7 (-15 -1747 (|#1| |#1| |#2|)) (-15 -1758 (|#2| |#1| |#2|))) -((-3074 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -3074 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1079) (-1079) (-1079)) (T -665)) -((-3074 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)) (-5 *1 (-665 *5 *6 *2))))) -(-10 -7 (-15 -3074 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3096 (((-111) $ $) NIL)) (-1378 (((-1191) $) 20)) (-2455 (((-630 (-1191)) $) 18)) (-3104 (($ (-630 (-1191)) (-1191)) 13)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 29) (($ (-1160)) NIL) (((-1160) $) NIL) (((-1191) $) 21) (($ (-1097)) 10)) (-1617 (((-111) $ $) NIL))) -(((-666) (-13 (-1062) (-600 (-1191)) (-10 -8 (-15 -3110 ($ (-1097))) (-15 -3104 ($ (-630 (-1191)) (-1191))) (-15 -2455 ((-630 (-1191)) $)) (-15 -1378 ((-1191) $))))) (T -666)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-666)))) (-3104 (*1 *1 *2 *3) (-12 (-5 *2 (-630 (-1191))) (-5 *3 (-1191)) (-5 *1 (-666)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-666)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-666))))) -(-13 (-1062) (-600 (-1191)) (-10 -8 (-15 -3110 ($ (-1097))) (-15 -3104 ($ (-630 (-1191)) (-1191))) (-15 -2455 ((-630 (-1191)) $)) (-15 -1378 ((-1191) $)))) -((-2655 (((-1 |#1| (-757) |#1|) (-1 |#1| (-757) |#1|)) 23)) (-2417 (((-1 |#1|) |#1|) 8)) (-3168 ((|#1| |#1|) 16)) (-3068 (((-630 |#1|) (-1 (-630 |#1|) (-630 |#1|)) (-553)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3110 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-757)) 20))) -(((-667 |#1|) (-10 -7 (-15 -2417 ((-1 |#1|) |#1|)) (-15 -3110 ((-1 |#1|) |#1|)) (-15 -3068 (|#1| (-1 |#1| |#1|))) (-15 -3068 ((-630 |#1|) (-1 (-630 |#1|) (-630 |#1|)) (-553))) (-15 -3168 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-757))) (-15 -2655 ((-1 |#1| (-757) |#1|) (-1 |#1| (-757) |#1|)))) (-1079)) (T -667)) -((-2655 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-757) *3)) (-4 *3 (-1079)) (-5 *1 (-667 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-757)) (-4 *4 (-1079)) (-5 *1 (-667 *4)))) (-3168 (*1 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1079)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-630 *5) (-630 *5))) (-5 *4 (-553)) (-5 *2 (-630 *5)) (-5 *1 (-667 *5)) (-4 *5 (-1079)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-667 *2)) (-4 *2 (-1079)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1079)))) (-2417 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1079))))) -(-10 -7 (-15 -2417 ((-1 |#1|) |#1|)) (-15 -3110 ((-1 |#1|) |#1|)) (-15 -3068 (|#1| (-1 |#1| |#1|))) (-15 -3068 ((-630 |#1|) (-1 (-630 |#1|) (-630 |#1|)) (-553))) (-15 -3168 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-757))) (-15 -2655 ((-1 |#1| (-757) |#1|) (-1 |#1| (-757) |#1|)))) -((-2762 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2714 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3879 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3124 (((-1 |#2| |#1|) |#2|) 11))) -(((-668 |#1| |#2|) (-10 -7 (-15 -3124 ((-1 |#2| |#1|) |#2|)) (-15 -2714 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3879 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2762 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1079) (-1079)) (T -668)) -((-2762 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-5 *2 (-1 *5 *4)) (-5 *1 (-668 *4 *5)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1079)) (-5 *2 (-1 *5 *4)) (-5 *1 (-668 *4 *5)) (-4 *4 (-1079)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-5 *2 (-1 *5)) (-5 *1 (-668 *4 *5)))) (-3124 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-668 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-1079))))) -(-10 -7 (-15 -3124 ((-1 |#2| |#1|) |#2|)) (-15 -2714 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3879 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2762 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2813 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3675 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4273 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3992 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1472 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-669 |#1| |#2| |#3|) (-10 -7 (-15 -3675 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4273 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3992 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1472 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2813 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1079) (-1079) (-1079)) (T -669)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-1 *7 *5)) (-5 *1 (-669 *5 *6 *7)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-669 *4 *5 *6)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-669 *4 *5 *6)) (-4 *4 (-1079)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-669 *4 *5 *6)) (-4 *5 (-1079)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-669 *4 *5 *6)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1079)) (-4 *4 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-669 *5 *4 *6))))) -(-10 -7 (-15 -3675 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4273 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3992 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1472 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2813 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2654 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1482 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-670 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1482 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1482 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2654 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1031) (-367 |#1|) (-367 |#1|) (-672 |#1| |#2| |#3|) (-1031) (-367 |#5|) (-367 |#5|) (-672 |#5| |#6| |#7|)) (T -670)) -((-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1031)) (-4 *2 (-1031)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) (-5 *1 (-670 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-672 *5 *6 *7)) (-4 *10 (-672 *2 *8 *9)))) (-1482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1031)) (-4 *8 (-1031)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-672 *8 *9 *10)) (-5 *1 (-670 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-672 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1031)) (-4 *8 (-1031)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-672 *8 *9 *10)) (-5 *1 (-670 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-672 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))) -(-10 -7 (-15 -1482 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1482 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2654 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2247 (($ (-757) (-757)) 33)) (-1954 (($ $ $) 56)) (-1605 (($ |#3|) 52) (($ $) 53)) (-2986 (((-111) $) 28)) (-2199 (($ $ (-553) (-553)) 58)) (-4239 (($ $ (-553) (-553)) 59)) (-1418 (($ $ (-553) (-553) (-553) (-553)) 63)) (-1756 (($ $) 54)) (-2086 (((-111) $) 14)) (-2017 (($ $ (-553) (-553) $) 64)) (-1490 ((|#2| $ (-553) (-553) |#2|) NIL) (($ $ (-630 (-553)) (-630 (-553)) $) 62)) (-3747 (($ (-757) |#2|) 39)) (-3394 (($ (-630 (-630 |#2|))) 37)) (-2384 (((-630 (-630 |#2|)) $) 57)) (-1798 (($ $ $) 55)) (-3929 (((-3 $ "failed") $ |#2|) 91)) (-2046 ((|#2| $ (-553) (-553)) NIL) ((|#2| $ (-553) (-553) |#2|) NIL) (($ $ (-630 (-553)) (-630 (-553))) 61)) (-1325 (($ (-630 |#2|)) 40) (($ (-630 $)) 42)) (-1564 (((-111) $) 24)) (-3110 (($ |#4|) 47) (((-845) $) NIL)) (-4172 (((-111) $) 30)) (-1723 (($ $ |#2|) 93)) (-1711 (($ $ $) 68) (($ $) 71)) (-1700 (($ $ $) 66)) (** (($ $ (-757)) 80) (($ $ (-553)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-553) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-671 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3110 ((-845) |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 -1723 (|#1| |#1| |#2|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-757))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -2017 (|#1| |#1| (-553) (-553) |#1|)) (-15 -1418 (|#1| |#1| (-553) (-553) (-553) (-553))) (-15 -4239 (|#1| |#1| (-553) (-553))) (-15 -2199 (|#1| |#1| (-553) (-553))) (-15 -1490 (|#1| |#1| (-630 (-553)) (-630 (-553)) |#1|)) (-15 -2046 (|#1| |#1| (-630 (-553)) (-630 (-553)))) (-15 -2384 ((-630 (-630 |#2|)) |#1|)) (-15 -1954 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -1605 (|#1| |#3|)) (-15 -3110 (|#1| |#4|)) (-15 -1325 (|#1| (-630 |#1|))) (-15 -1325 (|#1| (-630 |#2|))) (-15 -3747 (|#1| (-757) |#2|)) (-15 -3394 (|#1| (-630 (-630 |#2|)))) (-15 -2247 (|#1| (-757) (-757))) (-15 -4172 ((-111) |#1|)) (-15 -2986 ((-111) |#1|)) (-15 -1564 ((-111) |#1|)) (-15 -2086 ((-111) |#1|)) (-15 -1490 (|#2| |#1| (-553) (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) (-553)))) (-672 |#2| |#3| |#4|) (-1031) (-367 |#2|) (-367 |#2|)) (T -671)) -NIL -(-10 -8 (-15 -3110 ((-845) |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 -1723 (|#1| |#1| |#2|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-757))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -2017 (|#1| |#1| (-553) (-553) |#1|)) (-15 -1418 (|#1| |#1| (-553) (-553) (-553) (-553))) (-15 -4239 (|#1| |#1| (-553) (-553))) (-15 -2199 (|#1| |#1| (-553) (-553))) (-15 -1490 (|#1| |#1| (-630 (-553)) (-630 (-553)) |#1|)) (-15 -2046 (|#1| |#1| (-630 (-553)) (-630 (-553)))) (-15 -2384 ((-630 (-630 |#2|)) |#1|)) (-15 -1954 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -1605 (|#1| |#3|)) (-15 -3110 (|#1| |#4|)) (-15 -1325 (|#1| (-630 |#1|))) (-15 -1325 (|#1| (-630 |#2|))) (-15 -3747 (|#1| (-757) |#2|)) (-15 -3394 (|#1| (-630 (-630 |#2|)))) (-15 -2247 (|#1| (-757) (-757))) (-15 -4172 ((-111) |#1|)) (-15 -2986 ((-111) |#1|)) (-15 -1564 ((-111) |#1|)) (-15 -2086 ((-111) |#1|)) (-15 -1490 (|#2| |#1| (-553) (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) (-553)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2247 (($ (-757) (-757)) 97)) (-1954 (($ $ $) 87)) (-1605 (($ |#2|) 91) (($ $) 90)) (-2986 (((-111) $) 99)) (-2199 (($ $ (-553) (-553)) 83)) (-4239 (($ $ (-553) (-553)) 82)) (-1418 (($ $ (-553) (-553) (-553) (-553)) 81)) (-1756 (($ $) 89)) (-2086 (((-111) $) 101)) (-1511 (((-111) $ (-757)) 8)) (-2017 (($ $ (-553) (-553) $) 80)) (-1490 ((|#1| $ (-553) (-553) |#1|) 44) (($ $ (-630 (-553)) (-630 (-553)) $) 84)) (-3924 (($ $ (-553) |#2|) 42)) (-2359 (($ $ (-553) |#3|) 41)) (-3747 (($ (-757) |#1|) 95)) (-3820 (($) 7 T CONST)) (-3639 (($ $) 67 (|has| |#1| (-301)))) (-3894 ((|#2| $ (-553)) 46)) (-2409 (((-757) $) 66 (|has| |#1| (-545)))) (-2515 ((|#1| $ (-553) (-553) |#1|) 43)) (-2441 ((|#1| $ (-553) (-553)) 48)) (-1408 (((-630 |#1|) $) 30)) (-2016 (((-757) $) 65 (|has| |#1| (-545)))) (-1888 (((-630 |#3|) $) 64 (|has| |#1| (-545)))) (-4253 (((-757) $) 51)) (-3202 (($ (-757) (-757) |#1|) 57)) (-4265 (((-757) $) 50)) (-3703 (((-111) $ (-757)) 9)) (-3714 ((|#1| $) 62 (|has| |#1| (-6 (-4371 "*"))))) (-3510 (((-553) $) 55)) (-4116 (((-553) $) 53)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-4275 (((-553) $) 54)) (-3223 (((-553) $) 52)) (-3394 (($ (-630 (-630 |#1|))) 96)) (-2503 (($ (-1 |#1| |#1|) $) 34)) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2384 (((-630 (-630 |#1|)) $) 86)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1614 (((-3 $ "failed") $) 61 (|has| |#1| (-357)))) (-1798 (($ $ $) 88)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) 56)) (-3929 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-545)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) (-553)) 49) ((|#1| $ (-553) (-553) |#1|) 47) (($ $ (-630 (-553)) (-630 (-553))) 85)) (-1325 (($ (-630 |#1|)) 94) (($ (-630 $)) 93)) (-1564 (((-111) $) 100)) (-1938 ((|#1| $) 63 (|has| |#1| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1355 ((|#3| $ (-553)) 45)) (-3110 (($ |#3|) 92) (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-4172 (((-111) $) 98)) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-1723 (($ $ |#1|) 68 (|has| |#1| (-357)))) (-1711 (($ $ $) 78) (($ $) 77)) (-1700 (($ $ $) 79)) (** (($ $ (-757)) 70) (($ $ (-553)) 60 (|has| |#1| (-357)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-553) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-672 |#1| |#2| |#3|) (-137) (-1031) (-367 |t#1|) (-367 |t#1|)) (T -672)) -((-2086 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2247 (*1 *1 *2 *2) (-12 (-5 *2 (-757)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3747 (*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3110 (*1 *1 *2) (-12 (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *2)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (-1605 (*1 *1 *2) (-12 (-4 *3 (-1031)) (-4 *1 (-672 *3 *2 *4)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (-1605 (*1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1756 (*1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1954 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-630 (-630 *3))))) (-2046 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-630 (-553))) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1490 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-630 (-553))) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2199 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4239 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1418 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2017 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-1711 (*1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-672 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-672 *3 *2 *4)) (-4 *3 (-1031)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3929 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-545)))) (-1723 (*1 *1 *1 *2) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (-3639 (*1 *1 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-301)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-757)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-757)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-630 *5)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031)))) (-1614 (*1 *1 *1) (|partial| -12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4370) (-6 -4369) (-15 -2086 ((-111) $)) (-15 -1564 ((-111) $)) (-15 -2986 ((-111) $)) (-15 -4172 ((-111) $)) (-15 -2247 ($ (-757) (-757))) (-15 -3394 ($ (-630 (-630 |t#1|)))) (-15 -3747 ($ (-757) |t#1|)) (-15 -1325 ($ (-630 |t#1|))) (-15 -1325 ($ (-630 $))) (-15 -3110 ($ |t#3|)) (-15 -1605 ($ |t#2|)) (-15 -1605 ($ $)) (-15 -1756 ($ $)) (-15 -1798 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -2384 ((-630 (-630 |t#1|)) $)) (-15 -2046 ($ $ (-630 (-553)) (-630 (-553)))) (-15 -1490 ($ $ (-630 (-553)) (-630 (-553)) $)) (-15 -2199 ($ $ (-553) (-553))) (-15 -4239 ($ $ (-553) (-553))) (-15 -1418 ($ $ (-553) (-553) (-553) (-553))) (-15 -2017 ($ $ (-553) (-553) $)) (-15 -1700 ($ $ $)) (-15 -1711 ($ $ $)) (-15 -1711 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-553) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-757))) (IF (|has| |t#1| (-545)) (-15 -3929 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -1723 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-301)) (-15 -3639 ($ $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2409 ((-757) $)) (-15 -2016 ((-757) $)) (-15 -1888 ((-630 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4371 "*"))) (PROGN (-15 -1938 (|t#1| $)) (-15 -3714 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -1614 ((-3 $ "failed") $)) (-15 ** ($ $ (-553)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-56 |#1| |#2| |#3|) . T) ((-1192) . T)) -((-3639 ((|#4| |#4|) 72 (|has| |#1| (-301)))) (-2409 (((-757) |#4|) 99 (|has| |#1| (-545)))) (-2016 (((-757) |#4|) 76 (|has| |#1| (-545)))) (-1888 (((-630 |#3|) |#4|) 83 (|has| |#1| (-545)))) (-2364 (((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|) 111 (|has| |#1| (-301)))) (-3714 ((|#1| |#4|) 35)) (-1872 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-545)))) (-1614 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-357)))) (-4285 ((|#4| |#4|) 68 (|has| |#1| (-545)))) (-1386 ((|#4| |#4| |#1| (-553) (-553)) 43)) (-3347 ((|#4| |#4| (-553) (-553)) 38)) (-3086 ((|#4| |#4| |#1| (-553) (-553)) 48)) (-1938 ((|#1| |#4|) 78)) (-3977 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-545))))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1938 (|#1| |#4|)) (-15 -3714 (|#1| |#4|)) (-15 -3347 (|#4| |#4| (-553) (-553))) (-15 -1386 (|#4| |#4| |#1| (-553) (-553))) (-15 -3086 (|#4| |#4| |#1| (-553) (-553))) (IF (|has| |#1| (-545)) (PROGN (-15 -2409 ((-757) |#4|)) (-15 -2016 ((-757) |#4|)) (-15 -1888 ((-630 |#3|) |#4|)) (-15 -4285 (|#4| |#4|)) (-15 -1872 ((-3 |#4| "failed") |#4|)) (-15 -3977 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -3639 (|#4| |#4|)) (-15 -2364 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1614 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-367 |#1|) (-367 |#1|) (-672 |#1| |#2| |#3|)) (T -673)) -((-1614 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-2364 (*1 *2 *3 *3) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-673 *3 *4 *5 *6)) (-4 *6 (-672 *3 *4 *5)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-1872 (*1 *2 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-1888 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-630 *6)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-757)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-757)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-3086 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-553)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-673 *3 *5 *6 *2)) (-4 *2 (-672 *3 *5 *6)))) (-1386 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-553)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-673 *3 *5 *6 *2)) (-4 *2 (-672 *3 *5 *6)))) (-3347 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-553)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *1 (-673 *4 *5 *6 *2)) (-4 *2 (-672 *4 *5 *6)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-673 *2 *4 *5 *3)) (-4 *3 (-672 *2 *4 *5)))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-673 *2 *4 *5 *3)) (-4 *3 (-672 *2 *4 *5))))) -(-10 -7 (-15 -1938 (|#1| |#4|)) (-15 -3714 (|#1| |#4|)) (-15 -3347 (|#4| |#4| (-553) (-553))) (-15 -1386 (|#4| |#4| |#1| (-553) (-553))) (-15 -3086 (|#4| |#4| |#1| (-553) (-553))) (IF (|has| |#1| (-545)) (PROGN (-15 -2409 ((-757) |#4|)) (-15 -2016 ((-757) |#4|)) (-15 -1888 ((-630 |#3|) |#4|)) (-15 -4285 (|#4| |#4|)) (-15 -1872 ((-3 |#4| "failed") |#4|)) (-15 -3977 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -3639 (|#4| |#4|)) (-15 -2364 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1614 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2247 (($ (-757) (-757)) 47)) (-1954 (($ $ $) NIL)) (-1605 (($ (-1238 |#1|)) NIL) (($ $) NIL)) (-2986 (((-111) $) NIL)) (-2199 (($ $ (-553) (-553)) 12)) (-4239 (($ $ (-553) (-553)) NIL)) (-1418 (($ $ (-553) (-553) (-553) (-553)) NIL)) (-1756 (($ $) NIL)) (-2086 (((-111) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-2017 (($ $ (-553) (-553) $) NIL)) (-1490 ((|#1| $ (-553) (-553) |#1|) NIL) (($ $ (-630 (-553)) (-630 (-553)) $) NIL)) (-3924 (($ $ (-553) (-1238 |#1|)) NIL)) (-2359 (($ $ (-553) (-1238 |#1|)) NIL)) (-3747 (($ (-757) |#1|) 22)) (-3820 (($) NIL T CONST)) (-3639 (($ $) 31 (|has| |#1| (-301)))) (-3894 (((-1238 |#1|) $ (-553)) NIL)) (-2409 (((-757) $) 33 (|has| |#1| (-545)))) (-2515 ((|#1| $ (-553) (-553) |#1|) 51)) (-2441 ((|#1| $ (-553) (-553)) NIL)) (-1408 (((-630 |#1|) $) NIL)) (-2016 (((-757) $) 35 (|has| |#1| (-545)))) (-1888 (((-630 (-1238 |#1|)) $) 38 (|has| |#1| (-545)))) (-4253 (((-757) $) 20)) (-3202 (($ (-757) (-757) |#1|) 16)) (-4265 (((-757) $) 21)) (-3703 (((-111) $ (-757)) NIL)) (-3714 ((|#1| $) 29 (|has| |#1| (-6 (-4371 "*"))))) (-3510 (((-553) $) 9)) (-4116 (((-553) $) 10)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-4275 (((-553) $) 11)) (-3223 (((-553) $) 48)) (-3394 (($ (-630 (-630 |#1|))) NIL)) (-2503 (($ (-1 |#1| |#1|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2384 (((-630 (-630 |#1|)) $) 60)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1614 (((-3 $ "failed") $) 45 (|has| |#1| (-357)))) (-1798 (($ $ $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2858 (($ $ |#1|) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) (-553)) NIL) ((|#1| $ (-553) (-553) |#1|) NIL) (($ $ (-630 (-553)) (-630 (-553))) NIL)) (-1325 (($ (-630 |#1|)) NIL) (($ (-630 $)) NIL) (($ (-1238 |#1|)) 52)) (-1564 (((-111) $) NIL)) (-1938 ((|#1| $) 27 (|has| |#1| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-1524 (((-529) $) 64 (|has| |#1| (-601 (-529))))) (-1355 (((-1238 |#1|) $ (-553)) NIL)) (-3110 (($ (-1238 |#1|)) NIL) (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-4172 (((-111) $) NIL)) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $ $) NIL) (($ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) 23) (($ $ (-553)) 46 (|has| |#1| (-357)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-553) $) NIL) (((-1238 |#1|) $ (-1238 |#1|)) NIL) (((-1238 |#1|) (-1238 |#1|) $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-674 |#1|) (-13 (-672 |#1| (-1238 |#1|) (-1238 |#1|)) (-10 -8 (-15 -1325 ($ (-1238 |#1|))) (IF (|has| |#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1614 ((-3 $ "failed") $)) |%noBranch|))) (-1031)) (T -674)) -((-1614 (*1 *1 *1) (|partial| -12 (-5 *1 (-674 *2)) (-4 *2 (-357)) (-4 *2 (-1031)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1031)) (-5 *1 (-674 *3))))) -(-13 (-672 |#1| (-1238 |#1|) (-1238 |#1|)) (-10 -8 (-15 -1325 ($ (-1238 |#1|))) (IF (|has| |#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1614 ((-3 $ "failed") $)) |%noBranch|))) -((-2111 (((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|)) 25)) (-3422 (((-674 |#1|) (-674 |#1|) (-674 |#1|) |#1|) 21)) (-3662 (((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|) (-757)) 26)) (-3421 (((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|)) 14)) (-2978 (((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|)) 18) (((-674 |#1|) (-674 |#1|) (-674 |#1|)) 16)) (-1523 (((-674 |#1|) (-674 |#1|) |#1| (-674 |#1|)) 20)) (-3392 (((-674 |#1|) (-674 |#1|) (-674 |#1|)) 12)) (** (((-674 |#1|) (-674 |#1|) (-757)) 30))) -(((-675 |#1|) (-10 -7 (-15 -3392 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -3421 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -2978 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -2978 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -1523 ((-674 |#1|) (-674 |#1|) |#1| (-674 |#1|))) (-15 -3422 ((-674 |#1|) (-674 |#1|) (-674 |#1|) |#1|)) (-15 -2111 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -3662 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|) (-757))) (-15 ** ((-674 |#1|) (-674 |#1|) (-757)))) (-1031)) (T -675)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-674 *4)) (-5 *3 (-757)) (-4 *4 (-1031)) (-5 *1 (-675 *4)))) (-3662 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-674 *4)) (-5 *3 (-757)) (-4 *4 (-1031)) (-5 *1 (-675 *4)))) (-2111 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) (-3422 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) (-1523 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) (-2978 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) (-2978 (*1 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) (-3421 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(-10 -7 (-15 -3392 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -3421 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -2978 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -2978 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -1523 ((-674 |#1|) (-674 |#1|) |#1| (-674 |#1|))) (-15 -3422 ((-674 |#1|) (-674 |#1|) (-674 |#1|) |#1|)) (-15 -2111 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -3662 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|) (-674 |#1|) (-757))) (-15 ** ((-674 |#1|) (-674 |#1|) (-757)))) -((-3621 (($) 8 T CONST)) (-3110 (((-845) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3192 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -3621)) 16)) (-1534 ((|#1| $) 11))) -(((-676 |#1|) (-13 (-1233) (-600 (-845)) (-10 -8 (-15 -3192 ((-111) $ (|[\|\|]| |#1|))) (-15 -3192 ((-111) $ (|[\|\|]| -3621))) (-15 -3110 ($ |#1|)) (-15 -3110 (|#1| $)) (-15 -1534 (|#1| $)) (-15 -3621 ($) -3879))) (-600 (-845))) (T -676)) -((-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-600 (-845))) (-5 *2 (-111)) (-5 *1 (-676 *4)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3621)) (-5 *2 (-111)) (-5 *1 (-676 *4)) (-4 *4 (-600 (-845))))) (-3110 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845))))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845))))) (-1534 (*1 *2 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845))))) (-3621 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845)))))) -(-13 (-1233) (-600 (-845)) (-10 -8 (-15 -3192 ((-111) $ (|[\|\|]| |#1|))) (-15 -3192 ((-111) $ (|[\|\|]| -3621))) (-15 -3110 ($ |#1|)) (-15 -3110 (|#1| $)) (-15 -1534 (|#1| $)) (-15 -3621 ($) -3879))) -((-3849 ((|#2| |#2| |#4|) 25)) (-2203 (((-674 |#2|) |#3| |#4|) 31)) (-2789 (((-674 |#2|) |#2| |#4|) 30)) (-4079 (((-1238 |#2|) |#2| |#4|) 16)) (-1804 ((|#2| |#3| |#4|) 24)) (-3650 (((-674 |#2|) |#3| |#4| (-757) (-757)) 38)) (-2254 (((-674 |#2|) |#2| |#4| (-757)) 37))) -(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4079 ((-1238 |#2|) |#2| |#4|)) (-15 -1804 (|#2| |#3| |#4|)) (-15 -3849 (|#2| |#2| |#4|)) (-15 -2789 ((-674 |#2|) |#2| |#4|)) (-15 -2254 ((-674 |#2|) |#2| |#4| (-757))) (-15 -2203 ((-674 |#2|) |#3| |#4|)) (-15 -3650 ((-674 |#2|) |#3| |#4| (-757) (-757)))) (-1079) (-882 |#1|) (-367 |#2|) (-13 (-367 |#1|) (-10 -7 (-6 -4369)))) (T -677)) -((-3650 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-757)) (-4 *6 (-1079)) (-4 *7 (-882 *6)) (-5 *2 (-674 *7)) (-5 *1 (-677 *6 *7 *3 *4)) (-4 *3 (-367 *7)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4369)))))) (-2203 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-4 *6 (-882 *5)) (-5 *2 (-674 *6)) (-5 *1 (-677 *5 *6 *3 *4)) (-4 *3 (-367 *6)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-757)) (-4 *6 (-1079)) (-4 *3 (-882 *6)) (-5 *2 (-674 *3)) (-5 *1 (-677 *6 *3 *7 *4)) (-4 *7 (-367 *3)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4369)))))) (-2789 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-4 *3 (-882 *5)) (-5 *2 (-674 *3)) (-5 *1 (-677 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))))) (-3849 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-882 *4)) (-5 *1 (-677 *4 *2 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4369)))))) (-1804 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-4 *2 (-882 *5)) (-5 *1 (-677 *5 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369)))))) (-4079 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-4 *3 (-882 *5)) (-5 *2 (-1238 *3)) (-5 *1 (-677 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369))))))) -(-10 -7 (-15 -4079 ((-1238 |#2|) |#2| |#4|)) (-15 -1804 (|#2| |#3| |#4|)) (-15 -3849 (|#2| |#2| |#4|)) (-15 -2789 ((-674 |#2|) |#2| |#4|)) (-15 -2254 ((-674 |#2|) |#2| |#4| (-757))) (-15 -2203 ((-674 |#2|) |#3| |#4|)) (-15 -3650 ((-674 |#2|) |#3| |#4| (-757) (-757)))) -((-4320 (((-2 (|:| |num| (-674 |#1|)) (|:| |den| |#1|)) (-674 |#2|)) 20)) (-3632 ((|#1| (-674 |#2|)) 9)) (-1623 (((-674 |#1|) (-674 |#2|)) 18))) -(((-678 |#1| |#2|) (-10 -7 (-15 -3632 (|#1| (-674 |#2|))) (-15 -1623 ((-674 |#1|) (-674 |#2|))) (-15 -4320 ((-2 (|:| |num| (-674 |#1|)) (|:| |den| |#1|)) (-674 |#2|)))) (-545) (-974 |#1|)) (T -678)) -((-4320 (*1 *2 *3) (-12 (-5 *3 (-674 *5)) (-4 *5 (-974 *4)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| (-674 *4)) (|:| |den| *4))) (-5 *1 (-678 *4 *5)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-674 *5)) (-4 *5 (-974 *4)) (-4 *4 (-545)) (-5 *2 (-674 *4)) (-5 *1 (-678 *4 *5)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-674 *4)) (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-678 *2 *4))))) -(-10 -7 (-15 -3632 (|#1| (-674 |#2|))) (-15 -1623 ((-674 |#1|) (-674 |#2|))) (-15 -4320 ((-2 (|:| |num| (-674 |#1|)) (|:| |den| |#1|)) (-674 |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-3989 (((-674 (-684))) NIL) (((-674 (-684)) (-1238 $)) NIL)) (-1576 (((-684) $) NIL)) (-2380 (($ $) NIL (|has| (-684) (-1177)))) (-2246 (($ $) NIL (|has| (-684) (-1177)))) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-684) (-343)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-684) (-301)) (|has| (-684) (-891))))) (-1536 (($ $) NIL (-3988 (-12 (|has| (-684) (-301)) (|has| (-684) (-891))) (|has| (-684) (-357))))) (-2708 (((-412 $) $) NIL (-3988 (-12 (|has| (-684) (-301)) (|has| (-684) (-891))) (|has| (-684) (-357))))) (-3365 (($ $) NIL (-12 (|has| (-684) (-984)) (|has| (-684) (-1177))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-684) (-301)) (|has| (-684) (-891))))) (-4349 (((-111) $ $) NIL (|has| (-684) (-301)))) (-2571 (((-757)) NIL (|has| (-684) (-362)))) (-2357 (($ $) NIL (|has| (-684) (-1177)))) (-2224 (($ $) NIL (|has| (-684) (-1177)))) (-2403 (($ $) NIL (|has| (-684) (-1177)))) (-2268 (($ $) NIL (|has| (-684) (-1177)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-684) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-684) (-1020 (-401 (-553)))))) (-2707 (((-553) $) NIL) (((-684) $) NIL) (((-401 (-553)) $) NIL (|has| (-684) (-1020 (-401 (-553)))))) (-3461 (($ (-1238 (-684))) NIL) (($ (-1238 (-684)) (-1238 $)) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-684) (-343)))) (-3973 (($ $ $) NIL (|has| (-684) (-301)))) (-4232 (((-674 (-684)) $) NIL) (((-674 (-684)) $ (-1238 $)) NIL)) (-2077 (((-674 (-684)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-684))) (|:| |vec| (-1238 (-684)))) (-674 $) (-1238 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-684) (-626 (-553)))) (((-674 (-553)) (-674 $)) NIL (|has| (-684) (-626 (-553))))) (-2654 (((-3 $ "failed") (-401 (-1151 (-684)))) NIL (|has| (-684) (-357))) (($ (-1151 (-684))) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3375 (((-684) $) 29)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL (|has| (-684) (-538)))) (-4323 (((-111) $) NIL (|has| (-684) (-538)))) (-1672 (((-401 (-553)) $) NIL (|has| (-684) (-538)))) (-2409 (((-903)) NIL)) (-3031 (($) NIL (|has| (-684) (-362)))) (-3952 (($ $ $) NIL (|has| (-684) (-301)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| (-684) (-301)))) (-2484 (($) NIL (|has| (-684) (-343)))) (-3637 (((-111) $) NIL (|has| (-684) (-343)))) (-1808 (($ $) NIL (|has| (-684) (-343))) (($ $ (-757)) NIL (|has| (-684) (-343)))) (-3119 (((-111) $) NIL (-3988 (-12 (|has| (-684) (-301)) (|has| (-684) (-891))) (|has| (-684) (-357))))) (-1678 (((-2 (|:| |r| (-684)) (|:| |phi| (-684))) $) NIL (-12 (|has| (-684) (-1040)) (|has| (-684) (-1177))))) (-3996 (($) NIL (|has| (-684) (-1177)))) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-684) (-868 (-373)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-684) (-868 (-553))))) (-2968 (((-819 (-903)) $) NIL (|has| (-684) (-343))) (((-903) $) NIL (|has| (-684) (-343)))) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (-12 (|has| (-684) (-984)) (|has| (-684) (-1177))))) (-3560 (((-684) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| (-684) (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| (-684) (-301)))) (-3568 (((-1151 (-684)) $) NIL (|has| (-684) (-357)))) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1482 (($ (-1 (-684) (-684)) $) NIL)) (-3796 (((-903) $) NIL (|has| (-684) (-362)))) (-2366 (($ $) NIL (|has| (-684) (-1177)))) (-2643 (((-1151 (-684)) $) NIL)) (-2471 (($ (-630 $)) NIL (|has| (-684) (-301))) (($ $ $) NIL (|has| (-684) (-301)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| (-684) (-357)))) (-1945 (($) NIL (|has| (-684) (-343)) CONST)) (-2735 (($ (-903)) NIL (|has| (-684) (-362)))) (-2226 (($) NIL)) (-3387 (((-684) $) 31)) (-2786 (((-1099) $) NIL)) (-4093 (($) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| (-684) (-301)))) (-2508 (($ (-630 $)) NIL (|has| (-684) (-301))) (($ $ $) NIL (|has| (-684) (-301)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-684) (-343)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-684) (-301)) (|has| (-684) (-891))))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-684) (-301)) (|has| (-684) (-891))))) (-3355 (((-412 $) $) NIL (-3988 (-12 (|has| (-684) (-301)) (|has| (-684) (-891))) (|has| (-684) (-357))))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-684) (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| (-684) (-301)))) (-3929 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-684)) NIL (|has| (-684) (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| (-684) (-301)))) (-2743 (($ $) NIL (|has| (-684) (-1177)))) (-2356 (($ $ (-1155) (-684)) NIL (|has| (-684) (-507 (-1155) (-684)))) (($ $ (-630 (-1155)) (-630 (-684))) NIL (|has| (-684) (-507 (-1155) (-684)))) (($ $ (-630 (-288 (-684)))) NIL (|has| (-684) (-303 (-684)))) (($ $ (-288 (-684))) NIL (|has| (-684) (-303 (-684)))) (($ $ (-684) (-684)) NIL (|has| (-684) (-303 (-684)))) (($ $ (-630 (-684)) (-630 (-684))) NIL (|has| (-684) (-303 (-684))))) (-3384 (((-757) $) NIL (|has| (-684) (-301)))) (-2046 (($ $ (-684)) NIL (|has| (-684) (-280 (-684) (-684))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| (-684) (-301)))) (-3000 (((-684)) NIL) (((-684) (-1238 $)) NIL)) (-3122 (((-3 (-757) "failed") $ $) NIL (|has| (-684) (-343))) (((-757) $) NIL (|has| (-684) (-343)))) (-1330 (($ $ (-1 (-684) (-684))) NIL) (($ $ (-1 (-684) (-684)) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-1155)) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-757)) NIL (|has| (-684) (-228))) (($ $) NIL (|has| (-684) (-228)))) (-2297 (((-674 (-684)) (-1238 $) (-1 (-684) (-684))) NIL (|has| (-684) (-357)))) (-1394 (((-1151 (-684))) NIL)) (-2414 (($ $) NIL (|has| (-684) (-1177)))) (-2279 (($ $) NIL (|has| (-684) (-1177)))) (-1469 (($) NIL (|has| (-684) (-343)))) (-2392 (($ $) NIL (|has| (-684) (-1177)))) (-2257 (($ $) NIL (|has| (-684) (-1177)))) (-2368 (($ $) NIL (|has| (-684) (-1177)))) (-2234 (($ $) NIL (|has| (-684) (-1177)))) (-2855 (((-674 (-684)) (-1238 $)) NIL) (((-1238 (-684)) $) NIL) (((-674 (-684)) (-1238 $) (-1238 $)) NIL) (((-1238 (-684)) $ (-1238 $)) NIL)) (-1524 (((-529) $) NIL (|has| (-684) (-601 (-529)))) (((-166 (-220)) $) NIL (|has| (-684) (-1004))) (((-166 (-373)) $) NIL (|has| (-684) (-1004))) (((-874 (-373)) $) NIL (|has| (-684) (-601 (-874 (-373))))) (((-874 (-553)) $) NIL (|has| (-684) (-601 (-874 (-553))))) (($ (-1151 (-684))) NIL) (((-1151 (-684)) $) NIL) (($ (-1238 (-684))) NIL) (((-1238 (-684)) $) NIL)) (-3199 (($ $) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-3988 (-12 (|has| (-684) (-301)) (|has| $ (-142)) (|has| (-684) (-891))) (|has| (-684) (-343))))) (-4339 (($ (-684) (-684)) 12)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-553)) NIL) (($ (-684)) NIL) (($ (-166 (-373))) 13) (($ (-166 (-553))) 19) (($ (-166 (-684))) 28) (($ (-166 (-686))) 25) (((-166 (-373)) $) 33) (($ (-401 (-553))) NIL (-3988 (|has| (-684) (-1020 (-401 (-553)))) (|has| (-684) (-357))))) (-2941 (($ $) NIL (|has| (-684) (-343))) (((-3 $ "failed") $) NIL (-3988 (-12 (|has| (-684) (-301)) (|has| $ (-142)) (|has| (-684) (-891))) (|has| (-684) (-142))))) (-3547 (((-1151 (-684)) $) NIL)) (-1999 (((-757)) NIL)) (-4124 (((-1238 $)) NIL)) (-2447 (($ $) NIL (|has| (-684) (-1177)))) (-2313 (($ $) NIL (|has| (-684) (-1177)))) (-1639 (((-111) $ $) NIL)) (-2425 (($ $) NIL (|has| (-684) (-1177)))) (-2291 (($ $) NIL (|has| (-684) (-1177)))) (-3791 (($ $) NIL (|has| (-684) (-1177)))) (-2336 (($ $) NIL (|has| (-684) (-1177)))) (-3928 (((-684) $) NIL (|has| (-684) (-1177)))) (-2570 (($ $) NIL (|has| (-684) (-1177)))) (-2346 (($ $) NIL (|has| (-684) (-1177)))) (-3780 (($ $) NIL (|has| (-684) (-1177)))) (-2324 (($ $) NIL (|has| (-684) (-1177)))) (-2435 (($ $) NIL (|has| (-684) (-1177)))) (-2302 (($ $) NIL (|has| (-684) (-1177)))) (-3466 (($ $) NIL (|has| (-684) (-1040)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-1 (-684) (-684))) NIL) (($ $ (-1 (-684) (-684)) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-1155)) NIL (|has| (-684) (-882 (-1155)))) (($ $ (-757)) NIL (|has| (-684) (-228))) (($ $) NIL (|has| (-684) (-228)))) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL (|has| (-684) (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ $) NIL (|has| (-684) (-1177))) (($ $ (-401 (-553))) NIL (-12 (|has| (-684) (-984)) (|has| (-684) (-1177)))) (($ $ (-553)) NIL (|has| (-684) (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ (-684) $) NIL) (($ $ (-684)) NIL) (($ (-401 (-553)) $) NIL (|has| (-684) (-357))) (($ $ (-401 (-553))) NIL (|has| (-684) (-357))))) -(((-679) (-13 (-381) (-163 (-684)) (-10 -8 (-15 -3110 ($ (-166 (-373)))) (-15 -3110 ($ (-166 (-553)))) (-15 -3110 ($ (-166 (-684)))) (-15 -3110 ($ (-166 (-686)))) (-15 -3110 ((-166 (-373)) $))))) (T -679)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-679)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-166 (-553))) (-5 *1 (-679)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-166 (-684))) (-5 *1 (-679)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-166 (-686))) (-5 *1 (-679)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-679))))) -(-13 (-381) (-163 (-684)) (-10 -8 (-15 -3110 ($ (-166 (-373)))) (-15 -3110 ($ (-166 (-553)))) (-15 -3110 ($ (-166 (-684)))) (-15 -3110 ($ (-166 (-686)))) (-15 -3110 ((-166 (-373)) $)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-2955 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2873 (($ $) 62)) (-2638 (($ $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40) (($ |#1| $ (-757)) 63)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3390 (((-630 (-2 (|:| -3256 |#1|) (|:| -2796 (-757)))) $) 61)) (-3093 (($) 49) (($ (-630 |#1|)) 48)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 50)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-680 |#1|) (-137) (-1079)) (T -680)) -((-2636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-680 *2)) (-4 *2 (-1079)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1079)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1079)) (-5 *2 (-630 (-2 (|:| -3256 *3) (|:| -2796 (-757)))))))) -(-13 (-230 |t#1|) (-10 -8 (-15 -2636 ($ |t#1| $ (-757))) (-15 -2873 ($ $)) (-15 -3390 ((-630 (-2 (|:| -3256 |t#1|) (|:| -2796 (-757)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3897 (((-630 |#1|) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))) (-553)) 47)) (-3151 ((|#1| |#1| (-553)) 46)) (-2508 ((|#1| |#1| |#1| (-553)) 36)) (-3355 (((-630 |#1|) |#1| (-553)) 39)) (-2108 ((|#1| |#1| (-553) |#1| (-553)) 32)) (-1840 (((-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))) |#1| (-553)) 45))) -(((-681 |#1|) (-10 -7 (-15 -2508 (|#1| |#1| |#1| (-553))) (-15 -3151 (|#1| |#1| (-553))) (-15 -3355 ((-630 |#1|) |#1| (-553))) (-15 -1840 ((-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))) |#1| (-553))) (-15 -3897 ((-630 |#1|) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))) (-553))) (-15 -2108 (|#1| |#1| (-553) |#1| (-553)))) (-1214 (-553))) (T -681)) -((-2108 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-681 *2)) (-4 *2 (-1214 *3)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-2 (|:| -3355 *5) (|:| -3872 (-553))))) (-5 *4 (-553)) (-4 *5 (-1214 *4)) (-5 *2 (-630 *5)) (-5 *1 (-681 *5)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *4 (-553)) (-5 *2 (-630 (-2 (|:| -3355 *3) (|:| -3872 *4)))) (-5 *1 (-681 *3)) (-4 *3 (-1214 *4)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-553)) (-5 *2 (-630 *3)) (-5 *1 (-681 *3)) (-4 *3 (-1214 *4)))) (-3151 (*1 *2 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-681 *2)) (-4 *2 (-1214 *3)))) (-2508 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-681 *2)) (-4 *2 (-1214 *3))))) -(-10 -7 (-15 -2508 (|#1| |#1| |#1| (-553))) (-15 -3151 (|#1| |#1| (-553))) (-15 -3355 ((-630 |#1|) |#1| (-553))) (-15 -1840 ((-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))) |#1| (-553))) (-15 -3897 ((-630 |#1|) (-630 (-2 (|:| -3355 |#1|) (|:| -3872 (-553)))) (-553))) (-15 -2108 (|#1| |#1| (-553) |#1| (-553)))) -((-3318 (((-1 (-925 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 17)) (-1765 (((-1112 (-220)) (-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-630 (-257))) 40) (((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-630 (-257))) 42) (((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1073 (-220)) (-1073 (-220)) (-630 (-257))) 44)) (-4167 (((-1112 (-220)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-630 (-257))) NIL)) (-4286 (((-1112 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1073 (-220)) (-1073 (-220)) (-630 (-257))) 45))) -(((-682) (-10 -7 (-15 -1765 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -1765 ((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -1765 ((-1112 (-220)) (-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -4286 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -4167 ((-1112 (-220)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -3318 ((-1 (-925 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -682)) -((-3318 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1 (-220) (-220) (-220) (-220))) (-5 *2 (-1 (-925 (-220)) (-220) (-220))) (-5 *1 (-682)))) (-4167 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1073 (-220))) (-5 *6 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-682)))) (-4286 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1073 (-220))) (-5 *6 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-682)))) (-1765 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1112 (-220))) (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-220))) (-5 *5 (-630 (-257))) (-5 *1 (-682)))) (-1765 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-220))) (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-682)))) (-1765 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1073 (-220))) (-5 *6 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-682))))) -(-10 -7 (-15 -1765 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -1765 ((-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -1765 ((-1112 (-220)) (-1112 (-220)) (-1 (-925 (-220)) (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -4286 ((-1112 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1073 (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -4167 ((-1112 (-220)) (-310 (-553)) (-310 (-553)) (-310 (-553)) (-1 (-220) (-220)) (-1073 (-220)) (-630 (-257)))) (-15 -3318 ((-1 (-925 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) -((-3355 (((-412 (-1151 |#4|)) (-1151 |#4|)) 73) (((-412 |#4|) |#4|) 221))) -(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 |#4|) |#4|)) (-15 -3355 ((-412 (-1151 |#4|)) (-1151 |#4|)))) (-833) (-779) (-343) (-931 |#3| |#2| |#1|)) (T -683)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-343)) (-4 *7 (-931 *6 *5 *4)) (-5 *2 (-412 (-1151 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-931 *6 *5 *4))))) -(-10 -7 (-15 -3355 ((-412 |#4|) |#4|)) (-15 -3355 ((-412 (-1151 |#4|)) (-1151 |#4|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 84)) (-2751 (((-553) $) 30)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1728 (($ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3365 (($ $) NIL)) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL)) (-3820 (($) NIL T CONST)) (-2641 (($ $) NIL)) (-1399 (((-3 (-553) "failed") $) 73) (((-3 (-401 (-553)) "failed") $) 26) (((-3 (-373) "failed") $) 70)) (-2707 (((-553) $) 75) (((-401 (-553)) $) 67) (((-373) $) 68)) (-3973 (($ $ $) 96)) (-2982 (((-3 $ "failed") $) 87)) (-3952 (($ $ $) 95)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-2737 (((-903)) 77) (((-903) (-903)) 76)) (-4270 (((-111) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL)) (-2968 (((-553) $) NIL)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL)) (-3560 (($ $) NIL)) (-2797 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2532 (((-553) (-553)) 81) (((-553)) 82)) (-1824 (($ $ $) NIL) (($) NIL (-12 (-2826 (|has| $ (-6 -4352))) (-2826 (|has| $ (-6 -4360)))))) (-4268 (((-553) (-553)) 79) (((-553)) 80)) (-1975 (($ $ $) NIL) (($) NIL (-12 (-2826 (|has| $ (-6 -4352))) (-2826 (|has| $ (-6 -4360)))))) (-1883 (((-553) $) 16)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 91)) (-3496 (((-903) (-553)) NIL (|has| $ (-6 -4360)))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL)) (-2334 (($ $) NIL)) (-3293 (($ (-553) (-553)) NIL) (($ (-553) (-553) (-903)) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) 92)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2692 (((-553) $) 22)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 94)) (-2989 (((-903)) NIL) (((-903) (-903)) NIL (|has| $ (-6 -4360)))) (-3098 (((-903) (-553)) NIL (|has| $ (-6 -4360)))) (-1524 (((-373) $) NIL) (((-220) $) NIL) (((-874 (-373)) $) NIL)) (-3110 (((-845) $) 52) (($ (-553)) 63) (($ $) NIL) (($ (-401 (-553))) 66) (($ (-553)) 63) (($ (-401 (-553))) 66) (($ (-373)) 60) (((-373) $) 50) (($ (-686)) 55)) (-1999 (((-757)) 103)) (-1727 (($ (-553) (-553) (-903)) 44)) (-2582 (($ $) NIL)) (-3556 (((-903)) NIL) (((-903) (-903)) NIL (|has| $ (-6 -4360)))) (-2959 (((-903)) 35) (((-903) (-903)) 78)) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL)) (-1988 (($) 32 T CONST)) (-1997 (($) 17 T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 83)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 101)) (-1723 (($ $ $) 65)) (-1711 (($ $) 99) (($ $ $) 100)) (-1700 (($ $ $) 98)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL) (($ $ (-401 (-553))) 90)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 97) (($ $ $) 88) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-684) (-13 (-398) (-381) (-357) (-1020 (-373)) (-1020 (-401 (-553))) (-144) (-10 -8 (-15 -2737 ((-903) (-903))) (-15 -2737 ((-903))) (-15 -2959 ((-903) (-903))) (-15 -4268 ((-553) (-553))) (-15 -4268 ((-553))) (-15 -2532 ((-553) (-553))) (-15 -2532 ((-553))) (-15 -3110 ((-373) $)) (-15 -3110 ($ (-686))) (-15 -1883 ((-553) $)) (-15 -2692 ((-553) $)) (-15 -1727 ($ (-553) (-553) (-903)))))) (T -684)) -((-2692 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) (-2737 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-684)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-684)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-684)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) (-4268 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) (-2532 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) (-2532 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-684)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-686)) (-5 *1 (-684)))) (-1727 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-553)) (-5 *3 (-903)) (-5 *1 (-684))))) -(-13 (-398) (-381) (-357) (-1020 (-373)) (-1020 (-401 (-553))) (-144) (-10 -8 (-15 -2737 ((-903) (-903))) (-15 -2737 ((-903))) (-15 -2959 ((-903) (-903))) (-15 -4268 ((-553) (-553))) (-15 -4268 ((-553))) (-15 -2532 ((-553) (-553))) (-15 -2532 ((-553))) (-15 -3110 ((-373) $)) (-15 -3110 ($ (-686))) (-15 -1883 ((-553) $)) (-15 -2692 ((-553) $)) (-15 -1727 ($ (-553) (-553) (-903))))) -((-4207 (((-674 |#1|) (-674 |#1|) |#1| |#1|) 65)) (-3639 (((-674 |#1|) (-674 |#1|) |#1|) 48)) (-2344 (((-674 |#1|) (-674 |#1|) |#1|) 66)) (-3430 (((-674 |#1|) (-674 |#1|)) 49)) (-2364 (((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|) 64))) -(((-685 |#1|) (-10 -7 (-15 -3430 ((-674 |#1|) (-674 |#1|))) (-15 -3639 ((-674 |#1|) (-674 |#1|) |#1|)) (-15 -2344 ((-674 |#1|) (-674 |#1|) |#1|)) (-15 -4207 ((-674 |#1|) (-674 |#1|) |#1| |#1|)) (-15 -2364 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|))) (-301)) (T -685)) -((-2364 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-685 *3)) (-4 *3 (-301)))) (-4207 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3)))) (-2344 (*1 *2 *2 *3) (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3)))) (-3639 (*1 *2 *2 *3) (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3))))) -(-10 -7 (-15 -3430 ((-674 |#1|) (-674 |#1|))) (-15 -3639 ((-674 |#1|) (-674 |#1|) |#1|)) (-15 -2344 ((-674 |#1|) (-674 |#1|) |#1|)) (-15 -4207 ((-674 |#1|) (-674 |#1|) |#1| |#1|)) (-15 -2364 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-4227 (($ $ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2464 (($ $ $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL)) (-1608 (($ $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) 27)) (-2707 (((-553) $) 25)) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL)) (-4323 (((-111) $) NIL)) (-1672 (((-401 (-553)) $) NIL)) (-3031 (($ $) NIL) (($) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-3405 (($ $ $ $) NIL)) (-2084 (($ $ $) NIL)) (-4270 (((-111) $) NIL)) (-2340 (($ $ $) NIL)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL)) (-1848 (((-111) $) NIL)) (-1850 (((-111) $) NIL)) (-2502 (((-3 $ "failed") $) NIL)) (-2797 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-4322 (($ $ $ $) NIL)) (-1824 (($ $ $) NIL)) (-2143 (((-903) (-903)) 10) (((-903)) 9)) (-1975 (($ $ $) NIL)) (-3871 (($ $) NIL)) (-1899 (($ $) NIL)) (-2471 (($ (-630 $)) NIL) (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-3563 (($ $ $) NIL)) (-1945 (($) NIL T CONST)) (-3802 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ (-630 $)) NIL) (($ $ $) NIL)) (-3757 (($ $) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3781 (((-111) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL) (($ $ (-757)) NIL)) (-3163 (($ $) NIL)) (-1508 (($ $) NIL)) (-1524 (((-220) $) NIL) (((-373) $) NIL) (((-874 (-553)) $) NIL) (((-529) $) NIL) (((-553) $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) 24) (($ $) NIL) (($ (-553)) 24) (((-310 $) (-310 (-553))) 18)) (-1999 (((-757)) NIL)) (-3694 (((-111) $ $) NIL)) (-1737 (($ $ $) NIL)) (-2959 (($) NIL)) (-1639 (((-111) $ $) NIL)) (-4028 (($ $ $ $) NIL)) (-3466 (($ $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL) (($ $ (-757)) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL))) -(((-686) (-13 (-381) (-538) (-10 -8 (-15 -2143 ((-903) (-903))) (-15 -2143 ((-903))) (-15 -3110 ((-310 $) (-310 (-553))))))) (T -686)) -((-2143 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-686)))) (-2143 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-686)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-310 (-553))) (-5 *2 (-310 (-686))) (-5 *1 (-686))))) -(-13 (-381) (-538) (-10 -8 (-15 -2143 ((-903) (-903))) (-15 -2143 ((-903))) (-15 -3110 ((-310 $) (-310 (-553)))))) -((-2051 (((-1 |#4| |#2| |#3|) |#1| (-1155) (-1155)) 19)) (-1841 (((-1 |#4| |#2| |#3|) (-1155)) 12))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1841 ((-1 |#4| |#2| |#3|) (-1155))) (-15 -2051 ((-1 |#4| |#2| |#3|) |#1| (-1155) (-1155)))) (-601 (-529)) (-1192) (-1192) (-1192)) (T -687)) -((-2051 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1155)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-687 *3 *5 *6 *7)) (-4 *3 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192)) (-4 *7 (-1192)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-687 *4 *5 *6 *7)) (-4 *4 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192)) (-4 *7 (-1192))))) -(-10 -7 (-15 -1841 ((-1 |#4| |#2| |#3|) (-1155))) (-15 -2051 ((-1 |#4| |#2| |#3|) |#1| (-1155) (-1155)))) -((-3096 (((-111) $ $) NIL)) (-3965 (((-1243) $ (-757)) 14)) (-1478 (((-757) $) 12)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 25)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 24))) -(((-688 |#1|) (-13 (-130) (-483 |#1|)) (-1079)) (T -688)) -NIL -(-13 (-130) (-483 |#1|)) -((-3776 (((-1 (-220) (-220) (-220)) |#1| (-1155) (-1155)) 34) (((-1 (-220) (-220)) |#1| (-1155)) 39))) -(((-689 |#1|) (-10 -7 (-15 -3776 ((-1 (-220) (-220)) |#1| (-1155))) (-15 -3776 ((-1 (-220) (-220) (-220)) |#1| (-1155) (-1155)))) (-601 (-529))) (T -689)) -((-3776 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1155)) (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-689 *3)) (-4 *3 (-601 (-529))))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-689 *3)) (-4 *3 (-601 (-529)))))) -(-10 -7 (-15 -3776 ((-1 (-220) (-220)) |#1| (-1155))) (-15 -3776 ((-1 (-220) (-220) (-220)) |#1| (-1155) (-1155)))) -((-2333 (((-1155) |#1| (-1155) (-630 (-1155))) 9) (((-1155) |#1| (-1155) (-1155) (-1155)) 12) (((-1155) |#1| (-1155) (-1155)) 11) (((-1155) |#1| (-1155)) 10))) -(((-690 |#1|) (-10 -7 (-15 -2333 ((-1155) |#1| (-1155))) (-15 -2333 ((-1155) |#1| (-1155) (-1155))) (-15 -2333 ((-1155) |#1| (-1155) (-1155) (-1155))) (-15 -2333 ((-1155) |#1| (-1155) (-630 (-1155))))) (-601 (-529))) (T -690)) -((-2333 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-630 (-1155))) (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529))))) (-2333 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529))))) (-2333 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529))))) (-2333 (*1 *2 *3 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529)))))) -(-10 -7 (-15 -2333 ((-1155) |#1| (-1155))) (-15 -2333 ((-1155) |#1| (-1155) (-1155))) (-15 -2333 ((-1155) |#1| (-1155) (-1155) (-1155))) (-15 -2333 ((-1155) |#1| (-1155) (-630 (-1155))))) -((-3966 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-691 |#1| |#2|) (-10 -7 (-15 -3966 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1192) (-1192)) (T -691)) -((-3966 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-691 *3 *4)) (-4 *3 (-1192)) (-4 *4 (-1192))))) -(-10 -7 (-15 -3966 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-4330 (((-1 |#3| |#2|) (-1155)) 11)) (-2051 (((-1 |#3| |#2|) |#1| (-1155)) 21))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4330 ((-1 |#3| |#2|) (-1155))) (-15 -2051 ((-1 |#3| |#2|) |#1| (-1155)))) (-601 (-529)) (-1192) (-1192)) (T -692)) -((-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *3 *5 *6)) (-4 *3 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *4 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192))))) -(-10 -7 (-15 -4330 ((-1 |#3| |#2|) (-1155))) (-15 -2051 ((-1 |#3| |#2|) |#1| (-1155)))) -((-1382 (((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 (-1151 |#4|)) (-630 |#3|) (-630 |#4|) (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| |#4|)))) (-630 (-757)) (-1238 (-630 (-1151 |#3|))) |#3|) 62)) (-2921 (((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 (-1151 |#3|)) (-630 |#3|) (-630 |#4|) (-630 (-757)) |#3|) 75)) (-2451 (((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 |#3|) (-630 (-757)) (-630 (-1151 |#4|)) (-1238 (-630 (-1151 |#3|))) |#3|) 34))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2451 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 |#3|) (-630 (-757)) (-630 (-1151 |#4|)) (-1238 (-630 (-1151 |#3|))) |#3|)) (-15 -2921 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 (-1151 |#3|)) (-630 |#3|) (-630 |#4|) (-630 (-757)) |#3|)) (-15 -1382 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 (-1151 |#4|)) (-630 |#3|) (-630 |#4|) (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| |#4|)))) (-630 (-757)) (-1238 (-630 (-1151 |#3|))) |#3|))) (-779) (-833) (-301) (-931 |#3| |#1| |#2|)) (T -693)) -((-1382 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-630 (-1151 *13))) (-5 *3 (-1151 *13)) (-5 *4 (-630 *12)) (-5 *5 (-630 *10)) (-5 *6 (-630 *13)) (-5 *7 (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| *13))))) (-5 *8 (-630 (-757))) (-5 *9 (-1238 (-630 (-1151 *10)))) (-4 *12 (-833)) (-4 *10 (-301)) (-4 *13 (-931 *10 *11 *12)) (-4 *11 (-779)) (-5 *1 (-693 *11 *12 *10 *13)))) (-2921 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-630 *11)) (-5 *5 (-630 (-1151 *9))) (-5 *6 (-630 *9)) (-5 *7 (-630 *12)) (-5 *8 (-630 (-757))) (-4 *11 (-833)) (-4 *9 (-301)) (-4 *12 (-931 *9 *10 *11)) (-4 *10 (-779)) (-5 *2 (-630 (-1151 *12))) (-5 *1 (-693 *10 *11 *9 *12)) (-5 *3 (-1151 *12)))) (-2451 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-630 (-1151 *11))) (-5 *3 (-1151 *11)) (-5 *4 (-630 *10)) (-5 *5 (-630 *8)) (-5 *6 (-630 (-757))) (-5 *7 (-1238 (-630 (-1151 *8)))) (-4 *10 (-833)) (-4 *8 (-301)) (-4 *11 (-931 *8 *9 *10)) (-4 *9 (-779)) (-5 *1 (-693 *9 *10 *8 *11))))) -(-10 -7 (-15 -2451 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 |#3|) (-630 (-757)) (-630 (-1151 |#4|)) (-1238 (-630 (-1151 |#3|))) |#3|)) (-15 -2921 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 (-1151 |#3|)) (-630 |#3|) (-630 |#4|) (-630 (-757)) |#3|)) (-15 -1382 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-630 |#2|) (-630 (-1151 |#4|)) (-630 |#3|) (-630 |#4|) (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| |#4|)))) (-630 (-757)) (-1238 (-630 (-1151 |#3|))) |#3|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-3678 (($ $) 42)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-3481 (($ |#1| (-757)) 40)) (-2423 (((-757) $) 44)) (-3655 ((|#1| $) 43)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3872 (((-757) $) 45)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 39 (|has| |#1| (-169)))) (-1624 ((|#1| $ (-757)) 41)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-694 |#1|) (-137) (-1031)) (T -694)) -((-3872 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1031)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1031)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-694 *2)) (-4 *2 (-1031)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-694 *2)) (-4 *2 (-1031))))) -(-13 (-1031) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3872 ((-757) $)) (-15 -2423 ((-757) $)) (-15 -3655 (|t#1| $)) (-15 -3678 ($ $)) (-15 -1624 (|t#1| $ (-757))) (-15 -3481 ($ |t#1| (-757))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) |has| |#1| (-169)) ((-712) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1482 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-695 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1482 (|#6| (-1 |#4| |#1|) |#3|))) (-545) (-1214 |#1|) (-1214 (-401 |#2|)) (-545) (-1214 |#4|) (-1214 (-401 |#5|))) (T -695)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-545)) (-4 *7 (-545)) (-4 *6 (-1214 *5)) (-4 *2 (-1214 (-401 *8))) (-5 *1 (-695 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1214 (-401 *6))) (-4 *8 (-1214 *7))))) -(-10 -7 (-15 -1482 (|#6| (-1 |#4| |#1|) |#3|))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3396 (((-1137) (-845)) 31)) (-2524 (((-1243) (-1137)) 28)) (-2637 (((-1137) (-845)) 24)) (-3944 (((-1137) (-845)) 25)) (-3110 (((-845) $) NIL) (((-1137) (-845)) 23)) (-1617 (((-111) $ $) NIL))) -(((-696) (-13 (-1079) (-10 -7 (-15 -3110 ((-1137) (-845))) (-15 -2637 ((-1137) (-845))) (-15 -3944 ((-1137) (-845))) (-15 -3396 ((-1137) (-845))) (-15 -2524 ((-1243) (-1137)))))) (T -696)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-696))))) -(-13 (-1079) (-10 -7 (-15 -3110 ((-1137) (-845))) (-15 -2637 ((-1137) (-845))) (-15 -3944 ((-1137) (-845))) (-15 -3396 ((-1137) (-845))) (-15 -2524 ((-1243) (-1137))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL)) (-2654 (($ |#1| |#2|) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2326 ((|#2| $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3930 (((-3 $ "failed") $ $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) ((|#1| $) NIL)) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-697 |#1| |#2| |#3| |#4| |#5|) (-13 (-357) (-10 -8 (-15 -2326 (|#2| $)) (-15 -3110 (|#1| $)) (-15 -2654 ($ |#1| |#2|)) (-15 -3930 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -697)) -((-2326 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-697 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2654 (*1 *1 *2 *3) (-12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3930 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-357) (-10 -8 (-15 -2326 (|#2| $)) (-15 -3110 (|#1| $)) (-15 -2654 ($ |#1| |#2|)) (-15 -3930 ((-3 $ "failed") $ $)))) -((-3096 (((-111) $ $) 78)) (-3769 (((-111) $) 30)) (-2862 (((-1238 |#1|) $ (-757)) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-3376 (($ (-1151 |#1|)) NIL)) (-3322 (((-1151 $) $ (-1061)) NIL) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1061))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1690 (($ $ $) NIL (|has| |#1| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2571 (((-757)) 47 (|has| |#1| (-362)))) (-2998 (($ $ (-757)) NIL)) (-1300 (($ $ (-757)) NIL)) (-4131 ((|#2| |#2|) 44)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-1061) "failed") $) NIL)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-1061) $) NIL)) (-2134 (($ $ $ (-1061)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) 34)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2654 (($ |#2|) 42)) (-2982 (((-3 $ "failed") $) 86)) (-3031 (($) 51 (|has| |#1| (-362)))) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-2539 (($ $ $) NIL)) (-3301 (($ $ $) NIL (|has| |#1| (-545)))) (-3464 (((-2 (|:| -4120 |#1|) (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1061)) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-3220 (((-940 $)) 80)) (-2686 (($ $ |#1| (-757) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1061) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1061) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-2968 (((-757) $ $) NIL (|has| |#1| (-545)))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-1130)))) (-3493 (($ (-1151 |#1|) (-1061)) NIL) (($ (-1151 $) (-1061)) NIL)) (-2166 (($ $ (-757)) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) 77) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1061)) NIL) (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2326 ((|#2|) 45)) (-2423 (((-757) $) NIL) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-757) (-757)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1504 (((-1151 |#1|) $) NIL)) (-1332 (((-3 (-1061) "failed") $) NIL)) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-2643 ((|#2| $) 41)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) 28)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-3395 (((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757)) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-1061)) (|:| -2692 (-757))) "failed") $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1945 (($) NIL (|has| |#1| (-1130)) CONST)) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-4332 (($ $) 79 (|has| |#1| (-343)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1061) |#1|) NIL) (($ $ (-630 (-1061)) (-630 |#1|)) NIL) (($ $ (-1061) $) NIL) (($ $ (-630 (-1061)) (-630 $)) NIL)) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-545))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-545)))) (-2580 (((-3 $ "failed") $ (-757)) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 87 (|has| |#1| (-357)))) (-3000 (($ $ (-1061)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-1330 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3872 (((-757) $) 32) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-1061) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1061)) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3044 (((-940 $)) 36)) (-2255 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-545)))) (-3110 (((-845) $) 61) (($ (-553)) NIL) (($ |#1|) 58) (($ (-1061)) NIL) (($ |#2|) 68) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) 63) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) 20 T CONST)) (-2889 (((-1238 |#1|) $) 75)) (-3582 (($ (-1238 |#1|)) 50)) (-1997 (($) 8 T CONST)) (-1780 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2837 (((-1238 |#1|) $) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 69)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) 72) (($ $ $) NIL)) (-1700 (($ $ $) 33)) (** (($ $ (-903)) NIL) (($ $ (-757)) 81)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 57) (($ $ $) 74) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-698 |#1| |#2|) (-13 (-1214 |#1|) (-603 |#2|) (-10 -8 (-15 -4131 (|#2| |#2|)) (-15 -2326 (|#2|)) (-15 -2654 ($ |#2|)) (-15 -2643 (|#2| $)) (-15 -2889 ((-1238 |#1|) $)) (-15 -3582 ($ (-1238 |#1|))) (-15 -2837 ((-1238 |#1|) $)) (-15 -3220 ((-940 $))) (-15 -3044 ((-940 $))) (IF (|has| |#1| (-343)) (-15 -4332 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) (-1031) (-1214 |#1|)) (T -698)) -((-4131 (*1 *2 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-698 *3 *2)) (-4 *2 (-1214 *3)))) (-2326 (*1 *2) (-12 (-4 *2 (-1214 *3)) (-5 *1 (-698 *3 *2)) (-4 *3 (-1031)))) (-2654 (*1 *1 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-698 *3 *2)) (-4 *2 (-1214 *3)))) (-2643 (*1 *2 *1) (-12 (-4 *2 (-1214 *3)) (-5 *1 (-698 *3 *2)) (-4 *3 (-1031)))) (-2889 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-5 *2 (-1238 *3)) (-5 *1 (-698 *3 *4)) (-4 *4 (-1214 *3)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1031)) (-5 *1 (-698 *3 *4)) (-4 *4 (-1214 *3)))) (-2837 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-5 *2 (-1238 *3)) (-5 *1 (-698 *3 *4)) (-4 *4 (-1214 *3)))) (-3220 (*1 *2) (-12 (-4 *3 (-1031)) (-5 *2 (-940 (-698 *3 *4))) (-5 *1 (-698 *3 *4)) (-4 *4 (-1214 *3)))) (-3044 (*1 *2) (-12 (-4 *3 (-1031)) (-5 *2 (-940 (-698 *3 *4))) (-5 *1 (-698 *3 *4)) (-4 *4 (-1214 *3)))) (-4332 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1031)) (-5 *1 (-698 *2 *3)) (-4 *3 (-1214 *2))))) -(-13 (-1214 |#1|) (-603 |#2|) (-10 -8 (-15 -4131 (|#2| |#2|)) (-15 -2326 (|#2|)) (-15 -2654 ($ |#2|)) (-15 -2643 (|#2| $)) (-15 -2889 ((-1238 |#1|) $)) (-15 -3582 ($ (-1238 |#1|))) (-15 -2837 ((-1238 |#1|) $)) (-15 -3220 ((-940 $))) (-15 -3044 ((-940 $))) (IF (|has| |#1| (-343)) (-15 -4332 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2735 ((|#1| $) 13)) (-2786 (((-1099) $) NIL)) (-2692 ((|#2| $) 12)) (-3121 (($ |#1| |#2|) 16)) (-3110 (((-845) $) NIL) (($ (-2 (|:| -2735 |#1|) (|:| -2692 |#2|))) 15) (((-2 (|:| -2735 |#1|) (|:| -2692 |#2|)) $) 14)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 11))) -(((-699 |#1| |#2| |#3|) (-13 (-833) (-483 (-2 (|:| -2735 |#1|) (|:| -2692 |#2|))) (-10 -8 (-15 -2692 (|#2| $)) (-15 -2735 (|#1| $)) (-15 -3121 ($ |#1| |#2|)))) (-833) (-1079) (-1 (-111) (-2 (|:| -2735 |#1|) (|:| -2692 |#2|)) (-2 (|:| -2735 |#1|) (|:| -2692 |#2|)))) (T -699)) -((-2692 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-699 *3 *2 *4)) (-4 *3 (-833)) (-14 *4 (-1 (-111) (-2 (|:| -2735 *3) (|:| -2692 *2)) (-2 (|:| -2735 *3) (|:| -2692 *2)))))) (-2735 (*1 *2 *1) (-12 (-4 *2 (-833)) (-5 *1 (-699 *2 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *3)) (-2 (|:| -2735 *2) (|:| -2692 *3)))))) (-3121 (*1 *1 *2 *3) (-12 (-5 *1 (-699 *2 *3 *4)) (-4 *2 (-833)) (-4 *3 (-1079)) (-14 *4 (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *3)) (-2 (|:| -2735 *2) (|:| -2692 *3))))))) -(-13 (-833) (-483 (-2 (|:| -2735 |#1|) (|:| -2692 |#2|))) (-10 -8 (-15 -2692 (|#2| $)) (-15 -2735 (|#1| $)) (-15 -3121 ($ |#1| |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 59)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 89) (((-3 (-113) "failed") $) 95)) (-2707 ((|#1| $) NIL) (((-113) $) 39)) (-2982 (((-3 $ "failed") $) 90)) (-3735 ((|#2| (-113) |#2|) 82)) (-1848 (((-111) $) NIL)) (-2427 (($ |#1| (-355 (-113))) 14)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1915 (($ $ (-1 |#2| |#2|)) 58)) (-2819 (($ $ (-1 |#2| |#2|)) 44)) (-2046 ((|#2| $ |#2|) 33)) (-2309 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-3110 (((-845) $) 66) (($ (-553)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) 37)) (-3977 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-1988 (($) 21 T CONST)) (-1997 (($) 9 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) 48) (($ $ $) NIL)) (-1700 (($ $ $) 73)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ (-113) (-553)) NIL) (($ $ (-553)) 57)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) -(((-700 |#1| |#2|) (-13 (-1031) (-1020 |#1|) (-1020 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3977 ($ $)) (-15 -3977 ($ $ $)) (-15 -2309 (|#1| |#1|))) |%noBranch|) (-15 -2819 ($ $ (-1 |#2| |#2|))) (-15 -1915 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-553))) (-15 ** ($ $ (-553))) (-15 -3735 (|#2| (-113) |#2|)) (-15 -2427 ($ |#1| (-355 (-113)))))) (-1031) (-633 |#1|)) (T -700)) -((-3977 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1031)) (-5 *1 (-700 *2 *3)) (-4 *3 (-633 *2)))) (-3977 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1031)) (-5 *1 (-700 *2 *3)) (-4 *3 (-633 *2)))) (-2309 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1031)) (-5 *1 (-700 *2 *3)) (-4 *3 (-633 *2)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-633 *3)) (-4 *3 (-1031)) (-5 *1 (-700 *3 *4)))) (-1915 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-633 *3)) (-4 *3 (-1031)) (-5 *1 (-700 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-553)) (-4 *4 (-1031)) (-5 *1 (-700 *4 *5)) (-4 *5 (-633 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *3 (-1031)) (-5 *1 (-700 *3 *4)) (-4 *4 (-633 *3)))) (-3735 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1031)) (-5 *1 (-700 *4 *2)) (-4 *2 (-633 *4)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1031)) (-5 *1 (-700 *2 *4)) (-4 *4 (-633 *2))))) -(-13 (-1031) (-1020 |#1|) (-1020 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3977 ($ $)) (-15 -3977 ($ $ $)) (-15 -2309 (|#1| |#1|))) |%noBranch|) (-15 -2819 ($ $ (-1 |#2| |#2|))) (-15 -1915 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-553))) (-15 ** ($ $ (-553))) (-15 -3735 (|#2| (-113) |#2|)) (-15 -2427 ($ |#1| (-355 (-113)))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 33)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2654 (($ |#1| |#2|) 25)) (-2982 (((-3 $ "failed") $) 48)) (-1848 (((-111) $) 35)) (-2326 ((|#2| $) 12)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 49)) (-2786 (((-1099) $) NIL)) (-3930 (((-3 $ "failed") $ $) 47)) (-3110 (((-845) $) 24) (($ (-553)) 19) ((|#1| $) 13)) (-1999 (((-757)) 28)) (-1988 (($) 16 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 38)) (-1711 (($ $) 43) (($ $ $) 37)) (-1700 (($ $ $) 40)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 21) (($ $ $) 20))) -(((-701 |#1| |#2| |#3| |#4| |#5|) (-13 (-1031) (-10 -8 (-15 -2326 (|#2| $)) (-15 -3110 (|#1| $)) (-15 -2654 ($ |#1| |#2|)) (-15 -3930 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -3610 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -701)) -((-2982 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2326 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-701 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2654 (*1 *1 *2 *3) (-12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3930 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3610 (*1 *1 *1) (-12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1031) (-10 -8 (-15 -2326 (|#2| $)) (-15 -3110 (|#1| $)) (-15 -2654 ($ |#1| |#2|)) (-15 -3930 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -3610 ($ $)))) -((* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-702 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) (-703 |#2|) (-169)) (T -702)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-703 |#1|) (-137) (-169)) (T -703)) -NIL -(-13 (-110 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-1608 (($ |#1|) 17) (($ $ |#1|) 20)) (-1731 (($ |#1|) 18) (($ $ |#1|) 21)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1848 (((-111) $) NIL)) (-1433 (($ |#1| |#1| |#1| |#1|) 8)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 16)) (-2786 (((-1099) $) NIL)) (-2356 ((|#1| $ |#1|) 24) (((-819 |#1|) $ (-819 |#1|)) 32)) (-3199 (($ $ $) NIL)) (-1957 (($ $ $) NIL)) (-3110 (((-845) $) 39)) (-1997 (($) 9 T CONST)) (-1617 (((-111) $ $) 44)) (-1723 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ $ $) 14))) -(((-704 |#1|) (-13 (-466) (-10 -8 (-15 -1433 ($ |#1| |#1| |#1| |#1|)) (-15 -1608 ($ |#1|)) (-15 -1731 ($ |#1|)) (-15 -2982 ($)) (-15 -1608 ($ $ |#1|)) (-15 -1731 ($ $ |#1|)) (-15 -2982 ($ $)) (-15 -2356 (|#1| $ |#1|)) (-15 -2356 ((-819 |#1|) $ (-819 |#1|))))) (-357)) (T -704)) -((-1433 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-1608 (*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-1731 (*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-2982 (*1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-1731 (*1 *1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-2982 (*1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-2356 (*1 *2 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) (-2356 (*1 *2 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-357)) (-5 *1 (-704 *3))))) -(-13 (-466) (-10 -8 (-15 -1433 ($ |#1| |#1| |#1| |#1|)) (-15 -1608 ($ |#1|)) (-15 -1731 ($ |#1|)) (-15 -2982 ($)) (-15 -1608 ($ $ |#1|)) (-15 -1731 ($ $ |#1|)) (-15 -2982 ($ $)) (-15 -2356 (|#1| $ |#1|)) (-15 -2356 ((-819 |#1|) $ (-819 |#1|))))) -((-1658 (($ $ (-903)) 12)) (-1341 (($ $ (-903)) 13)) (** (($ $ (-903)) 10))) -(((-705 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-903))) (-15 -1341 (|#1| |#1| (-903))) (-15 -1658 (|#1| |#1| (-903)))) (-706)) (T -705)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-903))) (-15 -1341 (|#1| |#1| (-903))) (-15 -1658 (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-1658 (($ $ (-903)) 15)) (-1341 (($ $ (-903)) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6)) (** (($ $ (-903)) 13)) (* (($ $ $) 16))) -(((-706) (-137)) (T -706)) -((* (*1 *1 *1 *1) (-4 *1 (-706))) (-1658 (*1 *1 *1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-903)))) (-1341 (*1 *1 *1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-903)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-903))))) -(-13 (-1079) (-10 -8 (-15 * ($ $ $)) (-15 -1658 ($ $ (-903))) (-15 -1341 ($ $ (-903))) (-15 ** ($ $ (-903))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-1658 (($ $ (-903)) NIL) (($ $ (-757)) 17)) (-1848 (((-111) $) 10)) (-1341 (($ $ (-903)) NIL) (($ $ (-757)) 18)) (** (($ $ (-903)) NIL) (($ $ (-757)) 15))) -(((-707 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-757))) (-15 -1341 (|#1| |#1| (-757))) (-15 -1658 (|#1| |#1| (-757))) (-15 -1848 ((-111) |#1|)) (-15 ** (|#1| |#1| (-903))) (-15 -1341 (|#1| |#1| (-903))) (-15 -1658 (|#1| |#1| (-903)))) (-708)) (T -707)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-757))) (-15 -1341 (|#1| |#1| (-757))) (-15 -1658 (|#1| |#1| (-757))) (-15 -1848 ((-111) |#1|)) (-15 ** (|#1| |#1| (-903))) (-15 -1341 (|#1| |#1| (-903))) (-15 -1658 (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-1766 (((-3 $ "failed") $) 17)) (-1658 (($ $ (-903)) 15) (($ $ (-757)) 22)) (-2982 (((-3 $ "failed") $) 19)) (-1848 (((-111) $) 23)) (-3011 (((-3 $ "failed") $) 18)) (-1341 (($ $ (-903)) 14) (($ $ (-757)) 21)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1997 (($) 24 T CONST)) (-1617 (((-111) $ $) 6)) (** (($ $ (-903)) 13) (($ $ (-757)) 20)) (* (($ $ $) 16))) -(((-708) (-137)) (T -708)) -((-1997 (*1 *1) (-4 *1 (-708))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-111)))) (-1658 (*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-757)))) (-1341 (*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-757)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-757)))) (-2982 (*1 *1 *1) (|partial| -4 *1 (-708))) (-3011 (*1 *1 *1) (|partial| -4 *1 (-708))) (-1766 (*1 *1 *1) (|partial| -4 *1 (-708)))) -(-13 (-706) (-10 -8 (-15 (-1997) ($) -3879) (-15 -1848 ((-111) $)) (-15 -1658 ($ $ (-757))) (-15 -1341 ($ $ (-757))) (-15 ** ($ $ (-757))) (-15 -2982 ((-3 $ "failed") $)) (-15 -3011 ((-3 $ "failed") $)) (-15 -1766 ((-3 $ "failed") $)))) -(((-101) . T) ((-600 (-845)) . T) ((-706) . T) ((-1079) . T)) -((-2571 (((-757)) 35)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2707 (((-553) $) NIL) (((-401 (-553)) $) NIL) ((|#2| $) 22)) (-2654 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) 45)) (-2982 (((-3 $ "failed") $) 65)) (-3031 (($) 39)) (-3560 ((|#2| $) 20)) (-4093 (($) 17)) (-1330 (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL) (($ $ (-757)) NIL) (($ $) NIL)) (-2297 (((-674 |#2|) (-1238 $) (-1 |#2| |#2|)) 60)) (-1524 (((-1238 |#2|) $) NIL) (($ (-1238 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3547 ((|#3| $) 32)) (-4124 (((-1238 $)) 29))) -(((-709 |#1| |#2| |#3|) (-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -3031 (|#1|)) (-15 -2571 ((-757))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -2297 ((-674 |#2|) (-1238 |#1|) (-1 |#2| |#2|))) (-15 -2654 ((-3 |#1| "failed") (-401 |#3|))) (-15 -1524 (|#1| |#3|)) (-15 -2654 (|#1| |#3|)) (-15 -4093 (|#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1524 (|#3| |#1|)) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -4124 ((-1238 |#1|))) (-15 -3547 (|#3| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|))) (-710 |#2| |#3|) (-169) (-1214 |#2|)) (T -709)) -((-2571 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-757)) (-5 *1 (-709 *3 *4 *5)) (-4 *3 (-710 *4 *5))))) -(-10 -8 (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -3031 (|#1|)) (-15 -2571 ((-757))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -2297 ((-674 |#2|) (-1238 |#1|) (-1 |#2| |#2|))) (-15 -2654 ((-3 |#1| "failed") (-401 |#3|))) (-15 -1524 (|#1| |#3|)) (-15 -2654 (|#1| |#3|)) (-15 -4093 (|#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1524 (|#3| |#1|)) (-15 -1524 (|#1| (-1238 |#2|))) (-15 -1524 ((-1238 |#2|) |#1|)) (-15 -4124 ((-1238 |#1|))) (-15 -3547 (|#3| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 93 (|has| |#1| (-357)))) (-1968 (($ $) 94 (|has| |#1| (-357)))) (-2028 (((-111) $) 96 (|has| |#1| (-357)))) (-3989 (((-674 |#1|) (-1238 $)) 47) (((-674 |#1|)) 62)) (-1576 ((|#1| $) 53)) (-3555 (((-1165 (-903) (-757)) (-553)) 146 (|has| |#1| (-343)))) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 113 (|has| |#1| (-357)))) (-2708 (((-412 $) $) 114 (|has| |#1| (-357)))) (-4349 (((-111) $ $) 104 (|has| |#1| (-357)))) (-2571 (((-757)) 87 (|has| |#1| (-362)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 169 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 167 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 164)) (-2707 (((-553) $) 168 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 166 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 165)) (-3461 (($ (-1238 |#1|) (-1238 $)) 49) (($ (-1238 |#1|)) 65)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-343)))) (-3973 (($ $ $) 108 (|has| |#1| (-357)))) (-4232 (((-674 |#1|) $ (-1238 $)) 54) (((-674 |#1|) $) 60)) (-2077 (((-674 (-553)) (-674 $)) 163 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 162 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 161) (((-674 |#1|) (-674 $)) 160)) (-2654 (($ |#2|) 157) (((-3 $ "failed") (-401 |#2|)) 154 (|has| |#1| (-357)))) (-2982 (((-3 $ "failed") $) 33)) (-2409 (((-903)) 55)) (-3031 (($) 90 (|has| |#1| (-362)))) (-3952 (($ $ $) 107 (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 102 (|has| |#1| (-357)))) (-2484 (($) 148 (|has| |#1| (-343)))) (-3637 (((-111) $) 149 (|has| |#1| (-343)))) (-1808 (($ $ (-757)) 140 (|has| |#1| (-343))) (($ $) 139 (|has| |#1| (-343)))) (-3119 (((-111) $) 115 (|has| |#1| (-357)))) (-2968 (((-903) $) 151 (|has| |#1| (-343))) (((-819 (-903)) $) 137 (|has| |#1| (-343)))) (-1848 (((-111) $) 31)) (-3560 ((|#1| $) 52)) (-2502 (((-3 $ "failed") $) 141 (|has| |#1| (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 111 (|has| |#1| (-357)))) (-3568 ((|#2| $) 45 (|has| |#1| (-357)))) (-3796 (((-903) $) 89 (|has| |#1| (-362)))) (-2643 ((|#2| $) 155)) (-2471 (($ (-630 $)) 100 (|has| |#1| (-357))) (($ $ $) 99 (|has| |#1| (-357)))) (-1735 (((-1137) $) 9)) (-3610 (($ $) 116 (|has| |#1| (-357)))) (-1945 (($) 142 (|has| |#1| (-343)) CONST)) (-2735 (($ (-903)) 88 (|has| |#1| (-362)))) (-2786 (((-1099) $) 10)) (-4093 (($) 159)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 101 (|has| |#1| (-357)))) (-2508 (($ (-630 $)) 98 (|has| |#1| (-357))) (($ $ $) 97 (|has| |#1| (-357)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) 145 (|has| |#1| (-343)))) (-3355 (((-412 $) $) 112 (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 109 (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ $) 92 (|has| |#1| (-357)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 103 (|has| |#1| (-357)))) (-3384 (((-757) $) 105 (|has| |#1| (-357)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 106 (|has| |#1| (-357)))) (-3000 ((|#1| (-1238 $)) 48) ((|#1|) 61)) (-3122 (((-757) $) 150 (|has| |#1| (-343))) (((-3 (-757) "failed") $ $) 138 (|has| |#1| (-343)))) (-1330 (($ $) 136 (-3988 (-3726 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-757)) 134 (-3988 (-3726 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1155)) 132 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-630 (-1155))) 131 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-1155) (-757)) 130 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-630 (-1155)) (-630 (-757))) 129 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-757)) 122 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-357)))) (-2297 (((-674 |#1|) (-1238 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-357)))) (-1394 ((|#2|) 158)) (-1469 (($) 147 (|has| |#1| (-343)))) (-2855 (((-1238 |#1|) $ (-1238 $)) 51) (((-674 |#1|) (-1238 $) (-1238 $)) 50) (((-1238 |#1|) $) 67) (((-674 |#1|) (-1238 $)) 66)) (-1524 (((-1238 |#1|) $) 64) (($ (-1238 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 144 (|has| |#1| (-343)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-357))) (($ (-401 (-553))) 86 (-3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553))))))) (-2941 (($ $) 143 (|has| |#1| (-343))) (((-3 $ "failed") $) 44 (|has| |#1| (-142)))) (-3547 ((|#2| $) 46)) (-1999 (((-757)) 28)) (-4124 (((-1238 $)) 68)) (-1639 (((-111) $ $) 95 (|has| |#1| (-357)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $) 135 (-3988 (-3726 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-757)) 133 (-3988 (-3726 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1155)) 128 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-630 (-1155))) 127 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-1155) (-757)) 126 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-630 (-1155)) (-630 (-757))) 125 (-3726 (|has| |#1| (-882 (-1155))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-757)) 124 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-357)))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 120 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 117 (|has| |#1| (-357)))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-401 (-553)) $) 119 (|has| |#1| (-357))) (($ $ (-401 (-553))) 118 (|has| |#1| (-357))))) -(((-710 |#1| |#2|) (-137) (-169) (-1214 |t#1|)) (T -710)) -((-4093 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-710 *2 *3)) (-4 *3 (-1214 *2)))) (-1394 (*1 *2) (-12 (-4 *1 (-710 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1214 *3)))) (-2654 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-710 *3 *2)) (-4 *2 (-1214 *3)))) (-1524 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-710 *3 *2)) (-4 *2 (-1214 *3)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-710 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1214 *3)))) (-2654 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-357)) (-4 *3 (-169)) (-4 *1 (-710 *3 *4)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-1238 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-4 *1 (-710 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1214 *5)) (-5 *2 (-674 *5))))) -(-13 (-403 |t#1| |t#2|) (-169) (-601 |t#2|) (-405 |t#1|) (-371 |t#1|) (-10 -8 (-15 -4093 ($)) (-15 -1394 (|t#2|)) (-15 -2654 ($ |t#2|)) (-15 -1524 ($ |t#2|)) (-15 -2643 (|t#2| $)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-357)) (-6 (-226 |t#1|)) (-15 -2654 ((-3 $ "failed") (-401 |t#2|))) (-15 -2297 ((-674 |t#1|) (-1238 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-101) . T) ((-110 #0# #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -3988 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-343)) (|has| |#1| (-357))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 $) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-600 (-845)) . T) ((-169) . T) ((-601 |#2|) . T) ((-226 |#1|) |has| |#1| (-357)) ((-228) -3988 (|has| |#1| (-343)) (-12 (|has| |#1| (-228)) (|has| |#1| (-357)))) ((-238) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-284) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-301) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-357) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -3988 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-545) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-633 #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-703 |#1|) . T) ((-703 $) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-712) . T) ((-882 (-1155)) -12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155)))) ((-902) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 #0#) -3988 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1037 |#1|) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) |has| |#1| (-343)) ((-1196) -3988 (|has| |#1| (-343)) (|has| |#1| (-357)))) -((-3820 (($) 11)) (-2982 (((-3 $ "failed") $) 13)) (-1848 (((-111) $) 10)) (** (($ $ (-903)) NIL) (($ $ (-757)) 18))) -(((-711 |#1|) (-10 -8 (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-757))) (-15 -1848 ((-111) |#1|)) (-15 -3820 (|#1|)) (-15 ** (|#1| |#1| (-903)))) (-712)) (T -711)) -NIL -(-10 -8 (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-757))) (-15 -1848 ((-111) |#1|)) (-15 -3820 (|#1|)) (-15 ** (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-3820 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 15)) (-1848 (((-111) $) 17)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1997 (($) 19 T CONST)) (-1617 (((-111) $ $) 6)) (** (($ $ (-903)) 13) (($ $ (-757)) 16)) (* (($ $ $) 14))) -(((-712) (-137)) (T -712)) -((-1997 (*1 *1) (-4 *1 (-712))) (-3820 (*1 *1) (-4 *1 (-712))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-712)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-757)))) (-2982 (*1 *1 *1) (|partial| -4 *1 (-712)))) -(-13 (-1091) (-10 -8 (-15 (-1997) ($) -3879) (-15 -3820 ($) -3879) (-15 -1848 ((-111) $)) (-15 ** ($ $ (-757))) (-15 -2982 ((-3 $ "failed") $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1091) . T) ((-1079) . T)) -((-1489 (((-2 (|:| -1686 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3446 (((-2 (|:| -1686 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2114 ((|#2| (-401 |#2|) (-1 |#2| |#2|)) 13)) (-2075 (((-2 (|:| |poly| |#2|) (|:| -1686 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)) 47))) -(((-713 |#1| |#2|) (-10 -7 (-15 -3446 ((-2 (|:| -1686 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1489 ((-2 (|:| -1686 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2114 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -2075 ((-2 (|:| |poly| |#2|) (|:| -1686 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1214 |#1|)) (T -713)) -((-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1686 (-401 *6)) (|:| |special| (-401 *6)))) (-5 *1 (-713 *5 *6)) (-5 *3 (-401 *6)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1214 *5)) (-5 *1 (-713 *5 *2)) (-4 *5 (-357)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1686 (-412 *3)) (|:| |special| (-412 *3)))) (-5 *1 (-713 *5 *3)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1686 *3) (|:| |special| *3))) (-5 *1 (-713 *5 *3))))) -(-10 -7 (-15 -3446 ((-2 (|:| -1686 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1489 ((-2 (|:| -1686 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2114 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -2075 ((-2 (|:| |poly| |#2|) (|:| -1686 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) -((-2531 ((|#7| (-630 |#5|) |#6|) NIL)) (-1482 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-714 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1482 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2531 (|#7| (-630 |#5|) |#6|))) (-833) (-779) (-779) (-1031) (-1031) (-931 |#4| |#2| |#1|) (-931 |#5| |#3| |#1|)) (T -714)) -((-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *9)) (-4 *9 (-1031)) (-4 *5 (-833)) (-4 *6 (-779)) (-4 *8 (-1031)) (-4 *2 (-931 *9 *7 *5)) (-5 *1 (-714 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-779)) (-4 *4 (-931 *8 *6 *5)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1031)) (-4 *9 (-1031)) (-4 *5 (-833)) (-4 *6 (-779)) (-4 *2 (-931 *9 *7 *5)) (-5 *1 (-714 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-779)) (-4 *4 (-931 *8 *6 *5))))) -(-10 -7 (-15 -1482 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2531 (|#7| (-630 |#5|) |#6|))) -((-1482 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-715 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1482 (|#7| (-1 |#2| |#1|) |#6|))) (-833) (-833) (-779) (-779) (-1031) (-931 |#5| |#3| |#1|) (-931 |#5| |#4| |#2|)) (T -715)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-833)) (-4 *6 (-833)) (-4 *7 (-779)) (-4 *9 (-1031)) (-4 *2 (-931 *9 *8 *6)) (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-779)) (-4 *4 (-931 *9 *7 *5))))) -(-10 -7 (-15 -1482 (|#7| (-1 |#2| |#1|) |#6|))) -((-3355 (((-412 |#4|) |#4|) 41))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 |#4|) |#4|))) (-779) (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155))))) (-301) (-931 (-934 |#3|) |#1| |#2|)) (T -716)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-931 (-934 *6) *4 *5))))) -(-10 -7 (-15 -3355 ((-412 |#4|) |#4|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-847 |#1|)) $) NIL)) (-3322 (((-1151 $) $ (-847 |#1|)) NIL) (((-1151 |#2|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-1968 (($ $) NIL (|has| |#2| (-545)))) (-2028 (((-111) $) NIL (|has| |#2| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-847 |#1|))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1536 (($ $) NIL (|has| |#2| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#2| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-847 |#1|) "failed") $) NIL)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-847 |#1|) $) NIL)) (-2134 (($ $ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#2| (-891)))) (-2686 (($ $ |#2| (-524 (-847 |#1|)) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-847 |#1|) (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#2|) (-847 |#1|)) NIL) (($ (-1151 $) (-847 |#1|)) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#2| (-524 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-847 |#1|)) NIL)) (-2423 (((-524 (-847 |#1|)) $) NIL) (((-757) $ (-847 |#1|)) NIL) (((-630 (-757)) $ (-630 (-847 |#1|))) NIL)) (-1824 (($ $ $) NIL (|has| |#2| (-833)))) (-1975 (($ $ $) NIL (|has| |#2| (-833)))) (-2241 (($ (-1 (-524 (-847 |#1|)) (-524 (-847 |#1|))) $) NIL)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1332 (((-3 (-847 |#1|) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#2| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-847 |#1|)) (|:| -2692 (-757))) "failed") $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#2| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#2| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#2| (-891)))) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-847 |#1|) |#2|) NIL) (($ $ (-630 (-847 |#1|)) (-630 |#2|)) NIL) (($ $ (-847 |#1|) $) NIL) (($ $ (-630 (-847 |#1|)) (-630 $)) NIL)) (-3000 (($ $ (-847 |#1|)) NIL (|has| |#2| (-169)))) (-1330 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-3872 (((-524 (-847 |#1|)) $) NIL) (((-757) $ (-847 |#1|)) NIL) (((-630 (-757)) $ (-630 (-847 |#1|))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-847 |#1|) (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-847 |#1|) (-601 (-529))) (|has| |#2| (-601 (-529)))))) (-4198 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-847 |#1|)) NIL (|has| |#2| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) NIL) (($ (-847 |#1|)) NIL) (($ $) NIL (|has| |#2| (-545))) (($ (-401 (-553))) NIL (-3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553))))))) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-524 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#2| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#2| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#2| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-847 |#1|)) NIL) (($ $ (-630 (-847 |#1|))) NIL) (($ $ (-847 |#1|) (-757)) NIL) (($ $ (-630 (-847 |#1|)) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#2| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#2| (-38 (-401 (-553))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-717 |#1| |#2|) (-931 |#2| (-524 (-847 |#1|)) (-847 |#1|)) (-630 (-1155)) (-1031)) (T -717)) -NIL -(-931 |#2| (-524 (-847 |#1|)) (-847 |#1|)) -((-2896 (((-2 (|:| -2345 (-934 |#3|)) (|:| -2401 (-934 |#3|))) |#4|) 14)) (-4045 ((|#4| |#4| |#2|) 33)) (-3166 ((|#4| (-401 (-934 |#3|)) |#2|) 64)) (-1556 ((|#4| (-1151 (-934 |#3|)) |#2|) 77)) (-2184 ((|#4| (-1151 |#4|) |#2|) 51)) (-4078 ((|#4| |#4| |#2|) 54)) (-3355 (((-412 |#4|) |#4|) 40))) -(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2896 ((-2 (|:| -2345 (-934 |#3|)) (|:| -2401 (-934 |#3|))) |#4|)) (-15 -4078 (|#4| |#4| |#2|)) (-15 -2184 (|#4| (-1151 |#4|) |#2|)) (-15 -4045 (|#4| |#4| |#2|)) (-15 -1556 (|#4| (-1151 (-934 |#3|)) |#2|)) (-15 -3166 (|#4| (-401 (-934 |#3|)) |#2|)) (-15 -3355 ((-412 |#4|) |#4|))) (-779) (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)))) (-545) (-931 (-401 (-934 |#3|)) |#1| |#2|)) (T -718)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *6 (-545)) (-5 *2 (-412 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-931 (-401 (-934 *6)) *4 *5)))) (-3166 (*1 *2 *3 *4) (-12 (-4 *6 (-545)) (-4 *2 (-931 *3 *5 *4)) (-5 *1 (-718 *5 *4 *6 *2)) (-5 *3 (-401 (-934 *6))) (-4 *5 (-779)) (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))))) (-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 (-934 *6))) (-4 *6 (-545)) (-4 *2 (-931 (-401 (-934 *6)) *5 *4)) (-5 *1 (-718 *5 *4 *6 *2)) (-4 *5 (-779)) (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))))) (-4045 (*1 *2 *2 *3) (-12 (-4 *4 (-779)) (-4 *3 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *5 (-545)) (-5 *1 (-718 *4 *3 *5 *2)) (-4 *2 (-931 (-401 (-934 *5)) *4 *3)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-1151 *2)) (-4 *2 (-931 (-401 (-934 *6)) *5 *4)) (-5 *1 (-718 *5 *4 *6 *2)) (-4 *5 (-779)) (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *6 (-545)))) (-4078 (*1 *2 *2 *3) (-12 (-4 *4 (-779)) (-4 *3 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *5 (-545)) (-5 *1 (-718 *4 *3 *5 *2)) (-4 *2 (-931 (-401 (-934 *5)) *4 *3)))) (-2896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *6 (-545)) (-5 *2 (-2 (|:| -2345 (-934 *6)) (|:| -2401 (-934 *6)))) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-931 (-401 (-934 *6)) *4 *5))))) -(-10 -7 (-15 -2896 ((-2 (|:| -2345 (-934 |#3|)) (|:| -2401 (-934 |#3|))) |#4|)) (-15 -4078 (|#4| |#4| |#2|)) (-15 -2184 (|#4| (-1151 |#4|) |#2|)) (-15 -4045 (|#4| |#4| |#2|)) (-15 -1556 (|#4| (-1151 (-934 |#3|)) |#2|)) (-15 -3166 (|#4| (-401 (-934 |#3|)) |#2|)) (-15 -3355 ((-412 |#4|) |#4|))) -((-3355 (((-412 |#4|) |#4|) 52))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 |#4|) |#4|))) (-779) (-833) (-13 (-301) (-144)) (-931 (-401 |#3|) |#1| |#2|)) (T -719)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-931 (-401 *6) *4 *5))))) -(-10 -7 (-15 -3355 ((-412 |#4|) |#4|))) -((-1482 (((-721 |#2| |#3|) (-1 |#2| |#1|) (-721 |#1| |#3|)) 18))) -(((-720 |#1| |#2| |#3|) (-10 -7 (-15 -1482 ((-721 |#2| |#3|) (-1 |#2| |#1|) (-721 |#1| |#3|)))) (-1031) (-1031) (-712)) (T -720)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5 *7)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-4 *7 (-712)) (-5 *2 (-721 *6 *7)) (-5 *1 (-720 *5 *6 *7))))) -(-10 -7 (-15 -1482 ((-721 |#2| |#3|) (-1 |#2| |#1|) (-721 |#1| |#3|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 28)) (-2140 (((-630 (-2 (|:| -4120 |#1|) (|:| -1718 |#2|))) $) 29)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2571 (((-757)) 20 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2707 ((|#2| $) NIL) ((|#1| $) NIL)) (-3678 (($ $) 79 (|has| |#2| (-833)))) (-2982 (((-3 $ "failed") $) 65)) (-3031 (($) 35 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) 55)) (-2096 (((-630 $) $) 39)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| |#2|) 16)) (-1482 (($ (-1 |#1| |#1|) $) 54)) (-3796 (((-903) $) 32 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-3644 ((|#2| $) 78 (|has| |#2| (-833)))) (-3655 ((|#1| $) 77 (|has| |#2| (-833)))) (-1735 (((-1137) $) NIL)) (-2735 (($ (-903)) 27 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 76) (($ (-553)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-630 (-2 (|:| -4120 |#1|) (|:| -1718 |#2|)))) 11)) (-3987 (((-630 |#1|) $) 41)) (-1624 ((|#1| $ |#2|) 88)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-1988 (($) 12 T CONST)) (-1997 (($) 33 T CONST)) (-1617 (((-111) $ $) 80)) (-1711 (($ $) 47) (($ $ $) NIL)) (-1700 (($ $ $) 26)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-721 |#1| |#2|) (-13 (-1031) (-1020 |#2|) (-1020 |#1|) (-10 -8 (-15 -3481 ($ |#1| |#2|)) (-15 -1624 (|#1| $ |#2|)) (-15 -3110 ($ (-630 (-2 (|:| -4120 |#1|) (|:| -1718 |#2|))))) (-15 -2140 ((-630 (-2 (|:| -4120 |#1|) (|:| -1718 |#2|))) $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (-15 -1298 ((-111) $)) (-15 -3987 ((-630 |#1|) $)) (-15 -2096 ((-630 $) $)) (-15 -1984 ((-757) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-833)) (PROGN (-15 -3644 (|#2| $)) (-15 -3655 (|#1| $)) (-15 -3678 ($ $))) |%noBranch|))) (-1031) (-712)) (T -721)) -((-3481 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-712)))) (-1624 (*1 *2 *1 *3) (-12 (-4 *2 (-1031)) (-5 *1 (-721 *2 *3)) (-4 *3 (-712)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -4120 *3) (|:| -1718 *4)))) (-4 *3 (-1031)) (-4 *4 (-712)) (-5 *1 (-721 *3 *4)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| -4120 *3) (|:| -1718 *4)))) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-712)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-721 *3 *4)) (-4 *4 (-712)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-712)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-712)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-630 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-712)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-712)))) (-3644 (*1 *2 *1) (-12 (-4 *2 (-712)) (-4 *2 (-833)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1031)))) (-3655 (*1 *2 *1) (-12 (-4 *2 (-1031)) (-5 *1 (-721 *2 *3)) (-4 *3 (-833)) (-4 *3 (-712)))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-721 *2 *3)) (-4 *3 (-833)) (-4 *2 (-1031)) (-4 *3 (-712))))) -(-13 (-1031) (-1020 |#2|) (-1020 |#1|) (-10 -8 (-15 -3481 ($ |#1| |#2|)) (-15 -1624 (|#1| $ |#2|)) (-15 -3110 ($ (-630 (-2 (|:| -4120 |#1|) (|:| -1718 |#2|))))) (-15 -2140 ((-630 (-2 (|:| -4120 |#1|) (|:| -1718 |#2|))) $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (-15 -1298 ((-111) $)) (-15 -3987 ((-630 |#1|) $)) (-15 -2096 ((-630 $) $)) (-15 -1984 ((-757) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-833)) (PROGN (-15 -3644 (|#2| $)) (-15 -3655 (|#1| $)) (-15 -3678 ($ $))) |%noBranch|))) -((-3096 (((-111) $ $) 19)) (-3368 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2745 (($ $ $) 72)) (-4048 (((-111) $ $) 73)) (-1511 (((-111) $ (-757)) 8)) (-1471 (($ (-630 |#1|)) 68) (($) 67)) (-2955 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2873 (($ $) 62)) (-2638 (($ $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) 64)) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22)) (-1475 (($ $ $) 69)) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40) (($ |#1| $ (-757)) 63)) (-2786 (((-1099) $) 21)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3390 (((-630 (-2 (|:| -3256 |#1|) (|:| -2796 (-757)))) $) 61)) (-2507 (($ $ |#1|) 71) (($ $ $) 70)) (-3093 (($) 49) (($ (-630 |#1|)) 48)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 50)) (-3110 (((-845) $) 18)) (-3420 (($ (-630 |#1|)) 66) (($) 65)) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20)) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-722 |#1|) (-137) (-1079)) (T -722)) -NIL -(-13 (-680 |t#1|) (-1077 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-600 (-845)) . T) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-680 |#1|) . T) ((-1077 |#1|) . T) ((-1079) . T) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3368 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2745 (($ $ $) 79)) (-4048 (((-111) $ $) 83)) (-1511 (((-111) $ (-757)) NIL)) (-1471 (($ (-630 |#1|)) 24) (($) 16)) (-2955 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2873 (($ $) 71)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) 61 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4369))) (($ |#1| $ (-553)) 62) (($ (-1 (-111) |#1|) $ (-553)) 65)) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (($ |#1| $ (-553)) 67) (($ (-1 (-111) |#1|) $ (-553)) 68)) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 32 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) 82)) (-2846 (($) 14) (($ |#1|) 26) (($ (-630 |#1|)) 21)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) 38)) (-1832 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 75)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1475 (($ $ $) 77)) (-1376 ((|#1| $) 55)) (-2636 (($ |#1| $) 56) (($ |#1| $ (-757)) 72)) (-2786 (((-1099) $) NIL)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2949 ((|#1| $) 54)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 50)) (-3222 (($) 13)) (-3390 (((-630 (-2 (|:| -3256 |#1|) (|:| -2796 (-757)))) $) 48)) (-2507 (($ $ |#1|) NIL) (($ $ $) 78)) (-3093 (($) 15) (($ (-630 |#1|)) 23)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) 60 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 66)) (-1524 (((-529) $) 36 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 20)) (-3110 (((-845) $) 44)) (-3420 (($ (-630 |#1|)) 25) (($) 17)) (-2711 (($ (-630 |#1|)) 22)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 81)) (-2563 (((-757) $) 59 (|has| $ (-6 -4369))))) -(((-723 |#1|) (-13 (-722 |#1|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -2846 ($)) (-15 -2846 ($ |#1|)) (-15 -2846 ($ (-630 |#1|))) (-15 -2195 ((-630 |#1|) $)) (-15 -2575 ($ |#1| $ (-553))) (-15 -2575 ($ (-1 (-111) |#1|) $ (-553))) (-15 -3986 ($ |#1| $ (-553))) (-15 -3986 ($ (-1 (-111) |#1|) $ (-553))))) (-1079)) (T -723)) -((-2846 (*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-1079)))) (-2846 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-1079)))) (-2846 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-723 *3)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-723 *3)) (-4 *3 (-1079)))) (-2575 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-723 *2)) (-4 *2 (-1079)))) (-2575 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-553)) (-4 *4 (-1079)) (-5 *1 (-723 *4)))) (-3986 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-723 *2)) (-4 *2 (-1079)))) (-3986 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-553)) (-4 *4 (-1079)) (-5 *1 (-723 *4))))) -(-13 (-722 |#1|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -2846 ($)) (-15 -2846 ($ |#1|)) (-15 -2846 ($ (-630 |#1|))) (-15 -2195 ((-630 |#1|) $)) (-15 -2575 ($ |#1| $ (-553))) (-15 -2575 ($ (-1 (-111) |#1|) $ (-553))) (-15 -3986 ($ |#1| $ (-553))) (-15 -3986 ($ (-1 (-111) |#1|) $ (-553))))) -((-1654 (((-1243) (-1137)) 8))) -(((-724) (-10 -7 (-15 -1654 ((-1243) (-1137))))) (T -724)) -((-1654 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-724))))) -(-10 -7 (-15 -1654 ((-1243) (-1137)))) -((-2328 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 10))) -(((-725 |#1|) (-10 -7 (-15 -2328 ((-630 |#1|) (-630 |#1|) (-630 |#1|)))) (-833)) (T -725)) -((-2328 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-725 *3))))) -(-10 -7 (-15 -2328 ((-630 |#1|) (-630 |#1|) (-630 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 |#2|) $) 139)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 132 (|has| |#1| (-545)))) (-1968 (($ $) 131 (|has| |#1| (-545)))) (-2028 (((-111) $) 129 (|has| |#1| (-545)))) (-2380 (($ $) 88 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 71 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 70 (|has| |#1| (-38 (-401 (-553)))))) (-2357 (($ $) 87 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 72 (|has| |#1| (-38 (-401 (-553)))))) (-2403 (($ $) 86 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 73 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) 17 T CONST)) (-3678 (($ $) 123)) (-2982 (((-3 $ "failed") $) 33)) (-4219 (((-934 |#1|) $ (-757)) 101) (((-934 |#1|) $ (-757) (-757)) 100)) (-4008 (((-111) $) 140)) (-3996 (($) 98 (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-757) $ |#2|) 103) (((-757) $ |#2| (-757)) 102)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 69 (|has| |#1| (-38 (-401 (-553)))))) (-1298 (((-111) $) 121)) (-3481 (($ $ (-630 |#2|) (-630 (-524 |#2|))) 138) (($ $ |#2| (-524 |#2|)) 137) (($ |#1| (-524 |#2|)) 122) (($ $ |#2| (-757)) 105) (($ $ (-630 |#2|) (-630 (-757))) 104)) (-1482 (($ (-1 |#1| |#1|) $) 120)) (-2366 (($ $) 95 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) 118)) (-3655 ((|#1| $) 117)) (-1735 (((-1137) $) 9)) (-3406 (($ $ |#2|) 99 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) 10)) (-3089 (($ $ (-757)) 106)) (-3929 (((-3 $ "failed") $ $) 133 (|has| |#1| (-545)))) (-2743 (($ $) 96 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (($ $ |#2| $) 114) (($ $ (-630 |#2|) (-630 $)) 113) (($ $ (-630 (-288 $))) 112) (($ $ (-288 $)) 111) (($ $ $ $) 110) (($ $ (-630 $) (-630 $)) 109)) (-1330 (($ $ |#2|) 42) (($ $ (-630 |#2|)) 41) (($ $ |#2| (-757)) 40) (($ $ (-630 |#2|) (-630 (-757))) 39)) (-3872 (((-524 |#2|) $) 119)) (-2414 (($ $) 85 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 74 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 84 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 75 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 83 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 76 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 141)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 136 (|has| |#1| (-169))) (($ $) 134 (|has| |#1| (-545))) (($ (-401 (-553))) 126 (|has| |#1| (-38 (-401 (-553)))))) (-1624 ((|#1| $ (-524 |#2|)) 124) (($ $ |#2| (-757)) 108) (($ $ (-630 |#2|) (-630 (-757))) 107)) (-2941 (((-3 $ "failed") $) 135 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-2447 (($ $) 94 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 82 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) 130 (|has| |#1| (-545)))) (-2425 (($ $) 93 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 81 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 92 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 80 (|has| |#1| (-38 (-401 (-553)))))) (-2570 (($ $) 91 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 79 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 90 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 78 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 89 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 77 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ |#2|) 38) (($ $ (-630 |#2|)) 37) (($ $ |#2| (-757)) 36) (($ $ (-630 |#2|) (-630 (-757))) 35)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 125 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ $) 97 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 68 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 128 (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) 127 (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 116) (($ $ |#1|) 115))) -(((-726 |#1| |#2|) (-137) (-1031) (-833)) (T -726)) -((-1624 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *2)) (-4 *4 (-1031)) (-4 *2 (-833)))) (-1624 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *5)) (-5 *3 (-630 (-757))) (-4 *1 (-726 *4 *5)) (-4 *4 (-1031)) (-4 *5 (-833)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-726 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-833)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *2)) (-4 *4 (-1031)) (-4 *2 (-833)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *5)) (-5 *3 (-630 (-757))) (-4 *1 (-726 *4 *5)) (-4 *4 (-1031)) (-4 *5 (-833)))) (-2968 (*1 *2 *1 *3) (-12 (-4 *1 (-726 *4 *3)) (-4 *4 (-1031)) (-4 *3 (-833)) (-5 *2 (-757)))) (-2968 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-757)) (-4 *1 (-726 *4 *3)) (-4 *4 (-1031)) (-4 *3 (-833)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *5)) (-4 *4 (-1031)) (-4 *5 (-833)) (-5 *2 (-934 *4)))) (-4219 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *5)) (-4 *4 (-1031)) (-4 *5 (-833)) (-5 *2 (-934 *4)))) (-3406 (*1 *1 *1 *2) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-833)) (-4 *3 (-38 (-401 (-553))))))) -(-13 (-882 |t#2|) (-955 |t#1| (-524 |t#2|) |t#2|) (-507 |t#2| $) (-303 $) (-10 -8 (-15 -1624 ($ $ |t#2| (-757))) (-15 -1624 ($ $ (-630 |t#2|) (-630 (-757)))) (-15 -3089 ($ $ (-757))) (-15 -3481 ($ $ |t#2| (-757))) (-15 -3481 ($ $ (-630 |t#2|) (-630 (-757)))) (-15 -2968 ((-757) $ |t#2|)) (-15 -2968 ((-757) $ |t#2| (-757))) (-15 -4219 ((-934 |t#1|) $ (-757))) (-15 -4219 ((-934 |t#1|) $ (-757) (-757))) (IF (|has| |t#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $ |t#2|)) (-6 (-984)) (-6 (-1177))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-524 |#2|)) . T) ((-25) . T) ((-38 #1=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-35) |has| |#1| (-38 (-401 (-553)))) ((-94) |has| |#1| (-38 (-401 (-553)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #1#) |has| |#1| (-38 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-278) |has| |#1| (-38 (-401 (-553)))) ((-284) |has| |#1| (-545)) ((-303 $) . T) ((-486) |has| |#1| (-38 (-401 (-553)))) ((-507 |#2| $) . T) ((-507 $ $) . T) ((-545) |has| |#1| (-545)) ((-633 #1#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #1#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) . T) ((-882 |#2|) . T) ((-955 |#1| #0# |#2|) . T) ((-984) |has| |#1| (-38 (-401 (-553)))) ((-1037 #1#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1177) |has| |#1| (-38 (-401 (-553)))) ((-1180) |has| |#1| (-38 (-401 (-553))))) -((-3355 (((-412 (-1151 |#4|)) (-1151 |#4|)) 30) (((-412 |#4|) |#4|) 26))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 |#4|) |#4|)) (-15 -3355 ((-412 (-1151 |#4|)) (-1151 |#4|)))) (-833) (-779) (-13 (-301) (-144)) (-931 |#3| |#2| |#1|)) (T -727)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-931 *6 *5 *4)) (-5 *2 (-412 (-1151 *7))) (-5 *1 (-727 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-931 *6 *5 *4))))) -(-10 -7 (-15 -3355 ((-412 |#4|) |#4|)) (-15 -3355 ((-412 (-1151 |#4|)) (-1151 |#4|)))) -((-4236 (((-412 |#4|) |#4| |#2|) 118)) (-3758 (((-412 |#4|) |#4|) NIL)) (-2708 (((-412 (-1151 |#4|)) (-1151 |#4|)) 109) (((-412 |#4|) |#4|) 40)) (-4165 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-630 (-2 (|:| -3355 (-1151 |#4|)) (|:| -2692 (-553)))))) (-1151 |#4|) (-630 |#2|) (-630 (-630 |#3|))) 68)) (-3768 (((-1151 |#3|) (-1151 |#3|) (-553)) 136)) (-1925 (((-630 (-757)) (-1151 |#4|) (-630 |#2|) (-757)) 60)) (-2643 (((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-1151 |#3|) (-1151 |#3|) |#4| (-630 |#2|) (-630 (-757)) (-630 |#3|)) 64)) (-1329 (((-2 (|:| |upol| (-1151 |#3|)) (|:| |Lval| (-630 |#3|)) (|:| |Lfact| (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553))))) (|:| |ctpol| |#3|)) (-1151 |#4|) (-630 |#2|) (-630 (-630 |#3|))) 25)) (-2358 (((-2 (|:| -4252 (-1151 |#4|)) (|:| |polval| (-1151 |#3|))) (-1151 |#4|) (-1151 |#3|) (-553)) 56)) (-1786 (((-553) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553))))) 133)) (-4024 ((|#4| (-553) (-412 |#4|)) 57)) (-2915 (((-111) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553))))) NIL))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-412 |#4|) |#4|)) (-15 -2708 ((-412 (-1151 |#4|)) (-1151 |#4|))) (-15 -3758 ((-412 |#4|) |#4|)) (-15 -1786 ((-553) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))))) (-15 -4236 ((-412 |#4|) |#4| |#2|)) (-15 -2358 ((-2 (|:| -4252 (-1151 |#4|)) (|:| |polval| (-1151 |#3|))) (-1151 |#4|) (-1151 |#3|) (-553))) (-15 -4165 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-630 (-2 (|:| -3355 (-1151 |#4|)) (|:| -2692 (-553)))))) (-1151 |#4|) (-630 |#2|) (-630 (-630 |#3|)))) (-15 -1329 ((-2 (|:| |upol| (-1151 |#3|)) (|:| |Lval| (-630 |#3|)) (|:| |Lfact| (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553))))) (|:| |ctpol| |#3|)) (-1151 |#4|) (-630 |#2|) (-630 (-630 |#3|)))) (-15 -4024 (|#4| (-553) (-412 |#4|))) (-15 -2915 ((-111) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))))) (-15 -2643 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-1151 |#3|) (-1151 |#3|) |#4| (-630 |#2|) (-630 (-757)) (-630 |#3|))) (-15 -1925 ((-630 (-757)) (-1151 |#4|) (-630 |#2|) (-757))) (-15 -3768 ((-1151 |#3|) (-1151 |#3|) (-553)))) (-779) (-833) (-301) (-931 |#3| |#1| |#2|)) (T -728)) -((-3768 (*1 *2 *2 *3) (-12 (-5 *2 (-1151 *6)) (-5 *3 (-553)) (-4 *6 (-301)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-728 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5)))) (-1925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1151 *9)) (-5 *4 (-630 *7)) (-4 *7 (-833)) (-4 *9 (-931 *8 *6 *7)) (-4 *6 (-779)) (-4 *8 (-301)) (-5 *2 (-630 (-757))) (-5 *1 (-728 *6 *7 *8 *9)) (-5 *5 (-757)))) (-2643 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1151 *11)) (-5 *6 (-630 *10)) (-5 *7 (-630 (-757))) (-5 *8 (-630 *11)) (-4 *10 (-833)) (-4 *11 (-301)) (-4 *9 (-779)) (-4 *5 (-931 *11 *9 *10)) (-5 *2 (-630 (-1151 *5))) (-5 *1 (-728 *9 *10 *11 *5)) (-5 *3 (-1151 *5)))) (-2915 (*1 *2 *3 *3) (-12 (-5 *3 (-630 (-2 (|:| -3355 (-1151 *6)) (|:| -2692 (-553))))) (-4 *6 (-301)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) (-5 *1 (-728 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5)))) (-4024 (*1 *2 *3 *4) (-12 (-5 *3 (-553)) (-5 *4 (-412 *2)) (-4 *2 (-931 *7 *5 *6)) (-5 *1 (-728 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-301)))) (-1329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1151 *9)) (-5 *4 (-630 *7)) (-5 *5 (-630 (-630 *8))) (-4 *7 (-833)) (-4 *8 (-301)) (-4 *9 (-931 *8 *6 *7)) (-4 *6 (-779)) (-5 *2 (-2 (|:| |upol| (-1151 *8)) (|:| |Lval| (-630 *8)) (|:| |Lfact| (-630 (-2 (|:| -3355 (-1151 *8)) (|:| -2692 (-553))))) (|:| |ctpol| *8))) (-5 *1 (-728 *6 *7 *8 *9)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-630 *7)) (-5 *5 (-630 (-630 *8))) (-4 *7 (-833)) (-4 *8 (-301)) (-4 *6 (-779)) (-4 *9 (-931 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-630 (-2 (|:| -3355 (-1151 *9)) (|:| -2692 (-553))))))) (-5 *1 (-728 *6 *7 *8 *9)) (-5 *3 (-1151 *9)))) (-2358 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-553)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-301)) (-4 *9 (-931 *8 *6 *7)) (-5 *2 (-2 (|:| -4252 (-1151 *9)) (|:| |polval| (-1151 *8)))) (-5 *1 (-728 *6 *7 *8 *9)) (-5 *3 (-1151 *9)) (-5 *4 (-1151 *8)))) (-4236 (*1 *2 *3 *4) (-12 (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *3 (-931 *6 *5 *4)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -3355 (-1151 *6)) (|:| -2692 (-553))))) (-4 *6 (-301)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-553)) (-5 *1 (-728 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5)))) (-3758 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-931 *6 *4 *5)))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-412 (-1151 *7))) (-5 *1 (-728 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-931 *6 *4 *5))))) -(-10 -7 (-15 -2708 ((-412 |#4|) |#4|)) (-15 -2708 ((-412 (-1151 |#4|)) (-1151 |#4|))) (-15 -3758 ((-412 |#4|) |#4|)) (-15 -1786 ((-553) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))))) (-15 -4236 ((-412 |#4|) |#4| |#2|)) (-15 -2358 ((-2 (|:| -4252 (-1151 |#4|)) (|:| |polval| (-1151 |#3|))) (-1151 |#4|) (-1151 |#3|) (-553))) (-15 -4165 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-630 (-2 (|:| -3355 (-1151 |#4|)) (|:| -2692 (-553)))))) (-1151 |#4|) (-630 |#2|) (-630 (-630 |#3|)))) (-15 -1329 ((-2 (|:| |upol| (-1151 |#3|)) (|:| |Lval| (-630 |#3|)) (|:| |Lfact| (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553))))) (|:| |ctpol| |#3|)) (-1151 |#4|) (-630 |#2|) (-630 (-630 |#3|)))) (-15 -4024 (|#4| (-553) (-412 |#4|))) (-15 -2915 ((-111) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))) (-630 (-2 (|:| -3355 (-1151 |#3|)) (|:| -2692 (-553)))))) (-15 -2643 ((-3 (-630 (-1151 |#4|)) "failed") (-1151 |#4|) (-1151 |#3|) (-1151 |#3|) |#4| (-630 |#2|) (-630 (-757)) (-630 |#3|))) (-15 -1925 ((-630 (-757)) (-1151 |#4|) (-630 |#2|) (-757))) (-15 -3768 ((-1151 |#3|) (-1151 |#3|) (-553)))) -((-3418 (($ $ (-903)) 12))) -(((-729 |#1| |#2|) (-10 -8 (-15 -3418 (|#1| |#1| (-903)))) (-730 |#2|) (-169)) (T -729)) -NIL -(-10 -8 (-15 -3418 (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1658 (($ $ (-903)) 28)) (-3418 (($ $ (-903)) 33)) (-1341 (($ $ (-903)) 29)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1957 (($ $ $) 25)) (-3110 (((-845) $) 11)) (-2840 (($ $ $ $) 26)) (-1634 (($ $ $) 24)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 30)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-730 |#1|) (-137) (-169)) (T -730)) -((-3418 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-730 *3)) (-4 *3 (-169))))) -(-13 (-747) (-703 |t#1|) (-10 -8 (-15 -3418 ($ $ (-903))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-703 |#1|) . T) ((-706) . T) ((-747) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-2715 (((-1017) (-674 (-220)) (-553) (-111) (-553)) 25)) (-4147 (((-1017) (-674 (-220)) (-553) (-111) (-553)) 24))) -(((-731) (-10 -7 (-15 -4147 ((-1017) (-674 (-220)) (-553) (-111) (-553))) (-15 -2715 ((-1017) (-674 (-220)) (-553) (-111) (-553))))) (T -731)) -((-2715 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-111)) (-5 *2 (-1017)) (-5 *1 (-731)))) (-4147 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-111)) (-5 *2 (-1017)) (-5 *1 (-731))))) -(-10 -7 (-15 -4147 ((-1017) (-674 (-220)) (-553) (-111) (-553))) (-15 -2715 ((-1017) (-674 (-220)) (-553) (-111) (-553)))) -((-2109 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) 43)) (-2440 (((-1017) (-553) (-553) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) 39)) (-2449 (((-1017) (-220) (-220) (-220) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) 32))) -(((-732) (-10 -7 (-15 -2449 ((-1017) (-220) (-220) (-220) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -2440 ((-1017) (-553) (-553) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -2109 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN))))))) (T -732)) -((-2109 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1017)) (-5 *1 (-732)))) (-2440 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1017)) (-5 *1 (-732)))) (-2449 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) (-5 *2 (-1017)) (-5 *1 (-732))))) -(-10 -7 (-15 -2449 ((-1017) (-220) (-220) (-220) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -2440 ((-1017) (-553) (-553) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -2109 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))))) -((-3798 (((-1017) (-553) (-553) (-674 (-220)) (-553)) 34)) (-4062 (((-1017) (-553) (-553) (-674 (-220)) (-553)) 33)) (-3868 (((-1017) (-553) (-674 (-220)) (-553)) 32)) (-1770 (((-1017) (-553) (-674 (-220)) (-553)) 31)) (-2434 (((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 30)) (-2828 (((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 29)) (-2153 (((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-553)) 28)) (-3041 (((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-553)) 27)) (-3578 (((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 24)) (-3379 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553)) 23)) (-2418 (((-1017) (-553) (-674 (-220)) (-553)) 22)) (-3643 (((-1017) (-553) (-674 (-220)) (-553)) 21))) -(((-733) (-10 -7 (-15 -3643 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -2418 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -3379 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3578 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3041 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2153 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2828 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2434 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1770 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -3868 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -4062 ((-1017) (-553) (-553) (-674 (-220)) (-553))) (-15 -3798 ((-1017) (-553) (-553) (-674 (-220)) (-553))))) (T -733)) -((-3798 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-4062 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-3868 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-1770 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-2434 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-2828 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-2153 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-3041 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-3578 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-3379 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-2418 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733)))) (-3643 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-733))))) -(-10 -7 (-15 -3643 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -2418 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -3379 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3578 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3041 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2153 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2828 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2434 ((-1017) (-553) (-553) (-1137) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1770 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -3868 ((-1017) (-553) (-674 (-220)) (-553))) (-15 -4062 ((-1017) (-553) (-553) (-674 (-220)) (-553))) (-15 -3798 ((-1017) (-553) (-553) (-674 (-220)) (-553)))) -((-4202 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-220) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 52)) (-1778 (((-1017) (-674 (-220)) (-674 (-220)) (-553) (-553)) 51)) (-3007 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2801 (((-1017) (-220) (-220) (-553) (-553) (-553) (-553)) 46)) (-4072 (((-1017) (-220) (-220) (-553) (-220) (-553) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 45)) (-1666 (((-1017) (-220) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 44)) (-3467 (((-1017) (-220) (-220) (-220) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 43)) (-3178 (((-1017) (-220) (-220) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 42)) (-1748 (((-1017) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) 38)) (-3886 (((-1017) (-220) (-220) (-553) (-674 (-220)) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) 37)) (-2095 (((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) 33)) (-4060 (((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) 32))) -(((-734) (-10 -7 (-15 -4060 ((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -2095 ((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -3886 ((-1017) (-220) (-220) (-553) (-674 (-220)) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -1748 ((-1017) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -3178 ((-1017) (-220) (-220) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -3467 ((-1017) (-220) (-220) (-220) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1666 ((-1017) (-220) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -4072 ((-1017) (-220) (-220) (-553) (-220) (-553) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2801 ((-1017) (-220) (-220) (-553) (-553) (-553) (-553))) (-15 -3007 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -1778 ((-1017) (-674 (-220)) (-674 (-220)) (-553) (-553))) (-15 -4202 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-220) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))))) (T -734)) -((-4202 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-1778 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-734)))) (-3007 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-2801 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-734)))) (-4072 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-1666 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-3467 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-3178 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-1748 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-3886 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-734)))) (-2095 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) (-5 *2 (-1017)) (-5 *1 (-734)))) (-4060 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) (-5 *2 (-1017)) (-5 *1 (-734))))) -(-10 -7 (-15 -4060 ((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -2095 ((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -3886 ((-1017) (-220) (-220) (-553) (-674 (-220)) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -1748 ((-1017) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105))))) (-15 -3178 ((-1017) (-220) (-220) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -3467 ((-1017) (-220) (-220) (-220) (-220) (-553) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1666 ((-1017) (-220) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -4072 ((-1017) (-220) (-220) (-553) (-220) (-553) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2801 ((-1017) (-220) (-220) (-553) (-553) (-553) (-553))) (-15 -3007 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-220) (-553) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -1778 ((-1017) (-674 (-220)) (-674 (-220)) (-553) (-553))) (-15 -4202 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-220) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))))) -((-3156 (((-1017) (-553) (-553) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-1943 (((-1017) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382)) 69) (((-1017) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2350 (((-1017) (-220) (-220) (-553) (-220) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) 57)) (-3770 (((-1017) (-674 (-220)) (-674 (-220)) (-553) (-220) (-220) (-220) (-553) (-553) (-553) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 50)) (-3367 (((-1017) (-220) (-553) (-553) (-1137) (-553) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2556 (((-1017) (-220) (-553) (-553) (-220) (-1137) (-220) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 45)) (-3679 (((-1017) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 42)) (-3482 (((-1017) (-220) (-553) (-553) (-553) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-735) (-10 -7 (-15 -3482 ((-1017) (-220) (-553) (-553) (-553) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3679 ((-1017) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2556 ((-1017) (-220) (-553) (-553) (-220) (-1137) (-220) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3367 ((-1017) (-220) (-553) (-553) (-1137) (-553) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3770 ((-1017) (-674 (-220)) (-674 (-220)) (-553) (-220) (-220) (-220) (-553) (-553) (-553) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2350 ((-1017) (-220) (-220) (-553) (-220) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -1943 ((-1017) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -1943 ((-1017) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -3156 ((-1017) (-553) (-553) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -735)) -((-3156 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-735)))) (-1943 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-382)) (-5 *2 (-1017)) (-5 *1 (-735)))) (-1943 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1017)) (-5 *1 (-735)))) (-2350 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735)))) (-3770 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1017)) (-5 *1 (-735)))) (-3367 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-553)) (-5 *5 (-1137)) (-5 *6 (-674 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735)))) (-2556 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-553)) (-5 *5 (-1137)) (-5 *6 (-674 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735)))) (-3679 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735)))) (-3482 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735))))) -(-10 -7 (-15 -3482 ((-1017) (-220) (-553) (-553) (-553) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3679 ((-1017) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2556 ((-1017) (-220) (-553) (-553) (-220) (-1137) (-220) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3367 ((-1017) (-220) (-553) (-553) (-1137) (-553) (-220) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3770 ((-1017) (-674 (-220)) (-674 (-220)) (-553) (-220) (-220) (-220) (-553) (-553) (-553) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2350 ((-1017) (-220) (-220) (-553) (-220) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -1943 ((-1017) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -1943 ((-1017) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -3156 ((-1017) (-553) (-553) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-4163 (((-1017) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-660 (-220)) (-553)) 45)) (-4083 (((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-1137) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) 41)) (-3535 (((-1017) (-553) (-553) (-553) (-553) (-220) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 23))) -(((-736) (-10 -7 (-15 -3535 ((-1017) (-553) (-553) (-553) (-553) (-220) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -4083 ((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-1137) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -4163 ((-1017) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-660 (-220)) (-553))))) (T -736)) -((-4163 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-660 (-220))) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-736)))) (-4083 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-1137)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1017)) (-5 *1 (-736)))) (-3535 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-736))))) -(-10 -7 (-15 -3535 ((-1017) (-553) (-553) (-553) (-553) (-220) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -4083 ((-1017) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-1137) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -4163 ((-1017) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-660 (-220)) (-553)))) -((-2550 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-674 (-220)) (-220) (-220) (-553)) 35)) (-1759 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-220) (-220) (-553)) 34)) (-1860 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-674 (-220)) (-220) (-220) (-553)) 33)) (-3243 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 29)) (-1494 (((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 28)) (-4122 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553)) 27)) (-3778 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-553)) 24)) (-2811 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-553)) 23)) (-2273 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553)) 22)) (-1350 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553)) 21))) -(((-737) (-10 -7 (-15 -1350 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553))) (-15 -2273 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2811 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -3778 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -4122 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553))) (-15 -1494 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3243 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1860 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-674 (-220)) (-220) (-220) (-553))) (-15 -1759 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-220) (-220) (-553))) (-15 -2550 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-674 (-220)) (-220) (-220) (-553))))) (T -737)) -((-2550 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *2 (-1017)) (-5 *1 (-737)))) (-1759 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *2 (-1017)) (-5 *1 (-737)))) (-1860 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *6 (-220)) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-737)))) (-3243 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-737)))) (-1494 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-737)))) (-4122 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *2 (-1017)) (-5 *1 (-737)))) (-3778 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-737)))) (-2811 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-737)))) (-2273 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-737)))) (-1350 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-737))))) -(-10 -7 (-15 -1350 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553))) (-15 -2273 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2811 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -3778 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -4122 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-220) (-553))) (-15 -1494 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3243 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1860 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-674 (-220)) (-220) (-220) (-553))) (-15 -1759 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-220) (-220) (-553))) (-15 -2550 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-674 (-220)) (-220) (-220) (-553)))) -((-3099 (((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553)) 45)) (-1970 (((-1017) (-553) (-553) (-553) (-220) (-674 (-220)) (-674 (-220)) (-553)) 44)) (-3689 (((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553)) 43)) (-3315 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 42)) (-2548 (((-1017) (-1137) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553)) 41)) (-2747 (((-1017) (-1137) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553)) 40)) (-3880 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553) (-553) (-553) (-220) (-674 (-220)) (-553)) 39)) (-3348 (((-1017) (-1137) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-553))) 38)) (-1994 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553)) 35)) (-3441 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553)) 34)) (-2808 (((-1017) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553)) 33)) (-3741 (((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 32)) (-2653 (((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-220) (-553)) 31)) (-2754 (((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-553)) 30)) (-1692 (((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-553) (-553) (-553)) 29)) (-3336 (((-1017) (-553) (-553) (-553) (-220) (-220) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553) (-674 (-553)) (-553) (-553) (-553)) 28)) (-1781 (((-1017) (-553) (-674 (-220)) (-220) (-553)) 24)) (-3173 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 21))) -(((-738) (-10 -7 (-15 -3173 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1781 ((-1017) (-553) (-674 (-220)) (-220) (-553))) (-15 -3336 ((-1017) (-553) (-553) (-553) (-220) (-220) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553) (-674 (-553)) (-553) (-553) (-553))) (-15 -1692 ((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-553) (-553) (-553))) (-15 -2754 ((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-553))) (-15 -2653 ((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-220) (-553))) (-15 -3741 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2808 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553))) (-15 -3441 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553))) (-15 -1994 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3348 ((-1017) (-1137) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-553)))) (-15 -3880 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553) (-553) (-553) (-220) (-674 (-220)) (-553))) (-15 -2747 ((-1017) (-1137) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553))) (-15 -2548 ((-1017) (-1137) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3315 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3689 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553))) (-15 -1970 ((-1017) (-553) (-553) (-553) (-220) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3099 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553))))) (T -738)) -((-3099 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-738)))) (-1970 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3689 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3315 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-738)))) (-2548 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-2747 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1137)) (-5 *5 (-674 (-220))) (-5 *6 (-220)) (-5 *7 (-674 (-553))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3880 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *6 (-220)) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3348 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1137)) (-5 *5 (-674 (-220))) (-5 *6 (-220)) (-5 *7 (-674 (-553))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-1994 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3441 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-2808 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3741 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-738)))) (-2653 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-2754 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-1692 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3336 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-674 (-220))) (-5 *6 (-674 (-553))) (-5 *3 (-553)) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-1781 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) (-5 *2 (-1017)) (-5 *1 (-738)))) (-3173 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-738))))) -(-10 -7 (-15 -3173 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1781 ((-1017) (-553) (-674 (-220)) (-220) (-553))) (-15 -3336 ((-1017) (-553) (-553) (-553) (-220) (-220) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553) (-674 (-553)) (-553) (-553) (-553))) (-15 -1692 ((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-553) (-553) (-553))) (-15 -2754 ((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-220) (-553) (-553) (-553))) (-15 -2653 ((-1017) (-553) (-220) (-220) (-674 (-220)) (-553) (-553) (-220) (-553))) (-15 -3741 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2808 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553))) (-15 -3441 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553))) (-15 -1994 ((-1017) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3348 ((-1017) (-1137) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-553)))) (-15 -3880 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553) (-553) (-553) (-220) (-674 (-220)) (-553))) (-15 -2747 ((-1017) (-1137) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553))) (-15 -2548 ((-1017) (-1137) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3315 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3689 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553))) (-15 -1970 ((-1017) (-553) (-553) (-553) (-220) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3099 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553) (-674 (-220)) (-674 (-220)) (-553) (-553) (-553)))) -((-2453 (((-1017) (-553) (-553) (-553) (-220) (-674 (-220)) (-553) (-674 (-220)) (-553)) 63)) (-3051 (((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-111) (-220) (-553) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-553) (-553) (-553) (-553) (-553) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-553)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2781 (((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-220) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-111) (-111) (-111) (-553) (-553) (-674 (-220)) (-674 (-553)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) 58)) (-2729 (((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-111) (-553) (-553) (-674 (-220)) (-553)) 51)) (-2770 (((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) 50)) (-1652 (((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) 46)) (-3932 (((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2890 (((-1017) (-553) (-220) (-220) (-553) (-220) (-111) (-220) (-220) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-739) (-10 -7 (-15 -2890 ((-1017) (-553) (-220) (-220) (-553) (-220) (-111) (-220) (-220) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -3932 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -1652 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -2770 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2729 ((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-111) (-553) (-553) (-674 (-220)) (-553))) (-15 -2781 ((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-220) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-111) (-111) (-111) (-553) (-553) (-674 (-220)) (-674 (-553)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -3051 ((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-111) (-220) (-553) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-553) (-553) (-553) (-553) (-553) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-553)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -2453 ((-1017) (-553) (-553) (-553) (-220) (-674 (-220)) (-553) (-674 (-220)) (-553))))) (T -739)) -((-2453 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-739)))) (-3051 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-674 (-553))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-739)))) (-2781 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-674 (-220))) (-5 *6 (-111)) (-5 *7 (-674 (-553))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-553)) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-739)))) (-2729 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-111)) (-5 *2 (-1017)) (-5 *1 (-739)))) (-2770 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1017)) (-5 *1 (-739)))) (-1652 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1017)) (-5 *1 (-739)))) (-3932 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1017)) (-5 *1 (-739)))) (-2890 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-553)) (-5 *5 (-111)) (-5 *6 (-674 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-739))))) -(-10 -7 (-15 -2890 ((-1017) (-553) (-220) (-220) (-553) (-220) (-111) (-220) (-220) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -3932 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -1652 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -2770 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2729 ((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-111) (-553) (-553) (-674 (-220)) (-553))) (-15 -2781 ((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-220) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-111) (-111) (-111) (-553) (-553) (-674 (-220)) (-674 (-553)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -3051 ((-1017) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-553) (-111) (-220) (-553) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-553) (-553) (-553) (-553) (-553) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-553) (-674 (-553)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -2453 ((-1017) (-553) (-553) (-553) (-220) (-674 (-220)) (-553) (-674 (-220)) (-553)))) -((-2283 (((-1017) (-1137) (-553) (-553) (-553) (-553) (-674 (-166 (-220))) (-674 (-166 (-220))) (-553)) 47)) (-2481 (((-1017) (-1137) (-1137) (-553) (-553) (-674 (-166 (-220))) (-553) (-674 (-166 (-220))) (-553) (-553) (-674 (-166 (-220))) (-553)) 46)) (-2200 (((-1017) (-553) (-553) (-553) (-674 (-166 (-220))) (-553)) 45)) (-3360 (((-1017) (-1137) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 40)) (-3259 (((-1017) (-1137) (-1137) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-674 (-220)) (-553)) 39)) (-1868 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-553)) 36)) (-2617 (((-1017) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553)) 35)) (-2748 (((-1017) (-553) (-553) (-553) (-553) (-630 (-111)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-220) (-220) (-553)) 34)) (-1491 (((-1017) (-553) (-553) (-553) (-674 (-553)) (-674 (-553)) (-674 (-553)) (-674 (-553)) (-111) (-220) (-111) (-674 (-553)) (-674 (-220)) (-553)) 33)) (-2212 (((-1017) (-553) (-553) (-553) (-553) (-220) (-111) (-111) (-630 (-111)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-553)) 32))) -(((-740) (-10 -7 (-15 -2212 ((-1017) (-553) (-553) (-553) (-553) (-220) (-111) (-111) (-630 (-111)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-553))) (-15 -1491 ((-1017) (-553) (-553) (-553) (-674 (-553)) (-674 (-553)) (-674 (-553)) (-674 (-553)) (-111) (-220) (-111) (-674 (-553)) (-674 (-220)) (-553))) (-15 -2748 ((-1017) (-553) (-553) (-553) (-553) (-630 (-111)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-220) (-220) (-553))) (-15 -2617 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553))) (-15 -1868 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-553))) (-15 -3259 ((-1017) (-1137) (-1137) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-674 (-220)) (-553))) (-15 -3360 ((-1017) (-1137) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2200 ((-1017) (-553) (-553) (-553) (-674 (-166 (-220))) (-553))) (-15 -2481 ((-1017) (-1137) (-1137) (-553) (-553) (-674 (-166 (-220))) (-553) (-674 (-166 (-220))) (-553) (-553) (-674 (-166 (-220))) (-553))) (-15 -2283 ((-1017) (-1137) (-553) (-553) (-553) (-553) (-674 (-166 (-220))) (-674 (-166 (-220))) (-553))))) (T -740)) -((-2283 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-166 (-220)))) (-5 *2 (-1017)) (-5 *1 (-740)))) (-2481 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-166 (-220)))) (-5 *2 (-1017)) (-5 *1 (-740)))) (-2200 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-166 (-220)))) (-5 *2 (-1017)) (-5 *1 (-740)))) (-3360 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-740)))) (-3259 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-740)))) (-1868 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-740)))) (-2617 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-740)))) (-2748 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-630 (-111))) (-5 *5 (-674 (-220))) (-5 *6 (-674 (-553))) (-5 *7 (-220)) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-740)))) (-1491 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-674 (-553))) (-5 *5 (-111)) (-5 *7 (-674 (-220))) (-5 *3 (-553)) (-5 *6 (-220)) (-5 *2 (-1017)) (-5 *1 (-740)))) (-2212 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-630 (-111))) (-5 *7 (-674 (-220))) (-5 *8 (-674 (-553))) (-5 *3 (-553)) (-5 *4 (-220)) (-5 *5 (-111)) (-5 *2 (-1017)) (-5 *1 (-740))))) -(-10 -7 (-15 -2212 ((-1017) (-553) (-553) (-553) (-553) (-220) (-111) (-111) (-630 (-111)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-553))) (-15 -1491 ((-1017) (-553) (-553) (-553) (-674 (-553)) (-674 (-553)) (-674 (-553)) (-674 (-553)) (-111) (-220) (-111) (-674 (-553)) (-674 (-220)) (-553))) (-15 -2748 ((-1017) (-553) (-553) (-553) (-553) (-630 (-111)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-220) (-220) (-553))) (-15 -2617 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553))) (-15 -1868 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-553))) (-15 -3259 ((-1017) (-1137) (-1137) (-553) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-674 (-220)) (-553))) (-15 -3360 ((-1017) (-1137) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2200 ((-1017) (-553) (-553) (-553) (-674 (-166 (-220))) (-553))) (-15 -2481 ((-1017) (-1137) (-1137) (-553) (-553) (-674 (-166 (-220))) (-553) (-674 (-166 (-220))) (-553) (-553) (-674 (-166 (-220))) (-553))) (-15 -2283 ((-1017) (-1137) (-553) (-553) (-553) (-553) (-674 (-166 (-220))) (-674 (-166 (-220))) (-553)))) -((-4103 (((-1017) (-553) (-553) (-553) (-553) (-553) (-111) (-553) (-111) (-553) (-674 (-166 (-220))) (-674 (-166 (-220))) (-553)) 65)) (-2818 (((-1017) (-553) (-553) (-553) (-553) (-553) (-111) (-553) (-111) (-553) (-674 (-220)) (-674 (-220)) (-553)) 60)) (-2993 (((-1017) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382)) 56) (((-1017) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) 55)) (-3014 (((-1017) (-553) (-553) (-553) (-220) (-111) (-553) (-674 (-220)) (-674 (-220)) (-553)) 37)) (-2170 (((-1017) (-553) (-553) (-220) (-220) (-553) (-553) (-674 (-220)) (-553)) 33)) (-2486 (((-1017) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-553) (-553) (-553)) 30)) (-3436 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 29)) (-2027 (((-1017) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 28)) (-1874 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 27)) (-2933 (((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553)) 26)) (-3557 (((-1017) (-553) (-553) (-674 (-220)) (-553)) 25)) (-4282 (((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 24)) (-2695 (((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553)) 23)) (-3777 (((-1017) (-674 (-220)) (-553) (-553) (-553) (-553)) 22)) (-4027 (((-1017) (-553) (-553) (-674 (-220)) (-553)) 21))) -(((-741) (-10 -7 (-15 -4027 ((-1017) (-553) (-553) (-674 (-220)) (-553))) (-15 -3777 ((-1017) (-674 (-220)) (-553) (-553) (-553) (-553))) (-15 -2695 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -4282 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3557 ((-1017) (-553) (-553) (-674 (-220)) (-553))) (-15 -2933 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553))) (-15 -1874 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2027 ((-1017) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3436 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2486 ((-1017) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-553) (-553) (-553))) (-15 -2170 ((-1017) (-553) (-553) (-220) (-220) (-553) (-553) (-674 (-220)) (-553))) (-15 -3014 ((-1017) (-553) (-553) (-553) (-220) (-111) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2993 ((-1017) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -2993 ((-1017) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -2818 ((-1017) (-553) (-553) (-553) (-553) (-553) (-111) (-553) (-111) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -4103 ((-1017) (-553) (-553) (-553) (-553) (-553) (-111) (-553) (-111) (-553) (-674 (-166 (-220))) (-674 (-166 (-220))) (-553))))) (T -741)) -((-4103 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-111)) (-5 *5 (-674 (-166 (-220)))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2818 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *4 (-111)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2993 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2993 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-741)))) (-3014 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-553)) (-5 *5 (-111)) (-5 *6 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2170 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2486 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-741)))) (-3436 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2027 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-1874 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2933 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-3557 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-4282 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-2695 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741)))) (-3777 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-741)))) (-4027 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-741))))) -(-10 -7 (-15 -4027 ((-1017) (-553) (-553) (-674 (-220)) (-553))) (-15 -3777 ((-1017) (-674 (-220)) (-553) (-553) (-553) (-553))) (-15 -2695 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -4282 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3557 ((-1017) (-553) (-553) (-674 (-220)) (-553))) (-15 -2933 ((-1017) (-553) (-553) (-553) (-553) (-674 (-220)) (-553))) (-15 -1874 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2027 ((-1017) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -3436 ((-1017) (-553) (-553) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2486 ((-1017) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-553) (-553) (-553))) (-15 -2170 ((-1017) (-553) (-553) (-220) (-220) (-553) (-553) (-674 (-220)) (-553))) (-15 -3014 ((-1017) (-553) (-553) (-553) (-220) (-111) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2993 ((-1017) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -2993 ((-1017) (-553) (-553) (-220) (-553) (-553) (-553) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -2818 ((-1017) (-553) (-553) (-553) (-553) (-553) (-111) (-553) (-111) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -4103 ((-1017) (-553) (-553) (-553) (-553) (-553) (-111) (-553) (-111) (-553) (-674 (-166 (-220))) (-674 (-166 (-220))) (-553)))) -((-3291 (((-1017) (-553) (-553) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) 61)) (-2266 (((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-553)) (-553) (-674 (-220)) (-553) (-553) (-553) (-553)) 57)) (-2419 (((-1017) (-553) (-674 (-220)) (-111) (-220) (-553) (-553) (-553) (-553) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1869 (((-1017) (-553) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553) (-674 (-553)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553)) 37)) (-2569 (((-1017) (-553) (-553) (-553) (-220) (-553) (-674 (-220)) (-674 (-220)) (-553)) 36)) (-2640 (((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553)) 33)) (-1885 (((-1017) (-553) (-674 (-220)) (-553) (-674 (-553)) (-674 (-553)) (-553) (-674 (-553)) (-674 (-220))) 32)) (-2155 (((-1017) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-553)) 28)) (-2766 (((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553)) 27)) (-2470 (((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553)) 26)) (-3579 (((-1017) (-553) (-674 (-166 (-220))) (-553) (-553) (-553) (-553) (-674 (-166 (-220))) (-553)) 22))) -(((-742) (-10 -7 (-15 -3579 ((-1017) (-553) (-674 (-166 (-220))) (-553) (-553) (-553) (-553) (-674 (-166 (-220))) (-553))) (-15 -2470 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -2766 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -2155 ((-1017) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-553))) (-15 -1885 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-553)) (-674 (-553)) (-553) (-674 (-553)) (-674 (-220)))) (-15 -2640 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2569 ((-1017) (-553) (-553) (-553) (-220) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1869 ((-1017) (-553) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553) (-674 (-553)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553))) (-15 -2419 ((-1017) (-553) (-674 (-220)) (-111) (-220) (-553) (-553) (-553) (-553) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -2266 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-553)) (-553) (-674 (-220)) (-553) (-553) (-553) (-553))) (-15 -3291 ((-1017) (-553) (-553) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD))))))) (T -742)) -((-3291 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2266 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2419 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1017)) (-5 *1 (-742)))) (-1869 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2569 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2640 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-742)))) (-1885 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2155 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2766 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-742)))) (-2470 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-742)))) (-3579 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-166 (-220)))) (-5 *2 (-1017)) (-5 *1 (-742))))) -(-10 -7 (-15 -3579 ((-1017) (-553) (-674 (-166 (-220))) (-553) (-553) (-553) (-553) (-674 (-166 (-220))) (-553))) (-15 -2470 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -2766 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-553))) (-15 -2155 ((-1017) (-674 (-220)) (-553) (-674 (-220)) (-553) (-553) (-553))) (-15 -1885 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-553)) (-674 (-553)) (-553) (-674 (-553)) (-674 (-220)))) (-15 -2640 ((-1017) (-553) (-553) (-674 (-220)) (-674 (-220)) (-674 (-220)) (-553))) (-15 -2569 ((-1017) (-553) (-553) (-553) (-220) (-553) (-674 (-220)) (-674 (-220)) (-553))) (-15 -1869 ((-1017) (-553) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553) (-674 (-553)) (-674 (-220)) (-674 (-553)) (-674 (-553)) (-674 (-220)) (-674 (-220)) (-674 (-553)) (-553))) (-15 -2419 ((-1017) (-553) (-674 (-220)) (-111) (-220) (-553) (-553) (-553) (-553) (-220) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -2266 ((-1017) (-553) (-674 (-220)) (-553) (-674 (-220)) (-674 (-553)) (-553) (-674 (-220)) (-553) (-553) (-553) (-553))) (-15 -3291 ((-1017) (-553) (-553) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-674 (-220)) (-553) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))))) -((-2204 (((-1017) (-1137) (-553) (-553) (-674 (-220)) (-553) (-553) (-674 (-220))) 29)) (-1459 (((-1017) (-1137) (-553) (-553) (-674 (-220))) 28)) (-3750 (((-1017) (-1137) (-553) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553) (-674 (-220))) 27)) (-3958 (((-1017) (-553) (-553) (-553) (-674 (-220))) 21))) -(((-743) (-10 -7 (-15 -3958 ((-1017) (-553) (-553) (-553) (-674 (-220)))) (-15 -3750 ((-1017) (-1137) (-553) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553) (-674 (-220)))) (-15 -1459 ((-1017) (-1137) (-553) (-553) (-674 (-220)))) (-15 -2204 ((-1017) (-1137) (-553) (-553) (-674 (-220)) (-553) (-553) (-674 (-220)))))) (T -743)) -((-2204 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-743)))) (-1459 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-743)))) (-3750 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1137)) (-5 *5 (-674 (-220))) (-5 *6 (-674 (-553))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-743)))) (-3958 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) (-5 *1 (-743))))) -(-10 -7 (-15 -3958 ((-1017) (-553) (-553) (-553) (-674 (-220)))) (-15 -3750 ((-1017) (-1137) (-553) (-553) (-674 (-220)) (-553) (-674 (-553)) (-553) (-674 (-220)))) (-15 -1459 ((-1017) (-1137) (-553) (-553) (-674 (-220)))) (-15 -2204 ((-1017) (-1137) (-553) (-553) (-674 (-220)) (-553) (-553) (-674 (-220))))) -((-3702 (((-1017) (-220) (-220) (-220) (-220) (-553)) 62)) (-3334 (((-1017) (-220) (-220) (-220) (-553)) 61)) (-2263 (((-1017) (-220) (-220) (-220) (-553)) 60)) (-4224 (((-1017) (-220) (-220) (-553)) 59)) (-4149 (((-1017) (-220) (-553)) 58)) (-2613 (((-1017) (-220) (-553)) 57)) (-3569 (((-1017) (-220) (-553)) 56)) (-3839 (((-1017) (-220) (-553)) 55)) (-3816 (((-1017) (-220) (-553)) 54)) (-2132 (((-1017) (-220) (-553)) 53)) (-2525 (((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553)) 52)) (-2866 (((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553)) 51)) (-2720 (((-1017) (-220) (-553)) 50)) (-3032 (((-1017) (-220) (-553)) 49)) (-3187 (((-1017) (-220) (-553)) 48)) (-3601 (((-1017) (-220) (-553)) 47)) (-4075 (((-1017) (-553) (-220) (-166 (-220)) (-553) (-1137) (-553)) 46)) (-3512 (((-1017) (-1137) (-166 (-220)) (-1137) (-553)) 45)) (-4017 (((-1017) (-1137) (-166 (-220)) (-1137) (-553)) 44)) (-1749 (((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553)) 43)) (-3676 (((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553)) 42)) (-1348 (((-1017) (-220) (-553)) 39)) (-4090 (((-1017) (-220) (-553)) 38)) (-3976 (((-1017) (-220) (-553)) 37)) (-3914 (((-1017) (-220) (-553)) 36)) (-1920 (((-1017) (-220) (-553)) 35)) (-2852 (((-1017) (-220) (-553)) 34)) (-3500 (((-1017) (-220) (-553)) 33)) (-2081 (((-1017) (-220) (-553)) 32)) (-2037 (((-1017) (-220) (-553)) 31)) (-2782 (((-1017) (-220) (-553)) 30)) (-2400 (((-1017) (-220) (-220) (-220) (-553)) 29)) (-3807 (((-1017) (-220) (-553)) 28)) (-2857 (((-1017) (-220) (-553)) 27)) (-4288 (((-1017) (-220) (-553)) 26)) (-3240 (((-1017) (-220) (-553)) 25)) (-2951 (((-1017) (-220) (-553)) 24)) (-2042 (((-1017) (-166 (-220)) (-553)) 21))) -(((-744) (-10 -7 (-15 -2042 ((-1017) (-166 (-220)) (-553))) (-15 -2951 ((-1017) (-220) (-553))) (-15 -3240 ((-1017) (-220) (-553))) (-15 -4288 ((-1017) (-220) (-553))) (-15 -2857 ((-1017) (-220) (-553))) (-15 -3807 ((-1017) (-220) (-553))) (-15 -2400 ((-1017) (-220) (-220) (-220) (-553))) (-15 -2782 ((-1017) (-220) (-553))) (-15 -2037 ((-1017) (-220) (-553))) (-15 -2081 ((-1017) (-220) (-553))) (-15 -3500 ((-1017) (-220) (-553))) (-15 -2852 ((-1017) (-220) (-553))) (-15 -1920 ((-1017) (-220) (-553))) (-15 -3914 ((-1017) (-220) (-553))) (-15 -3976 ((-1017) (-220) (-553))) (-15 -4090 ((-1017) (-220) (-553))) (-15 -1348 ((-1017) (-220) (-553))) (-15 -3676 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -1749 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -4017 ((-1017) (-1137) (-166 (-220)) (-1137) (-553))) (-15 -3512 ((-1017) (-1137) (-166 (-220)) (-1137) (-553))) (-15 -4075 ((-1017) (-553) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -3601 ((-1017) (-220) (-553))) (-15 -3187 ((-1017) (-220) (-553))) (-15 -3032 ((-1017) (-220) (-553))) (-15 -2720 ((-1017) (-220) (-553))) (-15 -2866 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -2525 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -2132 ((-1017) (-220) (-553))) (-15 -3816 ((-1017) (-220) (-553))) (-15 -3839 ((-1017) (-220) (-553))) (-15 -3569 ((-1017) (-220) (-553))) (-15 -2613 ((-1017) (-220) (-553))) (-15 -4149 ((-1017) (-220) (-553))) (-15 -4224 ((-1017) (-220) (-220) (-553))) (-15 -2263 ((-1017) (-220) (-220) (-220) (-553))) (-15 -3334 ((-1017) (-220) (-220) (-220) (-553))) (-15 -3702 ((-1017) (-220) (-220) (-220) (-220) (-553))))) (T -744)) -((-3702 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3334 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2263 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-4224 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2132 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2525 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2866 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-4075 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-553)) (-5 *5 (-166 (-220))) (-5 *6 (-1137)) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3512 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1137)) (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-4017 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1137)) (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-1749 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3676 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3500 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2400 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-4288 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(-10 -7 (-15 -2042 ((-1017) (-166 (-220)) (-553))) (-15 -2951 ((-1017) (-220) (-553))) (-15 -3240 ((-1017) (-220) (-553))) (-15 -4288 ((-1017) (-220) (-553))) (-15 -2857 ((-1017) (-220) (-553))) (-15 -3807 ((-1017) (-220) (-553))) (-15 -2400 ((-1017) (-220) (-220) (-220) (-553))) (-15 -2782 ((-1017) (-220) (-553))) (-15 -2037 ((-1017) (-220) (-553))) (-15 -2081 ((-1017) (-220) (-553))) (-15 -3500 ((-1017) (-220) (-553))) (-15 -2852 ((-1017) (-220) (-553))) (-15 -1920 ((-1017) (-220) (-553))) (-15 -3914 ((-1017) (-220) (-553))) (-15 -3976 ((-1017) (-220) (-553))) (-15 -4090 ((-1017) (-220) (-553))) (-15 -1348 ((-1017) (-220) (-553))) (-15 -3676 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -1749 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -4017 ((-1017) (-1137) (-166 (-220)) (-1137) (-553))) (-15 -3512 ((-1017) (-1137) (-166 (-220)) (-1137) (-553))) (-15 -4075 ((-1017) (-553) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -3601 ((-1017) (-220) (-553))) (-15 -3187 ((-1017) (-220) (-553))) (-15 -3032 ((-1017) (-220) (-553))) (-15 -2720 ((-1017) (-220) (-553))) (-15 -2866 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -2525 ((-1017) (-220) (-166 (-220)) (-553) (-1137) (-553))) (-15 -2132 ((-1017) (-220) (-553))) (-15 -3816 ((-1017) (-220) (-553))) (-15 -3839 ((-1017) (-220) (-553))) (-15 -3569 ((-1017) (-220) (-553))) (-15 -2613 ((-1017) (-220) (-553))) (-15 -4149 ((-1017) (-220) (-553))) (-15 -4224 ((-1017) (-220) (-220) (-553))) (-15 -2263 ((-1017) (-220) (-220) (-220) (-553))) (-15 -3334 ((-1017) (-220) (-220) (-220) (-553))) (-15 -3702 ((-1017) (-220) (-220) (-220) (-220) (-553)))) -((-3423 (((-1243)) 18)) (-3419 (((-1137)) 22)) (-2725 (((-1137)) 21)) (-3141 (((-1083) (-1155) (-674 (-553))) 37) (((-1083) (-1155) (-674 (-220))) 32)) (-1931 (((-111)) 16)) (-2192 (((-1137) (-1137)) 25))) -(((-745) (-10 -7 (-15 -2725 ((-1137))) (-15 -3419 ((-1137))) (-15 -2192 ((-1137) (-1137))) (-15 -3141 ((-1083) (-1155) (-674 (-220)))) (-15 -3141 ((-1083) (-1155) (-674 (-553)))) (-15 -1931 ((-111))) (-15 -3423 ((-1243))))) (T -745)) -((-3423 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-745)))) (-1931 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-745)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-674 (-553))) (-5 *2 (-1083)) (-5 *1 (-745)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-674 (-220))) (-5 *2 (-1083)) (-5 *1 (-745)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-745)))) (-3419 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-745)))) (-2725 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-745))))) -(-10 -7 (-15 -2725 ((-1137))) (-15 -3419 ((-1137))) (-15 -2192 ((-1137) (-1137))) (-15 -3141 ((-1083) (-1155) (-674 (-220)))) (-15 -3141 ((-1083) (-1155) (-674 (-553)))) (-15 -1931 ((-111))) (-15 -3423 ((-1243)))) -((-1957 (($ $ $) 10)) (-2840 (($ $ $ $) 9)) (-1634 (($ $ $) 12))) -(((-746 |#1|) (-10 -8 (-15 -1634 (|#1| |#1| |#1|)) (-15 -1957 (|#1| |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1| |#1|))) (-747)) (T -746)) -NIL -(-10 -8 (-15 -1634 (|#1| |#1| |#1|)) (-15 -1957 (|#1| |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1658 (($ $ (-903)) 28)) (-1341 (($ $ (-903)) 29)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1957 (($ $ $) 25)) (-3110 (((-845) $) 11)) (-2840 (($ $ $ $) 26)) (-1634 (($ $ $) 24)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 30)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 27))) -(((-747) (-137)) (T -747)) -((-2840 (*1 *1 *1 *1 *1) (-4 *1 (-747))) (-1957 (*1 *1 *1 *1) (-4 *1 (-747))) (-1634 (*1 *1 *1 *1) (-4 *1 (-747)))) -(-13 (-21) (-706) (-10 -8 (-15 -2840 ($ $ $ $)) (-15 -1957 ($ $ $)) (-15 -1634 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-706) . T) ((-1079) . T)) -((-3110 (((-845) $) NIL) (($ (-553)) 10))) -(((-748 |#1|) (-10 -8 (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-749)) (T -748)) -NIL -(-10 -8 (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1766 (((-3 $ "failed") $) 40)) (-1658 (($ $ (-903)) 28) (($ $ (-757)) 35)) (-2982 (((-3 $ "failed") $) 38)) (-1848 (((-111) $) 34)) (-3011 (((-3 $ "failed") $) 39)) (-1341 (($ $ (-903)) 29) (($ $ (-757)) 36)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1957 (($ $ $) 25)) (-3110 (((-845) $) 11) (($ (-553)) 31)) (-1999 (((-757)) 32)) (-2840 (($ $ $ $) 26)) (-1634 (($ $ $) 24)) (-1988 (($) 18 T CONST)) (-1997 (($) 33 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 30) (($ $ (-757)) 37)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 27))) -(((-749) (-137)) (T -749)) -((-1999 (*1 *2) (-12 (-4 *1 (-749)) (-5 *2 (-757)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-749))))) -(-13 (-747) (-708) (-10 -8 (-15 -1999 ((-757))) (-15 -3110 ($ (-553))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-706) . T) ((-708) . T) ((-747) . T) ((-1079) . T)) -((-1496 (((-630 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 (-166 |#1|)))))) (-674 (-166 (-401 (-553)))) |#1|) 33)) (-4160 (((-630 (-166 |#1|)) (-674 (-166 (-401 (-553)))) |#1|) 23)) (-3547 (((-934 (-166 (-401 (-553)))) (-674 (-166 (-401 (-553)))) (-1155)) 20) (((-934 (-166 (-401 (-553)))) (-674 (-166 (-401 (-553))))) 19))) -(((-750 |#1|) (-10 -7 (-15 -3547 ((-934 (-166 (-401 (-553)))) (-674 (-166 (-401 (-553)))))) (-15 -3547 ((-934 (-166 (-401 (-553)))) (-674 (-166 (-401 (-553)))) (-1155))) (-15 -4160 ((-630 (-166 |#1|)) (-674 (-166 (-401 (-553)))) |#1|)) (-15 -1496 ((-630 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 (-166 |#1|)))))) (-674 (-166 (-401 (-553)))) |#1|))) (-13 (-357) (-831))) (T -750)) -((-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-166 (-401 (-553))))) (-5 *2 (-630 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 (-166 *4))))))) (-5 *1 (-750 *4)) (-4 *4 (-13 (-357) (-831))))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-166 (-401 (-553))))) (-5 *2 (-630 (-166 *4))) (-5 *1 (-750 *4)) (-4 *4 (-13 (-357) (-831))))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-166 (-401 (-553))))) (-5 *4 (-1155)) (-5 *2 (-934 (-166 (-401 (-553))))) (-5 *1 (-750 *5)) (-4 *5 (-13 (-357) (-831))))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-674 (-166 (-401 (-553))))) (-5 *2 (-934 (-166 (-401 (-553))))) (-5 *1 (-750 *4)) (-4 *4 (-13 (-357) (-831)))))) -(-10 -7 (-15 -3547 ((-934 (-166 (-401 (-553)))) (-674 (-166 (-401 (-553)))))) (-15 -3547 ((-934 (-166 (-401 (-553)))) (-674 (-166 (-401 (-553)))) (-1155))) (-15 -4160 ((-630 (-166 |#1|)) (-674 (-166 (-401 (-553)))) |#1|)) (-15 -1496 ((-630 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 (-166 |#1|)))))) (-674 (-166 (-401 (-553)))) |#1|))) -((-1760 (((-171 (-553)) |#1|) 25))) -(((-751 |#1|) (-10 -7 (-15 -1760 ((-171 (-553)) |#1|))) (-398)) (T -751)) -((-1760 (*1 *2 *3) (-12 (-5 *2 (-171 (-553))) (-5 *1 (-751 *3)) (-4 *3 (-398))))) -(-10 -7 (-15 -1760 ((-171 (-553)) |#1|))) -((-1717 ((|#1| |#1| |#1|) 24)) (-3065 ((|#1| |#1| |#1|) 23)) (-3335 ((|#1| |#1| |#1|) 32)) (-1946 ((|#1| |#1| |#1|) 28)) (-3474 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2437 (((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|) 22))) -(((-752 |#1| |#2|) (-10 -7 (-15 -2437 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -3474 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|))) (-694 |#2|) (-357)) (T -752)) -((-3335 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) (-1946 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) (-3474 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) (-1717 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) (-3065 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) (-2437 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-752 *3 *4)) (-4 *3 (-694 *4))))) -(-10 -7 (-15 -2437 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -3474 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|))) -((-3688 (((-1099) $ (-127)) 12)) (-1865 (((-1099) $ (-128)) 11)) (-2778 (((-1099) $ (-127)) 7)) (-3931 (((-1099) $) 8)) (-3081 (((-111) $) 14)) (-4123 (((-3 $ "failed") |#1| (-936)) 15)) (-2407 (($ $) 6))) -(((-753 |#1|) (-137) (-1079)) (T -753)) -((-4123 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-4 *1 (-753 *2)) (-4 *2 (-1079)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-753 *3)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(-13 (-565) (-10 -8 (-15 -4123 ((-3 $ "failed") |t#1| (-936))) (-15 -3081 ((-111) $)))) -(((-170) . T) ((-520) . T) ((-565) . T) ((-843) . T)) -((-4009 (((-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553)))) (-553)) 59)) (-2827 (((-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553))))) 57)) (-3000 (((-553)) 70))) -(((-754 |#1| |#2|) (-10 -7 (-15 -3000 ((-553))) (-15 -2827 ((-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553)))))) (-15 -4009 ((-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553)))) (-553)))) (-1214 (-553)) (-403 (-553) |#1|)) (T -754)) -((-4009 (*1 *2 *3) (-12 (-5 *3 (-553)) (-4 *4 (-1214 *3)) (-5 *2 (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-674 *3)))) (-5 *1 (-754 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2827 (*1 *2) (-12 (-4 *3 (-1214 (-553))) (-5 *2 (-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553))))) (-5 *1 (-754 *3 *4)) (-4 *4 (-403 (-553) *3)))) (-3000 (*1 *2) (-12 (-4 *3 (-1214 *2)) (-5 *2 (-553)) (-5 *1 (-754 *3 *4)) (-4 *4 (-403 *2 *3))))) -(-10 -7 (-15 -3000 ((-553))) (-15 -2827 ((-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553)))))) (-15 -4009 ((-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) (|:| |basisInv| (-674 (-553)))) (-553)))) -((-3096 (((-111) $ $) NIL)) (-2707 (((-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $) 21)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20) (($ (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) 18)) (-1617 (((-111) $ $) NIL))) -(((-755) (-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3110 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3110 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -2707 ((-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $))))) (T -755)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-755)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-755)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-755)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-755))))) -(-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3110 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3110 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -2707 ((-3 (|:| |nia| (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $)))) -((-3397 (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|))) 18) (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)) (-630 (-1155))) 17)) (-1638 (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|))) 20) (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)) (-630 (-1155))) 19))) -(((-756 |#1|) (-10 -7 (-15 -3397 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -3397 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|))))) (-545)) (T -756)) -((-1638 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-756 *4)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-630 (-1155))) (-4 *5 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-756 *5)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-756 *4)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-630 (-1155))) (-4 *5 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-756 *5))))) -(-10 -7 (-15 -3397 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -3397 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-934 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2345 (($ $ $) 6)) (-2910 (((-3 $ "failed") $ $) 9)) (-1608 (($ $ (-553)) 7)) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($ $) NIL)) (-3952 (($ $ $) NIL)) (-1848 (((-111) $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2508 (($ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3110 (((-845) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL) (($ $ (-903)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ $ $) NIL))) -(((-757) (-13 (-779) (-712) (-10 -8 (-15 -3952 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -2508 ($ $ $)) (-15 -4032 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3929 ((-3 $ "failed") $ $)) (-15 -1608 ($ $ (-553))) (-15 -3031 ($ $)) (-6 (-4371 "*"))))) (T -757)) -((-3952 (*1 *1 *1 *1) (-5 *1 (-757))) (-3973 (*1 *1 *1 *1) (-5 *1 (-757))) (-2508 (*1 *1 *1 *1) (-5 *1 (-757))) (-4032 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2666 (-757)) (|:| -1571 (-757)))) (-5 *1 (-757)))) (-3929 (*1 *1 *1 *1) (|partial| -5 *1 (-757))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-757)))) (-3031 (*1 *1 *1) (-5 *1 (-757)))) -(-13 (-779) (-712) (-10 -8 (-15 -3952 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -2508 ($ $ $)) (-15 -4032 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3929 ((-3 $ "failed") $ $)) (-15 -1608 ($ $ (-553))) (-15 -3031 ($ $)) (-6 (-4371 "*")))) -((-1638 (((-3 |#2| "failed") |#2| |#2| (-113) (-1155)) 35))) -(((-758 |#1| |#2|) (-10 -7 (-15 -1638 ((-3 |#2| "failed") |#2| |#2| (-113) (-1155)))) (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144)) (-13 (-29 |#1|) (-1177) (-941))) (T -758)) -((-1638 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1155)) (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *1 (-758 *5 *2)) (-4 *2 (-13 (-29 *5) (-1177) (-941)))))) -(-10 -7 (-15 -1638 ((-3 |#2| "failed") |#2| |#2| (-113) (-1155)))) -((-3110 (((-760) |#1|) 8))) -(((-759 |#1|) (-10 -7 (-15 -3110 ((-760) |#1|))) (-1192)) (T -759)) -((-3110 (*1 *2 *3) (-12 (-5 *2 (-760)) (-5 *1 (-759 *3)) (-4 *3 (-1192))))) -(-10 -7 (-15 -3110 ((-760) |#1|))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 7)) (-1617 (((-111) $ $) 9))) -(((-760) (-1079)) (T -760)) -NIL -(-1079) -((-3560 ((|#2| |#4|) 35))) -(((-761 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3560 (|#2| |#4|))) (-445) (-1214 |#1|) (-710 |#1| |#2|) (-1214 |#3|)) (T -761)) -((-3560 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-710 *4 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-761 *4 *2 *5 *3)) (-4 *3 (-1214 *5))))) -(-10 -7 (-15 -3560 (|#2| |#4|))) -((-2982 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2159 (((-1243) (-1137) (-1137) |#4| |#5|) 33)) (-3826 ((|#4| |#4| |#5|) 73)) (-3208 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|) 77)) (-1662 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|) 16))) -(((-762 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2982 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3826 (|#4| |#4| |#5|)) (-15 -3208 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -2159 ((-1243) (-1137) (-1137) |#4| |#5|)) (-15 -1662 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|)) (T -762)) -((-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) (-5 *1 (-762 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2159 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1137)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *4 (-1045 *6 *7 *8)) (-5 *2 (-1243)) (-5 *1 (-762 *6 *7 *8 *4 *5)) (-4 *5 (-1051 *6 *7 *8 *4)))) (-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-762 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3826 (*1 *2 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *2 (-1045 *4 *5 *6)) (-5 *1 (-762 *4 *5 *6 *2 *3)) (-4 *3 (-1051 *4 *5 *6 *2)))) (-2982 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-762 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(-10 -7 (-15 -2982 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3826 (|#4| |#4| |#5|)) (-15 -3208 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -2159 ((-1243) (-1137) (-1137) |#4| |#5|)) (-15 -1662 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|))) -((-1399 (((-3 (-1151 (-1151 |#1|)) "failed") |#4|) 43)) (-1541 (((-630 |#4|) |#4|) 15)) (-1950 ((|#4| |#4|) 11))) -(((-763 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1541 ((-630 |#4|) |#4|)) (-15 -1399 ((-3 (-1151 (-1151 |#1|)) "failed") |#4|)) (-15 -1950 (|#4| |#4|))) (-343) (-323 |#1|) (-1214 |#2|) (-1214 |#3|) (-903)) (T -763)) -((-1950 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1214 *4)) (-5 *1 (-763 *3 *4 *5 *2 *6)) (-4 *2 (-1214 *5)) (-14 *6 (-903)))) (-1399 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1214 *5)) (-5 *2 (-1151 (-1151 *4))) (-5 *1 (-763 *4 *5 *6 *3 *7)) (-4 *3 (-1214 *6)) (-14 *7 (-903)))) (-1541 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1214 *5)) (-5 *2 (-630 *3)) (-5 *1 (-763 *4 *5 *6 *3 *7)) (-4 *3 (-1214 *6)) (-14 *7 (-903))))) -(-10 -7 (-15 -1541 ((-630 |#4|) |#4|)) (-15 -1399 ((-3 (-1151 (-1151 |#1|)) "failed") |#4|)) (-15 -1950 (|#4| |#4|))) -((-4259 (((-2 (|:| |deter| (-630 (-1151 |#5|))) (|:| |dterm| (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-630 |#1|)) (|:| |nlead| (-630 |#5|))) (-1151 |#5|) (-630 |#1|) (-630 |#5|)) 54)) (-3529 (((-630 (-757)) |#1|) 13))) -(((-764 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4259 ((-2 (|:| |deter| (-630 (-1151 |#5|))) (|:| |dterm| (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-630 |#1|)) (|:| |nlead| (-630 |#5|))) (-1151 |#5|) (-630 |#1|) (-630 |#5|))) (-15 -3529 ((-630 (-757)) |#1|))) (-1214 |#4|) (-779) (-833) (-301) (-931 |#4| |#2| |#3|)) (T -764)) -((-3529 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-5 *2 (-630 (-757))) (-5 *1 (-764 *3 *4 *5 *6 *7)) (-4 *3 (-1214 *6)) (-4 *7 (-931 *6 *4 *5)))) (-4259 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1214 *9)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *9 (-301)) (-4 *10 (-931 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-630 (-1151 *10))) (|:| |dterm| (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| *10))))) (|:| |nfacts| (-630 *6)) (|:| |nlead| (-630 *10)))) (-5 *1 (-764 *6 *7 *8 *9 *10)) (-5 *3 (-1151 *10)) (-5 *4 (-630 *6)) (-5 *5 (-630 *10))))) -(-10 -7 (-15 -4259 ((-2 (|:| |deter| (-630 (-1151 |#5|))) (|:| |dterm| (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-630 |#1|)) (|:| |nlead| (-630 |#5|))) (-1151 |#5|) (-630 |#1|) (-630 |#5|))) (-15 -3529 ((-630 (-757)) |#1|))) -((-1574 (((-630 (-2 (|:| |outval| |#1|) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 |#1|))))) (-674 (-401 (-553))) |#1|) 31)) (-3771 (((-630 |#1|) (-674 (-401 (-553))) |#1|) 21)) (-3547 (((-934 (-401 (-553))) (-674 (-401 (-553))) (-1155)) 18) (((-934 (-401 (-553))) (-674 (-401 (-553)))) 17))) -(((-765 |#1|) (-10 -7 (-15 -3547 ((-934 (-401 (-553))) (-674 (-401 (-553))))) (-15 -3547 ((-934 (-401 (-553))) (-674 (-401 (-553))) (-1155))) (-15 -3771 ((-630 |#1|) (-674 (-401 (-553))) |#1|)) (-15 -1574 ((-630 (-2 (|:| |outval| |#1|) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 |#1|))))) (-674 (-401 (-553))) |#1|))) (-13 (-357) (-831))) (T -765)) -((-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *2 (-630 (-2 (|:| |outval| *4) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 *4)))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-357) (-831))))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *2 (-630 *4)) (-5 *1 (-765 *4)) (-4 *4 (-13 (-357) (-831))))) (-3547 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *4 (-1155)) (-5 *2 (-934 (-401 (-553)))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-357) (-831))))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *2 (-934 (-401 (-553)))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-357) (-831)))))) -(-10 -7 (-15 -3547 ((-934 (-401 (-553))) (-674 (-401 (-553))))) (-15 -3547 ((-934 (-401 (-553))) (-674 (-401 (-553))) (-1155))) (-15 -3771 ((-630 |#1|) (-674 (-401 (-553))) |#1|)) (-15 -1574 ((-630 (-2 (|:| |outval| |#1|) (|:| |outmult| (-553)) (|:| |outvect| (-630 (-674 |#1|))))) (-674 (-401 (-553))) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 34)) (-3506 (((-630 |#2|) $) NIL)) (-3322 (((-1151 $) $ |#2|) NIL) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 |#2|)) NIL)) (-1787 (($ $) 28)) (-3848 (((-111) $ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1690 (($ $ $) 93 (|has| |#1| (-545)))) (-3008 (((-630 $) $ $) 106 (|has| |#1| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-934 (-401 (-553)))) NIL (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155))))) (((-3 $ "failed") (-934 (-553))) NIL (-3988 (-12 (|has| |#1| (-38 (-553))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553)))))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155)))))) (((-3 $ "failed") (-934 |#1|)) NIL (-3988 (-12 (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553))))) (-2826 (|has| |#1| (-38 (-553))))) (-12 (|has| |#1| (-38 (-553))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553))))) (-2826 (|has| |#1| (-538)))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-974 (-553))))))) (((-3 (-1104 |#1| |#2|) "failed") $) 18)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) ((|#2| $) NIL) (($ (-934 (-401 (-553)))) NIL (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155))))) (($ (-934 (-553))) NIL (-3988 (-12 (|has| |#1| (-38 (-553))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553)))))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155)))))) (($ (-934 |#1|)) NIL (-3988 (-12 (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553))))) (-2826 (|has| |#1| (-38 (-553))))) (-12 (|has| |#1| (-38 (-553))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553))))) (-2826 (|has| |#1| (-538)))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-974 (-553))))))) (((-1104 |#1| |#2|) $) NIL)) (-2134 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-545)))) (-3678 (($ $) NIL) (($ $ |#2|) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-3342 (((-111) $ $) NIL) (((-111) $ (-630 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1384 (((-111) $) NIL)) (-3464 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 70)) (-2105 (($ $) 119 (|has| |#1| (-445)))) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2632 (($ $) NIL (|has| |#1| (-545)))) (-3903 (($ $) NIL (|has| |#1| (-545)))) (-2456 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-4302 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2686 (($ $ |#1| (-524 |#2|) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| |#1| (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| |#1| (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-1685 (((-111) $ $) NIL) (((-111) $ (-630 $)) NIL)) (-3264 (($ $ $ $ $) 90 (|has| |#1| (-545)))) (-1470 ((|#2| $) 19)) (-3493 (($ (-1151 |#1|) |#2|) NIL) (($ (-1151 $) |#2|) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-757)) 36) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-1622 (($ $ $) 60)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#2|) NIL)) (-3939 (((-111) $) NIL)) (-2423 (((-524 |#2|) $) NIL) (((-757) $ |#2|) NIL) (((-630 (-757)) $ (-630 |#2|)) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3424 (((-757) $) 20)) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1332 (((-3 |#2| "failed") $) NIL)) (-3332 (($ $) NIL (|has| |#1| (-445)))) (-2674 (($ $) NIL (|has| |#1| (-445)))) (-2935 (((-630 $) $) NIL)) (-3779 (($ $) 37)) (-2318 (($ $) NIL (|has| |#1| (-445)))) (-3454 (((-630 $) $) 41)) (-1448 (($ $) 39)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4274 (-757))) $ $) 82)) (-3630 (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $) 67) (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $ |#2|) NIL)) (-3128 (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $) NIL) (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $ |#2|) NIL)) (-3788 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2887 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1735 (((-1137) $) NIL)) (-4247 (($ $ $) 108 (|has| |#1| (-545)))) (-2612 (((-630 $) $) 30)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| |#2|) (|:| -2692 (-757))) "failed") $) NIL)) (-4299 (((-111) $ $) NIL) (((-111) $ (-630 $)) NIL)) (-4080 (($ $ $) NIL)) (-1945 (($ $) 21)) (-1990 (((-111) $ $) NIL)) (-3276 (((-111) $ $) NIL) (((-111) $ (-630 $)) NIL)) (-3138 (($ $ $) NIL)) (-2117 (($ $) 23)) (-2786 (((-1099) $) NIL)) (-4264 (((-2 (|:| -2508 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-545)))) (-3270 (((-2 (|:| -2508 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-545)))) (-3623 (((-111) $) 52)) (-3633 ((|#1| $) 55)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 ((|#1| |#1| $) 116 (|has| |#1| (-445))) (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-2675 (((-2 (|:| -2508 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-545)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3097 (($ $ |#1|) 112 (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-2410 (($ $ |#1|) 111 (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-630 |#2|) (-630 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-630 |#2|) (-630 $)) NIL)) (-3000 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-1330 (($ $ |#2|) NIL) (($ $ (-630 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-3872 (((-524 |#2|) $) NIL) (((-757) $ |#2|) 43) (((-630 (-757)) $ (-630 |#2|)) NIL)) (-2369 (($ $) NIL)) (-4002 (($ $) 33)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| |#1| (-601 (-529))) (|has| |#2| (-601 (-529))))) (($ (-934 (-401 (-553)))) NIL (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155))))) (($ (-934 (-553))) NIL (-3988 (-12 (|has| |#1| (-38 (-553))) (|has| |#2| (-601 (-1155))) (-2826 (|has| |#1| (-38 (-401 (-553)))))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#2| (-601 (-1155)))))) (($ (-934 |#1|)) NIL (|has| |#2| (-601 (-1155)))) (((-1137) $) NIL (-12 (|has| |#1| (-1020 (-553))) (|has| |#2| (-601 (-1155))))) (((-934 |#1|) $) NIL (|has| |#2| (-601 (-1155))))) (-4198 ((|#1| $) 115 (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-934 |#1|) $) NIL (|has| |#2| (-601 (-1155)))) (((-1104 |#1| |#2|) $) 15) (($ (-1104 |#1| |#2|)) 16) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-757)) 44) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) 13 T CONST)) (-1675 (((-3 (-111) "failed") $ $) NIL)) (-1997 (($) 35 T CONST)) (-1303 (($ $ $ $ (-757)) 88 (|has| |#1| (-545)))) (-4181 (($ $ $ (-757)) 87 (|has| |#1| (-545)))) (-1780 (($ $ |#2|) NIL) (($ $ (-630 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 54)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) 64)) (-1700 (($ $ $) 74)) (** (($ $ (-903)) NIL) (($ $ (-757)) 61)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 59) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-766 |#1| |#2|) (-13 (-1045 |#1| (-524 |#2|) |#2|) (-600 (-1104 |#1| |#2|)) (-1020 (-1104 |#1| |#2|))) (-1031) (-833)) (T -766)) -NIL -(-13 (-1045 |#1| (-524 |#2|) |#2|) (-600 (-1104 |#1| |#2|)) (-1020 (-1104 |#1| |#2|))) -((-1482 (((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|)) 13))) -(((-767 |#1| |#2|) (-10 -7 (-15 -1482 ((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|)))) (-1031) (-1031)) (T -767)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-768 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-5 *2 (-768 *6)) (-5 *1 (-767 *5 *6))))) -(-10 -7 (-15 -1482 ((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 12)) (-2862 (((-1238 |#1|) $ (-757)) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-3376 (($ (-1151 |#1|)) NIL)) (-3322 (((-1151 $) $ (-1061)) NIL) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1061))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3701 (((-630 $) $ $) 39 (|has| |#1| (-545)))) (-1690 (($ $ $) 35 (|has| |#1| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2998 (($ $ (-757)) NIL)) (-1300 (($ $ (-757)) NIL)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-1061) "failed") $) NIL) (((-3 (-1151 |#1|) "failed") $) 10)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-1061) $) NIL) (((-1151 |#1|) $) NIL)) (-2134 (($ $ $ (-1061)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-2539 (($ $ $) NIL)) (-3301 (($ $ $) 71 (|has| |#1| (-545)))) (-3464 (((-2 (|:| -4120 |#1|) (|:| -2666 $) (|:| -1571 $)) $ $) 70 (|has| |#1| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1061)) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-757) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1061) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1061) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-2968 (((-757) $ $) NIL (|has| |#1| (-545)))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-1130)))) (-3493 (($ (-1151 |#1|) (-1061)) NIL) (($ (-1151 $) (-1061)) NIL)) (-2166 (($ $ (-757)) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-1622 (($ $ $) 20)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1061)) NIL) (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2423 (((-757) $) NIL) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-757) (-757)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1504 (((-1151 |#1|) $) NIL)) (-1332 (((-3 (-1061) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4274 (-757))) $ $) 26)) (-2752 (($ $ $) 29)) (-3497 (($ $ $) 32)) (-3630 (((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $) 31)) (-1735 (((-1137) $) NIL)) (-4247 (($ $ $) 41 (|has| |#1| (-545)))) (-3395 (((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757)) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-1061)) (|:| -2692 (-757))) "failed") $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1945 (($) NIL (|has| |#1| (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-4264 (((-2 (|:| -2508 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-545)))) (-3270 (((-2 (|:| -2508 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-545)))) (-1362 (((-2 (|:| -2134 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-545)))) (-3158 (((-2 (|:| -2134 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-545)))) (-3623 (((-111) $) 13)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1974 (($ $ (-757) |#1| $) 19)) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-2675 (((-2 (|:| -2508 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-545)))) (-1415 (((-2 (|:| -2134 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-545)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1061) |#1|) NIL) (($ $ (-630 (-1061)) (-630 |#1|)) NIL) (($ $ (-1061) $) NIL) (($ $ (-630 (-1061)) (-630 $)) NIL)) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-545))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-545)))) (-2580 (((-3 $ "failed") $ (-757)) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-3000 (($ $ (-1061)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-1330 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3872 (((-757) $) NIL) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-1061) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1061)) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-2255 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-545)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-1061)) NIL) (((-1151 |#1|) $) 7) (($ (-1151 |#1|)) 8) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) 21 T CONST)) (-1997 (($) 24 T CONST)) (-1780 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) 28) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-768 |#1|) (-13 (-1214 |#1|) (-600 (-1151 |#1|)) (-1020 (-1151 |#1|)) (-10 -8 (-15 -1974 ($ $ (-757) |#1| $)) (-15 -1622 ($ $ $)) (-15 -4102 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4274 (-757))) $ $)) (-15 -2752 ($ $ $)) (-15 -3630 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3497 ($ $ $)) (IF (|has| |#1| (-545)) (PROGN (-15 -3701 ((-630 $) $ $)) (-15 -4247 ($ $ $)) (-15 -2675 ((-2 (|:| -2508 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3270 ((-2 (|:| -2508 $) (|:| |coef1| $)) $ $)) (-15 -4264 ((-2 (|:| -2508 $) (|:| |coef2| $)) $ $)) (-15 -1415 ((-2 (|:| -2134 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3158 ((-2 (|:| -2134 |#1|) (|:| |coef1| $)) $ $)) (-15 -1362 ((-2 (|:| -2134 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1031)) (T -768)) -((-1974 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-757)) (-5 *1 (-768 *3)) (-4 *3 (-1031)))) (-1622 (*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1031)))) (-4102 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-768 *3)) (|:| |polden| *3) (|:| -4274 (-757)))) (-5 *1 (-768 *3)) (-4 *3 (-1031)))) (-2752 (*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1031)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4120 *3) (|:| |gap| (-757)) (|:| -2666 (-768 *3)) (|:| -1571 (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-1031)))) (-3497 (*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1031)))) (-3701 (*1 *2 *1 *1) (-12 (-5 *2 (-630 (-768 *3))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) (-4247 (*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-545)) (-4 *2 (-1031)))) (-2675 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2508 (-768 *3)) (|:| |coef1| (-768 *3)) (|:| |coef2| (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) (-3270 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2508 (-768 *3)) (|:| |coef1| (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) (-4264 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2508 (-768 *3)) (|:| |coef2| (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) (-1415 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2134 *3) (|:| |coef1| (-768 *3)) (|:| |coef2| (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) (-3158 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2134 *3) (|:| |coef1| (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) (-1362 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2134 *3) (|:| |coef2| (-768 *3)))) (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031))))) -(-13 (-1214 |#1|) (-600 (-1151 |#1|)) (-1020 (-1151 |#1|)) (-10 -8 (-15 -1974 ($ $ (-757) |#1| $)) (-15 -1622 ($ $ $)) (-15 -4102 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4274 (-757))) $ $)) (-15 -2752 ($ $ $)) (-15 -3630 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3497 ($ $ $)) (IF (|has| |#1| (-545)) (PROGN (-15 -3701 ((-630 $) $ $)) (-15 -4247 ($ $ $)) (-15 -2675 ((-2 (|:| -2508 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3270 ((-2 (|:| -2508 $) (|:| |coef1| $)) $ $)) (-15 -4264 ((-2 (|:| -2508 $) (|:| |coef2| $)) $ $)) (-15 -1415 ((-2 (|:| -2134 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3158 ((-2 (|:| -2134 |#1|) (|:| |coef1| $)) $ $)) (-15 -1362 ((-2 (|:| -2134 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2791 ((|#1| (-757) |#1|) 32 (|has| |#1| (-38 (-401 (-553)))))) (-1555 ((|#1| (-757) |#1|) 22)) (-2446 ((|#1| (-757) |#1|) 34 (|has| |#1| (-38 (-401 (-553))))))) -(((-769 |#1|) (-10 -7 (-15 -1555 (|#1| (-757) |#1|)) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -2446 (|#1| (-757) |#1|)) (-15 -2791 (|#1| (-757) |#1|))) |%noBranch|)) (-169)) (T -769)) -((-2791 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-769 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-169)))) (-2446 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-769 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-169)))) (-1555 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-769 *2)) (-4 *2 (-169))))) -(-10 -7 (-15 -1555 (|#1| (-757) |#1|)) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -2446 (|#1| (-757) |#1|)) (-15 -2791 (|#1| (-757) |#1|))) |%noBranch|)) -((-3096 (((-111) $ $) 7)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) 85)) (-3247 (((-630 $) (-630 |#4|)) 86) (((-630 $) (-630 |#4|) (-111)) 111)) (-3506 (((-630 |#3|) $) 33)) (-1742 (((-111) $) 26)) (-3538 (((-111) $) 17 (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) 101) (((-111) $) 97)) (-1484 ((|#4| |#4| $) 92)) (-1536 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| $) 126)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) 27)) (-1511 (((-111) $ (-757)) 44)) (-3905 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 79)) (-3820 (($) 45 T CONST)) (-2623 (((-111) $) 22 (|has| |#1| (-545)))) (-2032 (((-111) $ $) 24 (|has| |#1| (-545)))) (-3559 (((-111) $ $) 23 (|has| |#1| (-545)))) (-1921 (((-111) $) 25 (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4063 (((-630 |#4|) (-630 |#4|) $) 18 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) 19 (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 36)) (-2707 (($ (-630 |#4|)) 35)) (-2616 (((-3 $ "failed") $) 82)) (-4290 ((|#4| |#4| $) 89)) (-2638 (($ $) 68 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#4| $) 67 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-1345 ((|#4| |#4| $) 87)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) 105)) (-3217 (((-111) |#4| $) 136)) (-3077 (((-111) |#4| $) 133)) (-1497 (((-111) |#4| $) 137) (((-111) $) 134)) (-1408 (((-630 |#4|) $) 52 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) 104) (((-111) $) 103)) (-1470 ((|#3| $) 34)) (-3703 (((-111) $ (-757)) 43)) (-2195 (((-630 |#4|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 47)) (-3935 (((-630 |#3|) $) 32)) (-2351 (((-111) |#3| $) 31)) (-3786 (((-111) $ (-757)) 42)) (-1735 (((-1137) $) 9)) (-2025 (((-3 |#4| (-630 $)) |#4| |#4| $) 128)) (-4247 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| |#4| $) 127)) (-2594 (((-3 |#4| "failed") $) 83)) (-2129 (((-630 $) |#4| $) 129)) (-3184 (((-3 (-111) (-630 $)) |#4| $) 132)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-1475 (((-630 $) |#4| $) 125) (((-630 $) (-630 |#4|) $) 124) (((-630 $) (-630 |#4|) (-630 $)) 123) (((-630 $) |#4| (-630 $)) 122)) (-2520 (($ |#4| $) 117) (($ (-630 |#4|) $) 116)) (-2564 (((-630 |#4|) $) 107)) (-4299 (((-111) |#4| $) 99) (((-111) $) 95)) (-4080 ((|#4| |#4| $) 90)) (-1990 (((-111) $ $) 110)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) 100) (((-111) $) 96)) (-3138 ((|#4| |#4| $) 91)) (-2786 (((-1099) $) 10)) (-2603 (((-3 |#4| "failed") $) 84)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2761 (((-3 $ "failed") $ |#4|) 78)) (-3089 (($ $ |#4|) 77) (((-630 $) |#4| $) 115) (((-630 $) |#4| (-630 $)) 114) (((-630 $) (-630 |#4|) $) 113) (((-630 $) (-630 |#4|) (-630 $)) 112)) (-3341 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) 38)) (-3586 (((-111) $) 41)) (-3222 (($) 40)) (-3872 (((-757) $) 106)) (-2796 (((-757) |#4| $) 54 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4369)))) (-1508 (($ $) 39)) (-1524 (((-529) $) 69 (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 60)) (-2867 (($ $ |#3|) 28)) (-3721 (($ $ |#3|) 30)) (-2316 (($ $) 88)) (-1665 (($ $ |#3|) 29)) (-3110 (((-845) $) 11) (((-630 |#4|) $) 37)) (-2668 (((-757) $) 76 (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) 98)) (-4130 (((-630 $) |#4| $) 121) (((-630 $) |#4| (-630 $)) 120) (((-630 $) (-630 |#4|) $) 119) (((-630 $) (-630 |#4|) (-630 $)) 118)) (-3296 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) 81)) (-1397 (((-111) |#4| $) 135)) (-4223 (((-111) |#3| $) 80)) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 46 (|has| $ (-6 -4369))))) -(((-770 |#1| |#2| |#3| |#4|) (-137) (-445) (-779) (-833) (-1045 |t#1| |t#2| |t#3|)) (T -770)) -NIL -(-13 (-1051 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-600 (-630 |#4|)) . T) ((-600 (-845)) . T) ((-148 |#4|) . T) ((-601 (-529)) |has| |#4| (-601 (-529))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-482 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-958 |#1| |#2| |#3| |#4|) . T) ((-1051 |#1| |#2| |#3| |#4|) . T) ((-1079) . T) ((-1185 |#1| |#2| |#3| |#4|) . T) ((-1192) . T)) -((-3960 (((-3 (-373) "failed") (-310 |#1|) (-903)) 62 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-3 (-373) "failed") (-310 |#1|)) 54 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-3 (-373) "failed") (-401 (-934 |#1|)) (-903)) 41 (|has| |#1| (-545))) (((-3 (-373) "failed") (-401 (-934 |#1|))) 40 (|has| |#1| (-545))) (((-3 (-373) "failed") (-934 |#1|) (-903)) 31 (|has| |#1| (-1031))) (((-3 (-373) "failed") (-934 |#1|)) 30 (|has| |#1| (-1031)))) (-1323 (((-373) (-310 |#1|) (-903)) 99 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-373) (-310 |#1|)) 94 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-373) (-401 (-934 |#1|)) (-903)) 91 (|has| |#1| (-545))) (((-373) (-401 (-934 |#1|))) 90 (|has| |#1| (-545))) (((-373) (-934 |#1|) (-903)) 86 (|has| |#1| (-1031))) (((-373) (-934 |#1|)) 85 (|has| |#1| (-1031))) (((-373) |#1| (-903)) 76) (((-373) |#1|) 22)) (-2251 (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-903)) 71 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|))) 70 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-3 (-166 (-373)) "failed") (-310 |#1|) (-903)) 63 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-3 (-166 (-373)) "failed") (-310 |#1|)) 61 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-3 (-166 (-373)) "failed") (-401 (-934 (-166 |#1|))) (-903)) 46 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-401 (-934 (-166 |#1|)))) 45 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-401 (-934 |#1|)) (-903)) 39 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-401 (-934 |#1|))) 38 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-934 |#1|) (-903)) 28 (|has| |#1| (-1031))) (((-3 (-166 (-373)) "failed") (-934 |#1|)) 26 (|has| |#1| (-1031))) (((-3 (-166 (-373)) "failed") (-934 (-166 |#1|)) (-903)) 18 (|has| |#1| (-169))) (((-3 (-166 (-373)) "failed") (-934 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-3287 (((-166 (-373)) (-310 (-166 |#1|)) (-903)) 102 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-166 (-373)) (-310 (-166 |#1|))) 101 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-166 (-373)) (-310 |#1|) (-903)) 100 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-166 (-373)) (-310 |#1|)) 98 (-12 (|has| |#1| (-545)) (|has| |#1| (-833)))) (((-166 (-373)) (-401 (-934 (-166 |#1|))) (-903)) 93 (|has| |#1| (-545))) (((-166 (-373)) (-401 (-934 (-166 |#1|)))) 92 (|has| |#1| (-545))) (((-166 (-373)) (-401 (-934 |#1|)) (-903)) 89 (|has| |#1| (-545))) (((-166 (-373)) (-401 (-934 |#1|))) 88 (|has| |#1| (-545))) (((-166 (-373)) (-934 |#1|) (-903)) 84 (|has| |#1| (-1031))) (((-166 (-373)) (-934 |#1|)) 83 (|has| |#1| (-1031))) (((-166 (-373)) (-934 (-166 |#1|)) (-903)) 78 (|has| |#1| (-169))) (((-166 (-373)) (-934 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|) (-903)) 80 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-373)) |#1| (-903)) 27) (((-166 (-373)) |#1|) 25))) -(((-771 |#1|) (-10 -7 (-15 -1323 ((-373) |#1|)) (-15 -1323 ((-373) |#1| (-903))) (-15 -3287 ((-166 (-373)) |#1|)) (-15 -3287 ((-166 (-373)) |#1| (-903))) (IF (|has| |#1| (-169)) (PROGN (-15 -3287 ((-166 (-373)) (-166 |#1|))) (-15 -3287 ((-166 (-373)) (-166 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-934 (-166 |#1|)))) (-15 -3287 ((-166 (-373)) (-934 (-166 |#1|)) (-903)))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-15 -1323 ((-373) (-934 |#1|))) (-15 -1323 ((-373) (-934 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-934 |#1|))) (-15 -3287 ((-166 (-373)) (-934 |#1|) (-903)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1323 ((-373) (-401 (-934 |#1|)))) (-15 -1323 ((-373) (-401 (-934 |#1|)) (-903))) (-15 -3287 ((-166 (-373)) (-401 (-934 |#1|)))) (-15 -3287 ((-166 (-373)) (-401 (-934 |#1|)) (-903))) (-15 -3287 ((-166 (-373)) (-401 (-934 (-166 |#1|))))) (-15 -3287 ((-166 (-373)) (-401 (-934 (-166 |#1|))) (-903))) (IF (|has| |#1| (-833)) (PROGN (-15 -1323 ((-373) (-310 |#1|))) (-15 -1323 ((-373) (-310 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-310 |#1|))) (-15 -3287 ((-166 (-373)) (-310 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -3287 ((-166 (-373)) (-310 (-166 |#1|)) (-903)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 (-166 |#1|)))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 (-166 |#1|)) (-903)))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-15 -3960 ((-3 (-373) "failed") (-934 |#1|))) (-15 -3960 ((-3 (-373) "failed") (-934 |#1|) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 |#1|))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 |#1|) (-903)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3960 ((-3 (-373) "failed") (-401 (-934 |#1|)))) (-15 -3960 ((-3 (-373) "failed") (-401 (-934 |#1|)) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 |#1|)))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 |#1|)) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 (-166 |#1|))))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 (-166 |#1|))) (-903))) (IF (|has| |#1| (-833)) (PROGN (-15 -3960 ((-3 (-373) "failed") (-310 |#1|))) (-15 -3960 ((-3 (-373) "failed") (-310 |#1|) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-903)))) |%noBranch|)) |%noBranch|)) (-601 (-373))) (T -771)) -((-2251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-833)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-2251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) (-3960 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) (-2251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-934 (-166 *5)))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-934 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-2251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) (-3960 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) (-2251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) (-3960 (*1 *2 *3) (|partial| -12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) (-2251 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-934 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-169)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-934 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-833)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-1323 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 (-166 *5)))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-1323 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-1323 (*1 *2 *3 *4) (-12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-934 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-169)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-934 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-903)) (-4 *5 (-169)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-5 *2 (-166 (-373))) (-5 *1 (-771 *3)) (-4 *3 (-601 (-373))))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-771 *3)) (-4 *3 (-601 (-373))))) (-1323 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-5 *2 (-373)) (-5 *1 (-771 *3)) (-4 *3 (-601 *2)))) (-1323 (*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-771 *3)) (-4 *3 (-601 *2))))) -(-10 -7 (-15 -1323 ((-373) |#1|)) (-15 -1323 ((-373) |#1| (-903))) (-15 -3287 ((-166 (-373)) |#1|)) (-15 -3287 ((-166 (-373)) |#1| (-903))) (IF (|has| |#1| (-169)) (PROGN (-15 -3287 ((-166 (-373)) (-166 |#1|))) (-15 -3287 ((-166 (-373)) (-166 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-934 (-166 |#1|)))) (-15 -3287 ((-166 (-373)) (-934 (-166 |#1|)) (-903)))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-15 -1323 ((-373) (-934 |#1|))) (-15 -1323 ((-373) (-934 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-934 |#1|))) (-15 -3287 ((-166 (-373)) (-934 |#1|) (-903)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -1323 ((-373) (-401 (-934 |#1|)))) (-15 -1323 ((-373) (-401 (-934 |#1|)) (-903))) (-15 -3287 ((-166 (-373)) (-401 (-934 |#1|)))) (-15 -3287 ((-166 (-373)) (-401 (-934 |#1|)) (-903))) (-15 -3287 ((-166 (-373)) (-401 (-934 (-166 |#1|))))) (-15 -3287 ((-166 (-373)) (-401 (-934 (-166 |#1|))) (-903))) (IF (|has| |#1| (-833)) (PROGN (-15 -1323 ((-373) (-310 |#1|))) (-15 -1323 ((-373) (-310 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-310 |#1|))) (-15 -3287 ((-166 (-373)) (-310 |#1|) (-903))) (-15 -3287 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -3287 ((-166 (-373)) (-310 (-166 |#1|)) (-903)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 (-166 |#1|)))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 (-166 |#1|)) (-903)))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-15 -3960 ((-3 (-373) "failed") (-934 |#1|))) (-15 -3960 ((-3 (-373) "failed") (-934 |#1|) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 |#1|))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-934 |#1|) (-903)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3960 ((-3 (-373) "failed") (-401 (-934 |#1|)))) (-15 -3960 ((-3 (-373) "failed") (-401 (-934 |#1|)) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 |#1|)))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 |#1|)) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 (-166 |#1|))))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-401 (-934 (-166 |#1|))) (-903))) (IF (|has| |#1| (-833)) (PROGN (-15 -3960 ((-3 (-373) "failed") (-310 |#1|))) (-15 -3960 ((-3 (-373) "failed") (-310 |#1|) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-903))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -2251 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-903)))) |%noBranch|)) |%noBranch|)) -((-3438 (((-903) (-1137)) 65)) (-3751 (((-3 (-373) "failed") (-1137)) 33)) (-4155 (((-373) (-1137)) 31)) (-3309 (((-903) (-1137)) 54)) (-3250 (((-1137) (-903)) 55)) (-3583 (((-1137) (-903)) 53))) -(((-772) (-10 -7 (-15 -3583 ((-1137) (-903))) (-15 -3309 ((-903) (-1137))) (-15 -3250 ((-1137) (-903))) (-15 -3438 ((-903) (-1137))) (-15 -4155 ((-373) (-1137))) (-15 -3751 ((-3 (-373) "failed") (-1137))))) (T -772)) -((-3751 (*1 *2 *3) (|partial| -12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-772)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-772)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-903)) (-5 *1 (-772)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1137)) (-5 *1 (-772)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-903)) (-5 *1 (-772)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1137)) (-5 *1 (-772))))) -(-10 -7 (-15 -3583 ((-1137) (-903))) (-15 -3309 ((-903) (-1137))) (-15 -3250 ((-1137) (-903))) (-15 -3438 ((-903) (-1137))) (-15 -4155 ((-373) (-1137))) (-15 -3751 ((-3 (-373) "failed") (-1137)))) -((-3096 (((-111) $ $) 7)) (-3773 (((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 15) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017)) 13)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-773) (-137)) (T -773)) -((-1309 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-1043)) (-5 *4 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017)))))) (-3773 (*1 *2 *3 *2) (-12 (-4 *1 (-773)) (-5 *2 (-1017)) (-5 *3 (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-1309 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-1043)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017)))))) (-3773 (*1 *2 *3 *2) (-12 (-4 *1 (-773)) (-5 *2 (-1017)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) -(-13 (-1079) (-10 -7 (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3773 ((-1017) (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) (|:| |extra| (-1017))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3773 ((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1017))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3840 (((-1243) (-1238 (-373)) (-553) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373))) (-373) (-1238 (-373)) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373))) 44) (((-1243) (-1238 (-373)) (-553) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373))) (-373) (-1238 (-373)) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373))) 43)) (-3902 (((-1243) (-1238 (-373)) (-553) (-373) (-373) (-553) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373))) 50)) (-3434 (((-1243) (-1238 (-373)) (-553) (-373) (-373) (-373) (-373) (-553) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373))) 41)) (-1878 (((-1243) (-1238 (-373)) (-553) (-373) (-373) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373))) 52) (((-1243) (-1238 (-373)) (-553) (-373) (-373) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373))) 51))) -(((-774) (-10 -7 (-15 -1878 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))) (-15 -1878 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)))) (-15 -3434 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-373) (-373) (-553) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))) (-15 -3840 ((-1243) (-1238 (-373)) (-553) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373))) (-373) (-1238 (-373)) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))) (-15 -3840 ((-1243) (-1238 (-373)) (-553) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373))) (-373) (-1238 (-373)) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)))) (-15 -3902 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-553) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))))) (T -774)) -((-3902 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) (-5 *1 (-774)))) (-3840 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-553)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373)))) (-5 *7 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) (-5 *1 (-774)))) (-3840 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-553)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373)))) (-5 *7 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) (-5 *1 (-774)))) (-3434 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) (-5 *1 (-774)))) (-1878 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) (-5 *1 (-774)))) (-1878 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) (-5 *1 (-774))))) -(-10 -7 (-15 -1878 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))) (-15 -1878 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)))) (-15 -3434 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-373) (-373) (-553) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))) (-15 -3840 ((-1243) (-1238 (-373)) (-553) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373))) (-373) (-1238 (-373)) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)))) (-15 -3840 ((-1243) (-1238 (-373)) (-553) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373))) (-373) (-1238 (-373)) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)) (-1238 (-373)))) (-15 -3902 ((-1243) (-1238 (-373)) (-553) (-373) (-373) (-553) (-1 (-1243) (-1238 (-373)) (-1238 (-373)) (-373))))) -((-2812 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)) 53)) (-2611 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)) 31)) (-3516 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)) 52)) (-1426 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)) 29)) (-2775 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)) 51)) (-1357 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)) 19)) (-1744 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553)) 32)) (-1352 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553)) 30)) (-3159 (((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553)) 28))) -(((-775) (-10 -7 (-15 -3159 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553))) (-15 -1352 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553))) (-15 -1744 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553))) (-15 -1357 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -1426 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -2611 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -2775 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -3516 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -2812 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))))) (T -775)) -((-2812 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-3516 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-2775 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-2611 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-1426 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-1357 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-1744 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-1352 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553)))) (-3159 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) (|:| |success| (-111)))) (-5 *1 (-775)) (-5 *5 (-553))))) -(-10 -7 (-15 -3159 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553))) (-15 -1352 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553))) (-15 -1744 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553) (-553))) (-15 -1357 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -1426 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -2611 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -2775 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -3516 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553))) (-15 -2812 ((-2 (|:| -2821 (-373)) (|:| -1833 (-373)) (|:| |totalpts| (-553)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-553) (-553)))) -((-2912 (((-1187 |#1|) |#1| (-220) (-553)) 46))) -(((-776 |#1|) (-10 -7 (-15 -2912 ((-1187 |#1|) |#1| (-220) (-553)))) (-956)) (T -776)) -((-2912 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-220)) (-5 *5 (-553)) (-5 *2 (-1187 *3)) (-5 *1 (-776 *3)) (-4 *3 (-956))))) -(-10 -7 (-15 -2912 ((-1187 |#1|) |#1| (-220) (-553)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 24)) (-2910 (((-3 $ "failed") $ $) 26)) (-3820 (($) 23 T CONST)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 22 T CONST)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1711 (($ $ $) 28) (($ $) 27)) (-1700 (($ $ $) 20)) (* (($ (-903) $) 21) (($ (-757) $) 25) (($ (-553) $) 29))) -(((-777) (-137)) (T -777)) -NIL -(-13 (-781) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-833) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 24)) (-3820 (($) 23 T CONST)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 22 T CONST)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1700 (($ $ $) 20)) (* (($ (-903) $) 21) (($ (-757) $) 25))) -(((-778) (-137)) (T -778)) -NIL -(-13 (-780) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-600 (-845)) . T) ((-780) . T) ((-833) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 24)) (-2345 (($ $ $) 27)) (-2910 (((-3 $ "failed") $ $) 26)) (-3820 (($) 23 T CONST)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 22 T CONST)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1700 (($ $ $) 20)) (* (($ (-903) $) 21) (($ (-757) $) 25))) -(((-779) (-137)) (T -779)) -((-2345 (*1 *1 *1 *1) (-4 *1 (-779)))) -(-13 (-781) (-10 -8 (-15 -2345 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-833) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1700 (($ $ $) 20)) (* (($ (-903) $) 21))) -(((-780) (-137)) (T -780)) -NIL -(-13 (-833) (-25)) -(((-25) . T) ((-101) . T) ((-600 (-845)) . T) ((-833) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 24)) (-2910 (((-3 $ "failed") $ $) 26)) (-3820 (($) 23 T CONST)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 22 T CONST)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1700 (($ $ $) 20)) (* (($ (-903) $) 21) (($ (-757) $) 25))) -(((-781) (-137)) (T -781)) -NIL -(-13 (-778) (-129)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-778) . T) ((-780) . T) ((-833) . T) ((-1079) . T)) -((-3769 (((-111) $) 41)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2707 (((-553) $) NIL) (((-401 (-553)) $) NIL) ((|#2| $) 42)) (-3458 (((-3 (-401 (-553)) "failed") $) 78)) (-4323 (((-111) $) 72)) (-1672 (((-401 (-553)) $) 76)) (-3560 ((|#2| $) 26)) (-1482 (($ (-1 |#2| |#2|) $) 23)) (-3610 (($ $) 61)) (-1524 (((-529) $) 67)) (-3199 (($ $) 21)) (-3110 (((-845) $) 56) (($ (-553)) 39) (($ |#2|) 37) (($ (-401 (-553))) NIL)) (-1999 (((-757)) 10)) (-3466 ((|#2| $) 71)) (-1617 (((-111) $ $) 29)) (-1636 (((-111) $ $) 69)) (-1711 (($ $) 31) (($ $ $) NIL)) (-1700 (($ $ $) 30)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-782 |#1| |#2|) (-10 -8 (-15 -1636 ((-111) |#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -3466 (|#2| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 -3769 ((-111) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-783 |#2|) (-169)) (T -782)) -((-1999 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-757)) (-5 *1 (-782 *3 *4)) (-4 *3 (-783 *4))))) -(-10 -8 (-15 -1636 ((-111) |#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -3466 (|#2| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 -3769 ((-111) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-2571 (((-757)) 52 (|has| |#1| (-362)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 94 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 91 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 88)) (-2707 (((-553) $) 93 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 90 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 89)) (-2982 (((-3 $ "failed") $) 33)) (-3375 ((|#1| $) 78)) (-3458 (((-3 (-401 (-553)) "failed") $) 65 (|has| |#1| (-538)))) (-4323 (((-111) $) 67 (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) 66 (|has| |#1| (-538)))) (-3031 (($) 55 (|has| |#1| (-362)))) (-1848 (((-111) $) 31)) (-2176 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3560 ((|#1| $) 70)) (-1824 (($ $ $) 61 (|has| |#1| (-833)))) (-1975 (($ $ $) 60 (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) 80)) (-3796 (((-903) $) 54 (|has| |#1| (-362)))) (-1735 (((-1137) $) 9)) (-3610 (($ $) 64 (|has| |#1| (-357)))) (-2735 (($ (-903)) 53 (|has| |#1| (-362)))) (-2553 ((|#1| $) 75)) (-3842 ((|#1| $) 76)) (-2977 ((|#1| $) 77)) (-2727 ((|#1| $) 71)) (-3005 ((|#1| $) 72)) (-1661 ((|#1| $) 73)) (-2147 ((|#1| $) 74)) (-2786 (((-1099) $) 10)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) 86 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 84 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) 83 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 82 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) 81 (|has| |#1| (-507 (-1155) |#1|)))) (-2046 (($ $ |#1|) 87 (|has| |#1| (-280 |#1| |#1|)))) (-1524 (((-529) $) 62 (|has| |#1| (-601 (-529))))) (-3199 (($ $) 79)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38) (($ (-401 (-553))) 92 (|has| |#1| (-1020 (-401 (-553)))))) (-2941 (((-3 $ "failed") $) 63 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-3466 ((|#1| $) 68 (|has| |#1| (-1040)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 58 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 57 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 59 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 56 (|has| |#1| (-833)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-783 |#1|) (-137) (-169)) (T -783)) -((-3199 (*1 *1 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-2176 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)) (-4 *2 (-1040)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-111)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-401 (-553))))) (-3458 (*1 *2 *1) (|partial| -12 (-4 *1 (-783 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-401 (-553))))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-332 |t#1|) (-10 -8 (-15 -3199 ($ $)) (-15 -3375 (|t#1| $)) (-15 -2977 (|t#1| $)) (-15 -3842 (|t#1| $)) (-15 -2553 (|t#1| $)) (-15 -2147 (|t#1| $)) (-15 -1661 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -2727 (|t#1| $)) (-15 -3560 (|t#1| $)) (-15 -2176 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1040)) (-15 -3466 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -3610 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0=(-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-362) |has| |#1| (-362)) ((-332 |#1|) . T) ((-405 |#1|) . T) ((-507 (-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) . T) ((-712) . T) ((-833) |has| |#1| (-833)) ((-1020 #0#) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1482 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#3| (-1 |#4| |#2|) |#1|))) (-783 |#2|) (-169) (-783 |#4|) (-169)) (T -784)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-783 *6)) (-5 *1 (-784 *4 *5 *2 *6)) (-4 *4 (-783 *5))))) -(-10 -7 (-15 -1482 (|#3| (-1 |#4| |#2|) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-981 |#1|) "failed") $) 35) (((-3 (-553) "failed") $) NIL (-3988 (|has| (-981 |#1|) (-1020 (-553))) (|has| |#1| (-1020 (-553))))) (((-3 (-401 (-553)) "failed") $) NIL (-3988 (|has| (-981 |#1|) (-1020 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-2707 ((|#1| $) NIL) (((-981 |#1|) $) 33) (((-553) $) NIL (-3988 (|has| (-981 |#1|) (-1020 (-553))) (|has| |#1| (-1020 (-553))))) (((-401 (-553)) $) NIL (-3988 (|has| (-981 |#1|) (-1020 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-2982 (((-3 $ "failed") $) NIL)) (-3375 ((|#1| $) 16)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-538)))) (-4323 (((-111) $) NIL (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) NIL (|has| |#1| (-538)))) (-3031 (($) NIL (|has| |#1| (-362)))) (-1848 (((-111) $) NIL)) (-2176 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-981 |#1|) (-981 |#1|)) 29)) (-3560 ((|#1| $) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-2553 ((|#1| $) 22)) (-3842 ((|#1| $) 20)) (-2977 ((|#1| $) 18)) (-2727 ((|#1| $) 26)) (-3005 ((|#1| $) 25)) (-1661 ((|#1| $) 24)) (-2147 ((|#1| $) 23)) (-2786 (((-1099) $) NIL)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) NIL (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-507 (-1155) |#1|)))) (-2046 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3199 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-981 |#1|)) 30) (($ (-401 (-553))) NIL (-3988 (|has| (-981 |#1|) (-1020 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-3466 ((|#1| $) NIL (|has| |#1| (-1040)))) (-1988 (($) 8 T CONST)) (-1997 (($) 12 T CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-785 |#1|) (-13 (-783 |#1|) (-405 (-981 |#1|)) (-10 -8 (-15 -2176 ($ (-981 |#1|) (-981 |#1|))))) (-169)) (T -785)) -((-2176 (*1 *1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-169)) (-5 *1 (-785 *3))))) -(-13 (-783 |#1|) (-405 (-981 |#1|)) (-10 -8 (-15 -2176 ($ (-981 |#1|) (-981 |#1|))))) -((-3096 (((-111) $ $) 7)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1612 (((-1017) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13)) (-1617 (((-111) $ $) 6))) -(((-786) (-137)) (T -786)) -((-1309 (*1 *2 *3 *4) (-12 (-4 *1 (-786)) (-5 *3 (-1043)) (-5 *4 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) (-1612 (*1 *2 *3) (-12 (-4 *1 (-786)) (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1017))))) -(-13 (-1079) (-10 -7 (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1612 ((-1017) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-2908 (((-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#3| |#2| (-1155)) 19))) -(((-787 |#1| |#2| |#3|) (-10 -7 (-15 -2908 ((-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#3| |#2| (-1155)))) (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144)) (-13 (-29 |#1|) (-1177) (-941)) (-641 |#2|)) (T -787)) -((-2908 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1155)) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-4 *4 (-13 (-29 *6) (-1177) (-941))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4124 (-630 *4)))) (-5 *1 (-787 *6 *4 *3)) (-4 *3 (-641 *4))))) -(-10 -7 (-15 -2908 ((-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#3| |#2| (-1155)))) -((-1638 (((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-630 |#2|)) 28) (((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-630 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#2| "failed") |#2| (-113) (-1155)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1155)) 18) (((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-630 |#2|) (-630 (-113)) (-1155)) 24) (((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-630 (-288 |#2|)) (-630 (-113)) (-1155)) 26) (((-3 (-630 (-1238 |#2|)) "failed") (-674 |#2|) (-1155)) 37) (((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-674 |#2|) (-1238 |#2|) (-1155)) 35))) -(((-788 |#1| |#2|) (-10 -7 (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-674 |#2|) (-1238 |#2|) (-1155))) (-15 -1638 ((-3 (-630 (-1238 |#2|)) "failed") (-674 |#2|) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-630 (-288 |#2|)) (-630 (-113)) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-630 |#2|) (-630 (-113)) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#2| "failed") |#2| (-113) (-1155))) (-15 -1638 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-630 |#2|))) (-15 -1638 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-630 |#2|)))) (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144)) (-13 (-29 |#1|) (-1177) (-941))) (T -788)) -((-1638 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-630 *2)) (-4 *2 (-13 (-29 *6) (-1177) (-941))) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *1 (-788 *6 *2)))) (-1638 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-630 *2)) (-4 *2 (-13 (-29 *6) (-1177) (-941))) (-5 *1 (-788 *6 *2)) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))))) (-1638 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1155)) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4124 (-630 *3))) *3 "failed")) (-5 *1 (-788 *6 *3)) (-4 *3 (-13 (-29 *6) (-1177) (-941))))) (-1638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1155)) (-4 *7 (-13 (-29 *6) (-1177) (-941))) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4124 (-630 *7))) *7 "failed")) (-5 *1 (-788 *6 *7)))) (-1638 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *4 (-630 (-113))) (-5 *5 (-1155)) (-4 *7 (-13 (-29 *6) (-1177) (-941))) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-2 (|:| |particular| (-1238 *7)) (|:| -4124 (-630 (-1238 *7))))) (-5 *1 (-788 *6 *7)))) (-1638 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 (-288 *7))) (-5 *4 (-630 (-113))) (-5 *5 (-1155)) (-4 *7 (-13 (-29 *6) (-1177) (-941))) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-2 (|:| |particular| (-1238 *7)) (|:| -4124 (-630 (-1238 *7))))) (-5 *1 (-788 *6 *7)))) (-1638 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-674 *6)) (-5 *4 (-1155)) (-4 *6 (-13 (-29 *5) (-1177) (-941))) (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-630 (-1238 *6))) (-5 *1 (-788 *5 *6)))) (-1638 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-674 *7)) (-5 *5 (-1155)) (-4 *7 (-13 (-29 *6) (-1177) (-941))) (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-2 (|:| |particular| (-1238 *7)) (|:| -4124 (-630 (-1238 *7))))) (-5 *1 (-788 *6 *7)) (-5 *4 (-1238 *7))))) -(-10 -7 (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-674 |#2|) (-1238 |#2|) (-1155))) (-15 -1638 ((-3 (-630 (-1238 |#2|)) "failed") (-674 |#2|) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-630 (-288 |#2|)) (-630 (-113)) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#2|)) (|:| -4124 (-630 (-1238 |#2|)))) "failed") (-630 |#2|) (-630 (-113)) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1155))) (-15 -1638 ((-3 (-2 (|:| |particular| |#2|) (|:| -4124 (-630 |#2|))) |#2| "failed") |#2| (-113) (-1155))) (-15 -1638 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-630 |#2|))) (-15 -1638 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-630 |#2|)))) -((-4329 (($) 9)) (-3975 (((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 31)) (-3729 (((-630 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 28)) (-2636 (($ (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) 25)) (-1416 (($ (-630 (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) 23)) (-3364 (((-1243)) 12))) -(((-789) (-10 -8 (-15 -4329 ($)) (-15 -3364 ((-1243))) (-15 -3729 ((-630 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -1416 ($ (-630 (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -2636 ($ (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -3975 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -789)) -((-3975 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *1 (-789)))) (-2636 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) (-5 *1 (-789)))) (-1416 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-5 *1 (-789)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-789)))) (-3364 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-789)))) (-4329 (*1 *1) (-5 *1 (-789)))) -(-10 -8 (-15 -4329 ($)) (-15 -3364 ((-1243))) (-15 -3729 ((-630 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -1416 ($ (-630 (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -2636 ($ (-2 (|:| -2578 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -3256 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -3975 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) -((-2060 ((|#2| |#2| (-1155)) 16)) (-2731 ((|#2| |#2| (-1155)) 51)) (-1725 (((-1 |#2| |#2|) (-1155)) 11))) -(((-790 |#1| |#2|) (-10 -7 (-15 -2060 (|#2| |#2| (-1155))) (-15 -2731 (|#2| |#2| (-1155))) (-15 -1725 ((-1 |#2| |#2|) (-1155)))) (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144)) (-13 (-29 |#1|) (-1177) (-941))) (T -790)) -((-1725 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-1 *5 *5)) (-5 *1 (-790 *4 *5)) (-4 *5 (-13 (-29 *4) (-1177) (-941))))) (-2731 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *1 (-790 *4 *2)) (-4 *2 (-13 (-29 *4) (-1177) (-941))))) (-2060 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *1 (-790 *4 *2)) (-4 *2 (-13 (-29 *4) (-1177) (-941)))))) -(-10 -7 (-15 -2060 (|#2| |#2| (-1155))) (-15 -2731 (|#2| |#2| (-1155))) (-15 -1725 ((-1 |#2| |#2|) (-1155)))) -((-1638 (((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-630 (-373)) (-373) (-373)) 116) (((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-630 (-373)) (-373)) 117) (((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-630 (-373)) (-373)) 119) (((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-373)) 120) (((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-373)) 121) (((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373))) 122) (((-1017) (-794) (-1043)) 108) (((-1017) (-794)) 109)) (-1309 (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-794) (-1043)) 75) (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-794)) 77))) -(((-791) (-10 -7 (-15 -1638 ((-1017) (-794))) (-15 -1638 ((-1017) (-794) (-1043))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-630 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-630 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-630 (-373)) (-373) (-373))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-794))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-794) (-1043))))) (T -791)) -((-1309 (*1 *2 *3 *4) (-12 (-5 *3 (-794)) (-5 *4 (-1043)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *1 (-791)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1238 (-310 *4))) (-5 *5 (-630 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1238 (-310 *4))) (-5 *5 (-630 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1238 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-630 *4)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1238 (-310 *4))) (-5 *5 (-630 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1238 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-630 *4)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1238 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-630 *4)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-794)) (-5 *4 (-1043)) (-5 *2 (-1017)) (-5 *1 (-791)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1017)) (-5 *1 (-791))))) -(-10 -7 (-15 -1638 ((-1017) (-794))) (-15 -1638 ((-1017) (-794) (-1043))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-630 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-630 (-373)) (-373))) (-15 -1638 ((-1017) (-1238 (-310 (-373))) (-373) (-373) (-630 (-373)) (-310 (-373)) (-630 (-373)) (-373) (-373))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-794))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-794) (-1043)))) -((-4105 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4124 (-630 |#4|))) (-638 |#4|) |#4|) 35))) -(((-792 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4105 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4124 (-630 |#4|))) (-638 |#4|) |#4|))) (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553)))) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -792)) -((-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-638 *4)) (-4 *4 (-336 *5 *6 *7)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-792 *5 *6 *7 *4))))) -(-10 -7 (-15 -4105 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4124 (-630 |#4|))) (-638 |#4|) |#4|))) -((-4320 (((-2 (|:| -2662 |#3|) (|:| |rh| (-630 (-401 |#2|)))) |#4| (-630 (-401 |#2|))) 52)) (-1520 (((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#4| |#2|) 60) (((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#4|) 59) (((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#3| |#2|) 20) (((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#3|) 21)) (-2082 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3625 ((|#2| |#3| (-630 (-401 |#2|))) 93) (((-3 |#2| "failed") |#3| (-401 |#2|)) 90))) -(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3625 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3625 (|#2| |#3| (-630 (-401 |#2|)))) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#3|)) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#3| |#2|)) (-15 -2082 (|#2| |#3| |#1|)) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#4|)) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#4| |#2|)) (-15 -2082 (|#2| |#4| |#1|)) (-15 -4320 ((-2 (|:| -2662 |#3|) (|:| |rh| (-630 (-401 |#2|)))) |#4| (-630 (-401 |#2|))))) (-13 (-357) (-144) (-1020 (-401 (-553)))) (-1214 |#1|) (-641 |#2|) (-641 (-401 |#2|))) (T -793)) -((-4320 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-2 (|:| -2662 *7) (|:| |rh| (-630 (-401 *6))))) (-5 *1 (-793 *5 *6 *7 *3)) (-5 *4 (-630 (-401 *6))) (-4 *7 (-641 *6)) (-4 *3 (-641 (-401 *6))))) (-2082 (*1 *2 *3 *4) (-12 (-4 *2 (-1214 *4)) (-5 *1 (-793 *4 *2 *5 *3)) (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-641 *2)) (-4 *3 (-641 (-401 *2))))) (-1520 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *4 (-1214 *5)) (-5 *2 (-630 (-2 (|:| -4010 *4) (|:| -4304 *4)))) (-5 *1 (-793 *5 *4 *6 *3)) (-4 *6 (-641 *4)) (-4 *3 (-641 (-401 *4))))) (-1520 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *2 (-630 (-2 (|:| -4010 *5) (|:| -4304 *5)))) (-5 *1 (-793 *4 *5 *6 *3)) (-4 *6 (-641 *5)) (-4 *3 (-641 (-401 *5))))) (-2082 (*1 *2 *3 *4) (-12 (-4 *2 (-1214 *4)) (-5 *1 (-793 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) (-4 *5 (-641 (-401 *2))))) (-1520 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *4 (-1214 *5)) (-5 *2 (-630 (-2 (|:| -4010 *4) (|:| -4304 *4)))) (-5 *1 (-793 *5 *4 *3 *6)) (-4 *3 (-641 *4)) (-4 *6 (-641 (-401 *4))))) (-1520 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *2 (-630 (-2 (|:| -4010 *5) (|:| -4304 *5)))) (-5 *1 (-793 *4 *5 *3 *6)) (-4 *3 (-641 *5)) (-4 *6 (-641 (-401 *5))))) (-3625 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-401 *2))) (-4 *2 (-1214 *5)) (-5 *1 (-793 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) (-4 *6 (-641 (-401 *2))))) (-3625 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1214 *5)) (-5 *1 (-793 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) (-4 *6 (-641 *4))))) -(-10 -7 (-15 -3625 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3625 (|#2| |#3| (-630 (-401 |#2|)))) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#3|)) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#3| |#2|)) (-15 -2082 (|#2| |#3| |#1|)) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#4|)) (-15 -1520 ((-630 (-2 (|:| -4010 |#2|) (|:| -4304 |#2|))) |#4| |#2|)) (-15 -2082 (|#2| |#4| |#1|)) (-15 -4320 ((-2 (|:| -2662 |#3|) (|:| |rh| (-630 (-401 |#2|)))) |#4| (-630 (-401 |#2|))))) -((-3096 (((-111) $ $) NIL)) (-2707 (((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $) 13)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 15) (($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 12)) (-1617 (((-111) $ $) NIL))) -(((-794) (-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2707 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $))))) (T -794)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-794)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-794))))) -(-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2707 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $)))) -((-3210 (((-630 (-2 (|:| |frac| (-401 |#2|)) (|:| -2662 |#3|))) |#3| (-1 (-630 |#2|) |#2| (-1151 |#2|)) (-1 (-412 |#2|) |#2|)) 118)) (-3846 (((-630 (-2 (|:| |poly| |#2|) (|:| -2662 |#3|))) |#3| (-1 (-630 |#1|) |#2|)) 46)) (-2687 (((-630 (-2 (|:| |deg| (-757)) (|:| -2662 |#2|))) |#3|) 95)) (-3175 ((|#2| |#3|) 37)) (-3352 (((-630 (-2 (|:| -3879 |#1|) (|:| -2662 |#3|))) |#3| (-1 (-630 |#1|) |#2|)) 82)) (-3146 ((|#3| |#3| (-401 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3175 (|#2| |#3|)) (-15 -2687 ((-630 (-2 (|:| |deg| (-757)) (|:| -2662 |#2|))) |#3|)) (-15 -3352 ((-630 (-2 (|:| -3879 |#1|) (|:| -2662 |#3|))) |#3| (-1 (-630 |#1|) |#2|))) (-15 -3846 ((-630 (-2 (|:| |poly| |#2|) (|:| -2662 |#3|))) |#3| (-1 (-630 |#1|) |#2|))) (-15 -3210 ((-630 (-2 (|:| |frac| (-401 |#2|)) (|:| -2662 |#3|))) |#3| (-1 (-630 |#2|) |#2| (-1151 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3146 (|#3| |#3| |#2|)) (-15 -3146 (|#3| |#3| (-401 |#2|)))) (-13 (-357) (-144) (-1020 (-401 (-553)))) (-1214 |#1|) (-641 |#2|) (-641 (-401 |#2|))) (T -795)) -((-3146 (*1 *2 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *2 (-641 *5)) (-4 *6 (-641 *3)))) (-3146 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-1214 *4)) (-5 *1 (-795 *4 *3 *2 *5)) (-4 *2 (-641 *3)) (-4 *5 (-641 (-401 *3))))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-630 *7) *7 (-1151 *7))) (-5 *5 (-1 (-412 *7) *7)) (-4 *7 (-1214 *6)) (-4 *6 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-5 *2 (-630 (-2 (|:| |frac| (-401 *7)) (|:| -2662 *3)))) (-5 *1 (-795 *6 *7 *3 *8)) (-4 *3 (-641 *7)) (-4 *8 (-641 (-401 *7))))) (-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-630 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-2 (|:| |poly| *6) (|:| -2662 *3)))) (-5 *1 (-795 *5 *6 *3 *7)) (-4 *3 (-641 *6)) (-4 *7 (-641 (-401 *6))))) (-3352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-630 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-2 (|:| -3879 *5) (|:| -2662 *3)))) (-5 *1 (-795 *5 *6 *3 *7)) (-4 *3 (-641 *6)) (-4 *7 (-641 (-401 *6))))) (-2687 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) (-5 *2 (-630 (-2 (|:| |deg| (-757)) (|:| -2662 *5)))) (-5 *1 (-795 *4 *5 *3 *6)) (-4 *3 (-641 *5)) (-4 *6 (-641 (-401 *5))))) (-3175 (*1 *2 *3) (-12 (-4 *2 (-1214 *4)) (-5 *1 (-795 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) (-4 *5 (-641 (-401 *2)))))) -(-10 -7 (-15 -3175 (|#2| |#3|)) (-15 -2687 ((-630 (-2 (|:| |deg| (-757)) (|:| -2662 |#2|))) |#3|)) (-15 -3352 ((-630 (-2 (|:| -3879 |#1|) (|:| -2662 |#3|))) |#3| (-1 (-630 |#1|) |#2|))) (-15 -3846 ((-630 (-2 (|:| |poly| |#2|) (|:| -2662 |#3|))) |#3| (-1 (-630 |#1|) |#2|))) (-15 -3210 ((-630 (-2 (|:| |frac| (-401 |#2|)) (|:| -2662 |#3|))) |#3| (-1 (-630 |#2|) |#2| (-1151 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3146 (|#3| |#3| |#2|)) (-15 -3146 (|#3| |#3| (-401 |#2|)))) -((-3782 (((-2 (|:| -4124 (-630 (-401 |#2|))) (|:| -3344 (-674 |#1|))) (-639 |#2| (-401 |#2|)) (-630 (-401 |#2|))) 121) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4124 (-630 (-401 |#2|)))) (-639 |#2| (-401 |#2|)) (-401 |#2|)) 120) (((-2 (|:| -4124 (-630 (-401 |#2|))) (|:| -3344 (-674 |#1|))) (-638 (-401 |#2|)) (-630 (-401 |#2|))) 115) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4124 (-630 (-401 |#2|)))) (-638 (-401 |#2|)) (-401 |#2|)) 113)) (-3505 ((|#2| (-639 |#2| (-401 |#2|))) 80) ((|#2| (-638 (-401 |#2|))) 83))) -(((-796 |#1| |#2|) (-10 -7 (-15 -3782 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4124 (-630 (-401 |#2|)))) (-638 (-401 |#2|)) (-401 |#2|))) (-15 -3782 ((-2 (|:| -4124 (-630 (-401 |#2|))) (|:| -3344 (-674 |#1|))) (-638 (-401 |#2|)) (-630 (-401 |#2|)))) (-15 -3782 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4124 (-630 (-401 |#2|)))) (-639 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -3782 ((-2 (|:| -4124 (-630 (-401 |#2|))) (|:| -3344 (-674 |#1|))) (-639 |#2| (-401 |#2|)) (-630 (-401 |#2|)))) (-15 -3505 (|#2| (-638 (-401 |#2|)))) (-15 -3505 (|#2| (-639 |#2| (-401 |#2|))))) (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553)))) (-1214 |#1|)) (T -796)) -((-3505 (*1 *2 *3) (-12 (-5 *3 (-639 *2 (-401 *2))) (-4 *2 (-1214 *4)) (-5 *1 (-796 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-638 (-401 *2))) (-4 *2 (-1214 *4)) (-5 *1 (-796 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6 (-401 *6))) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-2 (|:| -4124 (-630 (-401 *6))) (|:| -3344 (-674 *5)))) (-5 *1 (-796 *5 *6)) (-5 *4 (-630 (-401 *6))))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-796 *5 *6)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-401 *6))) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-2 (|:| -4124 (-630 (-401 *6))) (|:| -3344 (-674 *5)))) (-5 *1 (-796 *5 *6)) (-5 *4 (-630 (-401 *6))))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-796 *5 *6))))) -(-10 -7 (-15 -3782 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4124 (-630 (-401 |#2|)))) (-638 (-401 |#2|)) (-401 |#2|))) (-15 -3782 ((-2 (|:| -4124 (-630 (-401 |#2|))) (|:| -3344 (-674 |#1|))) (-638 (-401 |#2|)) (-630 (-401 |#2|)))) (-15 -3782 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -4124 (-630 (-401 |#2|)))) (-639 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -3782 ((-2 (|:| -4124 (-630 (-401 |#2|))) (|:| -3344 (-674 |#1|))) (-639 |#2| (-401 |#2|)) (-630 (-401 |#2|)))) (-15 -3505 (|#2| (-638 (-401 |#2|)))) (-15 -3505 (|#2| (-639 |#2| (-401 |#2|))))) -((-2389 (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#1|))) |#5| |#4|) 48))) -(((-797 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2389 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#1|))) |#5| |#4|))) (-357) (-641 |#1|) (-1214 |#1|) (-710 |#1| |#3|) (-641 |#4|)) (T -797)) -((-2389 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *7 (-1214 *5)) (-4 *4 (-710 *5 *7)) (-5 *2 (-2 (|:| -3344 (-674 *6)) (|:| |vec| (-1238 *5)))) (-5 *1 (-797 *5 *6 *7 *4 *3)) (-4 *6 (-641 *5)) (-4 *3 (-641 *4))))) -(-10 -7 (-15 -2389 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#1|))) |#5| |#4|))) -((-3210 (((-630 (-2 (|:| |frac| (-401 |#2|)) (|:| -2662 (-639 |#2| (-401 |#2|))))) (-639 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 47)) (-3572 (((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|))) 138 (|has| |#1| (-27))) (((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-630 (-401 |#2|)) (-638 (-401 |#2|))) 140 (|has| |#1| (-27))) (((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 38) (((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|)) 39) (((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 36) (((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|)) 37)) (-3846 (((-630 (-2 (|:| |poly| |#2|) (|:| -2662 (-639 |#2| (-401 |#2|))))) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|)) 83))) -(((-798 |#1| |#2|) (-10 -7 (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3210 ((-630 (-2 (|:| |frac| (-401 |#2|)) (|:| -2662 (-639 |#2| (-401 |#2|))))) (-639 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3846 ((-630 (-2 (|:| |poly| |#2|) (|:| -2662 (-639 |#2| (-401 |#2|))))) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)))) (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553)))) (-1214 |#1|)) (T -798)) -((-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-639 *5 (-401 *5))) (-4 *5 (-1214 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-630 (-401 *5))) (-5 *1 (-798 *4 *5)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-638 (-401 *5))) (-4 *5 (-1214 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-630 (-401 *5))) (-5 *1 (-798 *4 *5)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-630 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-2 (|:| |poly| *6) (|:| -2662 (-639 *6 (-401 *6)))))) (-5 *1 (-798 *5 *6)) (-5 *3 (-639 *6 (-401 *6))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-5 *2 (-630 (-2 (|:| |frac| (-401 *6)) (|:| -2662 (-639 *6 (-401 *6)))))) (-5 *1 (-798 *5 *6)) (-5 *3 (-639 *6 (-401 *6))))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *7 (-401 *7))) (-5 *4 (-1 (-630 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *7 (-1214 *6)) (-5 *2 (-630 (-401 *7))) (-5 *1 (-798 *6 *7)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6 (-401 *6))) (-5 *4 (-1 (-630 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6)))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-638 (-401 *7))) (-5 *4 (-1 (-630 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *7 (-1214 *6)) (-5 *2 (-630 (-401 *7))) (-5 *1 (-798 *6 *7)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-638 (-401 *6))) (-5 *4 (-1 (-630 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6))))) -(-10 -7 (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-630 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3210 ((-630 (-2 (|:| |frac| (-401 |#2|)) (|:| -2662 (-639 |#2| (-401 |#2|))))) (-639 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3846 ((-630 (-2 (|:| |poly| |#2|) (|:| -2662 (-639 |#2| (-401 |#2|))))) (-639 |#2| (-401 |#2|)) (-1 (-630 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)))) (-15 -3572 ((-630 (-401 |#2|)) (-638 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)))) (-15 -3572 ((-630 (-401 |#2|)) (-639 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) -((-3749 (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#1|))) (-674 |#2|) (-1238 |#1|)) 85) (((-2 (|:| A (-674 |#1|)) (|:| |eqs| (-630 (-2 (|:| C (-674 |#1|)) (|:| |g| (-1238 |#1|)) (|:| -2662 |#2|) (|:| |rh| |#1|))))) (-674 |#1|) (-1238 |#1|)) 15)) (-3397 (((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-674 |#2|) (-1238 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4124 (-630 |#1|))) |#2| |#1|)) 92)) (-1638 (((-3 (-2 (|:| |particular| (-1238 |#1|)) (|:| -4124 (-674 |#1|))) "failed") (-674 |#1|) (-1238 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed") |#2| |#1|)) 43))) -(((-799 |#1| |#2|) (-10 -7 (-15 -3749 ((-2 (|:| A (-674 |#1|)) (|:| |eqs| (-630 (-2 (|:| C (-674 |#1|)) (|:| |g| (-1238 |#1|)) (|:| -2662 |#2|) (|:| |rh| |#1|))))) (-674 |#1|) (-1238 |#1|))) (-15 -3749 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#1|))) (-674 |#2|) (-1238 |#1|))) (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#1|)) (|:| -4124 (-674 |#1|))) "failed") (-674 |#1|) (-1238 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed") |#2| |#1|))) (-15 -3397 ((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-674 |#2|) (-1238 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4124 (-630 |#1|))) |#2| |#1|)))) (-357) (-641 |#1|)) (T -799)) -((-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4124 (-630 *6))) *7 *6)) (-4 *6 (-357)) (-4 *7 (-641 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1238 *6) "failed")) (|:| -4124 (-630 (-1238 *6))))) (-5 *1 (-799 *6 *7)) (-5 *4 (-1238 *6)))) (-1638 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4124 (-630 *6))) "failed") *7 *6)) (-4 *6 (-357)) (-4 *7 (-641 *6)) (-5 *2 (-2 (|:| |particular| (-1238 *6)) (|:| -4124 (-674 *6)))) (-5 *1 (-799 *6 *7)) (-5 *3 (-674 *6)) (-5 *4 (-1238 *6)))) (-3749 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-641 *5)) (-5 *2 (-2 (|:| -3344 (-674 *6)) (|:| |vec| (-1238 *5)))) (-5 *1 (-799 *5 *6)) (-5 *3 (-674 *6)) (-5 *4 (-1238 *5)))) (-3749 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| A (-674 *5)) (|:| |eqs| (-630 (-2 (|:| C (-674 *5)) (|:| |g| (-1238 *5)) (|:| -2662 *6) (|:| |rh| *5)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)) (-4 *6 (-641 *5))))) -(-10 -7 (-15 -3749 ((-2 (|:| A (-674 |#1|)) (|:| |eqs| (-630 (-2 (|:| C (-674 |#1|)) (|:| |g| (-1238 |#1|)) (|:| -2662 |#2|) (|:| |rh| |#1|))))) (-674 |#1|) (-1238 |#1|))) (-15 -3749 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#1|))) (-674 |#2|) (-1238 |#1|))) (-15 -1638 ((-3 (-2 (|:| |particular| (-1238 |#1|)) (|:| -4124 (-674 |#1|))) "failed") (-674 |#1|) (-1238 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4124 (-630 |#1|))) "failed") |#2| |#1|))) (-15 -3397 ((-2 (|:| |particular| (-3 (-1238 |#1|) "failed")) (|:| -4124 (-630 (-1238 |#1|)))) (-674 |#2|) (-1238 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4124 (-630 |#1|))) |#2| |#1|)))) -((-3953 (((-674 |#1|) (-630 |#1|) (-757)) 13) (((-674 |#1|) (-630 |#1|)) 14)) (-4213 (((-3 (-1238 |#1|) "failed") |#2| |#1| (-630 |#1|)) 34)) (-1958 (((-3 |#1| "failed") |#2| |#1| (-630 |#1|) (-1 |#1| |#1|)) 42))) -(((-800 |#1| |#2|) (-10 -7 (-15 -3953 ((-674 |#1|) (-630 |#1|))) (-15 -3953 ((-674 |#1|) (-630 |#1|) (-757))) (-15 -4213 ((-3 (-1238 |#1|) "failed") |#2| |#1| (-630 |#1|))) (-15 -1958 ((-3 |#1| "failed") |#2| |#1| (-630 |#1|) (-1 |#1| |#1|)))) (-357) (-641 |#1|)) (T -800)) -((-1958 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-630 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) (-5 *1 (-800 *2 *3)) (-4 *3 (-641 *2)))) (-4213 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-630 *4)) (-4 *4 (-357)) (-5 *2 (-1238 *4)) (-5 *1 (-800 *4 *3)) (-4 *3 (-641 *4)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-757)) (-4 *5 (-357)) (-5 *2 (-674 *5)) (-5 *1 (-800 *5 *6)) (-4 *6 (-641 *5)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-357)) (-5 *2 (-674 *4)) (-5 *1 (-800 *4 *5)) (-4 *5 (-641 *4))))) -(-10 -7 (-15 -3953 ((-674 |#1|) (-630 |#1|))) (-15 -3953 ((-674 |#1|) (-630 |#1|) (-757))) (-15 -4213 ((-3 (-1238 |#1|) "failed") |#2| |#1| (-630 |#1|))) (-15 -1958 ((-3 |#1| "failed") |#2| |#1| (-630 |#1|) (-1 |#1| |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#2| (-1079)))) (-3769 (((-111) $) NIL (|has| |#2| (-129)))) (-1561 (($ (-903)) NIL (|has| |#2| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2345 (($ $ $) NIL (|has| |#2| (-779)))) (-2910 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| |#2| (-362)))) (-2125 (((-553) $) NIL (|has| |#2| (-831)))) (-1490 ((|#2| $ (-553) |#2|) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1079)))) (-2707 (((-553) $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079)))) (((-401 (-553)) $) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) ((|#2| $) NIL (|has| |#2| (-1079)))) (-2077 (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#2| (-1031)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL (|has| |#2| (-1031))) (((-674 |#2|) (-674 $)) NIL (|has| |#2| (-1031)))) (-2982 (((-3 $ "failed") $) NIL (|has| |#2| (-712)))) (-3031 (($) NIL (|has| |#2| (-362)))) (-2515 ((|#2| $ (-553) |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ (-553)) NIL)) (-4270 (((-111) $) NIL (|has| |#2| (-831)))) (-1408 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL (|has| |#2| (-712)))) (-2797 (((-111) $) NIL (|has| |#2| (-831)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-2195 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-2503 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#2| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#2| (-1079)))) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2735 (($ (-903)) NIL (|has| |#2| (-362)))) (-2786 (((-1099) $) NIL (|has| |#2| (-1079)))) (-2603 ((|#2| $) NIL (|has| (-553) (-833)))) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ (-553) |#2|) NIL) ((|#2| $ (-553)) NIL)) (-1449 ((|#2| $ $) NIL (|has| |#2| (-1031)))) (-3398 (($ (-1238 |#2|)) NIL)) (-1337 (((-132)) NIL (|has| |#2| (-357)))) (-1330 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1031)))) (-2796 (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1238 |#2|) $) NIL) (($ (-553)) NIL (-3988 (-12 (|has| |#2| (-1020 (-553))) (|has| |#2| (-1079))) (|has| |#2| (-1031)))) (($ (-401 (-553))) NIL (-12 (|has| |#2| (-1020 (-401 (-553)))) (|has| |#2| (-1079)))) (($ |#2|) NIL (|has| |#2| (-1079))) (((-845) $) NIL (|has| |#2| (-600 (-845))))) (-1999 (((-757)) NIL (|has| |#2| (-1031)))) (-3296 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-3466 (($ $) NIL (|has| |#2| (-831)))) (-1988 (($) NIL (|has| |#2| (-129)) CONST)) (-1997 (($) NIL (|has| |#2| (-712)) CONST)) (-1780 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#2| (-882 (-1155))) (|has| |#2| (-1031)))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#2| (-1031))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1031)))) (-1669 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1617 (((-111) $ $) NIL (|has| |#2| (-1079)))) (-1659 (((-111) $ $) NIL (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1636 (((-111) $ $) 11 (-3988 (|has| |#2| (-779)) (|has| |#2| (-831))))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $ $) NIL (|has| |#2| (-1031))) (($ $) NIL (|has| |#2| (-1031)))) (-1700 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-757)) NIL (|has| |#2| (-712))) (($ $ (-903)) NIL (|has| |#2| (-712)))) (* (($ (-553) $) NIL (|has| |#2| (-1031))) (($ $ $) NIL (|has| |#2| (-712))) (($ $ |#2|) NIL (|has| |#2| (-712))) (($ |#2| $) NIL (|has| |#2| (-712))) (($ (-757) $) NIL (|has| |#2| (-129))) (($ (-903) $) NIL (|has| |#2| (-25)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-801 |#1| |#2| |#3|) (-233 |#1| |#2|) (-757) (-779) (-1 (-111) (-1238 |#2|) (-1238 |#2|))) (T -801)) -NIL -(-233 |#1| |#2|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2991 (((-630 (-757)) $) NIL) (((-630 (-757)) $ (-1155)) NIL)) (-2342 (((-757) $) NIL) (((-757) $ (-1155)) NIL)) (-3506 (((-630 (-804 (-1155))) $) NIL)) (-3322 (((-1151 $) $ (-804 (-1155))) NIL) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-804 (-1155)))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-2387 (($ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-804 (-1155)) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL) (((-3 (-1104 |#1| (-1155)) "failed") $) NIL)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-804 (-1155)) $) NIL) (((-1155) $) NIL) (((-1104 |#1| (-1155)) $) NIL)) (-2134 (($ $ $ (-804 (-1155))) NIL (|has| |#1| (-169)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ (-804 (-1155))) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-524 (-804 (-1155))) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-804 (-1155)) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-804 (-1155)) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-2968 (((-757) $ (-1155)) NIL) (((-757) $) NIL)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#1|) (-804 (-1155))) NIL) (($ (-1151 $) (-804 (-1155))) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-524 (-804 (-1155)))) NIL) (($ $ (-804 (-1155)) (-757)) NIL) (($ $ (-630 (-804 (-1155))) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-804 (-1155))) NIL)) (-2423 (((-524 (-804 (-1155))) $) NIL) (((-757) $ (-804 (-1155))) NIL) (((-630 (-757)) $ (-630 (-804 (-1155)))) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-524 (-804 (-1155))) (-524 (-804 (-1155)))) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3553 (((-1 $ (-757)) (-1155)) NIL) (((-1 $ (-757)) $) NIL (|has| |#1| (-228)))) (-1332 (((-3 (-804 (-1155)) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2415 (((-804 (-1155)) $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-2296 (((-111) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-804 (-1155))) (|:| -2692 (-757))) "failed") $) NIL)) (-2901 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-804 (-1155)) |#1|) NIL) (($ $ (-630 (-804 (-1155))) (-630 |#1|)) NIL) (($ $ (-804 (-1155)) $) NIL) (($ $ (-630 (-804 (-1155))) (-630 $)) NIL) (($ $ (-1155) $) NIL (|has| |#1| (-228))) (($ $ (-630 (-1155)) (-630 $)) NIL (|has| |#1| (-228))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-228))) (($ $ (-630 (-1155)) (-630 |#1|)) NIL (|has| |#1| (-228)))) (-3000 (($ $ (-804 (-1155))) NIL (|has| |#1| (-169)))) (-1330 (($ $ (-804 (-1155))) NIL) (($ $ (-630 (-804 (-1155)))) NIL) (($ $ (-804 (-1155)) (-757)) NIL) (($ $ (-630 (-804 (-1155))) (-630 (-757))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3193 (((-630 (-1155)) $) NIL)) (-3872 (((-524 (-804 (-1155))) $) NIL) (((-757) $ (-804 (-1155))) NIL) (((-630 (-757)) $ (-630 (-804 (-1155)))) NIL) (((-757) $ (-1155)) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-804 (-1155)) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-804 (-1155)) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-804 (-1155)) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-804 (-1155))) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-804 (-1155))) NIL) (($ (-1155)) NIL) (($ (-1104 |#1| (-1155))) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-524 (-804 (-1155)))) NIL) (($ $ (-804 (-1155)) (-757)) NIL) (($ $ (-630 (-804 (-1155))) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-804 (-1155))) NIL) (($ $ (-630 (-804 (-1155)))) NIL) (($ $ (-804 (-1155)) (-757)) NIL) (($ $ (-630 (-804 (-1155))) (-630 (-757))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-802 |#1|) (-13 (-247 |#1| (-1155) (-804 (-1155)) (-524 (-804 (-1155)))) (-1020 (-1104 |#1| (-1155)))) (-1031)) (T -802)) -NIL -(-13 (-247 |#1| (-1155) (-804 (-1155)) (-524 (-804 (-1155)))) (-1020 (-1104 |#1| (-1155)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#2| (-357)))) (-1968 (($ $) NIL (|has| |#2| (-357)))) (-2028 (((-111) $) NIL (|has| |#2| (-357)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#2| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#2| (-357)))) (-4349 (((-111) $ $) NIL (|has| |#2| (-357)))) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL (|has| |#2| (-357)))) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL (|has| |#2| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#2| (-357)))) (-3119 (((-111) $) NIL (|has| |#2| (-357)))) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#2| (-357)))) (-2471 (($ (-630 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 20 (|has| |#2| (-357)))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#2| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-3355 (((-412 $) $) NIL (|has| |#2| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#2| (-357)))) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#2| (-357)))) (-3384 (((-757) $) NIL (|has| |#2| (-357)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-357)))) (-1330 (($ $ (-757)) NIL) (($ $) 13)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-401 (-553))) NIL (|has| |#2| (-357))) (($ $) NIL (|has| |#2| (-357)))) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL (|has| |#2| (-357)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) 15 (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL) (($ $ (-903)) NIL) (($ $ (-553)) 18 (|has| |#2| (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-401 (-553)) $) NIL (|has| |#2| (-357))) (($ $ (-401 (-553))) NIL (|has| |#2| (-357))))) -(((-803 |#1| |#2| |#3|) (-13 (-110 $ $) (-228) (-483 |#2|) (-10 -7 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|))) (-1079) (-882 |#1|) |#1|) (T -803)) -NIL -(-13 (-110 $ $) (-228) (-483 |#2|) (-10 -7 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-2342 (((-757) $) NIL)) (-1509 ((|#1| $) 10)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-2968 (((-757) $) 11)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-3553 (($ |#1| (-757)) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1330 (($ $) NIL) (($ $ (-757)) NIL)) (-3110 (((-845) $) NIL) (($ |#1|) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL))) -(((-804 |#1|) (-260 |#1|) (-833)) (T -804)) -NIL -(-260 |#1|) -((-3096 (((-111) $ $) NIL)) (-2694 (((-630 |#1|) $) 29)) (-2571 (((-757) $) NIL)) (-3820 (($) NIL T CONST)) (-1429 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-2616 (($ $) 31)) (-2982 (((-3 $ "failed") $) NIL)) (-3213 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1848 (((-111) $) NIL)) (-3111 ((|#1| $ (-553)) NIL)) (-1360 (((-757) $ (-553)) NIL)) (-3189 (($ $) 36)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1754 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3385 (((-111) $ $) 34)) (-1899 (((-757) $) 25)) (-1735 (((-1137) $) NIL)) (-4308 (($ $ $) NIL)) (-3391 (($ $ $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 ((|#1| $) 30)) (-3713 (((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $) NIL)) (-3941 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3110 (((-845) $) NIL) (($ |#1|) NIL)) (-1997 (($) 15 T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 35)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ |#1| (-757)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-805 |#1|) (-13 (-829) (-1020 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-757))) (-15 -2603 (|#1| $)) (-15 -2616 ($ $)) (-15 -3189 ($ $)) (-15 -3385 ((-111) $ $)) (-15 -3391 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -1754 ((-3 $ "failed") $ $)) (-15 -1429 ((-3 $ "failed") $ $)) (-15 -1754 ((-3 $ "failed") $ |#1|)) (-15 -1429 ((-3 $ "failed") $ |#1|)) (-15 -3941 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3213 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2571 ((-757) $)) (-15 -1360 ((-757) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3713 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $)) (-15 -1899 ((-757) $)) (-15 -2694 ((-630 |#1|) $)))) (-833)) (T -805)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-2603 (*1 *2 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-3189 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-3385 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-805 *3)) (-4 *3 (-833)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-4308 (*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-1754 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-1429 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-1754 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-1429 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-3941 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-805 *3)) (|:| |rm| (-805 *3)))) (-5 *1 (-805 *3)) (-4 *3 (-833)))) (-3213 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-805 *3)) (|:| |mm| (-805 *3)) (|:| |rm| (-805 *3)))) (-5 *1 (-805 *3)) (-4 *3 (-833)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-805 *3)) (-4 *3 (-833)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-757)) (-5 *1 (-805 *4)) (-4 *4 (-833)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-805 *2)) (-4 *2 (-833)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 (-757))))) (-5 *1 (-805 *3)) (-4 *3 (-833)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-805 *3)) (-4 *3 (-833)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-805 *3)) (-4 *3 (-833))))) -(-13 (-829) (-1020 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-757))) (-15 -2603 (|#1| $)) (-15 -2616 ($ $)) (-15 -3189 ($ $)) (-15 -3385 ((-111) $ $)) (-15 -3391 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -1754 ((-3 $ "failed") $ $)) (-15 -1429 ((-3 $ "failed") $ $)) (-15 -1754 ((-3 $ "failed") $ |#1|)) (-15 -1429 ((-3 $ "failed") $ |#1|)) (-15 -3941 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3213 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2571 ((-757) $)) (-15 -1360 ((-757) $ (-553))) (-15 -3111 (|#1| $ (-553))) (-15 -3713 ((-630 (-2 (|:| |gen| |#1|) (|:| -2743 (-757)))) $)) (-15 -1899 ((-757) $)) (-15 -2694 ((-630 |#1|) $)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-2125 (((-553) $) 54)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-4270 (((-111) $) 52)) (-1848 (((-111) $) 31)) (-2797 (((-111) $) 53)) (-1824 (($ $ $) 51)) (-1975 (($ $ $) 50)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ $) 43)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-3466 (($ $) 55)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 48)) (-1648 (((-111) $ $) 47)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 49)) (-1636 (((-111) $ $) 46)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-806) (-137)) (T -806)) -NIL -(-13 (-545) (-831)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-777) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-831) . T) ((-833) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3204 (($ (-1099)) 7)) (-3852 (((-111) $ (-1137) (-1099)) 15)) (-1810 (((-808) $) 12)) (-3101 (((-808) $) 11)) (-3804 (((-1243) $) 9)) (-2939 (((-111) $ (-1099)) 16))) -(((-807) (-10 -8 (-15 -3204 ($ (-1099))) (-15 -3804 ((-1243) $)) (-15 -3101 ((-808) $)) (-15 -1810 ((-808) $)) (-15 -3852 ((-111) $ (-1137) (-1099))) (-15 -2939 ((-111) $ (-1099))))) (T -807)) -((-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-111)) (-5 *1 (-807)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-1099)) (-5 *2 (-111)) (-5 *1 (-807)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-808)) (-5 *1 (-807)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-808)) (-5 *1 (-807)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-807)))) (-3204 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-807))))) -(-10 -8 (-15 -3204 ($ (-1099))) (-15 -3804 ((-1243) $)) (-15 -3101 ((-808) $)) (-15 -1810 ((-808) $)) (-15 -3852 ((-111) $ (-1137) (-1099))) (-15 -2939 ((-111) $ (-1099)))) -((-4035 (((-1243) $ (-809)) 12)) (-2190 (((-1243) $ (-1155)) 32)) (-1930 (((-1243) $ (-1137) (-1137)) 34)) (-3576 (((-1243) $ (-1137)) 33)) (-3253 (((-1243) $) 19)) (-2899 (((-1243) $ (-553)) 28)) (-2236 (((-1243) $ (-220)) 30)) (-3728 (((-1243) $) 18)) (-1829 (((-1243) $) 26)) (-2118 (((-1243) $) 25)) (-2952 (((-1243) $) 23)) (-1580 (((-1243) $) 24)) (-2393 (((-1243) $) 22)) (-2518 (((-1243) $) 21)) (-3537 (((-1243) $) 20)) (-3026 (((-1243) $) 16)) (-2375 (((-1243) $) 17)) (-3898 (((-1243) $) 15)) (-4295 (((-1243) $) 14)) (-3827 (((-1243) $) 13)) (-2919 (($ (-1137) (-809)) 9)) (-1858 (($ (-1137) (-1137) (-809)) 8)) (-2142 (((-1155) $) 51)) (-2244 (((-1155) $) 55)) (-4250 (((-2 (|:| |cd| (-1137)) (|:| -4298 (-1137))) $) 54)) (-3460 (((-1137) $) 52)) (-3847 (((-1243) $) 41)) (-1928 (((-553) $) 49)) (-1577 (((-220) $) 50)) (-3719 (((-1243) $) 40)) (-4344 (((-1243) $) 48)) (-2893 (((-1243) $) 47)) (-1694 (((-1243) $) 45)) (-1862 (((-1243) $) 46)) (-3216 (((-1243) $) 44)) (-3033 (((-1243) $) 43)) (-3566 (((-1243) $) 42)) (-3442 (((-1243) $) 38)) (-4148 (((-1243) $) 39)) (-1430 (((-1243) $) 37)) (-3685 (((-1243) $) 36)) (-2742 (((-1243) $) 35)) (-3174 (((-1243) $) 11))) -(((-808) (-10 -8 (-15 -1858 ($ (-1137) (-1137) (-809))) (-15 -2919 ($ (-1137) (-809))) (-15 -3174 ((-1243) $)) (-15 -4035 ((-1243) $ (-809))) (-15 -3827 ((-1243) $)) (-15 -4295 ((-1243) $)) (-15 -3898 ((-1243) $)) (-15 -3026 ((-1243) $)) (-15 -2375 ((-1243) $)) (-15 -3728 ((-1243) $)) (-15 -3253 ((-1243) $)) (-15 -3537 ((-1243) $)) (-15 -2518 ((-1243) $)) (-15 -2393 ((-1243) $)) (-15 -2952 ((-1243) $)) (-15 -1580 ((-1243) $)) (-15 -2118 ((-1243) $)) (-15 -1829 ((-1243) $)) (-15 -2899 ((-1243) $ (-553))) (-15 -2236 ((-1243) $ (-220))) (-15 -2190 ((-1243) $ (-1155))) (-15 -3576 ((-1243) $ (-1137))) (-15 -1930 ((-1243) $ (-1137) (-1137))) (-15 -2742 ((-1243) $)) (-15 -3685 ((-1243) $)) (-15 -1430 ((-1243) $)) (-15 -3442 ((-1243) $)) (-15 -4148 ((-1243) $)) (-15 -3719 ((-1243) $)) (-15 -3847 ((-1243) $)) (-15 -3566 ((-1243) $)) (-15 -3033 ((-1243) $)) (-15 -3216 ((-1243) $)) (-15 -1694 ((-1243) $)) (-15 -1862 ((-1243) $)) (-15 -2893 ((-1243) $)) (-15 -4344 ((-1243) $)) (-15 -1928 ((-553) $)) (-15 -1577 ((-220) $)) (-15 -2142 ((-1155) $)) (-15 -3460 ((-1137) $)) (-15 -4250 ((-2 (|:| |cd| (-1137)) (|:| -4298 (-1137))) $)) (-15 -2244 ((-1155) $)))) (T -808)) -((-2244 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-808)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1137)) (|:| -4298 (-1137)))) (-5 *1 (-808)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-808)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-808)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-808)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-808)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2742 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-1930 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-808)))) (-3576 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-808)))) (-2190 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-808)))) (-2236 (*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1243)) (-5 *1 (-808)))) (-2899 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-808)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1243)) (-5 *1 (-808)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808)))) (-2919 (*1 *1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *3 (-809)) (-5 *1 (-808)))) (-1858 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1137)) (-5 *3 (-809)) (-5 *1 (-808))))) -(-10 -8 (-15 -1858 ($ (-1137) (-1137) (-809))) (-15 -2919 ($ (-1137) (-809))) (-15 -3174 ((-1243) $)) (-15 -4035 ((-1243) $ (-809))) (-15 -3827 ((-1243) $)) (-15 -4295 ((-1243) $)) (-15 -3898 ((-1243) $)) (-15 -3026 ((-1243) $)) (-15 -2375 ((-1243) $)) (-15 -3728 ((-1243) $)) (-15 -3253 ((-1243) $)) (-15 -3537 ((-1243) $)) (-15 -2518 ((-1243) $)) (-15 -2393 ((-1243) $)) (-15 -2952 ((-1243) $)) (-15 -1580 ((-1243) $)) (-15 -2118 ((-1243) $)) (-15 -1829 ((-1243) $)) (-15 -2899 ((-1243) $ (-553))) (-15 -2236 ((-1243) $ (-220))) (-15 -2190 ((-1243) $ (-1155))) (-15 -3576 ((-1243) $ (-1137))) (-15 -1930 ((-1243) $ (-1137) (-1137))) (-15 -2742 ((-1243) $)) (-15 -3685 ((-1243) $)) (-15 -1430 ((-1243) $)) (-15 -3442 ((-1243) $)) (-15 -4148 ((-1243) $)) (-15 -3719 ((-1243) $)) (-15 -3847 ((-1243) $)) (-15 -3566 ((-1243) $)) (-15 -3033 ((-1243) $)) (-15 -3216 ((-1243) $)) (-15 -1694 ((-1243) $)) (-15 -1862 ((-1243) $)) (-15 -2893 ((-1243) $)) (-15 -4344 ((-1243) $)) (-15 -1928 ((-553) $)) (-15 -1577 ((-220) $)) (-15 -2142 ((-1155) $)) (-15 -3460 ((-1137) $)) (-15 -4250 ((-2 (|:| |cd| (-1137)) (|:| -4298 (-1137))) $)) (-15 -2244 ((-1155) $))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 12)) (-2833 (($) 15)) (-3134 (($) 13)) (-1726 (($) 16)) (-1671 (($) 14)) (-1617 (((-111) $ $) 8))) -(((-809) (-13 (-1079) (-10 -8 (-15 -3134 ($)) (-15 -2833 ($)) (-15 -1726 ($)) (-15 -1671 ($))))) (T -809)) -((-3134 (*1 *1) (-5 *1 (-809))) (-2833 (*1 *1) (-5 *1 (-809))) (-1726 (*1 *1) (-5 *1 (-809))) (-1671 (*1 *1) (-5 *1 (-809)))) -(-13 (-1079) (-10 -8 (-15 -3134 ($)) (-15 -2833 ($)) (-15 -1726 ($)) (-15 -1671 ($)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 21) (($ (-1155)) 17)) (-2265 (((-111) $) 10)) (-4296 (((-111) $) 9)) (-2006 (((-111) $) 11)) (-3917 (((-111) $) 8)) (-1617 (((-111) $ $) 19))) -(((-810) (-13 (-1079) (-10 -8 (-15 -3110 ($ (-1155))) (-15 -3917 ((-111) $)) (-15 -4296 ((-111) $)) (-15 -2265 ((-111) $)) (-15 -2006 ((-111) $))))) (T -810)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-810)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810))))) -(-13 (-1079) (-10 -8 (-15 -3110 ($ (-1155))) (-15 -3917 ((-111) $)) (-15 -4296 ((-111) $)) (-15 -2265 ((-111) $)) (-15 -2006 ((-111) $)))) -((-3096 (((-111) $ $) NIL)) (-1880 (($ (-810) (-630 (-1155))) 24)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1419 (((-810) $) 25)) (-3605 (((-630 (-1155)) $) 26)) (-3110 (((-845) $) 23)) (-1617 (((-111) $ $) NIL))) -(((-811) (-13 (-1079) (-10 -8 (-15 -1419 ((-810) $)) (-15 -3605 ((-630 (-1155)) $)) (-15 -1880 ($ (-810) (-630 (-1155))))))) (T -811)) -((-1419 (*1 *2 *1) (-12 (-5 *2 (-810)) (-5 *1 (-811)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-811)))) (-1880 (*1 *1 *2 *3) (-12 (-5 *2 (-810)) (-5 *3 (-630 (-1155))) (-5 *1 (-811))))) -(-13 (-1079) (-10 -8 (-15 -1419 ((-810) $)) (-15 -3605 ((-630 (-1155)) $)) (-15 -1880 ($ (-810) (-630 (-1155)))))) -((-3205 (((-1243) (-808) (-310 |#1|) (-111)) 23) (((-1243) (-808) (-310 |#1|)) 79) (((-1137) (-310 |#1|) (-111)) 78) (((-1137) (-310 |#1|)) 77))) -(((-812 |#1|) (-10 -7 (-15 -3205 ((-1137) (-310 |#1|))) (-15 -3205 ((-1137) (-310 |#1|) (-111))) (-15 -3205 ((-1243) (-808) (-310 |#1|))) (-15 -3205 ((-1243) (-808) (-310 |#1|) (-111)))) (-13 (-814) (-833) (-1031))) (T -812)) -((-3205 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808)) (-5 *4 (-310 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-814) (-833) (-1031))) (-5 *2 (-1243)) (-5 *1 (-812 *6)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-310 *5)) (-4 *5 (-13 (-814) (-833) (-1031))) (-5 *2 (-1243)) (-5 *1 (-812 *5)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-814) (-833) (-1031))) (-5 *2 (-1137)) (-5 *1 (-812 *5)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-814) (-833) (-1031))) (-5 *2 (-1137)) (-5 *1 (-812 *4))))) -(-10 -7 (-15 -3205 ((-1137) (-310 |#1|))) (-15 -3205 ((-1137) (-310 |#1|) (-111))) (-15 -3205 ((-1243) (-808) (-310 |#1|))) (-15 -3205 ((-1243) (-808) (-310 |#1|) (-111)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3652 ((|#1| $) 10)) (-1463 (($ |#1|) 9)) (-1848 (((-111) $) NIL)) (-3481 (($ |#2| (-757)) NIL)) (-2423 (((-757) $) NIL)) (-3655 ((|#2| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1330 (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-3872 (((-757) $) NIL)) (-3110 (((-845) $) 17) (($ (-553)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-1624 ((|#2| $ (-757)) NIL)) (-1999 (((-757)) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-813 |#1| |#2|) (-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -1463 ($ |#1|)) (-15 -3652 (|#1| $)))) (-694 |#2|) (-1031)) (T -813)) -((-1463 (*1 *1 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-813 *2 *3)) (-4 *2 (-694 *3)))) (-3652 (*1 *2 *1) (-12 (-4 *2 (-694 *3)) (-5 *1 (-813 *2 *3)) (-4 *3 (-1031))))) -(-13 (-694 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -1463 ($ |#1|)) (-15 -3652 (|#1| $)))) -((-3205 (((-1243) (-808) $ (-111)) 9) (((-1243) (-808) $) 8) (((-1137) $ (-111)) 7) (((-1137) $) 6))) -(((-814) (-137)) (T -814)) -((-3205 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-814)) (-5 *3 (-808)) (-5 *4 (-111)) (-5 *2 (-1243)))) (-3205 (*1 *2 *3 *1) (-12 (-4 *1 (-814)) (-5 *3 (-808)) (-5 *2 (-1243)))) (-3205 (*1 *2 *1 *3) (-12 (-4 *1 (-814)) (-5 *3 (-111)) (-5 *2 (-1137)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-1137))))) -(-13 (-10 -8 (-15 -3205 ((-1137) $)) (-15 -3205 ((-1137) $ (-111))) (-15 -3205 ((-1243) (-808) $)) (-15 -3205 ((-1243) (-808) $ (-111))))) -((-2202 (((-306) (-1137) (-1137)) 12)) (-1838 (((-111) (-1137) (-1137)) 34)) (-2875 (((-111) (-1137)) 33)) (-2618 (((-52) (-1137)) 25)) (-1372 (((-52) (-1137)) 23)) (-2880 (((-52) (-808)) 17)) (-1866 (((-630 (-1137)) (-1137)) 28)) (-2513 (((-630 (-1137))) 27))) -(((-815) (-10 -7 (-15 -2880 ((-52) (-808))) (-15 -1372 ((-52) (-1137))) (-15 -2618 ((-52) (-1137))) (-15 -2513 ((-630 (-1137)))) (-15 -1866 ((-630 (-1137)) (-1137))) (-15 -2875 ((-111) (-1137))) (-15 -1838 ((-111) (-1137) (-1137))) (-15 -2202 ((-306) (-1137) (-1137))))) (T -815)) -((-2202 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-815)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-111)) (-5 *1 (-815)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-111)) (-5 *1 (-815)))) (-1866 (*1 *2 *3) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-815)) (-5 *3 (-1137)))) (-2513 (*1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-815)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-52)) (-5 *1 (-815)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-52)) (-5 *1 (-815)))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-52)) (-5 *1 (-815))))) -(-10 -7 (-15 -2880 ((-52) (-808))) (-15 -1372 ((-52) (-1137))) (-15 -2618 ((-52) (-1137))) (-15 -2513 ((-630 (-1137)))) (-15 -1866 ((-630 (-1137)) (-1137))) (-15 -2875 ((-111) (-1137))) (-15 -1838 ((-111) (-1137) (-1137))) (-15 -2202 ((-306) (-1137) (-1137)))) -((-3096 (((-111) $ $) 19)) (-3368 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2745 (($ $ $) 72)) (-4048 (((-111) $ $) 73)) (-1511 (((-111) $ (-757)) 8)) (-1471 (($ (-630 |#1|)) 68) (($) 67)) (-2955 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2873 (($ $) 62)) (-2638 (($ $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ |#1| $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) 64)) (-3703 (((-111) $ (-757)) 9)) (-1824 ((|#1| $) 78)) (-1750 (($ $ $) 81)) (-3160 (($ $ $) 80)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1975 ((|#1| $) 79)) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22)) (-1475 (($ $ $) 69)) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40) (($ |#1| $ (-757)) 63)) (-2786 (((-1099) $) 21)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3390 (((-630 (-2 (|:| -3256 |#1|) (|:| -2796 (-757)))) $) 61)) (-2507 (($ $ |#1|) 71) (($ $ $) 70)) (-3093 (($) 49) (($ (-630 |#1|)) 48)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 50)) (-3110 (((-845) $) 18)) (-3420 (($ (-630 |#1|)) 66) (($) 65)) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20)) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-816 |#1|) (-137) (-833)) (T -816)) -((-1824 (*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-833))))) -(-13 (-722 |t#1|) (-950 |t#1|) (-10 -8 (-15 -1824 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-600 (-845)) . T) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-680 |#1|) . T) ((-722 |#1|) . T) ((-950 |#1|) . T) ((-1077 |#1|) . T) ((-1079) . T) ((-1192) . T)) -((-1825 (((-1243) (-1099) (-1099)) 47)) (-1315 (((-1243) (-807) (-52)) 44)) (-4338 (((-52) (-807)) 16))) -(((-817) (-10 -7 (-15 -4338 ((-52) (-807))) (-15 -1315 ((-1243) (-807) (-52))) (-15 -1825 ((-1243) (-1099) (-1099))))) (T -817)) -((-1825 (*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1243)) (-5 *1 (-817)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-807)) (-5 *4 (-52)) (-5 *2 (-1243)) (-5 *1 (-817)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-807)) (-5 *2 (-52)) (-5 *1 (-817))))) -(-10 -7 (-15 -4338 ((-52) (-807))) (-15 -1315 ((-1243) (-807) (-52))) (-15 -1825 ((-1243) (-1099) (-1099)))) -((-1482 (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|)) 12) (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|)) 13))) -(((-818 |#1| |#2|) (-10 -7 (-15 -1482 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|))) (-15 -1482 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|)))) (-1079) (-1079)) (T -818)) -((-1482 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-819 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *1 (-818 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-819 *6)) (-5 *1 (-818 *5 *6))))) -(-10 -7 (-15 -1482 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|))) (-15 -1482 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL (|has| |#1| (-21)))) (-2910 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2125 (((-553) $) NIL (|has| |#1| (-831)))) (-3820 (($) NIL (|has| |#1| (-21)) CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 15)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 9)) (-2982 (((-3 $ "failed") $) 40 (|has| |#1| (-831)))) (-3458 (((-3 (-401 (-553)) "failed") $) 49 (|has| |#1| (-538)))) (-4323 (((-111) $) 43 (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) 46 (|has| |#1| (-538)))) (-4270 (((-111) $) NIL (|has| |#1| (-831)))) (-1848 (((-111) $) NIL (|has| |#1| (-831)))) (-2797 (((-111) $) NIL (|has| |#1| (-831)))) (-1824 (($ $ $) NIL (|has| |#1| (-831)))) (-1975 (($ $ $) NIL (|has| |#1| (-831)))) (-1735 (((-1137) $) NIL)) (-4007 (($) 13)) (-2905 (((-111) $) 12)) (-2786 (((-1099) $) NIL)) (-3345 (((-111) $) 11)) (-3110 (((-845) $) 18) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) 8) (($ (-553)) NIL (-3988 (|has| |#1| (-831)) (|has| |#1| (-1020 (-553)))))) (-1999 (((-757)) 34 (|has| |#1| (-831)))) (-3466 (($ $) NIL (|has| |#1| (-831)))) (-1988 (($) 22 (|has| |#1| (-21)) CONST)) (-1997 (($) 31 (|has| |#1| (-831)) CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1617 (((-111) $ $) 20)) (-1659 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1636 (((-111) $ $) 42 (|has| |#1| (-831)))) (-1711 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1700 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-903)) NIL (|has| |#1| (-831))) (($ $ (-757)) NIL (|has| |#1| (-831)))) (* (($ $ $) 37 (|has| |#1| (-831))) (($ (-553) $) 25 (|has| |#1| (-21))) (($ (-757) $) NIL (|has| |#1| (-21))) (($ (-903) $) NIL (|has| |#1| (-21))))) -(((-819 |#1|) (-13 (-1079) (-405 |#1|) (-10 -8 (-15 -4007 ($)) (-15 -3345 ((-111) $)) (-15 -2905 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|))) (-1079)) (T -819)) -((-4007 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1079)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-819 *3)) (-4 *3 (-1079)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-819 *3)) (-4 *3 (-1079)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-819 *3)) (-4 *3 (-538)) (-4 *3 (-1079)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-819 *3)) (-4 *3 (-538)) (-4 *3 (-1079)))) (-3458 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-819 *3)) (-4 *3 (-538)) (-4 *3 (-1079))))) -(-13 (-1079) (-405 |#1|) (-10 -8 (-15 -4007 ($)) (-15 -3345 ((-111) $)) (-15 -2905 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-113) "failed") $) NIL)) (-2707 ((|#1| $) NIL) (((-113) $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3735 ((|#1| (-113) |#1|) NIL)) (-1848 (((-111) $) NIL)) (-2427 (($ |#1| (-355 (-113))) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1915 (($ $ (-1 |#1| |#1|)) NIL)) (-2819 (($ $ (-1 |#1| |#1|)) NIL)) (-2046 ((|#1| $ |#1|) NIL)) (-2309 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-3977 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ (-113) (-553)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-820 |#1|) (-13 (-1031) (-1020 |#1|) (-1020 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3977 ($ $)) (-15 -3977 ($ $ $)) (-15 -2309 (|#1| |#1|))) |%noBranch|) (-15 -2819 ($ $ (-1 |#1| |#1|))) (-15 -1915 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-553))) (-15 ** ($ $ (-553))) (-15 -3735 (|#1| (-113) |#1|)) (-15 -2427 ($ |#1| (-355 (-113)))))) (-1031)) (T -820)) -((-3977 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-169)) (-4 *2 (-1031)))) (-3977 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-169)) (-4 *2 (-1031)))) (-2309 (*1 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-169)) (-4 *2 (-1031)))) (-2819 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-820 *3)))) (-1915 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-820 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-553)) (-5 *1 (-820 *4)) (-4 *4 (-1031)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-820 *3)) (-4 *3 (-1031)))) (-3735 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-820 *2)) (-4 *2 (-1031)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-5 *1 (-820 *2)) (-4 *2 (-1031))))) -(-13 (-1031) (-1020 |#1|) (-1020 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -3977 ($ $)) (-15 -3977 ($ $ $)) (-15 -2309 (|#1| |#1|))) |%noBranch|) (-15 -2819 ($ $ (-1 |#1| |#1|))) (-15 -1915 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-553))) (-15 ** ($ $ (-553))) (-15 -3735 (|#1| (-113) |#1|)) (-15 -2427 ($ |#1| (-355 (-113)))))) -((-1458 (((-209 (-495)) (-1137)) 9))) -(((-821) (-10 -7 (-15 -1458 ((-209 (-495)) (-1137))))) (T -821)) -((-1458 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-209 (-495))) (-5 *1 (-821))))) -(-10 -7 (-15 -1458 ((-209 (-495)) (-1137)))) -((-3096 (((-111) $ $) 7)) (-1499 (((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 14) (((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 13)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 16) (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 15)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-822) (-137)) (T -822)) -((-1309 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1043)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) (-1309 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1043)) (-5 *4 (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) (-1499 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) (-5 *2 (-1017)))) (-1499 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (-5 *2 (-1017))))) -(-13 (-1079) (-10 -7 (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -1499 ((-1017) (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -1499 ((-1017) (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-2749 (((-1017) (-630 (-310 (-373))) (-630 (-373))) 147) (((-1017) (-310 (-373)) (-630 (-373))) 145) (((-1017) (-310 (-373)) (-630 (-373)) (-630 (-826 (-373))) (-630 (-826 (-373)))) 144) (((-1017) (-310 (-373)) (-630 (-373)) (-630 (-826 (-373))) (-630 (-310 (-373))) (-630 (-826 (-373)))) 143) (((-1017) (-824)) 117) (((-1017) (-824) (-1043)) 116)) (-1309 (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-824) (-1043)) 82) (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-824)) 84)) (-3954 (((-1017) (-630 (-310 (-373))) (-630 (-373))) 148) (((-1017) (-824)) 133))) -(((-823) (-10 -7 (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-824))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-824) (-1043))) (-15 -2749 ((-1017) (-824) (-1043))) (-15 -2749 ((-1017) (-824))) (-15 -3954 ((-1017) (-824))) (-15 -2749 ((-1017) (-310 (-373)) (-630 (-373)) (-630 (-826 (-373))) (-630 (-310 (-373))) (-630 (-826 (-373))))) (-15 -2749 ((-1017) (-310 (-373)) (-630 (-373)) (-630 (-826 (-373))) (-630 (-826 (-373))))) (-15 -2749 ((-1017) (-310 (-373)) (-630 (-373)))) (-15 -2749 ((-1017) (-630 (-310 (-373))) (-630 (-373)))) (-15 -3954 ((-1017) (-630 (-310 (-373))) (-630 (-373)))))) (T -823)) -((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-310 (-373)))) (-5 *4 (-630 (-373))) (-5 *2 (-1017)) (-5 *1 (-823)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-310 (-373)))) (-5 *4 (-630 (-373))) (-5 *2 (-1017)) (-5 *1 (-823)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-373))) (-5 *2 (-1017)) (-5 *1 (-823)))) (-2749 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-373))) (-5 *5 (-630 (-826 (-373)))) (-5 *2 (-1017)) (-5 *1 (-823)))) (-2749 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-630 (-373))) (-5 *5 (-630 (-826 (-373)))) (-5 *6 (-630 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1017)) (-5 *1 (-823)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1017)) (-5 *1 (-823)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1017)) (-5 *1 (-823)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1043)) (-5 *2 (-1017)) (-5 *1 (-823)))) (-1309 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1043)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *1 (-823)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *1 (-823))))) -(-10 -7 (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-824))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-824) (-1043))) (-15 -2749 ((-1017) (-824) (-1043))) (-15 -2749 ((-1017) (-824))) (-15 -3954 ((-1017) (-824))) (-15 -2749 ((-1017) (-310 (-373)) (-630 (-373)) (-630 (-826 (-373))) (-630 (-310 (-373))) (-630 (-826 (-373))))) (-15 -2749 ((-1017) (-310 (-373)) (-630 (-373)) (-630 (-826 (-373))) (-630 (-826 (-373))))) (-15 -2749 ((-1017) (-310 (-373)) (-630 (-373)))) (-15 -2749 ((-1017) (-630 (-310 (-373))) (-630 (-373)))) (-15 -3954 ((-1017) (-630 (-310 (-373))) (-630 (-373))))) -((-3096 (((-111) $ $) NIL)) (-2707 (((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) $) 21)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) 14) (($ (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))))) 18)) (-1617 (((-111) $ $) NIL))) -(((-824) (-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))))) (-15 -3110 ($ (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -3110 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))))) (-15 -2707 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) $))))) (T -824)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (-5 *1 (-824)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) (-5 *1 (-824)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))))) (-5 *1 (-824)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))))) (-5 *1 (-824))))) -(-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220))))))) (-15 -3110 ($ (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) (-15 -3110 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))))) (-15 -2707 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) (|:| |ub| (-630 (-826 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220)))))) $)))) -((-1482 (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|) (-826 |#2|)) 13) (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)) 14))) -(((-825 |#1| |#2|) (-10 -7 (-15 -1482 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))) (-15 -1482 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|) (-826 |#2|)))) (-1079) (-1079)) (T -825)) -((-1482 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-826 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *1 (-825 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-826 *6)) (-5 *1 (-825 *5 *6))))) -(-10 -7 (-15 -1482 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))) (-15 -1482 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|) (-826 |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL (|has| |#1| (-21)))) (-3527 (((-1099) $) 24)) (-2910 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2125 (((-553) $) NIL (|has| |#1| (-831)))) (-3820 (($) NIL (|has| |#1| (-21)) CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 16)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 9)) (-2982 (((-3 $ "failed") $) 47 (|has| |#1| (-831)))) (-3458 (((-3 (-401 (-553)) "failed") $) 54 (|has| |#1| (-538)))) (-4323 (((-111) $) 49 (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) 52 (|has| |#1| (-538)))) (-4270 (((-111) $) NIL (|has| |#1| (-831)))) (-1664 (($) 13)) (-1848 (((-111) $) NIL (|has| |#1| (-831)))) (-2797 (((-111) $) NIL (|has| |#1| (-831)))) (-1674 (($) 14)) (-1824 (($ $ $) NIL (|has| |#1| (-831)))) (-1975 (($ $ $) NIL (|has| |#1| (-831)))) (-1735 (((-1137) $) NIL)) (-2905 (((-111) $) 12)) (-2786 (((-1099) $) NIL)) (-3345 (((-111) $) 11)) (-3110 (((-845) $) 22) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) 8) (($ (-553)) NIL (-3988 (|has| |#1| (-831)) (|has| |#1| (-1020 (-553)))))) (-1999 (((-757)) 41 (|has| |#1| (-831)))) (-3466 (($ $) NIL (|has| |#1| (-831)))) (-1988 (($) 29 (|has| |#1| (-21)) CONST)) (-1997 (($) 38 (|has| |#1| (-831)) CONST)) (-1669 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1617 (((-111) $ $) 27)) (-1659 (((-111) $ $) NIL (|has| |#1| (-831)))) (-1636 (((-111) $ $) 48 (|has| |#1| (-831)))) (-1711 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1700 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-903)) NIL (|has| |#1| (-831))) (($ $ (-757)) NIL (|has| |#1| (-831)))) (* (($ $ $) 44 (|has| |#1| (-831))) (($ (-553) $) 32 (|has| |#1| (-21))) (($ (-757) $) NIL (|has| |#1| (-21))) (($ (-903) $) NIL (|has| |#1| (-21))))) -(((-826 |#1|) (-13 (-1079) (-405 |#1|) (-10 -8 (-15 -1664 ($)) (-15 -1674 ($)) (-15 -3345 ((-111) $)) (-15 -2905 ((-111) $)) (-15 -3527 ((-1099) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|))) (-1079)) (T -826)) -((-1664 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1079)))) (-1674 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1079)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-826 *3)) (-4 *3 (-1079)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-826 *3)) (-4 *3 (-1079)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-826 *3)) (-4 *3 (-1079)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-826 *3)) (-4 *3 (-538)) (-4 *3 (-1079)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-826 *3)) (-4 *3 (-538)) (-4 *3 (-1079)))) (-3458 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-826 *3)) (-4 *3 (-538)) (-4 *3 (-1079))))) -(-13 (-1079) (-405 |#1|) (-10 -8 (-15 -1664 ($)) (-15 -1674 ($)) (-15 -3345 ((-111) $)) (-15 -2905 ((-111) $)) (-15 -3527 ((-1099) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|))) -((-3096 (((-111) $ $) 7)) (-2571 (((-757)) 20)) (-3031 (($) 23)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-3796 (((-903) $) 22)) (-1735 (((-1137) $) 9)) (-2735 (($ (-903)) 21)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18))) -(((-827) (-137)) (T -827)) -NIL -(-13 (-833) (-362)) -(((-101) . T) ((-600 (-845)) . T) ((-362) . T) ((-833) . T) ((-1079) . T)) -((-3154 (((-111) (-1238 |#2|) (-1238 |#2|)) 17)) (-2413 (((-111) (-1238 |#2|) (-1238 |#2|)) 18)) (-4166 (((-111) (-1238 |#2|) (-1238 |#2|)) 14))) -(((-828 |#1| |#2|) (-10 -7 (-15 -4166 ((-111) (-1238 |#2|) (-1238 |#2|))) (-15 -3154 ((-111) (-1238 |#2|) (-1238 |#2|))) (-15 -2413 ((-111) (-1238 |#2|) (-1238 |#2|)))) (-757) (-778)) (T -828)) -((-2413 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5)) (-4 *5 (-778)) (-5 *2 (-111)) (-5 *1 (-828 *4 *5)) (-14 *4 (-757)))) (-3154 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5)) (-4 *5 (-778)) (-5 *2 (-111)) (-5 *1 (-828 *4 *5)) (-14 *4 (-757)))) (-4166 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5)) (-4 *5 (-778)) (-5 *2 (-111)) (-5 *1 (-828 *4 *5)) (-14 *4 (-757))))) -(-10 -7 (-15 -4166 ((-111) (-1238 |#2|) (-1238 |#2|))) (-15 -3154 ((-111) (-1238 |#2|) (-1238 |#2|))) (-15 -2413 ((-111) (-1238 |#2|) (-1238 |#2|)))) -((-3096 (((-111) $ $) 7)) (-3820 (($) 23 T CONST)) (-2982 (((-3 $ "failed") $) 26)) (-1848 (((-111) $) 24)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1997 (($) 22 T CONST)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (** (($ $ (-903)) 21) (($ $ (-757)) 25)) (* (($ $ $) 20))) -(((-829) (-137)) (T -829)) -NIL -(-13 (-840) (-712)) -(((-101) . T) ((-600 (-845)) . T) ((-712) . T) ((-840) . T) ((-833) . T) ((-1091) . T) ((-1079) . T)) -((-2125 (((-553) $) 17)) (-4270 (((-111) $) 10)) (-2797 (((-111) $) 11)) (-3466 (($ $) 19))) -(((-830 |#1|) (-10 -8 (-15 -3466 (|#1| |#1|)) (-15 -2125 ((-553) |#1|)) (-15 -2797 ((-111) |#1|)) (-15 -4270 ((-111) |#1|))) (-831)) (T -830)) -NIL -(-10 -8 (-15 -3466 (|#1| |#1|)) (-15 -2125 ((-553) |#1|)) (-15 -2797 ((-111) |#1|)) (-15 -4270 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 24)) (-2910 (((-3 $ "failed") $ $) 26)) (-2125 (((-553) $) 34)) (-3820 (($) 23 T CONST)) (-2982 (((-3 $ "failed") $) 39)) (-4270 (((-111) $) 36)) (-1848 (((-111) $) 41)) (-2797 (((-111) $) 35)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 43)) (-1999 (((-757)) 44)) (-3466 (($ $) 33)) (-1988 (($) 22 T CONST)) (-1997 (($) 42 T CONST)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (-1711 (($ $ $) 28) (($ $) 27)) (-1700 (($ $ $) 20)) (** (($ $ (-757)) 40) (($ $ (-903)) 37)) (* (($ (-903) $) 21) (($ (-757) $) 25) (($ (-553) $) 29) (($ $ $) 38))) -(((-831) (-137)) (T -831)) -((-4270 (*1 *2 *1) (-12 (-4 *1 (-831)) (-5 *2 (-111)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-831)) (-5 *2 (-111)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-831)) (-5 *2 (-553)))) (-3466 (*1 *1 *1) (-4 *1 (-831)))) -(-13 (-777) (-1031) (-712) (-10 -8 (-15 -4270 ((-111) $)) (-15 -2797 ((-111) $)) (-15 -2125 ((-553) $)) (-15 -3466 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-777) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-833) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1824 (($ $ $) 10)) (-1975 (($ $ $) 9)) (-1669 (((-111) $ $) 13)) (-1648 (((-111) $ $) 11)) (-1659 (((-111) $ $) 14))) -(((-832 |#1|) (-10 -8 (-15 -1824 (|#1| |#1| |#1|)) (-15 -1975 (|#1| |#1| |#1|)) (-15 -1659 ((-111) |#1| |#1|)) (-15 -1669 ((-111) |#1| |#1|)) (-15 -1648 ((-111) |#1| |#1|))) (-833)) (T -832)) -NIL -(-10 -8 (-15 -1824 (|#1| |#1| |#1|)) (-15 -1975 (|#1| |#1| |#1|)) (-15 -1659 ((-111) |#1| |#1|)) (-15 -1669 ((-111) |#1| |#1|)) (-15 -1648 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18))) -(((-833) (-137)) (T -833)) -((-1636 (*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) (-1648 (*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) (-1669 (*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) (-1659 (*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) (-1975 (*1 *1 *1 *1) (-4 *1 (-833))) (-1824 (*1 *1 *1 *1) (-4 *1 (-833)))) -(-13 (-1079) (-10 -8 (-15 -1636 ((-111) $ $)) (-15 -1648 ((-111) $ $)) (-15 -1669 ((-111) $ $)) (-15 -1659 ((-111) $ $)) (-15 -1975 ($ $ $)) (-15 -1824 ($ $ $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-1816 (($ $ $) 45)) (-3321 (($ $ $) 44)) (-1960 (($ $ $) 42)) (-3875 (($ $ $) 51)) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 46)) (-1936 (((-3 $ "failed") $ $) 49)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1655 (($ $) 35)) (-1717 (($ $ $) 39)) (-3065 (($ $ $) 38)) (-3335 (($ $ $) 47)) (-1946 (($ $ $) 53)) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 41)) (-3474 (((-3 $ "failed") $ $) 48)) (-3929 (((-3 $ "failed") $ |#2|) 28)) (-4198 ((|#2| $) 32)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL) (($ |#2|) 12)) (-3987 (((-630 |#2|) $) 18)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-834 |#1| |#2|) (-10 -8 (-15 -3335 (|#1| |#1| |#1|)) (-15 -2156 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4093 |#1|)) |#1| |#1|)) (-15 -3875 (|#1| |#1| |#1|)) (-15 -1936 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -1960 (|#1| |#1| |#1|)) (-15 -2583 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4093 |#1|)) |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -3474 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3987 ((-630 |#2|) |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -3110 ((-845) |#1|))) (-835 |#2|) (-1031)) (T -834)) -NIL -(-10 -8 (-15 -3335 (|#1| |#1| |#1|)) (-15 -2156 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4093 |#1|)) |#1| |#1|)) (-15 -3875 (|#1| |#1| |#1|)) (-15 -1936 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -1960 (|#1| |#1| |#1|)) (-15 -2583 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4093 |#1|)) |#1| |#1|)) (-15 -1946 (|#1| |#1| |#1|)) (-15 -3474 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1717 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -3929 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3987 ((-630 |#2|) |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1816 (($ $ $) 44 (|has| |#1| (-357)))) (-3321 (($ $ $) 45 (|has| |#1| (-357)))) (-1960 (($ $ $) 47 (|has| |#1| (-357)))) (-3875 (($ $ $) 42 (|has| |#1| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 41 (|has| |#1| (-357)))) (-1936 (((-3 $ "failed") $ $) 43 (|has| |#1| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 46 (|has| |#1| (-357)))) (-1399 (((-3 (-553) "failed") $) 74 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 71 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 68)) (-2707 (((-553) $) 73 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 70 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 69)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-1655 (($ $) 54 (|has| |#1| (-445)))) (-1848 (((-111) $) 31)) (-3481 (($ |#1| (-757)) 61)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 56 (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 57 (|has| |#1| (-545)))) (-2423 (((-757) $) 65)) (-1717 (($ $ $) 51 (|has| |#1| (-357)))) (-3065 (($ $ $) 52 (|has| |#1| (-357)))) (-3335 (($ $ $) 40 (|has| |#1| (-357)))) (-1946 (($ $ $) 49 (|has| |#1| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 48 (|has| |#1| (-357)))) (-3474 (((-3 $ "failed") $ $) 50 (|has| |#1| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 53 (|has| |#1| (-357)))) (-3655 ((|#1| $) 64)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-545)))) (-3872 (((-757) $) 66)) (-4198 ((|#1| $) 55 (|has| |#1| (-445)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 72 (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) 67)) (-3987 (((-630 |#1|) $) 60)) (-1624 ((|#1| $ (-757)) 62)) (-1999 (((-757)) 28)) (-2549 ((|#1| $ |#1| |#1|) 59)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-835 |#1|) (-137) (-1031)) (T -835)) -((-3872 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-835 *2)) (-4 *2 (-1031)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-835 *2)) (-4 *2 (-1031)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1031)) (-5 *2 (-630 *3)))) (-2549 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)))) (-3929 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-545)))) (-3267 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) (-4169 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-445)))) (-1655 (*1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-445)))) (-2437 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-3474 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-1946 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-2583 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4093 *1))) (-4 *1 (-835 *3)))) (-1960 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-2312 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-1816 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-1936 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-3875 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-2156 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4093 *1))) (-4 *1 (-835 *3)))) (-3335 (*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(-13 (-1031) (-110 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -3872 ((-757) $)) (-15 -2423 ((-757) $)) (-15 -3655 (|t#1| $)) (-15 -3678 ($ $)) (-15 -1624 (|t#1| $ (-757))) (-15 -3481 ($ |t#1| (-757))) (-15 -3987 ((-630 |t#1|) $)) (-15 -2549 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3929 ((-3 $ "failed") $ |t#1|)) (-15 -3267 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -4169 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -4198 (|t#1| $)) (-15 -1655 ($ $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -2437 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3065 ($ $ $)) (-15 -1717 ($ $ $)) (-15 -3474 ((-3 $ "failed") $ $)) (-15 -1946 ($ $ $)) (-15 -2583 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $)) (-15 -1960 ($ $ $)) (-15 -2312 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3321 ($ $ $)) (-15 -1816 ($ $ $)) (-15 -1936 ((-3 $ "failed") $ $)) (-15 -3875 ($ $ $)) (-15 -2156 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $)) (-15 -3335 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-603 #0=(-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-405 |#1|) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) |has| |#1| (-169)) ((-712) . T) ((-1020 #0#) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1677 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2312 (((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-357)))) (-4169 (((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-545)))) (-2437 (((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-357)))) (-2549 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-836 |#1| |#2|) (-10 -7 (-15 -1677 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2549 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-545)) (PROGN (-15 -3267 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -4169 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2437 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2312 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1031) (-835 |#1|)) (T -836)) -((-2312 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1031)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) (-4 *3 (-835 *5)))) (-2437 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1031)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) (-4 *3 (-835 *5)))) (-4169 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1031)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) (-4 *3 (-835 *5)))) (-3267 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1031)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) (-4 *3 (-835 *5)))) (-2549 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1031)) (-5 *1 (-836 *2 *3)) (-4 *3 (-835 *2)))) (-1677 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1031)) (-5 *1 (-836 *5 *2)) (-4 *2 (-835 *5))))) -(-10 -7 (-15 -1677 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2549 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-545)) (PROGN (-15 -3267 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -4169 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2437 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2312 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1816 (($ $ $) NIL (|has| |#1| (-357)))) (-3321 (($ $ $) NIL (|has| |#1| (-357)))) (-1960 (($ $ $) NIL (|has| |#1| (-357)))) (-3875 (($ $ $) NIL (|has| |#1| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-1936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 32 (|has| |#1| (-357)))) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445)))) (-3783 (((-845) $ (-845)) NIL)) (-1848 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) NIL)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 28 (|has| |#1| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 26 (|has| |#1| (-545)))) (-2423 (((-757) $) NIL)) (-1717 (($ $ $) NIL (|has| |#1| (-357)))) (-3065 (($ $ $) NIL (|has| |#1| (-357)))) (-3335 (($ $ $) NIL (|has| |#1| (-357)))) (-1946 (($ $ $) NIL (|has| |#1| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3474 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 30 (|has| |#1| (-357)))) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-3872 (((-757) $) NIL)) (-4198 ((|#1| $) NIL (|has| |#1| (-445)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#1| (-1020 (-401 (-553))))) (($ |#1|) NIL)) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) NIL)) (-1999 (((-757)) NIL)) (-2549 ((|#1| $ |#1| |#1|) 15)) (-1988 (($) NIL T CONST)) (-1997 (($) 20 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) 19) (($ $ (-757)) 22)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-837 |#1| |#2| |#3|) (-13 (-835 |#1|) (-10 -8 (-15 -3783 ((-845) $ (-845))))) (-1031) (-98 |#1|) (-1 |#1| |#1|)) (T -837)) -((-3783 (*1 *2 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-837 *3 *4 *5)) (-4 *3 (-1031)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-835 |#1|) (-10 -8 (-15 -3783 ((-845) $ (-845))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1816 (($ $ $) NIL (|has| |#2| (-357)))) (-3321 (($ $ $) NIL (|has| |#2| (-357)))) (-1960 (($ $ $) NIL (|has| |#2| (-357)))) (-3875 (($ $ $) NIL (|has| |#2| (-357)))) (-2156 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#2| (-357)))) (-1936 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-2312 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-357)))) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 |#2| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) ((|#2| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#2| (-445)))) (-1848 (((-111) $) NIL)) (-3481 (($ |#2| (-757)) 16)) (-4169 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-545)))) (-3267 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-545)))) (-2423 (((-757) $) NIL)) (-1717 (($ $ $) NIL (|has| |#2| (-357)))) (-3065 (($ $ $) NIL (|has| |#2| (-357)))) (-3335 (($ $ $) NIL (|has| |#2| (-357)))) (-1946 (($ $ $) NIL (|has| |#2| (-357)))) (-2583 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#2| (-357)))) (-3474 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-2437 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-357)))) (-3655 ((|#2| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-3872 (((-757) $) NIL)) (-4198 ((|#2| $) NIL (|has| |#2| (-445)))) (-3110 (((-845) $) 23) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#2| (-1020 (-401 (-553))))) (($ |#2|) NIL) (($ (-1234 |#1|)) 18)) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-757)) NIL)) (-1999 (((-757)) NIL)) (-2549 ((|#2| $ |#2| |#2|) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) 13 T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-838 |#1| |#2| |#3| |#4|) (-13 (-835 |#2|) (-603 (-1234 |#1|))) (-1155) (-1031) (-98 |#2|) (-1 |#2| |#2|)) (T -838)) -NIL -(-13 (-835 |#2|) (-603 (-1234 |#1|))) -((-3095 ((|#1| (-757) |#1|) 35 (|has| |#1| (-38 (-401 (-553)))))) (-1351 ((|#1| (-757) (-757) |#1|) 27) ((|#1| (-757) |#1|) 20)) (-3725 ((|#1| (-757) |#1|) 31)) (-1712 ((|#1| (-757) |#1|) 29)) (-1721 ((|#1| (-757) |#1|) 28))) -(((-839 |#1|) (-10 -7 (-15 -1721 (|#1| (-757) |#1|)) (-15 -1712 (|#1| (-757) |#1|)) (-15 -3725 (|#1| (-757) |#1|)) (-15 -1351 (|#1| (-757) |#1|)) (-15 -1351 (|#1| (-757) (-757) |#1|)) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3095 (|#1| (-757) |#1|)) |%noBranch|)) (-169)) (T -839)) -((-3095 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-169)))) (-1351 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) (-1351 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) (-3725 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) (-1712 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) (-1721 (*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169))))) -(-10 -7 (-15 -1721 (|#1| (-757) |#1|)) (-15 -1712 (|#1| (-757) |#1|)) (-15 -3725 (|#1| (-757) |#1|)) (-15 -1351 (|#1| (-757) |#1|)) (-15 -1351 (|#1| (-757) (-757) |#1|)) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3095 (|#1| (-757) |#1|)) |%noBranch|)) -((-3096 (((-111) $ $) 7)) (-1824 (($ $ $) 13)) (-1975 (($ $ $) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1669 (((-111) $ $) 16)) (-1648 (((-111) $ $) 17)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 15)) (-1636 (((-111) $ $) 18)) (** (($ $ (-903)) 21)) (* (($ $ $) 20))) -(((-840) (-137)) (T -840)) -NIL -(-13 (-833) (-1091)) -(((-101) . T) ((-600 (-845)) . T) ((-833) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-2821 (((-553) $) 12)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 18) (($ (-553)) 11)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 8)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 9))) -(((-841) (-13 (-833) (-10 -8 (-15 -3110 ($ (-553))) (-15 -2821 ((-553) $))))) (T -841)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-841)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-841))))) -(-13 (-833) (-10 -8 (-15 -3110 ($ (-553))) (-15 -2821 ((-553) $)))) -((-3688 (((-1099) $ (-127)) 17))) -(((-842 |#1|) (-10 -8 (-15 -3688 ((-1099) |#1| (-127)))) (-843)) (T -842)) -NIL -(-10 -8 (-15 -3688 ((-1099) |#1| (-127)))) -((-3688 (((-1099) $ (-127)) 7)) (-1865 (((-1099) $ (-128)) 8)) (-2407 (($ $) 6))) -(((-843) (-137)) (T -843)) -((-1865 (*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-128)) (-5 *2 (-1099)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-127)) (-5 *2 (-1099))))) -(-13 (-170) (-10 -8 (-15 -1865 ((-1099) $ (-128))) (-15 -3688 ((-1099) $ (-127))))) -(((-170) . T)) -((-3688 (((-1099) $ (-127)) NIL)) (-1865 (((-1099) $ (-128)) 22)) (-3695 (($ (-382)) 12) (($ (-1137)) 14)) (-2465 (((-111) $) 19)) (-3110 (((-845) $) 26)) (-2407 (($ $) 23))) -(((-844) (-13 (-843) (-600 (-845)) (-10 -8 (-15 -3695 ($ (-382))) (-15 -3695 ($ (-1137))) (-15 -2465 ((-111) $))))) (T -844)) -((-3695 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-844)))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-844)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-844))))) -(-13 (-843) (-600 (-845)) (-10 -8 (-15 -3695 ($ (-382))) (-15 -3695 ($ (-1137))) (-15 -2465 ((-111) $)))) -((-3096 (((-111) $ $) NIL) (($ $ $) 77)) (-4331 (($ $ $) 114)) (-4030 (((-553) $) 31) (((-553)) 36)) (-2519 (($ (-553)) 45)) (-1805 (($ $ $) 46) (($ (-630 $)) 76)) (-2382 (($ $ (-630 $)) 74)) (-1813 (((-553) $) 34)) (-4313 (($ $ $) 65)) (-2868 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1939 (((-553) $) 33)) (-3062 (($ $ $) 64)) (-3950 (($ $) 104)) (-2847 (($ $ $) 118)) (-3064 (($ (-630 $)) 53)) (-1910 (($ $ (-630 $)) 71)) (-2647 (($ (-553) (-553)) 47)) (-4257 (($ $) 115) (($ $ $) 116)) (-3323 (($ $ (-553)) 41) (($ $) 44)) (-3973 (($ $ $) 89)) (-1980 (($ $ $) 121)) (-3882 (($ $) 105)) (-3952 (($ $ $) 90)) (-2544 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1873 (((-1243) $) 10)) (-3165 (($ $) 108) (($ $ (-757)) 111)) (-1557 (($ $ $) 67)) (-2994 (($ $ $) 66)) (-2608 (($ $ (-630 $)) 100)) (-1628 (($ $ $) 103)) (-2065 (($ (-630 $)) 51)) (-2985 (($ $) 62) (($ (-630 $)) 63)) (-2799 (($ $ $) 112)) (-2120 (($ $) 106)) (-1480 (($ $ $) 117)) (-3783 (($ (-553)) 21) (($ (-1155)) 23) (($ (-1137)) 30) (($ (-220)) 25)) (-3063 (($ $ $) 93)) (-2826 (($ $) 94)) (-1358 (((-1243) (-1137)) 15)) (-2335 (($ (-1137)) 14)) (-3394 (($ (-630 (-630 $))) 50)) (-3313 (($ $ (-553)) 40) (($ $) 43)) (-1735 (((-1137) $) NIL)) (-2055 (($ $ $) 120)) (-2060 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3858 (((-111) $) 98)) (-2378 (($ $ (-630 $)) 101) (($ $ $ $) 102)) (-2433 (($ (-553)) 37)) (-2304 (((-553) $) 32) (((-553)) 35)) (-4015 (($ $ $) 38) (($ (-630 $)) 75)) (-2786 (((-1099) $) NIL)) (-3929 (($ $ $) 91)) (-3222 (($) 13)) (-2046 (($ $ (-630 $)) 99)) (-4317 (((-1137) (-1137)) 8)) (-1449 (($ $) 107) (($ $ (-757)) 110)) (-3941 (($ $ $) 88)) (-1330 (($ $ (-757)) 126)) (-3534 (($ (-630 $)) 52)) (-3110 (((-845) $) 19)) (-4010 (($ $ (-553)) 39) (($ $) 42)) (-1992 (($ $) 60) (($ (-630 $)) 61)) (-3420 (($ $) 58) (($ (-630 $)) 59)) (-2633 (($ $) 113)) (-1502 (($ (-630 $)) 57)) (-1737 (($ $ $) 97)) (-2607 (($ $ $) 119)) (-3726 (($ $ $) 92)) (-4260 (($ $ $) 95) (($ $) 96)) (-1669 (($ $ $) 81)) (-1648 (($ $ $) 79)) (-1617 (((-111) $ $) 16) (($ $ $) 17)) (-1659 (($ $ $) 80)) (-1636 (($ $ $) 78)) (-1723 (($ $ $) 86)) (-1711 (($ $ $) 83) (($ $) 84)) (-1700 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-845) (-13 (-1079) (-10 -8 (-15 -1873 ((-1243) $)) (-15 -2335 ($ (-1137))) (-15 -1358 ((-1243) (-1137))) (-15 -3783 ($ (-553))) (-15 -3783 ($ (-1155))) (-15 -3783 ($ (-1137))) (-15 -3783 ($ (-220))) (-15 -3222 ($)) (-15 -4317 ((-1137) (-1137))) (-15 -4030 ((-553) $)) (-15 -2304 ((-553) $)) (-15 -4030 ((-553))) (-15 -2304 ((-553))) (-15 -1939 ((-553) $)) (-15 -1813 ((-553) $)) (-15 -2433 ($ (-553))) (-15 -2519 ($ (-553))) (-15 -2647 ($ (-553) (-553))) (-15 -3313 ($ $ (-553))) (-15 -3323 ($ $ (-553))) (-15 -4010 ($ $ (-553))) (-15 -3313 ($ $)) (-15 -3323 ($ $)) (-15 -4010 ($ $)) (-15 -4015 ($ $ $)) (-15 -1805 ($ $ $)) (-15 -4015 ($ (-630 $))) (-15 -1805 ($ (-630 $))) (-15 -2608 ($ $ (-630 $))) (-15 -2378 ($ $ (-630 $))) (-15 -2378 ($ $ $ $)) (-15 -1628 ($ $ $)) (-15 -3858 ((-111) $)) (-15 -2046 ($ $ (-630 $))) (-15 -3950 ($ $)) (-15 -2055 ($ $ $)) (-15 -2633 ($ $)) (-15 -3394 ($ (-630 (-630 $)))) (-15 -4331 ($ $ $)) (-15 -4257 ($ $)) (-15 -4257 ($ $ $)) (-15 -1480 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -2607 ($ $ $)) (-15 -1980 ($ $ $)) (-15 -1330 ($ $ (-757))) (-15 -1737 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4313 ($ $ $)) (-15 -2994 ($ $ $)) (-15 -1557 ($ $ $)) (-15 -1910 ($ $ (-630 $))) (-15 -2382 ($ $ (-630 $))) (-15 -3882 ($ $)) (-15 -1449 ($ $)) (-15 -1449 ($ $ (-757))) (-15 -3165 ($ $)) (-15 -3165 ($ $ (-757))) (-15 -2120 ($ $)) (-15 -2799 ($ $ $)) (-15 -2868 ($ $)) (-15 -2868 ($ $ $)) (-15 -2868 ($ $ $ $)) (-15 -2544 ($ $)) (-15 -2544 ($ $ $)) (-15 -2544 ($ $ $ $)) (-15 -2060 ($ $)) (-15 -2060 ($ $ $)) (-15 -2060 ($ $ $ $)) (-15 -3420 ($ $)) (-15 -3420 ($ (-630 $))) (-15 -1992 ($ $)) (-15 -1992 ($ (-630 $))) (-15 -2985 ($ $)) (-15 -2985 ($ (-630 $))) (-15 -2065 ($ (-630 $))) (-15 -3534 ($ (-630 $))) (-15 -3064 ($ (-630 $))) (-15 -1502 ($ (-630 $))) (-15 -1617 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1636 ($ $ $)) (-15 -1648 ($ $ $)) (-15 -1659 ($ $ $)) (-15 -1669 ($ $ $)) (-15 -1700 ($ $ $)) (-15 -1711 ($ $ $)) (-15 -1711 ($ $)) (-15 * ($ $ $)) (-15 -1723 ($ $ $)) (-15 ** ($ $ $)) (-15 -3941 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -3952 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -2826 ($ $)) (-15 -4260 ($ $ $)) (-15 -4260 ($ $))))) (T -845)) -((-1873 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-845)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-845)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-845)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-845)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-845)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-845)))) (-3222 (*1 *1) (-5 *1 (-845))) (-4317 (*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-845)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-4030 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-2304 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-2647 (*1 *1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-3323 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-4010 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) (-3313 (*1 *1 *1) (-5 *1 (-845))) (-3323 (*1 *1 *1) (-5 *1 (-845))) (-4010 (*1 *1 *1) (-5 *1 (-845))) (-4015 (*1 *1 *1 *1) (-5 *1 (-845))) (-1805 (*1 *1 *1 *1) (-5 *1 (-845))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-1805 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-2378 (*1 *1 *1 *1 *1) (-5 *1 (-845))) (-1628 (*1 *1 *1 *1) (-5 *1 (-845))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-3950 (*1 *1 *1) (-5 *1 (-845))) (-2055 (*1 *1 *1 *1) (-5 *1 (-845))) (-2633 (*1 *1 *1) (-5 *1 (-845))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-845)))) (-5 *1 (-845)))) (-4331 (*1 *1 *1 *1) (-5 *1 (-845))) (-4257 (*1 *1 *1) (-5 *1 (-845))) (-4257 (*1 *1 *1 *1) (-5 *1 (-845))) (-1480 (*1 *1 *1 *1) (-5 *1 (-845))) (-2847 (*1 *1 *1 *1) (-5 *1 (-845))) (-2607 (*1 *1 *1 *1) (-5 *1 (-845))) (-1980 (*1 *1 *1 *1) (-5 *1 (-845))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-845)))) (-1737 (*1 *1 *1 *1) (-5 *1 (-845))) (-3062 (*1 *1 *1 *1) (-5 *1 (-845))) (-4313 (*1 *1 *1 *1) (-5 *1 (-845))) (-2994 (*1 *1 *1 *1) (-5 *1 (-845))) (-1557 (*1 *1 *1 *1) (-5 *1 (-845))) (-1910 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-3882 (*1 *1 *1) (-5 *1 (-845))) (-1449 (*1 *1 *1) (-5 *1 (-845))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-845)))) (-3165 (*1 *1 *1) (-5 *1 (-845))) (-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-845)))) (-2120 (*1 *1 *1) (-5 *1 (-845))) (-2799 (*1 *1 *1 *1) (-5 *1 (-845))) (-2868 (*1 *1 *1) (-5 *1 (-845))) (-2868 (*1 *1 *1 *1) (-5 *1 (-845))) (-2868 (*1 *1 *1 *1 *1) (-5 *1 (-845))) (-2544 (*1 *1 *1) (-5 *1 (-845))) (-2544 (*1 *1 *1 *1) (-5 *1 (-845))) (-2544 (*1 *1 *1 *1 *1) (-5 *1 (-845))) (-2060 (*1 *1 *1) (-5 *1 (-845))) (-2060 (*1 *1 *1 *1) (-5 *1 (-845))) (-2060 (*1 *1 *1 *1 *1) (-5 *1 (-845))) (-3420 (*1 *1 *1) (-5 *1 (-845))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-1992 (*1 *1 *1) (-5 *1 (-845))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-2985 (*1 *1 *1) (-5 *1 (-845))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-3064 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) (-1617 (*1 *1 *1 *1) (-5 *1 (-845))) (-3096 (*1 *1 *1 *1) (-5 *1 (-845))) (-1636 (*1 *1 *1 *1) (-5 *1 (-845))) (-1648 (*1 *1 *1 *1) (-5 *1 (-845))) (-1659 (*1 *1 *1 *1) (-5 *1 (-845))) (-1669 (*1 *1 *1 *1) (-5 *1 (-845))) (-1700 (*1 *1 *1 *1) (-5 *1 (-845))) (-1711 (*1 *1 *1 *1) (-5 *1 (-845))) (-1711 (*1 *1 *1) (-5 *1 (-845))) (* (*1 *1 *1 *1) (-5 *1 (-845))) (-1723 (*1 *1 *1 *1) (-5 *1 (-845))) (** (*1 *1 *1 *1) (-5 *1 (-845))) (-3941 (*1 *1 *1 *1) (-5 *1 (-845))) (-3973 (*1 *1 *1 *1) (-5 *1 (-845))) (-3952 (*1 *1 *1 *1) (-5 *1 (-845))) (-3929 (*1 *1 *1 *1) (-5 *1 (-845))) (-3726 (*1 *1 *1 *1) (-5 *1 (-845))) (-3063 (*1 *1 *1 *1) (-5 *1 (-845))) (-2826 (*1 *1 *1) (-5 *1 (-845))) (-4260 (*1 *1 *1 *1) (-5 *1 (-845))) (-4260 (*1 *1 *1) (-5 *1 (-845)))) -(-13 (-1079) (-10 -8 (-15 -1873 ((-1243) $)) (-15 -2335 ($ (-1137))) (-15 -1358 ((-1243) (-1137))) (-15 -3783 ($ (-553))) (-15 -3783 ($ (-1155))) (-15 -3783 ($ (-1137))) (-15 -3783 ($ (-220))) (-15 -3222 ($)) (-15 -4317 ((-1137) (-1137))) (-15 -4030 ((-553) $)) (-15 -2304 ((-553) $)) (-15 -4030 ((-553))) (-15 -2304 ((-553))) (-15 -1939 ((-553) $)) (-15 -1813 ((-553) $)) (-15 -2433 ($ (-553))) (-15 -2519 ($ (-553))) (-15 -2647 ($ (-553) (-553))) (-15 -3313 ($ $ (-553))) (-15 -3323 ($ $ (-553))) (-15 -4010 ($ $ (-553))) (-15 -3313 ($ $)) (-15 -3323 ($ $)) (-15 -4010 ($ $)) (-15 -4015 ($ $ $)) (-15 -1805 ($ $ $)) (-15 -4015 ($ (-630 $))) (-15 -1805 ($ (-630 $))) (-15 -2608 ($ $ (-630 $))) (-15 -2378 ($ $ (-630 $))) (-15 -2378 ($ $ $ $)) (-15 -1628 ($ $ $)) (-15 -3858 ((-111) $)) (-15 -2046 ($ $ (-630 $))) (-15 -3950 ($ $)) (-15 -2055 ($ $ $)) (-15 -2633 ($ $)) (-15 -3394 ($ (-630 (-630 $)))) (-15 -4331 ($ $ $)) (-15 -4257 ($ $)) (-15 -4257 ($ $ $)) (-15 -1480 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -2607 ($ $ $)) (-15 -1980 ($ $ $)) (-15 -1330 ($ $ (-757))) (-15 -1737 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4313 ($ $ $)) (-15 -2994 ($ $ $)) (-15 -1557 ($ $ $)) (-15 -1910 ($ $ (-630 $))) (-15 -2382 ($ $ (-630 $))) (-15 -3882 ($ $)) (-15 -1449 ($ $)) (-15 -1449 ($ $ (-757))) (-15 -3165 ($ $)) (-15 -3165 ($ $ (-757))) (-15 -2120 ($ $)) (-15 -2799 ($ $ $)) (-15 -2868 ($ $)) (-15 -2868 ($ $ $)) (-15 -2868 ($ $ $ $)) (-15 -2544 ($ $)) (-15 -2544 ($ $ $)) (-15 -2544 ($ $ $ $)) (-15 -2060 ($ $)) (-15 -2060 ($ $ $)) (-15 -2060 ($ $ $ $)) (-15 -3420 ($ $)) (-15 -3420 ($ (-630 $))) (-15 -1992 ($ $)) (-15 -1992 ($ (-630 $))) (-15 -2985 ($ $)) (-15 -2985 ($ (-630 $))) (-15 -2065 ($ (-630 $))) (-15 -3534 ($ (-630 $))) (-15 -3064 ($ (-630 $))) (-15 -1502 ($ (-630 $))) (-15 -1617 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1636 ($ $ $)) (-15 -1648 ($ $ $)) (-15 -1659 ($ $ $)) (-15 -1669 ($ $ $)) (-15 -1700 ($ $ $)) (-15 -1711 ($ $ $)) (-15 -1711 ($ $)) (-15 * ($ $ $)) (-15 -1723 ($ $ $)) (-15 ** ($ $ $)) (-15 -3941 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -3952 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -2826 ($ $)) (-15 -4260 ($ $ $)) (-15 -4260 ($ $)))) -((-1800 (((-1243) (-630 (-52))) 24)) (-3706 (((-1243) (-1137) (-845)) 14) (((-1243) (-845)) 9) (((-1243) (-1137)) 11))) -(((-846) (-10 -7 (-15 -3706 ((-1243) (-1137))) (-15 -3706 ((-1243) (-845))) (-15 -3706 ((-1243) (-1137) (-845))) (-15 -1800 ((-1243) (-630 (-52)))))) (T -846)) -((-1800 (*1 *2 *3) (-12 (-5 *3 (-630 (-52))) (-5 *2 (-1243)) (-5 *1 (-846)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-845)) (-5 *2 (-1243)) (-5 *1 (-846)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-846)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-846))))) -(-10 -7 (-15 -3706 ((-1243) (-1137))) (-15 -3706 ((-1243) (-845))) (-15 -3706 ((-1243) (-1137) (-845))) (-15 -1800 ((-1243) (-630 (-52))))) -((-3096 (((-111) $ $) NIL)) (-1509 (((-3 $ "failed") (-1155)) 33)) (-2571 (((-757)) 31)) (-3031 (($) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-3796 (((-903) $) 29)) (-1735 (((-1137) $) 39)) (-2735 (($ (-903)) 28)) (-2786 (((-1099) $) NIL)) (-1524 (((-1155) $) 13) (((-529) $) 19) (((-874 (-373)) $) 26) (((-874 (-553)) $) 22)) (-3110 (((-845) $) 16)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 36)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 35))) -(((-847 |#1|) (-13 (-827) (-601 (-1155)) (-601 (-529)) (-601 (-874 (-373))) (-601 (-874 (-553))) (-10 -8 (-15 -1509 ((-3 $ "failed") (-1155))))) (-630 (-1155))) (T -847)) -((-1509 (*1 *1 *2) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-847 *3)) (-14 *3 (-630 *2))))) -(-13 (-827) (-601 (-1155)) (-601 (-529)) (-601 (-874 (-373))) (-601 (-874 (-553))) (-10 -8 (-15 -1509 ((-3 $ "failed") (-1155))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-934 |#1|)) NIL) (((-934 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-1999 (((-757)) NIL)) (-4082 (((-1243) (-757)) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1723 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-848 |#1| |#2| |#3| |#4|) (-13 (-1031) (-483 (-934 |#1|)) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1723 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4082 ((-1243) (-757))))) (-1031) (-630 (-1155)) (-630 (-757)) (-757)) (T -848)) -((-1723 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-848 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *2 (-1031)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-757))) (-14 *5 (-757)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *4 (-1031)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 *3)) (-14 *7 *3)))) -(-13 (-1031) (-483 (-934 |#1|)) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1723 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4082 ((-1243) (-757))))) -((-4272 (((-3 (-171 |#3|) "failed") (-757) (-757) |#2| |#2|) 31)) (-2514 (((-3 (-401 |#3|) "failed") (-757) (-757) |#2| |#2|) 24))) -(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -2514 ((-3 (-401 |#3|) "failed") (-757) (-757) |#2| |#2|)) (-15 -4272 ((-3 (-171 |#3|) "failed") (-757) (-757) |#2| |#2|))) (-357) (-1229 |#1|) (-1214 |#1|)) (T -849)) -((-4272 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-757)) (-4 *5 (-357)) (-5 *2 (-171 *6)) (-5 *1 (-849 *5 *4 *6)) (-4 *4 (-1229 *5)) (-4 *6 (-1214 *5)))) (-2514 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-757)) (-4 *5 (-357)) (-5 *2 (-401 *6)) (-5 *1 (-849 *5 *4 *6)) (-4 *4 (-1229 *5)) (-4 *6 (-1214 *5))))) -(-10 -7 (-15 -2514 ((-3 (-401 |#3|) "failed") (-757) (-757) |#2| |#2|)) (-15 -4272 ((-3 (-171 |#3|) "failed") (-757) (-757) |#2| |#2|))) -((-2514 (((-3 (-401 (-1211 |#2| |#1|)) "failed") (-757) (-757) (-1230 |#1| |#2| |#3|)) 28) (((-3 (-401 (-1211 |#2| |#1|)) "failed") (-757) (-757) (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|)) 26))) -(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2514 ((-3 (-401 (-1211 |#2| |#1|)) "failed") (-757) (-757) (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|))) (-15 -2514 ((-3 (-401 (-1211 |#2| |#1|)) "failed") (-757) (-757) (-1230 |#1| |#2| |#3|)))) (-357) (-1155) |#1|) (T -850)) -((-2514 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-757)) (-5 *4 (-1230 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1155)) (-14 *7 *5) (-5 *2 (-401 (-1211 *6 *5))) (-5 *1 (-850 *5 *6 *7)))) (-2514 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-757)) (-5 *4 (-1230 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1155)) (-14 *7 *5) (-5 *2 (-401 (-1211 *6 *5))) (-5 *1 (-850 *5 *6 *7))))) -(-10 -7 (-15 -2514 ((-3 (-401 (-1211 |#2| |#1|)) "failed") (-757) (-757) (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|))) (-15 -2514 ((-3 (-401 (-1211 |#2| |#1|)) "failed") (-757) (-757) (-1230 |#1| |#2| |#3|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-3365 (($ $ (-553)) 63)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-4257 (($ (-1151 (-553)) (-553)) 62)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-2220 (($ $) 65)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-2968 (((-757) $) 70)) (-1848 (((-111) $) 31)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2326 (((-553)) 67)) (-2420 (((-553) $) 66)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3089 (($ $ (-553)) 69)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-2989 (((-1135 (-553)) $) 71)) (-2980 (($ $) 68)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-4327 (((-553) $ (-553)) 64)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-851 |#1|) (-137) (-553)) (T -851)) -((-2989 (*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-5 *2 (-1135 (-553))))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-5 *2 (-757)))) (-3089 (*1 *1 *1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) (-2980 (*1 *1 *1) (-4 *1 (-851 *2))) (-2326 (*1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) (-2220 (*1 *1 *1) (-4 *1 (-851 *2))) (-4327 (*1 *2 *1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) (-4257 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *3 (-553)) (-4 *1 (-851 *4))))) -(-13 (-301) (-144) (-10 -8 (-15 -2989 ((-1135 (-553)) $)) (-15 -2968 ((-757) $)) (-15 -3089 ($ $ (-553))) (-15 -2980 ($ $)) (-15 -2326 ((-553))) (-15 -2420 ((-553) $)) (-15 -2220 ($ $)) (-15 -4327 ((-553) $ (-553))) (-15 -3365 ($ $ (-553))) (-15 -4257 ($ (-1151 (-553)) (-553))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-553)) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-4257 (($ (-1151 (-553)) (-553)) NIL)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2220 (($ $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2968 (((-757) $) NIL)) (-1848 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2326 (((-553)) NIL)) (-2420 (((-553) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3089 (($ $ (-553)) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2989 (((-1135 (-553)) $) NIL)) (-2980 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL)) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL)) (-4327 (((-553) $ (-553)) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL))) -(((-852 |#1|) (-851 |#1|) (-553)) (T -852)) -NIL -(-851 |#1|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-852 |#1|) $) NIL (|has| (-852 |#1|) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-852 |#1|) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-852 |#1|) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-852 |#1|) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-852 |#1|) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| (-852 |#1|) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-852 |#1|) (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| (-852 |#1|) (-1020 (-553))))) (-2707 (((-852 |#1|) $) NIL) (((-1155) $) NIL (|has| (-852 |#1|) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-852 |#1|) (-1020 (-553)))) (((-553) $) NIL (|has| (-852 |#1|) (-1020 (-553))))) (-4106 (($ $) NIL) (($ (-553) $) NIL)) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-852 |#1|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-852 |#1|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-852 |#1|))) (|:| |vec| (-1238 (-852 |#1|)))) (-674 $) (-1238 $)) NIL) (((-674 (-852 |#1|)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-852 |#1|) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| (-852 |#1|) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-852 |#1|) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-852 |#1|) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-852 |#1|) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| (-852 |#1|) (-1130)))) (-2797 (((-111) $) NIL (|has| (-852 |#1|) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-852 |#1|) (-833)))) (-1975 (($ $ $) NIL (|has| (-852 |#1|) (-833)))) (-1482 (($ (-1 (-852 |#1|) (-852 |#1|)) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-852 |#1|) (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-852 |#1|) (-301)))) (-2334 (((-852 |#1|) $) NIL (|has| (-852 |#1|) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-852 |#1|) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-852 |#1|) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-852 |#1|)) (-630 (-852 |#1|))) NIL (|has| (-852 |#1|) (-303 (-852 |#1|)))) (($ $ (-852 |#1|) (-852 |#1|)) NIL (|has| (-852 |#1|) (-303 (-852 |#1|)))) (($ $ (-288 (-852 |#1|))) NIL (|has| (-852 |#1|) (-303 (-852 |#1|)))) (($ $ (-630 (-288 (-852 |#1|)))) NIL (|has| (-852 |#1|) (-303 (-852 |#1|)))) (($ $ (-630 (-1155)) (-630 (-852 |#1|))) NIL (|has| (-852 |#1|) (-507 (-1155) (-852 |#1|)))) (($ $ (-1155) (-852 |#1|)) NIL (|has| (-852 |#1|) (-507 (-1155) (-852 |#1|))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-852 |#1|)) NIL (|has| (-852 |#1|) (-280 (-852 |#1|) (-852 |#1|))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| (-852 |#1|) (-228))) (($ $ (-757)) NIL (|has| (-852 |#1|) (-228))) (($ $ (-1155)) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-1 (-852 |#1|) (-852 |#1|)) (-757)) NIL) (($ $ (-1 (-852 |#1|) (-852 |#1|))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-852 |#1|) $) NIL)) (-1524 (((-874 (-553)) $) NIL (|has| (-852 |#1|) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-852 |#1|) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-852 |#1|) (-601 (-529)))) (((-373) $) NIL (|has| (-852 |#1|) (-1004))) (((-220) $) NIL (|has| (-852 |#1|) (-1004)))) (-1760 (((-171 (-401 (-553))) $) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-852 |#1|) (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL) (($ (-852 |#1|)) NIL) (($ (-1155)) NIL (|has| (-852 |#1|) (-1020 (-1155))))) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-852 |#1|) (-891))) (|has| (-852 |#1|) (-142))))) (-1999 (((-757)) NIL)) (-2582 (((-852 |#1|) $) NIL (|has| (-852 |#1|) (-538)))) (-1639 (((-111) $ $) NIL)) (-4327 (((-401 (-553)) $ (-553)) NIL)) (-3466 (($ $) NIL (|has| (-852 |#1|) (-806)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $) NIL (|has| (-852 |#1|) (-228))) (($ $ (-757)) NIL (|has| (-852 |#1|) (-228))) (($ $ (-1155)) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-852 |#1|) (-882 (-1155)))) (($ $ (-1 (-852 |#1|) (-852 |#1|)) (-757)) NIL) (($ $ (-1 (-852 |#1|) (-852 |#1|))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-852 |#1|) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-852 |#1|) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-852 |#1|) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-852 |#1|) (-833)))) (-1723 (($ $ $) NIL) (($ (-852 |#1|) (-852 |#1|)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-852 |#1|) $) NIL) (($ $ (-852 |#1|)) NIL))) -(((-853 |#1|) (-13 (-974 (-852 |#1|)) (-10 -8 (-15 -4327 ((-401 (-553)) $ (-553))) (-15 -1760 ((-171 (-401 (-553))) $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)))) (-553)) (T -853)) -((-4327 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-853 *4)) (-14 *4 *3) (-5 *3 (-553)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-553)))) (-5 *1 (-853 *3)) (-14 *3 (-553)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-853 *2)) (-14 *2 (-553)))) (-4106 (*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-853 *3)) (-14 *3 *2)))) -(-13 (-974 (-852 |#1|)) (-10 -8 (-15 -4327 ((-401 (-553)) $ (-553))) (-15 -1760 ((-171 (-401 (-553))) $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 ((|#2| $) NIL (|has| |#2| (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| |#2| (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (|has| |#2| (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553))))) (-2707 ((|#2| $) NIL) (((-1155) $) NIL (|has| |#2| (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-553)))) (((-553) $) NIL (|has| |#2| (-1020 (-553))))) (-4106 (($ $) 31) (($ (-553) $) 32)) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) 53)) (-3031 (($) NIL (|has| |#2| (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) NIL (|has| |#2| (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| |#2| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| |#2| (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 ((|#2| $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| |#2| (-1130)))) (-2797 (((-111) $) NIL (|has| |#2| (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| |#2| (-833)))) (-1975 (($ $ $) NIL (|has| |#2| (-833)))) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 49)) (-1945 (($) NIL (|has| |#2| (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| |#2| (-301)))) (-2334 ((|#2| $) NIL (|has| |#2| (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 |#2|) (-630 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-303 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ (-630 (-288 |#2|))) NIL (|has| |#2| (-303 |#2|))) (($ $ (-630 (-1155)) (-630 |#2|)) NIL (|has| |#2| (-507 (-1155) |#2|))) (($ $ (-1155) |#2|) NIL (|has| |#2| (-507 (-1155) |#2|)))) (-3384 (((-757) $) NIL)) (-2046 (($ $ |#2|) NIL (|has| |#2| (-280 |#2| |#2|)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) NIL (|has| |#2| (-228))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3161 (($ $) NIL)) (-3974 ((|#2| $) NIL)) (-1524 (((-874 (-553)) $) NIL (|has| |#2| (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| |#2| (-601 (-874 (-373))))) (((-529) $) NIL (|has| |#2| (-601 (-529)))) (((-373) $) NIL (|has| |#2| (-1004))) (((-220) $) NIL (|has| |#2| (-1004)))) (-1760 (((-171 (-401 (-553))) $) 68)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891))))) (-3110 (((-845) $) 87) (($ (-553)) 19) (($ $) NIL) (($ (-401 (-553))) 24) (($ |#2|) 18) (($ (-1155)) NIL (|has| |#2| (-1020 (-1155))))) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#2| (-142))))) (-1999 (((-757)) NIL)) (-2582 ((|#2| $) NIL (|has| |#2| (-538)))) (-1639 (((-111) $ $) NIL)) (-4327 (((-401 (-553)) $ (-553)) 60)) (-3466 (($ $) NIL (|has| |#2| (-806)))) (-1988 (($) 14 T CONST)) (-1997 (($) 16 T CONST)) (-1780 (($ $) NIL (|has| |#2| (-228))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1617 (((-111) $ $) 35)) (-1659 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1723 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1711 (($ $) 39) (($ $ $) 41)) (-1700 (($ $ $) 37)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) 50)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 42) (($ $ $) 44) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-854 |#1| |#2|) (-13 (-974 |#2|) (-10 -8 (-15 -4327 ((-401 (-553)) $ (-553))) (-15 -1760 ((-171 (-401 (-553))) $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)))) (-553) (-851 |#1|)) (T -854)) -((-4327 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-401 (-553))) (-5 *1 (-854 *4 *5)) (-5 *3 (-553)) (-4 *5 (-851 *4)))) (-1760 (*1 *2 *1) (-12 (-14 *3 (-553)) (-5 *2 (-171 (-401 (-553)))) (-5 *1 (-854 *3 *4)) (-4 *4 (-851 *3)))) (-4106 (*1 *1 *1) (-12 (-14 *2 (-553)) (-5 *1 (-854 *2 *3)) (-4 *3 (-851 *2)))) (-4106 (*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-14 *3 *2) (-5 *1 (-854 *3 *4)) (-4 *4 (-851 *3))))) -(-13 (-974 |#2|) (-10 -8 (-15 -4327 ((-401 (-553)) $ (-553))) (-15 -1760 ((-171 (-401 (-553))) $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)))) -((-3096 (((-111) $ $) NIL (-12 (|has| |#1| (-1079)) (|has| |#2| (-1079))))) (-2123 ((|#2| $) 12)) (-2772 (($ |#1| |#2|) 9)) (-1735 (((-1137) $) NIL (-12 (|has| |#1| (-1079)) (|has| |#2| (-1079))))) (-2786 (((-1099) $) NIL (-12 (|has| |#1| (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#1| $) 11)) (-3121 (($ |#1| |#2|) 10)) (-3110 (((-845) $) 18 (-3988 (-12 (|has| |#1| (-600 (-845))) (|has| |#2| (-600 (-845)))) (-12 (|has| |#1| (-1079)) (|has| |#2| (-1079)))))) (-1617 (((-111) $ $) 22 (-12 (|has| |#1| (-1079)) (|has| |#2| (-1079)))))) -(((-855 |#1| |#2|) (-13 (-1192) (-10 -8 (IF (|has| |#1| (-600 (-845))) (IF (|has| |#2| (-600 (-845))) (-6 (-600 (-845))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1079)) (IF (|has| |#2| (-1079)) (-6 (-1079)) |%noBranch|) |%noBranch|) (-15 -2772 ($ |#1| |#2|)) (-15 -3121 ($ |#1| |#2|)) (-15 -2603 (|#1| $)) (-15 -2123 (|#2| $)))) (-1192) (-1192)) (T -855)) -((-2772 (*1 *1 *2 *3) (-12 (-5 *1 (-855 *2 *3)) (-4 *2 (-1192)) (-4 *3 (-1192)))) (-3121 (*1 *1 *2 *3) (-12 (-5 *1 (-855 *2 *3)) (-4 *2 (-1192)) (-4 *3 (-1192)))) (-2603 (*1 *2 *1) (-12 (-4 *2 (-1192)) (-5 *1 (-855 *2 *3)) (-4 *3 (-1192)))) (-2123 (*1 *2 *1) (-12 (-4 *2 (-1192)) (-5 *1 (-855 *3 *2)) (-4 *3 (-1192))))) -(-13 (-1192) (-10 -8 (IF (|has| |#1| (-600 (-845))) (IF (|has| |#2| (-600 (-845))) (-6 (-600 (-845))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1079)) (IF (|has| |#2| (-1079)) (-6 (-1079)) |%noBranch|) |%noBranch|) (-15 -2772 ($ |#1| |#2|)) (-15 -3121 ($ |#1| |#2|)) (-15 -2603 (|#1| $)) (-15 -2123 (|#2| $)))) -((-3096 (((-111) $ $) NIL)) (-2311 (((-553) $) 15)) (-3501 (($ (-154)) 11)) (-2874 (($ (-154)) 12)) (-1735 (((-1137) $) NIL)) (-3478 (((-154) $) 13)) (-2786 (((-1099) $) NIL)) (-2026 (($ (-154)) 9)) (-4238 (($ (-154)) 8)) (-3110 (((-845) $) 23) (($ (-154)) 16)) (-1940 (($ (-154)) 10)) (-1617 (((-111) $ $) NIL))) -(((-856) (-13 (-1079) (-10 -8 (-15 -4238 ($ (-154))) (-15 -2026 ($ (-154))) (-15 -1940 ($ (-154))) (-15 -3501 ($ (-154))) (-15 -2874 ($ (-154))) (-15 -3478 ((-154) $)) (-15 -2311 ((-553) $)) (-15 -3110 ($ (-154)))))) (T -856)) -((-4238 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-856)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856))))) -(-13 (-1079) (-10 -8 (-15 -4238 ($ (-154))) (-15 -2026 ($ (-154))) (-15 -1940 ($ (-154))) (-15 -3501 ($ (-154))) (-15 -2874 ($ (-154))) (-15 -3478 ((-154) $)) (-15 -2311 ((-553) $)) (-15 -3110 ($ (-154))))) -((-3110 (((-310 (-553)) (-401 (-934 (-48)))) 23) (((-310 (-553)) (-934 (-48))) 18))) -(((-857) (-10 -7 (-15 -3110 ((-310 (-553)) (-934 (-48)))) (-15 -3110 ((-310 (-553)) (-401 (-934 (-48))))))) (T -857)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 (-48)))) (-5 *2 (-310 (-553))) (-5 *1 (-857)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-934 (-48))) (-5 *2 (-310 (-553))) (-5 *1 (-857))))) -(-10 -7 (-15 -3110 ((-310 (-553)) (-934 (-48)))) (-15 -3110 ((-310 (-553)) (-401 (-934 (-48)))))) -((-1482 (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)) 14))) -(((-858 |#1| |#2|) (-10 -7 (-15 -1482 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)))) (-1192) (-1192)) (T -858)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-859 *6)) (-5 *1 (-858 *5 *6))))) -(-10 -7 (-15 -1482 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)))) -((-1543 (($ |#1| |#1|) 8)) (-4135 ((|#1| $ (-757)) 10))) -(((-859 |#1|) (-10 -8 (-15 -1543 ($ |#1| |#1|)) (-15 -4135 (|#1| $ (-757)))) (-1192)) (T -859)) -((-4135 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-859 *2)) (-4 *2 (-1192)))) (-1543 (*1 *1 *2 *2) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1192))))) -(-10 -8 (-15 -1543 ($ |#1| |#1|)) (-15 -4135 (|#1| $ (-757)))) -((-1482 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 14))) -(((-860 |#1| |#2|) (-10 -7 (-15 -1482 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1192) (-1192)) (T -860)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))) -(-10 -7 (-15 -1482 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) -((-1543 (($ |#1| |#1| |#1|) 8)) (-4135 ((|#1| $ (-757)) 10))) -(((-861 |#1|) (-10 -8 (-15 -1543 ($ |#1| |#1| |#1|)) (-15 -4135 (|#1| $ (-757)))) (-1192)) (T -861)) -((-4135 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-861 *2)) (-4 *2 (-1192)))) (-1543 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1192))))) -(-10 -8 (-15 -1543 ($ |#1| |#1| |#1|)) (-15 -4135 (|#1| $ (-757)))) -((-3048 (((-630 (-1160)) (-1137)) 9))) -(((-862) (-10 -7 (-15 -3048 ((-630 (-1160)) (-1137))))) (T -862)) -((-3048 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-630 (-1160))) (-5 *1 (-862))))) -(-10 -7 (-15 -3048 ((-630 (-1160)) (-1137)))) -((-1482 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14))) -(((-863 |#1| |#2|) (-10 -7 (-15 -1482 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) (-1192) (-1192)) (T -863)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6))))) -(-10 -7 (-15 -1482 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) -((-3627 (($ |#1| |#1| |#1|) 8)) (-4135 ((|#1| $ (-757)) 10))) -(((-864 |#1|) (-10 -8 (-15 -3627 ($ |#1| |#1| |#1|)) (-15 -4135 (|#1| $ (-757)))) (-1192)) (T -864)) -((-4135 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-864 *2)) (-4 *2 (-1192)))) (-3627 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1192))))) -(-10 -8 (-15 -3627 ($ |#1| |#1| |#1|)) (-15 -4135 (|#1| $ (-757)))) -((-4347 (((-1135 (-630 (-553))) (-630 (-553)) (-1135 (-630 (-553)))) 32)) (-3029 (((-1135 (-630 (-553))) (-630 (-553)) (-630 (-553))) 28)) (-2091 (((-1135 (-630 (-553))) (-630 (-553))) 41) (((-1135 (-630 (-553))) (-630 (-553)) (-630 (-553))) 40)) (-1670 (((-1135 (-630 (-553))) (-553)) 42)) (-2907 (((-1135 (-630 (-553))) (-553) (-553)) 22) (((-1135 (-630 (-553))) (-553)) 16) (((-1135 (-630 (-553))) (-553) (-553) (-553)) 12)) (-3736 (((-1135 (-630 (-553))) (-1135 (-630 (-553)))) 26)) (-3199 (((-630 (-553)) (-630 (-553))) 25))) -(((-865) (-10 -7 (-15 -2907 ((-1135 (-630 (-553))) (-553) (-553) (-553))) (-15 -2907 ((-1135 (-630 (-553))) (-553))) (-15 -2907 ((-1135 (-630 (-553))) (-553) (-553))) (-15 -3199 ((-630 (-553)) (-630 (-553)))) (-15 -3736 ((-1135 (-630 (-553))) (-1135 (-630 (-553))))) (-15 -3029 ((-1135 (-630 (-553))) (-630 (-553)) (-630 (-553)))) (-15 -4347 ((-1135 (-630 (-553))) (-630 (-553)) (-1135 (-630 (-553))))) (-15 -2091 ((-1135 (-630 (-553))) (-630 (-553)) (-630 (-553)))) (-15 -2091 ((-1135 (-630 (-553))) (-630 (-553)))) (-15 -1670 ((-1135 (-630 (-553))) (-553))))) (T -865)) -((-1670 (*1 *2 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553)))) (-2091 (*1 *2 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-630 (-553))))) (-2091 (*1 *2 *3 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-630 (-553))))) (-4347 (*1 *2 *3 *2) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *3 (-630 (-553))) (-5 *1 (-865)))) (-3029 (*1 *2 *3 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-630 (-553))))) (-3736 (*1 *2 *2) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-865)))) (-2907 (*1 *2 *3 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553)))) (-2907 (*1 *2 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553)))) (-2907 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553))))) -(-10 -7 (-15 -2907 ((-1135 (-630 (-553))) (-553) (-553) (-553))) (-15 -2907 ((-1135 (-630 (-553))) (-553))) (-15 -2907 ((-1135 (-630 (-553))) (-553) (-553))) (-15 -3199 ((-630 (-553)) (-630 (-553)))) (-15 -3736 ((-1135 (-630 (-553))) (-1135 (-630 (-553))))) (-15 -3029 ((-1135 (-630 (-553))) (-630 (-553)) (-630 (-553)))) (-15 -4347 ((-1135 (-630 (-553))) (-630 (-553)) (-1135 (-630 (-553))))) (-15 -2091 ((-1135 (-630 (-553))) (-630 (-553)) (-630 (-553)))) (-15 -2091 ((-1135 (-630 (-553))) (-630 (-553)))) (-15 -1670 ((-1135 (-630 (-553))) (-553)))) -((-1524 (((-874 (-373)) $) 9 (|has| |#1| (-601 (-874 (-373))))) (((-874 (-553)) $) 8 (|has| |#1| (-601 (-874 (-553))))))) -(((-866 |#1|) (-137) (-1192)) (T -866)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-601 (-874 (-553)))) (-6 (-601 (-874 (-553)))) |%noBranch|) (IF (|has| |t#1| (-601 (-874 (-373)))) (-6 (-601 (-874 (-373)))) |%noBranch|))) -(((-601 (-874 (-373))) |has| |#1| (-601 (-874 (-373)))) ((-601 (-874 (-553))) |has| |#1| (-601 (-874 (-553))))) -((-3096 (((-111) $ $) NIL)) (-3202 (($) 14)) (-1603 (($ (-871 |#1| |#2|) (-871 |#1| |#3|)) 27)) (-2478 (((-871 |#1| |#3|) $) 16)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1916 (((-111) $) 22)) (-4140 (($) 19)) (-3110 (((-845) $) 30)) (-3900 (((-871 |#1| |#2|) $) 15)) (-1617 (((-111) $ $) 25))) -(((-867 |#1| |#2| |#3|) (-13 (-1079) (-10 -8 (-15 -1916 ((-111) $)) (-15 -4140 ($)) (-15 -3202 ($)) (-15 -1603 ($ (-871 |#1| |#2|) (-871 |#1| |#3|))) (-15 -3900 ((-871 |#1| |#2|) $)) (-15 -2478 ((-871 |#1| |#3|) $)))) (-1079) (-1079) (-651 |#2|)) (T -867)) -((-1916 (*1 *2 *1) (-12 (-4 *4 (-1079)) (-5 *2 (-111)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1079)) (-4 *5 (-651 *4)))) (-4140 (*1 *1) (-12 (-4 *3 (-1079)) (-5 *1 (-867 *2 *3 *4)) (-4 *2 (-1079)) (-4 *4 (-651 *3)))) (-3202 (*1 *1) (-12 (-4 *3 (-1079)) (-5 *1 (-867 *2 *3 *4)) (-4 *2 (-1079)) (-4 *4 (-651 *3)))) (-1603 (*1 *1 *2 *3) (-12 (-5 *2 (-871 *4 *5)) (-5 *3 (-871 *4 *6)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-651 *5)) (-5 *1 (-867 *4 *5 *6)))) (-3900 (*1 *2 *1) (-12 (-4 *4 (-1079)) (-5 *2 (-871 *3 *4)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1079)) (-4 *5 (-651 *4)))) (-2478 (*1 *2 *1) (-12 (-4 *4 (-1079)) (-5 *2 (-871 *3 *5)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1079)) (-4 *5 (-651 *4))))) -(-13 (-1079) (-10 -8 (-15 -1916 ((-111) $)) (-15 -4140 ($)) (-15 -3202 ($)) (-15 -1603 ($ (-871 |#1| |#2|) (-871 |#1| |#3|))) (-15 -3900 ((-871 |#1| |#2|) $)) (-15 -2478 ((-871 |#1| |#3|) $)))) -((-3096 (((-111) $ $) 7)) (-2059 (((-871 |#1| $) $ (-874 |#1|) (-871 |#1| $)) 13)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-868 |#1|) (-137) (-1079)) (T -868)) -((-2059 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-871 *4 *1)) (-5 *3 (-874 *4)) (-4 *1 (-868 *4)) (-4 *4 (-1079))))) -(-13 (-1079) (-10 -8 (-15 -2059 ((-871 |t#1| $) $ (-874 |t#1|) (-871 |t#1| $))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-1288 (((-111) (-630 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2102 (((-871 |#1| |#2|) |#2| |#3|) 43 (-12 (-2826 (|has| |#2| (-1020 (-1155)))) (-2826 (|has| |#2| (-1031))))) (((-630 (-288 (-934 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1031)) (-2826 (|has| |#2| (-1020 (-1155)))))) (((-630 (-288 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1020 (-1155)))) (((-867 |#1| |#2| (-630 |#2|)) (-630 |#2|) |#3|) 21))) -(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -1288 ((-111) |#2| |#3|)) (-15 -1288 ((-111) (-630 |#2|) |#3|)) (-15 -2102 ((-867 |#1| |#2| (-630 |#2|)) (-630 |#2|) |#3|)) (IF (|has| |#2| (-1020 (-1155))) (-15 -2102 ((-630 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1031)) (-15 -2102 ((-630 (-288 (-934 |#2|))) |#2| |#3|)) (-15 -2102 ((-871 |#1| |#2|) |#2| |#3|))))) (-1079) (-868 |#1|) (-601 (-874 |#1|))) (T -869)) -((-2102 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-5 *2 (-871 *5 *3)) (-5 *1 (-869 *5 *3 *4)) (-2826 (-4 *3 (-1020 (-1155)))) (-2826 (-4 *3 (-1031))) (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5))))) (-2102 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-5 *2 (-630 (-288 (-934 *3)))) (-5 *1 (-869 *5 *3 *4)) (-4 *3 (-1031)) (-2826 (-4 *3 (-1020 (-1155)))) (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5))))) (-2102 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-5 *2 (-630 (-288 *3))) (-5 *1 (-869 *5 *3 *4)) (-4 *3 (-1020 (-1155))) (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5))))) (-2102 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-4 *6 (-868 *5)) (-5 *2 (-867 *5 *6 (-630 *6))) (-5 *1 (-869 *5 *6 *4)) (-5 *3 (-630 *6)) (-4 *4 (-601 (-874 *5))))) (-1288 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6)) (-4 *6 (-868 *5)) (-4 *5 (-1079)) (-5 *2 (-111)) (-5 *1 (-869 *5 *6 *4)) (-4 *4 (-601 (-874 *5))))) (-1288 (*1 *2 *3 *4) (-12 (-4 *5 (-1079)) (-5 *2 (-111)) (-5 *1 (-869 *5 *3 *4)) (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5)))))) -(-10 -7 (-15 -1288 ((-111) |#2| |#3|)) (-15 -1288 ((-111) (-630 |#2|) |#3|)) (-15 -2102 ((-867 |#1| |#2| (-630 |#2|)) (-630 |#2|) |#3|)) (IF (|has| |#2| (-1020 (-1155))) (-15 -2102 ((-630 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1031)) (-15 -2102 ((-630 (-288 (-934 |#2|))) |#2| |#3|)) (-15 -2102 ((-871 |#1| |#2|) |#2| |#3|))))) -((-1482 (((-871 |#1| |#3|) (-1 |#3| |#2|) (-871 |#1| |#2|)) 22))) -(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -1482 ((-871 |#1| |#3|) (-1 |#3| |#2|) (-871 |#1| |#2|)))) (-1079) (-1079) (-1079)) (T -870)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-871 *5 *6)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-871 *5 *7)) (-5 *1 (-870 *5 *6 *7))))) -(-10 -7 (-15 -1482 ((-871 |#1| |#3|) (-1 |#3| |#2|) (-871 |#1| |#2|)))) -((-3096 (((-111) $ $) NIL)) (-3368 (($ $ $) 39)) (-2609 (((-3 (-111) "failed") $ (-874 |#1|)) 36)) (-3202 (($) 12)) (-1735 (((-1137) $) NIL)) (-1710 (($ (-874 |#1|) |#2| $) 20)) (-2786 (((-1099) $) NIL)) (-1812 (((-3 |#2| "failed") (-874 |#1|) $) 50)) (-1916 (((-111) $) 15)) (-4140 (($) 13)) (-3431 (((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 |#2|))) $) 25)) (-3121 (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 |#2|)))) 23)) (-3110 (((-845) $) 44)) (-4258 (($ (-874 |#1|) |#2| $ |#2|) 48)) (-1817 (($ (-874 |#1|) |#2| $) 47)) (-1617 (((-111) $ $) 41))) -(((-871 |#1| |#2|) (-13 (-1079) (-10 -8 (-15 -1916 ((-111) $)) (-15 -4140 ($)) (-15 -3202 ($)) (-15 -3368 ($ $ $)) (-15 -1812 ((-3 |#2| "failed") (-874 |#1|) $)) (-15 -1817 ($ (-874 |#1|) |#2| $)) (-15 -1710 ($ (-874 |#1|) |#2| $)) (-15 -4258 ($ (-874 |#1|) |#2| $ |#2|)) (-15 -3431 ((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 |#2|))) $)) (-15 -3121 ($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 |#2|))))) (-15 -2609 ((-3 (-111) "failed") $ (-874 |#1|))))) (-1079) (-1079)) (T -871)) -((-1916 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-4140 (*1 *1) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-3202 (*1 *1) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-3368 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-1812 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-4 *2 (-1079)) (-5 *1 (-871 *4 *2)))) (-1817 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-871 *4 *3)) (-4 *3 (-1079)))) (-1710 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-871 *4 *3)) (-4 *3 (-1079)))) (-4258 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-871 *4 *3)) (-4 *3 (-1079)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 *4)))) (-5 *1 (-871 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 *4)))) (-4 *4 (-1079)) (-5 *1 (-871 *3 *4)) (-4 *3 (-1079)))) (-2609 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-5 *2 (-111)) (-5 *1 (-871 *4 *5)) (-4 *5 (-1079))))) -(-13 (-1079) (-10 -8 (-15 -1916 ((-111) $)) (-15 -4140 ($)) (-15 -3202 ($)) (-15 -3368 ($ $ $)) (-15 -1812 ((-3 |#2| "failed") (-874 |#1|) $)) (-15 -1817 ($ (-874 |#1|) |#2| $)) (-15 -1710 ($ (-874 |#1|) |#2| $)) (-15 -4258 ($ (-874 |#1|) |#2| $ |#2|)) (-15 -3431 ((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 |#2|))) $)) (-15 -3121 ($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 |#2|))))) (-15 -2609 ((-3 (-111) "failed") $ (-874 |#1|))))) -((-3893 (((-874 |#1|) (-874 |#1|) (-630 (-1155)) (-1 (-111) (-630 |#2|))) 32) (((-874 |#1|) (-874 |#1|) (-630 (-1 (-111) |#2|))) 43) (((-874 |#1|) (-874 |#1|) (-1 (-111) |#2|)) 35)) (-2609 (((-111) (-630 |#2|) (-874 |#1|)) 40) (((-111) |#2| (-874 |#1|)) 36)) (-3927 (((-1 (-111) |#2|) (-874 |#1|)) 16)) (-1680 (((-630 |#2|) (-874 |#1|)) 24)) (-1367 (((-874 |#1|) (-874 |#1|) |#2|) 20))) -(((-872 |#1| |#2|) (-10 -7 (-15 -3893 ((-874 |#1|) (-874 |#1|) (-1 (-111) |#2|))) (-15 -3893 ((-874 |#1|) (-874 |#1|) (-630 (-1 (-111) |#2|)))) (-15 -3893 ((-874 |#1|) (-874 |#1|) (-630 (-1155)) (-1 (-111) (-630 |#2|)))) (-15 -3927 ((-1 (-111) |#2|) (-874 |#1|))) (-15 -2609 ((-111) |#2| (-874 |#1|))) (-15 -2609 ((-111) (-630 |#2|) (-874 |#1|))) (-15 -1367 ((-874 |#1|) (-874 |#1|) |#2|)) (-15 -1680 ((-630 |#2|) (-874 |#1|)))) (-1079) (-1192)) (T -872)) -((-1680 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-5 *2 (-630 *5)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1192)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1192)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-4 *6 (-1192)) (-5 *2 (-111)) (-5 *1 (-872 *5 *6)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-5 *2 (-111)) (-5 *1 (-872 *5 *3)) (-4 *3 (-1192)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1192)))) (-3893 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-874 *5)) (-5 *3 (-630 (-1155))) (-5 *4 (-1 (-111) (-630 *6))) (-4 *5 (-1079)) (-4 *6 (-1192)) (-5 *1 (-872 *5 *6)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *2 (-874 *4)) (-5 *3 (-630 (-1 (-111) *5))) (-4 *4 (-1079)) (-4 *5 (-1192)) (-5 *1 (-872 *4 *5)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *2 (-874 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1079)) (-4 *5 (-1192)) (-5 *1 (-872 *4 *5))))) -(-10 -7 (-15 -3893 ((-874 |#1|) (-874 |#1|) (-1 (-111) |#2|))) (-15 -3893 ((-874 |#1|) (-874 |#1|) (-630 (-1 (-111) |#2|)))) (-15 -3893 ((-874 |#1|) (-874 |#1|) (-630 (-1155)) (-1 (-111) (-630 |#2|)))) (-15 -3927 ((-1 (-111) |#2|) (-874 |#1|))) (-15 -2609 ((-111) |#2| (-874 |#1|))) (-15 -2609 ((-111) (-630 |#2|) (-874 |#1|))) (-15 -1367 ((-874 |#1|) (-874 |#1|) |#2|)) (-15 -1680 ((-630 |#2|) (-874 |#1|)))) -((-1482 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 19))) -(((-873 |#1| |#2|) (-10 -7 (-15 -1482 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1079) (-1079)) (T -873)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6))))) -(-10 -7 (-15 -1482 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) -((-3096 (((-111) $ $) NIL)) (-2988 (($ $ (-630 (-52))) 64)) (-3506 (((-630 $) $) 118)) (-1512 (((-2 (|:| |var| (-630 (-1155))) (|:| |pred| (-52))) $) 24)) (-3115 (((-111) $) 30)) (-3472 (($ $ (-630 (-1155)) (-52)) 25)) (-1861 (($ $ (-630 (-52))) 63)) (-1399 (((-3 |#1| "failed") $) 61) (((-3 (-1155) "failed") $) 140)) (-2707 ((|#1| $) 58) (((-1155) $) NIL)) (-3669 (($ $) 108)) (-3843 (((-111) $) 47)) (-3835 (((-630 (-52)) $) 45)) (-3147 (($ (-1155) (-111) (-111) (-111)) 65)) (-4170 (((-3 (-630 $) "failed") (-630 $)) 72)) (-4087 (((-111) $) 50)) (-1533 (((-111) $) 49)) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) 36)) (-3502 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1500 (((-3 (-2 (|:| |val| $) (|:| -2692 $)) "failed") $) 83)) (-2201 (((-3 (-630 $) "failed") $) 33)) (-3377 (((-3 (-630 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -1463 (-113)) (|:| |arg| (-630 $))) "failed") $) 95)) (-1380 (((-3 (-630 $) "failed") $) 37)) (-3107 (((-3 (-2 (|:| |val| $) (|:| -2692 (-757))) "failed") $) 40)) (-1886 (((-111) $) 29)) (-2786 (((-1099) $) NIL)) (-4137 (((-111) $) 21)) (-1632 (((-111) $) 46)) (-2252 (((-630 (-52)) $) 111)) (-2165 (((-111) $) 48)) (-2046 (($ (-113) (-630 $)) 92)) (-3090 (((-757) $) 28)) (-1508 (($ $) 62)) (-1524 (($ (-630 $)) 59)) (-3641 (((-111) $) 26)) (-3110 (((-845) $) 53) (($ |#1|) 18) (($ (-1155)) 66)) (-1367 (($ $ (-52)) 110)) (-1988 (($) 91 T CONST)) (-1997 (($) 73 T CONST)) (-1617 (((-111) $ $) 79)) (-1723 (($ $ $) 100)) (-1700 (($ $ $) 104)) (** (($ $ (-757)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-874 |#1|) (-13 (-1079) (-1020 |#1|) (-1020 (-1155)) (-10 -8 (-15 0 ($) -3879) (-15 1 ($) -3879) (-15 -2201 ((-3 (-630 $) "failed") $)) (-15 -2411 ((-3 (-630 $) "failed") $)) (-15 -3377 ((-3 (-630 $) "failed") $ (-113))) (-15 -3377 ((-3 (-2 (|:| -1463 (-113)) (|:| |arg| (-630 $))) "failed") $)) (-15 -3107 ((-3 (-2 (|:| |val| $) (|:| -2692 (-757))) "failed") $)) (-15 -3502 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1380 ((-3 (-630 $) "failed") $)) (-15 -1500 ((-3 (-2 (|:| |val| $) (|:| -2692 $)) "failed") $)) (-15 -2046 ($ (-113) (-630 $))) (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-757))) (-15 ** ($ $ $)) (-15 -1723 ($ $ $)) (-15 -3090 ((-757) $)) (-15 -1524 ($ (-630 $))) (-15 -1508 ($ $)) (-15 -1886 ((-111) $)) (-15 -3843 ((-111) $)) (-15 -3115 ((-111) $)) (-15 -3641 ((-111) $)) (-15 -2165 ((-111) $)) (-15 -1533 ((-111) $)) (-15 -4087 ((-111) $)) (-15 -1632 ((-111) $)) (-15 -3835 ((-630 (-52)) $)) (-15 -1861 ($ $ (-630 (-52)))) (-15 -2988 ($ $ (-630 (-52)))) (-15 -3147 ($ (-1155) (-111) (-111) (-111))) (-15 -3472 ($ $ (-630 (-1155)) (-52))) (-15 -1512 ((-2 (|:| |var| (-630 (-1155))) (|:| |pred| (-52))) $)) (-15 -4137 ((-111) $)) (-15 -3669 ($ $)) (-15 -1367 ($ $ (-52))) (-15 -2252 ((-630 (-52)) $)) (-15 -3506 ((-630 $) $)) (-15 -4170 ((-3 (-630 $) "failed") (-630 $))))) (-1079)) (T -874)) -((-1988 (*1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (-1997 (*1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (-2201 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-2411 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3377 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-630 (-874 *4))) (-5 *1 (-874 *4)) (-4 *4 (-1079)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1463 (-113)) (|:| |arg| (-630 (-874 *3))))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3107 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-874 *3)) (|:| -2692 (-757)))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3502 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-874 *3)) (|:| |den| (-874 *3)))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1380 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1500 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-874 *3)) (|:| -2692 (-874 *3)))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-2046 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-630 (-874 *4))) (-5 *1 (-874 *4)) (-4 *4 (-1079)))) (-1700 (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (-1723 (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3147 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-111)) (-5 *1 (-874 *4)) (-4 *4 (-1079)))) (-3472 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-52)) (-5 *1 (-874 *4)) (-4 *4 (-1079)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-630 (-1155))) (|:| |pred| (-52)))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3669 (*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) (-1367 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) (-4170 (*1 *2 *2) (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(-13 (-1079) (-1020 |#1|) (-1020 (-1155)) (-10 -8 (-15 (-1988) ($) -3879) (-15 (-1997) ($) -3879) (-15 -2201 ((-3 (-630 $) "failed") $)) (-15 -2411 ((-3 (-630 $) "failed") $)) (-15 -3377 ((-3 (-630 $) "failed") $ (-113))) (-15 -3377 ((-3 (-2 (|:| -1463 (-113)) (|:| |arg| (-630 $))) "failed") $)) (-15 -3107 ((-3 (-2 (|:| |val| $) (|:| -2692 (-757))) "failed") $)) (-15 -3502 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1380 ((-3 (-630 $) "failed") $)) (-15 -1500 ((-3 (-2 (|:| |val| $) (|:| -2692 $)) "failed") $)) (-15 -2046 ($ (-113) (-630 $))) (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-757))) (-15 ** ($ $ $)) (-15 -1723 ($ $ $)) (-15 -3090 ((-757) $)) (-15 -1524 ($ (-630 $))) (-15 -1508 ($ $)) (-15 -1886 ((-111) $)) (-15 -3843 ((-111) $)) (-15 -3115 ((-111) $)) (-15 -3641 ((-111) $)) (-15 -2165 ((-111) $)) (-15 -1533 ((-111) $)) (-15 -4087 ((-111) $)) (-15 -1632 ((-111) $)) (-15 -3835 ((-630 (-52)) $)) (-15 -1861 ($ $ (-630 (-52)))) (-15 -2988 ($ $ (-630 (-52)))) (-15 -3147 ($ (-1155) (-111) (-111) (-111))) (-15 -3472 ($ $ (-630 (-1155)) (-52))) (-15 -1512 ((-2 (|:| |var| (-630 (-1155))) (|:| |pred| (-52))) $)) (-15 -4137 ((-111) $)) (-15 -3669 ($ $)) (-15 -1367 ($ $ (-52))) (-15 -2252 ((-630 (-52)) $)) (-15 -3506 ((-630 $) $)) (-15 -4170 ((-3 (-630 $) "failed") (-630 $))))) -((-3096 (((-111) $ $) NIL)) (-2694 (((-630 |#1|) $) 16)) (-1514 (((-111) $) 38)) (-1399 (((-3 (-657 |#1|) "failed") $) 43)) (-2707 (((-657 |#1|) $) 41)) (-2616 (($ $) 18)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1899 (((-757) $) 46)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-657 |#1|) $) 17)) (-3110 (((-845) $) 37) (($ (-657 |#1|)) 21) (((-805 |#1|) $) 27) (($ |#1|) 20)) (-1997 (($) 8 T CONST)) (-1569 (((-630 (-657 |#1|)) $) 23)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 11)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 49))) -(((-875 |#1|) (-13 (-833) (-1020 (-657 |#1|)) (-10 -8 (-15 1 ($) -3879) (-15 -3110 ((-805 |#1|) $)) (-15 -3110 ($ |#1|)) (-15 -2603 ((-657 |#1|) $)) (-15 -1899 ((-757) $)) (-15 -1569 ((-630 (-657 |#1|)) $)) (-15 -2616 ($ $)) (-15 -1514 ((-111) $)) (-15 -2694 ((-630 |#1|) $)))) (-833)) (T -875)) -((-1997 (*1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-833)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-805 *3)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) (-3110 (*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-833)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-630 (-657 *3))) (-5 *1 (-875 *3)) (-4 *3 (-833)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-833)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-875 *3)) (-4 *3 (-833))))) -(-13 (-833) (-1020 (-657 |#1|)) (-10 -8 (-15 (-1997) ($) -3879) (-15 -3110 ((-805 |#1|) $)) (-15 -3110 ($ |#1|)) (-15 -2603 ((-657 |#1|) $)) (-15 -1899 ((-757) $)) (-15 -1569 ((-630 (-657 |#1|)) $)) (-15 -2616 ($ $)) (-15 -1514 ((-111) $)) (-15 -2694 ((-630 |#1|) $)))) -((-1604 ((|#1| |#1| |#1|) 19))) -(((-876 |#1| |#2|) (-10 -7 (-15 -1604 (|#1| |#1| |#1|))) (-1214 |#2|) (-1031)) (T -876)) -((-1604 (*1 *2 *2 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-876 *2 *3)) (-4 *2 (-1214 *3))))) -(-10 -7 (-15 -1604 (|#1| |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-1309 (((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 14)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-2018 (((-1017) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 13)) (-1617 (((-111) $ $) 6))) -(((-877) (-137)) (T -877)) -((-1309 (*1 *2 *3 *4) (-12 (-4 *1 (-877)) (-5 *3 (-1043)) (-5 *4 (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) (-2018 (*1 *2 *3) (-12 (-4 *1 (-877)) (-5 *3 (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) (-5 *2 (-1017))))) -(-13 (-1079) (-10 -7 (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| |explanations| (-1137))) (-1043) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))))) (-15 -2018 ((-1017) (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3389 ((|#1| |#1| (-757)) 24)) (-3183 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2075 (((-3 (-2 (|:| -3313 |#1|) (|:| -3323 |#1|)) "failed") |#1| (-757) (-757)) 27) (((-630 |#1|) |#1|) 29))) -(((-878 |#1| |#2|) (-10 -7 (-15 -2075 ((-630 |#1|) |#1|)) (-15 -2075 ((-3 (-2 (|:| -3313 |#1|) (|:| -3323 |#1|)) "failed") |#1| (-757) (-757))) (-15 -3183 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3389 (|#1| |#1| (-757)))) (-1214 |#2|) (-357)) (T -878)) -((-3389 (*1 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-357)) (-5 *1 (-878 *2 *4)) (-4 *2 (-1214 *4)))) (-3183 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-878 *2 *3)) (-4 *2 (-1214 *3)))) (-2075 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-757)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -3313 *3) (|:| -3323 *3))) (-5 *1 (-878 *3 *5)) (-4 *3 (-1214 *5)))) (-2075 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-630 *3)) (-5 *1 (-878 *3 *4)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -2075 ((-630 |#1|) |#1|)) (-15 -2075 ((-3 (-2 (|:| -3313 |#1|) (|:| -3323 |#1|)) "failed") |#1| (-757) (-757))) (-15 -3183 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3389 (|#1| |#1| (-757)))) -((-1638 (((-1017) (-373) (-373) (-373) (-373) (-757) (-757) (-630 (-310 (-373))) (-630 (-630 (-310 (-373)))) (-1137)) 96) (((-1017) (-373) (-373) (-373) (-373) (-757) (-757) (-630 (-310 (-373))) (-630 (-630 (-310 (-373)))) (-1137) (-220)) 91) (((-1017) (-880) (-1043)) 83) (((-1017) (-880)) 84)) (-1309 (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-880) (-1043)) 59) (((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-880)) 61))) -(((-879) (-10 -7 (-15 -1638 ((-1017) (-880))) (-15 -1638 ((-1017) (-880) (-1043))) (-15 -1638 ((-1017) (-373) (-373) (-373) (-373) (-757) (-757) (-630 (-310 (-373))) (-630 (-630 (-310 (-373)))) (-1137) (-220))) (-15 -1638 ((-1017) (-373) (-373) (-373) (-373) (-757) (-757) (-630 (-310 (-373))) (-630 (-630 (-310 (-373)))) (-1137))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-880))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-880) (-1043))))) (T -879)) -((-1309 (*1 *2 *3 *4) (-12 (-5 *3 (-880)) (-5 *4 (-1043)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *1 (-879)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137))))) (-5 *1 (-879)))) (-1638 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-757)) (-5 *6 (-630 (-630 (-310 *3)))) (-5 *7 (-1137)) (-5 *5 (-630 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1017)) (-5 *1 (-879)))) (-1638 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-757)) (-5 *6 (-630 (-630 (-310 *3)))) (-5 *7 (-1137)) (-5 *8 (-220)) (-5 *5 (-630 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1017)) (-5 *1 (-879)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-880)) (-5 *4 (-1043)) (-5 *2 (-1017)) (-5 *1 (-879)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1017)) (-5 *1 (-879))))) -(-10 -7 (-15 -1638 ((-1017) (-880))) (-15 -1638 ((-1017) (-880) (-1043))) (-15 -1638 ((-1017) (-373) (-373) (-373) (-373) (-757) (-757) (-630 (-310 (-373))) (-630 (-630 (-310 (-373)))) (-1137) (-220))) (-15 -1638 ((-1017) (-373) (-373) (-373) (-373) (-757) (-757) (-630 (-310 (-373))) (-630 (-630 (-310 (-373)))) (-1137))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-880))) (-15 -1309 ((-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) (|:| |explanations| (-630 (-1137)))) (-880) (-1043)))) -((-3096 (((-111) $ $) NIL)) (-2707 (((-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))) $) 19)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 21) (($ (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) 18)) (-1617 (((-111) $ $) NIL))) -(((-880) (-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))))) (-15 -2707 ((-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))) $))))) (T -880)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) (-5 *1 (-880)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220)))) (-5 *1 (-880))))) -(-13 (-1079) (-10 -8 (-15 -3110 ($ (-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))))) (-15 -2707 ((-2 (|:| |pde| (-630 (-310 (-220)))) (|:| |constraints| (-630 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-757)) (|:| |boundaryType| (-553)) (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) (|:| |tol| (-220))) $)))) -((-1330 (($ $ |#2|) NIL) (($ $ (-630 |#2|)) 10) (($ $ |#2| (-757)) 12) (($ $ (-630 |#2|) (-630 (-757))) 15)) (-1780 (($ $ |#2|) 16) (($ $ (-630 |#2|)) 18) (($ $ |#2| (-757)) 19) (($ $ (-630 |#2|) (-630 (-757))) 21))) -(((-881 |#1| |#2|) (-10 -8 (-15 -1780 (|#1| |#1| (-630 |#2|) (-630 (-757)))) (-15 -1780 (|#1| |#1| |#2| (-757))) (-15 -1780 (|#1| |#1| (-630 |#2|))) (-15 -1780 (|#1| |#1| |#2|)) (-15 -1330 (|#1| |#1| (-630 |#2|) (-630 (-757)))) (-15 -1330 (|#1| |#1| |#2| (-757))) (-15 -1330 (|#1| |#1| (-630 |#2|))) (-15 -1330 (|#1| |#1| |#2|))) (-882 |#2|) (-1079)) (T -881)) -NIL -(-10 -8 (-15 -1780 (|#1| |#1| (-630 |#2|) (-630 (-757)))) (-15 -1780 (|#1| |#1| |#2| (-757))) (-15 -1780 (|#1| |#1| (-630 |#2|))) (-15 -1780 (|#1| |#1| |#2|)) (-15 -1330 (|#1| |#1| (-630 |#2|) (-630 (-757)))) (-15 -1330 (|#1| |#1| |#2| (-757))) (-15 -1330 (|#1| |#1| (-630 |#2|))) (-15 -1330 (|#1| |#1| |#2|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1330 (($ $ |#1|) 42) (($ $ (-630 |#1|)) 41) (($ $ |#1| (-757)) 40) (($ $ (-630 |#1|) (-630 (-757))) 39)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ |#1|) 38) (($ $ (-630 |#1|)) 37) (($ $ |#1| (-757)) 36) (($ $ (-630 |#1|) (-630 (-757))) 35)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-882 |#1|) (-137) (-1079)) (T -882)) -((-1330 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1079)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *1 (-882 *3)) (-4 *3 (-1079)))) (-1330 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-882 *2)) (-4 *2 (-1079)))) (-1330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 (-757))) (-4 *1 (-882 *4)) (-4 *4 (-1079)))) (-1780 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1079)))) (-1780 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *1 (-882 *3)) (-4 *3 (-1079)))) (-1780 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-882 *2)) (-4 *2 (-1079)))) (-1780 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 (-757))) (-4 *1 (-882 *4)) (-4 *4 (-1079))))) -(-13 (-1031) (-10 -8 (-15 -1330 ($ $ |t#1|)) (-15 -1330 ($ $ (-630 |t#1|))) (-15 -1330 ($ $ |t#1| (-757))) (-15 -1330 ($ $ (-630 |t#1|) (-630 (-757)))) (-15 -1780 ($ $ |t#1|)) (-15 -1780 ($ $ (-630 |t#1|))) (-15 -1780 ($ $ |t#1| (-757))) (-15 -1780 ($ $ (-630 |t#1|) (-630 (-757)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) 26)) (-1511 (((-111) $ (-757)) NIL)) (-2884 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-1562 (($ $ $) NIL (|has| $ (-6 -4370)))) (-2635 (($ $ $) NIL (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) (($ $ "left" $) NIL (|has| $ (-6 -4370))) (($ $ "right" $) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-3323 (($ $) 25)) (-2133 (($ |#1|) 12) (($ $ $) 17)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-3313 (($ $) 23)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) 20)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3558 (((-553) $ $) NIL)) (-1510 (((-111) $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1178 |#1|) $) 9) (((-845) $) 29 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 21 (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-883 |#1|) (-13 (-118 |#1|) (-600 (-1178 |#1|)) (-10 -8 (-15 -2133 ($ |#1|)) (-15 -2133 ($ $ $)))) (-1079)) (T -883)) -((-2133 (*1 *1 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1079)))) (-2133 (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1079))))) -(-13 (-118 |#1|) (-600 (-1178 |#1|)) (-10 -8 (-15 -2133 ($ |#1|)) (-15 -2133 ($ $ $)))) -((-2280 ((|#2| (-1121 |#1| |#2|)) 41))) -(((-884 |#1| |#2|) (-10 -7 (-15 -2280 (|#2| (-1121 |#1| |#2|)))) (-903) (-13 (-1031) (-10 -7 (-6 (-4371 "*"))))) (T -884)) -((-2280 (*1 *2 *3) (-12 (-5 *3 (-1121 *4 *2)) (-14 *4 (-903)) (-4 *2 (-13 (-1031) (-10 -7 (-6 (-4371 "*"))))) (-5 *1 (-884 *4 *2))))) -(-10 -7 (-15 -2280 (|#2| (-1121 |#1| |#2|)))) -((-3096 (((-111) $ $) 7)) (-3820 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 15)) (-4142 (((-1081 |#1|) $ |#1|) 32)) (-1848 (((-111) $) 17)) (-1824 (($ $ $) 30 (-3988 (|has| |#1| (-833)) (|has| |#1| (-362))))) (-1975 (($ $ $) 29 (-3988 (|has| |#1| (-833)) (|has| |#1| (-362))))) (-1735 (((-1137) $) 9)) (-3610 (($ $) 24)) (-2786 (((-1099) $) 10)) (-2356 ((|#1| $ |#1|) 34)) (-2046 ((|#1| $ |#1|) 33)) (-3127 (($ (-630 (-630 |#1|))) 35)) (-1292 (($ (-630 |#1|)) 36)) (-3199 (($ $ $) 21)) (-1957 (($ $ $) 20)) (-3110 (((-845) $) 11)) (-1997 (($) 19 T CONST)) (-1669 (((-111) $ $) 27 (-3988 (|has| |#1| (-833)) (|has| |#1| (-362))))) (-1648 (((-111) $ $) 26 (-3988 (|has| |#1| (-833)) (|has| |#1| (-362))))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 28 (-3988 (|has| |#1| (-833)) (|has| |#1| (-362))))) (-1636 (((-111) $ $) 31)) (-1723 (($ $ $) 23)) (** (($ $ (-903)) 13) (($ $ (-757)) 16) (($ $ (-553)) 22)) (* (($ $ $) 14))) -(((-885 |#1|) (-137) (-1079)) (T -885)) -((-1292 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-885 *3)))) (-3127 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-4 *1 (-885 *3)))) (-2356 (*1 *2 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1079)))) (-2046 (*1 *2 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1079)))) (-4142 (*1 *2 *1 *3) (-12 (-4 *1 (-885 *3)) (-4 *3 (-1079)) (-5 *2 (-1081 *3)))) (-1636 (*1 *2 *1 *1) (-12 (-4 *1 (-885 *3)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(-13 (-466) (-10 -8 (-15 -1292 ($ (-630 |t#1|))) (-15 -3127 ($ (-630 (-630 |t#1|)))) (-15 -2356 (|t#1| $ |t#1|)) (-15 -2046 (|t#1| $ |t#1|)) (-15 -4142 ((-1081 |t#1|) $ |t#1|)) (-15 -1636 ((-111) $ $)) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-833)) |%noBranch|))) -(((-101) . T) ((-600 (-845)) . T) ((-466) . T) ((-712) . T) ((-833) -3988 (|has| |#1| (-833)) (|has| |#1| (-362))) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3316 (((-630 (-630 (-757))) $) 108)) (-3112 (((-630 (-757)) (-887 |#1|) $) 130)) (-1951 (((-630 (-757)) (-887 |#1|) $) 131)) (-3997 (((-630 (-887 |#1|)) $) 98)) (-3031 (((-887 |#1|) $ (-553)) 103) (((-887 |#1|) $) 104)) (-3416 (($ (-630 (-887 |#1|))) 110)) (-2968 (((-757) $) 105)) (-2100 (((-1081 (-1081 |#1|)) $) 128)) (-4142 (((-1081 |#1|) $ |#1|) 121) (((-1081 (-1081 |#1|)) $ (-1081 |#1|)) 139) (((-1081 (-630 |#1|)) $ (-630 |#1|)) 142)) (-3712 (((-1081 |#1|) $) 101)) (-1832 (((-111) (-887 |#1|) $) 92)) (-1735 (((-1137) $) NIL)) (-4133 (((-1243) $) 95) (((-1243) $ (-553) (-553)) 143)) (-2786 (((-1099) $) NIL)) (-2953 (((-630 (-887 |#1|)) $) 96)) (-2046 (((-887 |#1|) $ (-757)) 99)) (-3872 (((-757) $) 106)) (-3110 (((-845) $) 119) (((-630 (-887 |#1|)) $) 23) (($ (-630 (-887 |#1|))) 109)) (-2959 (((-630 |#1|) $) 107)) (-1617 (((-111) $ $) 136)) (-1659 (((-111) $ $) 134)) (-1636 (((-111) $ $) 133))) -(((-886 |#1|) (-13 (-1079) (-10 -8 (-15 -3110 ((-630 (-887 |#1|)) $)) (-15 -2953 ((-630 (-887 |#1|)) $)) (-15 -2046 ((-887 |#1|) $ (-757))) (-15 -3031 ((-887 |#1|) $ (-553))) (-15 -3031 ((-887 |#1|) $)) (-15 -2968 ((-757) $)) (-15 -3872 ((-757) $)) (-15 -2959 ((-630 |#1|) $)) (-15 -3997 ((-630 (-887 |#1|)) $)) (-15 -3316 ((-630 (-630 (-757))) $)) (-15 -3110 ($ (-630 (-887 |#1|)))) (-15 -3416 ($ (-630 (-887 |#1|)))) (-15 -4142 ((-1081 |#1|) $ |#1|)) (-15 -2100 ((-1081 (-1081 |#1|)) $)) (-15 -4142 ((-1081 (-1081 |#1|)) $ (-1081 |#1|))) (-15 -4142 ((-1081 (-630 |#1|)) $ (-630 |#1|))) (-15 -1832 ((-111) (-887 |#1|) $)) (-15 -3112 ((-630 (-757)) (-887 |#1|) $)) (-15 -1951 ((-630 (-757)) (-887 |#1|) $)) (-15 -3712 ((-1081 |#1|) $)) (-15 -1636 ((-111) $ $)) (-15 -1659 ((-111) $ $)) (-15 -4133 ((-1243) $)) (-15 -4133 ((-1243) $ (-553) (-553))))) (-1079)) (T -886)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *2 (-887 *4)) (-5 *1 (-886 *4)) (-4 *4 (-1079)))) (-3031 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-887 *4)) (-5 *1 (-886 *4)) (-4 *4 (-1079)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-887 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-757)))) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-887 *3))) (-4 *3 (-1079)) (-5 *1 (-886 *3)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-630 (-887 *3))) (-4 *3 (-1079)) (-5 *1 (-886 *3)))) (-4142 (*1 *2 *1 *3) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-1081 (-1081 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-4142 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-1081 (-1081 *4))) (-5 *1 (-886 *4)) (-5 *3 (-1081 *4)))) (-4142 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-1081 (-630 *4))) (-5 *1 (-886 *4)) (-5 *3 (-630 *4)))) (-1832 (*1 *2 *3 *1) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1079)) (-5 *2 (-111)) (-5 *1 (-886 *4)))) (-3112 (*1 *2 *3 *1) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1079)) (-5 *2 (-630 (-757))) (-5 *1 (-886 *4)))) (-1951 (*1 *2 *3 *1) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1079)) (-5 *2 (-630 (-757))) (-5 *1 (-886 *4)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-1636 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-1659 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) (-4133 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-886 *4)) (-4 *4 (-1079))))) -(-13 (-1079) (-10 -8 (-15 -3110 ((-630 (-887 |#1|)) $)) (-15 -2953 ((-630 (-887 |#1|)) $)) (-15 -2046 ((-887 |#1|) $ (-757))) (-15 -3031 ((-887 |#1|) $ (-553))) (-15 -3031 ((-887 |#1|) $)) (-15 -2968 ((-757) $)) (-15 -3872 ((-757) $)) (-15 -2959 ((-630 |#1|) $)) (-15 -3997 ((-630 (-887 |#1|)) $)) (-15 -3316 ((-630 (-630 (-757))) $)) (-15 -3110 ($ (-630 (-887 |#1|)))) (-15 -3416 ($ (-630 (-887 |#1|)))) (-15 -4142 ((-1081 |#1|) $ |#1|)) (-15 -2100 ((-1081 (-1081 |#1|)) $)) (-15 -4142 ((-1081 (-1081 |#1|)) $ (-1081 |#1|))) (-15 -4142 ((-1081 (-630 |#1|)) $ (-630 |#1|))) (-15 -1832 ((-111) (-887 |#1|) $)) (-15 -3112 ((-630 (-757)) (-887 |#1|) $)) (-15 -1951 ((-630 (-757)) (-887 |#1|) $)) (-15 -3712 ((-1081 |#1|) $)) (-15 -1636 ((-111) $ $)) (-15 -1659 ((-111) $ $)) (-15 -4133 ((-1243) $)) (-15 -4133 ((-1243) $ (-553) (-553))))) -((-3096 (((-111) $ $) NIL)) (-2990 (((-630 $) (-630 $)) 77)) (-2125 (((-553) $) 60)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-2968 (((-757) $) 58)) (-4142 (((-1081 |#1|) $ |#1|) 49)) (-1848 (((-111) $) NIL)) (-1850 (((-111) $) 63)) (-4088 (((-757) $) 61)) (-3712 (((-1081 |#1|) $) 42)) (-1824 (($ $ $) NIL (-3988 (|has| |#1| (-362)) (|has| |#1| (-833))))) (-1975 (($ $ $) NIL (-3988 (|has| |#1| (-362)) (|has| |#1| (-833))))) (-3892 (((-2 (|:| |preimage| (-630 |#1|)) (|:| |image| (-630 |#1|))) $) 37)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 93)) (-2786 (((-1099) $) NIL)) (-2777 (((-1081 |#1|) $) 100 (|has| |#1| (-362)))) (-3781 (((-111) $) 59)) (-2356 ((|#1| $ |#1|) 47)) (-2046 ((|#1| $ |#1|) 94)) (-3872 (((-757) $) 44)) (-3127 (($ (-630 (-630 |#1|))) 85)) (-4279 (((-953) $) 53)) (-1292 (($ (-630 |#1|)) 21)) (-3199 (($ $ $) NIL)) (-1957 (($ $ $) NIL)) (-2008 (($ (-630 (-630 |#1|))) 39)) (-2974 (($ (-630 (-630 |#1|))) 88)) (-1830 (($ (-630 |#1|)) 96)) (-3110 (((-845) $) 84) (($ (-630 (-630 |#1|))) 66) (($ (-630 |#1|)) 67)) (-1997 (($) 16 T CONST)) (-1669 (((-111) $ $) NIL (-3988 (|has| |#1| (-362)) (|has| |#1| (-833))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#1| (-362)) (|has| |#1| (-833))))) (-1617 (((-111) $ $) 45)) (-1659 (((-111) $ $) NIL (-3988 (|has| |#1| (-362)) (|has| |#1| (-833))))) (-1636 (((-111) $ $) 65)) (-1723 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ $ $) 22))) -(((-887 |#1|) (-13 (-885 |#1|) (-10 -8 (-15 -3892 ((-2 (|:| |preimage| (-630 |#1|)) (|:| |image| (-630 |#1|))) $)) (-15 -2008 ($ (-630 (-630 |#1|)))) (-15 -3110 ($ (-630 (-630 |#1|)))) (-15 -3110 ($ (-630 |#1|))) (-15 -2974 ($ (-630 (-630 |#1|)))) (-15 -3872 ((-757) $)) (-15 -3712 ((-1081 |#1|) $)) (-15 -4279 ((-953) $)) (-15 -2968 ((-757) $)) (-15 -4088 ((-757) $)) (-15 -2125 ((-553) $)) (-15 -3781 ((-111) $)) (-15 -1850 ((-111) $)) (-15 -2990 ((-630 $) (-630 $))) (IF (|has| |#1| (-362)) (-15 -2777 ((-1081 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-538)) (-15 -1830 ($ (-630 |#1|))) (IF (|has| |#1| (-362)) (-15 -1830 ($ (-630 |#1|))) |%noBranch|)))) (-1079)) (T -887)) -((-3892 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-630 *3)) (|:| |image| (-630 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-887 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-887 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-887 *3)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-887 *3)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-953)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-2990 (*1 *2 *2) (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-887 *3)) (-4 *3 (-362)) (-4 *3 (-1079)))) (-1830 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-887 *3))))) -(-13 (-885 |#1|) (-10 -8 (-15 -3892 ((-2 (|:| |preimage| (-630 |#1|)) (|:| |image| (-630 |#1|))) $)) (-15 -2008 ($ (-630 (-630 |#1|)))) (-15 -3110 ($ (-630 (-630 |#1|)))) (-15 -3110 ($ (-630 |#1|))) (-15 -2974 ($ (-630 (-630 |#1|)))) (-15 -3872 ((-757) $)) (-15 -3712 ((-1081 |#1|) $)) (-15 -4279 ((-953) $)) (-15 -2968 ((-757) $)) (-15 -4088 ((-757) $)) (-15 -2125 ((-553) $)) (-15 -3781 ((-111) $)) (-15 -1850 ((-111) $)) (-15 -2990 ((-630 $) (-630 $))) (IF (|has| |#1| (-362)) (-15 -2777 ((-1081 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-538)) (-15 -1830 ($ (-630 |#1|))) (IF (|has| |#1| (-362)) (-15 -1830 ($ (-630 |#1|))) |%noBranch|)))) -((-4157 (((-3 (-630 (-1151 |#4|)) "failed") (-630 (-1151 |#4|)) (-1151 |#4|)) 128)) (-2584 ((|#1|) 77)) (-3059 (((-412 (-1151 |#4|)) (-1151 |#4|)) 137)) (-2307 (((-412 (-1151 |#4|)) (-630 |#3|) (-1151 |#4|)) 69)) (-4190 (((-412 (-1151 |#4|)) (-1151 |#4|)) 147)) (-2844 (((-3 (-630 (-1151 |#4|)) "failed") (-630 (-1151 |#4|)) (-1151 |#4|) |#3|) 92))) -(((-888 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4157 ((-3 (-630 (-1151 |#4|)) "failed") (-630 (-1151 |#4|)) (-1151 |#4|))) (-15 -4190 ((-412 (-1151 |#4|)) (-1151 |#4|))) (-15 -3059 ((-412 (-1151 |#4|)) (-1151 |#4|))) (-15 -2584 (|#1|)) (-15 -2844 ((-3 (-630 (-1151 |#4|)) "failed") (-630 (-1151 |#4|)) (-1151 |#4|) |#3|)) (-15 -2307 ((-412 (-1151 |#4|)) (-630 |#3|) (-1151 |#4|)))) (-891) (-779) (-833) (-931 |#1| |#2| |#3|)) (T -888)) -((-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *7)) (-4 *7 (-833)) (-4 *5 (-891)) (-4 *6 (-779)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-412 (-1151 *8))) (-5 *1 (-888 *5 *6 *7 *8)) (-5 *4 (-1151 *8)))) (-2844 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-630 (-1151 *7))) (-5 *3 (-1151 *7)) (-4 *7 (-931 *5 *6 *4)) (-4 *5 (-891)) (-4 *6 (-779)) (-4 *4 (-833)) (-5 *1 (-888 *5 *6 *4 *7)))) (-2584 (*1 *2) (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-891)) (-5 *1 (-888 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-891)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-412 (-1151 *7))) (-5 *1 (-888 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) (-4190 (*1 *2 *3) (-12 (-4 *4 (-891)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-412 (-1151 *7))) (-5 *1 (-888 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) (-4157 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-1151 *7))) (-5 *3 (-1151 *7)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-891)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-888 *4 *5 *6 *7))))) -(-10 -7 (-15 -4157 ((-3 (-630 (-1151 |#4|)) "failed") (-630 (-1151 |#4|)) (-1151 |#4|))) (-15 -4190 ((-412 (-1151 |#4|)) (-1151 |#4|))) (-15 -3059 ((-412 (-1151 |#4|)) (-1151 |#4|))) (-15 -2584 (|#1|)) (-15 -2844 ((-3 (-630 (-1151 |#4|)) "failed") (-630 (-1151 |#4|)) (-1151 |#4|) |#3|)) (-15 -2307 ((-412 (-1151 |#4|)) (-630 |#3|) (-1151 |#4|)))) -((-4157 (((-3 (-630 (-1151 |#2|)) "failed") (-630 (-1151 |#2|)) (-1151 |#2|)) 36)) (-2584 ((|#1|) 54)) (-3059 (((-412 (-1151 |#2|)) (-1151 |#2|)) 102)) (-2307 (((-412 (-1151 |#2|)) (-1151 |#2|)) 90)) (-4190 (((-412 (-1151 |#2|)) (-1151 |#2|)) 113))) -(((-889 |#1| |#2|) (-10 -7 (-15 -4157 ((-3 (-630 (-1151 |#2|)) "failed") (-630 (-1151 |#2|)) (-1151 |#2|))) (-15 -4190 ((-412 (-1151 |#2|)) (-1151 |#2|))) (-15 -3059 ((-412 (-1151 |#2|)) (-1151 |#2|))) (-15 -2584 (|#1|)) (-15 -2307 ((-412 (-1151 |#2|)) (-1151 |#2|)))) (-891) (-1214 |#1|)) (T -889)) -((-2307 (*1 *2 *3) (-12 (-4 *4 (-891)) (-4 *5 (-1214 *4)) (-5 *2 (-412 (-1151 *5))) (-5 *1 (-889 *4 *5)) (-5 *3 (-1151 *5)))) (-2584 (*1 *2) (-12 (-4 *2 (-891)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1214 *2)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-891)) (-4 *5 (-1214 *4)) (-5 *2 (-412 (-1151 *5))) (-5 *1 (-889 *4 *5)) (-5 *3 (-1151 *5)))) (-4190 (*1 *2 *3) (-12 (-4 *4 (-891)) (-4 *5 (-1214 *4)) (-5 *2 (-412 (-1151 *5))) (-5 *1 (-889 *4 *5)) (-5 *3 (-1151 *5)))) (-4157 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-1151 *5))) (-5 *3 (-1151 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-891)) (-5 *1 (-889 *4 *5))))) -(-10 -7 (-15 -4157 ((-3 (-630 (-1151 |#2|)) "failed") (-630 (-1151 |#2|)) (-1151 |#2|))) (-15 -4190 ((-412 (-1151 |#2|)) (-1151 |#2|))) (-15 -3059 ((-412 (-1151 |#2|)) (-1151 |#2|))) (-15 -2584 (|#1|)) (-15 -2307 ((-412 (-1151 |#2|)) (-1151 |#2|)))) -((-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 41)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 18)) (-2941 (((-3 $ "failed") $) 35))) -(((-890 |#1|) (-10 -8 (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|)))) (-891)) (T -890)) -NIL -(-10 -8 (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-1393 (((-412 (-1151 $)) (-1151 $)) 61)) (-1536 (($ $) 52)) (-2708 (((-412 $) $) 53)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 58)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-3119 (((-111) $) 54)) (-1848 (((-111) $) 31)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-2979 (((-412 (-1151 $)) (-1151 $)) 59)) (-1834 (((-412 (-1151 $)) (-1151 $)) 60)) (-3355 (((-412 $) $) 51)) (-3929 (((-3 $ "failed") $ $) 43)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 57 (|has| $ (-142)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-2941 (((-3 $ "failed") $) 56 (|has| $ (-142)))) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-891) (-137)) (T -891)) -((-3237 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-891)))) (-1393 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *2 (-412 (-1151 *1))) (-5 *3 (-1151 *1)))) (-1834 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *2 (-412 (-1151 *1))) (-5 *3 (-1151 *1)))) (-2979 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *2 (-412 (-1151 *1))) (-5 *3 (-1151 *1)))) (-3013 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-630 (-1151 *1))) (-5 *3 (-1151 *1)) (-4 *1 (-891)))) (-2119 (*1 *2 *3) (|partial| -12 (-5 *3 (-674 *1)) (-4 *1 (-142)) (-4 *1 (-891)) (-5 *2 (-1238 *1)))) (-2941 (*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-891))))) -(-13 (-1196) (-10 -8 (-15 -1393 ((-412 (-1151 $)) (-1151 $))) (-15 -1834 ((-412 (-1151 $)) (-1151 $))) (-15 -2979 ((-412 (-1151 $)) (-1151 $))) (-15 -3237 ((-1151 $) (-1151 $) (-1151 $))) (-15 -3013 ((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $))) (IF (|has| $ (-142)) (PROGN (-15 -2119 ((-3 (-1238 $) "failed") (-674 $))) (-15 -2941 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-1446 (((-111) $) NIL)) (-2276 (((-757)) NIL)) (-1576 (($ $ (-903)) NIL (|has| $ (-362))) (($ $) NIL)) (-3555 (((-1165 (-903) (-757)) (-553)) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2571 (((-757)) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 $ "failed") $) NIL)) (-2707 (($ $) NIL)) (-3461 (($ (-1238 $)) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-2484 (($) NIL)) (-3637 (((-111) $) NIL)) (-1808 (($ $) NIL) (($ $ (-757)) NIL)) (-3119 (((-111) $) NIL)) (-2968 (((-819 (-903)) $) NIL) (((-903) $) NIL)) (-1848 (((-111) $) NIL)) (-2157 (($) NIL (|has| $ (-362)))) (-2574 (((-111) $) NIL (|has| $ (-362)))) (-3560 (($ $ (-903)) NIL (|has| $ (-362))) (($ $) NIL)) (-2502 (((-3 $ "failed") $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3568 (((-1151 $) $ (-903)) NIL (|has| $ (-362))) (((-1151 $) $) NIL)) (-3796 (((-903) $) NIL)) (-3194 (((-1151 $) $) NIL (|has| $ (-362)))) (-3540 (((-3 (-1151 $) "failed") $ $) NIL (|has| $ (-362))) (((-1151 $) $) NIL (|has| $ (-362)))) (-4036 (($ $ (-1151 $)) NIL (|has| $ (-362)))) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL T CONST)) (-2735 (($ (-903)) NIL)) (-1657 (((-111) $) NIL)) (-2786 (((-1099) $) NIL)) (-4093 (($) NIL (|has| $ (-362)))) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL)) (-3355 (((-412 $) $) NIL)) (-4043 (((-903)) NIL) (((-819 (-903))) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3122 (((-3 (-757) "failed") $ $) NIL) (((-757) $) NIL)) (-1337 (((-132)) NIL)) (-1330 (($ $ (-757)) NIL) (($ $) NIL)) (-3872 (((-903) $) NIL) (((-819 (-903)) $) NIL)) (-1394 (((-1151 $)) NIL)) (-1469 (($) NIL)) (-3407 (($) NIL (|has| $ (-362)))) (-2855 (((-674 $) (-1238 $)) NIL) (((-1238 $) $) NIL)) (-1524 (((-553) $) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL)) (-2941 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1999 (((-757)) NIL)) (-4124 (((-1238 $) (-903)) NIL) (((-1238 $)) NIL)) (-1639 (((-111) $ $) NIL)) (-4223 (((-111) $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1950 (($ $ (-757)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-892 |#1|) (-13 (-343) (-323 $) (-601 (-553))) (-903)) (T -892)) -NIL -(-13 (-343) (-323 $) (-601 (-553))) -((-1421 (((-3 (-2 (|:| -2968 (-757)) (|:| -2333 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)) 79)) (-3800 (((-111) (-330 |#2| |#3| |#4| |#5|)) 17)) (-2968 (((-3 (-757) "failed") (-330 |#2| |#3| |#4| |#5|)) 15))) -(((-893 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2968 ((-3 (-757) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -3800 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -1421 ((-3 (-2 (|:| -2968 (-757)) (|:| -2333 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) (-13 (-833) (-545) (-1020 (-553))) (-424 |#1|) (-1214 |#2|) (-1214 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -893)) -((-1421 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-2 (|:| -2968 (-757)) (|:| -2333 *8))) (-5 *1 (-893 *4 *5 *6 *7 *8)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-111)) (-5 *1 (-893 *4 *5 *6 *7 *8)))) (-2968 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-757)) (-5 *1 (-893 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2968 ((-3 (-757) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -3800 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -1421 ((-3 (-2 (|:| -2968 (-757)) (|:| -2333 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) -((-1421 (((-3 (-2 (|:| -2968 (-757)) (|:| -2333 |#3|)) "failed") (-330 (-401 (-553)) |#1| |#2| |#3|)) 56)) (-3800 (((-111) (-330 (-401 (-553)) |#1| |#2| |#3|)) 16)) (-2968 (((-3 (-757) "failed") (-330 (-401 (-553)) |#1| |#2| |#3|)) 14))) -(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -2968 ((-3 (-757) "failed") (-330 (-401 (-553)) |#1| |#2| |#3|))) (-15 -3800 ((-111) (-330 (-401 (-553)) |#1| |#2| |#3|))) (-15 -1421 ((-3 (-2 (|:| -2968 (-757)) (|:| -2333 |#3|)) "failed") (-330 (-401 (-553)) |#1| |#2| |#3|)))) (-1214 (-401 (-553))) (-1214 (-401 |#1|)) (-336 (-401 (-553)) |#1| |#2|)) (T -894)) -((-1421 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-553)) *4 *5 *6)) (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 (-401 (-553)) *4 *5)) (-5 *2 (-2 (|:| -2968 (-757)) (|:| -2333 *6))) (-5 *1 (-894 *4 *5 *6)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-330 (-401 (-553)) *4 *5 *6)) (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 (-401 (-553)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-894 *4 *5 *6)))) (-2968 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-553)) *4 *5 *6)) (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 (-401 (-553)) *4 *5)) (-5 *2 (-757)) (-5 *1 (-894 *4 *5 *6))))) -(-10 -7 (-15 -2968 ((-3 (-757) "failed") (-330 (-401 (-553)) |#1| |#2| |#3|))) (-15 -3800 ((-111) (-330 (-401 (-553)) |#1| |#2| |#3|))) (-15 -1421 ((-3 (-2 (|:| -2968 (-757)) (|:| -2333 |#3|)) "failed") (-330 (-401 (-553)) |#1| |#2| |#3|)))) -((-1402 ((|#2| |#2|) 26)) (-1379 (((-553) (-630 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553))))) 15)) (-1507 (((-903) (-553)) 35)) (-1981 (((-553) |#2|) 42)) (-2853 (((-553) |#2|) 21) (((-2 (|:| |den| (-553)) (|:| |gcdnum| (-553))) |#1|) 20))) -(((-895 |#1| |#2|) (-10 -7 (-15 -1507 ((-903) (-553))) (-15 -2853 ((-2 (|:| |den| (-553)) (|:| |gcdnum| (-553))) |#1|)) (-15 -2853 ((-553) |#2|)) (-15 -1379 ((-553) (-630 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553)))))) (-15 -1981 ((-553) |#2|)) (-15 -1402 (|#2| |#2|))) (-1214 (-401 (-553))) (-1214 (-401 |#1|))) (T -895)) -((-1402 (*1 *2 *2) (-12 (-4 *3 (-1214 (-401 (-553)))) (-5 *1 (-895 *3 *2)) (-4 *2 (-1214 (-401 *3))))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-1214 (-401 *2))) (-5 *2 (-553)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1214 (-401 *4))))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553))))) (-4 *4 (-1214 (-401 *2))) (-5 *2 (-553)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1214 (-401 *4))))) (-2853 (*1 *2 *3) (-12 (-4 *4 (-1214 (-401 *2))) (-5 *2 (-553)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1214 (-401 *4))))) (-2853 (*1 *2 *3) (-12 (-4 *3 (-1214 (-401 (-553)))) (-5 *2 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553)))) (-5 *1 (-895 *3 *4)) (-4 *4 (-1214 (-401 *3))))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-553)) (-4 *4 (-1214 (-401 *3))) (-5 *2 (-903)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1214 (-401 *4)))))) -(-10 -7 (-15 -1507 ((-903) (-553))) (-15 -2853 ((-2 (|:| |den| (-553)) (|:| |gcdnum| (-553))) |#1|)) (-15 -2853 ((-553) |#2|)) (-15 -1379 ((-553) (-630 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553)))))) (-15 -1981 ((-553) |#2|)) (-15 -1402 (|#2| |#2|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 ((|#1| $) 81)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-3973 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 75)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-1613 (($ |#1| (-412 |#1|)) 73)) (-4054 (((-1151 |#1|) |#1| |#1|) 41)) (-1949 (($ $) 49)) (-1848 (((-111) $) NIL)) (-3300 (((-553) $) 78)) (-1334 (($ $ (-553)) 80)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1849 ((|#1| $) 77)) (-1375 (((-412 |#1|) $) 76)) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) 74)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1782 (($ $) 39)) (-3110 (((-845) $) 99) (($ (-553)) 54) (($ $) NIL) (($ (-401 (-553))) NIL) (($ |#1|) 31) (((-401 |#1|) $) 59) (($ (-401 (-412 |#1|))) 67)) (-1999 (((-757)) 52)) (-1639 (((-111) $ $) NIL)) (-1988 (($) 23 T CONST)) (-1997 (($) 12 T CONST)) (-1617 (((-111) $ $) 68)) (-1723 (($ $ $) NIL)) (-1711 (($ $) 88) (($ $ $) NIL)) (-1700 (($ $ $) 38)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 90) (($ $ $) 37) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-896 |#1|) (-13 (-357) (-38 |#1|) (-10 -8 (-15 -3110 ((-401 |#1|) $)) (-15 -3110 ($ (-401 (-412 |#1|)))) (-15 -1782 ($ $)) (-15 -1375 ((-412 |#1|) $)) (-15 -1849 (|#1| $)) (-15 -1334 ($ $ (-553))) (-15 -3300 ((-553) $)) (-15 -4054 ((-1151 |#1|) |#1| |#1|)) (-15 -1949 ($ $)) (-15 -1613 ($ |#1| (-412 |#1|))) (-15 -2751 (|#1| $)))) (-301)) (T -896)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-896 *3)) (-4 *3 (-301)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-896 *3)))) (-1782 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-896 *3)) (-4 *3 (-301)))) (-1849 (*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-896 *3)) (-4 *3 (-301)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-896 *3)) (-4 *3 (-301)))) (-4054 (*1 *2 *3 *3) (-12 (-5 *2 (-1151 *3)) (-5 *1 (-896 *3)) (-4 *3 (-301)))) (-1949 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301)))) (-1613 (*1 *1 *2 *3) (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-896 *2)))) (-2751 (*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301))))) -(-13 (-357) (-38 |#1|) (-10 -8 (-15 -3110 ((-401 |#1|) $)) (-15 -3110 ($ (-401 (-412 |#1|)))) (-15 -1782 ($ $)) (-15 -1375 ((-412 |#1|) $)) (-15 -1849 (|#1| $)) (-15 -1334 ($ $ (-553))) (-15 -3300 ((-553) $)) (-15 -4054 ((-1151 |#1|) |#1| |#1|)) (-15 -1949 ($ $)) (-15 -1613 ($ |#1| (-412 |#1|))) (-15 -2751 (|#1| $)))) -((-1613 (((-52) (-934 |#1|) (-412 (-934 |#1|)) (-1155)) 17) (((-52) (-401 (-934 |#1|)) (-1155)) 18))) -(((-897 |#1|) (-10 -7 (-15 -1613 ((-52) (-401 (-934 |#1|)) (-1155))) (-15 -1613 ((-52) (-934 |#1|) (-412 (-934 |#1|)) (-1155)))) (-13 (-301) (-144))) (T -897)) -((-1613 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-412 (-934 *6))) (-5 *5 (-1155)) (-5 *3 (-934 *6)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-897 *6)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-897 *5))))) -(-10 -7 (-15 -1613 ((-52) (-401 (-934 |#1|)) (-1155))) (-15 -1613 ((-52) (-934 |#1|) (-412 (-934 |#1|)) (-1155)))) -((-3797 ((|#4| (-630 |#4|)) 120) (((-1151 |#4|) (-1151 |#4|) (-1151 |#4|)) 66) ((|#4| |#4| |#4|) 119)) (-2508 (((-1151 |#4|) (-630 (-1151 |#4|))) 113) (((-1151 |#4|) (-1151 |#4|) (-1151 |#4|)) 49) ((|#4| (-630 |#4|)) 54) ((|#4| |#4| |#4|) 83))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 (|#4| |#4| |#4|)) (-15 -2508 (|#4| (-630 |#4|))) (-15 -2508 ((-1151 |#4|) (-1151 |#4|) (-1151 |#4|))) (-15 -2508 ((-1151 |#4|) (-630 (-1151 |#4|)))) (-15 -3797 (|#4| |#4| |#4|)) (-15 -3797 ((-1151 |#4|) (-1151 |#4|) (-1151 |#4|))) (-15 -3797 (|#4| (-630 |#4|)))) (-779) (-833) (-301) (-931 |#3| |#1| |#2|)) (T -898)) -((-3797 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *6 *4 *5)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 *6)) (-4 *6 (-931 *5 *3 *4)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-301)) (-5 *1 (-898 *3 *4 *5 *6)))) (-3797 (*1 *2 *2 *2) (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-301)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-931 *5 *3 *4)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-630 (-1151 *7))) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-5 *2 (-1151 *7)) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5)))) (-2508 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 *6)) (-4 *6 (-931 *5 *3 *4)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-301)) (-5 *1 (-898 *3 *4 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *6 *4 *5)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)))) (-2508 (*1 *2 *2 *2) (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-301)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-931 *5 *3 *4))))) -(-10 -7 (-15 -2508 (|#4| |#4| |#4|)) (-15 -2508 (|#4| (-630 |#4|))) (-15 -2508 ((-1151 |#4|) (-1151 |#4|) (-1151 |#4|))) (-15 -2508 ((-1151 |#4|) (-630 (-1151 |#4|)))) (-15 -3797 (|#4| |#4| |#4|)) (-15 -3797 ((-1151 |#4|) (-1151 |#4|) (-1151 |#4|))) (-15 -3797 (|#4| (-630 |#4|)))) -((-3654 (((-886 (-553)) (-953)) 23) (((-886 (-553)) (-630 (-553))) 20)) (-2614 (((-886 (-553)) (-630 (-553))) 48) (((-886 (-553)) (-903)) 49)) (-3666 (((-886 (-553))) 24)) (-2785 (((-886 (-553))) 38) (((-886 (-553)) (-630 (-553))) 37)) (-3263 (((-886 (-553))) 36) (((-886 (-553)) (-630 (-553))) 35)) (-4104 (((-886 (-553))) 34) (((-886 (-553)) (-630 (-553))) 33)) (-1594 (((-886 (-553))) 32) (((-886 (-553)) (-630 (-553))) 31)) (-3584 (((-886 (-553))) 30) (((-886 (-553)) (-630 (-553))) 29)) (-2023 (((-886 (-553))) 40) (((-886 (-553)) (-630 (-553))) 39)) (-3356 (((-886 (-553)) (-630 (-553))) 52) (((-886 (-553)) (-903)) 53)) (-3480 (((-886 (-553)) (-630 (-553))) 50) (((-886 (-553)) (-903)) 51)) (-3863 (((-886 (-553)) (-630 (-553))) 46) (((-886 (-553)) (-903)) 47)) (-2374 (((-886 (-553)) (-630 (-903))) 43))) -(((-899) (-10 -7 (-15 -2614 ((-886 (-553)) (-903))) (-15 -2614 ((-886 (-553)) (-630 (-553)))) (-15 -3863 ((-886 (-553)) (-903))) (-15 -3863 ((-886 (-553)) (-630 (-553)))) (-15 -2374 ((-886 (-553)) (-630 (-903)))) (-15 -3480 ((-886 (-553)) (-903))) (-15 -3480 ((-886 (-553)) (-630 (-553)))) (-15 -3356 ((-886 (-553)) (-903))) (-15 -3356 ((-886 (-553)) (-630 (-553)))) (-15 -3584 ((-886 (-553)) (-630 (-553)))) (-15 -3584 ((-886 (-553)))) (-15 -1594 ((-886 (-553)) (-630 (-553)))) (-15 -1594 ((-886 (-553)))) (-15 -4104 ((-886 (-553)) (-630 (-553)))) (-15 -4104 ((-886 (-553)))) (-15 -3263 ((-886 (-553)) (-630 (-553)))) (-15 -3263 ((-886 (-553)))) (-15 -2785 ((-886 (-553)) (-630 (-553)))) (-15 -2785 ((-886 (-553)))) (-15 -2023 ((-886 (-553)) (-630 (-553)))) (-15 -2023 ((-886 (-553)))) (-15 -3666 ((-886 (-553)))) (-15 -3654 ((-886 (-553)) (-630 (-553)))) (-15 -3654 ((-886 (-553)) (-953))))) (T -899)) -((-3654 (*1 *2 *3) (-12 (-5 *3 (-953)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3666 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2023 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2785 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3263 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-4104 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-1594 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3584 (*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-630 (-903))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(-10 -7 (-15 -2614 ((-886 (-553)) (-903))) (-15 -2614 ((-886 (-553)) (-630 (-553)))) (-15 -3863 ((-886 (-553)) (-903))) (-15 -3863 ((-886 (-553)) (-630 (-553)))) (-15 -2374 ((-886 (-553)) (-630 (-903)))) (-15 -3480 ((-886 (-553)) (-903))) (-15 -3480 ((-886 (-553)) (-630 (-553)))) (-15 -3356 ((-886 (-553)) (-903))) (-15 -3356 ((-886 (-553)) (-630 (-553)))) (-15 -3584 ((-886 (-553)) (-630 (-553)))) (-15 -3584 ((-886 (-553)))) (-15 -1594 ((-886 (-553)) (-630 (-553)))) (-15 -1594 ((-886 (-553)))) (-15 -4104 ((-886 (-553)) (-630 (-553)))) (-15 -4104 ((-886 (-553)))) (-15 -3263 ((-886 (-553)) (-630 (-553)))) (-15 -3263 ((-886 (-553)))) (-15 -2785 ((-886 (-553)) (-630 (-553)))) (-15 -2785 ((-886 (-553)))) (-15 -2023 ((-886 (-553)) (-630 (-553)))) (-15 -2023 ((-886 (-553)))) (-15 -3666 ((-886 (-553)))) (-15 -3654 ((-886 (-553)) (-630 (-553)))) (-15 -3654 ((-886 (-553)) (-953)))) -((-3358 (((-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155))) 12)) (-3339 (((-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155))) 11))) -(((-900 |#1|) (-10 -7 (-15 -3339 ((-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -3358 ((-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155))))) (-445)) (T -900)) -((-3358 (*1 *2 *2 *3) (-12 (-5 *2 (-630 (-934 *4))) (-5 *3 (-630 (-1155))) (-4 *4 (-445)) (-5 *1 (-900 *4)))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-630 (-934 *4))) (-5 *3 (-630 (-1155))) (-4 *4 (-445)) (-5 *1 (-900 *4))))) -(-10 -7 (-15 -3339 ((-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -3358 ((-630 (-934 |#1|)) (-630 (-934 |#1|)) (-630 (-1155))))) -((-3110 (((-310 |#1|) (-470)) 16))) -(((-901 |#1|) (-10 -7 (-15 -3110 ((-310 |#1|) (-470)))) (-13 (-833) (-545))) (T -901)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-901 *4)) (-4 *4 (-13 (-833) (-545)))))) -(-10 -7 (-15 -3110 ((-310 |#1|) (-470)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-1848 (((-111) $) 31)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-902) (-137)) (T -902)) -((-1320 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *2 (-2 (|:| -4120 (-630 *1)) (|:| -4093 *1))) (-5 *3 (-630 *1)))) (-1572 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-902))))) -(-13 (-445) (-10 -8 (-15 -1320 ((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $))) (-15 -1572 ((-3 (-630 $) "failed") (-630 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2508 (($ $ $) NIL)) (-3110 (((-845) $) NIL)) (-1997 (($) NIL T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-757)) NIL) (($ $ (-903)) NIL)) (* (($ (-903) $) NIL) (($ $ $) NIL))) -(((-903) (-13 (-780) (-712) (-10 -8 (-15 -2508 ($ $ $)) (-6 (-4371 "*"))))) (T -903)) -((-2508 (*1 *1 *1 *1) (-5 *1 (-903)))) -(-13 (-780) (-712) (-10 -8 (-15 -2508 ($ $ $)) (-6 (-4371 "*")))) -((-2679 ((|#2| (-630 |#1|) (-630 |#1|)) 24))) -(((-904 |#1| |#2|) (-10 -7 (-15 -2679 (|#2| (-630 |#1|) (-630 |#1|)))) (-357) (-1214 |#1|)) (T -904)) -((-2679 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-357)) (-4 *2 (-1214 *4)) (-5 *1 (-904 *4 *2))))) -(-10 -7 (-15 -2679 (|#2| (-630 |#1|) (-630 |#1|)))) -((-2526 (((-1151 |#2|) (-630 |#2|) (-630 |#2|)) 17) (((-1211 |#1| |#2|) (-1211 |#1| |#2|) (-630 |#2|) (-630 |#2|)) 13))) -(((-905 |#1| |#2|) (-10 -7 (-15 -2526 ((-1211 |#1| |#2|) (-1211 |#1| |#2|) (-630 |#2|) (-630 |#2|))) (-15 -2526 ((-1151 |#2|) (-630 |#2|) (-630 |#2|)))) (-1155) (-357)) (T -905)) -((-2526 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-357)) (-5 *2 (-1151 *5)) (-5 *1 (-905 *4 *5)) (-14 *4 (-1155)))) (-2526 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1211 *4 *5)) (-5 *3 (-630 *5)) (-14 *4 (-1155)) (-4 *5 (-357)) (-5 *1 (-905 *4 *5))))) -(-10 -7 (-15 -2526 ((-1211 |#1| |#2|) (-1211 |#1| |#2|) (-630 |#2|) (-630 |#2|))) (-15 -2526 ((-1151 |#2|) (-630 |#2|) (-630 |#2|)))) -((-1289 (((-553) (-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-1137)) 139)) (-2802 ((|#4| |#4|) 155)) (-4200 (((-630 (-401 (-934 |#1|))) (-630 (-1155))) 118)) (-3440 (((-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))) (-674 |#4|) (-630 (-401 (-934 |#1|))) (-630 (-630 |#4|)) (-757) (-757) (-553)) 75)) (-1908 (((-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-630 |#4|)) 59)) (-3371 (((-674 |#4|) (-674 |#4|) (-630 |#4|)) 55)) (-3634 (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-1137)) 151)) (-3043 (((-553) (-674 |#4|) (-903) (-1137)) 132) (((-553) (-674 |#4|) (-630 (-1155)) (-903) (-1137)) 131) (((-553) (-674 |#4|) (-630 |#4|) (-903) (-1137)) 130) (((-553) (-674 |#4|) (-1137)) 127) (((-553) (-674 |#4|) (-630 (-1155)) (-1137)) 126) (((-553) (-674 |#4|) (-630 |#4|) (-1137)) 125) (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-903)) 124) (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 (-1155)) (-903)) 123) (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 |#4|) (-903)) 122) (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|)) 120) (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 (-1155))) 119) (((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 |#4|)) 115)) (-2459 ((|#4| (-934 |#1|)) 68)) (-2371 (((-111) (-630 |#4|) (-630 (-630 |#4|))) 152)) (-3209 (((-630 (-630 (-553))) (-553) (-553)) 129)) (-2198 (((-630 (-630 |#4|)) (-630 (-630 |#4|))) 88)) (-3730 (((-757) (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|))))) 86)) (-4240 (((-757) (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|))))) 85)) (-1995 (((-111) (-630 (-934 |#1|))) 17) (((-111) (-630 |#4|)) 13)) (-3393 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-630 |#4|)) (|:| |n0| (-630 |#4|))) (-630 |#4|) (-630 |#4|)) 71)) (-1724 (((-630 |#4|) |#4|) 49)) (-2755 (((-630 (-401 (-934 |#1|))) (-630 |#4|)) 114) (((-674 (-401 (-934 |#1|))) (-674 |#4|)) 56) (((-401 (-934 |#1|)) |#4|) 111)) (-1695 (((-2 (|:| |rgl| (-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))))))) (|:| |rgsz| (-553))) (-674 |#4|) (-630 (-401 (-934 |#1|))) (-757) (-1137) (-553)) 93)) (-3608 (((-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))) (-674 |#4|) (-757)) 84)) (-3742 (((-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) (-674 |#4|) (-757)) 101)) (-1412 (((-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-2 (|:| -3344 (-674 (-401 (-934 |#1|)))) (|:| |vec| (-630 (-401 (-934 |#1|)))) (|:| -2409 (-757)) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) 48))) -(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 |#4|))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 (-1155)))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 |#4|) (-903))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 (-1155)) (-903))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-903))) (-15 -3043 ((-553) (-674 |#4|) (-630 |#4|) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-630 (-1155)) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-630 |#4|) (-903) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-630 (-1155)) (-903) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-903) (-1137))) (-15 -1289 ((-553) (-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-1137))) (-15 -3634 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-1137))) (-15 -1695 ((-2 (|:| |rgl| (-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))))))) (|:| |rgsz| (-553))) (-674 |#4|) (-630 (-401 (-934 |#1|))) (-757) (-1137) (-553))) (-15 -2755 ((-401 (-934 |#1|)) |#4|)) (-15 -2755 ((-674 (-401 (-934 |#1|))) (-674 |#4|))) (-15 -2755 ((-630 (-401 (-934 |#1|))) (-630 |#4|))) (-15 -4200 ((-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -2459 (|#4| (-934 |#1|))) (-15 -3393 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-630 |#4|)) (|:| |n0| (-630 |#4|))) (-630 |#4|) (-630 |#4|))) (-15 -3608 ((-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))) (-674 |#4|) (-757))) (-15 -1908 ((-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-630 |#4|))) (-15 -1412 ((-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-2 (|:| -3344 (-674 (-401 (-934 |#1|)))) (|:| |vec| (-630 (-401 (-934 |#1|)))) (|:| -2409 (-757)) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (-15 -1724 ((-630 |#4|) |#4|)) (-15 -4240 ((-757) (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))))) (-15 -3730 ((-757) (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))))) (-15 -2198 ((-630 (-630 |#4|)) (-630 (-630 |#4|)))) (-15 -3209 ((-630 (-630 (-553))) (-553) (-553))) (-15 -2371 ((-111) (-630 |#4|) (-630 (-630 |#4|)))) (-15 -3742 ((-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) (-674 |#4|) (-757))) (-15 -3371 ((-674 |#4|) (-674 |#4|) (-630 |#4|))) (-15 -3440 ((-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))) (-674 |#4|) (-630 (-401 (-934 |#1|))) (-630 (-630 |#4|)) (-757) (-757) (-553))) (-15 -2802 (|#4| |#4|)) (-15 -1995 ((-111) (-630 |#4|))) (-15 -1995 ((-111) (-630 (-934 |#1|))))) (-13 (-301) (-144)) (-13 (-833) (-601 (-1155))) (-779) (-931 |#1| |#3| |#2|)) (T -906)) -((-1995 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-111)) (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-111)) (-5 *1 (-906 *4 *5 *6 *7)))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-833) (-601 (-1155)))) (-4 *5 (-779)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-931 *3 *5 *4)))) (-3440 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) (-5 *4 (-674 *12)) (-5 *5 (-630 (-401 (-934 *9)))) (-5 *6 (-630 (-630 *12))) (-5 *7 (-757)) (-5 *8 (-553)) (-4 *9 (-13 (-301) (-144))) (-4 *12 (-931 *9 *11 *10)) (-4 *10 (-13 (-833) (-601 (-1155)))) (-4 *11 (-779)) (-5 *2 (-2 (|:| |eqzro| (-630 *12)) (|:| |neqzro| (-630 *12)) (|:| |wcond| (-630 (-934 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *9)))) (|:| -4124 (-630 (-1238 (-401 (-934 *9))))))))) (-5 *1 (-906 *9 *10 *11 *12)))) (-3371 (*1 *2 *2 *3) (-12 (-5 *2 (-674 *7)) (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *8)) (-5 *4 (-757)) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-630 (-2 (|:| |det| *8) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (-5 *1 (-906 *5 *6 *7 *8)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-630 *8))) (-5 *3 (-630 *8)) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-111)) (-5 *1 (-906 *5 *6 *7 *8)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-630 (-630 (-553)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-553)) (-4 *7 (-931 *4 *6 *5)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-630 (-630 *6))) (-4 *6 (-931 *3 *5 *4)) (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-833) (-601 (-1155)))) (-4 *5 (-779)) (-5 *1 (-906 *3 *4 *5 *6)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| *7) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 *7))))) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-757)) (-5 *1 (-906 *4 *5 *6 *7)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| *7) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 *7))))) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-757)) (-5 *1 (-906 *4 *5 *6 *7)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-630 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-931 *4 *6 *5)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3344 (-674 (-401 (-934 *4)))) (|:| |vec| (-630 (-401 (-934 *4)))) (|:| -2409 (-757)) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) (|:| -4124 (-630 (-1238 (-401 (-934 *4))))))) (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5)))) (-1908 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) (|:| -4124 (-630 (-1238 (-401 (-934 *4))))))) (-5 *3 (-630 *7)) (-4 *4 (-13 (-301) (-144))) (-4 *7 (-931 *4 *6 *5)) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *1 (-906 *4 *5 *6 *7)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *8)) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| *8) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 *8))))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-757)))) (-3393 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-4 *7 (-931 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-630 *7)) (|:| |n0| (-630 *7)))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-934 *4)) (-4 *4 (-13 (-301) (-144))) (-4 *2 (-931 *4 *6 *5)) (-5 *1 (-906 *4 *5 *6 *2)) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-630 (-1155))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-630 (-401 (-934 *4)))) (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-630 (-401 (-934 *4)))) (-5 *1 (-906 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-674 *7)) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-674 (-401 (-934 *4)))) (-5 *1 (-906 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-401 (-934 *4))) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-931 *4 *6 *5)))) (-1695 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-674 *11)) (-5 *4 (-630 (-401 (-934 *8)))) (-5 *5 (-757)) (-5 *6 (-1137)) (-4 *8 (-13 (-301) (-144))) (-4 *11 (-931 *8 *10 *9)) (-4 *9 (-13 (-833) (-601 (-1155)))) (-4 *10 (-779)) (-5 *2 (-2 (|:| |rgl| (-630 (-2 (|:| |eqzro| (-630 *11)) (|:| |neqzro| (-630 *11)) (|:| |wcond| (-630 (-934 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *8)))) (|:| -4124 (-630 (-1238 (-401 (-934 *8)))))))))) (|:| |rgsz| (-553)))) (-5 *1 (-906 *8 *9 *10 *11)) (-5 *7 (-553)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *7)) (|:| |neqzro| (-630 *7)) (|:| |wcond| (-630 (-934 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) (|:| -4124 (-630 (-1238 (-401 (-934 *4)))))))))) (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) (|:| |wcond| (-630 (-934 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) (-5 *4 (-1137)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-931 *5 *7 *6)) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *9)) (-5 *4 (-903)) (-5 *5 (-1137)) (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-674 *10)) (-5 *4 (-630 (-1155))) (-5 *5 (-903)) (-5 *6 (-1137)) (-4 *10 (-931 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-833) (-601 (-1155)))) (-4 *9 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *7 *8 *9 *10)))) (-3043 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-674 *10)) (-5 *4 (-630 *10)) (-5 *5 (-903)) (-5 *6 (-1137)) (-4 *10 (-931 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-833) (-601 (-1155)))) (-4 *9 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *7 *8 *9 *10)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *8)) (-5 *4 (-1137)) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *9)) (-5 *4 (-630 (-1155))) (-5 *5 (-1137)) (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *9)) (-5 *4 (-630 *9)) (-5 *5 (-1137)) (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *8)) (-5 *4 (-903)) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) (|:| |wcond| (-630 (-934 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) (-5 *1 (-906 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *9)) (-5 *4 (-630 (-1155))) (-5 *5 (-903)) (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *9)) (|:| |neqzro| (-630 *9)) (|:| |wcond| (-630 (-934 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *6)))) (|:| -4124 (-630 (-1238 (-401 (-934 *6)))))))))) (-5 *1 (-906 *6 *7 *8 *9)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 *9)) (-5 *5 (-903)) (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *9)) (|:| |neqzro| (-630 *9)) (|:| |wcond| (-630 (-934 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *6)))) (|:| -4124 (-630 (-1238 (-401 (-934 *6)))))))))) (-5 *1 (-906 *6 *7 *8 *9)) (-5 *4 (-630 *9)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-674 *7)) (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *7)) (|:| |neqzro| (-630 *7)) (|:| |wcond| (-630 (-934 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) (|:| -4124 (-630 (-1238 (-401 (-934 *4)))))))))) (-5 *1 (-906 *4 *5 *6 *7)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *8)) (-5 *4 (-630 (-1155))) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) (|:| |wcond| (-630 (-934 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) (-5 *1 (-906 *5 *6 *7 *8)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *8)) (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-630 (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) (|:| |wcond| (-630 (-934 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-630 *8))))) -(-10 -7 (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 |#4|))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 (-1155)))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 |#4|) (-903))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-630 (-1155)) (-903))) (-15 -3043 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-674 |#4|) (-903))) (-15 -3043 ((-553) (-674 |#4|) (-630 |#4|) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-630 (-1155)) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-630 |#4|) (-903) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-630 (-1155)) (-903) (-1137))) (-15 -3043 ((-553) (-674 |#4|) (-903) (-1137))) (-15 -1289 ((-553) (-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-1137))) (-15 -3634 ((-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|))))))))) (-1137))) (-15 -1695 ((-2 (|:| |rgl| (-630 (-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))))))) (|:| |rgsz| (-553))) (-674 |#4|) (-630 (-401 (-934 |#1|))) (-757) (-1137) (-553))) (-15 -2755 ((-401 (-934 |#1|)) |#4|)) (-15 -2755 ((-674 (-401 (-934 |#1|))) (-674 |#4|))) (-15 -2755 ((-630 (-401 (-934 |#1|))) (-630 |#4|))) (-15 -4200 ((-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -2459 (|#4| (-934 |#1|))) (-15 -3393 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-630 |#4|)) (|:| |n0| (-630 |#4|))) (-630 |#4|) (-630 |#4|))) (-15 -3608 ((-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))) (-674 |#4|) (-757))) (-15 -1908 ((-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-630 |#4|))) (-15 -1412 ((-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))) (-2 (|:| -3344 (-674 (-401 (-934 |#1|)))) (|:| |vec| (-630 (-401 (-934 |#1|)))) (|:| -2409 (-757)) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (-15 -1724 ((-630 |#4|) |#4|)) (-15 -4240 ((-757) (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))))) (-15 -3730 ((-757) (-630 (-2 (|:| -2409 (-757)) (|:| |eqns| (-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))))) (|:| |fgb| (-630 |#4|)))))) (-15 -2198 ((-630 (-630 |#4|)) (-630 (-630 |#4|)))) (-15 -3209 ((-630 (-630 (-553))) (-553) (-553))) (-15 -2371 ((-111) (-630 |#4|) (-630 (-630 |#4|)))) (-15 -3742 ((-630 (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) (-674 |#4|) (-757))) (-15 -3371 ((-674 |#4|) (-674 |#4|) (-630 |#4|))) (-15 -3440 ((-2 (|:| |eqzro| (-630 |#4|)) (|:| |neqzro| (-630 |#4|)) (|:| |wcond| (-630 (-934 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1238 (-401 (-934 |#1|)))) (|:| -4124 (-630 (-1238 (-401 (-934 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553)))) (-674 |#4|) (-630 (-401 (-934 |#1|))) (-630 (-630 |#4|)) (-757) (-757) (-553))) (-15 -2802 (|#4| |#4|)) (-15 -1995 ((-111) (-630 |#4|))) (-15 -1995 ((-111) (-630 (-934 |#1|))))) -((-4094 (((-909) |#1| (-1155)) 17) (((-909) |#1| (-1155) (-1073 (-220))) 21)) (-4234 (((-909) |#1| |#1| (-1155) (-1073 (-220))) 19) (((-909) |#1| (-1155) (-1073 (-220))) 15))) -(((-907 |#1|) (-10 -7 (-15 -4234 ((-909) |#1| (-1155) (-1073 (-220)))) (-15 -4234 ((-909) |#1| |#1| (-1155) (-1073 (-220)))) (-15 -4094 ((-909) |#1| (-1155) (-1073 (-220)))) (-15 -4094 ((-909) |#1| (-1155)))) (-601 (-529))) (T -907)) -((-4094 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-5 *2 (-909)) (-5 *1 (-907 *3)) (-4 *3 (-601 (-529))))) (-4094 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1155)) (-5 *5 (-1073 (-220))) (-5 *2 (-909)) (-5 *1 (-907 *3)) (-4 *3 (-601 (-529))))) (-4234 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1155)) (-5 *5 (-1073 (-220))) (-5 *2 (-909)) (-5 *1 (-907 *3)) (-4 *3 (-601 (-529))))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1155)) (-5 *5 (-1073 (-220))) (-5 *2 (-909)) (-5 *1 (-907 *3)) (-4 *3 (-601 (-529)))))) -(-10 -7 (-15 -4234 ((-909) |#1| (-1155) (-1073 (-220)))) (-15 -4234 ((-909) |#1| |#1| (-1155) (-1073 (-220)))) (-15 -4094 ((-909) |#1| (-1155) (-1073 (-220)))) (-15 -4094 ((-909) |#1| (-1155)))) -((-4342 (($ $ (-1073 (-220)) (-1073 (-220)) (-1073 (-220))) 70)) (-2490 (((-1073 (-220)) $) 40)) (-2479 (((-1073 (-220)) $) 39)) (-2466 (((-1073 (-220)) $) 38)) (-1404 (((-630 (-630 (-220))) $) 43)) (-1882 (((-1073 (-220)) $) 41)) (-2897 (((-553) (-553)) 32)) (-1720 (((-553) (-553)) 28)) (-2303 (((-553) (-553)) 30)) (-3470 (((-111) (-111)) 35)) (-1313 (((-553)) 31)) (-4125 (($ $ (-1073 (-220))) 73) (($ $) 74)) (-2527 (($ (-1 (-925 (-220)) (-220)) (-1073 (-220))) 78) (($ (-1 (-925 (-220)) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220))) 79)) (-4234 (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220))) 82) (($ $ (-1073 (-220))) 76)) (-1978 (((-553)) 36)) (-1403 (((-553)) 27)) (-1642 (((-553)) 29)) (-3792 (((-630 (-630 (-925 (-220)))) $) 94)) (-4269 (((-111) (-111)) 37)) (-3110 (((-845) $) 93)) (-4052 (((-111)) 34))) -(((-908) (-13 (-956) (-10 -8 (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)))) (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ $ (-1073 (-220)))) (-15 -4342 ($ $ (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4125 ($ $ (-1073 (-220)))) (-15 -4125 ($ $)) (-15 -1882 ((-1073 (-220)) $)) (-15 -1404 ((-630 (-630 (-220))) $)) (-15 -1403 ((-553))) (-15 -1720 ((-553) (-553))) (-15 -1642 ((-553))) (-15 -2303 ((-553) (-553))) (-15 -1313 ((-553))) (-15 -2897 ((-553) (-553))) (-15 -4052 ((-111))) (-15 -3470 ((-111) (-111))) (-15 -1978 ((-553))) (-15 -4269 ((-111) (-111)))))) (T -908)) -((-2527 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-908)))) (-2527 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-908)))) (-4234 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-908)))) (-4234 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-908)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) (-4342 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) (-4125 (*1 *1 *1) (-5 *1 (-908))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-220)))) (-5 *1 (-908)))) (-1403 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-1642 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-1313 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-2897 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-4052 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908)))) (-1978 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) -(-13 (-956) (-10 -8 (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)))) (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ $ (-1073 (-220)))) (-15 -4342 ($ $ (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4125 ($ $ (-1073 (-220)))) (-15 -4125 ($ $)) (-15 -1882 ((-1073 (-220)) $)) (-15 -1404 ((-630 (-630 (-220))) $)) (-15 -1403 ((-553))) (-15 -1720 ((-553) (-553))) (-15 -1642 ((-553))) (-15 -2303 ((-553) (-553))) (-15 -1313 ((-553))) (-15 -2897 ((-553) (-553))) (-15 -4052 ((-111))) (-15 -3470 ((-111) (-111))) (-15 -1978 ((-553))) (-15 -4269 ((-111) (-111))))) -((-4342 (($ $ (-1073 (-220))) 70) (($ $ (-1073 (-220)) (-1073 (-220))) 71)) (-2479 (((-1073 (-220)) $) 44)) (-2466 (((-1073 (-220)) $) 43)) (-1882 (((-1073 (-220)) $) 45)) (-1427 (((-553) (-553)) 37)) (-2829 (((-553) (-553)) 33)) (-3790 (((-553) (-553)) 35)) (-2850 (((-111) (-111)) 39)) (-1783 (((-553)) 36)) (-4125 (($ $ (-1073 (-220))) 74) (($ $) 75)) (-2527 (($ (-1 (-925 (-220)) (-220)) (-1073 (-220))) 84) (($ (-1 (-925 (-220)) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220))) 85)) (-4094 (($ (-1 (-220) (-220)) (-1073 (-220))) 92) (($ (-1 (-220) (-220))) 95)) (-4234 (($ (-1 (-220) (-220)) (-1073 (-220))) 79) (($ (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220))) 80) (($ (-630 (-1 (-220) (-220))) (-1073 (-220))) 87) (($ (-630 (-1 (-220) (-220))) (-1073 (-220)) (-1073 (-220))) 88) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220))) 82) (($ $ (-1073 (-220))) 76)) (-1567 (((-111) $) 40)) (-4175 (((-553)) 41)) (-1578 (((-553)) 32)) (-3526 (((-553)) 34)) (-3792 (((-630 (-630 (-925 (-220)))) $) 23)) (-1768 (((-111) (-111)) 42)) (-3110 (((-845) $) 106)) (-3541 (((-111)) 38))) -(((-909) (-13 (-937) (-10 -8 (-15 -4234 ($ (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ (-630 (-1 (-220) (-220))) (-1073 (-220)))) (-15 -4234 ($ (-630 (-1 (-220) (-220))) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)))) (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4094 ($ (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4094 ($ (-1 (-220) (-220)))) (-15 -4234 ($ $ (-1073 (-220)))) (-15 -1567 ((-111) $)) (-15 -4342 ($ $ (-1073 (-220)))) (-15 -4342 ($ $ (-1073 (-220)) (-1073 (-220)))) (-15 -4125 ($ $ (-1073 (-220)))) (-15 -4125 ($ $)) (-15 -1882 ((-1073 (-220)) $)) (-15 -1578 ((-553))) (-15 -2829 ((-553) (-553))) (-15 -3526 ((-553))) (-15 -3790 ((-553) (-553))) (-15 -1783 ((-553))) (-15 -1427 ((-553) (-553))) (-15 -3541 ((-111))) (-15 -2850 ((-111) (-111))) (-15 -4175 ((-553))) (-15 -1768 ((-111) (-111)))))) (T -909)) -((-4234 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4234 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4234 (*1 *1 *2 *3) (-12 (-5 *2 (-630 (-1 (-220) (-220)))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4234 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-630 (-1 (-220) (-220)))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4234 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4234 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-2527 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-2527 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4094 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) (-5 *1 (-909)))) (-4094 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-909)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-909)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) (-4342 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) (-4125 (*1 *1 *1) (-5 *1 (-909))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) (-1578 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-3526 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-1783 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-3541 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-909)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-909)))) (-4175 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-909))))) -(-13 (-937) (-10 -8 (-15 -4234 ($ (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ (-630 (-1 (-220) (-220))) (-1073 (-220)))) (-15 -4234 ($ (-630 (-1 (-220) (-220))) (-1073 (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4234 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)))) (-15 -2527 ($ (-1 (-925 (-220)) (-220)) (-1073 (-220)) (-1073 (-220)) (-1073 (-220)))) (-15 -4094 ($ (-1 (-220) (-220)) (-1073 (-220)))) (-15 -4094 ($ (-1 (-220) (-220)))) (-15 -4234 ($ $ (-1073 (-220)))) (-15 -1567 ((-111) $)) (-15 -4342 ($ $ (-1073 (-220)))) (-15 -4342 ($ $ (-1073 (-220)) (-1073 (-220)))) (-15 -4125 ($ $ (-1073 (-220)))) (-15 -4125 ($ $)) (-15 -1882 ((-1073 (-220)) $)) (-15 -1578 ((-553))) (-15 -2829 ((-553) (-553))) (-15 -3526 ((-553))) (-15 -3790 ((-553) (-553))) (-15 -1783 ((-553))) (-15 -1427 ((-553) (-553))) (-15 -3541 ((-111))) (-15 -2850 ((-111) (-111))) (-15 -4175 ((-553))) (-15 -1768 ((-111) (-111))))) -((-3861 (((-630 (-1073 (-220))) (-630 (-630 (-925 (-220))))) 24))) -(((-910) (-10 -7 (-15 -3861 ((-630 (-1073 (-220))) (-630 (-630 (-925 (-220)))))))) (T -910)) -((-3861 (*1 *2 *3) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *2 (-630 (-1073 (-220)))) (-5 *1 (-910))))) -(-10 -7 (-15 -3861 ((-630 (-1073 (-220))) (-630 (-630 (-925 (-220))))))) -((-4109 ((|#2| |#2|) 26)) (-3812 ((|#2| |#2|) 27)) (-3879 ((|#2| |#2|) 25)) (-1843 ((|#2| |#2| (-1137)) 24))) -(((-911 |#1| |#2|) (-10 -7 (-15 -1843 (|#2| |#2| (-1137))) (-15 -3879 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -3812 (|#2| |#2|))) (-833) (-424 |#1|)) (T -911)) -((-3812 (*1 *2 *2) (-12 (-4 *3 (-833)) (-5 *1 (-911 *3 *2)) (-4 *2 (-424 *3)))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-833)) (-5 *1 (-911 *3 *2)) (-4 *2 (-424 *3)))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-833)) (-5 *1 (-911 *3 *2)) (-4 *2 (-424 *3)))) (-1843 (*1 *2 *2 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-833)) (-5 *1 (-911 *4 *2)) (-4 *2 (-424 *4))))) -(-10 -7 (-15 -1843 (|#2| |#2| (-1137))) (-15 -3879 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -3812 (|#2| |#2|))) -((-4109 (((-310 (-553)) (-1155)) 16)) (-3812 (((-310 (-553)) (-1155)) 14)) (-3879 (((-310 (-553)) (-1155)) 12)) (-1843 (((-310 (-553)) (-1155) (-1137)) 19))) -(((-912) (-10 -7 (-15 -1843 ((-310 (-553)) (-1155) (-1137))) (-15 -3879 ((-310 (-553)) (-1155))) (-15 -4109 ((-310 (-553)) (-1155))) (-15 -3812 ((-310 (-553)) (-1155))))) (T -912)) -((-3812 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-310 (-553))) (-5 *1 (-912)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-310 (-553))) (-5 *1 (-912)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-310 (-553))) (-5 *1 (-912)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-1137)) (-5 *2 (-310 (-553))) (-5 *1 (-912))))) -(-10 -7 (-15 -1843 ((-310 (-553)) (-1155) (-1137))) (-15 -3879 ((-310 (-553)) (-1155))) (-15 -4109 ((-310 (-553)) (-1155))) (-15 -3812 ((-310 (-553)) (-1155)))) -((-2059 (((-871 |#1| |#3|) |#2| (-874 |#1|) (-871 |#1| |#3|)) 25)) (-4294 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) -(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -4294 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -2059 ((-871 |#1| |#3|) |#2| (-874 |#1|) (-871 |#1| |#3|)))) (-1079) (-868 |#1|) (-13 (-1079) (-1020 |#2|))) (T -913)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 *6)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-4 *6 (-13 (-1079) (-1020 *3))) (-4 *3 (-868 *5)) (-5 *1 (-913 *5 *3 *6)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1079) (-1020 *5))) (-4 *5 (-868 *4)) (-4 *4 (-1079)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-913 *4 *5 *6))))) -(-10 -7 (-15 -4294 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -2059 ((-871 |#1| |#3|) |#2| (-874 |#1|) (-871 |#1| |#3|)))) -((-2059 (((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)) 30))) -(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -2059 ((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)))) (-1079) (-13 (-545) (-833) (-868 |#1|)) (-13 (-424 |#2|) (-601 (-874 |#1|)) (-868 |#1|) (-1020 (-599 $)))) (T -914)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 *3)) (-4 *5 (-1079)) (-4 *3 (-13 (-424 *6) (-601 *4) (-868 *5) (-1020 (-599 $)))) (-5 *4 (-874 *5)) (-4 *6 (-13 (-545) (-833) (-868 *5))) (-5 *1 (-914 *5 *6 *3))))) -(-10 -7 (-15 -2059 ((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)))) -((-2059 (((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|)) 13))) -(((-915 |#1|) (-10 -7 (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|)))) (-538)) (T -915)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 (-553) *3)) (-5 *4 (-874 (-553))) (-4 *3 (-538)) (-5 *1 (-915 *3))))) -(-10 -7 (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|)))) -((-2059 (((-871 |#1| |#2|) (-599 |#2|) (-874 |#1|) (-871 |#1| |#2|)) 54))) -(((-916 |#1| |#2|) (-10 -7 (-15 -2059 ((-871 |#1| |#2|) (-599 |#2|) (-874 |#1|) (-871 |#1| |#2|)))) (-1079) (-13 (-833) (-1020 (-599 $)) (-601 (-874 |#1|)) (-868 |#1|))) (T -916)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 *6)) (-5 *3 (-599 *6)) (-4 *5 (-1079)) (-4 *6 (-13 (-833) (-1020 (-599 $)) (-601 *4) (-868 *5))) (-5 *4 (-874 *5)) (-5 *1 (-916 *5 *6))))) -(-10 -7 (-15 -2059 ((-871 |#1| |#2|) (-599 |#2|) (-874 |#1|) (-871 |#1| |#2|)))) -((-2059 (((-867 |#1| |#2| |#3|) |#3| (-874 |#1|) (-867 |#1| |#2| |#3|)) 15))) -(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -2059 ((-867 |#1| |#2| |#3|) |#3| (-874 |#1|) (-867 |#1| |#2| |#3|)))) (-1079) (-868 |#1|) (-651 |#2|)) (T -917)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-867 *5 *6 *3)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-4 *6 (-868 *5)) (-4 *3 (-651 *6)) (-5 *1 (-917 *5 *6 *3))))) -(-10 -7 (-15 -2059 ((-867 |#1| |#2| |#3|) |#3| (-874 |#1|) (-867 |#1| |#2| |#3|)))) -((-2059 (((-871 |#1| |#5|) |#5| (-874 |#1|) (-871 |#1| |#5|)) 17 (|has| |#3| (-868 |#1|))) (((-871 |#1| |#5|) |#5| (-874 |#1|) (-871 |#1| |#5|) (-1 (-871 |#1| |#5|) |#3| (-874 |#1|) (-871 |#1| |#5|))) 16))) -(((-918 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2059 ((-871 |#1| |#5|) |#5| (-874 |#1|) (-871 |#1| |#5|) (-1 (-871 |#1| |#5|) |#3| (-874 |#1|) (-871 |#1| |#5|)))) (IF (|has| |#3| (-868 |#1|)) (-15 -2059 ((-871 |#1| |#5|) |#5| (-874 |#1|) (-871 |#1| |#5|))) |%noBranch|)) (-1079) (-779) (-833) (-13 (-1031) (-833) (-868 |#1|)) (-13 (-931 |#4| |#2| |#3|) (-601 (-874 |#1|)))) (T -918)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 *3)) (-4 *5 (-1079)) (-4 *3 (-13 (-931 *8 *6 *7) (-601 *4))) (-5 *4 (-874 *5)) (-4 *7 (-868 *5)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-13 (-1031) (-833) (-868 *5))) (-5 *1 (-918 *5 *6 *7 *8 *3)))) (-2059 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-871 *6 *3) *8 (-874 *6) (-871 *6 *3))) (-4 *8 (-833)) (-5 *2 (-871 *6 *3)) (-5 *4 (-874 *6)) (-4 *6 (-1079)) (-4 *3 (-13 (-931 *9 *7 *8) (-601 *4))) (-4 *7 (-779)) (-4 *9 (-13 (-1031) (-833) (-868 *6))) (-5 *1 (-918 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2059 ((-871 |#1| |#5|) |#5| (-874 |#1|) (-871 |#1| |#5|) (-1 (-871 |#1| |#5|) |#3| (-874 |#1|) (-871 |#1| |#5|)))) (IF (|has| |#3| (-868 |#1|)) (-15 -2059 ((-871 |#1| |#5|) |#5| (-874 |#1|) (-871 |#1| |#5|))) |%noBranch|)) -((-3893 ((|#2| |#2| (-630 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) -(((-919 |#1| |#2| |#3|) (-10 -7 (-15 -3893 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3893 (|#2| |#2| (-630 (-1 (-111) |#3|))))) (-833) (-424 |#1|) (-1192)) (T -919)) -((-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-1 (-111) *5))) (-4 *5 (-1192)) (-4 *4 (-833)) (-5 *1 (-919 *4 *2 *5)) (-4 *2 (-424 *4)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1192)) (-4 *4 (-833)) (-5 *1 (-919 *4 *2 *5)) (-4 *2 (-424 *4))))) -(-10 -7 (-15 -3893 (|#2| |#2| (-1 (-111) |#3|))) (-15 -3893 (|#2| |#2| (-630 (-1 (-111) |#3|))))) -((-3893 (((-310 (-553)) (-1155) (-630 (-1 (-111) |#1|))) 18) (((-310 (-553)) (-1155) (-1 (-111) |#1|)) 15))) -(((-920 |#1|) (-10 -7 (-15 -3893 ((-310 (-553)) (-1155) (-1 (-111) |#1|))) (-15 -3893 ((-310 (-553)) (-1155) (-630 (-1 (-111) |#1|))))) (-1192)) (T -920)) -((-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-630 (-1 (-111) *5))) (-4 *5 (-1192)) (-5 *2 (-310 (-553))) (-5 *1 (-920 *5)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1192)) (-5 *2 (-310 (-553))) (-5 *1 (-920 *5))))) -(-10 -7 (-15 -3893 ((-310 (-553)) (-1155) (-1 (-111) |#1|))) (-15 -3893 ((-310 (-553)) (-1155) (-630 (-1 (-111) |#1|))))) -((-2059 (((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)) 25))) -(((-921 |#1| |#2| |#3|) (-10 -7 (-15 -2059 ((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)))) (-1079) (-13 (-545) (-868 |#1|) (-601 (-874 |#1|))) (-974 |#2|)) (T -921)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 *3)) (-4 *5 (-1079)) (-4 *3 (-974 *6)) (-4 *6 (-13 (-545) (-868 *5) (-601 *4))) (-5 *4 (-874 *5)) (-5 *1 (-921 *5 *6 *3))))) -(-10 -7 (-15 -2059 ((-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)))) -((-2059 (((-871 |#1| (-1155)) (-1155) (-874 |#1|) (-871 |#1| (-1155))) 17))) -(((-922 |#1|) (-10 -7 (-15 -2059 ((-871 |#1| (-1155)) (-1155) (-874 |#1|) (-871 |#1| (-1155))))) (-1079)) (T -922)) -((-2059 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-871 *5 (-1155))) (-5 *3 (-1155)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-5 *1 (-922 *5))))) -(-10 -7 (-15 -2059 ((-871 |#1| (-1155)) (-1155) (-874 |#1|) (-871 |#1| (-1155))))) -((-1688 (((-871 |#1| |#3|) (-630 |#3|) (-630 (-874 |#1|)) (-871 |#1| |#3|) (-1 (-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|))) 33)) (-2059 (((-871 |#1| |#3|) (-630 |#3|) (-630 (-874 |#1|)) (-1 |#3| (-630 |#3|)) (-871 |#1| |#3|) (-1 (-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|))) 32))) -(((-923 |#1| |#2| |#3|) (-10 -7 (-15 -2059 ((-871 |#1| |#3|) (-630 |#3|) (-630 (-874 |#1|)) (-1 |#3| (-630 |#3|)) (-871 |#1| |#3|) (-1 (-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)))) (-15 -1688 ((-871 |#1| |#3|) (-630 |#3|) (-630 (-874 |#1|)) (-871 |#1| |#3|) (-1 (-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|))))) (-1079) (-13 (-1031) (-833)) (-13 (-1031) (-601 (-874 |#1|)) (-1020 |#2|))) (T -923)) -((-1688 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 (-874 *6))) (-5 *5 (-1 (-871 *6 *8) *8 (-874 *6) (-871 *6 *8))) (-4 *6 (-1079)) (-4 *8 (-13 (-1031) (-601 (-874 *6)) (-1020 *7))) (-5 *2 (-871 *6 *8)) (-4 *7 (-13 (-1031) (-833))) (-5 *1 (-923 *6 *7 *8)))) (-2059 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-630 (-874 *7))) (-5 *5 (-1 *9 (-630 *9))) (-5 *6 (-1 (-871 *7 *9) *9 (-874 *7) (-871 *7 *9))) (-4 *7 (-1079)) (-4 *9 (-13 (-1031) (-601 (-874 *7)) (-1020 *8))) (-5 *2 (-871 *7 *9)) (-5 *3 (-630 *9)) (-4 *8 (-13 (-1031) (-833))) (-5 *1 (-923 *7 *8 *9))))) -(-10 -7 (-15 -2059 ((-871 |#1| |#3|) (-630 |#3|) (-630 (-874 |#1|)) (-1 |#3| (-630 |#3|)) (-871 |#1| |#3|) (-1 (-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|)))) (-15 -1688 ((-871 |#1| |#3|) (-630 |#3|) (-630 (-874 |#1|)) (-871 |#1| |#3|) (-1 (-871 |#1| |#3|) |#3| (-874 |#1|) (-871 |#1| |#3|))))) -((-2925 (((-1151 (-401 (-553))) (-553)) 63)) (-3805 (((-1151 (-553)) (-553)) 66)) (-1492 (((-1151 (-553)) (-553)) 60)) (-2940 (((-553) (-1151 (-553))) 55)) (-2661 (((-1151 (-401 (-553))) (-553)) 49)) (-1555 (((-1151 (-553)) (-553)) 38)) (-1712 (((-1151 (-553)) (-553)) 68)) (-1721 (((-1151 (-553)) (-553)) 67)) (-1635 (((-1151 (-401 (-553))) (-553)) 51))) -(((-924) (-10 -7 (-15 -1635 ((-1151 (-401 (-553))) (-553))) (-15 -1721 ((-1151 (-553)) (-553))) (-15 -1712 ((-1151 (-553)) (-553))) (-15 -1555 ((-1151 (-553)) (-553))) (-15 -2661 ((-1151 (-401 (-553))) (-553))) (-15 -2940 ((-553) (-1151 (-553)))) (-15 -1492 ((-1151 (-553)) (-553))) (-15 -3805 ((-1151 (-553)) (-553))) (-15 -2925 ((-1151 (-401 (-553))) (-553))))) (T -924)) -((-2925 (*1 *2 *3) (-12 (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-924)) (-5 *3 (-553)))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553)))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-1151 (-553))) (-5 *2 (-553)) (-5 *1 (-924)))) (-2661 (*1 *2 *3) (-12 (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-924)) (-5 *3 (-553)))) (-1555 (*1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553)))) (-1712 (*1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553)))) (-1721 (*1 *2 *3) (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-924)) (-5 *3 (-553))))) -(-10 -7 (-15 -1635 ((-1151 (-401 (-553))) (-553))) (-15 -1721 ((-1151 (-553)) (-553))) (-15 -1712 ((-1151 (-553)) (-553))) (-15 -1555 ((-1151 (-553)) (-553))) (-15 -2661 ((-1151 (-401 (-553))) (-553))) (-15 -2940 ((-553) (-1151 (-553)))) (-15 -1492 ((-1151 (-553)) (-553))) (-15 -3805 ((-1151 (-553)) (-553))) (-15 -2925 ((-1151 (-401 (-553))) (-553)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2247 (($ (-757)) NIL (|has| |#1| (-23)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) |#1|) 11 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-1743 (($ (-630 |#1|)) 13)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1903 (((-674 |#1|) $ $) NIL (|has| |#1| (-1031)))) (-3202 (($ (-757) |#1|) 8)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 10 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3312 ((|#1| $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1031))))) (-3786 (((-111) $ (-757)) NIL)) (-1899 ((|#1| $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1031))))) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-3089 (($ $ (-630 |#1|)) 26)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) 20) (($ $ (-1205 (-553))) NIL)) (-1449 ((|#1| $ $) NIL (|has| |#1| (-1031)))) (-1337 (((-903) $) 16)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2533 (($ $ $) 24)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529)))) (($ (-630 |#1|)) 17)) (-3121 (($ (-630 |#1|)) NIL)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1711 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1700 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-553) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-712))) (($ $ |#1|) NIL (|has| |#1| (-712)))) (-2563 (((-757) $) 14 (|has| $ (-6 -4369))))) -(((-925 |#1|) (-962 |#1|) (-1031)) (T -925)) -NIL -(-962 |#1|) -((-3349 (((-474 |#1| |#2|) (-934 |#2|)) 20)) (-3754 (((-242 |#1| |#2|) (-934 |#2|)) 33)) (-3636 (((-934 |#2|) (-474 |#1| |#2|)) 25)) (-3052 (((-242 |#1| |#2|) (-474 |#1| |#2|)) 55)) (-2552 (((-934 |#2|) (-242 |#1| |#2|)) 30)) (-2121 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 46))) -(((-926 |#1| |#2|) (-10 -7 (-15 -2121 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -3052 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -3349 ((-474 |#1| |#2|) (-934 |#2|))) (-15 -3636 ((-934 |#2|) (-474 |#1| |#2|))) (-15 -2552 ((-934 |#2|) (-242 |#1| |#2|))) (-15 -3754 ((-242 |#1| |#2|) (-934 |#2|)))) (-630 (-1155)) (-1031)) (T -926)) -((-3754 (*1 *2 *3) (-12 (-5 *3 (-934 *5)) (-4 *5 (-1031)) (-5 *2 (-242 *4 *5)) (-5 *1 (-926 *4 *5)) (-14 *4 (-630 (-1155))))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) (-5 *2 (-934 *5)) (-5 *1 (-926 *4 *5)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) (-5 *2 (-934 *5)) (-5 *1 (-926 *4 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-934 *5)) (-4 *5 (-1031)) (-5 *2 (-474 *4 *5)) (-5 *1 (-926 *4 *5)) (-14 *4 (-630 (-1155))))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) (-5 *2 (-242 *4 *5)) (-5 *1 (-926 *4 *5)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) (-5 *2 (-474 *4 *5)) (-5 *1 (-926 *4 *5))))) -(-10 -7 (-15 -2121 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -3052 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -3349 ((-474 |#1| |#2|) (-934 |#2|))) (-15 -3636 ((-934 |#2|) (-474 |#1| |#2|))) (-15 -2552 ((-934 |#2|) (-242 |#1| |#2|))) (-15 -3754 ((-242 |#1| |#2|) (-934 |#2|)))) -((-3143 (((-630 |#2|) |#2| |#2|) 10)) (-2167 (((-757) (-630 |#1|)) 37 (|has| |#1| (-831)))) (-2702 (((-630 |#2|) |#2|) 11)) (-2671 (((-757) (-630 |#1|) (-553) (-553)) 39 (|has| |#1| (-831)))) (-2321 ((|#1| |#2|) 32 (|has| |#1| (-831))))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3143 ((-630 |#2|) |#2| |#2|)) (-15 -2702 ((-630 |#2|) |#2|)) (IF (|has| |#1| (-831)) (PROGN (-15 -2321 (|#1| |#2|)) (-15 -2167 ((-757) (-630 |#1|))) (-15 -2671 ((-757) (-630 |#1|) (-553) (-553)))) |%noBranch|)) (-357) (-1214 |#1|)) (T -927)) -((-2671 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-553)) (-4 *5 (-831)) (-4 *5 (-357)) (-5 *2 (-757)) (-5 *1 (-927 *5 *6)) (-4 *6 (-1214 *5)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-831)) (-4 *4 (-357)) (-5 *2 (-757)) (-5 *1 (-927 *4 *5)) (-4 *5 (-1214 *4)))) (-2321 (*1 *2 *3) (-12 (-4 *2 (-357)) (-4 *2 (-831)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1214 *2)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-630 *3)) (-5 *1 (-927 *4 *3)) (-4 *3 (-1214 *4)))) (-3143 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-630 *3)) (-5 *1 (-927 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -3143 ((-630 |#2|) |#2| |#2|)) (-15 -2702 ((-630 |#2|) |#2|)) (IF (|has| |#1| (-831)) (PROGN (-15 -2321 (|#1| |#2|)) (-15 -2167 ((-757) (-630 |#1|))) (-15 -2671 ((-757) (-630 |#1|) (-553) (-553)))) |%noBranch|)) -((-1482 (((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)) 19))) -(((-928 |#1| |#2|) (-10 -7 (-15 -1482 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) (-1031) (-1031)) (T -928)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-5 *2 (-934 *6)) (-5 *1 (-928 *5 *6))))) -(-10 -7 (-15 -1482 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) -((-3322 (((-1211 |#1| (-934 |#2|)) (-934 |#2|) (-1234 |#1|)) 18))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3322 ((-1211 |#1| (-934 |#2|)) (-934 |#2|) (-1234 |#1|)))) (-1155) (-1031)) (T -929)) -((-3322 (*1 *2 *3 *4) (-12 (-5 *4 (-1234 *5)) (-14 *5 (-1155)) (-4 *6 (-1031)) (-5 *2 (-1211 *5 (-934 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-934 *6))))) -(-10 -7 (-15 -3322 ((-1211 |#1| (-934 |#2|)) (-934 |#2|) (-1234 |#1|)))) -((-2085 (((-757) $) 71) (((-757) $ (-630 |#4|)) 74)) (-1536 (($ $) 173)) (-2708 (((-412 $) $) 165)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 116)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 (-553) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) NIL) (((-553) $) NIL) ((|#4| $) 59)) (-2134 (($ $ $ |#4|) 76)) (-2077 (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) 106) (((-674 |#2|) (-674 $)) 99)) (-1655 (($ $) 180) (($ $ |#4|) 183)) (-3667 (((-630 $) $) 63)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 199) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 192)) (-2096 (((-630 $) $) 28)) (-3481 (($ |#2| |#3|) NIL) (($ $ |#4| (-757)) NIL) (($ $ (-630 |#4|) (-630 (-757))) 57)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#4|) 162)) (-2411 (((-3 (-630 $) "failed") $) 42)) (-2201 (((-3 (-630 $) "failed") $) 31)) (-3107 (((-3 (-2 (|:| |var| |#4|) (|:| -2692 (-757))) "failed") $) 47)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 109)) (-2979 (((-412 (-1151 $)) (-1151 $)) 122)) (-1834 (((-412 (-1151 $)) (-1151 $)) 120)) (-3355 (((-412 $) $) 140)) (-2356 (($ $ (-630 (-288 $))) 21) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-630 |#4|) (-630 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-630 |#4|) (-630 $)) NIL)) (-3000 (($ $ |#4|) 78)) (-1524 (((-874 (-373)) $) 213) (((-874 (-553)) $) 206) (((-529) $) 221)) (-4198 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 154)) (-1624 ((|#2| $ |#3|) NIL) (($ $ |#4| (-757)) 52) (($ $ (-630 |#4|) (-630 (-757))) 55)) (-2941 (((-3 $ "failed") $) 156)) (-1636 (((-111) $ $) 186))) -(((-930 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|))) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -1834 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -2979 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -2119 ((-3 (-1238 |#1|) "failed") (-674 |#1|))) (-15 -1655 (|#1| |#1| |#4|)) (-15 -4198 (|#1| |#1| |#4|)) (-15 -3000 (|#1| |#1| |#4|)) (-15 -2134 (|#1| |#1| |#1| |#4|)) (-15 -3667 ((-630 |#1|) |#1|)) (-15 -2085 ((-757) |#1| (-630 |#4|))) (-15 -2085 ((-757) |#1|)) (-15 -3107 ((-3 (-2 (|:| |var| |#4|) (|:| -2692 (-757))) "failed") |#1|)) (-15 -2411 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2201 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3481 (|#1| |#1| (-630 |#4|) (-630 (-757)))) (-15 -3481 (|#1| |#1| |#4| (-757))) (-15 -3201 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1| |#4|)) (-15 -2096 ((-630 |#1|) |#1|)) (-15 -1624 (|#1| |#1| (-630 |#4|) (-630 (-757)))) (-15 -1624 (|#1| |#1| |#4| (-757))) (-15 -2077 ((-674 |#2|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -1399 ((-3 |#4| "failed") |#1|)) (-15 -2707 (|#4| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#4| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#4| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -3481 (|#1| |#2| |#3|)) (-15 -1624 (|#2| |#1| |#3|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -1655 (|#1| |#1|))) (-931 |#2| |#3| |#4|) (-1031) (-779) (-833)) (T -930)) -NIL -(-10 -8 (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|))) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -2941 ((-3 |#1| "failed") |#1|)) (-15 -1636 ((-111) |#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -1834 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -2979 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -2119 ((-3 (-1238 |#1|) "failed") (-674 |#1|))) (-15 -1655 (|#1| |#1| |#4|)) (-15 -4198 (|#1| |#1| |#4|)) (-15 -3000 (|#1| |#1| |#4|)) (-15 -2134 (|#1| |#1| |#1| |#4|)) (-15 -3667 ((-630 |#1|) |#1|)) (-15 -2085 ((-757) |#1| (-630 |#4|))) (-15 -2085 ((-757) |#1|)) (-15 -3107 ((-3 (-2 (|:| |var| |#4|) (|:| -2692 (-757))) "failed") |#1|)) (-15 -2411 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2201 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3481 (|#1| |#1| (-630 |#4|) (-630 (-757)))) (-15 -3481 (|#1| |#1| |#4| (-757))) (-15 -3201 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1| |#4|)) (-15 -2096 ((-630 |#1|) |#1|)) (-15 -1624 (|#1| |#1| (-630 |#4|) (-630 (-757)))) (-15 -1624 (|#1| |#1| |#4| (-757))) (-15 -2077 ((-674 |#2|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -1399 ((-3 |#4| "failed") |#1|)) (-15 -2707 (|#4| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#4| |#1|)) (-15 -2356 (|#1| |#1| (-630 |#4|) (-630 |#2|))) (-15 -2356 (|#1| |#1| |#4| |#2|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -3481 (|#1| |#2| |#3|)) (-15 -1624 (|#2| |#1| |#3|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -1655 (|#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 |#3|) $) 110)) (-3322 (((-1151 $) $ |#3|) 125) (((-1151 |#1|) $) 124)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 87 (|has| |#1| (-545)))) (-1968 (($ $) 88 (|has| |#1| (-545)))) (-2028 (((-111) $) 90 (|has| |#1| (-545)))) (-2085 (((-757) $) 112) (((-757) $ (-630 |#3|)) 111)) (-2910 (((-3 $ "failed") $ $) 19)) (-1393 (((-412 (-1151 $)) (-1151 $)) 100 (|has| |#1| (-891)))) (-1536 (($ $) 98 (|has| |#1| (-445)))) (-2708 (((-412 $) $) 97 (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 103 (|has| |#1| (-891)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 164) (((-3 (-401 (-553)) "failed") $) 161 (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) 159 (|has| |#1| (-1020 (-553)))) (((-3 |#3| "failed") $) 136)) (-2707 ((|#1| $) 163) (((-401 (-553)) $) 162 (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) 160 (|has| |#1| (-1020 (-553)))) ((|#3| $) 137)) (-2134 (($ $ $ |#3|) 108 (|has| |#1| (-169)))) (-3678 (($ $) 154)) (-2077 (((-674 (-553)) (-674 $)) 134 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 133 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 132) (((-674 |#1|) (-674 $)) 131)) (-2982 (((-3 $ "failed") $) 33)) (-1655 (($ $) 176 (|has| |#1| (-445))) (($ $ |#3|) 105 (|has| |#1| (-445)))) (-3667 (((-630 $) $) 109)) (-3119 (((-111) $) 96 (|has| |#1| (-891)))) (-2686 (($ $ |#1| |#2| $) 172)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 84 (-12 (|has| |#3| (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 83 (-12 (|has| |#3| (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-1848 (((-111) $) 31)) (-1984 (((-757) $) 169)) (-3493 (($ (-1151 |#1|) |#3|) 117) (($ (-1151 $) |#3|) 116)) (-2096 (((-630 $) $) 126)) (-1298 (((-111) $) 152)) (-3481 (($ |#1| |#2|) 153) (($ $ |#3| (-757)) 119) (($ $ (-630 |#3|) (-630 (-757))) 118)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#3|) 120)) (-2423 ((|#2| $) 170) (((-757) $ |#3|) 122) (((-630 (-757)) $ (-630 |#3|)) 121)) (-1824 (($ $ $) 79 (|has| |#1| (-833)))) (-1975 (($ $ $) 78 (|has| |#1| (-833)))) (-2241 (($ (-1 |#2| |#2|) $) 171)) (-1482 (($ (-1 |#1| |#1|) $) 151)) (-1332 (((-3 |#3| "failed") $) 123)) (-3644 (($ $) 149)) (-3655 ((|#1| $) 148)) (-2471 (($ (-630 $)) 94 (|has| |#1| (-445))) (($ $ $) 93 (|has| |#1| (-445)))) (-1735 (((-1137) $) 9)) (-2411 (((-3 (-630 $) "failed") $) 114)) (-2201 (((-3 (-630 $) "failed") $) 115)) (-3107 (((-3 (-2 (|:| |var| |#3|) (|:| -2692 (-757))) "failed") $) 113)) (-2786 (((-1099) $) 10)) (-3623 (((-111) $) 166)) (-3633 ((|#1| $) 167)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 95 (|has| |#1| (-445)))) (-2508 (($ (-630 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 102 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 101 (|has| |#1| (-891)))) (-3355 (((-412 $) $) 99 (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) 145) (($ $ (-288 $)) 144) (($ $ $ $) 143) (($ $ (-630 $) (-630 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-630 |#3|) (-630 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-630 |#3|) (-630 $)) 138)) (-3000 (($ $ |#3|) 107 (|has| |#1| (-169)))) (-1330 (($ $ |#3|) 42) (($ $ (-630 |#3|)) 41) (($ $ |#3| (-757)) 40) (($ $ (-630 |#3|) (-630 (-757))) 39)) (-3872 ((|#2| $) 150) (((-757) $ |#3|) 130) (((-630 (-757)) $ (-630 |#3|)) 129)) (-1524 (((-874 (-373)) $) 82 (-12 (|has| |#3| (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) 81 (-12 (|has| |#3| (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) 80 (-12 (|has| |#3| (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) 175 (|has| |#1| (-445))) (($ $ |#3|) 106 (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 104 (-3726 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-545))) (($ (-401 (-553))) 72 (-3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))))) (-3987 (((-630 |#1|) $) 168)) (-1624 ((|#1| $ |#2|) 155) (($ $ |#3| (-757)) 128) (($ $ (-630 |#3|) (-630 (-757))) 127)) (-2941 (((-3 $ "failed") $) 73 (-3988 (-3726 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) 28)) (-2599 (($ $ $ (-757)) 173 (|has| |#1| (-169)))) (-1639 (((-111) $ $) 89 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ |#3|) 38) (($ $ (-630 |#3|)) 37) (($ $ |#3| (-757)) 36) (($ $ (-630 |#3|) (-630 (-757))) 35)) (-1669 (((-111) $ $) 76 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 75 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 77 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 74 (|has| |#1| (-833)))) (-1723 (($ $ |#1|) 156 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 158 (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) 157 (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-931 |#1| |#2| |#3|) (-137) (-1031) (-779) (-833)) (T -931)) -((-1655 (*1 *1 *1) (-12 (-4 *1 (-931 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445)))) (-3872 (*1 *2 *1 *3) (-12 (-4 *1 (-931 *4 *5 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-757)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *6)) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 (-757))))) (-1624 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-931 *4 *5 *2)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *2 (-833)))) (-1624 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *6)) (-5 *3 (-630 (-757))) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)))) (-2096 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-931 *3 *4 *5)))) (-3322 (*1 *2 *1 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-1151 *1)) (-4 *1 (-931 *4 *5 *3)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-1151 *3)))) (-1332 (*1 *2 *1) (|partial| -12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-2423 (*1 *2 *1 *3) (-12 (-4 *1 (-931 *4 *5 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-757)))) (-2423 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *6)) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 (-757))))) (-3201 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-931 *4 *5 *3)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-931 *4 *5 *2)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *2 (-833)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *6)) (-5 *3 (-630 (-757))) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)))) (-3493 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 *4)) (-4 *4 (-1031)) (-4 *1 (-931 *4 *5 *3)) (-4 *5 (-779)) (-4 *3 (-833)))) (-3493 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-931 *4 *5 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)))) (-2201 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-931 *3 *4 *5)))) (-2411 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-931 *3 *4 *5)))) (-3107 (*1 *2 *1) (|partial| -12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| |var| *5) (|:| -2692 (-757)))))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-757)))) (-2085 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *6)) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-757)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *5)))) (-3667 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-931 *3 *4 *5)))) (-2134 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *3 (-169)))) (-3000 (*1 *1 *1 *2) (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *3 (-169)))) (-4198 (*1 *1 *1 *2) (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *3 (-445)))) (-1655 (*1 *1 *1 *2) (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *3 (-445)))) (-1536 (*1 *1 *1) (-12 (-4 *1 (-931 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445)))) (-2708 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-412 *1)) (-4 *1 (-931 *3 *4 *5))))) -(-13 (-882 |t#3|) (-320 |t#1| |t#2|) (-303 $) (-507 |t#3| |t#1|) (-507 |t#3| $) (-1020 |t#3|) (-371 |t#1|) (-10 -8 (-15 -3872 ((-757) $ |t#3|)) (-15 -3872 ((-630 (-757)) $ (-630 |t#3|))) (-15 -1624 ($ $ |t#3| (-757))) (-15 -1624 ($ $ (-630 |t#3|) (-630 (-757)))) (-15 -2096 ((-630 $) $)) (-15 -3322 ((-1151 $) $ |t#3|)) (-15 -3322 ((-1151 |t#1|) $)) (-15 -1332 ((-3 |t#3| "failed") $)) (-15 -2423 ((-757) $ |t#3|)) (-15 -2423 ((-630 (-757)) $ (-630 |t#3|))) (-15 -3201 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |t#3|)) (-15 -3481 ($ $ |t#3| (-757))) (-15 -3481 ($ $ (-630 |t#3|) (-630 (-757)))) (-15 -3493 ($ (-1151 |t#1|) |t#3|)) (-15 -3493 ($ (-1151 $) |t#3|)) (-15 -2201 ((-3 (-630 $) "failed") $)) (-15 -2411 ((-3 (-630 $) "failed") $)) (-15 -3107 ((-3 (-2 (|:| |var| |t#3|) (|:| -2692 (-757))) "failed") $)) (-15 -2085 ((-757) $)) (-15 -2085 ((-757) $ (-630 |t#3|))) (-15 -3506 ((-630 |t#3|) $)) (-15 -3667 ((-630 $) $)) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-601 (-529))) (IF (|has| |t#3| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-601 (-874 (-553)))) (IF (|has| |t#3| (-601 (-874 (-553)))) (-6 (-601 (-874 (-553)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-601 (-874 (-373)))) (IF (|has| |t#3| (-601 (-874 (-373)))) (-6 (-601 (-874 (-373)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-868 (-553))) (IF (|has| |t#3| (-868 (-553))) (-6 (-868 (-553))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-868 (-373))) (IF (|has| |t#3| (-868 (-373))) (-6 (-868 (-373))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -2134 ($ $ $ |t#3|)) (-15 -3000 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-6 (-445)) (-15 -4198 ($ $ |t#3|)) (-15 -1655 ($ $)) (-15 -1655 ($ $ |t#3|)) (-15 -2708 ((-412 $) $)) (-15 -1536 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4367)) (-6 -4367) |%noBranch|) (IF (|has| |t#1| (-891)) (-6 (-891)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 |#3|) . T) ((-603 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-601 (-529)) -12 (|has| |#1| (-601 (-529))) (|has| |#3| (-601 (-529)))) ((-601 (-874 (-373))) -12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#3| (-601 (-874 (-373))))) ((-601 (-874 (-553))) -12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#3| (-601 (-874 (-553))))) ((-284) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -3988 (|has| |#1| (-891)) (|has| |#1| (-445))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-712) . T) ((-833) |has| |#1| (-833)) ((-882 |#3|) . T) ((-868 (-373)) -12 (|has| |#1| (-868 (-373))) (|has| |#3| (-868 (-373)))) ((-868 (-553)) -12 (|has| |#1| (-868 (-553))) (|has| |#3| (-868 (-553)))) ((-891) |has| |#1| (-891)) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1020 |#3|) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) |has| |#1| (-891))) -((-3506 (((-630 |#2|) |#5|) 36)) (-3322 (((-1151 |#5|) |#5| |#2| (-1151 |#5|)) 23) (((-401 (-1151 |#5|)) |#5| |#2|) 16)) (-3493 ((|#5| (-401 (-1151 |#5|)) |#2|) 30)) (-1332 (((-3 |#2| "failed") |#5|) 65)) (-2411 (((-3 (-630 |#5|) "failed") |#5|) 59)) (-1500 (((-3 (-2 (|:| |val| |#5|) (|:| -2692 (-553))) "failed") |#5|) 47)) (-2201 (((-3 (-630 |#5|) "failed") |#5|) 61)) (-3107 (((-3 (-2 (|:| |var| |#2|) (|:| -2692 (-553))) "failed") |#5|) 51))) -(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3506 ((-630 |#2|) |#5|)) (-15 -1332 ((-3 |#2| "failed") |#5|)) (-15 -3322 ((-401 (-1151 |#5|)) |#5| |#2|)) (-15 -3493 (|#5| (-401 (-1151 |#5|)) |#2|)) (-15 -3322 ((-1151 |#5|) |#5| |#2| (-1151 |#5|))) (-15 -2201 ((-3 (-630 |#5|) "failed") |#5|)) (-15 -2411 ((-3 (-630 |#5|) "failed") |#5|)) (-15 -3107 ((-3 (-2 (|:| |var| |#2|) (|:| -2692 (-553))) "failed") |#5|)) (-15 -1500 ((-3 (-2 (|:| |val| |#5|) (|:| -2692 (-553))) "failed") |#5|))) (-779) (-833) (-1031) (-931 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -3110 ($ |#4|)) (-15 -3963 (|#4| $)) (-15 -3974 (|#4| $))))) (T -932)) -((-1500 (*1 *2 *3) (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2692 (-553)))) (-5 *1 (-932 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) (-3107 (*1 *2 *3) (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2692 (-553)))) (-5 *1 (-932 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) (-2411 (*1 *2 *3) (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-630 *3)) (-5 *1 (-932 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) (-2201 (*1 *2 *3) (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-630 *3)) (-5 *1 (-932 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) (-3322 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1151 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))) (-4 *7 (-931 *6 *5 *4)) (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-1031)) (-5 *1 (-932 *5 *4 *6 *7 *3)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1151 *2))) (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-1031)) (-4 *2 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))) (-5 *1 (-932 *5 *4 *6 *7 *2)) (-4 *7 (-931 *6 *5 *4)))) (-3322 (*1 *2 *3 *4) (-12 (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-1031)) (-4 *7 (-931 *6 *5 *4)) (-5 *2 (-401 (-1151 *3))) (-5 *1 (-932 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) (-1332 (*1 *2 *3) (|partial| -12 (-4 *4 (-779)) (-4 *5 (-1031)) (-4 *6 (-931 *5 *4 *2)) (-4 *2 (-833)) (-5 *1 (-932 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *6)) (-15 -3963 (*6 $)) (-15 -3974 (*6 $))))))) (-3506 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-630 *5)) (-5 *1 (-932 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $)))))))) -(-10 -7 (-15 -3506 ((-630 |#2|) |#5|)) (-15 -1332 ((-3 |#2| "failed") |#5|)) (-15 -3322 ((-401 (-1151 |#5|)) |#5| |#2|)) (-15 -3493 (|#5| (-401 (-1151 |#5|)) |#2|)) (-15 -3322 ((-1151 |#5|) |#5| |#2| (-1151 |#5|))) (-15 -2201 ((-3 (-630 |#5|) "failed") |#5|)) (-15 -2411 ((-3 (-630 |#5|) "failed") |#5|)) (-15 -3107 ((-3 (-2 (|:| |var| |#2|) (|:| -2692 (-553))) "failed") |#5|)) (-15 -1500 ((-3 (-2 (|:| |val| |#5|) (|:| -2692 (-553))) "failed") |#5|))) -((-1482 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1482 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-779) (-833) (-1031) (-931 |#3| |#1| |#2|) (-13 (-1079) (-10 -8 (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-757)))))) (T -933)) -((-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-833)) (-4 *8 (-1031)) (-4 *6 (-779)) (-4 *2 (-13 (-1079) (-10 -8 (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-757)))))) (-5 *1 (-933 *6 *7 *8 *5 *2)) (-4 *5 (-931 *8 *6 *7))))) -(-10 -7 (-15 -1482 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1155)) $) 16)) (-3322 (((-1151 $) $ (-1155)) 21) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1155))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 8) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-1155) "failed") $) NIL)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-1155) $) NIL)) (-2134 (($ $ $ (-1155)) NIL (|has| |#1| (-169)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1155)) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-524 (-1155)) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1155) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1155) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#1|) (-1155)) NIL) (($ (-1151 $) (-1155)) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-524 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1155)) NIL)) (-2423 (((-524 (-1155)) $) NIL) (((-757) $ (-1155)) NIL) (((-630 (-757)) $ (-630 (-1155))) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-524 (-1155)) (-524 (-1155))) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1332 (((-3 (-1155) "failed") $) 19)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-1155)) (|:| -2692 (-757))) "failed") $) NIL)) (-3406 (($ $ (-1155)) 29 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1155) |#1|) NIL) (($ $ (-630 (-1155)) (-630 |#1|)) NIL) (($ $ (-1155) $) NIL) (($ $ (-630 (-1155)) (-630 $)) NIL)) (-3000 (($ $ (-1155)) NIL (|has| |#1| (-169)))) (-1330 (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-3872 (((-524 (-1155)) $) NIL) (((-757) $ (-1155)) NIL) (((-630 (-757)) $ (-630 (-1155))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-1155) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-1155) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-1155) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1155)) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) 25) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-1155)) 27) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-524 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-934 |#1|) (-13 (-931 |#1| (-524 (-1155)) (-1155)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1155))) |%noBranch|))) (-1031)) (T -934)) -((-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-934 *3)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031))))) -(-13 (-931 |#1| (-524 (-1155)) (-1155)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1155))) |%noBranch|))) -((-3507 (((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) |#3| (-757)) 38)) (-2681 (((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) (-401 (-553)) (-757)) 34)) (-4138 (((-2 (|:| -2692 (-757)) (|:| -4120 |#4|) (|:| |radicand| (-630 |#4|))) |#4| (-757)) 54)) (-3038 (((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) |#5| (-757)) 64 (|has| |#3| (-445))))) -(((-935 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3507 ((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) |#3| (-757))) (-15 -2681 ((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) (-401 (-553)) (-757))) (IF (|has| |#3| (-445)) (-15 -3038 ((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) |#5| (-757))) |%noBranch|) (-15 -4138 ((-2 (|:| -2692 (-757)) (|:| -4120 |#4|) (|:| |radicand| (-630 |#4|))) |#4| (-757)))) (-779) (-833) (-545) (-931 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -3110 ($ |#4|)) (-15 -3963 (|#4| $)) (-15 -3974 (|#4| $))))) (T -935)) -((-4138 (*1 *2 *3 *4) (-12 (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-545)) (-4 *3 (-931 *7 *5 *6)) (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *3) (|:| |radicand| (-630 *3)))) (-5 *1 (-935 *5 *6 *7 *3 *8)) (-5 *4 (-757)) (-4 *8 (-13 (-357) (-10 -8 (-15 -3110 ($ *3)) (-15 -3963 (*3 $)) (-15 -3974 (*3 $))))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *7 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-545)) (-4 *8 (-931 *7 *5 *6)) (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *3) (|:| |radicand| *3))) (-5 *1 (-935 *5 *6 *7 *8 *3)) (-5 *4 (-757)) (-4 *3 (-13 (-357) (-10 -8 (-15 -3110 ($ *8)) (-15 -3963 (*8 $)) (-15 -3974 (*8 $))))))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-553))) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-545)) (-4 *8 (-931 *7 *5 *6)) (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *9) (|:| |radicand| *9))) (-5 *1 (-935 *5 *6 *7 *8 *9)) (-5 *4 (-757)) (-4 *9 (-13 (-357) (-10 -8 (-15 -3110 ($ *8)) (-15 -3963 (*8 $)) (-15 -3974 (*8 $))))))) (-3507 (*1 *2 *3 *4) (-12 (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-545)) (-4 *7 (-931 *3 *5 *6)) (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *8) (|:| |radicand| *8))) (-5 *1 (-935 *5 *6 *3 *7 *8)) (-5 *4 (-757)) (-4 *8 (-13 (-357) (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $)))))))) -(-10 -7 (-15 -3507 ((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) |#3| (-757))) (-15 -2681 ((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) (-401 (-553)) (-757))) (IF (|has| |#3| (-445)) (-15 -3038 ((-2 (|:| -2692 (-757)) (|:| -4120 |#5|) (|:| |radicand| |#5|)) |#5| (-757))) |%noBranch|) (-15 -4138 ((-2 (|:| -2692 (-757)) (|:| -4120 |#4|) (|:| |radicand| (-630 |#4|))) |#4| (-757)))) -((-3096 (((-111) $ $) NIL)) (-3832 (($ (-1099)) 8)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 14) (((-1099) $) 11)) (-1617 (((-111) $ $) 10))) -(((-936) (-13 (-1079) (-600 (-1099)) (-10 -8 (-15 -3832 ($ (-1099)))))) (T -936)) -((-3832 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-936))))) -(-13 (-1079) (-600 (-1099)) (-10 -8 (-15 -3832 ($ (-1099))))) -((-2479 (((-1073 (-220)) $) 8)) (-2466 (((-1073 (-220)) $) 9)) (-3792 (((-630 (-630 (-925 (-220)))) $) 10)) (-3110 (((-845) $) 6))) -(((-937) (-137)) (T -937)) -((-3792 (*1 *2 *1) (-12 (-4 *1 (-937)) (-5 *2 (-630 (-630 (-925 (-220))))))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-937)) (-5 *2 (-1073 (-220))))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-937)) (-5 *2 (-1073 (-220)))))) -(-13 (-600 (-845)) (-10 -8 (-15 -3792 ((-630 (-630 (-925 (-220)))) $)) (-15 -2466 ((-1073 (-220)) $)) (-15 -2479 ((-1073 (-220)) $)))) -(((-600 (-845)) . T)) -((-4107 (((-3 (-674 |#1|) "failed") |#2| (-903)) 15))) -(((-938 |#1| |#2|) (-10 -7 (-15 -4107 ((-3 (-674 |#1|) "failed") |#2| (-903)))) (-545) (-641 |#1|)) (T -938)) -((-4107 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-903)) (-4 *5 (-545)) (-5 *2 (-674 *5)) (-5 *1 (-938 *5 *3)) (-4 *3 (-641 *5))))) -(-10 -7 (-15 -4107 ((-3 (-674 |#1|) "failed") |#2| (-903)))) -((-3215 (((-940 |#2|) (-1 |#2| |#1| |#2|) (-940 |#1|) |#2|) 16)) (-2654 ((|#2| (-1 |#2| |#1| |#2|) (-940 |#1|) |#2|) 18)) (-1482 (((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)) 13))) -(((-939 |#1| |#2|) (-10 -7 (-15 -3215 ((-940 |#2|) (-1 |#2| |#1| |#2|) (-940 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-940 |#1|) |#2|)) (-15 -1482 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) (-1192) (-1192)) (T -939)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-940 *6)) (-5 *1 (-939 *5 *6)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-940 *5)) (-4 *5 (-1192)) (-4 *2 (-1192)) (-5 *1 (-939 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-940 *6)) (-4 *6 (-1192)) (-4 *5 (-1192)) (-5 *2 (-940 *5)) (-5 *1 (-939 *6 *5))))) -(-10 -7 (-15 -3215 ((-940 |#2|) (-1 |#2| |#1| |#2|) (-940 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-940 |#1|) |#2|)) (-15 -1482 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) |#1|) 16 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 15 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 13)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) |#1|) 12)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) 10 (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) 17 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) 11)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) 14) (($ $ (-1205 (-553))) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) NIL)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-2563 (((-757) $) 8 (|has| $ (-6 -4369))))) -(((-940 |#1|) (-19 |#1|) (-1192)) (T -940)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1508 (((-758) $) 15)) (-3288 (($ $ |#1|) 56)) (-3920 (($ $) 32)) (-3799 (($ $) 31)) (-2784 (((-3 |#1| "failed") $) 48)) (-1668 ((|#1| $) NIL)) (-3652 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3701 (((-848) $ (-1 (-848) (-848) (-848)) (-1 (-848) (-848) (-848)) (-554)) 46)) (-3195 ((|#1| $ (-554)) 30)) (-2370 ((|#2| $ (-554)) 29)) (-3563 (($ (-1 |#1| |#1|) $) 34)) (-4098 (($ (-1 |#2| |#2|) $) 38)) (-3249 (($) 10)) (-2549 (($ |#1| |#2|) 22)) (-4103 (($ (-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|)))) 23)) (-1594 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $) 13)) (-1476 (($ |#1| $) 57)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2583 (((-112) $ $) 60)) (-3075 (((-848) $) 19) (($ |#1|) 16)) (-1658 (((-112) $ $) 25))) +(((-635 |#1| |#2| |#3|) (-13 (-1082) (-1023 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-1 (-848) (-848) (-848)) (-1 (-848) (-848) (-848)) (-554))) (-15 -1594 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $)) (-15 -2549 ($ |#1| |#2|)) (-15 -4103 ($ (-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))))) (-15 -2370 (|#2| $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3799 ($ $)) (-15 -3920 ($ $)) (-15 -1508 ((-758) $)) (-15 -3249 ($)) (-15 -3288 ($ $ |#1|)) (-15 -1476 ($ |#1| $)) (-15 -3652 ($ |#1| |#2| $)) (-15 -3652 ($ $ $)) (-15 -2583 ((-112) $ $)) (-15 -4098 ($ (-1 |#2| |#2|) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)))) (-1082) (-23) |#2|) (T -635)) +((-3701 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-848) (-848) (-848))) (-5 *4 (-554)) (-5 *2 (-848)) (-5 *1 (-635 *5 *6 *7)) (-4 *5 (-1082)) (-4 *6 (-23)) (-14 *7 *6))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-2549 (*1 *1 *2 *3) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-635 *3 *4 *5)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-23)) (-5 *1 (-635 *4 *2 *5)) (-4 *4 (-1082)) (-14 *5 *2))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *2 (-1082)) (-5 *1 (-635 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-3249 (*1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3288 (*1 *1 *1 *2) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-1476 (*1 *1 *2 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3652 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-3652 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-2583 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)))) (-3563 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-635 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1082) (-1023 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-1 (-848) (-848) (-848)) (-1 (-848) (-848) (-848)) (-554))) (-15 -1594 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))) $)) (-15 -2549 ($ |#1| |#2|)) (-15 -4103 ($ (-631 (-2 (|:| |gen| |#1|) (|:| -1333 |#2|))))) (-15 -2370 (|#2| $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -3799 ($ $)) (-15 -3920 ($ $)) (-15 -1508 ((-758) $)) (-15 -3249 ($)) (-15 -3288 ($ $ |#1|)) (-15 -1476 ($ |#1| $)) (-15 -3652 ($ |#1| |#2| $)) (-15 -3652 ($ $ $)) (-15 -2583 ((-112) $ $)) (-15 -4098 ($ (-1 |#2| |#2|) $)) (-15 -3563 ($ (-1 |#1| |#1|) $)))) +((-2256 (((-554) $) 24)) (-1782 (($ |#2| $ (-554)) 22) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) 12)) (-3618 (((-112) (-554) $) 15)) (-4323 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-631 $)) NIL))) +(((-636 |#1| |#2|) (-10 -8 (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2256 ((-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -3618 ((-112) (-554) |#1|))) (-637 |#2|) (-1195)) (T -636)) +NIL +(-10 -8 (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -4323 (|#1| (-631 |#1|))) (-15 -4323 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -2256 ((-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -3618 ((-112) (-554) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-637 |#1|) (-138) (-1195)) (T -637)) +((-3180 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-4323 (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *2 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2021 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-2021 (*1 *1 *1 *2) (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-1782 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-637 *2)) (-4 *2 (-1195)))) (-1782 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1208 (-554))) (|has| *1 (-6 -4374)) (-4 *1 (-637 *2)) (-4 *2 (-1195))))) +(-13 (-592 (-554) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3180 ($ (-758) |t#1|)) (-15 -4323 ($ $ |t#1|)) (-15 -4323 ($ |t#1| $)) (-15 -4323 ($ $ $)) (-15 -4323 ($ (-631 $))) (-15 -2879 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2064 ($ $ (-1208 (-554)))) (-15 -2021 ($ $ (-554))) (-15 -2021 ($ $ (-1208 (-554)))) (-15 -1782 ($ |t#1| $ (-554))) (-15 -1782 ($ $ $ (-554))) (IF (|has| $ (-6 -4374)) (-15 -1501 (|t#1| $ (-1208 (-554)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-1900 (((-3 |#2| "failed") |#3| |#2| (-1158) |#2| (-631 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) "failed") |#3| |#2| (-1158)) 44))) +(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) "failed") |#3| |#2| (-1158))) (-15 -1900 ((-3 |#2| "failed") |#3| |#2| (-1158) |#2| (-631 |#2|)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944)) (-642 |#2|)) (T -638)) +((-1900 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *2)) (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-638 *6 *2 *3)) (-4 *3 (-642 *2)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1158)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-4 *4 (-13 (-29 *6) (-1180) (-944))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4)))) (-5 *1 (-638 *6 *4 *3)) (-4 *3 (-642 *4))))) +(-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) "failed") |#3| |#2| (-1158))) (-15 -1900 ((-3 |#2| "failed") |#3| |#2| (-1158) |#2| (-631 |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1857 (($ $) NIL (|has| |#1| (-358)))) (-1383 (($ $ $) NIL (|has| |#1| (-358)))) (-3508 (($ $ (-758)) NIL (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) NIL)) (-3929 (($ $ $) NIL (|has| |#1| (-358)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) NIL)) (-2968 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($) NIL)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-639 |#1|) (-642 |#1|) (-229)) (T -639)) +NIL +(-642 |#1|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1857 (($ $) NIL (|has| |#1| (-358)))) (-1383 (($ $ $) NIL (|has| |#1| (-358)))) (-3508 (($ $ (-758)) NIL (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3929 (($ $ $) NIL (|has| |#1| (-358)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) NIL)) (-2968 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($) NIL)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-640 |#1| |#2|) (-13 (-642 |#1|) (-281 |#2| |#2|)) (-229) (-13 (-634 |#1|) (-10 -8 (-15 -1553 ($ $))))) (T -640)) +NIL +(-13 (-642 |#1|) (-281 |#2| |#2|)) +((-1857 (($ $) 26)) (-2968 (($ $) 24)) (-1787 (($) 12))) +(((-641 |#1| |#2|) (-10 -8 (-15 -1857 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -1787 (|#1|))) (-642 |#2|) (-1034)) (T -641)) +NIL +(-10 -8 (-15 -1857 (|#1| |#1|)) (-15 -2968 (|#1| |#1|)) (-15 -1787 (|#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1857 (($ $) 81 (|has| |#1| (-358)))) (-1383 (($ $ $) 83 (|has| |#1| (-358)))) (-3508 (($ $ (-758)) 82 (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2915 (($ $ $) 44 (|has| |#1| (-358)))) (-2660 (($ $ $) 45 (|has| |#1| (-358)))) (-1885 (($ $ $) 47 (|has| |#1| (-358)))) (-3335 (($ $ $) 42 (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 41 (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) 43 (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 46 (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) 74 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 71 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 68)) (-1668 (((-554) $) 73 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 70 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 69)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 54 (|has| |#1| (-446)))) (-3248 (((-112) $) 31)) (-2383 (($ |#1| (-758)) 61)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 56 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 57 (|has| |#1| (-546)))) (-3893 (((-758) $) 65)) (-1455 (($ $ $) 51 (|has| |#1| (-358)))) (-4024 (($ $ $) 52 (|has| |#1| (-358)))) (-2780 (($ $ $) 40 (|has| |#1| (-358)))) (-1775 (($ $ $) 49 (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 48 (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) 50 (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 53 (|has| |#1| (-358)))) (-2530 ((|#1| $) 64)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) 86)) (-3929 (($ $ $) 80 (|has| |#1| (-358)))) (-3308 (((-758) $) 66)) (-3276 ((|#1| $) 55 (|has| |#1| (-446)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 72 (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 67)) (-1893 (((-631 |#1|) $) 60)) (-1779 ((|#1| $ (-758)) 62)) (-2261 (((-758)) 28)) (-1485 ((|#1| $ |#1| |#1|) 59)) (-2968 (($ $) 84)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($) 85)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-642 |#1|) (-138) (-1034)) (T -642)) +((-1787 (*1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)))) (-2968 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)))) (-1383 (*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-642 *3)) (-4 *3 (-1034)) (-4 *3 (-358)))) (-1857 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(-13 (-838 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -1787 ($)) (-15 -2968 ($ $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -1383 ($ $ $)) (-15 -3508 ($ $ (-758))) (-15 -1857 ($ $)) (-15 -3929 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-281 |#1| |#1|) . T) ((-406 |#1|) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-838 |#1|) . T)) +((-2561 (((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))) 74 (|has| |#1| (-27)))) (-2270 (((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))) 73 (|has| |#1| (-27))) (((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 17))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)))) (-15 -2561 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))))) |%noBranch|)) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -643)) +((-2561 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5)))) (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5))))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5)))) (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-639 (-402 *6)))) (-5 *1 (-643 *5 *6)) (-5 *3 (-639 (-402 *6)))))) +(-10 -7 (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2270 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|)))) (-15 -2561 ((-631 (-639 (-402 |#2|))) (-639 (-402 |#2|))))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1857 (($ $) NIL (|has| |#1| (-358)))) (-1383 (($ $ $) 28 (|has| |#1| (-358)))) (-3508 (($ $ (-758)) 31 (|has| |#1| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2064 ((|#1| $ |#1|) 24)) (-3929 (($ $ $) 33 (|has| |#1| (-358)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) 20) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) 23)) (-2968 (($ $) NIL)) (-2004 (($) 21 T CONST)) (-2014 (($) 8 T CONST)) (-1787 (($) NIL)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-644 |#1| |#2|) (-642 |#1|) (-1034) (-1 |#1| |#1|)) (T -644)) +NIL +(-642 |#1|) +((-1383 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3508 ((|#2| |#2| (-758) (-1 |#1| |#1|)) 40)) (-3929 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-645 |#1| |#2|) (-10 -7 (-15 -1383 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3508 (|#2| |#2| (-758) (-1 |#1| |#1|))) (-15 -3929 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-358) (-642 |#1|)) (T -645)) +((-3929 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2)) (-4 *2 (-642 *4)))) (-3508 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-645 *5 *2)) (-4 *2 (-642 *5)))) (-1383 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2)) (-4 *2 (-642 *4))))) +(-10 -7 (-15 -1383 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3508 (|#2| |#2| (-758) (-1 |#1| |#1|))) (-15 -3929 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2140 (($ $ $) 9))) +(((-646 |#1|) (-10 -8 (-15 -2140 (|#1| |#1| |#1|))) (-647)) (T -646)) +NIL +(-10 -8 (-15 -2140 (|#1| |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1285 (($ $) 10)) (-2140 (($ $ $) 8)) (-1658 (((-112) $ $) 6)) (-2130 (($ $ $) 9))) +(((-647) (-138)) (T -647)) +((-1285 (*1 *1 *1) (-4 *1 (-647))) (-2130 (*1 *1 *1 *1) (-4 *1 (-647))) (-2140 (*1 *1 *1 *1) (-4 *1 (-647)))) +(-13 (-102) (-10 -8 (-15 -1285 ($ $)) (-15 -2130 ($ $ $)) (-15 -2140 ($ $ $)))) +(((-102) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 15)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2810 ((|#1| $) 21)) (-4223 (($ $ $) NIL (|has| |#1| (-778)))) (-2706 (($ $ $) NIL (|has| |#1| (-778)))) (-1613 (((-1140) $) 46)) (-2768 (((-1102) $) NIL)) (-2822 ((|#3| $) 22)) (-3075 (((-848) $) 42)) (-2004 (($) 10 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-778)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-778)))) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) NIL (|has| |#1| (-778)))) (-1676 (((-112) $ $) 24 (|has| |#1| (-778)))) (-1752 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1744 (($ $) 17) (($ $ $) NIL)) (-1735 (($ $ $) 27)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-648 |#1| |#2| |#3|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $)))) (-704 |#2|) (-170) (|SubsetCategory| (-713) |#2|)) (T -648)) +((-1752 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4)) (-4 *2 (|SubsetCategory| (-713) *4)))) (-1752 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-648 *2 *4 *3)) (-4 *2 (-704 *4)) (-4 *3 (|SubsetCategory| (-713) *4)))) (-2810 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-704 *3)) (-5 *1 (-648 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-713) *3)))) (-2822 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4)) (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4))))) +(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) (-15 -1752 ($ $ |#3|)) (-15 -1752 ($ |#1| |#3|)) (-15 -2810 (|#1| $)) (-15 -2822 (|#3| $)))) +((-1646 (((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|)) 33))) +(((-649 |#1|) (-10 -7 (-15 -1646 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|)))) (-894)) (T -649)) +((-1646 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *4))) (-5 *3 (-1154 *4)) (-4 *4 (-894)) (-5 *1 (-649 *4))))) +(-10 -7 (-15 -1646 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 82)) (-3151 (($ $ (-758)) 90)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3567 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 48)) (-2784 (((-3 (-658 |#1|) "failed") $) NIL)) (-1668 (((-658 |#1|) $) NIL)) (-2550 (($ $) 89)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-658 |#1|) |#2|) 68)) (-3898 (($ $) 86)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3637 (((-1265 |#1| |#2|) (-1265 |#1| |#2|) $) 47)) (-2428 (((-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2518 (((-658 |#1|) $) NIL)) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2386 (($ $ |#1| $) 30) (($ $ (-631 |#1|) (-631 $)) 32)) (-3308 (((-758) $) 88)) (-3089 (($ $ $) 20) (($ (-658 |#1|) (-658 |#1|)) 77) (($ (-658 |#1|) $) 75) (($ $ (-658 |#1|)) 76)) (-3075 (((-848) $) NIL) (($ |#1|) 74) (((-1256 |#1| |#2|) $) 58) (((-1265 |#1| |#2|) $) 41) (($ (-658 |#1|)) 25)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-658 |#1|)) NIL)) (-1490 ((|#2| (-1265 |#1| |#2|) $) 43)) (-2004 (($) 23 T CONST)) (-2407 (((-631 (-2 (|:| |k| (-658 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1598 (((-3 $ "failed") (-1256 |#1| |#2|)) 60)) (-2341 (($ (-658 |#1|)) 14)) (-1658 (((-112) $ $) 44)) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) 66) (($ $ $) NIL)) (-1735 (($ $ $) 29)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-658 |#1|)) NIL))) +(((-650 |#1| |#2|) (-13 (-369 |#1| |#2|) (-377 |#2| (-658 |#1|)) (-10 -8 (-15 -1598 ((-3 $ "failed") (-1256 |#1| |#2|))) (-15 -3089 ($ (-658 |#1|) (-658 |#1|))) (-15 -3089 ($ (-658 |#1|) $)) (-15 -3089 ($ $ (-658 |#1|))))) (-836) (-170)) (T -650)) +((-1598 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *1 (-650 *3 *4)))) (-3089 (*1 *1 *2 *2) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) (-4 *4 (-170)))) (-3089 (*1 *1 *2 *1) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) (-4 *4 (-170)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) (-4 *4 (-170))))) +(-13 (-369 |#1| |#2|) (-377 |#2| (-658 |#1|)) (-10 -8 (-15 -1598 ((-3 $ "failed") (-1256 |#1| |#2|))) (-15 -3089 ($ (-658 |#1|) (-658 |#1|))) (-15 -3089 ($ (-658 |#1|) $)) (-15 -3089 ($ $ (-658 |#1|))))) +((-4015 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2576 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2220 (($ (-1 (-112) |#2|) $) 28)) (-3920 (($ $) 56)) (-2593 (($ $) 64)) (-1884 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-3676 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1484 (((-554) |#2| $ (-554)) 61) (((-554) |#2| $) NIL) (((-554) (-1 (-112) |#2|) $) 47)) (-3180 (($ (-758) |#2|) 54)) (-3606 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3717 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2879 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1416 (($ |#2|) 15)) (-2045 (($ $ $ (-554)) 36) (($ |#2| $ (-554)) 34)) (-1652 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-3029 (($ $ (-1208 (-554))) 44) (($ $ (-554)) 38)) (-3553 (($ $ $ (-554)) 60)) (-1521 (($ $) 58)) (-1676 (((-112) $ $) 66))) +(((-651 |#1| |#2|) (-10 -8 (-15 -1416 (|#1| |#2|)) (-15 -3029 (|#1| |#1| (-554))) (-15 -3029 (|#1| |#1| (-1208 (-554)))) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2045 (|#1| |#2| |#1| (-554))) (-15 -2045 (|#1| |#1| |#1| (-554))) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3606 (|#1| |#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -3717 (|#1| |#1| |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -3920 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3180 (|#1| (-758) |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|))) (-652 |#2|) (-1195)) (T -651)) +NIL +(-10 -8 (-15 -1416 (|#1| |#2|)) (-15 -3029 (|#1| |#1| (-554))) (-15 -3029 (|#1| |#1| (-1208 (-554)))) (-15 -1884 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2045 (|#1| |#2| |#1| (-554))) (-15 -2045 (|#1| |#1| |#1| (-554))) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2220 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1884 (|#1| |#2| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3606 (|#1| |#1| |#1|)) (-15 -3717 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4015 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1484 ((-554) (-1 (-112) |#2|) |#1|)) (-15 -1484 ((-554) |#2| |#1|)) (-15 -1484 ((-554) |#2| |#1| (-554))) (-15 -3717 (|#1| |#1| |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -3553 (|#1| |#1| |#1| (-554))) (-15 -3920 (|#1| |#1|)) (-15 -2576 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1652 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3180 (|#1| (-758) |#2|)) (-15 -2879 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1521 (|#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-4233 (((-1246) $ (-554) (-554)) 97 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-4015 (((-112) $) 142 (|has| |#1| (-836))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2576 (($ $) 146 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4374)))) (-3303 (($ $) 141 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 117 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 86 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-2220 (($ (-1 (-112) |#1|) $) 129)) (-1871 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4373)))) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-3920 (($ $) 144 (|has| $ (-6 -4374)))) (-3799 (($ $) 134)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-2593 (($ $) 131 (|has| |#1| (-1082)))) (-1571 (($ $) 99 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 130 (|has| |#1| (-1082))) (($ (-1 (-112) |#1|) $) 125)) (-2574 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4373))) (($ |#1| $) 100 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2862 ((|#1| $ (-554) |#1|) 85 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 87)) (-3556 (((-112) $) 83)) (-1484 (((-554) |#1| $ (-554)) 139 (|has| |#1| (-1082))) (((-554) |#1| $) 138 (|has| |#1| (-1082))) (((-554) (-1 (-112) |#1|) $) 137)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) 108)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 95 (|has| (-554) (-836)))) (-4223 (($ $ $) 147 (|has| |#1| (-836)))) (-3606 (($ $ $) 132 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3717 (($ $ $) 140 (|has| |#1| (-836))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 94 (|has| (-554) (-836)))) (-2706 (($ $ $) 148 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1416 (($ |#1|) 122)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-2045 (($ $ $ (-554)) 127) (($ |#1| $ (-554)) 126)) (-1782 (($ $ $ (-554)) 116) (($ |#1| $ (-554)) 115)) (-2529 (((-631 (-554)) $) 92)) (-3618 (((-112) (-554) $) 91)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2441 (($ $ |#1|) 96 (|has| $ (-6 -4374)))) (-1381 (((-112) $) 84)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 90)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1208 (-554))) 112) ((|#1| $ (-554)) 89) ((|#1| $ (-554) |#1|) 88)) (-3250 (((-554) $ $) 44)) (-3029 (($ $ (-1208 (-554))) 124) (($ $ (-554)) 123)) (-2021 (($ $ (-1208 (-554))) 114) (($ $ (-554)) 113)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 143 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 107)) (-1853 (($ $ $) 61) (($ $ |#1|) 60)) (-4323 (($ $ $) 78) (($ |#1| $) 77) (($ (-631 $)) 110) (($ $ |#1|) 109)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 150 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 151 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 149 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 152 (|has| |#1| (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-652 |#1|) (-138) (-1195)) (T -652)) +((-1416 (*1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1195))))) +(-13 (-1131 |t#1|) (-368 |t#1|) (-277 |t#1|) (-10 -8 (-15 -1416 ($ |t#1|)))) +(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-277 |#1|) . T) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-836) |has| |#1| (-836)) ((-995 |#1|) . T) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1131 |#1|) . T) ((-1195) . T) ((-1229 |#1|) . T)) +((-1900 (((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-631 (-631 |#1|)) (-631 (-1241 |#1|))) 22) (((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-675 |#1|) (-631 (-1241 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-631 (-631 |#1|)) (-1241 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)) 14)) (-4186 (((-758) (-675 |#1|) (-1241 |#1|)) 30)) (-1865 (((-3 (-1241 |#1|) "failed") (-675 |#1|) (-1241 |#1|)) 24)) (-2273 (((-112) (-675 |#1|) (-1241 |#1|)) 27))) +(((-653 |#1|) (-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|))) (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-631 (-631 |#1|)) (-1241 |#1|))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-675 |#1|) (-631 (-1241 |#1|)))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-631 (-631 |#1|)) (-631 (-1241 |#1|)))) (-15 -1865 ((-3 (-1241 |#1|) "failed") (-675 |#1|) (-1241 |#1|))) (-15 -2273 ((-112) (-675 |#1|) (-1241 |#1|))) (-15 -4186 ((-758) (-675 |#1|) (-1241 |#1|)))) (-358)) (T -653)) +((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-5 *2 (-758)) (-5 *1 (-653 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-5 *2 (-112)) (-5 *1 (-653 *5)))) (-1865 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1241 *4)) (-5 *3 (-675 *4)) (-4 *4 (-358)) (-5 *1 (-653 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358)) (-5 *2 (-631 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5)))))) (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 (-631 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5)))))) (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5))))) (-5 *1 (-653 *5)) (-5 *4 (-1241 *5)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 *5) "failed")) (|:| -3782 (-631 (-1241 *5))))) (-5 *1 (-653 *5)) (-5 *4 (-1241 *5))))) +(-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|))) (-15 -1900 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-631 (-631 |#1|)) (-1241 |#1|))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-675 |#1|) (-631 (-1241 |#1|)))) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|))))) (-631 (-631 |#1|)) (-631 (-1241 |#1|)))) (-15 -1865 ((-3 (-1241 |#1|) "failed") (-675 |#1|) (-1241 |#1|))) (-15 -2273 ((-112) (-675 |#1|) (-1241 |#1|))) (-15 -4186 ((-758) (-675 |#1|) (-1241 |#1|)))) +((-1900 (((-631 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|)))) |#4| (-631 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|) 45)) (-4186 (((-758) |#4| |#3|) 17)) (-1865 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2273 (((-112) |#4| |#3|) 13))) +(((-654 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|)) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|)))) |#4| (-631 |#3|))) (-15 -1865 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2273 ((-112) |#4| |#3|)) (-15 -4186 ((-758) |#4| |#3|))) (-358) (-13 (-368 |#1|) (-10 -7 (-6 -4374))) (-13 (-368 |#1|) (-10 -7 (-6 -4374))) (-673 |#1| |#2| |#3|)) (T -654)) +((-4186 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-758)) (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) (-2273 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-112)) (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) (-1865 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4374)))) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))) (-5 *1 (-654 *4 *5 *2 *3)) (-4 *3 (-673 *4 *5 *2)))) (-1900 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-631 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3782 (-631 *7))))) (-5 *1 (-654 *5 *6 *7 *3)) (-5 *4 (-631 *7)) (-4 *3 (-673 *5 *6 *7)))) (-1900 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4))))) +(-10 -7 (-15 -1900 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|)) (-15 -1900 ((-631 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|)))) |#4| (-631 |#3|))) (-15 -1865 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2273 ((-112) |#4| |#3|)) (-15 -4186 ((-758) |#4| |#3|))) +((-2038 (((-2 (|:| |particular| (-3 (-1241 (-402 |#4|)) "failed")) (|:| -3782 (-631 (-1241 (-402 |#4|))))) (-631 |#4|) (-631 |#3|)) 45))) +(((-655 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2038 ((-2 (|:| |particular| (-3 (-1241 (-402 |#4|)) "failed")) (|:| -3782 (-631 (-1241 (-402 |#4|))))) (-631 |#4|) (-631 |#3|)))) (-546) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -655)) +((-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *7)) (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 (-402 *8)) "failed")) (|:| -3782 (-631 (-1241 (-402 *8)))))) (-5 *1 (-655 *5 *6 *7 *8))))) +(-10 -7 (-15 -2038 ((-2 (|:| |particular| (-3 (-1241 (-402 |#4|)) "failed")) (|:| -3782 (-631 (-1241 (-402 |#4|))))) (-631 |#4|) (-631 |#3|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3646 (((-3 $ "failed")) NIL (|has| |#2| (-546)))) (-1612 ((|#2| $) NIL)) (-1350 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4251 (((-1241 (-675 |#2|))) NIL) (((-1241 (-675 |#2|)) (-1241 $)) NIL)) (-3795 (((-112) $) NIL)) (-4047 (((-1241 $)) 37)) (-3019 (((-112) $ (-758)) NIL)) (-1475 (($ |#2|) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) NIL (|has| |#2| (-302)))) (-3519 (((-236 |#1| |#2|) $ (-554)) NIL)) (-1558 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#2| (-546)))) (-3447 (((-3 $ "failed")) NIL (|has| |#2| (-546)))) (-3321 (((-675 |#2|)) NIL) (((-675 |#2|) (-1241 $)) NIL)) (-4206 ((|#2| $) NIL)) (-3970 (((-675 |#2|) $) NIL) (((-675 |#2|) $ (-1241 $)) NIL)) (-3754 (((-3 $ "failed") $) NIL (|has| |#2| (-546)))) (-4027 (((-1154 (-937 |#2|))) NIL (|has| |#2| (-358)))) (-2080 (($ $ (-906)) NIL)) (-3976 ((|#2| $) NIL)) (-3343 (((-1154 |#2|) $) NIL (|has| |#2| (-546)))) (-3640 ((|#2|) NIL) ((|#2| (-1241 $)) NIL)) (-4231 (((-1154 |#2|) $) NIL)) (-1397 (((-112)) NIL)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) NIL)) (-1651 (($ (-1241 |#2|)) NIL) (($ (-1241 |#2|) (-1241 $)) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-4186 (((-758) $) NIL (|has| |#2| (-546))) (((-906)) 38)) (-2796 ((|#2| $ (-554) (-554)) NIL)) (-3911 (((-112)) NIL)) (-4326 (($ $ (-906)) NIL)) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL)) (-4332 (((-758) $) NIL (|has| |#2| (-546)))) (-2412 (((-631 (-236 |#1| |#2|)) $) NIL (|has| |#2| (-546)))) (-4130 (((-758) $) NIL)) (-2545 (((-112)) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#2| $) NIL (|has| |#2| (-6 (-4375 "*"))))) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#2|))) NIL)) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1679 (((-631 (-631 |#2|)) $) NIL)) (-1765 (((-112)) NIL)) (-1573 (((-112)) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1660 (((-3 (-2 (|:| |particular| $) (|:| -3782 (-631 $))) "failed")) NIL (|has| |#2| (-546)))) (-3899 (((-3 $ "failed")) NIL (|has| |#2| (-546)))) (-2871 (((-675 |#2|)) NIL) (((-675 |#2|) (-1241 $)) NIL)) (-3115 ((|#2| $) NIL)) (-3826 (((-675 |#2|) $) NIL) (((-675 |#2|) $ (-1241 $)) NIL)) (-1605 (((-3 $ "failed") $) NIL (|has| |#2| (-546)))) (-3415 (((-1154 (-937 |#2|))) NIL (|has| |#2| (-358)))) (-1297 (($ $ (-906)) NIL)) (-2620 ((|#2| $) NIL)) (-3760 (((-1154 |#2|) $) NIL (|has| |#2| (-546)))) (-3063 ((|#2|) NIL) ((|#2| (-1241 $)) NIL)) (-2541 (((-1154 |#2|) $) NIL)) (-3074 (((-112)) NIL)) (-1613 (((-1140) $) NIL)) (-3953 (((-112)) NIL)) (-4193 (((-112)) NIL)) (-2366 (((-112)) NIL)) (-2843 (((-3 $ "failed") $) NIL (|has| |#2| (-358)))) (-2768 (((-1102) $) NIL)) (-1944 (((-112)) NIL)) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) (-554) |#2|) NIL) ((|#2| $ (-554) (-554)) 22) ((|#2| $ (-554)) NIL)) (-1553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3238 ((|#2| $) NIL)) (-3198 (($ (-631 |#2|)) NIL)) (-2361 (((-112) $) NIL)) (-3871 (((-236 |#1| |#2|) $) NIL)) (-2870 ((|#2| $) NIL (|has| |#2| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3656 (((-675 |#2|) (-1241 $)) NIL) (((-1241 |#2|) $) NIL) (((-675 |#2|) (-1241 $) (-1241 $)) NIL) (((-1241 |#2|) $ (-1241 $)) 25)) (-2927 (($ (-1241 |#2|)) NIL) (((-1241 |#2|) $) NIL)) (-3107 (((-631 (-937 |#2|))) NIL) (((-631 (-937 |#2|)) (-1241 $)) NIL)) (-1856 (($ $ $) NIL)) (-3349 (((-112)) NIL)) (-3259 (((-236 |#1| |#2|) $ (-554)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) NIL) (((-675 |#2|) $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) 36)) (-1444 (((-631 (-1241 |#2|))) NIL (|has| |#2| (-546)))) (-3499 (($ $ $ $) NIL)) (-3454 (((-112)) NIL)) (-1485 (($ (-675 |#2|) $) NIL)) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1870 (($ $ $) NIL)) (-2945 (((-112)) NIL)) (-2760 (((-112)) NIL)) (-3206 (((-112)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#2| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) NIL) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-656 |#1| |#2|) (-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-412 |#2|)) (-906) (-170)) (T -656)) +NIL +(-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-412 |#2|)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1820 (((-631 (-1117)) $) 10)) (-3075 (((-848) $) 18) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-657) (-13 (-1065) (-10 -8 (-15 -1820 ((-631 (-1117)) $))))) (T -657)) +((-1820 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-657))))) +(-13 (-1065) (-10 -8 (-15 -1820 ((-631 (-1117)) $)))) +((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) NIL)) (-3324 (($ $) 52)) (-3051 (((-112) $) NIL)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1368 (((-3 $ "failed") (-806 |#1|)) 23)) (-3243 (((-112) (-806 |#1|)) 15)) (-1855 (($ (-806 |#1|)) 24)) (-2082 (((-112) $ $) 30)) (-2577 (((-906) $) 37)) (-3311 (($ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2270 (((-631 $) (-806 |#1|)) 17)) (-3075 (((-848) $) 43) (($ |#1|) 34) (((-806 |#1|) $) 39) (((-663 |#1|) $) 44)) (-1964 (((-59 (-631 $)) (-631 |#1|) (-906)) 57)) (-1931 (((-631 $) (-631 |#1|) (-906)) 60)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 53)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 38))) +(((-658 |#1|) (-13 (-836) (-1023 |#1|) (-10 -8 (-15 -3051 ((-112) $)) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ((-663 |#1|) $)) (-15 -2270 ((-631 $) (-806 |#1|))) (-15 -3243 ((-112) (-806 |#1|))) (-15 -1855 ($ (-806 |#1|))) (-15 -1368 ((-3 $ "failed") (-806 |#1|))) (-15 -1654 ((-631 |#1|) $)) (-15 -1964 ((-59 (-631 $)) (-631 |#1|) (-906))) (-15 -1931 ((-631 $) (-631 |#1|) (-906))))) (-836)) (T -658)) +((-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-3311 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-658 *4))) (-5 *1 (-658 *4)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-112)) (-5 *1 (-658 *4)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3)))) (-1368 (*1 *1 *2) (|partial| -12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836)) (-5 *2 (-59 (-631 (-658 *5)))) (-5 *1 (-658 *5)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836)) (-5 *2 (-631 (-658 *5))) (-5 *1 (-658 *5))))) +(-13 (-836) (-1023 |#1|) (-10 -8 (-15 -3051 ((-112) $)) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ((-663 |#1|) $)) (-15 -2270 ((-631 $) (-806 |#1|))) (-15 -3243 ((-112) (-806 |#1|))) (-15 -1855 ($ (-806 |#1|))) (-15 -1368 ((-3 $ "failed") (-806 |#1|))) (-15 -1654 ((-631 |#1|) $)) (-15 -1964 ((-59 (-631 $)) (-631 |#1|) (-906))) (-15 -1931 ((-631 $) (-631 |#1|) (-906))))) +((-2794 ((|#2| $) 76)) (-3387 (($ $) 96)) (-3019 (((-112) $ (-758)) 26)) (-1551 (($ $) 85) (($ $ (-758)) 88)) (-3556 (((-112) $) 97)) (-3677 (((-631 $) $) 72)) (-1990 (((-112) $ $) 71)) (-2230 (((-112) $ (-758)) 24)) (-3044 (((-554) $) 46)) (-2256 (((-554) $) 45)) (-3731 (((-112) $ (-758)) 22)) (-3216 (((-112) $) 74)) (-2597 ((|#2| $) 89) (($ $ (-758)) 92)) (-1782 (($ $ $ (-554)) 62) (($ |#2| $ (-554)) 61)) (-2529 (((-631 (-554)) $) 44)) (-3618 (((-112) (-554) $) 42)) (-1539 ((|#2| $) NIL) (($ $ (-758)) 84)) (-4282 (($ $ (-554)) 100)) (-1381 (((-112) $) 99)) (-2845 (((-112) (-1 (-112) |#2|) $) 32)) (-2625 (((-631 |#2|) $) 33)) (-2064 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1208 (-554))) 58) ((|#2| $ (-554)) 40) ((|#2| $ (-554) |#2|) 41)) (-3250 (((-554) $ $) 70)) (-2021 (($ $ (-1208 (-554))) 57) (($ $ (-554)) 51)) (-3008 (((-112) $) 66)) (-1670 (($ $) 81)) (-2797 (((-758) $) 80)) (-2046 (($ $) 79)) (-3089 (($ (-631 |#2|)) 37)) (-1300 (($ $) 101)) (-2461 (((-631 $) $) 69)) (-1441 (((-112) $ $) 68)) (-2438 (((-112) (-1 (-112) |#2|) $) 31)) (-1658 (((-112) $ $) 18)) (-2563 (((-758) $) 29))) +(((-659 |#1| |#2|) (-10 -8 (-15 -1300 (|#1| |#1|)) (-15 -4282 (|#1| |#1| (-554))) (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2625 ((-631 |#2|) |#1|)) (-15 -3618 ((-112) (-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -2256 ((-554) |#1|)) (-15 -3044 ((-554) |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -3250 ((-554) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758)))) (-660 |#2|) (-1195)) (T -659)) +NIL +(-10 -8 (-15 -1300 (|#1| |#1|)) (-15 -4282 (|#1| |#1| (-554))) (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2625 ((-631 |#2|) |#1|)) (-15 -3618 ((-112) (-554) |#1|)) (-15 -2529 ((-631 (-554)) |#1|)) (-15 -2256 ((-554) |#1|)) (-15 -3044 ((-554) |#1|)) (-15 -3089 (|#1| (-631 |#2|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2021 (|#1| |#1| (-554))) (-15 -2021 (|#1| |#1| (-1208 (-554)))) (-15 -1782 (|#1| |#2| |#1| (-554))) (-15 -1782 (|#1| |#1| |#1| (-554))) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -1990 ((-112) |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -3250 ((-554) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2845 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-4233 (((-1246) $ (-554) (-554)) 97 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 117 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 86 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 102)) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-2486 (($ $) 124)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-1571 (($ $) 99 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 100 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 103)) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2862 ((|#1| $ (-554) |#1|) 85 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 87)) (-3556 (((-112) $) 83)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2911 (((-758) $) 123)) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) 108)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 95 (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 94 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-4104 (($ $) 126)) (-3150 (((-112) $) 127)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-1782 (($ $ $ (-554)) 116) (($ |#1| $ (-554)) 115)) (-2529 (((-631 (-554)) $) 92)) (-3618 (((-112) (-554) $) 91)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1491 ((|#1| $) 125)) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2441 (($ $ |#1|) 96 (|has| $ (-6 -4374)))) (-4282 (($ $ (-554)) 122)) (-1381 (((-112) $) 84)) (-2322 (((-112) $) 128)) (-1826 (((-112) $) 129)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 90)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1208 (-554))) 112) ((|#1| $ (-554)) 89) ((|#1| $ (-554) |#1|) 88)) (-3250 (((-554) $ $) 44)) (-2021 (($ $ (-1208 (-554))) 114) (($ $ (-554)) 113)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 107)) (-1853 (($ $ $) 61 (|has| $ (-6 -4374))) (($ $ |#1|) 60 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 78) (($ |#1| $) 77) (($ (-631 $)) 110) (($ $ |#1|) 109)) (-1300 (($ $) 121)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-660 |#1|) (-138) (-1195)) (T -660)) +((-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) (-1871 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195))))) +(-13 (-1131 |t#1|) (-10 -8 (-15 -2574 ($ (-1 (-112) |t#1|) $)) (-15 -1871 ($ (-1 (-112) |t#1|) $)) (-15 -1826 ((-112) $)) (-15 -2322 ((-112) $)) (-15 -3150 ((-112) $)) (-15 -4104 ($ $)) (-15 -1491 (|t#1| $)) (-15 -2486 ($ $)) (-15 -2911 ((-758) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1131 |#1|) . T) ((-1195) . T) ((-1229 |#1|) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3918 (($ (-758) (-758) (-758)) 33 (|has| |#1| (-1034)))) (-3019 (((-112) $ (-758)) NIL)) (-1493 ((|#1| $ (-758) (-758) (-758) |#1|) 27)) (-4087 (($) NIL T CONST)) (-3652 (($ $ $) 37 (|has| |#1| (-1034)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2761 (((-1241 (-758)) $) 9)) (-1807 (($ (-1158) $ $) 22)) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2015 (($ (-758)) 35 (|has| |#1| (-1034)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-758) (-758) (-758)) 25)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3089 (($ (-631 (-631 (-631 |#1|)))) 44)) (-3075 (($ (-943 (-943 (-943 |#1|)))) 15) (((-943 (-943 (-943 |#1|))) $) 12) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-661 |#1|) (-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1034)) (PROGN (-15 -3918 ($ (-758) (-758) (-758))) (-15 -2015 ($ (-758))) (-15 -3652 ($ $ $))) |%noBranch|) (-15 -3089 ($ (-631 (-631 (-631 |#1|))))) (-15 -2064 (|#1| $ (-758) (-758) (-758))) (-15 -1493 (|#1| $ (-758) (-758) (-758) |#1|)) (-15 -3075 ($ (-943 (-943 (-943 |#1|))))) (-15 -3075 ((-943 (-943 (-943 |#1|))) $)) (-15 -1807 ($ (-1158) $ $)) (-15 -2761 ((-1241 (-758)) $)))) (-1082)) (T -661)) +((-3918 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034)) (-4 *3 (-1082)))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034)) (-4 *3 (-1082)))) (-3652 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1034)) (-4 *2 (-1082)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-631 *3)))) (-4 *3 (-1082)) (-5 *1 (-661 *3)))) (-2064 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082)))) (-1493 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-4 *3 (-1082)) (-5 *1 (-661 *3)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-5 *1 (-661 *3)) (-4 *3 (-1082)))) (-1807 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-661 *3)) (-4 *3 (-1082)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-1241 (-758))) (-5 *1 (-661 *3)) (-4 *3 (-1082))))) +(-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1034)) (PROGN (-15 -3918 ($ (-758) (-758) (-758))) (-15 -2015 ($ (-758))) (-15 -3652 ($ $ $))) |%noBranch|) (-15 -3089 ($ (-631 (-631 (-631 |#1|))))) (-15 -2064 (|#1| $ (-758) (-758) (-758))) (-15 -1493 (|#1| $ (-758) (-758) (-758) |#1|)) (-15 -3075 ($ (-943 (-943 (-943 |#1|))))) (-15 -3075 ((-943 (-943 (-943 |#1|))) $)) (-15 -1807 ($ (-1158) $ $)) (-15 -2761 ((-1241 (-758)) $)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-4133 (((-477) $) 10)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 12)) (-1658 (((-112) $ $) NIL))) +(((-662) (-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -4319 ((-1117) $))))) (T -662)) +((-4133 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-662)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-662))))) +(-13 (-1065) (-10 -8 (-15 -4133 ((-477) $)) (-15 -4319 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) 14)) (-3324 (($ $) 18)) (-3051 (((-112) $) 19)) (-2784 (((-3 |#1| "failed") $) 22)) (-1668 ((|#1| $) 20)) (-1551 (($ $) 36)) (-3898 (($ $) 24)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2082 (((-112) $ $) 42)) (-2577 (((-906) $) 38)) (-3311 (($ $) 17)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 ((|#1| $) 35)) (-3075 (((-848) $) 31) (($ |#1|) 23) (((-806 |#1|) $) 27)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 12)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-663 |#1|) (-13 (-836) (-1023 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -1539 (|#1| $)) (-15 -3311 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3898 ($ $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -3324 ($ $)) (-15 -1654 ((-631 |#1|) $)))) (-836)) (T -663)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-1539 (*1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-3311 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836))))) +(-13 (-836) (-1023 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3075 ((-806 |#1|) $)) (-15 -1539 (|#1| $)) (-15 -3311 ($ $)) (-15 -2577 ((-906) $)) (-15 -2082 ((-112) $ $)) (-15 -3898 ($ $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -3324 ($ $)) (-15 -1654 ((-631 |#1|) $)))) +((-2217 ((|#1| (-1 |#1| (-758) |#1|) (-758) |#1|) 11)) (-4336 ((|#1| (-1 |#1| |#1|) (-758) |#1|) 9))) +(((-664 |#1|) (-10 -7 (-15 -4336 (|#1| (-1 |#1| |#1|) (-758) |#1|)) (-15 -2217 (|#1| (-1 |#1| (-758) |#1|) (-758) |#1|))) (-1082)) (T -664)) +((-2217 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-758) *2)) (-5 *4 (-758)) (-4 *2 (-1082)) (-5 *1 (-664 *2)))) (-4336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-758)) (-4 *2 (-1082)) (-5 *1 (-664 *2))))) +(-10 -7 (-15 -4336 (|#1| (-1 |#1| |#1|) (-758) |#1|)) (-15 -2217 (|#1| (-1 |#1| (-758) |#1|) (-758) |#1|))) +((-3777 ((|#2| |#1| |#2|) 9)) (-3766 ((|#1| |#1| |#2|) 8))) +(((-665 |#1| |#2|) (-10 -7 (-15 -3766 (|#1| |#1| |#2|)) (-15 -3777 (|#2| |#1| |#2|))) (-1082) (-1082)) (T -665)) +((-3777 (*1 *2 *3 *2) (-12 (-5 *1 (-665 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3766 (*1 *2 *2 *3) (-12 (-5 *1 (-665 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(-10 -7 (-15 -3766 (|#1| |#1| |#2|)) (-15 -3777 (|#2| |#1| |#2|))) +((-3844 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3844 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1082) (-1082) (-1082)) (T -666)) +((-3844 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)) (-5 *1 (-666 *5 *6 *2))))) +(-10 -7 (-15 -3844 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 20)) (-2452 (((-631 (-1194)) $) 18)) (-3135 (($ (-631 (-1194)) (-1194)) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 29) (($ (-1163)) NIL) (((-1163) $) NIL) (((-1194) $) 21) (($ (-1100)) 10)) (-1658 (((-112) $ $) NIL))) +(((-667) (-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-1100))) (-15 -3135 ($ (-631 (-1194)) (-1194))) (-15 -2452 ((-631 (-1194)) $)) (-15 -1362 ((-1194) $))))) (T -667)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-667)))) (-3135 (*1 *1 *2 *3) (-12 (-5 *2 (-631 (-1194))) (-5 *3 (-1194)) (-5 *1 (-667)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-667)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-667))))) +(-13 (-1065) (-601 (-1194)) (-10 -8 (-15 -3075 ($ (-1100))) (-15 -3135 ($ (-631 (-1194)) (-1194))) (-15 -2452 ((-631 (-1194)) $)) (-15 -1362 ((-1194) $)))) +((-2217 (((-1 |#1| (-758) |#1|) (-1 |#1| (-758) |#1|)) 23)) (-3824 (((-1 |#1|) |#1|) 8)) (-3142 ((|#1| |#1|) 16)) (-4055 (((-631 |#1|) (-1 (-631 |#1|) (-631 |#1|)) (-554)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3075 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-758)) 20))) +(((-668 |#1|) (-10 -7 (-15 -3824 ((-1 |#1|) |#1|)) (-15 -3075 ((-1 |#1|) |#1|)) (-15 -4055 (|#1| (-1 |#1| |#1|))) (-15 -4055 ((-631 |#1|) (-1 (-631 |#1|) (-631 |#1|)) (-554))) (-15 -3142 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-758))) (-15 -2217 ((-1 |#1| (-758) |#1|) (-1 |#1| (-758) |#1|)))) (-1082)) (T -668)) +((-2217 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-758) *3)) (-4 *3 (-1082)) (-5 *1 (-668 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *4 (-1082)) (-5 *1 (-668 *4)))) (-3142 (*1 *2 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1082)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-631 *5) (-631 *5))) (-5 *4 (-554)) (-5 *2 (-631 *5)) (-5 *1 (-668 *5)) (-4 *5 (-1082)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-668 *2)) (-4 *2 (-1082)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082))))) +(-10 -7 (-15 -3824 ((-1 |#1|) |#1|)) (-15 -3075 ((-1 |#1|) |#1|)) (-15 -4055 (|#1| (-1 |#1| |#1|))) (-15 -4055 ((-631 |#1|) (-1 (-631 |#1|) (-631 |#1|)) (-554))) (-15 -3142 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-758))) (-15 -2217 ((-1 |#1| (-758) |#1|) (-1 |#1| (-758) |#1|)))) +((-3957 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1620 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2397 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3341 (((-1 |#2| |#1|) |#2|) 11))) +(((-669 |#1| |#2|) (-10 -7 (-15 -3341 ((-1 |#2| |#1|) |#2|)) (-15 -1620 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2397 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3957 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1082) (-1082)) (T -669)) +((-3957 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-669 *4 *5)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-669 *4 *5)) (-4 *4 (-1082)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5)) (-5 *1 (-669 *4 *5)))) (-3341 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-669 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1082))))) +(-10 -7 (-15 -3341 ((-1 |#2| |#1|) |#2|)) (-15 -1620 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2397 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3957 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3203 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1954 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2766 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1925 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3965 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-670 |#1| |#2| |#3|) (-10 -7 (-15 -1954 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2766 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1925 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3965 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3203 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1082) (-1082) (-1082)) (T -670)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-1 *7 *5)) (-5 *1 (-670 *5 *6 *7)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-670 *4 *5 *6)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *4 (-1082)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *5 (-1082)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *4 *5 *6)))) (-1954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1082)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *5 *4 *6))))) +(-10 -7 (-15 -1954 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2766 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1925 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3965 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3203 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3676 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2879 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2879 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3676 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1034) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|) (-1034) (-368 |#5|) (-368 |#5|) (-673 |#5| |#6| |#7|)) (T -671)) +((-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1034)) (-4 *2 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2)) (-4 *9 (-368 *2)) (-5 *1 (-671 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-673 *5 *6 *7)) (-4 *10 (-673 *2 *8 *9)))) (-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1034)) (-4 *8 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-673 *8 *9 *10)) (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-673 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1034)) (-4 *8 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-673 *8 *9 *10)) (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-673 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8))))) +(-10 -7 (-15 -2879 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2879 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3676 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2275 (($ (-758) (-758)) 33)) (-1846 (($ $ $) 56)) (-2757 (($ |#3|) 52) (($ $) 53)) (-1350 (((-112) $) 28)) (-2416 (($ $ (-554) (-554)) 58)) (-3705 (($ $ (-554) (-554)) 59)) (-1458 (($ $ (-554) (-554) (-554) (-554)) 63)) (-3657 (($ $) 54)) (-3795 (((-112) $) 14)) (-4345 (($ $ (-554) (-554) $) 64)) (-1501 ((|#2| $ (-554) (-554) |#2|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) 62)) (-1475 (($ (-758) |#2|) 39)) (-1899 (($ (-631 (-631 |#2|))) 37)) (-1679 (((-631 (-631 |#2|)) $) 57)) (-4041 (($ $ $) 55)) (-3919 (((-3 $ "failed") $ |#2|) 91)) (-2064 ((|#2| $ (-554) (-554)) NIL) ((|#2| $ (-554) (-554) |#2|) NIL) (($ $ (-631 (-554)) (-631 (-554))) 61)) (-3198 (($ (-631 |#2|)) 40) (($ (-631 $)) 42)) (-2361 (((-112) $) 24)) (-3075 (($ |#4|) 47) (((-848) $) NIL)) (-4299 (((-112) $) 30)) (-1752 (($ $ |#2|) 93)) (-1744 (($ $ $) 68) (($ $) 71)) (-1735 (($ $ $) 66)) (** (($ $ (-758)) 80) (($ $ (-554)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-554) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#2|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -4345 (|#1| |#1| (-554) (-554) |#1|)) (-15 -1458 (|#1| |#1| (-554) (-554) (-554) (-554))) (-15 -3705 (|#1| |#1| (-554) (-554))) (-15 -2416 (|#1| |#1| (-554) (-554))) (-15 -1501 (|#1| |#1| (-631 (-554)) (-631 (-554)) |#1|)) (-15 -2064 (|#1| |#1| (-631 (-554)) (-631 (-554)))) (-15 -1679 ((-631 (-631 |#2|)) |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -4041 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2757 (|#1| |#3|)) (-15 -3075 (|#1| |#4|)) (-15 -3198 (|#1| (-631 |#1|))) (-15 -3198 (|#1| (-631 |#2|))) (-15 -1475 (|#1| (-758) |#2|)) (-15 -1899 (|#1| (-631 (-631 |#2|)))) (-15 -2275 (|#1| (-758) (-758))) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554)))) (-673 |#2| |#3| |#4|) (-1034) (-368 |#2|) (-368 |#2|)) (T -672)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -1752 (|#1| |#1| |#2|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-758))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -4345 (|#1| |#1| (-554) (-554) |#1|)) (-15 -1458 (|#1| |#1| (-554) (-554) (-554) (-554))) (-15 -3705 (|#1| |#1| (-554) (-554))) (-15 -2416 (|#1| |#1| (-554) (-554))) (-15 -1501 (|#1| |#1| (-631 (-554)) (-631 (-554)) |#1|)) (-15 -2064 (|#1| |#1| (-631 (-554)) (-631 (-554)))) (-15 -1679 ((-631 (-631 |#2|)) |#1|)) (-15 -1846 (|#1| |#1| |#1|)) (-15 -4041 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2757 (|#1| |#3|)) (-15 -3075 (|#1| |#4|)) (-15 -3198 (|#1| (-631 |#1|))) (-15 -3198 (|#1| (-631 |#2|))) (-15 -1475 (|#1| (-758) |#2|)) (-15 -1899 (|#1| (-631 (-631 |#2|)))) (-15 -2275 (|#1| (-758) (-758))) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) (-554)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) 97)) (-1846 (($ $ $) 87)) (-2757 (($ |#2|) 91) (($ $) 90)) (-1350 (((-112) $) 99)) (-2416 (($ $ (-554) (-554)) 83)) (-3705 (($ $ (-554) (-554)) 82)) (-1458 (($ $ (-554) (-554) (-554) (-554)) 81)) (-3657 (($ $) 89)) (-3795 (((-112) $) 101)) (-3019 (((-112) $ (-758)) 8)) (-4345 (($ $ (-554) (-554) $) 80)) (-1501 ((|#1| $ (-554) (-554) |#1|) 44) (($ $ (-631 (-554)) (-631 (-554)) $) 84)) (-2557 (($ $ (-554) |#2|) 42)) (-1464 (($ $ (-554) |#3|) 41)) (-1475 (($ (-758) |#1|) 95)) (-4087 (($) 7 T CONST)) (-2775 (($ $) 67 (|has| |#1| (-302)))) (-3519 ((|#2| $ (-554)) 46)) (-4186 (((-758) $) 66 (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) 43)) (-2796 ((|#1| $ (-554) (-554)) 48)) (-2466 (((-631 |#1|) $) 30)) (-4332 (((-758) $) 65 (|has| |#1| (-546)))) (-2412 (((-631 |#3|) $) 64 (|has| |#1| (-546)))) (-4130 (((-758) $) 51)) (-3180 (($ (-758) (-758) |#1|) 57)) (-4143 (((-758) $) 50)) (-2230 (((-112) $ (-758)) 9)) (-2326 ((|#1| $) 62 (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) 55)) (-1817 (((-554) $) 53)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 54)) (-4249 (((-554) $) 52)) (-1899 (($ (-631 (-631 |#1|))) 96)) (-2849 (($ (-1 |#1| |#1|) $) 34)) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1679 (((-631 (-631 |#1|)) $) 86)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) 61 (|has| |#1| (-358)))) (-4041 (($ $ $) 88)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) 56)) (-3919 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) (-554)) 49) ((|#1| $ (-554) (-554) |#1|) 47) (($ $ (-631 (-554)) (-631 (-554))) 85)) (-3198 (($ (-631 |#1|)) 94) (($ (-631 $)) 93)) (-2361 (((-112) $) 100)) (-2870 ((|#1| $) 63 (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3259 ((|#3| $ (-554)) 45)) (-3075 (($ |#3|) 92) (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-4299 (((-112) $) 98)) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) 68 (|has| |#1| (-358)))) (-1744 (($ $ $) 78) (($ $) 77)) (-1735 (($ $ $) 79)) (** (($ $ (-758)) 70) (($ $ (-554)) 60 (|has| |#1| (-358)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-554) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-673 |#1| |#2| |#3|) (-138) (-1034) (-368 |t#1|) (-368 |t#1|)) (T -673)) +((-3795 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-2275 (*1 *1 *2 *2) (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1475 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *2)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (-2757 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *2 *4)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (-2757 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4041 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1846 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-631 (-631 *3))))) (-2064 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1501 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2416 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3705 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1458 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4345 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-1744 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-673 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-673 *3 *2 *4)) (-4 *3 (-1034)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-546)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-302)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-631 *5)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2843 (*1 *1 *1) (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4374) (-6 -4373) (-15 -3795 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -1350 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -2275 ($ (-758) (-758))) (-15 -1899 ($ (-631 (-631 |t#1|)))) (-15 -1475 ($ (-758) |t#1|)) (-15 -3198 ($ (-631 |t#1|))) (-15 -3198 ($ (-631 $))) (-15 -3075 ($ |t#3|)) (-15 -2757 ($ |t#2|)) (-15 -2757 ($ $)) (-15 -3657 ($ $)) (-15 -4041 ($ $ $)) (-15 -1846 ($ $ $)) (-15 -1679 ((-631 (-631 |t#1|)) $)) (-15 -2064 ($ $ (-631 (-554)) (-631 (-554)))) (-15 -1501 ($ $ (-631 (-554)) (-631 (-554)) $)) (-15 -2416 ($ $ (-554) (-554))) (-15 -3705 ($ $ (-554) (-554))) (-15 -1458 ($ $ (-554) (-554) (-554) (-554))) (-15 -4345 ($ $ (-554) (-554) $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1744 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-554) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-758))) (IF (|has| |t#1| (-546)) (-15 -3919 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -1752 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-302)) (-15 -2775 ($ $)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-15 -4186 ((-758) $)) (-15 -4332 ((-758) $)) (-15 -2412 ((-631 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4375 "*"))) (PROGN (-15 -2870 (|t#1| $)) (-15 -2326 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -2843 ((-3 $ "failed") $)) (-15 ** ($ $ (-554)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-57 |#1| |#2| |#3|) . T) ((-1195) . T)) +((-2775 ((|#4| |#4|) 72 (|has| |#1| (-302)))) (-4186 (((-758) |#4|) 99 (|has| |#1| (-546)))) (-4332 (((-758) |#4|) 76 (|has| |#1| (-546)))) (-2412 (((-631 |#3|) |#4|) 83 (|has| |#1| (-546)))) (-1524 (((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 111 (|has| |#1| (-302)))) (-2326 ((|#1| |#4|) 35)) (-3521 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-546)))) (-2843 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-358)))) (-2891 ((|#4| |#4|) 68 (|has| |#1| (-546)))) (-1935 ((|#4| |#4| |#1| (-554) (-554)) 43)) (-2893 ((|#4| |#4| (-554) (-554)) 38)) (-4256 ((|#4| |#4| |#1| (-554) (-554)) 48)) (-2870 ((|#1| |#4|) 78)) (-2968 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-546))))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2870 (|#1| |#4|)) (-15 -2326 (|#1| |#4|)) (-15 -2893 (|#4| |#4| (-554) (-554))) (-15 -1935 (|#4| |#4| |#1| (-554) (-554))) (-15 -4256 (|#4| |#4| |#1| (-554) (-554))) (IF (|has| |#1| (-546)) (PROGN (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (-15 -2412 ((-631 |#3|) |#4|)) (-15 -2891 (|#4| |#4|)) (-15 -3521 ((-3 |#4| "failed") |#4|)) (-15 -2968 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -2775 (|#4| |#4|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -674)) +((-2843 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-1524 (*1 *2 *3 *3) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-674 *3 *4 *5 *6)) (-4 *6 (-673 *3 *4 *5)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2968 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-3521 (*1 *2 *2) (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4332 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4186 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4256 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2)) (-4 *2 (-673 *3 *5 *6)))) (-1935 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2)) (-4 *2 (-673 *3 *5 *6)))) (-2893 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-554)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *1 (-674 *4 *5 *6 *2)) (-4 *2 (-673 *4 *5 *6)))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) (-2870 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5))))) +(-10 -7 (-15 -2870 (|#1| |#4|)) (-15 -2326 (|#1| |#4|)) (-15 -2893 (|#4| |#4| (-554) (-554))) (-15 -1935 (|#4| |#4| |#1| (-554) (-554))) (-15 -4256 (|#4| |#4| |#1| (-554) (-554))) (IF (|has| |#1| (-546)) (PROGN (-15 -4186 ((-758) |#4|)) (-15 -4332 ((-758) |#4|)) (-15 -2412 ((-631 |#3|) |#4|)) (-15 -2891 (|#4| |#4|)) (-15 -3521 ((-3 |#4| "failed") |#4|)) (-15 -2968 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -2775 (|#4| |#4|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758) (-758)) 47)) (-1846 (($ $ $) NIL)) (-2757 (($ (-1241 |#1|)) NIL) (($ $) NIL)) (-1350 (((-112) $) NIL)) (-2416 (($ $ (-554) (-554)) 12)) (-3705 (($ $ (-554) (-554)) NIL)) (-1458 (($ $ (-554) (-554) (-554) (-554)) NIL)) (-3657 (($ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4345 (($ $ (-554) (-554) $) NIL)) (-1501 ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554)) $) NIL)) (-2557 (($ $ (-554) (-1241 |#1|)) NIL)) (-1464 (($ $ (-554) (-1241 |#1|)) NIL)) (-1475 (($ (-758) |#1|) 22)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 31 (|has| |#1| (-302)))) (-3519 (((-1241 |#1|) $ (-554)) NIL)) (-4186 (((-758) $) 33 (|has| |#1| (-546)))) (-2862 ((|#1| $ (-554) (-554) |#1|) 51)) (-2796 ((|#1| $ (-554) (-554)) NIL)) (-2466 (((-631 |#1|) $) NIL)) (-4332 (((-758) $) 35 (|has| |#1| (-546)))) (-2412 (((-631 (-1241 |#1|)) $) 38 (|has| |#1| (-546)))) (-4130 (((-758) $) 20)) (-3180 (($ (-758) (-758) |#1|) 16)) (-4143 (((-758) $) 21)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#1| $) 29 (|has| |#1| (-6 (-4375 "*"))))) (-3985 (((-554) $) 9)) (-1817 (((-554) $) 10)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2787 (((-554) $) 11)) (-4249 (((-554) $) 48)) (-1899 (($ (-631 (-631 |#1|))) NIL)) (-2849 (($ (-1 |#1| |#1|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1679 (((-631 (-631 |#1|)) $) 60)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2843 (((-3 $ "failed") $) 45 (|has| |#1| (-358)))) (-4041 (($ $ $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2441 (($ $ |#1|) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) (-554)) NIL) ((|#1| $ (-554) (-554) |#1|) NIL) (($ $ (-631 (-554)) (-631 (-554))) NIL)) (-3198 (($ (-631 |#1|)) NIL) (($ (-631 $)) NIL) (($ (-1241 |#1|)) 52)) (-2361 (((-112) $) NIL)) (-2870 ((|#1| $) 27 (|has| |#1| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 64 (|has| |#1| (-602 (-530))))) (-3259 (((-1241 |#1|) $ (-554)) NIL)) (-3075 (($ (-1241 |#1|)) NIL) (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $ $) NIL) (($ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) 23) (($ $ (-554)) 46 (|has| |#1| (-358)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-554) $) NIL) (((-1241 |#1|) $ (-1241 |#1|)) NIL) (((-1241 |#1|) (-1241 |#1|) $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-675 |#1|) (-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 -3198 ($ (-1241 |#1|))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 $ "failed") $)) |%noBranch|))) (-1034)) (T -675)) +((-2843 (*1 *1 *1) (|partial| -12 (-5 *1 (-675 *2)) (-4 *2 (-358)) (-4 *2 (-1034)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-675 *3))))) +(-13 (-673 |#1| (-1241 |#1|) (-1241 |#1|)) (-10 -8 (-15 -3198 ($ (-1241 |#1|))) (IF (|has| |#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -2843 ((-3 $ "failed") $)) |%noBranch|))) +((-4058 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|)) 25)) (-1280 (((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|) 21)) (-1829 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-758)) 26)) (-4349 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|)) 14)) (-2426 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|)) 18) (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 16)) (-3149 (((-675 |#1|) (-675 |#1|) |#1| (-675 |#1|)) 20)) (-2137 (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 12)) (** (((-675 |#1|) (-675 |#1|) (-758)) 30))) +(((-676 |#1|) (-10 -7 (-15 -2137 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -4349 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3149 ((-675 |#1|) (-675 |#1|) |#1| (-675 |#1|))) (-15 -1280 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -4058 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -1829 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-758))) (-15 ** ((-675 |#1|) (-675 |#1|) (-758)))) (-1034)) (T -676)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-676 *4)))) (-1829 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-676 *4)))) (-4058 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-1280 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-3149 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-2426 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-2426 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-4349 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) (-2137 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(-10 -7 (-15 -2137 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -4349 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -2426 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3149 ((-675 |#1|) (-675 |#1|) |#1| (-675 |#1|))) (-15 -1280 ((-675 |#1|) (-675 |#1|) (-675 |#1|) |#1|)) (-15 -4058 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -1829 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-675 |#1|) (-758))) (-15 ** ((-675 |#1|) (-675 |#1|) (-758)))) +((-3615 (($) 8 T CONST)) (-3075 (((-848) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3182 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3615)) 16)) (-1556 ((|#1| $) 11))) +(((-677 |#1|) (-13 (-1236) (-601 (-848)) (-10 -8 (-15 -3182 ((-112) $ (|[\|\|]| |#1|))) (-15 -3182 ((-112) $ (|[\|\|]| -3615))) (-15 -3075 ($ |#1|)) (-15 -3075 (|#1| $)) (-15 -1556 (|#1| $)) (-15 -3615 ($) -2397))) (-601 (-848))) (T -677)) +((-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-601 (-848))) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3615)) (-5 *2 (-112)) (-5 *1 (-677 *4)) (-4 *4 (-601 (-848))))) (-3075 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) (-3075 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) (-1556 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) (-3615 (*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848)))))) +(-13 (-1236) (-601 (-848)) (-10 -8 (-15 -3182 ((-112) $ (|[\|\|]| |#1|))) (-15 -3182 ((-112) $ (|[\|\|]| -3615))) (-15 -3075 ($ |#1|)) (-15 -3075 (|#1| $)) (-15 -1556 (|#1| $)) (-15 -3615 ($) -2397))) +((-3092 ((|#2| |#2| |#4|) 25)) (-2449 (((-675 |#2|) |#3| |#4|) 31)) (-4241 (((-675 |#2|) |#2| |#4|) 30)) (-1526 (((-1241 |#2|) |#2| |#4|) 16)) (-4075 ((|#2| |#3| |#4|) 24)) (-2881 (((-675 |#2|) |#3| |#4| (-758) (-758)) 38)) (-2894 (((-675 |#2|) |#2| |#4| (-758)) 37))) +(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1526 ((-1241 |#2|) |#2| |#4|)) (-15 -4075 (|#2| |#3| |#4|)) (-15 -3092 (|#2| |#2| |#4|)) (-15 -4241 ((-675 |#2|) |#2| |#4|)) (-15 -2894 ((-675 |#2|) |#2| |#4| (-758))) (-15 -2449 ((-675 |#2|) |#3| |#4|)) (-15 -2881 ((-675 |#2|) |#3| |#4| (-758) (-758)))) (-1082) (-885 |#1|) (-368 |#2|) (-13 (-368 |#1|) (-10 -7 (-6 -4373)))) (T -678)) +((-2881 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *7 (-885 *6)) (-5 *2 (-675 *7)) (-5 *1 (-678 *6 *7 *3 *4)) (-4 *3 (-368 *7)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373)))))) (-2449 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-885 *5)) (-5 *2 (-675 *6)) (-5 *1 (-678 *5 *6 *3 *4)) (-4 *3 (-368 *6)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))) (-2894 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *3 (-885 *6)) (-5 *2 (-675 *3)) (-5 *1 (-678 *6 *3 *7 *4)) (-4 *7 (-368 *3)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373)))))) (-4241 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-675 *3)) (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))) (-3092 (*1 *2 *2 *3) (-12 (-4 *4 (-1082)) (-4 *2 (-885 *4)) (-5 *1 (-678 *4 *2 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4373)))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *2 (-885 *5)) (-5 *1 (-678 *5 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373)))))) (-1526 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-1241 *3)) (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373))))))) +(-10 -7 (-15 -1526 ((-1241 |#2|) |#2| |#4|)) (-15 -4075 (|#2| |#3| |#4|)) (-15 -3092 (|#2| |#2| |#4|)) (-15 -4241 ((-675 |#2|) |#2| |#4|)) (-15 -2894 ((-675 |#2|) |#2| |#4| (-758))) (-15 -2449 ((-675 |#2|) |#3| |#4|)) (-15 -2881 ((-675 |#2|) |#3| |#4| (-758) (-758)))) +((-2037 (((-2 (|:| |num| (-675 |#1|)) (|:| |den| |#1|)) (-675 |#2|)) 20)) (-2715 ((|#1| (-675 |#2|)) 9)) (-1770 (((-675 |#1|) (-675 |#2|)) 18))) +(((-679 |#1| |#2|) (-10 -7 (-15 -2715 (|#1| (-675 |#2|))) (-15 -1770 ((-675 |#1|) (-675 |#2|))) (-15 -2037 ((-2 (|:| |num| (-675 |#1|)) (|:| |den| |#1|)) (-675 |#2|)))) (-546) (-977 |#1|)) (T -679)) +((-2037 (*1 *2 *3) (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |num| (-675 *4)) (|:| |den| *4))) (-5 *1 (-679 *4 *5)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546)) (-5 *2 (-675 *4)) (-5 *1 (-679 *4 *5)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-675 *4)) (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-679 *2 *4))))) +(-10 -7 (-15 -2715 (|#1| (-675 |#2|))) (-15 -1770 ((-675 |#1|) (-675 |#2|))) (-15 -2037 ((-2 (|:| |num| (-675 |#1|)) (|:| |den| |#1|)) (-675 |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1903 (((-675 (-685))) NIL) (((-675 (-685)) (-1241 $)) NIL)) (-1612 (((-685) $) NIL)) (-3023 (($ $) NIL (|has| (-685) (-1180)))) (-4200 (($ $) NIL (|has| (-685) (-1180)))) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-685) (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-3278 (($ $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-1565 (((-413 $) $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-2282 (($ $) NIL (-12 (|has| (-685) (-987)) (|has| (-685) (-1180))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-2286 (((-112) $ $) NIL (|has| (-685) (-302)))) (-1508 (((-758)) NIL (|has| (-685) (-363)))) (-3003 (($ $) NIL (|has| (-685) (-1180)))) (-4177 (($ $) NIL (|has| (-685) (-1180)))) (-3046 (($ $) NIL (|has| (-685) (-1180)))) (-2916 (($ $) NIL (|has| (-685) (-1180)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-685) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-685) (-1023 (-402 (-554)))))) (-1668 (((-554) $) NIL) (((-685) $) NIL) (((-402 (-554)) $) NIL (|has| (-685) (-1023 (-402 (-554)))))) (-1651 (($ (-1241 (-685))) NIL) (($ (-1241 (-685)) (-1241 $)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-685) (-344)))) (-3964 (($ $ $) NIL (|has| (-685) (-302)))) (-3629 (((-675 (-685)) $) NIL) (((-675 (-685)) $ (-1241 $)) NIL)) (-3699 (((-675 (-685)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-685))) (|:| |vec| (-1241 (-685)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-685) (-627 (-554)))) (((-675 (-554)) (-675 $)) NIL (|has| (-685) (-627 (-554))))) (-3676 (((-3 $ "failed") (-402 (-1154 (-685)))) NIL (|has| (-685) (-358))) (($ (-1154 (-685))) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2293 (((-685) $) 29)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| (-685) (-539)))) (-2069 (((-112) $) NIL (|has| (-685) (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| (-685) (-539)))) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| (-685) (-363)))) (-3943 (($ $ $) NIL (|has| (-685) (-302)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| (-685) (-302)))) (-3157 (($) NIL (|has| (-685) (-344)))) (-2754 (((-112) $) NIL (|has| (-685) (-344)))) (-4122 (($ $) NIL (|has| (-685) (-344))) (($ $ (-758)) NIL (|has| (-685) (-344)))) (-3289 (((-112) $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-2244 (((-2 (|:| |r| (-685)) (|:| |phi| (-685))) $) NIL (-12 (|has| (-685) (-1043)) (|has| (-685) (-1180))))) (-2844 (($) NIL (|has| (-685) (-1180)))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-685) (-871 (-374)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-685) (-871 (-554))))) (-2342 (((-820 (-906)) $) NIL (|has| (-685) (-344))) (((-906) $) NIL (|has| (-685) (-344)))) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (-12 (|has| (-685) (-987)) (|has| (-685) (-1180))))) (-3274 (((-685) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-685) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-685) (-302)))) (-3361 (((-1154 (-685)) $) NIL (|has| (-685) (-358)))) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2879 (($ (-1 (-685) (-685)) $) NIL)) (-3830 (((-906) $) NIL (|has| (-685) (-363)))) (-2395 (($ $) NIL (|has| (-685) (-1180)))) (-3662 (((-1154 (-685)) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| (-685) (-302))) (($ $ $) NIL (|has| (-685) (-302)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| (-685) (-358)))) (-3834 (($) NIL (|has| (-685) (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| (-685) (-363)))) (-2659 (($) NIL)) (-2302 (((-685) $) 31)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| (-685) (-302)))) (-2510 (($ (-631 $)) NIL (|has| (-685) (-302))) (($ $ $) NIL (|has| (-685) (-302)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-685) (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-685) (-302)) (|has| (-685) (-894))))) (-2270 (((-413 $) $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| (-685) (-894))) (|has| (-685) (-358))))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-685) (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| (-685) (-302)))) (-3919 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-685)) NIL (|has| (-685) (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-685) (-302)))) (-1333 (($ $) NIL (|has| (-685) (-1180)))) (-2386 (($ $ (-1158) (-685)) NIL (|has| (-685) (-508 (-1158) (-685)))) (($ $ (-631 (-1158)) (-631 (-685))) NIL (|has| (-685) (-508 (-1158) (-685)))) (($ $ (-631 (-289 (-685)))) NIL (|has| (-685) (-304 (-685)))) (($ $ (-289 (-685))) NIL (|has| (-685) (-304 (-685)))) (($ $ (-685) (-685)) NIL (|has| (-685) (-304 (-685)))) (($ $ (-631 (-685)) (-631 (-685))) NIL (|has| (-685) (-304 (-685))))) (-2072 (((-758) $) NIL (|has| (-685) (-302)))) (-2064 (($ $ (-685)) NIL (|has| (-685) (-281 (-685) (-685))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| (-685) (-302)))) (-1495 (((-685)) NIL) (((-685) (-1241 $)) NIL)) (-3316 (((-3 (-758) "failed") $ $) NIL (|has| (-685) (-344))) (((-758) $) NIL (|has| (-685) (-344)))) (-1553 (($ $ (-1 (-685) (-685))) NIL) (($ $ (-1 (-685) (-685)) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-758)) NIL (|has| (-685) (-229))) (($ $) NIL (|has| (-685) (-229)))) (-2092 (((-675 (-685)) (-1241 $) (-1 (-685) (-685))) NIL (|has| (-685) (-358)))) (-4318 (((-1154 (-685))) NIL)) (-3057 (($ $) NIL (|has| (-685) (-1180)))) (-2926 (($ $) NIL (|has| (-685) (-1180)))) (-3944 (($) NIL (|has| (-685) (-344)))) (-3034 (($ $) NIL (|has| (-685) (-1180)))) (-4213 (($ $) NIL (|has| (-685) (-1180)))) (-3014 (($ $) NIL (|has| (-685) (-1180)))) (-4188 (($ $) NIL (|has| (-685) (-1180)))) (-3656 (((-675 (-685)) (-1241 $)) NIL) (((-1241 (-685)) $) NIL) (((-675 (-685)) (-1241 $) (-1241 $)) NIL) (((-1241 (-685)) $ (-1241 $)) NIL)) (-2927 (((-530) $) NIL (|has| (-685) (-602 (-530)))) (((-167 (-221)) $) NIL (|has| (-685) (-1007))) (((-167 (-374)) $) NIL (|has| (-685) (-1007))) (((-877 (-374)) $) NIL (|has| (-685) (-602 (-877 (-374))))) (((-877 (-554)) $) NIL (|has| (-685) (-602 (-877 (-554))))) (($ (-1154 (-685))) NIL) (((-1154 (-685)) $) NIL) (($ (-1241 (-685))) NIL) (((-1241 (-685)) $) NIL)) (-3992 (($ $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| $ (-143)) (|has| (-685) (-894))) (|has| (-685) (-344))))) (-4344 (($ (-685) (-685)) 12)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-554)) NIL) (($ (-685)) NIL) (($ (-167 (-374))) 13) (($ (-167 (-554))) 19) (($ (-167 (-685))) 28) (($ (-167 (-687))) 25) (((-167 (-374)) $) 33) (($ (-402 (-554))) NIL (-3994 (|has| (-685) (-1023 (-402 (-554)))) (|has| (-685) (-358))))) (-2084 (($ $) NIL (|has| (-685) (-344))) (((-3 $ "failed") $) NIL (-3994 (-12 (|has| (-685) (-302)) (|has| $ (-143)) (|has| (-685) (-894))) (|has| (-685) (-143))))) (-3109 (((-1154 (-685)) $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $)) NIL)) (-3096 (($ $) NIL (|has| (-685) (-1180)))) (-2959 (($ $) NIL (|has| (-685) (-1180)))) (-1909 (((-112) $ $) NIL)) (-3069 (($ $) NIL (|has| (-685) (-1180)))) (-2938 (($ $) NIL (|has| (-685) (-1180)))) (-3120 (($ $) NIL (|has| (-685) (-1180)))) (-2981 (($ $) NIL (|has| (-685) (-1180)))) (-2592 (((-685) $) NIL (|has| (-685) (-1180)))) (-2908 (($ $) NIL (|has| (-685) (-1180)))) (-2991 (($ $) NIL (|has| (-685) (-1180)))) (-3108 (($ $) NIL (|has| (-685) (-1180)))) (-2969 (($ $) NIL (|has| (-685) (-1180)))) (-3083 (($ $) NIL (|has| (-685) (-1180)))) (-2948 (($ $) NIL (|has| (-685) (-1180)))) (-1700 (($ $) NIL (|has| (-685) (-1043)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1 (-685) (-685))) NIL) (($ $ (-1 (-685) (-685)) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-1158)) NIL (|has| (-685) (-885 (-1158)))) (($ $ (-758)) NIL (|has| (-685) (-229))) (($ $) NIL (|has| (-685) (-229)))) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL (|has| (-685) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ $) NIL (|has| (-685) (-1180))) (($ $ (-402 (-554))) NIL (-12 (|has| (-685) (-987)) (|has| (-685) (-1180)))) (($ $ (-554)) NIL (|has| (-685) (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ (-685) $) NIL) (($ $ (-685)) NIL) (($ (-402 (-554)) $) NIL (|has| (-685) (-358))) (($ $ (-402 (-554))) NIL (|has| (-685) (-358))))) +(((-680) (-13 (-382) (-164 (-685)) (-10 -8 (-15 -3075 ($ (-167 (-374)))) (-15 -3075 ($ (-167 (-554)))) (-15 -3075 ($ (-167 (-685)))) (-15 -3075 ($ (-167 (-687)))) (-15 -3075 ((-167 (-374)) $))))) (T -680)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-554))) (-5 *1 (-680)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-685))) (-5 *1 (-680)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-167 (-687))) (-5 *1 (-680)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680))))) +(-13 (-382) (-164 (-685)) (-10 -8 (-15 -3075 ($ (-167 (-374)))) (-15 -3075 ($ (-167 (-554)))) (-15 -3075 ($ (-167 (-685)))) (-15 -3075 ($ (-167 (-687)))) (-15 -3075 ((-167 (-374)) $)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 62)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40) (($ |#1| $ (-758)) 63)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 61)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-681 |#1|) (-138) (-1082)) (T -681)) +((-2045 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-681 *2)) (-4 *2 (-1082)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-681 *2)) (-4 *2 (-1082)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-681 *3)) (-4 *3 (-1082)) (-5 *2 (-631 (-2 (|:| -2701 *3) (|:| -2777 (-758)))))))) +(-13 (-231 |t#1|) (-10 -8 (-15 -2045 ($ |t#1| $ (-758))) (-15 -2593 ($ $)) (-15 -2119 ((-631 (-2 (|:| -2701 |t#1|) (|:| -2777 (-758)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-3539 (((-631 |#1|) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) (-554)) 47)) (-3620 ((|#1| |#1| (-554)) 46)) (-2510 ((|#1| |#1| |#1| (-554)) 36)) (-2270 (((-631 |#1|) |#1| (-554)) 39)) (-4028 ((|#1| |#1| (-554) |#1| (-554)) 32)) (-3156 (((-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) |#1| (-554)) 45))) +(((-682 |#1|) (-10 -7 (-15 -2510 (|#1| |#1| |#1| (-554))) (-15 -3620 (|#1| |#1| (-554))) (-15 -2270 ((-631 |#1|) |#1| (-554))) (-15 -3156 ((-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) |#1| (-554))) (-15 -3539 ((-631 |#1|) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) (-554))) (-15 -4028 (|#1| |#1| (-554) |#1| (-554)))) (-1217 (-554))) (T -682)) +((-4028 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| -2270 *5) (|:| -3308 (-554))))) (-5 *4 (-554)) (-4 *5 (-1217 *4)) (-5 *2 (-631 *5)) (-5 *1 (-682 *5)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -3308 *4)))) (-5 *1 (-682 *3)) (-4 *3 (-1217 *4)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-5 *2 (-631 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1217 *4)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))) (-2510 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3))))) +(-10 -7 (-15 -2510 (|#1| |#1| |#1| (-554))) (-15 -3620 (|#1| |#1| (-554))) (-15 -2270 ((-631 |#1|) |#1| (-554))) (-15 -3156 ((-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) |#1| (-554))) (-15 -3539 ((-631 |#1|) (-631 (-2 (|:| -2270 |#1|) (|:| -3308 (-554)))) (-554))) (-15 -4028 (|#1| |#1| (-554) |#1| (-554)))) +((-2631 (((-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 17)) (-3743 (((-1115 (-221)) (-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 40) (((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 42) (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 44)) (-4257 (((-1115 (-221)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-631 (-258))) NIL)) (-2900 (((-1115 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258))) 45))) +(((-683) (-10 -7 (-15 -3743 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2900 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -4257 ((-1115 (-221)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2631 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -683)) +((-2631 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1 (-221) (-221) (-221) (-221))) (-5 *2 (-1 (-928 (-221)) (-221) (-221))) (-5 *1 (-683)))) (-4257 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) (-2900 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) (-3743 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-221))) (-5 *5 (-631 (-258))) (-5 *1 (-683)))) (-3743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-221))) (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) (-3743 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683))))) +(-10 -7 (-15 -3743 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -3743 ((-1115 (-221)) (-1115 (-221)) (-1 (-928 (-221)) (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2900 ((-1115 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1076 (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -4257 ((-1115 (-221)) (-311 (-554)) (-311 (-554)) (-311 (-554)) (-1 (-221) (-221)) (-1076 (-221)) (-631 (-258)))) (-15 -2631 ((-1 (-928 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))))) +((-2270 (((-413 (-1154 |#4|)) (-1154 |#4|)) 73) (((-413 |#4|) |#4|) 221))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|)))) (-836) (-780) (-344) (-934 |#3| |#2| |#1|)) (T -684)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4))))) +(-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 84)) (-3831 (((-554) $) 30)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-1557 (($ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-4087 (($) NIL T CONST)) (-2087 (($ $) NIL)) (-2784 (((-3 (-554) "failed") $) 73) (((-3 (-402 (-554)) "failed") $) 26) (((-3 (-374) "failed") $) 70)) (-1668 (((-554) $) 75) (((-402 (-554)) $) 67) (((-374) $) 68)) (-3964 (($ $ $) 96)) (-1320 (((-3 $ "failed") $) 87)) (-3943 (($ $ $) 95)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2276 (((-906)) 77) (((-906) (-906)) 76)) (-2745 (((-112) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL)) (-2342 (((-554) $) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-3274 (($ $) NIL)) (-4304 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3564 (((-554) (-554)) 81) (((-554)) 82)) (-4223 (($ $ $) NIL) (($) NIL (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-2726 (((-554) (-554)) 79) (((-554)) 80)) (-2706 (($ $ $) NIL) (($) NIL (-12 (-4081 (|has| $ (-6 -4356))) (-4081 (|has| $ (-6 -4364)))))) (-1837 (((-554) $) 16)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 91)) (-3845 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL)) (-4339 (($ $) NIL)) (-3302 (($ (-554) (-554)) NIL) (($ (-554) (-554) (-906)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) 92)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1407 (((-554) $) 22)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 94)) (-1378 (((-906)) NIL) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-4353 (((-906) (-554)) NIL (|has| $ (-6 -4364)))) (-2927 (((-374) $) NIL) (((-221) $) NIL) (((-877 (-374)) $) NIL)) (-3075 (((-848) $) 52) (($ (-554)) 63) (($ $) NIL) (($ (-402 (-554))) 66) (($ (-554)) 63) (($ (-402 (-554))) 66) (($ (-374)) 60) (((-374) $) 50) (($ (-687)) 55)) (-2261 (((-758)) 103)) (-1545 (($ (-554) (-554) (-906)) 44)) (-2755 (($ $) NIL)) (-3219 (((-906)) NIL) (((-906) (-906)) NIL (|has| $ (-6 -4364)))) (-3462 (((-906)) 35) (((-906) (-906)) 78)) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) 32 T CONST)) (-2014 (($) 17 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 83)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 101)) (-1752 (($ $ $) 65)) (-1744 (($ $) 99) (($ $ $) 100)) (-1735 (($ $ $) 98)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ $ (-402 (-554))) 90)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 97) (($ $ $) 88) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-685) (-13 (-399) (-382) (-358) (-1023 (-374)) (-1023 (-402 (-554))) (-145) (-10 -8 (-15 -2276 ((-906) (-906))) (-15 -2276 ((-906))) (-15 -3462 ((-906) (-906))) (-15 -2726 ((-554) (-554))) (-15 -2726 ((-554))) (-15 -3564 ((-554) (-554))) (-15 -3564 ((-554))) (-15 -3075 ((-374) $)) (-15 -3075 ($ (-687))) (-15 -1837 ((-554) $)) (-15 -1407 ((-554) $)) (-15 -1545 ($ (-554) (-554) (-906)))))) (T -685)) +((-1407 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-2276 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-2726 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-3564 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-685)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-685)))) (-1545 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-5 *1 (-685))))) +(-13 (-399) (-382) (-358) (-1023 (-374)) (-1023 (-402 (-554))) (-145) (-10 -8 (-15 -2276 ((-906) (-906))) (-15 -2276 ((-906))) (-15 -3462 ((-906) (-906))) (-15 -2726 ((-554) (-554))) (-15 -2726 ((-554))) (-15 -3564 ((-554) (-554))) (-15 -3564 ((-554))) (-15 -3075 ((-374) $)) (-15 -3075 ($ (-687))) (-15 -1837 ((-554) $)) (-15 -1407 ((-554) $)) (-15 -1545 ($ (-554) (-554) (-906))))) +((-3373 (((-675 |#1|) (-675 |#1|) |#1| |#1|) 65)) (-2775 (((-675 |#1|) (-675 |#1|) |#1|) 48)) (-1339 (((-675 |#1|) (-675 |#1|) |#1|) 66)) (-1359 (((-675 |#1|) (-675 |#1|)) 49)) (-1524 (((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 64))) +(((-686 |#1|) (-10 -7 (-15 -1359 ((-675 |#1|) (-675 |#1|))) (-15 -2775 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -1339 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -3373 ((-675 |#1|) (-675 |#1|) |#1| |#1|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) (-302)) (T -686)) +((-1524 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-686 *3)) (-4 *3 (-302)))) (-3373 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) (-2775 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3))))) +(-10 -7 (-15 -1359 ((-675 |#1|) (-675 |#1|))) (-15 -2775 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -1339 ((-675 |#1|) (-675 |#1|) |#1|)) (-15 -3373 ((-675 |#1|) (-675 |#1|) |#1| |#1|)) (-15 -1524 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) 27)) (-1668 (((-554) $) 25)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($ $) NIL) (($) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) NIL)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) NIL)) (-4223 (($ $ $) NIL)) (-3076 (((-906) (-906)) 10) (((-906)) 9)) (-2706 (($ $ $) NIL)) (-3882 (($ $) NIL)) (-2577 (($ $) NIL)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL) (($ $ (-758)) NIL)) (-3690 (($ $) NIL)) (-1521 (($ $) NIL)) (-2927 (((-221) $) NIL) (((-374) $) NIL) (((-877 (-554)) $) NIL) (((-530) $) NIL) (((-554) $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) 24) (($ $) NIL) (($ (-554)) 24) (((-311 $) (-311 (-554))) 18)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) NIL)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL) (($ $ (-758)) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL))) +(((-687) (-13 (-382) (-539) (-10 -8 (-15 -3076 ((-906) (-906))) (-15 -3076 ((-906))) (-15 -3075 ((-311 $) (-311 (-554))))))) (T -687)) +((-3076 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687)))) (-3076 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-311 (-554))) (-5 *2 (-311 (-687))) (-5 *1 (-687))))) +(-13 (-382) (-539) (-10 -8 (-15 -3076 ((-906) (-906))) (-15 -3076 ((-906))) (-15 -3075 ((-311 $) (-311 (-554)))))) +((-1590 (((-1 |#4| |#2| |#3|) |#1| (-1158) (-1158)) 19)) (-3169 (((-1 |#4| |#2| |#3|) (-1158)) 12))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3169 ((-1 |#4| |#2| |#3|) (-1158))) (-15 -1590 ((-1 |#4| |#2| |#3|) |#1| (-1158) (-1158)))) (-602 (-530)) (-1195) (-1195) (-1195)) (T -688)) +((-1590 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *3 *5 *6 *7)) (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *4 *5 *6 *7)) (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195))))) +(-10 -7 (-15 -3169 ((-1 |#4| |#2| |#3|) (-1158))) (-15 -1590 ((-1 |#4| |#2| |#3|) |#1| (-1158) (-1158)))) +((-3062 (((-112) $ $) NIL)) (-2886 (((-1246) $ (-758)) 14)) (-1484 (((-758) $) 12)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 25)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 24))) +(((-689 |#1|) (-13 (-131) (-484 |#1|)) (-1082)) (T -689)) +NIL +(-13 (-131) (-484 |#1|)) +((-1759 (((-1 (-221) (-221) (-221)) |#1| (-1158) (-1158)) 34) (((-1 (-221) (-221)) |#1| (-1158)) 39))) +(((-690 |#1|) (-10 -7 (-15 -1759 ((-1 (-221) (-221)) |#1| (-1158))) (-15 -1759 ((-1 (-221) (-221) (-221)) |#1| (-1158) (-1158)))) (-602 (-530))) (T -690)) +((-1759 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-690 *3)) (-4 *3 (-602 (-530))))) (-1759 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-690 *3)) (-4 *3 (-602 (-530)))))) +(-10 -7 (-15 -1759 ((-1 (-221) (-221)) |#1| (-1158))) (-15 -1759 ((-1 (-221) (-221) (-221)) |#1| (-1158) (-1158)))) +((-2367 (((-1158) |#1| (-1158) (-631 (-1158))) 9) (((-1158) |#1| (-1158) (-1158) (-1158)) 12) (((-1158) |#1| (-1158) (-1158)) 11) (((-1158) |#1| (-1158)) 10))) +(((-691 |#1|) (-10 -7 (-15 -2367 ((-1158) |#1| (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-631 (-1158))))) (-602 (-530))) (T -691)) +((-2367 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) (-2367 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) (-2367 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530)))))) +(-10 -7 (-15 -2367 ((-1158) |#1| (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-1158) (-1158))) (-15 -2367 ((-1158) |#1| (-1158) (-631 (-1158))))) +((-1936 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-692 |#1| |#2|) (-10 -7 (-15 -1936 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1195) (-1195)) (T -692)) +((-1936 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-692 *3 *4)) (-4 *3 (-1195)) (-4 *4 (-1195))))) +(-10 -7 (-15 -1936 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2107 (((-1 |#3| |#2|) (-1158)) 11)) (-1590 (((-1 |#3| |#2|) |#1| (-1158)) 21))) +(((-693 |#1| |#2| |#3|) (-10 -7 (-15 -2107 ((-1 |#3| |#2|) (-1158))) (-15 -1590 ((-1 |#3| |#2|) |#1| (-1158)))) (-602 (-530)) (-1195) (-1195)) (T -693)) +((-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *3 *5 *6)) (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195))))) +(-10 -7 (-15 -2107 ((-1 |#3| |#2|) (-1158))) (-15 -1590 ((-1 |#3| |#2|) |#1| (-1158)))) +((-3505 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#4|)) (-631 |#3|) (-631 |#4|) (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#4|)))) (-631 (-758)) (-1241 (-631 (-1154 |#3|))) |#3|) 62)) (-1883 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#3|)) (-631 |#3|) (-631 |#4|) (-631 (-758)) |#3|) 75)) (-4165 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 |#3|) (-631 (-758)) (-631 (-1154 |#4|)) (-1241 (-631 (-1154 |#3|))) |#3|) 34))) +(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4165 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 |#3|) (-631 (-758)) (-631 (-1154 |#4|)) (-1241 (-631 (-1154 |#3|))) |#3|)) (-15 -1883 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#3|)) (-631 |#3|) (-631 |#4|) (-631 (-758)) |#3|)) (-15 -3505 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#4|)) (-631 |#3|) (-631 |#4|) (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#4|)))) (-631 (-758)) (-1241 (-631 (-1154 |#3|))) |#3|))) (-780) (-836) (-302) (-934 |#3| |#1| |#2|)) (T -694)) +((-3505 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-631 (-1154 *13))) (-5 *3 (-1154 *13)) (-5 *4 (-631 *12)) (-5 *5 (-631 *10)) (-5 *6 (-631 *13)) (-5 *7 (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *13))))) (-5 *8 (-631 (-758))) (-5 *9 (-1241 (-631 (-1154 *10)))) (-4 *12 (-836)) (-4 *10 (-302)) (-4 *13 (-934 *10 *11 *12)) (-4 *11 (-780)) (-5 *1 (-694 *11 *12 *10 *13)))) (-1883 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-631 *11)) (-5 *5 (-631 (-1154 *9))) (-5 *6 (-631 *9)) (-5 *7 (-631 *12)) (-5 *8 (-631 (-758))) (-4 *11 (-836)) (-4 *9 (-302)) (-4 *12 (-934 *9 *10 *11)) (-4 *10 (-780)) (-5 *2 (-631 (-1154 *12))) (-5 *1 (-694 *10 *11 *9 *12)) (-5 *3 (-1154 *12)))) (-4165 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-631 (-1154 *11))) (-5 *3 (-1154 *11)) (-5 *4 (-631 *10)) (-5 *5 (-631 *8)) (-5 *6 (-631 (-758))) (-5 *7 (-1241 (-631 (-1154 *8)))) (-4 *10 (-836)) (-4 *8 (-302)) (-4 *11 (-934 *8 *9 *10)) (-4 *9 (-780)) (-5 *1 (-694 *9 *10 *8 *11))))) +(-10 -7 (-15 -4165 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 |#3|) (-631 (-758)) (-631 (-1154 |#4|)) (-1241 (-631 (-1154 |#3|))) |#3|)) (-15 -1883 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#3|)) (-631 |#3|) (-631 |#4|) (-631 (-758)) |#3|)) (-15 -3505 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-631 |#2|) (-631 (-1154 |#4|)) (-631 |#3|) (-631 |#4|) (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#4|)))) (-631 (-758)) (-1241 (-631 (-1154 |#3|))) |#3|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 42)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-2383 (($ |#1| (-758)) 40)) (-3893 (((-758) $) 44)) (-2530 ((|#1| $) 43)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 (((-758) $) 45)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 39 (|has| |#1| (-170)))) (-1779 ((|#1| $ (-758)) 41)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-695 |#1|) (-138) (-1034)) (T -695)) +((-3308 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034))))) +(-13 (-1034) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3308 ((-758) $)) (-15 -3893 ((-758) $)) (-15 -2530 (|t#1| $)) (-15 -2550 ($ $)) (-15 -1779 (|t#1| $ (-758))) (-15 -2383 ($ |t#1| (-758))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2879 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-696 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2879 (|#6| (-1 |#4| |#1|) |#3|))) (-546) (-1217 |#1|) (-1217 (-402 |#2|)) (-546) (-1217 |#4|) (-1217 (-402 |#5|))) (T -696)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-546)) (-4 *7 (-546)) (-4 *6 (-1217 *5)) (-4 *2 (-1217 (-402 *8))) (-5 *1 (-696 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1217 (-402 *6))) (-4 *8 (-1217 *7))))) +(-10 -7 (-15 -2879 (|#6| (-1 |#4| |#1|) |#3|))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2173 (((-1140) (-848)) 31)) (-2524 (((-1246) (-1140)) 28)) (-2056 (((-1140) (-848)) 24)) (-2710 (((-1140) (-848)) 25)) (-3075 (((-848) $) NIL) (((-1140) (-848)) 23)) (-1658 (((-112) $ $) NIL))) +(((-697) (-13 (-1082) (-10 -7 (-15 -3075 ((-1140) (-848))) (-15 -2056 ((-1140) (-848))) (-15 -2710 ((-1140) (-848))) (-15 -2173 ((-1140) (-848))) (-15 -2524 ((-1246) (-1140)))))) (T -697)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-697))))) +(-13 (-1082) (-10 -7 (-15 -3075 ((-1140) (-848))) (-15 -2056 ((-1140) (-848))) (-15 -2710 ((-1140) (-848))) (-15 -2173 ((-1140) (-848))) (-15 -2524 ((-1246) (-1140))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-3676 (($ |#1| |#2|) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 ((|#2| $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2603 (((-3 $ "failed") $ $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) ((|#1| $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-698 |#1| |#2| |#3| |#4| |#5|) (-13 (-358) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -698)) +((-2340 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3676 (*1 *1 *2 *3) (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2603 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-358) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)))) +((-3062 (((-112) $ $) 78)) (-1695 (((-112) $) 30)) (-2481 (((-1241 |#1|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#1|)) NIL)) (-2237 (((-1154 $) $ (-1064)) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) NIL (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1508 (((-758)) 47 (|has| |#1| (-363)))) (-1470 (($ $ (-758)) NIL)) (-3867 (($ $ (-758)) NIL)) (-3860 ((|#2| |#2|) 44)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1064) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 34)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-3676 (($ |#2|) 42)) (-1320 (((-3 $ "failed") $) 86)) (-3353 (($) 51 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3639 (($ $ $) NIL)) (-2489 (($ $ $) NIL (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-4218 (((-943 $)) 80)) (-1344 (($ $ |#1| (-758) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ $) NIL (|has| |#1| (-546)))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) NIL) (($ (-1154 $) (-1064)) NIL)) (-3333 (($ $ (-758)) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 77) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-2340 ((|#2|) 45)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2964 (((-1154 |#1|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3662 ((|#2| $) 41)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) 28)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2125 (($ $) 79 (|has| |#1| (-344)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#1|) NIL) (($ $ (-631 (-1064)) (-631 |#1|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 87 (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3308 (((-758) $) 32) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3804 (((-943 $)) 36)) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-546)))) (-3075 (((-848) $) 61) (($ (-554)) NIL) (($ |#1|) 58) (($ (-1064)) NIL) (($ |#2|) 68) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) 63) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 20 T CONST)) (-2731 (((-1241 |#1|) $) 75)) (-3502 (($ (-1241 |#1|)) 50)) (-2014 (($) 8 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3460 (((-1241 |#1|) $) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 69)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) 72) (($ $ $) NIL)) (-1735 (($ $ $) 33)) (** (($ $ (-906)) NIL) (($ $ (-758)) 81)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 57) (($ $ $) 74) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-699 |#1| |#2|) (-13 (-1217 |#1|) (-604 |#2|) (-10 -8 (-15 -3860 (|#2| |#2|)) (-15 -2340 (|#2|)) (-15 -3676 ($ |#2|)) (-15 -3662 (|#2| $)) (-15 -2731 ((-1241 |#1|) $)) (-15 -3502 ($ (-1241 |#1|))) (-15 -3460 ((-1241 |#1|) $)) (-15 -4218 ((-943 $))) (-15 -3804 ((-943 $))) (IF (|has| |#1| (-344)) (-15 -2125 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) (-1034) (-1217 |#1|)) (T -699)) +((-3860 (*1 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3)))) (-2340 (*1 *2) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034)))) (-3676 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034)))) (-2731 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-3460 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-4218 (*1 *2) (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-3804 (*1 *2) (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4)) (-4 *4 (-1217 *3)))) (-2125 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *2 (-1034)) (-5 *1 (-699 *2 *3)) (-4 *3 (-1217 *2))))) +(-13 (-1217 |#1|) (-604 |#2|) (-10 -8 (-15 -3860 (|#2| |#2|)) (-15 -2340 (|#2|)) (-15 -3676 ($ |#2|)) (-15 -3662 (|#2| $)) (-15 -2731 ((-1241 |#1|) $)) (-15 -3502 ($ (-1241 |#1|))) (-15 -3460 ((-1241 |#1|) $)) (-15 -4218 ((-943 $))) (-15 -3804 ((-943 $))) (IF (|has| |#1| (-344)) (-15 -2125 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2717 ((|#1| $) 13)) (-2768 (((-1102) $) NIL)) (-1407 ((|#2| $) 12)) (-3089 (($ |#1| |#2|) 16)) (-3075 (((-848) $) NIL) (($ (-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) 15) (((-2 (|:| -2717 |#1|) (|:| -1407 |#2|)) $) 14)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 11))) +(((-700 |#1| |#2| |#3|) (-13 (-836) (-484 (-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) (-10 -8 (-15 -1407 (|#2| $)) (-15 -2717 (|#1| $)) (-15 -3089 ($ |#1| |#2|)))) (-836) (-1082) (-1 (-112) (-2 (|:| -2717 |#1|) (|:| -1407 |#2|)) (-2 (|:| -2717 |#1|) (|:| -1407 |#2|)))) (T -700)) +((-1407 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-700 *3 *2 *4)) (-4 *3 (-836)) (-14 *4 (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *2)) (-2 (|:| -2717 *3) (|:| -1407 *2)))))) (-2717 (*1 *2 *1) (-12 (-4 *2 (-836)) (-5 *1 (-700 *2 *3 *4)) (-4 *3 (-1082)) (-14 *4 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3)) (-2 (|:| -2717 *2) (|:| -1407 *3)))))) (-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-700 *2 *3 *4)) (-4 *2 (-836)) (-4 *3 (-1082)) (-14 *4 (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3)) (-2 (|:| -2717 *2) (|:| -1407 *3))))))) +(-13 (-836) (-484 (-2 (|:| -2717 |#1|) (|:| -1407 |#2|))) (-10 -8 (-15 -1407 (|#2| $)) (-15 -2717 (|#1| $)) (-15 -3089 ($ |#1| |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 59)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-1668 ((|#1| $) NIL) (((-114) $) 39)) (-1320 (((-3 $ "failed") $) 90)) (-1354 ((|#2| (-114) |#2|) 82)) (-3248 (((-112) $) NIL)) (-3927 (($ |#1| (-356 (-114))) 14)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2654 (($ $ (-1 |#2| |#2|)) 58)) (-3282 (($ $ (-1 |#2| |#2|)) 44)) (-2064 ((|#2| $ |#2|) 33)) (-2186 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-3075 (((-848) $) 66) (($ (-554)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 37)) (-2968 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2004 (($) 21 T CONST)) (-2014 (($) 9 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) 48) (($ $ $) NIL)) (-1735 (($ $ $) 73)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ (-114) (-554)) NIL) (($ $ (-554)) 57)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) +(((-701 |#1| |#2|) (-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#2| |#2|))) (-15 -2654 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#2| (-114) |#2|)) (-15 -3927 ($ |#1| (-356 (-114)))))) (-1034) (-634 |#1|)) (T -701)) +((-2968 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) (-4 *3 (-634 *2)))) (-2968 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) (-4 *3 (-634 *2)))) (-2186 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) (-4 *3 (-634 *2)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-701 *4 *5)) (-4 *5 (-634 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)) (-4 *4 (-634 *3)))) (-1354 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1034)) (-5 *1 (-701 *4 *2)) (-4 *2 (-634 *4)))) (-3927 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1034)) (-5 *1 (-701 *2 *4)) (-4 *4 (-634 *2))))) +(-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#2| |#2|))) (-15 -2654 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#2| (-114) |#2|)) (-15 -3927 ($ |#1| (-356 (-114)))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 33)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ |#1| |#2|) 25)) (-1320 (((-3 $ "failed") $) 48)) (-3248 (((-112) $) 35)) (-2340 ((|#2| $) 12)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 49)) (-2768 (((-1102) $) NIL)) (-2603 (((-3 $ "failed") $ $) 47)) (-3075 (((-848) $) 24) (($ (-554)) 19) ((|#1| $) 13)) (-2261 (((-758)) 28)) (-2004 (($) 16 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 38)) (-1744 (($ $) 43) (($ $ $) 37)) (-1735 (($ $ $) 40)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 21) (($ $ $) 20))) +(((-702 |#1| |#2| |#3| |#4| |#5|) (-13 (-1034) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -702)) +((-1320 (*1 *1 *1) (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2340 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3676 (*1 *1 *2 *3) (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2603 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1034) (-10 -8 (-15 -2340 (|#2| $)) (-15 -3075 (|#1| $)) (-15 -3676 ($ |#1| |#2|)) (-15 -2603 ((-3 $ "failed") $ $)) (-15 -1320 ((-3 $ "failed") $)) (-15 -2483 ($ $)))) +((* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-703 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-704 |#2|) (-170)) (T -703)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-704 |#1|) (-138) (-170)) (T -704)) +NIL +(-13 (-111 |t#1| |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1648 (($ |#1|) 17) (($ $ |#1|) 20)) (-1585 (($ |#1|) 18) (($ $ |#1|) 21)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3248 (((-112) $) NIL)) (-3601 (($ |#1| |#1| |#1| |#1|) 8)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 16)) (-2768 (((-1102) $) NIL)) (-2386 ((|#1| $ |#1|) 24) (((-820 |#1|) $ (-820 |#1|)) 32)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-3075 (((-848) $) 39)) (-2014 (($) 9 T CONST)) (-1658 (((-112) $ $) 44)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ $ $) 14))) +(((-705 |#1|) (-13 (-467) (-10 -8 (-15 -3601 ($ |#1| |#1| |#1| |#1|)) (-15 -1648 ($ |#1|)) (-15 -1585 ($ |#1|)) (-15 -1320 ($)) (-15 -1648 ($ $ |#1|)) (-15 -1585 ($ $ |#1|)) (-15 -1320 ($ $)) (-15 -2386 (|#1| $ |#1|)) (-15 -2386 ((-820 |#1|) $ (-820 |#1|))))) (-358)) (T -705)) +((-3601 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1648 (*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1585 (*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1320 (*1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1585 (*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-2386 (*1 *2 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) (-2386 (*1 *2 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-358)) (-5 *1 (-705 *3))))) +(-13 (-467) (-10 -8 (-15 -3601 ($ |#1| |#1| |#1| |#1|)) (-15 -1648 ($ |#1|)) (-15 -1585 ($ |#1|)) (-15 -1320 ($)) (-15 -1648 ($ $ |#1|)) (-15 -1585 ($ $ |#1|)) (-15 -1320 ($ $)) (-15 -2386 (|#1| $ |#1|)) (-15 -2386 ((-820 |#1|) $ (-820 |#1|))))) +((-2080 (($ $ (-906)) 12)) (-1297 (($ $ (-906)) 13)) (** (($ $ (-906)) 10))) +(((-706 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906)))) (-707)) (T -706)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-2080 (($ $ (-906)) 15)) (-1297 (($ $ (-906)) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13)) (* (($ $ $) 16))) +(((-707) (-138)) (T -707)) +((* (*1 *1 *1 *1) (-4 *1 (-707))) (-2080 (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) (-1297 (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906))))) +(-13 (-1082) (-10 -8 (-15 * ($ $ $)) (-15 -2080 ($ $ (-906))) (-15 -1297 ($ $ (-906))) (-15 ** ($ $ (-906))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2080 (($ $ (-906)) NIL) (($ $ (-758)) 17)) (-3248 (((-112) $) 10)) (-1297 (($ $ (-906)) NIL) (($ $ (-758)) 18)) (** (($ $ (-906)) NIL) (($ $ (-758)) 15))) +(((-708 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-758))) (-15 -1297 (|#1| |#1| (-758))) (-15 -2080 (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906)))) (-709)) (T -708)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-758))) (-15 -1297 (|#1| |#1| (-758))) (-15 -2080 (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 ** (|#1| |#1| (-906))) (-15 -1297 (|#1| |#1| (-906))) (-15 -2080 (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-3754 (((-3 $ "failed") $) 17)) (-2080 (($ $ (-906)) 15) (($ $ (-758)) 22)) (-1320 (((-3 $ "failed") $) 19)) (-3248 (((-112) $) 23)) (-1605 (((-3 $ "failed") $) 18)) (-1297 (($ $ (-906)) 14) (($ $ (-758)) 21)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2014 (($) 24 T CONST)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13) (($ $ (-758)) 20)) (* (($ $ $) 16))) +(((-709) (-138)) (T -709)) +((-2014 (*1 *1) (-4 *1 (-709))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-112)))) (-2080 (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) (-1297 (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) (-1320 (*1 *1 *1) (|partial| -4 *1 (-709))) (-1605 (*1 *1 *1) (|partial| -4 *1 (-709))) (-3754 (*1 *1 *1) (|partial| -4 *1 (-709)))) +(-13 (-707) (-10 -8 (-15 (-2014) ($) -2397) (-15 -3248 ((-112) $)) (-15 -2080 ($ $ (-758))) (-15 -1297 ($ $ (-758))) (-15 ** ($ $ (-758))) (-15 -1320 ((-3 $ "failed") $)) (-15 -1605 ((-3 $ "failed") $)) (-15 -3754 ((-3 $ "failed") $)))) +(((-102) . T) ((-601 (-848)) . T) ((-707) . T) ((-1082) . T)) +((-1508 (((-758)) 35)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 22)) (-3676 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) 45)) (-1320 (((-3 $ "failed") $) 65)) (-3353 (($) 39)) (-3274 ((|#2| $) 20)) (-4137 (($) 17)) (-1553 (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-2092 (((-675 |#2|) (-1241 $) (-1 |#2| |#2|)) 60)) (-2927 (((-1241 |#2|) $) NIL) (($ (-1241 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3109 ((|#3| $) 32)) (-3782 (((-1241 $)) 29))) +(((-710 |#1| |#2| |#3|) (-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3353 (|#1|)) (-15 -1508 ((-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -2092 ((-675 |#2|) (-1241 |#1|) (-1 |#2| |#2|))) (-15 -3676 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2927 (|#1| |#3|)) (-15 -3676 (|#1| |#3|)) (-15 -4137 (|#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 (|#3| |#1|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3782 ((-1241 |#1|))) (-15 -3109 (|#3| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|))) (-711 |#2| |#3|) (-170) (-1217 |#2|)) (T -710)) +((-1508 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-758)) (-5 *1 (-710 *3 *4 *5)) (-4 *3 (-711 *4 *5))))) +(-10 -8 (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -3353 (|#1|)) (-15 -1508 ((-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -2092 ((-675 |#2|) (-1241 |#1|) (-1 |#2| |#2|))) (-15 -3676 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2927 (|#1| |#3|)) (-15 -3676 (|#1| |#3|)) (-15 -4137 (|#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -2927 (|#3| |#1|)) (-15 -2927 (|#1| (-1241 |#2|))) (-15 -2927 ((-1241 |#2|) |#1|)) (-15 -3782 ((-1241 |#1|))) (-15 -3109 (|#3| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -1320 ((-3 |#1| "failed") |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 93 (|has| |#1| (-358)))) (-1976 (($ $) 94 (|has| |#1| (-358)))) (-1363 (((-112) $) 96 (|has| |#1| (-358)))) (-1903 (((-675 |#1|) (-1241 $)) 47) (((-675 |#1|)) 62)) (-1612 ((|#1| $) 53)) (-3205 (((-1168 (-906) (-758)) (-554)) 146 (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 113 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 114 (|has| |#1| (-358)))) (-2286 (((-112) $ $) 104 (|has| |#1| (-358)))) (-1508 (((-758)) 87 (|has| |#1| (-363)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 169 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 167 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 164)) (-1668 (((-554) $) 168 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 166 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 165)) (-1651 (($ (-1241 |#1|) (-1241 $)) 49) (($ (-1241 |#1|)) 65)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-344)))) (-3964 (($ $ $) 108 (|has| |#1| (-358)))) (-3629 (((-675 |#1|) $ (-1241 $)) 54) (((-675 |#1|) $) 60)) (-3699 (((-675 (-554)) (-675 $)) 163 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 162 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 161) (((-675 |#1|) (-675 $)) 160)) (-3676 (($ |#2|) 157) (((-3 $ "failed") (-402 |#2|)) 154 (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-906)) 55)) (-3353 (($) 90 (|has| |#1| (-363)))) (-3943 (($ $ $) 107 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 102 (|has| |#1| (-358)))) (-3157 (($) 148 (|has| |#1| (-344)))) (-2754 (((-112) $) 149 (|has| |#1| (-344)))) (-4122 (($ $ (-758)) 140 (|has| |#1| (-344))) (($ $) 139 (|has| |#1| (-344)))) (-3289 (((-112) $) 115 (|has| |#1| (-358)))) (-2342 (((-906) $) 151 (|has| |#1| (-344))) (((-820 (-906)) $) 137 (|has| |#1| (-344)))) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 52)) (-3339 (((-3 $ "failed") $) 141 (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 111 (|has| |#1| (-358)))) (-3361 ((|#2| $) 45 (|has| |#1| (-358)))) (-3830 (((-906) $) 89 (|has| |#1| (-363)))) (-3662 ((|#2| $) 155)) (-2475 (($ (-631 $)) 100 (|has| |#1| (-358))) (($ $ $) 99 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 116 (|has| |#1| (-358)))) (-3834 (($) 142 (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) 88 (|has| |#1| (-363)))) (-2768 (((-1102) $) 10)) (-4137 (($) 159)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 101 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 98 (|has| |#1| (-358))) (($ $ $) 97 (|has| |#1| (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) 145 (|has| |#1| (-344)))) (-2270 (((-413 $) $) 112 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 109 (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ $) 92 (|has| |#1| (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 103 (|has| |#1| (-358)))) (-2072 (((-758) $) 105 (|has| |#1| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 106 (|has| |#1| (-358)))) (-1495 ((|#1| (-1241 $)) 48) ((|#1|) 61)) (-3316 (((-758) $) 150 (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) 138 (|has| |#1| (-344)))) (-1553 (($ $) 136 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) 134 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) 132 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158))) 131 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1158) (-758)) 130 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-758))) 129 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-758)) 122 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-358)))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-358)))) (-4318 ((|#2|) 158)) (-3944 (($) 147 (|has| |#1| (-344)))) (-3656 (((-1241 |#1|) $ (-1241 $)) 51) (((-675 |#1|) (-1241 $) (-1241 $)) 50) (((-1241 |#1|) $) 67) (((-675 |#1|) (-1241 $)) 66)) (-2927 (((-1241 |#1|) $) 64) (($ (-1241 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 144 (|has| |#1| (-344)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-358))) (($ (-402 (-554))) 86 (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (($ $) 143 (|has| |#1| (-344))) (((-3 $ "failed") $) 44 (|has| |#1| (-143)))) (-3109 ((|#2| $) 46)) (-2261 (((-758)) 28)) (-3782 (((-1241 $)) 68)) (-1909 (((-112) $ $) 95 (|has| |#1| (-358)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 135 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) 133 (-3994 (-3726 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) 128 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158))) 127 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1158) (-758)) 126 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-758))) 125 (-3726 (|has| |#1| (-885 (-1158))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-758)) 124 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-358)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 120 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 117 (|has| |#1| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-402 (-554)) $) 119 (|has| |#1| (-358))) (($ $ (-402 (-554))) 118 (|has| |#1| (-358))))) +(((-711 |#1| |#2|) (-138) (-170) (-1217 |t#1|)) (T -711)) +((-4137 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-711 *2 *3)) (-4 *3 (-1217 *2)))) (-4318 (*1 *2) (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) (-3676 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3)))) (-2927 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) (-3676 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-358)) (-4 *3 (-170)) (-4 *1 (-711 *3 *4)))) (-2092 (*1 *2 *3 *4) (-12 (-5 *3 (-1241 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-4 *1 (-711 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1217 *5)) (-5 *2 (-675 *5))))) +(-13 (-404 |t#1| |t#2|) (-170) (-602 |t#2|) (-406 |t#1|) (-372 |t#1|) (-10 -8 (-15 -4137 ($)) (-15 -4318 (|t#2|)) (-15 -3676 ($ |t#2|)) (-15 -2927 ($ |t#2|)) (-15 -3662 (|t#2| $)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-358)) (-6 (-227 |t#1|)) (-15 -3676 ((-3 $ "failed") (-402 |t#2|))) (-15 -2092 ((-675 |t#1|) (-1241 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-102) . T) ((-111 #0# #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-344)) (|has| |#1| (-358))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) . T) ((-602 |#2|) . T) ((-227 |#1|) |has| |#1| (-358)) ((-229) -3994 (|has| |#1| (-344)) (-12 (|has| |#1| (-229)) (|has| |#1| (-358)))) ((-239) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-285) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-302) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-358) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -3994 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| |#2|) . T) ((-404 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-546) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-634 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-704 |#1|) . T) ((-704 $) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158)))) ((-905) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) -3994 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-344)) ((-1199) -3994 (|has| |#1| (-344)) (|has| |#1| (-358)))) +((-4087 (($) 11)) (-1320 (((-3 $ "failed") $) 13)) (-3248 (((-112) $) 10)) (** (($ $ (-906)) NIL) (($ $ (-758)) 18))) +(((-712 |#1|) (-10 -8 (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 ** (|#1| |#1| (-906)))) (-713)) (T -712)) +NIL +(-10 -8 (-15 -1320 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-758))) (-15 -3248 ((-112) |#1|)) (-15 -4087 (|#1|)) (-15 ** (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-4087 (($) 18 T CONST)) (-1320 (((-3 $ "failed") $) 15)) (-3248 (((-112) $) 17)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2014 (($) 19 T CONST)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13) (($ $ (-758)) 16)) (* (($ $ $) 14))) +(((-713) (-138)) (T -713)) +((-2014 (*1 *1) (-4 *1 (-713))) (-4087 (*1 *1) (-4 *1 (-713))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-758)))) (-1320 (*1 *1 *1) (|partial| -4 *1 (-713)))) +(-13 (-1094) (-10 -8 (-15 (-2014) ($) -2397) (-15 -4087 ($) -2397) (-15 -3248 ((-112) $)) (-15 ** ($ $ (-758))) (-15 -1320 ((-3 $ "failed") $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1094) . T) ((-1082) . T)) +((-4105 (((-2 (|:| -3312 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1515 (((-2 (|:| -3312 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4095 ((|#2| (-402 |#2|) (-1 |#2| |#2|)) 13)) (-3678 (((-2 (|:| |poly| |#2|) (|:| -3312 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)) 47))) +(((-714 |#1| |#2|) (-10 -7 (-15 -1515 ((-2 (|:| -3312 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| -3312 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4095 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3678 ((-2 (|:| |poly| |#2|) (|:| -3312 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1217 |#1|)) (T -714)) +((-3678 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3312 (-402 *6)) (|:| |special| (-402 *6)))) (-5 *1 (-714 *5 *6)) (-5 *3 (-402 *6)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1217 *5)) (-5 *1 (-714 *5 *2)) (-4 *5 (-358)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3312 (-413 *3)) (|:| |special| (-413 *3)))) (-5 *1 (-714 *5 *3)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3312 *3) (|:| |special| *3))) (-5 *1 (-714 *5 *3))))) +(-10 -7 (-15 -1515 ((-2 (|:| -3312 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| -3312 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4095 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3678 ((-2 (|:| |poly| |#2|) (|:| -3312 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) +((-2516 ((|#7| (-631 |#5|) |#6|) NIL)) (-2879 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-715 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2879 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2516 (|#7| (-631 |#5|) |#6|))) (-836) (-780) (-780) (-1034) (-1034) (-934 |#4| |#2| |#1|) (-934 |#5| |#3| |#1|)) (T -715)) +((-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *9)) (-4 *9 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *8 (-1034)) (-4 *2 (-934 *9 *7 *5)) (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-934 *8 *6 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1034)) (-4 *9 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) (-4 *2 (-934 *9 *7 *5)) (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-934 *8 *6 *5))))) +(-10 -7 (-15 -2879 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2516 (|#7| (-631 |#5|) |#6|))) +((-2879 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-716 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2879 (|#7| (-1 |#2| |#1|) |#6|))) (-836) (-836) (-780) (-780) (-1034) (-934 |#5| |#3| |#1|) (-934 |#5| |#4| |#2|)) (T -716)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-836)) (-4 *6 (-836)) (-4 *7 (-780)) (-4 *9 (-1034)) (-4 *2 (-934 *9 *8 *6)) (-5 *1 (-716 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-780)) (-4 *4 (-934 *9 *7 *5))))) +(-10 -7 (-15 -2879 (|#7| (-1 |#2| |#1|) |#6|))) +((-2270 (((-413 |#4|) |#4|) 41))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|))) (-780) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158))))) (-302) (-934 (-937 |#3|) |#1| |#2|)) (T -717)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-934 (-937 *6) *4 *5))))) +(-10 -7 (-15 -2270 ((-413 |#4|) |#4|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-850 |#1|)) $) NIL)) (-2237 (((-1154 $) $ (-850 |#1|)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-850 |#1|))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-850 |#1|) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-850 |#1|) $) NIL)) (-2999 (($ $ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-525 (-850 |#1|)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-850 |#1|) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#2|) (-850 |#1|)) NIL) (($ (-1154 $) (-850 |#1|)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-525 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-850 |#1|)) NIL)) (-3893 (((-525 (-850 |#1|)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-525 (-850 |#1|)) (-525 (-850 |#1|))) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3277 (((-3 (-850 |#1|) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-850 |#1|)) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-850 |#1|) |#2|) NIL) (($ $ (-631 (-850 |#1|)) (-631 |#2|)) NIL) (($ $ (-850 |#1|) $) NIL) (($ $ (-631 (-850 |#1|)) (-631 $)) NIL)) (-1495 (($ $ (-850 |#1|)) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-3308 (((-525 (-850 |#1|)) $) NIL) (((-758) $ (-850 |#1|)) NIL) (((-631 (-758)) $ (-631 (-850 |#1|))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-850 |#1|) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-850 |#1|) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-850 |#1|)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-850 |#1|)) NIL) (($ $) NIL (|has| |#2| (-546))) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554))))))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-525 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-850 |#1|)) NIL) (($ $ (-631 (-850 |#1|))) NIL) (($ $ (-850 |#1|) (-758)) NIL) (($ $ (-631 (-850 |#1|)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-718 |#1| |#2|) (-934 |#2| (-525 (-850 |#1|)) (-850 |#1|)) (-631 (-1158)) (-1034)) (T -718)) +NIL +(-934 |#2| (-525 (-850 |#1|)) (-850 |#1|)) +((-2803 (((-2 (|:| -1349 (-937 |#3|)) (|:| -3703 (-937 |#3|))) |#4|) 14)) (-2380 ((|#4| |#4| |#2|) 33)) (-3664 ((|#4| (-402 (-937 |#3|)) |#2|) 64)) (-3516 ((|#4| (-1154 (-937 |#3|)) |#2|) 77)) (-3496 ((|#4| (-1154 |#4|) |#2|) 51)) (-1516 ((|#4| |#4| |#2|) 54)) (-2270 (((-413 |#4|) |#4|) 40))) +(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 ((-2 (|:| -1349 (-937 |#3|)) (|:| -3703 (-937 |#3|))) |#4|)) (-15 -1516 (|#4| |#4| |#2|)) (-15 -3496 (|#4| (-1154 |#4|) |#2|)) (-15 -2380 (|#4| |#4| |#2|)) (-15 -3516 (|#4| (-1154 (-937 |#3|)) |#2|)) (-15 -3664 (|#4| (-402 (-937 |#3|)) |#2|)) (-15 -2270 ((-413 |#4|) |#4|))) (-780) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)))) (-546) (-934 (-402 (-937 |#3|)) |#1| |#2|)) (T -719)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-934 (-402 (-937 *6)) *4 *5)))) (-3664 (*1 *2 *3 *4) (-12 (-4 *6 (-546)) (-4 *2 (-934 *3 *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) (-5 *3 (-402 (-937 *6))) (-4 *5 (-780)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 (-937 *6))) (-4 *6 (-546)) (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))))) (-2380 (*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546)) (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-1154 *2)) (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)))) (-1516 (*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546)) (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)) (-5 *2 (-2 (|:| -1349 (-937 *6)) (|:| -3703 (-937 *6)))) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-934 (-402 (-937 *6)) *4 *5))))) +(-10 -7 (-15 -2803 ((-2 (|:| -1349 (-937 |#3|)) (|:| -3703 (-937 |#3|))) |#4|)) (-15 -1516 (|#4| |#4| |#2|)) (-15 -3496 (|#4| (-1154 |#4|) |#2|)) (-15 -2380 (|#4| |#4| |#2|)) (-15 -3516 (|#4| (-1154 (-937 |#3|)) |#2|)) (-15 -3664 (|#4| (-402 (-937 |#3|)) |#2|)) (-15 -2270 ((-413 |#4|) |#4|))) +((-2270 (((-413 |#4|) |#4|) 52))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|))) (-780) (-836) (-13 (-302) (-145)) (-934 (-402 |#3|) |#1| |#2|)) (T -720)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-934 (-402 *6) *4 *5))))) +(-10 -7 (-15 -2270 ((-413 |#4|) |#4|))) +((-2879 (((-722 |#2| |#3|) (-1 |#2| |#1|) (-722 |#1| |#3|)) 18))) +(((-721 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-722 |#2| |#3|) (-1 |#2| |#1|) (-722 |#1| |#3|)))) (-1034) (-1034) (-713)) (T -721)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-722 *5 *7)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-4 *7 (-713)) (-5 *2 (-722 *6 *7)) (-5 *1 (-721 *5 *6 *7))))) +(-10 -7 (-15 -2879 ((-722 |#2| |#3|) (-1 |#2| |#1|) (-722 |#1| |#3|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 28)) (-3042 (((-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))) $) 29)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758)) 20 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1668 ((|#2| $) NIL) ((|#1| $) NIL)) (-2550 (($ $) 79 (|has| |#2| (-836)))) (-1320 (((-3 $ "failed") $) 65)) (-3353 (($) 35 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 55)) (-3910 (((-631 $) $) 39)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| |#2|) 16)) (-2879 (($ (-1 |#1| |#1|) $) 54)) (-3830 (((-906) $) 32 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2518 ((|#2| $) 78 (|has| |#2| (-836)))) (-2530 ((|#1| $) 77 (|has| |#2| (-836)))) (-1613 (((-1140) $) NIL)) (-2717 (($ (-906)) 27 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 76) (($ (-554)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|)))) 11)) (-1893 (((-631 |#1|) $) 41)) (-1779 ((|#1| $ |#2|) 88)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-2004 (($) 12 T CONST)) (-2014 (($) 33 T CONST)) (-1658 (((-112) $ $) 80)) (-1744 (($ $) 47) (($ $ $) NIL)) (-1735 (($ $ $) 26)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-722 |#1| |#2|) (-13 (-1034) (-1023 |#2|) (-1023 |#1|) (-10 -8 (-15 -2383 ($ |#1| |#2|)) (-15 -1779 (|#1| $ |#2|)) (-15 -3075 ($ (-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))))) (-15 -3042 ((-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -3580 ((-112) $)) (-15 -1893 ((-631 |#1|) $)) (-15 -3910 ((-631 $) $)) (-15 -2122 ((-758) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-836)) (PROGN (-15 -2518 (|#2| $)) (-15 -2530 (|#1| $)) (-15 -2550 ($ $))) |%noBranch|))) (-1034) (-713)) (T -722)) +((-2383 (*1 *1 *2 *3) (-12 (-5 *1 (-722 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-713)))) (-1779 (*1 *2 *1 *3) (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-713)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4)))) (-4 *3 (-1034)) (-4 *4 (-713)) (-5 *1 (-722 *3 *4)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4)))) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-722 *3 *4)) (-4 *4 (-713)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-631 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) (-2518 (*1 *2 *1) (-12 (-4 *2 (-713)) (-4 *2 (-836)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1034)))) (-2530 (*1 *2 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) (-4 *3 (-713)))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1034)) (-4 *3 (-713))))) +(-13 (-1034) (-1023 |#2|) (-1023 |#1|) (-10 -8 (-15 -2383 ($ |#1| |#2|)) (-15 -1779 (|#1| $ |#2|)) (-15 -3075 ($ (-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))))) (-15 -3042 ((-631 (-2 (|:| -1490 |#1|) (|:| -3738 |#2|))) $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (-15 -3580 ((-112) $)) (-15 -1893 ((-631 |#1|) $)) (-15 -3910 ((-631 $) $)) (-15 -2122 ((-758) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-836)) (PROGN (-15 -2518 (|#2| $)) (-15 -2530 (|#1| $)) (-15 -2550 ($ $))) |%noBranch|))) +((-3062 (((-112) $ $) 19)) (-3382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3775 (($ $ $) 72)) (-2411 (((-112) $ $) 73)) (-3019 (((-112) $ (-758)) 8)) (-1489 (($ (-631 |#1|)) 68) (($) 67)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 62)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 64)) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22)) (-3977 (($ $ $) 69)) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40) (($ |#1| $ (-758)) 63)) (-2768 (((-1102) $) 21)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 61)) (-3372 (($ $ |#1|) 71) (($ $ $) 70)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18)) (-2332 (($ (-631 |#1|)) 66) (($) 65)) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-723 |#1|) (-138) (-1082)) (T -723)) +NIL +(-13 (-681 |t#1|) (-1080 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-681 |#1|) . T) ((-1080 |#1|) . T) ((-1082) . T) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-3382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3775 (($ $ $) 79)) (-2411 (((-112) $ $) 83)) (-3019 (((-112) $ (-758)) NIL)) (-1489 (($ (-631 |#1|)) 24) (($) 16)) (-2220 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2593 (($ $) 71)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) 61 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4373))) (($ |#1| $ (-554)) 62) (($ (-1 (-112) |#1|) $ (-554)) 65)) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (($ |#1| $ (-554)) 67) (($ (-1 (-112) |#1|) $ (-554)) 68)) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 32 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 82)) (-3560 (($) 14) (($ |#1|) 26) (($ (-631 |#1|)) 21)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) 38)) (-3068 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 75)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 77)) (-4150 ((|#1| $) 55)) (-2045 (($ |#1| $) 56) (($ |#1| $ (-758)) 72)) (-2768 (((-1102) $) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2152 ((|#1| $) 54)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 50)) (-4240 (($) 13)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 48)) (-3372 (($ $ |#1|) NIL) (($ $ $) 78)) (-4310 (($) 15) (($ (-631 |#1|)) 23)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) 60 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 66)) (-2927 (((-530) $) 36 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 20)) (-3075 (((-848) $) 44)) (-2332 (($ (-631 |#1|)) 25) (($) 17)) (-1591 (($ (-631 |#1|)) 22)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 81)) (-2563 (((-758) $) 59 (|has| $ (-6 -4373))))) +(((-724 |#1|) (-13 (-723 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3560 ($)) (-15 -3560 ($ |#1|)) (-15 -3560 ($ (-631 |#1|))) (-15 -2379 ((-631 |#1|) $)) (-15 -2574 ($ |#1| $ (-554))) (-15 -2574 ($ (-1 (-112) |#1|) $ (-554))) (-15 -1884 ($ |#1| $ (-554))) (-15 -1884 ($ (-1 (-112) |#1|) $ (-554))))) (-1082)) (T -724)) +((-3560 (*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-3560 (*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-724 *3)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-724 *3)) (-4 *3 (-1082)))) (-2574 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-2574 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082)) (-5 *1 (-724 *4)))) (-1884 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082)))) (-1884 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082)) (-5 *1 (-724 *4))))) +(-13 (-723 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -3560 ($)) (-15 -3560 ($ |#1|)) (-15 -3560 ($ (-631 |#1|))) (-15 -2379 ((-631 |#1|) $)) (-15 -2574 ($ |#1| $ (-554))) (-15 -2574 ($ (-1 (-112) |#1|) $ (-554))) (-15 -1884 ($ |#1| $ (-554))) (-15 -1884 ($ (-1 (-112) |#1|) $ (-554))))) +((-3272 (((-1246) (-1140)) 8))) +(((-725) (-10 -7 (-15 -3272 ((-1246) (-1140))))) (T -725)) +((-3272 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-725))))) +(-10 -7 (-15 -3272 ((-1246) (-1140)))) +((-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 10))) +(((-726 |#1|) (-10 -7 (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|)))) (-836)) (T -726)) +((-2363 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-726 *3))))) +(-10 -7 (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#2|) $) 139)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 132 (|has| |#1| (-546)))) (-1976 (($ $) 131 (|has| |#1| (-546)))) (-1363 (((-112) $) 129 (|has| |#1| (-546)))) (-3023 (($ $) 88 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 71 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $) 70 (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 87 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 72 (|has| |#1| (-38 (-402 (-554)))))) (-3046 (($ $) 86 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 73 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2550 (($ $) 123)) (-1320 (((-3 $ "failed") $) 33)) (-3497 (((-937 |#1|) $ (-758)) 101) (((-937 |#1|) $ (-758) (-758)) 100)) (-2051 (((-112) $) 140)) (-2844 (($) 98 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $ |#2|) 103) (((-758) $ |#2| (-758)) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 69 (|has| |#1| (-38 (-402 (-554)))))) (-3580 (((-112) $) 121)) (-2383 (($ $ (-631 |#2|) (-631 (-525 |#2|))) 138) (($ $ |#2| (-525 |#2|)) 137) (($ |#1| (-525 |#2|)) 122) (($ $ |#2| (-758)) 105) (($ $ (-631 |#2|) (-631 (-758))) 104)) (-2879 (($ (-1 |#1| |#1|) $) 120)) (-2395 (($ $) 95 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 118)) (-2530 ((|#1| $) 117)) (-1613 (((-1140) $) 9)) (-2279 (($ $ |#2|) 99 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) 10)) (-4282 (($ $ (-758)) 106)) (-3919 (((-3 $ "failed") $ $) 133 (|has| |#1| (-546)))) (-1333 (($ $) 96 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (($ $ |#2| $) 114) (($ $ (-631 |#2|) (-631 $)) 113) (($ $ (-631 (-289 $))) 112) (($ $ (-289 $)) 111) (($ $ $ $) 110) (($ $ (-631 $) (-631 $)) 109)) (-1553 (($ $ |#2|) 42) (($ $ (-631 |#2|)) 41) (($ $ |#2| (-758)) 40) (($ $ (-631 |#2|) (-631 (-758))) 39)) (-3308 (((-525 |#2|) $) 119)) (-3057 (($ $) 85 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 74 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 84 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 75 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 83 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 76 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 141)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 136 (|has| |#1| (-170))) (($ $) 134 (|has| |#1| (-546))) (($ (-402 (-554))) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1779 ((|#1| $ (-525 |#2|)) 124) (($ $ |#2| (-758)) 108) (($ $ (-631 |#2|) (-631 (-758))) 107)) (-2084 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-3096 (($ $) 94 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 82 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 130 (|has| |#1| (-546)))) (-3069 (($ $) 93 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 81 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 92 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 80 (|has| |#1| (-38 (-402 (-554)))))) (-2908 (($ $) 91 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 79 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 90 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 78 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 89 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 77 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#2|) 38) (($ $ (-631 |#2|)) 37) (($ $ |#2| (-758)) 36) (($ $ (-631 |#2|) (-631 (-758))) 35)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 125 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ $) 97 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 68 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 128 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 127 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 116) (($ $ |#1|) 115))) +(((-727 |#1| |#2|) (-138) (-1034) (-836)) (T -727)) +((-1779 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034)) (-4 *2 (-836)))) (-1779 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-727 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034)) (-4 *2 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)))) (-2342 (*1 *2 *1 *3) (-12 (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) (-4 *3 (-836)) (-5 *2 (-758)))) (-2342 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-758)) (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) (-4 *3 (-836)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)) (-5 *2 (-937 *4)))) (-3497 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) (-4 *5 (-836)) (-5 *2 (-937 *4)))) (-2279 (*1 *1 *1 *2) (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836)) (-4 *3 (-38 (-402 (-554))))))) +(-13 (-885 |t#2|) (-958 |t#1| (-525 |t#2|) |t#2|) (-508 |t#2| $) (-304 $) (-10 -8 (-15 -1779 ($ $ |t#2| (-758))) (-15 -1779 ($ $ (-631 |t#2|) (-631 (-758)))) (-15 -4282 ($ $ (-758))) (-15 -2383 ($ $ |t#2| (-758))) (-15 -2383 ($ $ (-631 |t#2|) (-631 (-758)))) (-15 -2342 ((-758) $ |t#2|)) (-15 -2342 ((-758) $ |t#2| (-758))) (-15 -3497 ((-937 |t#1|) $ (-758))) (-15 -3497 ((-937 |t#1|) $ (-758) (-758))) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ |t#2|)) (-6 (-987)) (-6 (-1180))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-525 |#2|)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-285) |has| |#1| (-546)) ((-304 $) . T) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-508 |#2| $) . T) ((-508 $ $) . T) ((-546) |has| |#1| (-546)) ((-634 #1#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-885 |#2|) . T) ((-958 |#1| #0# |#2|) . T) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554))))) +((-2270 (((-413 (-1154 |#4|)) (-1154 |#4|)) 30) (((-413 |#4|) |#4|) 26))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|)))) (-836) (-780) (-13 (-302) (-145)) (-934 |#3| |#2| |#1|)) (T -728)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-728 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4))))) +(-10 -7 (-15 -2270 ((-413 |#4|) |#4|)) (-15 -2270 ((-413 (-1154 |#4|)) (-1154 |#4|)))) +((-3673 (((-413 |#4|) |#4| |#2|) 118)) (-1592 (((-413 |#4|) |#4|) NIL)) (-1565 (((-413 (-1154 |#4|)) (-1154 |#4|)) 109) (((-413 |#4|) |#4|) 40)) (-4236 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 |#4|)) (|:| -1407 (-554)))))) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|))) 68)) (-1685 (((-1154 |#3|) (-1154 |#3|) (-554)) 136)) (-2753 (((-631 (-758)) (-1154 |#4|) (-631 |#2|) (-758)) 60)) (-3662 (((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-1154 |#3|) (-1154 |#3|) |#4| (-631 |#2|) (-631 (-758)) (-631 |#3|)) 64)) (-3252 (((-2 (|:| |upol| (-1154 |#3|)) (|:| |Lval| (-631 |#3|)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) (|:| |ctpol| |#3|)) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|))) 25)) (-1456 (((-2 (|:| -2598 (-1154 |#4|)) (|:| |polval| (-1154 |#3|))) (-1154 |#4|) (-1154 |#3|) (-554)) 56)) (-3926 (((-554) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) 133)) (-2175 ((|#4| (-554) (-413 |#4|)) 57)) (-2989 (((-112) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) NIL))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1565 ((-413 |#4|) |#4|)) (-15 -1565 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -1592 ((-413 |#4|) |#4|)) (-15 -3926 ((-554) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3673 ((-413 |#4|) |#4| |#2|)) (-15 -1456 ((-2 (|:| -2598 (-1154 |#4|)) (|:| |polval| (-1154 |#3|))) (-1154 |#4|) (-1154 |#3|) (-554))) (-15 -4236 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 |#4|)) (|:| -1407 (-554)))))) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -3252 ((-2 (|:| |upol| (-1154 |#3|)) (|:| |Lval| (-631 |#3|)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) (|:| |ctpol| |#3|)) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -2175 (|#4| (-554) (-413 |#4|))) (-15 -2989 ((-112) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3662 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-1154 |#3|) (-1154 |#3|) |#4| (-631 |#2|) (-631 (-758)) (-631 |#3|))) (-15 -2753 ((-631 (-758)) (-1154 |#4|) (-631 |#2|) (-758))) (-15 -1685 ((-1154 |#3|) (-1154 |#3|) (-554)))) (-780) (-836) (-302) (-934 |#3| |#1| |#2|)) (T -729)) +((-1685 (*1 *2 *2 *3) (-12 (-5 *2 (-1154 *6)) (-5 *3 (-554)) (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-4 *7 (-836)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-4 *8 (-302)) (-5 *2 (-631 (-758))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *5 (-758)))) (-3662 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1154 *11)) (-5 *6 (-631 *10)) (-5 *7 (-631 (-758))) (-5 *8 (-631 *11)) (-4 *10 (-836)) (-4 *11 (-302)) (-4 *9 (-780)) (-4 *5 (-934 *11 *9 *10)) (-5 *2 (-631 (-1154 *5))) (-5 *1 (-729 *9 *10 *11 *5)) (-5 *3 (-1154 *5)))) (-2989 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554))))) (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-554)) (-5 *4 (-413 *2)) (-4 *2 (-934 *7 *5 *6)) (-5 *1 (-729 *5 *6 *7 *2)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-302)))) (-3252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) (-4 *7 (-836)) (-4 *8 (-302)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |upol| (-1154 *8)) (|:| |Lval| (-631 *8)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 *8)) (|:| -1407 (-554))))) (|:| |ctpol| *8))) (-5 *1 (-729 *6 *7 *8 *9)))) (-4236 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) (-4 *7 (-836)) (-4 *8 (-302)) (-4 *6 (-780)) (-4 *9 (-934 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 *9)) (|:| -1407 (-554))))))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-554)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-302)) (-4 *9 (-934 *8 *6 *7)) (-5 *2 (-2 (|:| -2598 (-1154 *9)) (|:| |polval| (-1154 *8)))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)) (-5 *4 (-1154 *8)))) (-3673 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554))))) (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-1592 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5)))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-729 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5))))) +(-10 -7 (-15 -1565 ((-413 |#4|) |#4|)) (-15 -1565 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -1592 ((-413 |#4|) |#4|)) (-15 -3926 ((-554) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3673 ((-413 |#4|) |#4| |#2|)) (-15 -1456 ((-2 (|:| -2598 (-1154 |#4|)) (|:| |polval| (-1154 |#3|))) (-1154 |#4|) (-1154 |#3|) (-554))) (-15 -4236 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-631 (-2 (|:| -2270 (-1154 |#4|)) (|:| -1407 (-554)))))) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -3252 ((-2 (|:| |upol| (-1154 |#3|)) (|:| |Lval| (-631 |#3|)) (|:| |Lfact| (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554))))) (|:| |ctpol| |#3|)) (-1154 |#4|) (-631 |#2|) (-631 (-631 |#3|)))) (-15 -2175 (|#4| (-554) (-413 |#4|))) (-15 -2989 ((-112) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))) (-631 (-2 (|:| -2270 (-1154 |#3|)) (|:| -1407 (-554)))))) (-15 -3662 ((-3 (-631 (-1154 |#4|)) "failed") (-1154 |#4|) (-1154 |#3|) (-1154 |#3|) |#4| (-631 |#2|) (-631 (-758)) (-631 |#3|))) (-15 -2753 ((-631 (-758)) (-1154 |#4|) (-631 |#2|) (-758))) (-15 -1685 ((-1154 |#3|) (-1154 |#3|) (-554)))) +((-4326 (($ $ (-906)) 12))) +(((-730 |#1| |#2|) (-10 -8 (-15 -4326 (|#1| |#1| (-906)))) (-731 |#2|) (-170)) (T -730)) +NIL +(-10 -8 (-15 -4326 (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2080 (($ $ (-906)) 28)) (-4326 (($ $ (-906)) 33)) (-1297 (($ $ (-906)) 29)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1856 (($ $ $) 25)) (-3075 (((-848) $) 11)) (-3499 (($ $ $ $) 26)) (-1870 (($ $ $) 24)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-731 |#1|) (-138) (-170)) (T -731)) +((-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-731 *3)) (-4 *3 (-170))))) +(-13 (-748) (-704 |t#1|) (-10 -8 (-15 -4326 ($ $ (-906))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-707) . T) ((-748) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-1628 (((-1020) (-675 (-221)) (-554) (-112) (-554)) 25)) (-4034 (((-1020) (-675 (-221)) (-554) (-112) (-554)) 24))) +(((-732) (-10 -7 (-15 -4034 ((-1020) (-675 (-221)) (-554) (-112) (-554))) (-15 -1628 ((-1020) (-675 (-221)) (-554) (-112) (-554))))) (T -732)) +((-1628 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-732)))) (-4034 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-732))))) +(-10 -7 (-15 -4034 ((-1020) (-675 (-221)) (-554) (-112) (-554))) (-15 -1628 ((-1020) (-675 (-221)) (-554) (-112) (-554)))) +((-4037 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))) 43)) (-4065 (((-1020) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) 39)) (-4140 (((-1020) (-221) (-221) (-221) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 32))) +(((-733) (-10 -7 (-15 -4140 ((-1020) (-221) (-221) (-221) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -4065 ((-1020) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -4037 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN))))))) (T -733)) +((-4037 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1020)) (-5 *1 (-733)))) (-4065 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1020)) (-5 *1 (-733)))) (-4140 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-733))))) +(-10 -7 (-15 -4140 ((-1020) (-221) (-221) (-221) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -4065 ((-1020) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -4037 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))))) +((-3854 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 34)) (-1371 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 33)) (-3281 (((-1020) (-554) (-675 (-221)) (-554)) 32)) (-3788 (((-1020) (-554) (-675 (-221)) (-554)) 31)) (-4008 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 30)) (-3369 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 29)) (-3175 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554)) 28)) (-3768 (((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554)) 27)) (-3452 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 24)) (-2022 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554)) 23)) (-3833 (((-1020) (-554) (-675 (-221)) (-554)) 22)) (-2816 (((-1020) (-554) (-675 (-221)) (-554)) 21))) +(((-734) (-10 -7 (-15 -2816 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3833 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -2022 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3452 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3768 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3175 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3369 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -4008 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3788 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3281 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -1371 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -3854 ((-1020) (-554) (-554) (-675 (-221)) (-554))))) (T -734)) +((-3854 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-1371 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3281 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3788 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-4008 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3369 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3175 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3768 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3452 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-2022 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-3833 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734)))) (-2816 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-734))))) +(-10 -7 (-15 -2816 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3833 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -2022 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3452 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3768 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3175 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3369 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -4008 ((-1020) (-554) (-554) (-1140) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3788 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -3281 ((-1020) (-554) (-675 (-221)) (-554))) (-15 -1371 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -3854 ((-1020) (-554) (-554) (-675 (-221)) (-554)))) +((-3317 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3869 (((-1020) (-675 (-221)) (-675 (-221)) (-554) (-554)) 51)) (-1569 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3054 (((-1020) (-221) (-221) (-554) (-554) (-554) (-554)) 46)) (-1468 (((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 45)) (-2138 (((-1020) (-221) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 44)) (-1712 (((-1020) (-221) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 43)) (-3784 (((-1020) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) 42)) (-3585 (((-1020) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 38)) (-3430 (((-1020) (-221) (-221) (-554) (-675 (-221)) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 37)) (-3897 (((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 33)) (-1348 (((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) 32))) +(((-735) (-10 -7 (-15 -1348 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3897 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3430 ((-1020) (-221) (-221) (-554) (-675 (-221)) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3585 ((-1020) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3784 ((-1020) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1712 ((-1020) (-221) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -2138 ((-1020) (-221) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1468 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -3054 ((-1020) (-221) (-221) (-554) (-554) (-554) (-554))) (-15 -1569 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))) (-15 -3869 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-554))) (-15 -3317 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))))) (T -735)) +((-3317 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3869 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1569 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3054 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1468 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-2138 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3784 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3585 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3430 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-735)))) (-3897 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-735)))) (-1348 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *2 (-1020)) (-5 *1 (-735))))) +(-10 -7 (-15 -1348 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3897 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3430 ((-1020) (-221) (-221) (-554) (-675 (-221)) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3585 ((-1020) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085))))) (-15 -3784 ((-1020) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1712 ((-1020) (-221) (-221) (-221) (-221) (-554) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -2138 ((-1020) (-221) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -1468 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G))))) (-15 -3054 ((-1020) (-221) (-221) (-554) (-554) (-554) (-554))) (-15 -1569 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN))))) (-15 -3869 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-554))) (-15 -3317 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-221) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))))) +((-3674 (((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1758 (((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383)) 69) (((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1388 (((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) 57)) (-1706 (((-1020) (-675 (-221)) (-675 (-221)) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) 50)) (-1910 (((-1020) (-221) (-554) (-554) (-1140) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2551 (((-1020) (-221) (-554) (-554) (-221) (-1140) (-221) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1987 (((-1020) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) 42)) (-3704 (((-1020) (-221) (-554) (-554) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-736) (-10 -7 (-15 -3704 ((-1020) (-221) (-554) (-554) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1987 ((-1020) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -2551 ((-1020) (-221) (-554) (-554) (-221) (-1140) (-221) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1910 ((-1020) (-221) (-554) (-554) (-1140) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1706 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -1388 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -3674 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -736)) +((-3674 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1758 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-383)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1758 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1388 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1706 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1910 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-2551 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-1987 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736)))) (-3704 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736))))) +(-10 -7 (-15 -3704 ((-1020) (-221) (-554) (-554) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1987 ((-1020) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -2551 ((-1020) (-221) (-554) (-554) (-221) (-1140) (-221) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1910 ((-1020) (-221) (-554) (-554) (-1140) (-554) (-221) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT))))) (-15 -1706 ((-1020) (-675 (-221)) (-675 (-221)) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN))))) (-15 -1388 ((-1020) (-221) (-221) (-554) (-221) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -1758 ((-1020) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -3674 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-4216 (((-1020) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-661 (-221)) (-554)) 45)) (-1570 (((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-1140) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) 41)) (-4270 (((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 23))) +(((-737) (-10 -7 (-15 -4270 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1570 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-1140) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -4216 ((-1020) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-661 (-221)) (-554))))) (T -737)) +((-4216 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-661 (-221))) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-737)))) (-1570 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1020)) (-5 *1 (-737)))) (-4270 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-737))))) +(-10 -7 (-15 -4270 ((-1020) (-554) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1570 ((-1020) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-1140) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -4216 ((-1020) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-661 (-221)) (-554)))) +((-2484 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-675 (-221)) (-221) (-221) (-554)) 35)) (-3682 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-221) (-221) (-554)) 34)) (-3393 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-675 (-221)) (-221) (-221) (-554)) 33)) (-3138 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 29)) (-4157 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 28)) (-3758 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554)) 27)) (-1776 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554)) 24)) (-3177 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554)) 23)) (-1890 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554)) 22)) (-3531 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)) 21))) +(((-738) (-10 -7 (-15 -3531 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1890 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3177 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -1776 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3758 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554))) (-15 -4157 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3138 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3393 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-675 (-221)) (-221) (-221) (-554))) (-15 -3682 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-221) (-221) (-554))) (-15 -2484 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-675 (-221)) (-221) (-221) (-554))))) (T -738)) +((-2484 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3682 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3393 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3138 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-4157 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3758 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-738)))) (-1776 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3177 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-1890 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738)))) (-3531 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738))))) +(-10 -7 (-15 -3531 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1890 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3177 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -1776 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3758 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-221) (-554))) (-15 -4157 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3138 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3393 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-675 (-221)) (-221) (-221) (-554))) (-15 -3682 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-221) (-221) (-554))) (-15 -2484 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-675 (-221)) (-221) (-221) (-554)))) +((-3071 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)) 45)) (-1995 (((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-554)) 44)) (-2086 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)) 43)) (-2601 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 42)) (-2473 (((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554)) 41)) (-3797 (((-1020) (-1140) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554)) 40)) (-3378 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554) (-554) (-554) (-221) (-675 (-221)) (-554)) 39)) (-2902 (((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554))) 38)) (-2228 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554)) 35)) (-1469 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554)) 34)) (-3139 (((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554)) 33)) (-1419 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 32)) (-2204 (((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554)) 31)) (-3865 (((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-554)) 30)) (-4305 (((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-554) (-554) (-554)) 29)) (-2790 (((-1020) (-554) (-554) (-554) (-221) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-554)) (-554) (-554) (-554)) 28)) (-3881 (((-1020) (-554) (-675 (-221)) (-221) (-554)) 24)) (-3728 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 21))) +(((-739) (-10 -7 (-15 -3728 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3881 ((-1020) (-554) (-675 (-221)) (-221) (-554))) (-15 -2790 ((-1020) (-554) (-554) (-554) (-221) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-554)) (-554) (-554) (-554))) (-15 -4305 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3865 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-554))) (-15 -2204 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554))) (-15 -1419 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3139 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554))) (-15 -1469 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554))) (-15 -2228 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2902 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)))) (-15 -3378 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554) (-554) (-554) (-221) (-675 (-221)) (-554))) (-15 -3797 ((-1020) (-1140) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -2473 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2601 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2086 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1995 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3071 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))))) (T -739)) +((-3071 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-1995 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2086 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2601 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2473 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3797 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3378 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2902 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2228 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-1469 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3139 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-1419 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2204 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3865 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-4305 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-2790 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3881 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) (-5 *2 (-1020)) (-5 *1 (-739)))) (-3728 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-739))))) +(-10 -7 (-15 -3728 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3881 ((-1020) (-554) (-675 (-221)) (-221) (-554))) (-15 -2790 ((-1020) (-554) (-554) (-554) (-221) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-554)) (-554) (-554) (-554))) (-15 -4305 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3865 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554) (-554) (-554))) (-15 -2204 ((-1020) (-554) (-221) (-221) (-675 (-221)) (-554) (-554) (-221) (-554))) (-15 -1419 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3139 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554))) (-15 -1469 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554))) (-15 -2228 ((-1020) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2902 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)))) (-15 -3378 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554) (-554) (-554) (-221) (-675 (-221)) (-554))) (-15 -3797 ((-1020) (-1140) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -2473 ((-1020) (-1140) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2601 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2086 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554))) (-15 -1995 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3071 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554) (-675 (-221)) (-675 (-221)) (-554) (-554) (-554)))) +((-4189 (((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-554) (-675 (-221)) (-554)) 63)) (-3873 (((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-112) (-221) (-554) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-554) (-554) (-554) (-554) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4160 (((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-112) (-112) (-554) (-554) (-675 (-221)) (-675 (-554)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS)))) 58)) (-1760 (((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-554) (-554) (-675 (-221)) (-554)) 51)) (-4039 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2029 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2623 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2741 (((-1020) (-554) (-221) (-221) (-554) (-221) (-112) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-740) (-10 -7 (-15 -2741 ((-1020) (-554) (-221) (-221) (-554) (-221) (-112) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2623 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1))))) (-15 -2029 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -4039 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1))))) (-15 -1760 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-554) (-554) (-675 (-221)) (-554))) (-15 -4160 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-112) (-112) (-554) (-554) (-675 (-221)) (-675 (-554)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS))))) (-15 -3873 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-112) (-221) (-554) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-554) (-554) (-554) (-554) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -4189 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-554) (-675 (-221)) (-554))))) (T -740)) +((-4189 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-3873 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-675 (-554))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-4160 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-675 (-221))) (-5 *6 (-112)) (-5 *7 (-675 (-554))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-1760 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-740)))) (-4039 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1020)) (-5 *1 (-740)))) (-2029 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1020)) (-5 *1 (-740)))) (-2623 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1020)) (-5 *1 (-740)))) (-2741 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740))))) +(-10 -7 (-15 -2741 ((-1020) (-554) (-221) (-221) (-554) (-221) (-112) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2623 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1))))) (-15 -2029 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -4039 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1))))) (-15 -1760 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-554) (-554) (-675 (-221)) (-554))) (-15 -4160 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-221) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-112) (-112) (-112) (-554) (-554) (-675 (-221)) (-675 (-554)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS))))) (-15 -3873 ((-1020) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-554) (-112) (-221) (-554) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-554) (-554) (-554) (-554) (-554) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-554) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -4189 ((-1020) (-554) (-554) (-554) (-221) (-675 (-221)) (-554) (-675 (-221)) (-554)))) +((-1981 (((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554)) 47)) (-3121 (((-1020) (-1140) (-1140) (-554) (-554) (-675 (-167 (-221))) (-554) (-675 (-167 (-221))) (-554) (-554) (-675 (-167 (-221))) (-554)) 46)) (-2424 (((-1020) (-554) (-554) (-554) (-675 (-167 (-221))) (-554)) 45)) (-1850 (((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 40)) (-3319 (((-1020) (-1140) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)) (-554)) 39)) (-3488 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-554)) 36)) (-1878 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554)) 35)) (-3810 (((-1020) (-554) (-554) (-554) (-554) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-221) (-221) (-554)) 34)) (-4117 (((-1020) (-554) (-554) (-554) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-112) (-221) (-112) (-675 (-554)) (-675 (-221)) (-554)) 33)) (-2536 (((-1020) (-554) (-554) (-554) (-554) (-221) (-112) (-112) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-554)) 32))) +(((-741) (-10 -7 (-15 -2536 ((-1020) (-554) (-554) (-554) (-554) (-221) (-112) (-112) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-554))) (-15 -4117 ((-1020) (-554) (-554) (-554) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-112) (-221) (-112) (-675 (-554)) (-675 (-221)) (-554))) (-15 -3810 ((-1020) (-554) (-554) (-554) (-554) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-221) (-221) (-554))) (-15 -1878 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554))) (-15 -3488 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3319 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)) (-554))) (-15 -1850 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2424 ((-1020) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3121 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-167 (-221))) (-554) (-675 (-167 (-221))) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -1981 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554))))) (T -741)) +((-1981 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3121 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-2424 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-1850 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3319 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3488 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-741)))) (-1878 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-741)))) (-3810 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-631 (-112))) (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *7 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-741)))) (-4117 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-675 (-554))) (-5 *5 (-112)) (-5 *7 (-675 (-221))) (-5 *3 (-554)) (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-741)))) (-2536 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-631 (-112))) (-5 *7 (-675 (-221))) (-5 *8 (-675 (-554))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1020)) (-5 *1 (-741))))) +(-10 -7 (-15 -2536 ((-1020) (-554) (-554) (-554) (-554) (-221) (-112) (-112) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-554))) (-15 -4117 ((-1020) (-554) (-554) (-554) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-675 (-554)) (-112) (-221) (-112) (-675 (-554)) (-675 (-221)) (-554))) (-15 -3810 ((-1020) (-554) (-554) (-554) (-554) (-631 (-112)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-221) (-221) (-554))) (-15 -1878 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554))) (-15 -3488 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3319 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)) (-554))) (-15 -1850 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2424 ((-1020) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3121 ((-1020) (-1140) (-1140) (-554) (-554) (-675 (-167 (-221))) (-554) (-675 (-167 (-221))) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -1981 ((-1020) (-1140) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554)))) +((-1722 (((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554)) 65)) (-3270 (((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554)) 60)) (-1414 (((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))) (-383)) 56) (((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) 55)) (-1632 (((-1020) (-554) (-554) (-554) (-221) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554)) 37)) (-3366 (((-1020) (-554) (-554) (-221) (-221) (-554) (-554) (-675 (-221)) (-554)) 33)) (-3184 (((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554) (-554)) 30)) (-1411 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 29)) (-1352 (((-1020) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 28)) (-3532 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 27)) (-2003 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554)) 26)) (-3233 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 25)) (-2864 (((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 24)) (-1429 (((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554)) 23)) (-1769 (((-1020) (-675 (-221)) (-554) (-554) (-554) (-554)) 22)) (-2215 (((-1020) (-554) (-554) (-675 (-221)) (-554)) 21))) +(((-742) (-10 -7 (-15 -2215 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -1769 ((-1020) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -1429 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2864 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3233 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -2003 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3532 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1352 ((-1020) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1411 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3184 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3366 ((-1020) (-554) (-554) (-221) (-221) (-554) (-554) (-675 (-221)) (-554))) (-15 -1632 ((-1020) (-554) (-554) (-554) (-221) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))) (-383))) (-15 -3270 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1722 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554))))) (T -742)) +((-1722 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3270 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1414 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-383)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1414 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1632 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3366 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3184 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1411 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1352 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3532 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-2003 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-3233 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-2864 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1429 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742)))) (-1769 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-742)))) (-2215 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-742))))) +(-10 -7 (-15 -2215 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -1769 ((-1020) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -1429 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2864 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3233 ((-1020) (-554) (-554) (-675 (-221)) (-554))) (-15 -2003 ((-1020) (-554) (-554) (-554) (-554) (-675 (-221)) (-554))) (-15 -3532 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1352 ((-1020) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1411 ((-1020) (-554) (-554) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3184 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554) (-554))) (-15 -3366 ((-1020) (-554) (-554) (-221) (-221) (-554) (-554) (-675 (-221)) (-554))) (-15 -1632 ((-1020) (-554) (-554) (-554) (-221) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))))) (-15 -1414 ((-1020) (-554) (-554) (-221) (-554) (-554) (-554) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE))) (-383))) (-15 -3270 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -1722 ((-1020) (-554) (-554) (-554) (-554) (-554) (-112) (-554) (-112) (-554) (-675 (-167 (-221))) (-675 (-167 (-221))) (-554)))) +((-2408 (((-1020) (-554) (-554) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))) 61)) (-1844 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554)) 57)) (-3847 (((-1020) (-554) (-675 (-221)) (-112) (-221) (-554) (-554) (-554) (-554) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE)))) 56)) (-3500 (((-1020) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554)) 37)) (-2665 (((-1020) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-554)) 36)) (-2076 (((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554)) 33)) (-2382 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221))) 32)) (-3201 (((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554)) 28)) (-3993 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554)) 27)) (-3035 (((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554)) 26)) (-3465 (((-1020) (-554) (-675 (-167 (-221))) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-554)) 22))) +(((-743) (-10 -7 (-15 -3465 ((-1020) (-554) (-675 (-167 (-221))) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3035 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3993 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3201 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554))) (-15 -2382 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)))) (-15 -2076 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2665 ((-1020) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3500 ((-1020) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -3847 ((-1020) (-554) (-675 (-221)) (-112) (-221) (-554) (-554) (-554) (-554) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE))))) (-15 -1844 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -2408 ((-1020) (-554) (-554) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD))))))) (T -743)) +((-2408 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-1844 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3847 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3500 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-2665 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-2076 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-2382 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3201 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3993 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3035 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-743)))) (-3465 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020)) (-5 *1 (-743))))) +(-10 -7 (-15 -3465 ((-1020) (-554) (-675 (-167 (-221))) (-554) (-554) (-554) (-554) (-675 (-167 (-221))) (-554))) (-15 -3035 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3993 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-554))) (-15 -3201 ((-1020) (-675 (-221)) (-554) (-675 (-221)) (-554) (-554) (-554))) (-15 -2382 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-554)) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)))) (-15 -2076 ((-1020) (-554) (-554) (-675 (-221)) (-675 (-221)) (-675 (-221)) (-554))) (-15 -2665 ((-1020) (-554) (-554) (-554) (-221) (-554) (-675 (-221)) (-675 (-221)) (-554))) (-15 -3500 ((-1020) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-554)) (-675 (-221)) (-675 (-554)) (-675 (-554)) (-675 (-221)) (-675 (-221)) (-675 (-554)) (-554))) (-15 -3847 ((-1020) (-554) (-675 (-221)) (-112) (-221) (-554) (-554) (-554) (-554) (-221) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE))))) (-15 -1844 ((-1020) (-554) (-675 (-221)) (-554) (-675 (-221)) (-675 (-554)) (-554) (-675 (-221)) (-554) (-554) (-554) (-554))) (-15 -2408 ((-1020) (-554) (-554) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-675 (-221)) (-554) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))))) +((-2458 (((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-554) (-675 (-221))) 29)) (-3851 (((-1020) (-1140) (-554) (-554) (-675 (-221))) 28)) (-1510 (((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-221))) 27)) (-2835 (((-1020) (-554) (-554) (-554) (-675 (-221))) 21))) +(((-744) (-10 -7 (-15 -2835 ((-1020) (-554) (-554) (-554) (-675 (-221)))) (-15 -1510 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-221)))) (-15 -3851 ((-1020) (-1140) (-554) (-554) (-675 (-221)))) (-15 -2458 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-554) (-675 (-221)))))) (T -744)) +((-2458 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-744)))) (-3851 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-744)))) (-1510 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-744)))) (-2835 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-744))))) +(-10 -7 (-15 -2835 ((-1020) (-554) (-554) (-554) (-675 (-221)))) (-15 -1510 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-675 (-554)) (-554) (-675 (-221)))) (-15 -3851 ((-1020) (-1140) (-554) (-554) (-675 (-221)))) (-15 -2458 ((-1020) (-1140) (-554) (-554) (-675 (-221)) (-554) (-554) (-675 (-221))))) +((-2218 (((-1020) (-221) (-221) (-221) (-221) (-554)) 62)) (-2770 (((-1020) (-221) (-221) (-221) (-554)) 61)) (-1812 (((-1020) (-221) (-221) (-221) (-554)) 60)) (-3545 (((-1020) (-221) (-221) (-554)) 59)) (-4056 (((-1020) (-221) (-554)) 58)) (-1848 (((-1020) (-221) (-554)) 57)) (-3371 (((-1020) (-221) (-554)) 56)) (-4275 (((-1020) (-221) (-554)) 55)) (-4040 (((-1020) (-221) (-554)) 54)) (-2985 (((-1020) (-221) (-554)) 53)) (-3512 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 52)) (-2528 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 51)) (-1675 (((-1020) (-221) (-554)) 50)) (-1792 (((-1020) (-221) (-554)) 49)) (-3875 (((-1020) (-221) (-554)) 48)) (-2435 (((-1020) (-221) (-554)) 47)) (-1504 (((-1020) (-554) (-221) (-167 (-221)) (-554) (-1140) (-554)) 46)) (-4009 (((-1020) (-1140) (-167 (-221)) (-1140) (-554)) 45)) (-2121 (((-1020) (-1140) (-167 (-221)) (-1140) (-554)) 44)) (-3595 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 43)) (-1967 (((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554)) 42)) (-3236 (((-1020) (-221) (-554)) 39)) (-1633 (((-1020) (-221) (-554)) 38)) (-2955 (((-1020) (-221) (-554)) 37)) (-2460 (((-1020) (-221) (-554)) 36)) (-2702 (((-1020) (-221) (-554)) 35)) (-3624 (((-1020) (-221) (-554)) 34)) (-3892 (((-1020) (-221) (-554)) 33)) (-3739 (((-1020) (-221) (-554)) 32)) (-1461 (((-1020) (-221) (-554)) 31)) (-4169 (((-1020) (-221) (-554)) 30)) (-3692 (((-1020) (-221) (-221) (-221) (-554)) 29)) (-3947 (((-1020) (-221) (-554)) 28)) (-3680 (((-1020) (-221) (-554)) 27)) (-2919 (((-1020) (-221) (-554)) 26)) (-3103 (((-1020) (-221) (-554)) 25)) (-2176 (((-1020) (-221) (-554)) 24)) (-1509 (((-1020) (-167 (-221)) (-554)) 21))) +(((-745) (-10 -7 (-15 -1509 ((-1020) (-167 (-221)) (-554))) (-15 -2176 ((-1020) (-221) (-554))) (-15 -3103 ((-1020) (-221) (-554))) (-15 -2919 ((-1020) (-221) (-554))) (-15 -3680 ((-1020) (-221) (-554))) (-15 -3947 ((-1020) (-221) (-554))) (-15 -3692 ((-1020) (-221) (-221) (-221) (-554))) (-15 -4169 ((-1020) (-221) (-554))) (-15 -1461 ((-1020) (-221) (-554))) (-15 -3739 ((-1020) (-221) (-554))) (-15 -3892 ((-1020) (-221) (-554))) (-15 -3624 ((-1020) (-221) (-554))) (-15 -2702 ((-1020) (-221) (-554))) (-15 -2460 ((-1020) (-221) (-554))) (-15 -2955 ((-1020) (-221) (-554))) (-15 -1633 ((-1020) (-221) (-554))) (-15 -3236 ((-1020) (-221) (-554))) (-15 -1967 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3595 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2121 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -4009 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -1504 ((-1020) (-554) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2435 ((-1020) (-221) (-554))) (-15 -3875 ((-1020) (-221) (-554))) (-15 -1792 ((-1020) (-221) (-554))) (-15 -1675 ((-1020) (-221) (-554))) (-15 -2528 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3512 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2985 ((-1020) (-221) (-554))) (-15 -4040 ((-1020) (-221) (-554))) (-15 -4275 ((-1020) (-221) (-554))) (-15 -3371 ((-1020) (-221) (-554))) (-15 -1848 ((-1020) (-221) (-554))) (-15 -4056 ((-1020) (-221) (-554))) (-15 -3545 ((-1020) (-221) (-221) (-554))) (-15 -1812 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2770 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2218 ((-1020) (-221) (-221) (-221) (-221) (-554))))) (T -745)) +((-2218 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2770 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1812 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3545 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4056 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3512 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2528 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1504 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-554)) (-5 *5 (-167 (-221))) (-5 *6 (-1140)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4009 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2121 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3595 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1967 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3692 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(-10 -7 (-15 -1509 ((-1020) (-167 (-221)) (-554))) (-15 -2176 ((-1020) (-221) (-554))) (-15 -3103 ((-1020) (-221) (-554))) (-15 -2919 ((-1020) (-221) (-554))) (-15 -3680 ((-1020) (-221) (-554))) (-15 -3947 ((-1020) (-221) (-554))) (-15 -3692 ((-1020) (-221) (-221) (-221) (-554))) (-15 -4169 ((-1020) (-221) (-554))) (-15 -1461 ((-1020) (-221) (-554))) (-15 -3739 ((-1020) (-221) (-554))) (-15 -3892 ((-1020) (-221) (-554))) (-15 -3624 ((-1020) (-221) (-554))) (-15 -2702 ((-1020) (-221) (-554))) (-15 -2460 ((-1020) (-221) (-554))) (-15 -2955 ((-1020) (-221) (-554))) (-15 -1633 ((-1020) (-221) (-554))) (-15 -3236 ((-1020) (-221) (-554))) (-15 -1967 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3595 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2121 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -4009 ((-1020) (-1140) (-167 (-221)) (-1140) (-554))) (-15 -1504 ((-1020) (-554) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2435 ((-1020) (-221) (-554))) (-15 -3875 ((-1020) (-221) (-554))) (-15 -1792 ((-1020) (-221) (-554))) (-15 -1675 ((-1020) (-221) (-554))) (-15 -2528 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -3512 ((-1020) (-221) (-167 (-221)) (-554) (-1140) (-554))) (-15 -2985 ((-1020) (-221) (-554))) (-15 -4040 ((-1020) (-221) (-554))) (-15 -4275 ((-1020) (-221) (-554))) (-15 -3371 ((-1020) (-221) (-554))) (-15 -1848 ((-1020) (-221) (-554))) (-15 -4056 ((-1020) (-221) (-554))) (-15 -3545 ((-1020) (-221) (-221) (-554))) (-15 -1812 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2770 ((-1020) (-221) (-221) (-221) (-554))) (-15 -2218 ((-1020) (-221) (-221) (-221) (-221) (-554)))) +((-1288 (((-1246)) 18)) (-4338 (((-1140)) 22)) (-1725 (((-1140)) 21)) (-3525 (((-1086) (-1158) (-675 (-554))) 37) (((-1086) (-1158) (-675 (-221))) 32)) (-1957 (((-112)) 16)) (-3578 (((-1140) (-1140)) 25))) +(((-746) (-10 -7 (-15 -1725 ((-1140))) (-15 -4338 ((-1140))) (-15 -3578 ((-1140) (-1140))) (-15 -3525 ((-1086) (-1158) (-675 (-221)))) (-15 -3525 ((-1086) (-1158) (-675 (-554)))) (-15 -1957 ((-112))) (-15 -1288 ((-1246))))) (T -746)) +((-1288 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-746)))) (-1957 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-746)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-554))) (-5 *2 (-1086)) (-5 *1 (-746)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-221))) (-5 *2 (-1086)) (-5 *1 (-746)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))) (-4338 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746)))) (-1725 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746))))) +(-10 -7 (-15 -1725 ((-1140))) (-15 -4338 ((-1140))) (-15 -3578 ((-1140) (-1140))) (-15 -3525 ((-1086) (-1158) (-675 (-221)))) (-15 -3525 ((-1086) (-1158) (-675 (-554)))) (-15 -1957 ((-112))) (-15 -1288 ((-1246)))) +((-1856 (($ $ $) 10)) (-3499 (($ $ $ $) 9)) (-1870 (($ $ $) 12))) +(((-747 |#1|) (-10 -8 (-15 -1870 (|#1| |#1| |#1|)) (-15 -1856 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|))) (-748)) (T -747)) +NIL +(-10 -8 (-15 -1870 (|#1| |#1| |#1|)) (-15 -1856 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2080 (($ $ (-906)) 28)) (-1297 (($ $ (-906)) 29)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1856 (($ $ $) 25)) (-3075 (((-848) $) 11)) (-3499 (($ $ $ $) 26)) (-1870 (($ $ $) 24)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27))) +(((-748) (-138)) (T -748)) +((-3499 (*1 *1 *1 *1 *1) (-4 *1 (-748))) (-1856 (*1 *1 *1 *1) (-4 *1 (-748))) (-1870 (*1 *1 *1 *1) (-4 *1 (-748)))) +(-13 (-21) (-707) (-10 -8 (-15 -3499 ($ $ $ $)) (-15 -1856 ($ $ $)) (-15 -1870 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-707) . T) ((-1082) . T)) +((-3075 (((-848) $) NIL) (($ (-554)) 10))) +(((-749 |#1|) (-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-750)) (T -749)) +NIL +(-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-3754 (((-3 $ "failed") $) 40)) (-2080 (($ $ (-906)) 28) (($ $ (-758)) 35)) (-1320 (((-3 $ "failed") $) 38)) (-3248 (((-112) $) 34)) (-1605 (((-3 $ "failed") $) 39)) (-1297 (($ $ (-906)) 29) (($ $ (-758)) 36)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1856 (($ $ $) 25)) (-3075 (((-848) $) 11) (($ (-554)) 31)) (-2261 (((-758)) 32)) (-3499 (($ $ $ $) 26)) (-1870 (($ $ $) 24)) (-2004 (($) 18 T CONST)) (-2014 (($) 33 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 30) (($ $ (-758)) 37)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 27))) +(((-750) (-138)) (T -750)) +((-2261 (*1 *2) (-12 (-4 *1 (-750)) (-5 *2 (-758)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-750))))) +(-13 (-748) (-709) (-10 -8 (-15 -2261 ((-758))) (-15 -3075 ($ (-554))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-707) . T) ((-709) . T) ((-748) . T) ((-1082) . T)) +((-2883 (((-631 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 |#1|)))))) (-675 (-167 (-402 (-554)))) |#1|) 33)) (-4180 (((-631 (-167 |#1|)) (-675 (-167 (-402 (-554)))) |#1|) 23)) (-3109 (((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))) (-1158)) 20) (((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554))))) 19))) +(((-751 |#1|) (-10 -7 (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))))) (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))) (-1158))) (-15 -4180 ((-631 (-167 |#1|)) (-675 (-167 (-402 (-554)))) |#1|)) (-15 -2883 ((-631 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 |#1|)))))) (-675 (-167 (-402 (-554)))) |#1|))) (-13 (-358) (-834))) (T -751)) +((-2883 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-631 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 *4))))))) (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-631 (-167 *4))) (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *4 (-1158)) (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *5)) (-4 *5 (-13 (-358) (-834))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834)))))) +(-10 -7 (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))))) (-15 -3109 ((-937 (-167 (-402 (-554)))) (-675 (-167 (-402 (-554)))) (-1158))) (-15 -4180 ((-631 (-167 |#1|)) (-675 (-167 (-402 (-554)))) |#1|)) (-15 -2883 ((-631 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 (-167 |#1|)))))) (-675 (-167 (-402 (-554)))) |#1|))) +((-3691 (((-172 (-554)) |#1|) 25))) +(((-752 |#1|) (-10 -7 (-15 -3691 ((-172 (-554)) |#1|))) (-399)) (T -752)) +((-3691 (*1 *2 *3) (-12 (-5 *2 (-172 (-554))) (-5 *1 (-752 *3)) (-4 *3 (-399))))) +(-10 -7 (-15 -3691 ((-172 (-554)) |#1|))) +((-1455 ((|#1| |#1| |#1|) 24)) (-4024 ((|#1| |#1| |#1|) 23)) (-2780 ((|#1| |#1| |#1|) 32)) (-1775 ((|#1| |#1| |#1|) 28)) (-1763 (((-3 |#1| "failed") |#1| |#1|) 27)) (-4032 (((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 22))) +(((-753 |#1| |#2|) (-10 -7 (-15 -4032 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|))) (-695 |#2|) (-358)) (T -753)) +((-2780 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-1775 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-1763 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-1455 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-4024 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-753 *3 *4)) (-4 *3 (-695 *4))))) +(-10 -7 (-15 -4032 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|))) +((-2077 (((-1102) $ (-128)) 12)) (-3451 (((-1102) $ (-129)) 11)) (-4120 (((-1102) $ (-128)) 7)) (-2614 (((-1102) $) 8)) (-4203 (((-112) $) 14)) (-3769 (((-3 $ "failed") |#1| (-939)) 15)) (-3745 (($ $) 6))) +(((-754 |#1|) (-138) (-1082)) (T -754)) +((-3769 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-939)) (-4 *1 (-754 *2)) (-4 *2 (-1082)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-1082)) (-5 *2 (-112))))) +(-13 (-566) (-10 -8 (-15 -3769 ((-3 $ "failed") |t#1| (-939))) (-15 -4203 ((-112) $)))) +(((-171) . T) ((-521) . T) ((-566) . T) ((-846) . T)) +((-2062 (((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))) (-554)) 59)) (-3358 (((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554))))) 57)) (-1495 (((-554)) 70))) +(((-755 |#1| |#2|) (-10 -7 (-15 -1495 ((-554))) (-15 -3358 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))))) (-15 -2062 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))) (-554)))) (-1217 (-554)) (-404 (-554) |#1|)) (T -755)) +((-2062 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-755 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3358 (*1 *2) (-12 (-4 *3 (-1217 (-554))) (-5 *2 (-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554))))) (-5 *1 (-755 *3 *4)) (-4 *4 (-404 (-554) *3)))) (-1495 (*1 *2) (-12 (-4 *3 (-1217 *2)) (-5 *2 (-554)) (-5 *1 (-755 *3 *4)) (-4 *4 (-404 *2 *3))))) +(-10 -7 (-15 -1495 ((-554))) (-15 -3358 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))))) (-15 -2062 ((-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) (|:| |basisInv| (-675 (-554)))) (-554)))) +((-3062 (((-112) $ $) NIL)) (-1668 (((-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) 18)) (-1658 (((-112) $ $) NIL))) +(((-756) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1668 ((-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))) (T -756)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-756)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-756)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-756)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-756))))) +(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3075 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1668 ((-3 (|:| |nia| (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $)))) +((-2184 (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))) 18) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158))) 17)) (-1900 (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))) 20) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158))) 19))) +(((-757 |#1|) (-10 -7 (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))))) (-546)) (T -757)) +((-1900 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5))))) +(-10 -7 (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -2184 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-937 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1349 (($ $ $) 6)) (-2934 (((-3 $ "failed") $ $) 9)) (-1648 (($ $ (-554)) 7)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3248 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2510 (($ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ $ $) NIL))) +(((-758) (-13 (-780) (-713) (-10 -8 (-15 -3943 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -2510 ($ $ $)) (-15 -2259 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3919 ((-3 $ "failed") $ $)) (-15 -1648 ($ $ (-554))) (-15 -3353 ($ $)) (-6 (-4375 "*"))))) (T -758)) +((-3943 (*1 *1 *1 *1) (-5 *1 (-758))) (-3964 (*1 *1 *1 *1) (-5 *1 (-758))) (-2510 (*1 *1 *1 *1) (-5 *1 (-758))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2325 (-758)) (|:| -2423 (-758)))) (-5 *1 (-758)))) (-3919 (*1 *1 *1 *1) (|partial| -5 *1 (-758))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-758)))) (-3353 (*1 *1 *1) (-5 *1 (-758)))) +(-13 (-780) (-713) (-10 -8 (-15 -3943 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -2510 ($ $ $)) (-15 -2259 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3919 ((-3 $ "failed") $ $)) (-15 -1648 ($ $ (-554))) (-15 -3353 ($ $)) (-6 (-4375 "*")))) +((-1900 (((-3 |#2| "failed") |#2| |#2| (-114) (-1158)) 35))) +(((-759 |#1| |#2|) (-10 -7 (-15 -1900 ((-3 |#2| "failed") |#2| |#2| (-114) (-1158)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944))) (T -759)) +((-1900 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-759 *5 *2)) (-4 *2 (-13 (-29 *5) (-1180) (-944)))))) +(-10 -7 (-15 -1900 ((-3 |#2| "failed") |#2| |#2| (-114) (-1158)))) +((-3075 (((-761) |#1|) 8))) +(((-760 |#1|) (-10 -7 (-15 -3075 ((-761) |#1|))) (-1195)) (T -760)) +((-3075 (*1 *2 *3) (-12 (-5 *2 (-761)) (-5 *1 (-760 *3)) (-4 *3 (-1195))))) +(-10 -7 (-15 -3075 ((-761) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 7)) (-1658 (((-112) $ $) 9))) +(((-761) (-1082)) (T -761)) +NIL +(-1082) +((-3274 ((|#2| |#4|) 35))) +(((-762 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3274 (|#2| |#4|))) (-446) (-1217 |#1|) (-711 |#1| |#2|) (-1217 |#3|)) (T -762)) +((-3274 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-711 *4 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-762 *4 *2 *5 *3)) (-4 *3 (-1217 *5))))) +(-10 -7 (-15 -3274 (|#2| |#4|))) +((-1320 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3254 (((-1246) (-1140) (-1140) |#4| |#5|) 33)) (-4149 ((|#4| |#4| |#5|) 73)) (-4085 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|) 77)) (-2108 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 16))) +(((-763 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1320 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4149 (|#4| |#4| |#5|)) (-15 -4085 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -3254 ((-1246) (-1140) (-1140) |#4| |#5|)) (-15 -2108 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -763)) +((-2108 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3254 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1140)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *4 (-1048 *6 *7 *8)) (-5 *2 (-1246)) (-5 *1 (-763 *6 *7 *8 *4 *5)) (-4 *5 (-1054 *6 *7 *8 *4)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-4149 (*1 *2 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *2 (-1048 *4 *5 *6)) (-5 *1 (-763 *4 *5 *6 *2 *3)) (-4 *3 (-1054 *4 *5 *6 *2)))) (-1320 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(-10 -7 (-15 -1320 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4149 (|#4| |#4| |#5|)) (-15 -4085 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -3254 ((-1246) (-1140) (-1140) |#4| |#5|)) (-15 -2108 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|))) +((-2784 (((-3 (-1154 (-1154 |#1|)) "failed") |#4|) 43)) (-3342 (((-631 |#4|) |#4|) 15)) (-1811 ((|#4| |#4|) 11))) +(((-764 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3342 ((-631 |#4|) |#4|)) (-15 -2784 ((-3 (-1154 (-1154 |#1|)) "failed") |#4|)) (-15 -1811 (|#4| |#4|))) (-344) (-324 |#1|) (-1217 |#2|) (-1217 |#3|) (-906)) (T -764)) +((-1811 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-764 *3 *4 *5 *2 *6)) (-4 *2 (-1217 *5)) (-14 *6 (-906)))) (-2784 (*1 *2 *3) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5)) (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-764 *4 *5 *6 *3 *7)) (-4 *3 (-1217 *6)) (-14 *7 (-906)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5)) (-5 *2 (-631 *3)) (-5 *1 (-764 *4 *5 *6 *3 *7)) (-4 *3 (-1217 *6)) (-14 *7 (-906))))) +(-10 -7 (-15 -3342 ((-631 |#4|) |#4|)) (-15 -2784 ((-3 (-1154 (-1154 |#1|)) "failed") |#4|)) (-15 -1811 (|#4| |#4|))) +((-2657 (((-2 (|:| |deter| (-631 (-1154 |#5|))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-631 |#1|)) (|:| |nlead| (-631 |#5|))) (-1154 |#5|) (-631 |#1|) (-631 |#5|)) 54)) (-4215 (((-631 (-758)) |#1|) 13))) +(((-765 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2657 ((-2 (|:| |deter| (-631 (-1154 |#5|))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-631 |#1|)) (|:| |nlead| (-631 |#5|))) (-1154 |#5|) (-631 |#1|) (-631 |#5|))) (-15 -4215 ((-631 (-758)) |#1|))) (-1217 |#4|) (-780) (-836) (-302) (-934 |#4| |#2| |#3|)) (T -765)) +((-4215 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-631 (-758))) (-5 *1 (-765 *3 *4 *5 *6 *7)) (-4 *3 (-1217 *6)) (-4 *7 (-934 *6 *4 *5)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1217 *9)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-302)) (-4 *10 (-934 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-631 (-1154 *10))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *10))))) (|:| |nfacts| (-631 *6)) (|:| |nlead| (-631 *10)))) (-5 *1 (-765 *6 *7 *8 *9 *10)) (-5 *3 (-1154 *10)) (-5 *4 (-631 *6)) (-5 *5 (-631 *10))))) +(-10 -7 (-15 -2657 ((-2 (|:| |deter| (-631 (-1154 |#5|))) (|:| |dterm| (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-631 |#1|)) (|:| |nlead| (-631 |#5|))) (-1154 |#5|) (-631 |#1|) (-631 |#5|))) (-15 -4215 ((-631 (-758)) |#1|))) +((-2447 (((-631 (-2 (|:| |outval| |#1|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#1|))))) (-675 (-402 (-554))) |#1|) 31)) (-1717 (((-631 |#1|) (-675 (-402 (-554))) |#1|) 21)) (-3109 (((-937 (-402 (-554))) (-675 (-402 (-554))) (-1158)) 18) (((-937 (-402 (-554))) (-675 (-402 (-554)))) 17))) +(((-766 |#1|) (-10 -7 (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))))) (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))) (-1158))) (-15 -1717 ((-631 |#1|) (-675 (-402 (-554))) |#1|)) (-15 -2447 ((-631 (-2 (|:| |outval| |#1|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#1|))))) (-675 (-402 (-554))) |#1|))) (-13 (-358) (-834))) (T -766)) +((-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-631 (-2 (|:| |outval| *4) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 *4)))))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *4 (-1158)) (-5 *2 (-937 (-402 (-554)))) (-5 *1 (-766 *5)) (-4 *5 (-13 (-358) (-834))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-937 (-402 (-554)))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834)))))) +(-10 -7 (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))))) (-15 -3109 ((-937 (-402 (-554))) (-675 (-402 (-554))) (-1158))) (-15 -1717 ((-631 |#1|) (-675 (-402 (-554))) |#1|)) (-15 -2447 ((-631 (-2 (|:| |outval| |#1|) (|:| |outmult| (-554)) (|:| |outvect| (-631 (-675 |#1|))))) (-675 (-402 (-554))) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 34)) (-2405 (((-631 |#2|) $) NIL)) (-2237 (((-1154 $) $ |#2|) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 |#2|)) NIL)) (-3387 (($ $) 28)) (-3079 (((-112) $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) 93 (|has| |#1| (-546)))) (-1580 (((-631 $) $ $) 106 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-937 (-402 (-554)))) NIL (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))))) (((-3 $ "failed") (-937 (-554))) NIL (-3994 (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554)))))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158)))))) (((-3 $ "failed") (-937 |#1|)) NIL (-3994 (-12 (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554))))) (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-539)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-977 (-554))))))) (((-3 (-1107 |#1| |#2|) "failed") $) 18)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) ((|#2| $) NIL) (($ (-937 (-402 (-554)))) NIL (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))))) (($ (-937 (-554))) NIL (-3994 (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554)))))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158)))))) (($ (-937 |#1|)) NIL (-3994 (-12 (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554))))) (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-539)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-977 (-554))))))) (((-1107 |#1| |#2|) $) NIL)) (-2999 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-546)))) (-2550 (($ $) NIL) (($ $ |#2|) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-2857 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2661 (((-112) $) NIL)) (-1680 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 70)) (-4003 (($ $) 119 (|has| |#1| (-446)))) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-2016 (($ $) NIL (|has| |#1| (-546)))) (-3605 (($ $) NIL (|has| |#1| (-546)))) (-4202 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3039 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1344 (($ $ |#1| (-525 |#2|) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-4253 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-3376 (($ $ $ $ $) 90 (|has| |#1| (-546)))) (-3954 ((|#2| $) 19)) (-2393 (($ (-1154 |#1|) |#2|) NIL) (($ (-1154 $) |#2|) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 |#2|)) NIL) (($ $ |#2| (-758)) 36) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1761 (($ $ $) 60)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-2682 (((-112) $) NIL)) (-3893 (((-525 |#2|) $) NIL) (((-758) $ |#2|) NIL) (((-631 (-758)) $ (-631 |#2|)) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-1299 (((-758) $) 20)) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 |#2|) (-525 |#2|)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (((-3 |#2| "failed") $) NIL)) (-2750 (($ $) NIL (|has| |#1| (-446)))) (-2385 (($ $) NIL (|has| |#1| (-446)))) (-2023 (((-631 $) $) NIL)) (-1785 (($ $) 37)) (-2278 (($ $) NIL (|has| |#1| (-446)))) (-1596 (((-631 $) $) 41)) (-3737 (($ $) 39)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $) 82)) (-2694 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 67) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-3386 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $) NIL) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |#2|) NIL)) (-3752 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2711 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1613 (((-1140) $) NIL)) (-2543 (($ $ $) 108 (|has| |#1| (-546)))) (-1839 (((-631 $) $) 30)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-758))) "failed") $) NIL)) (-3007 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-1536 (($ $ $) NIL)) (-3834 (($ $) 21)) (-2178 (((-112) $ $) NIL)) (-3518 (((-112) $ $) NIL) (((-112) $ (-631 $)) NIL)) (-3492 (($ $ $) NIL)) (-4133 (($ $) 23)) (-2768 (((-1102) $) NIL)) (-2695 (((-2 (|:| -2510 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-546)))) (-3446 (((-2 (|:| -2510 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-546)))) (-2492 (((-112) $) 52)) (-2505 ((|#1| $) 55)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 ((|#1| |#1| $) 116 (|has| |#1| (-446))) (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-2396 (((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-546)))) (-4343 (($ $ |#1|) 112 (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-3767 (($ $ |#1|) 111 (|has| |#1| (-546))) (($ $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-631 |#2|) (-631 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-631 |#2|) (-631 $)) NIL)) (-1495 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-1553 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-3308 (((-525 |#2|) $) NIL) (((-758) $ |#2|) 43) (((-631 (-758)) $ (-631 |#2|)) NIL)) (-1559 (($ $) NIL)) (-2013 (($ $) 33)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530))))) (($ (-937 (-402 (-554)))) NIL (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158))))) (($ (-937 (-554))) NIL (-3994 (-12 (|has| |#1| (-38 (-554))) (|has| |#2| (-602 (-1158))) (-4081 (|has| |#1| (-38 (-402 (-554)))))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#2| (-602 (-1158)))))) (($ (-937 |#1|)) NIL (|has| |#2| (-602 (-1158)))) (((-1140) $) NIL (-12 (|has| |#1| (-1023 (-554))) (|has| |#2| (-602 (-1158))))) (((-937 |#1|) $) NIL (|has| |#2| (-602 (-1158))))) (-3276 ((|#1| $) 115 (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-937 |#1|) $) NIL (|has| |#2| (-602 (-1158)))) (((-1107 |#1| |#2|) $) 15) (($ (-1107 |#1| |#2|)) 16) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 |#2|)) NIL) (($ $ |#2| (-758)) 44) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 13 T CONST)) (-2222 (((-3 (-112) "failed") $ $) NIL)) (-2014 (($) 35 T CONST)) (-2982 (($ $ $ $ (-758)) 88 (|has| |#1| (-546)))) (-3100 (($ $ $ (-758)) 87 (|has| |#1| (-546)))) (-1787 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 54)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 64)) (-1735 (($ $ $) 74)) (** (($ $ (-906)) NIL) (($ $ (-758)) 61)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 59) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-767 |#1| |#2|) (-13 (-1048 |#1| (-525 |#2|) |#2|) (-601 (-1107 |#1| |#2|)) (-1023 (-1107 |#1| |#2|))) (-1034) (-836)) (T -767)) +NIL +(-13 (-1048 |#1| (-525 |#2|) |#2|) (-601 (-1107 |#1| |#2|)) (-1023 (-1107 |#1| |#2|))) +((-2879 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 13))) +(((-768 |#1| |#2|) (-10 -7 (-15 -2879 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)))) (-1034) (-1034)) (T -768)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6))))) +(-10 -7 (-15 -2879 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 12)) (-2481 (((-1241 |#1|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#1|)) NIL)) (-2237 (((-1154 $) $ (-1064)) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2206 (((-631 $) $ $) 39 (|has| |#1| (-546)))) (-4286 (($ $ $) 35 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1470 (($ $ (-758)) NIL)) (-3867 (($ $ (-758)) NIL)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL) (((-3 (-1154 |#1|) "failed") $) 10)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1064) $) NIL) (((-1154 |#1|) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3639 (($ $ $) NIL)) (-2489 (($ $ $) 71 (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) 70 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-758) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ $) NIL (|has| |#1| (-546)))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) NIL) (($ (-1154 $) (-1064)) NIL)) (-3333 (($ $ (-758)) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-1761 (($ $ $) 20)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2964 (((-1154 |#1|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2776 (-758))) $ $) 26)) (-3842 (($ $ $) 29)) (-3858 (($ $ $) 32)) (-2694 (((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 31)) (-1613 (((-1140) $) NIL)) (-2543 (($ $ $) 41 (|has| |#1| (-546)))) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-2695 (((-2 (|:| -2510 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-546)))) (-3446 (((-2 (|:| -2510 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-546)))) (-3445 (((-2 (|:| -2999 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-546)))) (-3694 (((-2 (|:| -2999 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-546)))) (-2492 (((-112) $) 13)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2034 (($ $ (-758) |#1| $) 19)) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-2396 (((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-546)))) (-1425 (((-2 (|:| -2999 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-546)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#1|) NIL) (($ $ (-631 (-1064)) (-631 |#1|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3308 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-546)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-1064)) NIL) (((-1154 |#1|) $) 7) (($ (-1154 |#1|)) 8) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 21 T CONST)) (-2014 (($) 24 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) 28) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-769 |#1|) (-13 (-1217 |#1|) (-601 (-1154 |#1|)) (-1023 (-1154 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#1| $)) (-15 -1761 ($ $ $)) (-15 -1715 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2776 (-758))) $ $)) (-15 -3842 ($ $ $)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3858 ($ $ $)) (IF (|has| |#1| (-546)) (PROGN (-15 -2206 ((-631 $) $ $)) (-15 -2543 ($ $ $)) (-15 -2396 ((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3446 ((-2 (|:| -2510 $) (|:| |coef1| $)) $ $)) (-15 -2695 ((-2 (|:| -2510 $) (|:| |coef2| $)) $ $)) (-15 -1425 ((-2 (|:| -2999 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3694 ((-2 (|:| -2999 |#1|) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2999 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1034)) (T -769)) +((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-758)) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) (-1761 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) (-1715 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-769 *3)) (|:| |polden| *3) (|:| -2776 (-758)))) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) (-3842 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1490 *3) (|:| |gap| (-758)) (|:| -2325 (-769 *3)) (|:| -2423 (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) (-3858 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) (-2206 (*1 *2 *1 *1) (-12 (-5 *2 (-631 (-769 *3))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-546)) (-4 *2 (-1034)))) (-2396 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-3446 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-2695 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-1425 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-3694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) (-3445 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))) +(-13 (-1217 |#1|) (-601 (-1154 |#1|)) (-1023 (-1154 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#1| $)) (-15 -1761 ($ $ $)) (-15 -1715 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2776 (-758))) $ $)) (-15 -3842 ($ $ $)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -3858 ($ $ $)) (IF (|has| |#1| (-546)) (PROGN (-15 -2206 ((-631 $) $ $)) (-15 -2543 ($ $ $)) (-15 -2396 ((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3446 ((-2 (|:| -2510 $) (|:| |coef1| $)) $ $)) (-15 -2695 ((-2 (|:| -2510 $) (|:| |coef2| $)) $ $)) (-15 -1425 ((-2 (|:| -2999 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3694 ((-2 (|:| -2999 |#1|) (|:| |coef1| $)) $ $)) (-15 -3445 ((-2 (|:| -2999 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4258 ((|#1| (-758) |#1|) 32 (|has| |#1| (-38 (-402 (-554)))))) (-3506 ((|#1| (-758) |#1|) 22)) (-4114 ((|#1| (-758) |#1|) 34 (|has| |#1| (-38 (-402 (-554))))))) +(((-770 |#1|) (-10 -7 (-15 -3506 (|#1| (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -4114 (|#1| (-758) |#1|)) (-15 -4258 (|#1| (-758) |#1|))) |%noBranch|)) (-170)) (T -770)) +((-4258 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-170)))) (-4114 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-170)))) (-3506 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3506 (|#1| (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -4114 (|#1| (-758) |#1|)) (-15 -4258 (|#1| (-758) |#1|))) |%noBranch|)) +((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373))))) +(((-771 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -771)) +NIL +(-13 (-1054 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-2858 (((-3 (-374) "failed") (-311 |#1|) (-906)) 62 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-374) "failed") (-311 |#1|)) 54 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-374) "failed") (-402 (-937 |#1|)) (-906)) 41 (|has| |#1| (-546))) (((-3 (-374) "failed") (-402 (-937 |#1|))) 40 (|has| |#1| (-546))) (((-3 (-374) "failed") (-937 |#1|) (-906)) 31 (|has| |#1| (-1034))) (((-3 (-374) "failed") (-937 |#1|)) 30 (|has| |#1| (-1034)))) (-3666 (((-374) (-311 |#1|) (-906)) 99 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-374) (-311 |#1|)) 94 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-374) (-402 (-937 |#1|)) (-906)) 91 (|has| |#1| (-546))) (((-374) (-402 (-937 |#1|))) 90 (|has| |#1| (-546))) (((-374) (-937 |#1|) (-906)) 86 (|has| |#1| (-1034))) (((-374) (-937 |#1|)) 85 (|has| |#1| (-1034))) (((-374) |#1| (-906)) 76) (((-374) |#1|) 22)) (-2867 (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-906)) 71 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|))) 70 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-311 |#1|) (-906)) 63 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-311 |#1|)) 61 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))) (-906)) 46 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|)))) 45 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)) (-906)) 39 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-402 (-937 |#1|))) 38 (|has| |#1| (-546))) (((-3 (-167 (-374)) "failed") (-937 |#1|) (-906)) 28 (|has| |#1| (-1034))) (((-3 (-167 (-374)) "failed") (-937 |#1|)) 26 (|has| |#1| (-1034))) (((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)) (-906)) 18 (|has| |#1| (-170))) (((-3 (-167 (-374)) "failed") (-937 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-2202 (((-167 (-374)) (-311 (-167 |#1|)) (-906)) 102 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-311 (-167 |#1|))) 101 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-311 |#1|) (-906)) 100 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-311 |#1|)) 98 (-12 (|has| |#1| (-546)) (|has| |#1| (-836)))) (((-167 (-374)) (-402 (-937 (-167 |#1|))) (-906)) 93 (|has| |#1| (-546))) (((-167 (-374)) (-402 (-937 (-167 |#1|)))) 92 (|has| |#1| (-546))) (((-167 (-374)) (-402 (-937 |#1|)) (-906)) 89 (|has| |#1| (-546))) (((-167 (-374)) (-402 (-937 |#1|))) 88 (|has| |#1| (-546))) (((-167 (-374)) (-937 |#1|) (-906)) 84 (|has| |#1| (-1034))) (((-167 (-374)) (-937 |#1|)) 83 (|has| |#1| (-1034))) (((-167 (-374)) (-937 (-167 |#1|)) (-906)) 78 (|has| |#1| (-170))) (((-167 (-374)) (-937 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|) (-906)) 80 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-374)) |#1| (-906)) 27) (((-167 (-374)) |#1|) 25))) +(((-772 |#1|) (-10 -7 (-15 -3666 ((-374) |#1|)) (-15 -3666 ((-374) |#1| (-906))) (-15 -2202 ((-167 (-374)) |#1|)) (-15 -2202 ((-167 (-374)) |#1| (-906))) (IF (|has| |#1| (-170)) (PROGN (-15 -2202 ((-167 (-374)) (-167 |#1|))) (-15 -2202 ((-167 (-374)) (-167 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -3666 ((-374) (-937 |#1|))) (-15 -3666 ((-374) (-937 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 |#1|))) (-15 -2202 ((-167 (-374)) (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -3666 ((-374) (-402 (-937 |#1|)))) (-15 -3666 ((-374) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -3666 ((-374) (-311 |#1|))) (-15 -3666 ((-374) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 |#1|))) (-15 -2202 ((-167 (-374)) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-937 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-937 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)))) (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-311 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|)) (-602 (-374))) (T -772)) +((-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2858 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2867 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2867 (*1 *2 *3) (|partial| -12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-906)) (-4 *5 (-170)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) (-4 *3 (-602 (-374))))) (-2202 (*1 *2 *3) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) (-4 *3 (-602 (-374))))) (-3666 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-374)) (-5 *1 (-772 *3)) (-4 *3 (-602 *2)))) (-3666 (*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-772 *3)) (-4 *3 (-602 *2))))) +(-10 -7 (-15 -3666 ((-374) |#1|)) (-15 -3666 ((-374) |#1| (-906))) (-15 -2202 ((-167 (-374)) |#1|)) (-15 -2202 ((-167 (-374)) |#1| (-906))) (IF (|has| |#1| (-170)) (PROGN (-15 -2202 ((-167 (-374)) (-167 |#1|))) (-15 -2202 ((-167 (-374)) (-167 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -3666 ((-374) (-937 |#1|))) (-15 -3666 ((-374) (-937 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-937 |#1|))) (-15 -2202 ((-167 (-374)) (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -3666 ((-374) (-402 (-937 |#1|)))) (-15 -3666 ((-374) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)))) (-15 -2202 ((-167 (-374)) (-402 (-937 |#1|)) (-906))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))))) (-15 -2202 ((-167 (-374)) (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -3666 ((-374) (-311 |#1|))) (-15 -3666 ((-374) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 |#1|))) (-15 -2202 ((-167 (-374)) (-311 |#1|) (-906))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -2202 ((-167 (-374)) (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 (-167 |#1|)) (-906)))) |%noBranch|) (IF (|has| |#1| (-1034)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-937 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-937 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-937 |#1|) (-906)))) |%noBranch|) (IF (|has| |#1| (-546)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)))) (-15 -2858 ((-3 (-374) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 |#1|)) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-402 (-937 (-167 |#1|))) (-906))) (IF (|has| |#1| (-836)) (PROGN (-15 -2858 ((-3 (-374) "failed") (-311 |#1|))) (-15 -2858 ((-3 (-374) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-906))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -2867 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-906)))) |%noBranch|)) |%noBranch|)) +((-1432 (((-906) (-1140)) 65)) (-1520 (((-3 (-374) "failed") (-1140)) 33)) (-4115 (((-374) (-1140)) 31)) (-2567 (((-906) (-1140)) 54)) (-3214 (((-1140) (-906)) 55)) (-3513 (((-1140) (-906)) 53))) +(((-773) (-10 -7 (-15 -3513 ((-1140) (-906))) (-15 -2567 ((-906) (-1140))) (-15 -3214 ((-1140) (-906))) (-15 -1432 ((-906) (-1140))) (-15 -4115 ((-374) (-1140))) (-15 -1520 ((-3 (-374) "failed") (-1140))))) (T -773)) +((-1520 (*1 *2 *3) (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773))))) +(-10 -7 (-15 -3513 ((-1140) (-906))) (-15 -2567 ((-906) (-1140))) (-15 -3214 ((-1140) (-906))) (-15 -1432 ((-906) (-1140))) (-15 -4115 ((-374) (-1140))) (-15 -1520 ((-3 (-374) "failed") (-1140)))) +((-3062 (((-112) $ $) 7)) (-1734 (((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 15) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020)) 13)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-774) (-138)) (T -774)) +((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020)))))) (-1734 (*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1020)) (-5 *3 (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020)))))) (-1734 (*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1020)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) +(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1734 ((-1020) (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) (|:| |extra| (-1020))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1734 ((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1020))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-4285 (((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374))) 44) (((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 43)) (-3594 (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 50)) (-1389 (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 41)) (-3562 (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374))) 52) (((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))) 51))) +(((-775) (-10 -7 (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -1389 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -3594 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))))) (T -775)) +((-3594 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-4285 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-554)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374)))) (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-4285 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-554)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374)))) (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-1389 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-3562 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775)))) (-3562 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) (-5 *1 (-775))))) +(-10 -7 (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -3562 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -1389 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)))) (-15 -4285 ((-1246) (-1241 (-374)) (-554) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374))) (-374) (-1241 (-374)) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)) (-1241 (-374)))) (-15 -3594 ((-1246) (-1241 (-374)) (-554) (-374) (-374) (-554) (-1 (-1246) (-1241 (-374)) (-1241 (-374)) (-374))))) +((-3191 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 53)) (-1830 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 31)) (-4054 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 52)) (-1537 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 29)) (-4086 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 51)) (-1403 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)) 19)) (-1687 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554)) 32)) (-1798 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554)) 30)) (-3706 (((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554)) 28))) +(((-776) (-10 -7 (-15 -3706 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1798 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1687 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1403 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1537 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1830 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4086 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4054 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -3191 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))))) (T -776)) +((-3191 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-4054 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-4086 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1830 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1537 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1403 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1687 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-1798 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554)))) (-3706 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) (|:| |success| (-112)))) (-5 *1 (-776)) (-5 *5 (-554))))) +(-10 -7 (-15 -3706 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1798 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1687 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554) (-554))) (-15 -1403 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1537 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -1830 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4086 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -4054 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554))) (-15 -3191 ((-2 (|:| -2794 (-374)) (|:| -1841 (-374)) (|:| |totalpts| (-554)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-554) (-554)))) +((-2956 (((-1190 |#1|) |#1| (-221) (-554)) 46))) +(((-777 |#1|) (-10 -7 (-15 -2956 ((-1190 |#1|) |#1| (-221) (-554)))) (-959)) (T -777)) +((-2956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-221)) (-5 *5 (-554)) (-5 *2 (-1190 *3)) (-5 *1 (-777 *3)) (-4 *3 (-959))))) +(-10 -7 (-15 -2956 ((-1190 |#1|) |#1| (-221) (-554)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-2934 (((-3 $ "failed") $ $) 26)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1744 (($ $ $) 28) (($ $) 27)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25) (($ (-554) $) 29))) +(((-778) (-138)) (T -778)) +NIL +(-13 (-782) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-836) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25))) +(((-779) (-138)) (T -779)) +NIL +(-13 (-781) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-781) . T) ((-836) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-1349 (($ $ $) 27)) (-2934 (((-3 $ "failed") $ $) 26)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25))) +(((-780) (-138)) (T -780)) +((-1349 (*1 *1 *1 *1) (-4 *1 (-780)))) +(-13 (-782) (-10 -8 (-15 -1349 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-836) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21))) +(((-781) (-138)) (T -781)) +NIL +(-13 (-836) (-25)) +(((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-836) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-2934 (((-3 $ "failed") $ $) 26)) (-4087 (($) 23 T CONST)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1735 (($ $ $) 20)) (* (($ (-906) $) 21) (($ (-758) $) 25))) +(((-782) (-138)) (T -782)) +NIL +(-13 (-779) (-130)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-779) . T) ((-781) . T) ((-836) . T) ((-1082) . T)) +((-1695 (((-112) $) 41)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 42)) (-1623 (((-3 (-402 (-554)) "failed") $) 78)) (-2069 (((-112) $) 72)) (-2197 (((-402 (-554)) $) 76)) (-3274 ((|#2| $) 26)) (-2879 (($ (-1 |#2| |#2|) $) 23)) (-2483 (($ $) 61)) (-2927 (((-530) $) 67)) (-3992 (($ $) 21)) (-3075 (((-848) $) 56) (($ (-554)) 39) (($ |#2|) 37) (($ (-402 (-554))) NIL)) (-2261 (((-758)) 10)) (-1700 ((|#2| $) 71)) (-1658 (((-112) $ $) 29)) (-1676 (((-112) $ $) 69)) (-1744 (($ $) 31) (($ $ $) NIL)) (-1735 (($ $ $) 30)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-783 |#1| |#2|) (-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-784 |#2|) (-170)) (T -783)) +((-2261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-783 *3 *4)) (-4 *3 (-784 *4))))) +(-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-1508 (((-758)) 52 (|has| |#1| (-363)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 94 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 91 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 88)) (-1668 (((-554) $) 93 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 90 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 89)) (-1320 (((-3 $ "failed") $) 33)) (-2293 ((|#1| $) 78)) (-1623 (((-3 (-402 (-554)) "failed") $) 65 (|has| |#1| (-539)))) (-2069 (((-112) $) 67 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 66 (|has| |#1| (-539)))) (-3353 (($) 55 (|has| |#1| (-363)))) (-3248 (((-112) $) 31)) (-3420 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3274 ((|#1| $) 70)) (-4223 (($ $ $) 61 (|has| |#1| (-836)))) (-2706 (($ $ $) 60 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 80)) (-3830 (((-906) $) 54 (|has| |#1| (-363)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 64 (|has| |#1| (-358)))) (-2717 (($ (-906)) 53 (|has| |#1| (-363)))) (-2520 ((|#1| $) 75)) (-4303 ((|#1| $) 76)) (-2419 ((|#1| $) 77)) (-1743 ((|#1| $) 71)) (-1548 ((|#1| $) 72)) (-2099 ((|#1| $) 73)) (-3127 ((|#1| $) 74)) (-2768 (((-1102) $) 10)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 86 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 84 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 83 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 82 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 81 (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) 87 (|has| |#1| (-281 |#1| |#1|)))) (-2927 (((-530) $) 62 (|has| |#1| (-602 (-530))))) (-3992 (($ $) 79)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ (-402 (-554))) 92 (|has| |#1| (-1023 (-402 (-554)))))) (-2084 (((-3 $ "failed") $) 63 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1700 ((|#1| $) 68 (|has| |#1| (-1043)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 58 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 57 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 59 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 56 (|has| |#1| (-836)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-784 |#1|) (-138) (-170)) (T -784)) +((-3992 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-4303 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3420 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) +(-13 (-38 |t#1|) (-406 |t#1|) (-333 |t#1|) (-10 -8 (-15 -3992 ($ $)) (-15 -2293 (|t#1| $)) (-15 -2419 (|t#1| $)) (-15 -4303 (|t#1| $)) (-15 -2520 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -2099 (|t#1| $)) (-15 -1548 (|t#1| $)) (-15 -1743 (|t#1| $)) (-15 -3274 (|t#1| $)) (-15 -3420 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -1700 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -2483 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-363) |has| |#1| (-363)) ((-333 |#1|) . T) ((-406 |#1|) . T) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) . T) ((-713) . T) ((-836) |has| |#1| (-836)) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2879 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) (-784 |#2|) (-170) (-784 |#4|) (-170)) (T -785)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-784 *6)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *4 (-784 *5))))) +(-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-984 |#1|) "failed") $) 35) (((-3 (-554) "failed") $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-554))) (|has| |#1| (-1023 (-554))))) (((-3 (-402 (-554)) "failed") $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1668 ((|#1| $) NIL) (((-984 |#1|) $) 33) (((-554) $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-554))) (|has| |#1| (-1023 (-554))))) (((-402 (-554)) $) NIL (-3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1320 (((-3 $ "failed") $) NIL)) (-2293 ((|#1| $) 16)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-539)))) (-2069 (((-112) $) NIL (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| |#1| (-539)))) (-3353 (($) NIL (|has| |#1| (-363)))) (-3248 (((-112) $) NIL)) (-3420 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-984 |#1|) (-984 |#1|)) 29)) (-3274 ((|#1| $) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2520 ((|#1| $) 22)) (-4303 ((|#1| $) 20)) (-2419 ((|#1| $) 18)) (-1743 ((|#1| $) 26)) (-1548 ((|#1| $) 25)) (-2099 ((|#1| $) 24)) (-3127 ((|#1| $) 23)) (-2768 (((-1102) $) NIL)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3992 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-984 |#1|)) 30) (($ (-402 (-554))) NIL (-3994 (|has| (-984 |#1|) (-1023 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1700 ((|#1| $) NIL (|has| |#1| (-1043)))) (-2004 (($) 8 T CONST)) (-2014 (($) 12 T CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-786 |#1|) (-13 (-784 |#1|) (-406 (-984 |#1|)) (-10 -8 (-15 -3420 ($ (-984 |#1|) (-984 |#1|))))) (-170)) (T -786)) +((-3420 (*1 *1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-170)) (-5 *1 (-786 *3))))) +(-13 (-784 |#1|) (-406 (-984 |#1|)) (-10 -8 (-15 -3420 ($ (-984 |#1|) (-984 |#1|))))) +((-3062 (((-112) $ $) 7)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2821 (((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13)) (-1658 (((-112) $ $) 6))) +(((-787) (-138)) (T -787)) +((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-2821 (*1 *2 *3) (-12 (-4 *1 (-787)) (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1020))))) +(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2821 ((-1020) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2914 (((-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#3| |#2| (-1158)) 19))) +(((-788 |#1| |#2| |#3|) (-10 -7 (-15 -2914 ((-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#3| |#2| (-1158)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944)) (-642 |#2|)) (T -788)) +((-2914 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1158)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-4 *4 (-13 (-29 *6) (-1180) (-944))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4)))) (-5 *1 (-788 *6 *4 *3)) (-4 *3 (-642 *4))))) +(-10 -7 (-15 -2914 ((-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#3| |#2| (-1158)))) +((-1900 (((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-631 |#2|)) 28) (((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") |#2| (-114) (-1158)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1158)) 18) (((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 |#2|) (-631 (-114)) (-1158)) 24) (((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 (-289 |#2|)) (-631 (-114)) (-1158)) 26) (((-3 (-631 (-1241 |#2|)) "failed") (-675 |#2|) (-1158)) 37) (((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-675 |#2|) (-1241 |#2|) (-1158)) 35))) +(((-789 |#1| |#2|) (-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-675 |#2|) (-1241 |#2|) (-1158))) (-15 -1900 ((-3 (-631 (-1241 |#2|)) "failed") (-675 |#2|) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 (-289 |#2|)) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 |#2|) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") |#2| (-114) (-1158))) (-15 -1900 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -1900 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-631 |#2|)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944))) (T -789)) +((-1900 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-631 *2)) (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-789 *6 *2)))) (-1900 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-631 *2)) (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-5 *1 (-789 *6 *2)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))))) (-1900 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1158)) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3782 (-631 *3))) *3 "failed")) (-5 *1 (-789 *6 *3)) (-4 *3 (-13 (-29 *6) (-1180) (-944))))) (-1900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3782 (-631 *7))) *7 "failed")) (-5 *1 (-789 *6 *7)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) (-5 *1 (-789 *6 *7)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) (-5 *1 (-789 *6 *7)))) (-1900 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-675 *6)) (-5 *4 (-1158)) (-4 *6 (-13 (-29 *5) (-1180) (-944))) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-1241 *6))) (-5 *1 (-789 *5 *6)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-675 *7)) (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1241 *7))))) +(-10 -7 (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-675 |#2|) (-1241 |#2|) (-1158))) (-15 -1900 ((-3 (-631 (-1241 |#2|)) "failed") (-675 |#2|) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 (-289 |#2|)) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#2|)) (|:| -3782 (-631 (-1241 |#2|)))) "failed") (-631 |#2|) (-631 (-114)) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1158))) (-15 -1900 ((-3 (-2 (|:| |particular| |#2|) (|:| -3782 (-631 |#2|))) |#2| "failed") |#2| (-114) (-1158))) (-15 -1900 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-631 |#2|))) (-15 -1900 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-631 |#2|)))) +((-2098 (($) 9)) (-2946 (((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 31)) (-2944 (((-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 28)) (-2045 (($ (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) 25)) (-1437 (($ (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) 23)) (-1891 (((-1246)) 12))) +(((-790) (-10 -8 (-15 -2098 ($)) (-15 -1891 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -1437 ($ (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -2946 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -790)) +((-2946 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *1 (-790)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) (-5 *1 (-790)))) (-1437 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-5 *1 (-790)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-790)))) (-1891 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-790)))) (-2098 (*1 *1) (-5 *1 (-790)))) +(-10 -8 (-15 -2098 ($)) (-15 -1891 ((-1246))) (-15 -2944 ((-631 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -1437 ($ (-631 (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -2045 ($ (-2 (|:| -2564 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2701 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -2946 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-1664 ((|#2| |#2| (-1158)) 16)) (-1777 ((|#2| |#2| (-1158)) 51)) (-1523 (((-1 |#2| |#2|) (-1158)) 11))) +(((-791 |#1| |#2|) (-10 -7 (-15 -1664 (|#2| |#2| (-1158))) (-15 -1777 (|#2| |#2| (-1158))) (-15 -1523 ((-1 |#2| |#2|) (-1158)))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145)) (-13 (-29 |#1|) (-1180) (-944))) (T -791)) +((-1523 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-791 *4 *5)) (-4 *5 (-13 (-29 *4) (-1180) (-944))))) (-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944))))) (-1664 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944)))))) +(-10 -7 (-15 -1664 (|#2| |#2| (-1158))) (-15 -1777 (|#2| |#2| (-1158))) (-15 -1523 ((-1 |#2| |#2|) (-1158)))) +((-1900 (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374) (-374)) 116) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374)) 117) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-631 (-374)) (-374)) 119) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-374)) 120) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-374)) 121) (((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374))) 122) (((-1020) (-795) (-1046)) 108) (((-1020) (-795)) 109)) (-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795) (-1046)) 75) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795)) 77))) +(((-792) (-10 -7 (-15 -1900 ((-1020) (-795))) (-15 -1900 ((-1020) (-795) (-1046))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374) (-374))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795) (-1046))))) (T -792)) +((-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-792)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-792)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-1020)) (-5 *1 (-792))))) +(-10 -7 (-15 -1900 ((-1020) (-795))) (-15 -1900 ((-1020) (-795) (-1046))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374))) (-15 -1900 ((-1020) (-1241 (-311 (-374))) (-374) (-374) (-631 (-374)) (-311 (-374)) (-631 (-374)) (-374) (-374))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-795) (-1046)))) +((-1739 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3782 (-631 |#4|))) (-639 |#4|) |#4|) 35))) +(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1739 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3782 (-631 |#4|))) (-639 |#4|) |#4|))) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -793)) +((-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *4)) (-4 *4 (-337 *5 *6 *7)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-793 *5 *6 *7 *4))))) +(-10 -7 (-15 -1739 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3782 (-631 |#4|))) (-639 |#4|) |#4|))) +((-2037 (((-2 (|:| -4329 |#3|) (|:| |rh| (-631 (-402 |#2|)))) |#4| (-631 (-402 |#2|))) 52)) (-3113 (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4| |#2|) 60) (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4|) 59) (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3| |#2|) 20) (((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3|) 21)) (-3749 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2646 ((|#2| |#3| (-631 (-402 |#2|))) 93) (((-3 |#2| "failed") |#3| (-402 |#2|)) 90))) +(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2646 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2646 (|#2| |#3| (-631 (-402 |#2|)))) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3| |#2|)) (-15 -3749 (|#2| |#3| |#1|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4| |#2|)) (-15 -3749 (|#2| |#4| |#1|)) (-15 -2037 ((-2 (|:| -4329 |#3|) (|:| |rh| (-631 (-402 |#2|)))) |#4| (-631 (-402 |#2|))))) (-13 (-358) (-145) (-1023 (-402 (-554)))) (-1217 |#1|) (-642 |#2|) (-642 (-402 |#2|))) (T -794)) +((-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-2 (|:| -4329 *7) (|:| |rh| (-631 (-402 *6))))) (-5 *1 (-794 *5 *6 *7 *3)) (-5 *4 (-631 (-402 *6))) (-4 *7 (-642 *6)) (-4 *3 (-642 (-402 *6))))) (-3749 (*1 *2 *3 *4) (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *5 *3)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-642 *2)) (-4 *3 (-642 (-402 *2))))) (-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4)))) (-5 *1 (-794 *5 *4 *6 *3)) (-4 *6 (-642 *4)) (-4 *3 (-642 (-402 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5)))) (-5 *1 (-794 *4 *5 *6 *3)) (-4 *6 (-642 *5)) (-4 *3 (-642 (-402 *5))))) (-3749 (*1 *2 *3 *4) (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *5 (-642 (-402 *2))))) (-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4)))) (-5 *1 (-794 *5 *4 *3 *6)) (-4 *3 (-642 *4)) (-4 *6 (-642 (-402 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5)))) (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-642 (-402 *5))))) (-2646 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-402 *2))) (-4 *2 (-1217 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *6 (-642 (-402 *2))))) (-2646 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1217 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *6 (-642 *4))))) +(-10 -7 (-15 -2646 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2646 (|#2| |#3| (-631 (-402 |#2|)))) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#3| |#2|)) (-15 -3749 (|#2| |#3| |#1|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4|)) (-15 -3113 ((-631 (-2 (|:| -1608 |#2|) (|:| -1401 |#2|))) |#4| |#2|)) (-15 -3749 (|#2| |#4| |#1|)) (-15 -2037 ((-2 (|:| -4329 |#3|) (|:| |rh| (-631 (-402 |#2|)))) |#4| (-631 (-402 |#2|))))) +((-3062 (((-112) $ $) NIL)) (-1668 (((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 15) (($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 12)) (-1658 (((-112) $ $) NIL))) +(((-795) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1668 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))) (T -795)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-795)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-795))))) +(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1668 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $)))) +((-4107 (((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 |#3|))) |#3| (-1 (-631 |#2|) |#2| (-1154 |#2|)) (-1 (-413 |#2|) |#2|)) 118)) (-3055 (((-631 (-2 (|:| |poly| |#2|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|)) 46)) (-1353 (((-631 (-2 (|:| |deg| (-758)) (|:| -4329 |#2|))) |#3|) 95)) (-3750 ((|#2| |#3|) 37)) (-1789 (((-631 (-2 (|:| -2397 |#1|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|)) 82)) (-3566 ((|#3| |#3| (-402 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3750 (|#2| |#3|)) (-15 -1353 ((-631 (-2 (|:| |deg| (-758)) (|:| -4329 |#2|))) |#3|)) (-15 -1789 ((-631 (-2 (|:| -2397 |#1|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 |#3|))) |#3| (-1 (-631 |#2|) |#2| (-1154 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3566 (|#3| |#3| |#2|)) (-15 -3566 (|#3| |#3| (-402 |#2|)))) (-13 (-358) (-145) (-1023 (-402 (-554)))) (-1217 |#1|) (-642 |#2|) (-642 (-402 |#2|))) (T -796)) +((-3566 (*1 *2 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *2 (-642 *5)) (-4 *6 (-642 *3)))) (-3566 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-1217 *4)) (-5 *1 (-796 *4 *3 *2 *5)) (-4 *2 (-642 *3)) (-4 *5 (-642 (-402 *3))))) (-4107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-631 *7) *7 (-1154 *7))) (-5 *5 (-1 (-413 *7) *7)) (-4 *7 (-1217 *6)) (-4 *6 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-5 *2 (-631 (-2 (|:| |frac| (-402 *7)) (|:| -4329 *3)))) (-5 *1 (-796 *6 *7 *3 *8)) (-4 *3 (-642 *7)) (-4 *8 (-642 (-402 *7))))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6)) (-4 *7 (-642 (-402 *6))))) (-1789 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -2397 *5) (|:| -4329 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6)) (-4 *7 (-642 (-402 *6))))) (-1353 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -4329 *5)))) (-5 *1 (-796 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-642 (-402 *5))))) (-3750 (*1 *2 *3) (-12 (-4 *2 (-1217 *4)) (-5 *1 (-796 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) (-4 *5 (-642 (-402 *2)))))) +(-10 -7 (-15 -3750 (|#2| |#3|)) (-15 -1353 ((-631 (-2 (|:| |deg| (-758)) (|:| -4329 |#2|))) |#3|)) (-15 -1789 ((-631 (-2 (|:| -2397 |#1|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 |#3|))) |#3| (-1 (-631 |#1|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 |#3|))) |#3| (-1 (-631 |#2|) |#2| (-1154 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3566 (|#3| |#3| |#2|)) (-15 -3566 (|#3| |#3| (-402 |#2|)))) +((-1804 (((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-640 |#2| (-402 |#2|)) (-631 (-402 |#2|))) 121) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-640 |#2| (-402 |#2|)) (-402 |#2|)) 120) (((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-639 (-402 |#2|)) (-631 (-402 |#2|))) 115) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-639 (-402 |#2|)) (-402 |#2|)) 113)) (-3937 ((|#2| (-640 |#2| (-402 |#2|))) 80) ((|#2| (-639 (-402 |#2|))) 83))) +(((-797 |#1| |#2|) (-10 -7 (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-639 (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-639 (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-640 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-640 |#2| (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -3937 (|#2| (-639 (-402 |#2|)))) (-15 -3937 (|#2| (-640 |#2| (-402 |#2|))))) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -797)) +((-3937 (*1 *2 *3) (-12 (-5 *3 (-640 *2 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-639 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-797 *5 *6)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6))))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-797 *5 *6))))) +(-10 -7 (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-639 (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-639 (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -1804 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -3782 (-631 (-402 |#2|)))) (-640 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -1804 ((-2 (|:| -3782 (-631 (-402 |#2|))) (|:| -2866 (-675 |#1|))) (-640 |#2| (-402 |#2|)) (-631 (-402 |#2|)))) (-15 -3937 (|#2| (-639 (-402 |#2|)))) (-15 -3937 (|#2| (-640 |#2| (-402 |#2|))))) +((-1720 (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) |#5| |#4|) 48))) +(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1720 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) |#5| |#4|))) (-358) (-642 |#1|) (-1217 |#1|) (-711 |#1| |#3|) (-642 |#4|)) (T -798)) +((-1720 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *7 (-1217 *5)) (-4 *4 (-711 *5 *7)) (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5)))) (-5 *1 (-798 *5 *6 *7 *4 *3)) (-4 *6 (-642 *5)) (-4 *3 (-642 *4))))) +(-10 -7 (-15 -1720 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) |#5| |#4|))) +((-4107 (((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 47)) (-3405 (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|))) 138 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-639 (-402 |#2|))) 140 (|has| |#1| (-27))) (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 38) (((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 39) (((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 36) (((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 37)) (-3055 (((-631 (-2 (|:| |poly| |#2|) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|)) 83))) +(((-799 |#1| |#2|) (-10 -7 (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|)) (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))) (-1217 |#1|)) (T -799)) +((-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-640 *5 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-639 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 (-640 *6 (-402 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6))))) (-4107 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-5 *2 (-631 (-2 (|:| |frac| (-402 *6)) (|:| -4329 (-640 *6 (-402 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6))))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *7 (-402 *7))) (-5 *4 (-1 (-631 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) (-3405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-402 *7))) (-5 *4 (-1 (-631 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-631 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6))))) +(-10 -7 (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -4107 ((-631 (-2 (|:| |frac| (-402 |#2|)) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3055 ((-631 (-2 (|:| |poly| |#2|) (|:| -4329 (-640 |#2| (-402 |#2|))))) (-640 |#2| (-402 |#2|)) (-1 (-631 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-639 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)))) (-15 -3405 ((-631 (-402 |#2|)) (-640 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|)) +((-1498 (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) (-675 |#2|) (-1241 |#1|)) 85) (((-2 (|:| A (-675 |#1|)) (|:| |eqs| (-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)) (|:| -4329 |#2|) (|:| |rh| |#1|))))) (-675 |#1|) (-1241 |#1|)) 15)) (-2184 (((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#2|) (-1241 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3782 (-631 |#1|))) |#2| |#1|)) 92)) (-1900 (((-3 (-2 (|:| |particular| (-1241 |#1|)) (|:| -3782 (-675 |#1|))) "failed") (-675 |#1|) (-1241 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed") |#2| |#1|)) 43))) +(((-800 |#1| |#2|) (-10 -7 (-15 -1498 ((-2 (|:| A (-675 |#1|)) (|:| |eqs| (-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)) (|:| -4329 |#2|) (|:| |rh| |#1|))))) (-675 |#1|) (-1241 |#1|))) (-15 -1498 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) (-675 |#2|) (-1241 |#1|))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#1|)) (|:| -3782 (-675 |#1|))) "failed") (-675 |#1|) (-1241 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed") |#2| |#1|))) (-15 -2184 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#2|) (-1241 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3782 (-631 |#1|))) |#2| |#1|)))) (-358) (-642 |#1|)) (T -800)) +((-2184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3782 (-631 *6))) *7 *6)) (-4 *6 (-358)) (-4 *7 (-642 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1241 *6) "failed")) (|:| -3782 (-631 (-1241 *6))))) (-5 *1 (-800 *6 *7)) (-5 *4 (-1241 *6)))) (-1900 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3782 (-631 *6))) "failed") *7 *6)) (-4 *6 (-358)) (-4 *7 (-642 *6)) (-5 *2 (-2 (|:| |particular| (-1241 *6)) (|:| -3782 (-675 *6)))) (-5 *1 (-800 *6 *7)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *6)))) (-1498 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-642 *5)) (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5)))) (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *5)))) (-1498 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| A (-675 *5)) (|:| |eqs| (-631 (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5)) (|:| -4329 *6) (|:| |rh| *5)))))) (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *6 (-642 *5))))) +(-10 -7 (-15 -1498 ((-2 (|:| A (-675 |#1|)) (|:| |eqs| (-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)) (|:| -4329 |#2|) (|:| |rh| |#1|))))) (-675 |#1|) (-1241 |#1|))) (-15 -1498 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#1|))) (-675 |#2|) (-1241 |#1|))) (-15 -1900 ((-3 (-2 (|:| |particular| (-1241 |#1|)) (|:| -3782 (-675 |#1|))) "failed") (-675 |#1|) (-1241 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3782 (-631 |#1|))) "failed") |#2| |#1|))) (-15 -2184 ((-2 (|:| |particular| (-3 (-1241 |#1|) "failed")) (|:| -3782 (-631 (-1241 |#1|)))) (-675 |#2|) (-1241 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3782 (-631 |#1|))) |#2| |#1|)))) +((-2782 (((-675 |#1|) (-631 |#1|) (-758)) 13) (((-675 |#1|) (-631 |#1|)) 14)) (-3429 (((-3 (-1241 |#1|) "failed") |#2| |#1| (-631 |#1|)) 34)) (-1865 (((-3 |#1| "failed") |#2| |#1| (-631 |#1|) (-1 |#1| |#1|)) 42))) +(((-801 |#1| |#2|) (-10 -7 (-15 -2782 ((-675 |#1|) (-631 |#1|))) (-15 -2782 ((-675 |#1|) (-631 |#1|) (-758))) (-15 -3429 ((-3 (-1241 |#1|) "failed") |#2| |#1| (-631 |#1|))) (-15 -1865 ((-3 |#1| "failed") |#2| |#1| (-631 |#1|) (-1 |#1| |#1|)))) (-358) (-642 |#1|)) (T -801)) +((-1865 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-631 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) (-5 *1 (-801 *2 *3)) (-4 *3 (-642 *2)))) (-3429 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-1241 *4)) (-5 *1 (-801 *4 *3)) (-4 *3 (-642 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-358)) (-5 *2 (-675 *5)) (-5 *1 (-801 *5 *6)) (-4 *6 (-642 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-675 *4)) (-5 *1 (-801 *4 *5)) (-4 *5 (-642 *4))))) +(-10 -7 (-15 -2782 ((-675 |#1|) (-631 |#1|))) (-15 -2782 ((-675 |#1|) (-631 |#1|) (-758))) (-15 -3429 ((-3 (-1241 |#1|) "failed") |#2| |#1| (-631 |#1|))) (-15 -1865 ((-3 |#1| "failed") |#2| |#1| (-631 |#1|) (-1 |#1| |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1695 (((-112) $) NIL (|has| |#2| (-130)))) (-2327 (($ (-906)) NIL (|has| |#2| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#2| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#2| (-363)))) (-4219 (((-554) $) NIL (|has| |#2| (-834)))) (-1501 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) ((|#2| $) NIL (|has| |#2| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#2| (-1034)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#2| (-1034))) (((-675 |#2|) (-675 $)) NIL (|has| |#2| (-1034)))) (-1320 (((-3 $ "failed") $) NIL (|has| |#2| (-713)))) (-3353 (($) NIL (|has| |#2| (-363)))) (-2862 ((|#2| $ (-554) |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ (-554)) NIL)) (-2745 (((-112) $) NIL (|has| |#2| (-834)))) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#2| (-713)))) (-4304 (((-112) $) NIL (|has| |#2| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#2| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#2| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#2| (-363)))) (-2768 (((-1102) $) NIL (|has| |#2| (-1082)))) (-1539 ((|#2| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) |#2|) NIL) ((|#2| $ (-554)) NIL)) (-3748 ((|#2| $ $) NIL (|has| |#2| (-1034)))) (-2313 (($ (-1241 |#2|)) NIL)) (-3330 (((-133)) NIL (|has| |#2| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#2|) $) NIL) (($ (-554)) NIL (-3994 (-12 (|has| |#2| (-1023 (-554))) (|has| |#2| (-1082))) (|has| |#2| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#2| (-1023 (-402 (-554)))) (|has| |#2| (-1082)))) (($ |#2|) NIL (|has| |#2| (-1082))) (((-848) $) NIL (|has| |#2| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#2| (-1034)))) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#2| (-834)))) (-2004 (($) NIL (|has| |#2| (-130)) CONST)) (-2014 (($) NIL (|has| |#2| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#2| (-885 (-1158))) (|has| |#2| (-1034)))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#2| (-1034))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1658 (((-112) $ $) NIL (|has| |#2| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1676 (((-112) $ $) 11 (-3994 (|has| |#2| (-780)) (|has| |#2| (-834))))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $ $) NIL (|has| |#2| (-1034))) (($ $) NIL (|has| |#2| (-1034)))) (-1735 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-758)) NIL (|has| |#2| (-713))) (($ $ (-906)) NIL (|has| |#2| (-713)))) (* (($ (-554) $) NIL (|has| |#2| (-1034))) (($ $ $) NIL (|has| |#2| (-713))) (($ $ |#2|) NIL (|has| |#2| (-713))) (($ |#2| $) NIL (|has| |#2| (-713))) (($ (-758) $) NIL (|has| |#2| (-130))) (($ (-906) $) NIL (|has| |#2| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-802 |#1| |#2| |#3|) (-234 |#1| |#2|) (-758) (-780) (-1 (-112) (-1241 |#2|) (-1241 |#2|))) (T -802)) +NIL +(-234 |#1| |#2|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1386 (((-631 (-758)) $) NIL) (((-631 (-758)) $ (-1158)) NIL)) (-1316 (((-758) $) NIL) (((-758) $ (-1158)) NIL)) (-2405 (((-631 (-805 (-1158))) $) NIL)) (-2237 (((-1154 $) $ (-805 (-1158))) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-805 (-1158)))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-1698 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-805 (-1158)) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL) (((-3 (-1107 |#1| (-1158)) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-805 (-1158)) $) NIL) (((-1158) $) NIL) (((-1107 |#1| (-1158)) $) NIL)) (-2999 (($ $ $ (-805 (-1158))) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-805 (-1158))) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 (-805 (-1158))) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-805 (-1158)) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-805 (-1158)) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ (-1158)) NIL) (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) (-805 (-1158))) NIL) (($ (-1154 $) (-805 (-1158))) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-805 (-1158))) NIL)) (-3893 (((-525 (-805 (-1158))) $) NIL) (((-758) $ (-805 (-1158))) NIL) (((-631 (-758)) $ (-631 (-805 (-1158)))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 (-805 (-1158))) (-525 (-805 (-1158)))) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3179 (((-1 $ (-758)) (-1158)) NIL) (((-1 $ (-758)) $) NIL (|has| |#1| (-229)))) (-3277 (((-3 (-805 (-1158)) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1897 (((-805 (-1158)) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2081 (((-112) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-805 (-1158))) (|:| -1407 (-758))) "failed") $) NIL)) (-1502 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-805 (-1158)) |#1|) NIL) (($ $ (-631 (-805 (-1158))) (-631 |#1|)) NIL) (($ $ (-805 (-1158)) $) NIL) (($ $ (-631 (-805 (-1158))) (-631 $)) NIL) (($ $ (-1158) $) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 $)) NIL (|has| |#1| (-229))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-229)))) (-1495 (($ $ (-805 (-1158))) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-805 (-1158))) NIL) (($ $ (-631 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3922 (((-631 (-1158)) $) NIL)) (-3308 (((-525 (-805 (-1158))) $) NIL) (((-758) $ (-805 (-1158))) NIL) (((-631 (-758)) $ (-631 (-805 (-1158)))) NIL) (((-758) $ (-1158)) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-805 (-1158)) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-805 (-1158)) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-805 (-1158)) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-805 (-1158))) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-805 (-1158))) NIL) (($ (-1158)) NIL) (($ (-1107 |#1| (-1158))) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-805 (-1158))) NIL) (($ $ (-631 (-805 (-1158)))) NIL) (($ $ (-805 (-1158)) (-758)) NIL) (($ $ (-631 (-805 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-803 |#1|) (-13 (-248 |#1| (-1158) (-805 (-1158)) (-525 (-805 (-1158)))) (-1023 (-1107 |#1| (-1158)))) (-1034)) (T -803)) +NIL +(-13 (-248 |#1| (-1158) (-805 (-1158)) (-525 (-805 (-1158)))) (-1023 (-1107 |#1| (-1158)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-358)))) (-1976 (($ $) NIL (|has| |#2| (-358)))) (-1363 (((-112) $) NIL (|has| |#2| (-358)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#2| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2286 (((-112) $ $) NIL (|has| |#2| (-358)))) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL (|has| |#2| (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#2| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#2| (-358)))) (-3289 (((-112) $) NIL (|has| |#2| (-358)))) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-2475 (($ (-631 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 20 (|has| |#2| (-358)))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-2072 (((-758) $) NIL (|has| |#2| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-1553 (($ $ (-758)) NIL) (($ $) 13)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-402 (-554))) NIL (|has| |#2| (-358))) (($ $) NIL (|has| |#2| (-358)))) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) 15 (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL) (($ $ (-554)) 18 (|has| |#2| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-402 (-554)) $) NIL (|has| |#2| (-358))) (($ $ (-402 (-554))) NIL (|has| |#2| (-358))))) +(((-804 |#1| |#2| |#3|) (-13 (-111 $ $) (-229) (-484 |#2|) (-10 -7 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|))) (-1082) (-885 |#1|) |#1|) (T -804)) +NIL +(-13 (-111 $ $) (-229) (-484 |#2|) (-10 -7 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1316 (((-758) $) NIL)) (-1576 ((|#1| $) 10)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-2342 (((-758) $) 11)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3179 (($ |#1| (-758)) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1553 (($ $) NIL) (($ $ (-758)) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL))) +(((-805 |#1|) (-261 |#1|) (-836)) (T -805)) +NIL +(-261 |#1|) +((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) 29)) (-1508 (((-758) $) NIL)) (-4087 (($) NIL T CONST)) (-3567 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-1551 (($ $) 31)) (-1320 (((-3 $ "failed") $) NIL)) (-4146 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3248 (((-112) $) NIL)) (-3195 ((|#1| $ (-554)) NIL)) (-2370 (((-758) $ (-554)) NIL)) (-3898 (($ $) 36)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3637 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2082 (((-112) $ $) 34)) (-2577 (((-758) $) 25)) (-1613 (((-1140) $) NIL)) (-1919 (($ $ $) NIL)) (-2129 (($ $ $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 ((|#1| $) 30)) (-2316 (((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $) NIL)) (-3931 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-2014 (($) 15 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 35)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ |#1| (-758)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-806 |#1|) (-13 (-832) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -1539 (|#1| $)) (-15 -1551 ($ $)) (-15 -3898 ($ $)) (-15 -2082 ((-112) $ $)) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -3637 ((-3 $ "failed") $ |#1|)) (-15 -3567 ((-3 $ "failed") $ |#1|)) (-15 -3931 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2577 ((-758) $)) (-15 -1654 ((-631 |#1|) $)))) (-836)) (T -806)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-1539 (*1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-2082 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-2129 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-1919 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3637 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3567 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3637 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3567 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-3931 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |rm| (-806 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-4146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |mm| (-806 *3)) (|:| |rm| (-806 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-806 *4)) (-4 *4 (-836)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-806 *2)) (-4 *2 (-836)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758))))) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-806 *3)) (-4 *3 (-836))))) +(-13 (-832) (-1023 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-758))) (-15 -1539 (|#1| $)) (-15 -1551 ($ $)) (-15 -3898 ($ $)) (-15 -2082 ((-112) $ $)) (-15 -2129 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -3637 ((-3 $ "failed") $ $)) (-15 -3567 ((-3 $ "failed") $ $)) (-15 -3637 ((-3 $ "failed") $ |#1|)) (-15 -3567 ((-3 $ "failed") $ |#1|)) (-15 -3931 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4146 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1508 ((-758) $)) (-15 -2370 ((-758) $ (-554))) (-15 -3195 (|#1| $ (-554))) (-15 -2316 ((-631 (-2 (|:| |gen| |#1|) (|:| -1333 (-758)))) $)) (-15 -2577 ((-758) $)) (-15 -1654 ((-631 |#1|) $)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4219 (((-554) $) 54)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-2745 (((-112) $) 52)) (-3248 (((-112) $) 31)) (-4304 (((-112) $) 53)) (-4223 (($ $ $) 51)) (-2706 (($ $ $) 50)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 55)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 48)) (-1686 (((-112) $ $) 47)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 49)) (-1676 (((-112) $ $) 46)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-807) (-138)) (T -807)) +NIL +(-13 (-546) (-834)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-4038 (($ (-1102)) 7)) (-3129 (((-112) $ (-1140) (-1102)) 15)) (-4151 (((-809) $) 12)) (-3099 (((-809) $) 11)) (-3912 (((-1246) $) 9)) (-2061 (((-112) $ (-1102)) 16))) +(((-808) (-10 -8 (-15 -4038 ($ (-1102))) (-15 -3912 ((-1246) $)) (-15 -3099 ((-809) $)) (-15 -4151 ((-809) $)) (-15 -3129 ((-112) $ (-1140) (-1102))) (-15 -2061 ((-112) $ (-1102))))) (T -808)) +((-2061 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-808)))) (-3129 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-808)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-808)))) (-4038 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-808))))) +(-10 -8 (-15 -4038 ($ (-1102))) (-15 -3912 ((-1246) $)) (-15 -3099 ((-809) $)) (-15 -4151 ((-809) $)) (-15 -3129 ((-112) $ (-1140) (-1102))) (-15 -2061 ((-112) $ (-1102)))) +((-2290 (((-1246) $ (-810)) 12)) (-3559 (((-1246) $ (-1158)) 32)) (-2806 (((-1246) $ (-1140) (-1140)) 34)) (-3426 (((-1246) $ (-1140)) 33)) (-3255 (((-1246) $) 19)) (-2836 (((-1246) $ (-554)) 28)) (-2739 (((-1246) $ (-221)) 30)) (-1293 (((-1246) $) 18)) (-3033 (((-1246) $) 26)) (-4147 (((-1246) $) 25)) (-2188 (((-1246) $) 23)) (-2499 (((-1246) $) 24)) (-1746 (((-1246) $) 22)) (-3453 (((-1246) $) 21)) (-2992 (((-1246) $) 20)) (-1748 (((-1246) $) 16)) (-1603 (((-1246) $) 17)) (-3550 (((-1246) $) 15)) (-2974 (((-1246) $) 14)) (-4161 (((-1246) $) 13)) (-1863 (($ (-1140) (-810)) 9)) (-3370 (($ (-1140) (-1140) (-810)) 8)) (-3064 (((-1158) $) 51)) (-2823 (((-1158) $) 55)) (-2575 (((-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))) $) 54)) (-1641 (((-1140) $) 52)) (-3065 (((-1246) $) 41)) (-2783 (((-554) $) 49)) (-2467 (((-221) $) 50)) (-2368 (((-1246) $) 40)) (-2231 (((-1246) $) 48)) (-2772 (((-1246) $) 47)) (-4325 (((-1246) $) 45)) (-3413 (((-1246) $) 46)) (-4171 (((-1246) $) 44)) (-1801 (((-1246) $) 43)) (-3338 (((-1246) $) 42)) (-1479 (((-1246) $) 38)) (-4045 (((-1246) $) 39)) (-3577 (((-1246) $) 37)) (-2044 (((-1246) $) 36)) (-3751 (((-1246) $) 35)) (-3740 (((-1246) $) 11))) +(((-809) (-10 -8 (-15 -3370 ($ (-1140) (-1140) (-810))) (-15 -1863 ($ (-1140) (-810))) (-15 -3740 ((-1246) $)) (-15 -2290 ((-1246) $ (-810))) (-15 -4161 ((-1246) $)) (-15 -2974 ((-1246) $)) (-15 -3550 ((-1246) $)) (-15 -1748 ((-1246) $)) (-15 -1603 ((-1246) $)) (-15 -1293 ((-1246) $)) (-15 -3255 ((-1246) $)) (-15 -2992 ((-1246) $)) (-15 -3453 ((-1246) $)) (-15 -1746 ((-1246) $)) (-15 -2188 ((-1246) $)) (-15 -2499 ((-1246) $)) (-15 -4147 ((-1246) $)) (-15 -3033 ((-1246) $)) (-15 -2836 ((-1246) $ (-554))) (-15 -2739 ((-1246) $ (-221))) (-15 -3559 ((-1246) $ (-1158))) (-15 -3426 ((-1246) $ (-1140))) (-15 -2806 ((-1246) $ (-1140) (-1140))) (-15 -3751 ((-1246) $)) (-15 -2044 ((-1246) $)) (-15 -3577 ((-1246) $)) (-15 -1479 ((-1246) $)) (-15 -4045 ((-1246) $)) (-15 -2368 ((-1246) $)) (-15 -3065 ((-1246) $)) (-15 -3338 ((-1246) $)) (-15 -1801 ((-1246) $)) (-15 -4171 ((-1246) $)) (-15 -4325 ((-1246) $)) (-15 -3413 ((-1246) $)) (-15 -2772 ((-1246) $)) (-15 -2231 ((-1246) $)) (-15 -2783 ((-554) $)) (-15 -2467 ((-221) $)) (-15 -3064 ((-1158) $)) (-15 -1641 ((-1140) $)) (-15 -2575 ((-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))) $)) (-15 -2823 ((-1158) $)))) (T -809)) +((-2823 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1140)) (|:| -4309 (-1140)))) (-5 *1 (-809)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-809)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-809)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-809)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2806 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3426 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3559 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-2836 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-2290 (*1 *2 *1 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1246)) (-5 *1 (-809)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809)))) (-3370 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809))))) +(-10 -8 (-15 -3370 ($ (-1140) (-1140) (-810))) (-15 -1863 ($ (-1140) (-810))) (-15 -3740 ((-1246) $)) (-15 -2290 ((-1246) $ (-810))) (-15 -4161 ((-1246) $)) (-15 -2974 ((-1246) $)) (-15 -3550 ((-1246) $)) (-15 -1748 ((-1246) $)) (-15 -1603 ((-1246) $)) (-15 -1293 ((-1246) $)) (-15 -3255 ((-1246) $)) (-15 -2992 ((-1246) $)) (-15 -3453 ((-1246) $)) (-15 -1746 ((-1246) $)) (-15 -2188 ((-1246) $)) (-15 -2499 ((-1246) $)) (-15 -4147 ((-1246) $)) (-15 -3033 ((-1246) $)) (-15 -2836 ((-1246) $ (-554))) (-15 -2739 ((-1246) $ (-221))) (-15 -3559 ((-1246) $ (-1158))) (-15 -3426 ((-1246) $ (-1140))) (-15 -2806 ((-1246) $ (-1140) (-1140))) (-15 -3751 ((-1246) $)) (-15 -2044 ((-1246) $)) (-15 -3577 ((-1246) $)) (-15 -1479 ((-1246) $)) (-15 -4045 ((-1246) $)) (-15 -2368 ((-1246) $)) (-15 -3065 ((-1246) $)) (-15 -3338 ((-1246) $)) (-15 -1801 ((-1246) $)) (-15 -4171 ((-1246) $)) (-15 -4325 ((-1246) $)) (-15 -3413 ((-1246) $)) (-15 -2772 ((-1246) $)) (-15 -2231 ((-1246) $)) (-15 -2783 ((-554) $)) (-15 -2467 ((-221) $)) (-15 -3064 ((-1158) $)) (-15 -1641 ((-1140) $)) (-15 -2575 ((-2 (|:| |cd| (-1140)) (|:| -4309 (-1140))) $)) (-15 -2823 ((-1158) $))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 12)) (-3411 (($) 15)) (-3455 (($) 13)) (-1532 (($) 16)) (-2185 (($) 14)) (-1658 (((-112) $ $) 8))) +(((-810) (-13 (-1082) (-10 -8 (-15 -3455 ($)) (-15 -3411 ($)) (-15 -1532 ($)) (-15 -2185 ($))))) (T -810)) +((-3455 (*1 *1) (-5 *1 (-810))) (-3411 (*1 *1) (-5 *1 (-810))) (-1532 (*1 *1) (-5 *1 (-810))) (-2185 (*1 *1) (-5 *1 (-810)))) +(-13 (-1082) (-10 -8 (-15 -3455 ($)) (-15 -3411 ($)) (-15 -1532 ($)) (-15 -2185 ($)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-1158)) 17)) (-1833 (((-112) $) 10)) (-2983 (((-112) $) 9)) (-2324 (((-112) $) 11)) (-2490 (((-112) $) 8)) (-1658 (((-112) $ $) 19))) +(((-811) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2490 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -2324 ((-112) $))))) (T -811)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-811)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811))))) +(-13 (-1082) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2490 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -1833 ((-112) $)) (-15 -2324 ((-112) $)))) +((-3062 (((-112) $ $) NIL)) (-2356 (($ (-811) (-631 (-1158))) 24)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1471 (((-811) $) 25)) (-2474 (((-631 (-1158)) $) 26)) (-3075 (((-848) $) 23)) (-1658 (((-112) $ $) NIL))) +(((-812) (-13 (-1082) (-10 -8 (-15 -1471 ((-811) $)) (-15 -2474 ((-631 (-1158)) $)) (-15 -2356 ($ (-811) (-631 (-1158))))))) (T -812)) +((-1471 (*1 *2 *1) (-12 (-5 *2 (-811)) (-5 *1 (-812)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-812)))) (-2356 (*1 *1 *2 *3) (-12 (-5 *2 (-811)) (-5 *3 (-631 (-1158))) (-5 *1 (-812))))) +(-13 (-1082) (-10 -8 (-15 -1471 ((-811) $)) (-15 -2474 ((-631 (-1158)) $)) (-15 -2356 ($ (-811) (-631 (-1158)))))) +((-4048 (((-1246) (-809) (-311 |#1|) (-112)) 23) (((-1246) (-809) (-311 |#1|)) 79) (((-1140) (-311 |#1|) (-112)) 78) (((-1140) (-311 |#1|)) 77))) +(((-813 |#1|) (-10 -7 (-15 -4048 ((-1140) (-311 |#1|))) (-15 -4048 ((-1140) (-311 |#1|) (-112))) (-15 -4048 ((-1246) (-809) (-311 |#1|))) (-15 -4048 ((-1246) (-809) (-311 |#1|) (-112)))) (-13 (-815) (-836) (-1034))) (T -813)) +((-4048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-809)) (-5 *4 (-311 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246)) (-5 *1 (-813 *6)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-311 *5)) (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246)) (-5 *1 (-813 *5)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1140)) (-5 *1 (-813 *5)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-815) (-836) (-1034))) (-5 *2 (-1140)) (-5 *1 (-813 *4))))) +(-10 -7 (-15 -4048 ((-1140) (-311 |#1|))) (-15 -4048 ((-1140) (-311 |#1|) (-112))) (-15 -4048 ((-1246) (-809) (-311 |#1|))) (-15 -4048 ((-1246) (-809) (-311 |#1|) (-112)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2899 ((|#1| $) 10)) (-1482 (($ |#1|) 9)) (-3248 (((-112) $) NIL)) (-2383 (($ |#2| (-758)) NIL)) (-3893 (((-758) $) NIL)) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1553 (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-3308 (((-758) $) NIL)) (-3075 (((-848) $) 17) (($ (-554)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-1779 ((|#2| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-814 |#1| |#2|) (-13 (-695 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -1482 ($ |#1|)) (-15 -2899 (|#1| $)))) (-695 |#2|) (-1034)) (T -814)) +((-1482 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-814 *2 *3)) (-4 *2 (-695 *3)))) (-2899 (*1 *2 *1) (-12 (-4 *2 (-695 *3)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1034))))) +(-13 (-695 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -1482 ($ |#1|)) (-15 -2899 (|#1| $)))) +((-4048 (((-1246) (-809) $ (-112)) 9) (((-1246) (-809) $) 8) (((-1140) $ (-112)) 7) (((-1140) $) 6))) +(((-815) (-138)) (T -815)) +((-4048 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *4 (-112)) (-5 *2 (-1246)))) (-4048 (*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *2 (-1246)))) (-4048 (*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1140)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1140))))) +(-13 (-10 -8 (-15 -4048 ((-1140) $)) (-15 -4048 ((-1140) $ (-112))) (-15 -4048 ((-1246) (-809) $)) (-15 -4048 ((-1246) (-809) $ (-112))))) +((-2439 (((-307) (-1140) (-1140)) 12)) (-3131 (((-112) (-1140) (-1140)) 34)) (-2615 (((-112) (-1140)) 33)) (-1886 (((-52) (-1140)) 25)) (-2254 (((-52) (-1140)) 23)) (-2652 (((-52) (-809)) 17)) (-3464 (((-631 (-1140)) (-1140)) 28)) (-3427 (((-631 (-1140))) 27))) +(((-816) (-10 -7 (-15 -2652 ((-52) (-809))) (-15 -2254 ((-52) (-1140))) (-15 -1886 ((-52) (-1140))) (-15 -3427 ((-631 (-1140)))) (-15 -3464 ((-631 (-1140)) (-1140))) (-15 -2615 ((-112) (-1140))) (-15 -3131 ((-112) (-1140) (-1140))) (-15 -2439 ((-307) (-1140) (-1140))))) (T -816)) +((-2439 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-816)))) (-3131 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816)))) (-3464 (*1 *2 *3) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)) (-5 *3 (-1140)))) (-3427 (*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-52)) (-5 *1 (-816))))) +(-10 -7 (-15 -2652 ((-52) (-809))) (-15 -2254 ((-52) (-1140))) (-15 -1886 ((-52) (-1140))) (-15 -3427 ((-631 (-1140)))) (-15 -3464 ((-631 (-1140)) (-1140))) (-15 -2615 ((-112) (-1140))) (-15 -3131 ((-112) (-1140) (-1140))) (-15 -2439 ((-307) (-1140) (-1140)))) +((-3062 (((-112) $ $) 19)) (-3382 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3775 (($ $ $) 72)) (-2411 (((-112) $ $) 73)) (-3019 (((-112) $ (-758)) 8)) (-1489 (($ (-631 |#1|)) 68) (($) 67)) (-2220 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2593 (($ $) 62)) (-1571 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ |#1| $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 64)) (-2230 (((-112) $ (-758)) 9)) (-4223 ((|#1| $) 78)) (-3606 (($ $ $) 81)) (-3717 (($ $ $) 80)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2706 ((|#1| $) 79)) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22)) (-3977 (($ $ $) 69)) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40) (($ |#1| $ (-758)) 63)) (-2768 (((-1102) $) 21)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2119 (((-631 (-2 (|:| -2701 |#1|) (|:| -2777 (-758)))) $) 61)) (-3372 (($ $ |#1|) 71) (($ $ $) 70)) (-4310 (($) 49) (($ (-631 |#1|)) 48)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 50)) (-3075 (((-848) $) 18)) (-2332 (($ (-631 |#1|)) 66) (($) 65)) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20)) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-817 |#1|) (-138) (-836)) (T -817)) +((-4223 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-836))))) +(-13 (-723 |t#1|) (-953 |t#1|) (-10 -8 (-15 -4223 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-681 |#1|) . T) ((-723 |#1|) . T) ((-953 |#1|) . T) ((-1080 |#1|) . T) ((-1082) . T) ((-1195) . T)) +((-2990 (((-1246) (-1102) (-1102)) 47)) (-3087 (((-1246) (-808) (-52)) 44)) (-2170 (((-52) (-808)) 16))) +(((-818) (-10 -7 (-15 -2170 ((-52) (-808))) (-15 -3087 ((-1246) (-808) (-52))) (-15 -2990 ((-1246) (-1102) (-1102))))) (T -818)) +((-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1246)) (-5 *1 (-818)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-52)) (-5 *2 (-1246)) (-5 *1 (-818)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-52)) (-5 *1 (-818))))) +(-10 -7 (-15 -2170 ((-52) (-808))) (-15 -3087 ((-1246) (-808) (-52))) (-15 -2990 ((-1246) (-1102) (-1102)))) +((-2879 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)) 12) (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 13))) +(((-819 |#1| |#2|) (-10 -7 (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)))) (-1082) (-1082)) (T -819)) +((-2879 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-819 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))) +(-10 -7 (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -2879 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL (|has| |#1| (-21)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4219 (((-554) $) NIL (|has| |#1| (-834)))) (-4087 (($) NIL (|has| |#1| (-21)) CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 15)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 9)) (-1320 (((-3 $ "failed") $) 40 (|has| |#1| (-834)))) (-1623 (((-3 (-402 (-554)) "failed") $) 49 (|has| |#1| (-539)))) (-2069 (((-112) $) 43 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 46 (|has| |#1| (-539)))) (-2745 (((-112) $) NIL (|has| |#1| (-834)))) (-3248 (((-112) $) NIL (|has| |#1| (-834)))) (-4304 (((-112) $) NIL (|has| |#1| (-834)))) (-4223 (($ $ $) NIL (|has| |#1| (-834)))) (-2706 (($ $ $) NIL (|has| |#1| (-834)))) (-1613 (((-1140) $) NIL)) (-2855 (($) 13)) (-2887 (((-112) $) 12)) (-2768 (((-1102) $) NIL)) (-2874 (((-112) $) 11)) (-3075 (((-848) $) 18) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 8) (($ (-554)) NIL (-3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))))) (-2261 (((-758)) 34 (|has| |#1| (-834)))) (-1700 (($ $) NIL (|has| |#1| (-834)))) (-2004 (($) 22 (|has| |#1| (-21)) CONST)) (-2014 (($) 31 (|has| |#1| (-834)) CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1676 (((-112) $ $) 42 (|has| |#1| (-834)))) (-1744 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1735 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-906)) NIL (|has| |#1| (-834))) (($ $ (-758)) NIL (|has| |#1| (-834)))) (* (($ $ $) 37 (|has| |#1| (-834))) (($ (-554) $) 25 (|has| |#1| (-21))) (($ (-758) $) NIL (|has| |#1| (-21))) (($ (-906) $) NIL (|has| |#1| (-21))))) +(((-820 |#1|) (-13 (-1082) (-406 |#1|) (-10 -8 (-15 -2855 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) (-1082)) (T -820)) +((-2855 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1082)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082))))) +(-13 (-1082) (-406 |#1|) (-10 -8 (-15 -2855 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) +((-3075 (((-848) $) 11))) +(((-821 |#1| |#2|) (-10 -8 (-15 -3075 ((-848) |#1|))) (-822 |#2|) (-1082)) (T -821)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-3086 (($ |#1|) 14) (($ |#1| (-758)) 13)) (-4309 ((|#1| $) 16)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1937 ((-55 $) 15)) (-1658 (((-112) $ $) 6))) +(((-822 |#1|) (-138) (-1082)) (T -822)) +((-4309 (*1 *2 *1) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-4 *3 (-1082)) (-5 *2 -55))) (-3086 (*1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-822 *2)) (-4 *2 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -4309 (|t#1| $)) (-15 -1937 (-55 $)) (-15 -3086 ($ |t#1|)) (-15 -3086 ($ |t#1| (-758))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-114) $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-1354 ((|#1| (-114) |#1|) NIL)) (-3248 (((-112) $) NIL)) (-3927 (($ |#1| (-356 (-114))) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2654 (($ $ (-1 |#1| |#1|)) NIL)) (-3282 (($ $ (-1 |#1| |#1|)) NIL)) (-2064 ((|#1| $ |#1|) NIL)) (-2186 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-2968 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ (-114) (-554)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-823 |#1|) (-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#1| |#1|))) (-15 -2654 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -3927 ($ |#1| (-356 (-114)))))) (-1034)) (T -823)) +((-2968 (*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2968 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2186 (*1 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-5 *1 (-823 *4)) (-4 *4 (-1034)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-823 *3)) (-4 *3 (-1034)))) (-1354 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-823 *2)) (-4 *2 (-1034)))) (-3927 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-5 *1 (-823 *2)) (-4 *2 (-1034))))) +(-13 (-1034) (-1023 |#1|) (-1023 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2968 ($ $)) (-15 -2968 ($ $ $)) (-15 -2186 (|#1| |#1|))) |%noBranch|) (-15 -3282 ($ $ (-1 |#1| |#1|))) (-15 -2654 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-554))) (-15 ** ($ $ (-554))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -3927 ($ |#1| (-356 (-114)))))) +((-3839 (((-210 (-496)) (-1140)) 9))) +(((-824) (-10 -7 (-15 -3839 ((-210 (-496)) (-1140))))) (T -824)) +((-3839 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-210 (-496))) (-5 *1 (-824))))) +(-10 -7 (-15 -3839 ((-210 (-496)) (-1140)))) +((-3062 (((-112) $ $) 7)) (-2910 (((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 14) (((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 13)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 16) (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 15)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-825) (-138)) (T -825)) +((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-825)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-825)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-2910 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *3 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *2 (-1020)))) (-2910 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *2 (-1020))))) +(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -2910 ((-1020) (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -2910 ((-1020) (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2736 (((-1020) (-631 (-311 (-374))) (-631 (-374))) 147) (((-1020) (-311 (-374)) (-631 (-374))) 145) (((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-829 (-374)))) 144) (((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-311 (-374))) (-631 (-829 (-374)))) 143) (((-1020) (-827)) 117) (((-1020) (-827) (-1046)) 116)) (-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827) (-1046)) 82) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827)) 84)) (-2791 (((-1020) (-631 (-311 (-374))) (-631 (-374))) 148) (((-1020) (-827)) 133))) +(((-826) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827) (-1046))) (-15 -2736 ((-1020) (-827) (-1046))) (-15 -2736 ((-1020) (-827))) (-15 -2791 ((-1020) (-827))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-311 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)))) (-15 -2736 ((-1020) (-631 (-311 (-374))) (-631 (-374)))) (-15 -2791 ((-1020) (-631 (-311 (-374))) (-631 (-374)))))) (T -826)) +((-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) (-5 *5 (-631 (-829 (-374)))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-631 (-374))) (-5 *5 (-631 (-829 (-374)))) (-5 *6 (-631 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-826)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-826)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-826))))) +(-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-827) (-1046))) (-15 -2736 ((-1020) (-827) (-1046))) (-15 -2736 ((-1020) (-827))) (-15 -2791 ((-1020) (-827))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-311 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)) (-631 (-829 (-374))) (-631 (-829 (-374))))) (-15 -2736 ((-1020) (-311 (-374)) (-631 (-374)))) (-15 -2736 ((-1020) (-631 (-311 (-374))) (-631 (-374)))) (-15 -2791 ((-1020) (-631 (-311 (-374))) (-631 (-374))))) +((-3062 (((-112) $ $) NIL)) (-1668 (((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) $) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) 14) (($ (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) 18)) (-1658 (((-112) $ $) NIL))) +(((-827) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3075 ($ (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -3075 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))) (-15 -1668 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) $))))) (T -827)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (-5 *1 (-827)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) (-5 *1 (-827)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) (-5 *1 (-827)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))))) (-5 *1 (-827))))) +(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221))))))) (-15 -3075 ($ (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) (-15 -3075 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))))) (-15 -1668 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221)))))) $)))) +((-2879 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|) (-829 |#2|)) 13) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 14))) +(((-828 |#1| |#2|) (-10 -7 (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|) (-829 |#2|)))) (-1082) (-1082)) (T -828)) +((-2879 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-828 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))) +(-10 -7 (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2879 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|) (-829 |#2|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL (|has| |#1| (-21)))) (-4190 (((-1102) $) 24)) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4219 (((-554) $) NIL (|has| |#1| (-834)))) (-4087 (($) NIL (|has| |#1| (-21)) CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 16)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 9)) (-1320 (((-3 $ "failed") $) 47 (|has| |#1| (-834)))) (-1623 (((-3 (-402 (-554)) "failed") $) 54 (|has| |#1| (-539)))) (-2069 (((-112) $) 49 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 52 (|has| |#1| (-539)))) (-2745 (((-112) $) NIL (|has| |#1| (-834)))) (-1701 (($) 13)) (-3248 (((-112) $) NIL (|has| |#1| (-834)))) (-4304 (((-112) $) NIL (|has| |#1| (-834)))) (-1713 (($) 14)) (-4223 (($ $ $) NIL (|has| |#1| (-834)))) (-2706 (($ $ $) NIL (|has| |#1| (-834)))) (-1613 (((-1140) $) NIL)) (-2887 (((-112) $) 12)) (-2768 (((-1102) $) NIL)) (-2874 (((-112) $) 11)) (-3075 (((-848) $) 22) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 8) (($ (-554)) NIL (-3994 (|has| |#1| (-834)) (|has| |#1| (-1023 (-554)))))) (-2261 (((-758)) 41 (|has| |#1| (-834)))) (-1700 (($ $) NIL (|has| |#1| (-834)))) (-2004 (($) 29 (|has| |#1| (-21)) CONST)) (-2014 (($) 38 (|has| |#1| (-834)) CONST)) (-1708 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1658 (((-112) $ $) 27)) (-1697 (((-112) $ $) NIL (|has| |#1| (-834)))) (-1676 (((-112) $ $) 48 (|has| |#1| (-834)))) (-1744 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1735 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-906)) NIL (|has| |#1| (-834))) (($ $ (-758)) NIL (|has| |#1| (-834)))) (* (($ $ $) 44 (|has| |#1| (-834))) (($ (-554) $) 32 (|has| |#1| (-21))) (($ (-758) $) NIL (|has| |#1| (-21))) (($ (-906) $) NIL (|has| |#1| (-21))))) +(((-829 |#1|) (-13 (-1082) (-406 |#1|) (-10 -8 (-15 -1701 ($)) (-15 -1713 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -4190 ((-1102) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) (-1082)) (T -829)) +((-1701 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082)))) (-1713 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-829 *3)) (-4 *3 (-1082)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082))))) +(-13 (-1082) (-406 |#1|) (-10 -8 (-15 -1701 ($)) (-15 -1713 ($)) (-15 -2874 ((-112) $)) (-15 -2887 ((-112) $)) (-15 -4190 ((-1102) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) +((-3062 (((-112) $ $) 7)) (-1508 (((-758)) 20)) (-3353 (($) 23)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-3830 (((-906) $) 22)) (-1613 (((-1140) $) 9)) (-2717 (($ (-906)) 21)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18))) +(((-830) (-138)) (T -830)) +NIL +(-13 (-836) (-363)) +(((-102) . T) ((-601 (-848)) . T) ((-363) . T) ((-836) . T) ((-1082) . T)) +((-3649 (((-112) (-1241 |#2|) (-1241 |#2|)) 17)) (-3800 (((-112) (-1241 |#2|) (-1241 |#2|)) 18)) (-4247 (((-112) (-1241 |#2|) (-1241 |#2|)) 14))) +(((-831 |#1| |#2|) (-10 -7 (-15 -4247 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3649 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3800 ((-112) (-1241 |#2|) (-1241 |#2|)))) (-758) (-779)) (T -831)) +((-3800 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))) (-3649 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-831 *4 *5)) (-14 *4 (-758)))) (-4247 (*1 *2 *3 *3) (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-831 *4 *5)) (-14 *4 (-758))))) +(-10 -7 (-15 -4247 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3649 ((-112) (-1241 |#2|) (-1241 |#2|))) (-15 -3800 ((-112) (-1241 |#2|) (-1241 |#2|)))) +((-3062 (((-112) $ $) 7)) (-4087 (($) 23 T CONST)) (-1320 (((-3 $ "failed") $) 26)) (-3248 (((-112) $) 24)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2014 (($) 22 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (** (($ $ (-906)) 21) (($ $ (-758)) 25)) (* (($ $ $) 20))) +(((-832) (-138)) (T -832)) +NIL +(-13 (-843) (-713)) +(((-102) . T) ((-601 (-848)) . T) ((-713) . T) ((-843) . T) ((-836) . T) ((-1094) . T) ((-1082) . T)) +((-4219 (((-554) $) 17)) (-2745 (((-112) $) 10)) (-4304 (((-112) $) 11)) (-1700 (($ $) 19))) +(((-833 |#1|) (-10 -8 (-15 -1700 (|#1| |#1|)) (-15 -4219 ((-554) |#1|)) (-15 -4304 ((-112) |#1|)) (-15 -2745 ((-112) |#1|))) (-834)) (T -833)) +NIL +(-10 -8 (-15 -1700 (|#1| |#1|)) (-15 -4219 ((-554) |#1|)) (-15 -4304 ((-112) |#1|)) (-15 -2745 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 24)) (-2934 (((-3 $ "failed") $ $) 26)) (-4219 (((-554) $) 34)) (-4087 (($) 23 T CONST)) (-1320 (((-3 $ "failed") $) 39)) (-2745 (((-112) $) 36)) (-3248 (((-112) $) 41)) (-4304 (((-112) $) 35)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 43)) (-2261 (((-758)) 44)) (-1700 (($ $) 33)) (-2004 (($) 22 T CONST)) (-2014 (($) 42 T CONST)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (-1744 (($ $ $) 28) (($ $) 27)) (-1735 (($ $ $) 20)) (** (($ $ (-758)) 40) (($ $ (-906)) 37)) (* (($ (-906) $) 21) (($ (-758) $) 25) (($ (-554) $) 29) (($ $ $) 38))) +(((-834) (-138)) (T -834)) +((-2745 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-554)))) (-1700 (*1 *1 *1) (-4 *1 (-834)))) +(-13 (-778) (-1034) (-713) (-10 -8 (-15 -2745 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -4219 ((-554) $)) (-15 -1700 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-836) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-4223 (($ $ $) 10)) (-2706 (($ $ $) 9)) (-1708 (((-112) $ $) 13)) (-1686 (((-112) $ $) 11)) (-1697 (((-112) $ $) 14))) +(((-835 |#1|) (-10 -8 (-15 -4223 (|#1| |#1| |#1|)) (-15 -2706 (|#1| |#1| |#1|)) (-15 -1697 ((-112) |#1| |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-836)) (T -835)) +NIL +(-10 -8 (-15 -4223 (|#1| |#1| |#1|)) (-15 -2706 (|#1| |#1| |#1|)) (-15 -1697 ((-112) |#1| |#1|)) (-15 -1708 ((-112) |#1| |#1|)) (-15 -1686 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18))) +(((-836) (-138)) (T -836)) +((-1676 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-1686 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-1708 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-1697 (*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) (-2706 (*1 *1 *1 *1) (-4 *1 (-836))) (-4223 (*1 *1 *1 *1) (-4 *1 (-836)))) +(-13 (-1082) (-10 -8 (-15 -1676 ((-112) $ $)) (-15 -1686 ((-112) $ $)) (-15 -1708 ((-112) $ $)) (-15 -1697 ((-112) $ $)) (-15 -2706 ($ $ $)) (-15 -4223 ($ $ $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2915 (($ $ $) 45)) (-2660 (($ $ $) 44)) (-1885 (($ $ $) 42)) (-3335 (($ $ $) 51)) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 46)) (-2850 (((-3 $ "failed") $ $) 49)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2048 (($ $) 35)) (-1455 (($ $ $) 39)) (-4024 (($ $ $) 38)) (-2780 (($ $ $) 47)) (-1775 (($ $ $) 53)) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 41)) (-1763 (((-3 $ "failed") $ $) 48)) (-3919 (((-3 $ "failed") $ |#2|) 28)) (-3276 ((|#2| $) 32)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ |#2|) 12)) (-1893 (((-631 |#2|) $) 18)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-837 |#1| |#2|) (-10 -8 (-15 -2780 (|#1| |#1| |#1|)) (-15 -3215 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -2850 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2915 (|#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -2765 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -3075 ((-848) |#1|))) (-838 |#2|) (-1034)) (T -837)) +NIL +(-10 -8 (-15 -2780 (|#1| |#1| |#1|)) (-15 -3215 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -2850 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2915 (|#1| |#1| |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -2765 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4137 |#1|)) |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -1763 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1455 (|#1| |#1| |#1|)) (-15 -4024 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1893 ((-631 |#2|) |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2915 (($ $ $) 44 (|has| |#1| (-358)))) (-2660 (($ $ $) 45 (|has| |#1| (-358)))) (-1885 (($ $ $) 47 (|has| |#1| (-358)))) (-3335 (($ $ $) 42 (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 41 (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) 43 (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 46 (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) 74 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 71 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 68)) (-1668 (((-554) $) 73 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 70 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 69)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 54 (|has| |#1| (-446)))) (-3248 (((-112) $) 31)) (-2383 (($ |#1| (-758)) 61)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 56 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 57 (|has| |#1| (-546)))) (-3893 (((-758) $) 65)) (-1455 (($ $ $) 51 (|has| |#1| (-358)))) (-4024 (($ $ $) 52 (|has| |#1| (-358)))) (-2780 (($ $ $) 40 (|has| |#1| (-358)))) (-1775 (($ $ $) 49 (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 48 (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) 50 (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 53 (|has| |#1| (-358)))) (-2530 ((|#1| $) 64)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-546)))) (-3308 (((-758) $) 66)) (-3276 ((|#1| $) 55 (|has| |#1| (-446)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 72 (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) 67)) (-1893 (((-631 |#1|) $) 60)) (-1779 ((|#1| $ (-758)) 62)) (-2261 (((-758)) 28)) (-1485 ((|#1| $ |#1| |#1|) 59)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-838 |#1|) (-138) (-1034)) (T -838)) +((-3308 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-2550 (*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-2383 (*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-631 *3)))) (-1485 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-3409 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-4272 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446)))) (-4032 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-4024 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-1455 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-1763 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-1775 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2765 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) (-4 *1 (-838 *3)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2223 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) (-2660 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2915 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2850 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3335 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-3215 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) (-4 *1 (-838 *3)))) (-2780 (*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(-13 (-1034) (-111 |t#1| |t#1|) (-406 |t#1|) (-10 -8 (-15 -3308 ((-758) $)) (-15 -3893 ((-758) $)) (-15 -2530 (|t#1| $)) (-15 -2550 ($ $)) (-15 -1779 (|t#1| $ (-758))) (-15 -2383 ($ |t#1| (-758))) (-15 -1893 ((-631 |t#1|) $)) (-15 -1485 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-15 -3919 ((-3 $ "failed") $ |t#1|)) (-15 -3409 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -4272 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3276 (|t#1| $)) (-15 -2048 ($ $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -4032 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -4024 ($ $ $)) (-15 -1455 ($ $ $)) (-15 -1763 ((-3 $ "failed") $ $)) (-15 -1775 ($ $ $)) (-15 -2765 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $)) (-15 -1885 ($ $ $)) (-15 -2223 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -2660 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -2850 ((-3 $ "failed") $ $)) (-15 -3335 ($ $ $)) (-15 -3215 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $)) (-15 -2780 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 #0=(-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-406 |#1|) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1023 #0#) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3697 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2223 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-358)))) (-4272 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-546)))) (-4032 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-358)))) (-1485 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31))) +(((-839 |#1| |#2|) (-10 -7 (-15 -3697 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1485 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-546)) (PROGN (-15 -3409 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4272 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4032 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2223 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1034) (-838 |#1|)) (T -839)) +((-2223 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-4032 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-4272 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-3409 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) (-4 *3 (-838 *5)))) (-1485 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1034)) (-5 *1 (-839 *2 *3)) (-4 *3 (-838 *2)))) (-3697 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1034)) (-5 *1 (-839 *5 *2)) (-4 *2 (-838 *5))))) +(-10 -7 (-15 -3697 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1485 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-546)) (PROGN (-15 -3409 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4272 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4032 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2223 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#1| (-358)))) (-2660 (($ $ $) NIL (|has| |#1| (-358)))) (-1885 (($ $ $) NIL (|has| |#1| (-358)))) (-3335 (($ $ $) NIL (|has| |#1| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 32 (|has| |#1| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-3701 (((-848) $ (-848)) NIL)) (-3248 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) NIL)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 28 (|has| |#1| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 26 (|has| |#1| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#1| (-358)))) (-4024 (($ $ $) NIL (|has| |#1| (-358)))) (-2780 (($ $ $) NIL (|has| |#1| (-358)))) (-1775 (($ $ $) NIL (|has| |#1| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 30 (|has| |#1| (-358)))) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-3308 (((-758) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-1023 (-402 (-554))))) (($ |#1|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#1| $ |#1| |#1|) 15)) (-2004 (($) NIL T CONST)) (-2014 (($) 20 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 19) (($ $ (-758)) 22)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-840 |#1| |#2| |#3|) (-13 (-838 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))))) (-1034) (-99 |#1|) (-1 |#1| |#1|)) (T -840)) +((-3701 (*1 *2 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-840 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-838 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2915 (($ $ $) NIL (|has| |#2| (-358)))) (-2660 (($ $ $) NIL (|has| |#2| (-358)))) (-1885 (($ $ $) NIL (|has| |#2| (-358)))) (-3335 (($ $ $) NIL (|has| |#2| (-358)))) (-3215 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-2850 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2223 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#2| (-446)))) (-3248 (((-112) $) NIL)) (-2383 (($ |#2| (-758)) 16)) (-4272 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-546)))) (-3409 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-546)))) (-3893 (((-758) $) NIL)) (-1455 (($ $ $) NIL (|has| |#2| (-358)))) (-4024 (($ $ $) NIL (|has| |#2| (-358)))) (-2780 (($ $ $) NIL (|has| |#2| (-358)))) (-1775 (($ $ $) NIL (|has| |#2| (-358)))) (-2765 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-1763 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-4032 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546)))) (-3308 (((-758) $) NIL)) (-3276 ((|#2| $) NIL (|has| |#2| (-446)))) (-3075 (((-848) $) 23) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) NIL) (($ (-1237 |#1|)) 18)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-758)) NIL)) (-2261 (((-758)) NIL)) (-1485 ((|#2| $ |#2| |#2|) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) 13 T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-841 |#1| |#2| |#3| |#4|) (-13 (-838 |#2|) (-604 (-1237 |#1|))) (-1158) (-1034) (-99 |#2|) (-1 |#2| |#2|)) (T -841)) +NIL +(-13 (-838 |#2|) (-604 (-1237 |#1|))) +((-4330 ((|#1| (-758) |#1|) 35 (|has| |#1| (-38 (-402 (-554)))))) (-3542 ((|#1| (-758) (-758) |#1|) 27) ((|#1| (-758) |#1|) 20)) (-1274 ((|#1| (-758) |#1|) 31)) (-1398 ((|#1| (-758) |#1|) 29)) (-1492 ((|#1| (-758) |#1|) 28))) +(((-842 |#1|) (-10 -7 (-15 -1492 (|#1| (-758) |#1|)) (-15 -1398 (|#1| (-758) |#1|)) (-15 -1274 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -4330 (|#1| (-758) |#1|)) |%noBranch|)) (-170)) (T -842)) +((-4330 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-170)))) (-3542 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-3542 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-1274 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-1398 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) (-1492 (*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -1492 (|#1| (-758) |#1|)) (-15 -1398 (|#1| (-758) |#1|)) (-15 -1274 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) |#1|)) (-15 -3542 (|#1| (-758) (-758) |#1|)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -4330 (|#1| (-758) |#1|)) |%noBranch|)) +((-3062 (((-112) $ $) 7)) (-4223 (($ $ $) 13)) (-2706 (($ $ $) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1708 (((-112) $ $) 16)) (-1686 (((-112) $ $) 17)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 15)) (-1676 (((-112) $ $) 18)) (** (($ $ (-906)) 21)) (* (($ $ $) 20))) +(((-843) (-138)) (T -843)) +NIL +(-13 (-836) (-1094)) +(((-102) . T) ((-601 (-848)) . T) ((-836) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-2794 (((-554) $) 12)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 18) (($ (-554)) 11)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 8)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 9))) +(((-844) (-13 (-836) (-10 -8 (-15 -3075 ($ (-554))) (-15 -2794 ((-554) $))))) (T -844)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-844)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-844))))) +(-13 (-836) (-10 -8 (-15 -3075 ($ (-554))) (-15 -2794 ((-554) $)))) +((-2077 (((-1102) $ (-128)) 17))) +(((-845 |#1|) (-10 -8 (-15 -2077 ((-1102) |#1| (-128)))) (-846)) (T -845)) +NIL +(-10 -8 (-15 -2077 ((-1102) |#1| (-128)))) +((-2077 (((-1102) $ (-128)) 7)) (-3451 (((-1102) $ (-129)) 8)) (-3745 (($ $) 6))) +(((-846) (-138)) (T -846)) +((-3451 (*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-129)) (-5 *2 (-1102)))) (-2077 (*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-128)) (-5 *2 (-1102))))) +(-13 (-171) (-10 -8 (-15 -3451 ((-1102) $ (-129))) (-15 -2077 ((-1102) $ (-128))))) +(((-171) . T)) +((-2077 (((-1102) $ (-128)) NIL)) (-3451 (((-1102) $ (-129)) 22)) (-2145 (($ (-383)) 12) (($ (-1140)) 14)) (-2993 (((-112) $) 19)) (-3075 (((-848) $) 26)) (-3745 (($ $) 23))) +(((-847) (-13 (-846) (-601 (-848)) (-10 -8 (-15 -2145 ($ (-383))) (-15 -2145 ($ (-1140))) (-15 -2993 ((-112) $))))) (T -847)) +((-2145 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-847)))) (-2145 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-847)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847))))) +(-13 (-846) (-601 (-848)) (-10 -8 (-15 -2145 ($ (-383))) (-15 -2145 ($ (-1140))) (-15 -2993 ((-112) $)))) +((-3062 (((-112) $ $) NIL) (($ $ $) 77)) (-2116 (($ $ $) 114)) (-4026 (((-554) $) 31) (((-554)) 36)) (-3466 (($ (-554)) 45)) (-4089 (($ $ $) 46) (($ (-631 $)) 76)) (-1661 (($ $ (-631 $)) 74)) (-4187 (((-554) $) 34)) (-1968 (($ $ $) 65)) (-1688 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2878 (((-554) $) 33)) (-3999 (($ $ $) 64)) (-3942 (($ $) 104)) (-3571 (($ $ $) 118)) (-4011 (($ (-631 $)) 53)) (-2591 (($ $ (-631 $)) 71)) (-2135 (($ (-554) (-554)) 47)) (-2638 (($ $) 115) (($ $ $) 116)) (-3324 (($ $ (-554)) 41) (($ $) 44)) (-3964 (($ $ $) 89)) (-2085 (($ $ $) 121)) (-3402 (($ $) 105)) (-3943 (($ $ $) 90)) (-2436 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1869 (((-1246) $) 10)) (-3654 (($ $) 108) (($ $ (-758)) 111)) (-3526 (($ $ $) 67)) (-1426 (($ $ $) 66)) (-2997 (($ $ (-631 $)) 100)) (-1813 (($ $ $) 103)) (-1704 (($ (-631 $)) 51)) (-1342 (($ $) 62) (($ (-631 $)) 63)) (-3031 (($ $ $) 112)) (-4172 (($ $) 106)) (-4025 (($ $ $) 117)) (-3701 (($ (-554)) 21) (($ (-1158)) 23) (($ (-1140)) 30) (($ (-221)) 25)) (-3038 (($ $ $) 93)) (-4081 (($ $) 94)) (-1415 (((-1246) (-1140)) 15)) (-2360 (($ (-1140)) 14)) (-1899 (($ (-631 (-631 $))) 50)) (-3311 (($ $ (-554)) 40) (($ $) 43)) (-1613 (((-1140) $) NIL)) (-2068 (($ $ $) 120)) (-1664 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3870 (((-112) $) 98)) (-1631 (($ $ (-631 $)) 101) (($ $ $ $) 102)) (-3997 (($ (-554)) 37)) (-3323 (((-554) $) 32) (((-554)) 35)) (-2112 (($ $ $) 38) (($ (-631 $)) 75)) (-2768 (((-1102) $) NIL)) (-3919 (($ $ $) 91)) (-4240 (($) 13)) (-2064 (($ $ (-631 $)) 99)) (-2008 (((-1140) (-1140)) 8)) (-3748 (($ $) 107) (($ $ (-758)) 110)) (-3931 (($ $ $) 88)) (-1553 (($ $ (-758)) 126)) (-4262 (($ (-631 $)) 52)) (-3075 (((-848) $) 19)) (-1608 (($ $ (-554)) 39) (($ $) 42)) (-2205 (($ $) 60) (($ (-631 $)) 61)) (-2332 (($ $) 58) (($ (-631 $)) 59)) (-4125 (($ $) 113)) (-2943 (($ (-631 $)) 57)) (-1629 (($ $ $) 97)) (-2972 (($ $ $) 119)) (-3726 (($ $ $) 92)) (-4268 (($ $ $) 95) (($ $) 96)) (-1708 (($ $ $) 81)) (-1686 (($ $ $) 79)) (-1658 (((-112) $ $) 16) (($ $ $) 17)) (-1697 (($ $ $) 80)) (-1676 (($ $ $) 78)) (-1752 (($ $ $) 86)) (-1744 (($ $ $) 83) (($ $) 84)) (-1735 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-848) (-13 (-1082) (-10 -8 (-15 -1869 ((-1246) $)) (-15 -2360 ($ (-1140))) (-15 -1415 ((-1246) (-1140))) (-15 -3701 ($ (-554))) (-15 -3701 ($ (-1158))) (-15 -3701 ($ (-1140))) (-15 -3701 ($ (-221))) (-15 -4240 ($)) (-15 -2008 ((-1140) (-1140))) (-15 -4026 ((-554) $)) (-15 -3323 ((-554) $)) (-15 -4026 ((-554))) (-15 -3323 ((-554))) (-15 -2878 ((-554) $)) (-15 -4187 ((-554) $)) (-15 -3997 ($ (-554))) (-15 -3466 ($ (-554))) (-15 -2135 ($ (-554) (-554))) (-15 -3311 ($ $ (-554))) (-15 -3324 ($ $ (-554))) (-15 -1608 ($ $ (-554))) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -1608 ($ $)) (-15 -2112 ($ $ $)) (-15 -4089 ($ $ $)) (-15 -2112 ($ (-631 $))) (-15 -4089 ($ (-631 $))) (-15 -2997 ($ $ (-631 $))) (-15 -1631 ($ $ (-631 $))) (-15 -1631 ($ $ $ $)) (-15 -1813 ($ $ $)) (-15 -3870 ((-112) $)) (-15 -2064 ($ $ (-631 $))) (-15 -3942 ($ $)) (-15 -2068 ($ $ $)) (-15 -4125 ($ $)) (-15 -1899 ($ (-631 (-631 $)))) (-15 -2116 ($ $ $)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -2972 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -1553 ($ $ (-758))) (-15 -1629 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -1968 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -2591 ($ $ (-631 $))) (-15 -1661 ($ $ (-631 $))) (-15 -3402 ($ $)) (-15 -3748 ($ $)) (-15 -3748 ($ $ (-758))) (-15 -3654 ($ $)) (-15 -3654 ($ $ (-758))) (-15 -4172 ($ $)) (-15 -3031 ($ $ $)) (-15 -1688 ($ $)) (-15 -1688 ($ $ $)) (-15 -1688 ($ $ $ $)) (-15 -2436 ($ $)) (-15 -2436 ($ $ $)) (-15 -2436 ($ $ $ $)) (-15 -1664 ($ $)) (-15 -1664 ($ $ $)) (-15 -1664 ($ $ $ $)) (-15 -2332 ($ $)) (-15 -2332 ($ (-631 $))) (-15 -2205 ($ $)) (-15 -2205 ($ (-631 $))) (-15 -1342 ($ $)) (-15 -1342 ($ (-631 $))) (-15 -1704 ($ (-631 $))) (-15 -4262 ($ (-631 $))) (-15 -4011 ($ (-631 $))) (-15 -2943 ($ (-631 $))) (-15 -1658 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1697 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1744 ($ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -4081 ($ $)) (-15 -4268 ($ $ $)) (-15 -4268 ($ $))))) (T -848)) +((-1869 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-848)))) (-2360 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-848)))) (-4240 (*1 *1) (-5 *1 (-848))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-4026 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3323 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3997 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-2135 (*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3311 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) (-3311 (*1 *1 *1) (-5 *1 (-848))) (-3324 (*1 *1 *1) (-5 *1 (-848))) (-1608 (*1 *1 *1) (-5 *1 (-848))) (-2112 (*1 *1 *1 *1) (-5 *1 (-848))) (-4089 (*1 *1 *1 *1) (-5 *1 (-848))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1631 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1631 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-1813 (*1 *1 *1 *1) (-5 *1 (-848))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-3942 (*1 *1 *1) (-5 *1 (-848))) (-2068 (*1 *1 *1 *1) (-5 *1 (-848))) (-4125 (*1 *1 *1) (-5 *1 (-848))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-848)))) (-2116 (*1 *1 *1 *1) (-5 *1 (-848))) (-2638 (*1 *1 *1) (-5 *1 (-848))) (-2638 (*1 *1 *1 *1) (-5 *1 (-848))) (-4025 (*1 *1 *1 *1) (-5 *1 (-848))) (-3571 (*1 *1 *1 *1) (-5 *1 (-848))) (-2972 (*1 *1 *1 *1) (-5 *1 (-848))) (-2085 (*1 *1 *1 *1) (-5 *1 (-848))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) (-1629 (*1 *1 *1 *1) (-5 *1 (-848))) (-3999 (*1 *1 *1 *1) (-5 *1 (-848))) (-1968 (*1 *1 *1 *1) (-5 *1 (-848))) (-1426 (*1 *1 *1 *1) (-5 *1 (-848))) (-3526 (*1 *1 *1 *1) (-5 *1 (-848))) (-2591 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1661 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-3402 (*1 *1 *1) (-5 *1 (-848))) (-3748 (*1 *1 *1) (-5 *1 (-848))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) (-3654 (*1 *1 *1) (-5 *1 (-848))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) (-4172 (*1 *1 *1) (-5 *1 (-848))) (-3031 (*1 *1 *1 *1) (-5 *1 (-848))) (-1688 (*1 *1 *1) (-5 *1 (-848))) (-1688 (*1 *1 *1 *1) (-5 *1 (-848))) (-1688 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-2436 (*1 *1 *1) (-5 *1 (-848))) (-2436 (*1 *1 *1 *1) (-5 *1 (-848))) (-2436 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-1664 (*1 *1 *1) (-5 *1 (-848))) (-1664 (*1 *1 *1 *1) (-5 *1 (-848))) (-1664 (*1 *1 *1 *1 *1) (-5 *1 (-848))) (-2332 (*1 *1 *1) (-5 *1 (-848))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-2205 (*1 *1 *1) (-5 *1 (-848))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1342 (*1 *1 *1) (-5 *1 (-848))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-4262 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) (-1658 (*1 *1 *1 *1) (-5 *1 (-848))) (-3062 (*1 *1 *1 *1) (-5 *1 (-848))) (-1676 (*1 *1 *1 *1) (-5 *1 (-848))) (-1686 (*1 *1 *1 *1) (-5 *1 (-848))) (-1697 (*1 *1 *1 *1) (-5 *1 (-848))) (-1708 (*1 *1 *1 *1) (-5 *1 (-848))) (-1735 (*1 *1 *1 *1) (-5 *1 (-848))) (-1744 (*1 *1 *1 *1) (-5 *1 (-848))) (-1744 (*1 *1 *1) (-5 *1 (-848))) (* (*1 *1 *1 *1) (-5 *1 (-848))) (-1752 (*1 *1 *1 *1) (-5 *1 (-848))) (** (*1 *1 *1 *1) (-5 *1 (-848))) (-3931 (*1 *1 *1 *1) (-5 *1 (-848))) (-3964 (*1 *1 *1 *1) (-5 *1 (-848))) (-3943 (*1 *1 *1 *1) (-5 *1 (-848))) (-3919 (*1 *1 *1 *1) (-5 *1 (-848))) (-3726 (*1 *1 *1 *1) (-5 *1 (-848))) (-3038 (*1 *1 *1 *1) (-5 *1 (-848))) (-4081 (*1 *1 *1) (-5 *1 (-848))) (-4268 (*1 *1 *1 *1) (-5 *1 (-848))) (-4268 (*1 *1 *1) (-5 *1 (-848)))) +(-13 (-1082) (-10 -8 (-15 -1869 ((-1246) $)) (-15 -2360 ($ (-1140))) (-15 -1415 ((-1246) (-1140))) (-15 -3701 ($ (-554))) (-15 -3701 ($ (-1158))) (-15 -3701 ($ (-1140))) (-15 -3701 ($ (-221))) (-15 -4240 ($)) (-15 -2008 ((-1140) (-1140))) (-15 -4026 ((-554) $)) (-15 -3323 ((-554) $)) (-15 -4026 ((-554))) (-15 -3323 ((-554))) (-15 -2878 ((-554) $)) (-15 -4187 ((-554) $)) (-15 -3997 ($ (-554))) (-15 -3466 ($ (-554))) (-15 -2135 ($ (-554) (-554))) (-15 -3311 ($ $ (-554))) (-15 -3324 ($ $ (-554))) (-15 -1608 ($ $ (-554))) (-15 -3311 ($ $)) (-15 -3324 ($ $)) (-15 -1608 ($ $)) (-15 -2112 ($ $ $)) (-15 -4089 ($ $ $)) (-15 -2112 ($ (-631 $))) (-15 -4089 ($ (-631 $))) (-15 -2997 ($ $ (-631 $))) (-15 -1631 ($ $ (-631 $))) (-15 -1631 ($ $ $ $)) (-15 -1813 ($ $ $)) (-15 -3870 ((-112) $)) (-15 -2064 ($ $ (-631 $))) (-15 -3942 ($ $)) (-15 -2068 ($ $ $)) (-15 -4125 ($ $)) (-15 -1899 ($ (-631 (-631 $)))) (-15 -2116 ($ $ $)) (-15 -2638 ($ $)) (-15 -2638 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -2972 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -1553 ($ $ (-758))) (-15 -1629 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -1968 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -3526 ($ $ $)) (-15 -2591 ($ $ (-631 $))) (-15 -1661 ($ $ (-631 $))) (-15 -3402 ($ $)) (-15 -3748 ($ $)) (-15 -3748 ($ $ (-758))) (-15 -3654 ($ $)) (-15 -3654 ($ $ (-758))) (-15 -4172 ($ $)) (-15 -3031 ($ $ $)) (-15 -1688 ($ $)) (-15 -1688 ($ $ $)) (-15 -1688 ($ $ $ $)) (-15 -2436 ($ $)) (-15 -2436 ($ $ $)) (-15 -2436 ($ $ $ $)) (-15 -1664 ($ $)) (-15 -1664 ($ $ $)) (-15 -1664 ($ $ $ $)) (-15 -2332 ($ $)) (-15 -2332 ($ (-631 $))) (-15 -2205 ($ $)) (-15 -2205 ($ (-631 $))) (-15 -1342 ($ $)) (-15 -1342 ($ (-631 $))) (-15 -1704 ($ (-631 $))) (-15 -4262 ($ (-631 $))) (-15 -4011 ($ (-631 $))) (-15 -2943 ($ (-631 $))) (-15 -1658 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -1676 ($ $ $)) (-15 -1686 ($ $ $)) (-15 -1697 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -1735 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1744 ($ $)) (-15 * ($ $ $)) (-15 -1752 ($ $ $)) (-15 ** ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3964 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -4081 ($ $)) (-15 -4268 ($ $ $)) (-15 -4268 ($ $)))) +((-1822 (((-1246) (-631 (-52))) 24)) (-2182 (((-1246) (-1140) (-848)) 14) (((-1246) (-848)) 9) (((-1246) (-1140)) 11))) +(((-849) (-10 -7 (-15 -2182 ((-1246) (-1140))) (-15 -2182 ((-1246) (-848))) (-15 -2182 ((-1246) (-1140) (-848))) (-15 -1822 ((-1246) (-631 (-52)))))) (T -849)) +((-1822 (*1 *2 *3) (-12 (-5 *3 (-631 (-52))) (-5 *2 (-1246)) (-5 *1 (-849)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-849)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-849)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-849))))) +(-10 -7 (-15 -2182 ((-1246) (-1140))) (-15 -2182 ((-1246) (-848))) (-15 -2182 ((-1246) (-1140) (-848))) (-15 -1822 ((-1246) (-631 (-52))))) +((-3062 (((-112) $ $) NIL)) (-1576 (((-3 $ "failed") (-1158)) 33)) (-1508 (((-758)) 31)) (-3353 (($) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3830 (((-906) $) 29)) (-1613 (((-1140) $) 39)) (-2717 (($ (-906)) 28)) (-2768 (((-1102) $) NIL)) (-2927 (((-1158) $) 13) (((-530) $) 19) (((-877 (-374)) $) 26) (((-877 (-554)) $) 22)) (-3075 (((-848) $) 16)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 36)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 35))) +(((-850 |#1|) (-13 (-830) (-602 (-1158)) (-602 (-530)) (-602 (-877 (-374))) (-602 (-877 (-554))) (-10 -8 (-15 -1576 ((-3 $ "failed") (-1158))))) (-631 (-1158))) (T -850)) +((-1576 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-850 *3)) (-14 *3 (-631 *2))))) +(-13 (-830) (-602 (-1158)) (-602 (-530)) (-602 (-877 (-374))) (-602 (-877 (-554))) (-10 -8 (-15 -1576 ((-3 $ "failed") (-1158))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-937 |#1|)) NIL) (((-937 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-2261 (((-758)) NIL)) (-1561 (((-1246) (-758)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-851 |#1| |#2| |#3| |#4|) (-13 (-1034) (-484 (-937 |#1|)) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758))))) (-1034) (-631 (-1158)) (-631 (-758)) (-758)) (T -851)) +((-1752 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-851 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-758))) (-14 *5 (-758)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *4 (-1034)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 *3)) (-14 *7 *3)))) +(-13 (-1034) (-484 (-937 |#1|)) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758))))) +((-2756 (((-3 (-172 |#3|) "failed") (-758) (-758) |#2| |#2|) 31)) (-3438 (((-3 (-402 |#3|) "failed") (-758) (-758) |#2| |#2|) 24))) +(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -3438 ((-3 (-402 |#3|) "failed") (-758) (-758) |#2| |#2|)) (-15 -2756 ((-3 (-172 |#3|) "failed") (-758) (-758) |#2| |#2|))) (-358) (-1232 |#1|) (-1217 |#1|)) (T -852)) +((-2756 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-172 *6)) (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5)))) (-3438 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-402 *6)) (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5))))) +(-10 -7 (-15 -3438 ((-3 (-402 |#3|) "failed") (-758) (-758) |#2| |#2|)) (-15 -2756 ((-3 (-172 |#3|) "failed") (-758) (-758) |#2| |#2|))) +((-3438 (((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|)) 28) (((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) 26))) +(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|)))) (-358) (-1158) |#1|) (T -853)) +((-3438 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5))) (-5 *1 (-853 *5 *6 *7)))) (-3438 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5))) (-5 *1 (-853 *5 *6 *7))))) +(-10 -7 (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (-15 -3438 ((-3 (-402 (-1214 |#2| |#1|)) "failed") (-758) (-758) (-1233 |#1| |#2| |#3|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $ (-554)) 63)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-2638 (($ (-1154 (-554)) (-554)) 62)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-2612 (($ $) 65)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-2342 (((-758) $) 70)) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2340 (((-554)) 67)) (-3859 (((-554) $) 66)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-4282 (($ $ (-554)) 69)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-1378 (((-1138 (-554)) $) 71)) (-1300 (($ $) 68)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-4333 (((-554) $ (-554)) 64)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-854 |#1|) (-138) (-554)) (T -854)) +((-1378 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-1138 (-554))))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-758)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-1300 (*1 *1 *1) (-4 *1 (-854 *2))) (-2340 (*1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-2612 (*1 *1 *1) (-4 *1 (-854 *2))) (-4333 (*1 *2 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-2282 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) (-2638 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *3 (-554)) (-4 *1 (-854 *4))))) +(-13 (-302) (-145) (-10 -8 (-15 -1378 ((-1138 (-554)) $)) (-15 -2342 ((-758) $)) (-15 -4282 ($ $ (-554))) (-15 -1300 ($ $)) (-15 -2340 ((-554))) (-15 -3859 ((-554) $)) (-15 -2612 ($ $)) (-15 -4333 ((-554) $ (-554))) (-15 -2282 ($ $ (-554))) (-15 -2638 ($ (-1154 (-554)) (-554))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $ (-554)) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-2638 (($ (-1154 (-554)) (-554)) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2612 (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-2342 (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2340 (((-554)) NIL)) (-3859 (((-554) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4282 (($ $ (-554)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1378 (((-1138 (-554)) $) NIL)) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-4333 (((-554) $ (-554)) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL))) +(((-855 |#1|) (-854 |#1|) (-554)) (T -855)) +NIL +(-854 |#1|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-855 |#1|) $) NIL (|has| (-855 |#1|) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-855 |#1|) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-855 |#1|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| (-855 |#1|) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-855 |#1|) (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| (-855 |#1|) (-1023 (-554))))) (-1668 (((-855 |#1|) $) NIL) (((-1158) $) NIL (|has| (-855 |#1|) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-855 |#1|) (-1023 (-554)))) (((-554) $) NIL (|has| (-855 |#1|) (-1023 (-554))))) (-1749 (($ $) NIL) (($ (-554) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-855 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-855 |#1|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-855 |#1|))) (|:| |vec| (-1241 (-855 |#1|)))) (-675 $) (-1241 $)) NIL) (((-675 (-855 |#1|)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-855 |#1|) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| (-855 |#1|) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-855 |#1|) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-855 |#1|) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-855 |#1|) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| (-855 |#1|) (-1133)))) (-4304 (((-112) $) NIL (|has| (-855 |#1|) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-855 |#1|) (-836)))) (-2706 (($ $ $) NIL (|has| (-855 |#1|) (-836)))) (-2879 (($ (-1 (-855 |#1|) (-855 |#1|)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-855 |#1|) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-855 |#1|) (-302)))) (-4339 (((-855 |#1|) $) NIL (|has| (-855 |#1|) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-855 |#1|) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-855 |#1|)) (-631 (-855 |#1|))) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-855 |#1|) (-855 |#1|)) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-289 (-855 |#1|))) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-631 (-289 (-855 |#1|)))) NIL (|has| (-855 |#1|) (-304 (-855 |#1|)))) (($ $ (-631 (-1158)) (-631 (-855 |#1|))) NIL (|has| (-855 |#1|) (-508 (-1158) (-855 |#1|)))) (($ $ (-1158) (-855 |#1|)) NIL (|has| (-855 |#1|) (-508 (-1158) (-855 |#1|))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-855 |#1|)) NIL (|has| (-855 |#1|) (-281 (-855 |#1|) (-855 |#1|))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| (-855 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-855 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1 (-855 |#1|) (-855 |#1|)) (-758)) NIL) (($ $ (-1 (-855 |#1|) (-855 |#1|))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-855 |#1|) $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| (-855 |#1|) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-855 |#1|) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-855 |#1|) (-602 (-530)))) (((-374) $) NIL (|has| (-855 |#1|) (-1007))) (((-221) $) NIL (|has| (-855 |#1|) (-1007)))) (-3691 (((-172 (-402 (-554))) $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-855 |#1|) (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL) (($ (-855 |#1|)) NIL) (($ (-1158)) NIL (|has| (-855 |#1|) (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-855 |#1|) (-894))) (|has| (-855 |#1|) (-143))))) (-2261 (((-758)) NIL)) (-2755 (((-855 |#1|) $) NIL (|has| (-855 |#1|) (-539)))) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ (-554)) NIL)) (-1700 (($ $) NIL (|has| (-855 |#1|) (-807)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $) NIL (|has| (-855 |#1|) (-229))) (($ $ (-758)) NIL (|has| (-855 |#1|) (-229))) (($ $ (-1158)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-855 |#1|) (-885 (-1158)))) (($ $ (-1 (-855 |#1|) (-855 |#1|)) (-758)) NIL) (($ $ (-1 (-855 |#1|) (-855 |#1|))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-855 |#1|) (-836)))) (-1752 (($ $ $) NIL) (($ (-855 |#1|) (-855 |#1|)) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-855 |#1|) $) NIL) (($ $ (-855 |#1|)) NIL))) +(((-856 |#1|) (-13 (-977 (-855 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) (-554)) (T -856)) +((-4333 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-856 *4)) (-14 *4 *3) (-5 *3 (-554)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-856 *3)) (-14 *3 (-554)))) (-1749 (*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-14 *2 (-554)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-856 *3)) (-14 *3 *2)))) +(-13 (-977 (-855 |#1|)) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 ((|#2| $) NIL (|has| |#2| (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| |#2| (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (|has| |#2| (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554))))) (-1668 ((|#2| $) NIL) (((-1158) $) NIL (|has| |#2| (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-554)))) (((-554) $) NIL (|has| |#2| (-1023 (-554))))) (-1749 (($ $) 31) (($ (-554) $) 32)) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 53)) (-3353 (($) NIL (|has| |#2| (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) NIL (|has| |#2| (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| |#2| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| |#2| (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 ((|#2| $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#2| (-1133)))) (-4304 (((-112) $) NIL (|has| |#2| (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 49)) (-3834 (($) NIL (|has| |#2| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| |#2| (-302)))) (-4339 ((|#2| $) NIL (|has| |#2| (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 |#2|) (-631 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-304 |#2|))) (($ $ (-289 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ (-631 (-289 |#2|))) NIL (|has| |#2| (-304 |#2|))) (($ $ (-631 (-1158)) (-631 |#2|)) NIL (|has| |#2| (-508 (-1158) |#2|))) (($ $ (-1158) |#2|) NIL (|has| |#2| (-508 (-1158) |#2|)))) (-2072 (((-758) $) NIL)) (-2064 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) NIL (|has| |#2| (-229))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3623 (($ $) NIL)) (-2822 ((|#2| $) NIL)) (-2927 (((-877 (-554)) $) NIL (|has| |#2| (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| |#2| (-602 (-877 (-374))))) (((-530) $) NIL (|has| |#2| (-602 (-530)))) (((-374) $) NIL (|has| |#2| (-1007))) (((-221) $) NIL (|has| |#2| (-1007)))) (-3691 (((-172 (-402 (-554))) $) 68)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-3075 (((-848) $) 87) (($ (-554)) 19) (($ $) NIL) (($ (-402 (-554))) 24) (($ |#2|) 18) (($ (-1158)) NIL (|has| |#2| (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2755 ((|#2| $) NIL (|has| |#2| (-539)))) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ (-554)) 60)) (-1700 (($ $) NIL (|has| |#2| (-807)))) (-2004 (($) 14 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $) NIL (|has| |#2| (-229))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) 35)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1744 (($ $) 39) (($ $ $) 41)) (-1735 (($ $ $) 37)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) 50)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 42) (($ $ $) 44) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-857 |#1| |#2|) (-13 (-977 |#2|) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) (-554) (-854 |#1|)) (T -857)) +((-4333 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-402 (-554))) (-5 *1 (-857 *4 *5)) (-5 *3 (-554)) (-4 *5 (-854 *4)))) (-3691 (*1 *2 *1) (-12 (-14 *3 (-554)) (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-857 *3 *4)) (-4 *4 (-854 *3)))) (-1749 (*1 *1 *1) (-12 (-14 *2 (-554)) (-5 *1 (-857 *2 *3)) (-4 *3 (-854 *2)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-14 *3 *2) (-5 *1 (-857 *3 *4)) (-4 *4 (-854 *3))))) +(-13 (-977 |#2|) (-10 -8 (-15 -4333 ((-402 (-554)) $ (-554))) (-15 -3691 ((-172 (-402 (-554))) $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)))) +((-3062 (((-112) $ $) NIL (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) (-2337 ((|#2| $) 12)) (-2746 (($ |#1| |#2|) 9)) (-1613 (((-1140) $) NIL (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) (-2768 (((-1102) $) NIL (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#1| $) 11)) (-3089 (($ |#1| |#2|) 10)) (-3075 (((-848) $) 18 (-3994 (-12 (|has| |#1| (-601 (-848))) (|has| |#2| (-601 (-848)))) (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082)))))) (-1658 (((-112) $ $) 22 (-12 (|has| |#1| (-1082)) (|has| |#2| (-1082)))))) +(((-858 |#1| |#2|) (-13 (-1195) (-10 -8 (IF (|has| |#1| (-601 (-848))) (IF (|has| |#2| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1082)) (IF (|has| |#2| (-1082)) (-6 (-1082)) |%noBranch|) |%noBranch|) (-15 -2746 ($ |#1| |#2|)) (-15 -3089 ($ |#1| |#2|)) (-15 -1539 (|#1| $)) (-15 -2337 (|#2| $)))) (-1195) (-1195)) (T -858)) +((-2746 (*1 *1 *2 *3) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195)))) (-1539 (*1 *2 *1) (-12 (-4 *2 (-1195)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1195)))) (-2337 (*1 *2 *1) (-12 (-4 *2 (-1195)) (-5 *1 (-858 *3 *2)) (-4 *3 (-1195))))) +(-13 (-1195) (-10 -8 (IF (|has| |#1| (-601 (-848))) (IF (|has| |#2| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1082)) (IF (|has| |#2| (-1082)) (-6 (-1082)) |%noBranch|) |%noBranch|) (-15 -2746 ($ |#1| |#2|)) (-15 -3089 ($ |#1| |#2|)) (-15 -1539 (|#1| $)) (-15 -2337 (|#2| $)))) +((-3062 (((-112) $ $) NIL)) (-2212 (((-554) $) 15)) (-3903 (($ (-155)) 11)) (-2604 (($ (-155)) 12)) (-1613 (((-1140) $) NIL)) (-3684 (((-155) $) 13)) (-2768 (((-1102) $) NIL)) (-4082 (($ (-155)) 9)) (-3695 (($ (-155)) 8)) (-3075 (((-848) $) 23) (($ (-155)) 16)) (-1951 (($ (-155)) 10)) (-1658 (((-112) $ $) NIL))) +(((-859) (-13 (-1082) (-10 -8 (-15 -3695 ($ (-155))) (-15 -4082 ($ (-155))) (-15 -1951 ($ (-155))) (-15 -3903 ($ (-155))) (-15 -2604 ($ (-155))) (-15 -3684 ((-155) $)) (-15 -2212 ((-554) $)) (-15 -3075 ($ (-155)))))) (T -859)) +((-3695 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-859)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))) +(-13 (-1082) (-10 -8 (-15 -3695 ($ (-155))) (-15 -4082 ($ (-155))) (-15 -1951 ($ (-155))) (-15 -3903 ($ (-155))) (-15 -2604 ($ (-155))) (-15 -3684 ((-155) $)) (-15 -2212 ((-554) $)) (-15 -3075 ($ (-155))))) +((-3075 (((-311 (-554)) (-402 (-937 (-48)))) 23) (((-311 (-554)) (-937 (-48))) 18))) +(((-860) (-10 -7 (-15 -3075 ((-311 (-554)) (-937 (-48)))) (-15 -3075 ((-311 (-554)) (-402 (-937 (-48))))))) (T -860)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 (-48)))) (-5 *2 (-311 (-554))) (-5 *1 (-860)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-937 (-48))) (-5 *2 (-311 (-554))) (-5 *1 (-860))))) +(-10 -7 (-15 -3075 ((-311 (-554)) (-937 (-48)))) (-15 -3075 ((-311 (-554)) (-402 (-937 (-48)))))) +((-2879 (((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)) 14))) +(((-861 |#1| |#2|) (-10 -7 (-15 -2879 ((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)))) (-1195) (-1195)) (T -861)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-862 *6)) (-5 *1 (-861 *5 *6))))) +(-10 -7 (-15 -2879 ((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)))) +((-3365 (($ |#1| |#1|) 8)) (-3905 ((|#1| $ (-758)) 10))) +(((-862 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) (-1195)) (T -862)) +((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-862 *2)) (-4 *2 (-1195)))) (-3365 (*1 *1 *2 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-1195))))) +(-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) +((-2879 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14))) +(((-863 |#1| |#2|) (-10 -7 (-15 -2879 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) (-1195) (-1195)) (T -863)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6))))) +(-10 -7 (-15 -2879 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) +((-3365 (($ |#1| |#1| |#1|) 8)) (-3905 ((|#1| $ (-758)) 10))) +(((-864 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) (-1195)) (T -864)) +((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-864 *2)) (-4 *2 (-1195)))) (-3365 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1195))))) +(-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) +((-3838 (((-631 (-1163)) (-1140)) 9))) +(((-865) (-10 -7 (-15 -3838 ((-631 (-1163)) (-1140))))) (T -865)) +((-3838 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-865))))) +(-10 -7 (-15 -3838 ((-631 (-1163)) (-1140)))) +((-2879 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 14))) +(((-866 |#1| |#2|) (-10 -7 (-15 -2879 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-1195) (-1195)) (T -866)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6))))) +(-10 -7 (-15 -2879 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) +((-2666 (($ |#1| |#1| |#1|) 8)) (-3905 ((|#1| $ (-758)) 10))) +(((-867 |#1|) (-10 -8 (-15 -2666 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) (-1195)) (T -867)) +((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-867 *2)) (-4 *2 (-1195)))) (-2666 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1195))))) +(-10 -8 (-15 -2666 ($ |#1| |#1| |#1|)) (-15 -3905 (|#1| $ (-758)))) +((-2264 (((-1138 (-631 (-554))) (-631 (-554)) (-1138 (-631 (-554)))) 32)) (-1774 (((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554))) 28)) (-3853 (((-1138 (-631 (-554))) (-631 (-554))) 41) (((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554))) 40)) (-2172 (((-1138 (-631 (-554))) (-554)) 42)) (-2904 (((-1138 (-631 (-554))) (-554) (-554)) 22) (((-1138 (-631 (-554))) (-554)) 16) (((-1138 (-631 (-554))) (-554) (-554) (-554)) 12)) (-1366 (((-1138 (-631 (-554))) (-1138 (-631 (-554)))) 26)) (-3992 (((-631 (-554)) (-631 (-554))) 25))) +(((-868) (-10 -7 (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554))) (-15 -3992 ((-631 (-554)) (-631 (-554)))) (-15 -1366 ((-1138 (-631 (-554))) (-1138 (-631 (-554))))) (-15 -1774 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -2264 ((-1138 (-631 (-554))) (-631 (-554)) (-1138 (-631 (-554))))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)))) (-15 -2172 ((-1138 (-631 (-554))) (-554))))) (T -868)) +((-2172 (*1 *2 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) (-3853 (*1 *2 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-631 (-554))))) (-3853 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-631 (-554))))) (-2264 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *3 (-631 (-554))) (-5 *1 (-868)))) (-1774 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-631 (-554))))) (-1366 (*1 *2 *2) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-868)))) (-2904 (*1 *2 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) (-2904 (*1 *2 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) (-2904 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554))))) +(-10 -7 (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554))) (-15 -2904 ((-1138 (-631 (-554))) (-554) (-554))) (-15 -3992 ((-631 (-554)) (-631 (-554)))) (-15 -1366 ((-1138 (-631 (-554))) (-1138 (-631 (-554))))) (-15 -1774 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -2264 ((-1138 (-631 (-554))) (-631 (-554)) (-1138 (-631 (-554))))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)) (-631 (-554)))) (-15 -3853 ((-1138 (-631 (-554))) (-631 (-554)))) (-15 -2172 ((-1138 (-631 (-554))) (-554)))) +((-2927 (((-877 (-374)) $) 9 (|has| |#1| (-602 (-877 (-374))))) (((-877 (-554)) $) 8 (|has| |#1| (-602 (-877 (-554))))))) +(((-869 |#1|) (-138) (-1195)) (T -869)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-602 (-877 (-554)))) (-6 (-602 (-877 (-554)))) |%noBranch|) (IF (|has| |t#1| (-602 (-877 (-374)))) (-6 (-602 (-877 (-374)))) |%noBranch|))) +(((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554))))) +((-3062 (((-112) $ $) NIL)) (-3180 (($) 14)) (-2737 (($ (-874 |#1| |#2|) (-874 |#1| |#3|)) 27)) (-4252 (((-874 |#1| |#3|) $) 16)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2664 (((-112) $) 22)) (-4156 (($) 19)) (-3075 (((-848) $) 30)) (-3572 (((-874 |#1| |#2|) $) 15)) (-1658 (((-112) $ $) 25))) +(((-870 |#1| |#2| |#3|) (-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -2737 ($ (-874 |#1| |#2|) (-874 |#1| |#3|))) (-15 -3572 ((-874 |#1| |#2|) $)) (-15 -4252 ((-874 |#1| |#3|) $)))) (-1082) (-1082) (-652 |#2|)) (T -870)) +((-2664 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-870 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-652 *4)))) (-4156 (*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-652 *3)))) (-3180 (*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-652 *3)))) (-2737 (*1 *1 *2 *3) (-12 (-5 *2 (-874 *4 *5)) (-5 *3 (-874 *4 *6)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-652 *5)) (-5 *1 (-870 *4 *5 *6)))) (-3572 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *4)) (-5 *1 (-870 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-652 *4)))) (-4252 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *5)) (-5 *1 (-870 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-652 *4))))) +(-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -2737 ($ (-874 |#1| |#2|) (-874 |#1| |#3|))) (-15 -3572 ((-874 |#1| |#2|) $)) (-15 -4252 ((-874 |#1| |#3|) $)))) +((-3062 (((-112) $ $) 7)) (-1655 (((-874 |#1| $) $ (-877 |#1|) (-874 |#1| $)) 13)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-871 |#1|) (-138) (-1082)) (T -871)) +((-1655 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-874 *4 *1)) (-5 *3 (-877 *4)) (-4 *1 (-871 *4)) (-4 *4 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -1655 ((-874 |t#1| $) $ (-877 |t#1|) (-874 |t#1| $))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2640 (((-112) (-631 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3966 (((-874 |#1| |#2|) |#2| |#3|) 43 (-12 (-4081 (|has| |#2| (-1023 (-1158)))) (-4081 (|has| |#2| (-1034))))) (((-631 (-289 (-937 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1034)) (-4081 (|has| |#2| (-1023 (-1158)))))) (((-631 (-289 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1023 (-1158)))) (((-870 |#1| |#2| (-631 |#2|)) (-631 |#2|) |#3|) 21))) +(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2640 ((-112) |#2| |#3|)) (-15 -2640 ((-112) (-631 |#2|) |#3|)) (-15 -3966 ((-870 |#1| |#2| (-631 |#2|)) (-631 |#2|) |#3|)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3966 ((-631 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1034)) (-15 -3966 ((-631 (-289 (-937 |#2|))) |#2| |#3|)) (-15 -3966 ((-874 |#1| |#2|) |#2| |#3|))))) (-1082) (-871 |#1|) (-602 (-877 |#1|))) (T -872)) +((-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-874 *5 *3)) (-5 *1 (-872 *5 *3 *4)) (-4081 (-4 *3 (-1023 (-1158)))) (-4081 (-4 *3 (-1034))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 (-937 *3)))) (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-1034)) (-4081 (-4 *3 (-1023 (-1158)))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 *3))) (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-1023 (-1158))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-871 *5)) (-5 *2 (-870 *5 *6 (-631 *6))) (-5 *1 (-872 *5 *6 *4)) (-5 *3 (-631 *6)) (-4 *4 (-602 (-877 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-4 *6 (-871 *5)) (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-872 *5 *6 *4)) (-4 *4 (-602 (-877 *5))))) (-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5)))))) +(-10 -7 (-15 -2640 ((-112) |#2| |#3|)) (-15 -2640 ((-112) (-631 |#2|) |#3|)) (-15 -3966 ((-870 |#1| |#2| (-631 |#2|)) (-631 |#2|) |#3|)) (IF (|has| |#2| (-1023 (-1158))) (-15 -3966 ((-631 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1034)) (-15 -3966 ((-631 (-289 (-937 |#2|))) |#2| |#3|)) (-15 -3966 ((-874 |#1| |#2|) |#2| |#3|))))) +((-2879 (((-874 |#1| |#3|) (-1 |#3| |#2|) (-874 |#1| |#2|)) 22))) +(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-874 |#1| |#3|) (-1 |#3| |#2|) (-874 |#1| |#2|)))) (-1082) (-1082) (-1082)) (T -873)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-874 *5 *6)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-874 *5 *7)) (-5 *1 (-873 *5 *6 *7))))) +(-10 -7 (-15 -2879 ((-874 |#1| |#3|) (-1 |#3| |#2|) (-874 |#1| |#2|)))) +((-3062 (((-112) $ $) NIL)) (-3382 (($ $ $) 39)) (-1819 (((-3 (-112) "failed") $ (-877 |#1|)) 36)) (-3180 (($) 12)) (-1613 (((-1140) $) NIL)) (-1387 (($ (-877 |#1|) |#2| $) 20)) (-2768 (((-1102) $) NIL)) (-4176 (((-3 |#2| "failed") (-877 |#1|) $) 50)) (-2664 (((-112) $) 15)) (-4156 (($) 13)) (-2344 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))) $) 25)) (-3089 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|)))) 23)) (-3075 (((-848) $) 44)) (-2648 (($ (-877 |#1|) |#2| $ |#2|) 48)) (-2925 (($ (-877 |#1|) |#2| $) 47)) (-1658 (((-112) $ $) 41))) +(((-874 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -3382 ($ $ $)) (-15 -4176 ((-3 |#2| "failed") (-877 |#1|) $)) (-15 -2925 ($ (-877 |#1|) |#2| $)) (-15 -1387 ($ (-877 |#1|) |#2| $)) (-15 -2648 ($ (-877 |#1|) |#2| $ |#2|)) (-15 -2344 ((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))))) (-15 -1819 ((-3 (-112) "failed") $ (-877 |#1|))))) (-1082) (-1082)) (T -874)) +((-2664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-4156 (*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3180 (*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3382 (*1 *1 *1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4176 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-4 *2 (-1082)) (-5 *1 (-874 *4 *2)))) (-2925 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1082)))) (-1387 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1082)))) (-2648 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1082)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4)))) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4)))) (-4 *4 (-1082)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)))) (-1819 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-874 *4 *5)) (-4 *5 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -2664 ((-112) $)) (-15 -4156 ($)) (-15 -3180 ($)) (-15 -3382 ($ $ $)) (-15 -4176 ((-3 |#2| "failed") (-877 |#1|) $)) (-15 -2925 ($ (-877 |#1|) |#2| $)) (-15 -1387 ($ (-877 |#1|) |#2| $)) (-15 -2648 ($ (-877 |#1|) |#2| $ |#2|)) (-15 -2344 ((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))) $)) (-15 -3089 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 |#2|))))) (-15 -1819 ((-3 (-112) "failed") $ (-877 |#1|))))) +((-3234 (((-877 |#1|) (-877 |#1|) (-631 (-1158)) (-1 (-112) (-631 |#2|))) 32) (((-877 |#1|) (-877 |#1|) (-631 (-1 (-112) |#2|))) 43) (((-877 |#1|) (-877 |#1|) (-1 (-112) |#2|)) 35)) (-1819 (((-112) (-631 |#2|) (-877 |#1|)) 40) (((-112) |#2| (-877 |#1|)) 36)) (-4322 (((-1 (-112) |#2|) (-877 |#1|)) 16)) (-2265 (((-631 |#2|) (-877 |#1|)) 24)) (-4228 (((-877 |#1|) (-877 |#1|) |#2|) 20))) +(((-875 |#1| |#2|) (-10 -7 (-15 -3234 ((-877 |#1|) (-877 |#1|) (-1 (-112) |#2|))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1 (-112) |#2|)))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1158)) (-1 (-112) (-631 |#2|)))) (-15 -4322 ((-1 (-112) |#2|) (-877 |#1|))) (-15 -1819 ((-112) |#2| (-877 |#1|))) (-15 -1819 ((-112) (-631 |#2|) (-877 |#1|))) (-15 -4228 ((-877 |#1|) (-877 |#1|) |#2|)) (-15 -2265 ((-631 |#2|) (-877 |#1|)))) (-1082) (-1195)) (T -875)) +((-2265 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-631 *5)) (-5 *1 (-875 *4 *5)) (-4 *5 (-1195)))) (-4228 (*1 *2 *2 *3) (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-875 *4 *3)) (-4 *3 (-1195)))) (-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *2 (-112)) (-5 *1 (-875 *5 *6)))) (-1819 (*1 *2 *3 *4) (-12 (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-875 *5 *3)) (-4 *3 (-1195)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-875 *4 *5)) (-4 *5 (-1195)))) (-3234 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-877 *5)) (-5 *3 (-631 (-1158))) (-5 *4 (-1 (-112) (-631 *6))) (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *1 (-875 *5 *6)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-877 *4)) (-5 *3 (-631 (-1 (-112) *5))) (-4 *4 (-1082)) (-4 *5 (-1195)) (-5 *1 (-875 *4 *5)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-877 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1082)) (-4 *5 (-1195)) (-5 *1 (-875 *4 *5))))) +(-10 -7 (-15 -3234 ((-877 |#1|) (-877 |#1|) (-1 (-112) |#2|))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1 (-112) |#2|)))) (-15 -3234 ((-877 |#1|) (-877 |#1|) (-631 (-1158)) (-1 (-112) (-631 |#2|)))) (-15 -4322 ((-1 (-112) |#2|) (-877 |#1|))) (-15 -1819 ((-112) |#2| (-877 |#1|))) (-15 -1819 ((-112) (-631 |#2|) (-877 |#1|))) (-15 -4228 ((-877 |#1|) (-877 |#1|) |#2|)) (-15 -2265 ((-631 |#2|) (-877 |#1|)))) +((-2879 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 19))) +(((-876 |#1| |#2|) (-10 -7 (-15 -2879 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1082) (-1082)) (T -876)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) +(-10 -7 (-15 -2879 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) +((-3062 (((-112) $ $) NIL)) (-1372 (($ $ (-631 (-52))) 64)) (-2405 (((-631 $) $) 118)) (-3028 (((-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))) $) 24)) (-3237 (((-112) $) 30)) (-1747 (($ $ (-631 (-1158)) (-52)) 25)) (-3403 (($ $ (-631 (-52))) 63)) (-2784 (((-3 |#1| "failed") $) 61) (((-3 (-1158) "failed") $) 140)) (-1668 ((|#1| $) 58) (((-1158) $) NIL)) (-1887 (($ $) 108)) (-4314 (((-112) $) 47)) (-4242 (((-631 (-52)) $) 45)) (-3576 (($ (-1158) (-112) (-112) (-112)) 65)) (-4281 (((-3 (-631 $) "failed") (-631 $)) 72)) (-1606 (((-112) $) 50)) (-3253 (((-112) $) 49)) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) 36)) (-3258 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-2920 (((-3 (-2 (|:| |val| $) (|:| -1407 $)) "failed") $) 83)) (-2433 (((-3 (-631 $) "failed") $) 33)) (-2001 (((-3 (-631 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 $))) "failed") $) 95)) (-3212 (((-3 (-631 $) "failed") $) 37)) (-3160 (((-3 (-2 (|:| |val| $) (|:| -1407 (-758))) "failed") $) 40)) (-2392 (((-112) $) 29)) (-2768 (((-1102) $) NIL)) (-3930 (((-112) $) 21)) (-1851 (((-112) $) 46)) (-2875 (((-631 (-52)) $) 111)) (-3320 (((-112) $) 48)) (-2064 (($ (-114) (-631 $)) 92)) (-2763 (((-758) $) 28)) (-1521 (($ $) 62)) (-2927 (($ (-631 $)) 59)) (-2798 (((-112) $) 26)) (-3075 (((-848) $) 53) (($ |#1|) 18) (($ (-1158)) 66)) (-4228 (($ $ (-52)) 110)) (-2004 (($) 91 T CONST)) (-2014 (($) 73 T CONST)) (-1658 (((-112) $ $) 79)) (-1752 (($ $ $) 100)) (-1735 (($ $ $) 104)) (** (($ $ (-758)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-877 |#1|) (-13 (-1082) (-1023 |#1|) (-1023 (-1158)) (-10 -8 (-15 0 ($) -2397) (-15 1 ($) -2397) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -2001 ((-3 (-631 $) "failed") $ (-114))) (-15 -2001 ((-3 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 $))) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |val| $) (|:| -1407 (-758))) "failed") $)) (-15 -3258 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3212 ((-3 (-631 $) "failed") $)) (-15 -2920 ((-3 (-2 (|:| |val| $) (|:| -1407 $)) "failed") $)) (-15 -2064 ($ (-114) (-631 $))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2763 ((-758) $)) (-15 -2927 ($ (-631 $))) (-15 -1521 ($ $)) (-15 -2392 ((-112) $)) (-15 -4314 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -3320 ((-112) $)) (-15 -3253 ((-112) $)) (-15 -1606 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -4242 ((-631 (-52)) $)) (-15 -3403 ($ $ (-631 (-52)))) (-15 -1372 ($ $ (-631 (-52)))) (-15 -3576 ($ (-1158) (-112) (-112) (-112))) (-15 -1747 ($ $ (-631 (-1158)) (-52))) (-15 -3028 ((-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))) $)) (-15 -3930 ((-112) $)) (-15 -1887 ($ $)) (-15 -4228 ($ $ (-52))) (-15 -2875 ((-631 (-52)) $)) (-15 -2405 ((-631 $) $)) (-15 -4281 ((-3 (-631 $) "failed") (-631 $))))) (-1082)) (T -877)) +((-2004 (*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2014 (*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2433 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3778 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2001 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-877 *4))) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-2001 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 (-877 *3))))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3160 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-758)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3258 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-877 *3)) (|:| |den| (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3212 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2920 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 (-877 *4))) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-1735 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-1752 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1521 (*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3403 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3576 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-112)) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-1747 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-52)) (-5 *1 (-877 *4)) (-4 *4 (-1082)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52)))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-1887 (*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) (-4281 (*1 *2 *2) (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(-13 (-1082) (-1023 |#1|) (-1023 (-1158)) (-10 -8 (-15 (-2004) ($) -2397) (-15 (-2014) ($) -2397) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -2001 ((-3 (-631 $) "failed") $ (-114))) (-15 -2001 ((-3 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 $))) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |val| $) (|:| -1407 (-758))) "failed") $)) (-15 -3258 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3212 ((-3 (-631 $) "failed") $)) (-15 -2920 ((-3 (-2 (|:| |val| $) (|:| -1407 $)) "failed") $)) (-15 -2064 ($ (-114) (-631 $))) (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758))) (-15 ** ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2763 ((-758) $)) (-15 -2927 ($ (-631 $))) (-15 -1521 ($ $)) (-15 -2392 ((-112) $)) (-15 -4314 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -3320 ((-112) $)) (-15 -3253 ((-112) $)) (-15 -1606 ((-112) $)) (-15 -1851 ((-112) $)) (-15 -4242 ((-631 (-52)) $)) (-15 -3403 ($ $ (-631 (-52)))) (-15 -1372 ($ $ (-631 (-52)))) (-15 -3576 ($ (-1158) (-112) (-112) (-112))) (-15 -1747 ($ $ (-631 (-1158)) (-52))) (-15 -3028 ((-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52))) $)) (-15 -3930 ((-112) $)) (-15 -1887 ($ $)) (-15 -4228 ($ $ (-52))) (-15 -2875 ((-631 (-52)) $)) (-15 -2405 ((-631 $) $)) (-15 -4281 ((-3 (-631 $) "failed") (-631 $))))) +((-3062 (((-112) $ $) NIL)) (-1654 (((-631 |#1|) $) 16)) (-3051 (((-112) $) 38)) (-2784 (((-3 (-658 |#1|) "failed") $) 43)) (-1668 (((-658 |#1|) $) 41)) (-1551 (($ $) 18)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2577 (((-758) $) 46)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-658 |#1|) $) 17)) (-3075 (((-848) $) 37) (($ (-658 |#1|)) 21) (((-806 |#1|) $) 27) (($ |#1|) 20)) (-2014 (($) 8 T CONST)) (-2407 (((-631 (-658 |#1|)) $) 23)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 11)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 49))) +(((-878 |#1|) (-13 (-836) (-1023 (-658 |#1|)) (-10 -8 (-15 1 ($) -2397) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ($ |#1|)) (-15 -1539 ((-658 |#1|) $)) (-15 -2577 ((-758) $)) (-15 -2407 ((-631 (-658 |#1|)) $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -1654 ((-631 |#1|) $)))) (-836)) (T -878)) +((-2014 (*1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-3075 (*1 *1 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-658 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-631 (-658 *3))) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836))))) +(-13 (-836) (-1023 (-658 |#1|)) (-10 -8 (-15 (-2014) ($) -2397) (-15 -3075 ((-806 |#1|) $)) (-15 -3075 ($ |#1|)) (-15 -1539 ((-658 |#1|) $)) (-15 -2577 ((-758) $)) (-15 -2407 ((-631 (-658 |#1|)) $)) (-15 -1551 ($ $)) (-15 -3051 ((-112) $)) (-15 -1654 ((-631 |#1|) $)))) +((-2748 ((|#1| |#1| |#1|) 19))) +(((-879 |#1| |#2|) (-10 -7 (-15 -2748 (|#1| |#1| |#1|))) (-1217 |#2|) (-1034)) (T -879)) +((-2748 (*1 *2 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-879 *2 *3)) (-4 *2 (-1217 *3))))) +(-10 -7 (-15 -2748 (|#1| |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-3037 (((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 14)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1275 (((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 13)) (-1658 (((-112) $ $) 6))) +(((-880) (-138)) (T -880)) +((-3037 (*1 *2 *3 *4) (-12 (-4 *1 (-880)) (-5 *3 (-1046)) (-5 *4 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) (-1275 (*1 *2 *3) (-12 (-4 *1 (-880)) (-5 *3 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *2 (-1020))))) +(-13 (-1082) (-10 -7 (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| |explanations| (-1140))) (-1046) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))) (-15 -1275 ((-1020) (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-2109 ((|#1| |#1| (-758)) 24)) (-3829 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3678 (((-3 (-2 (|:| -3311 |#1|) (|:| -3324 |#1|)) "failed") |#1| (-758) (-758)) 27) (((-631 |#1|) |#1|) 29))) +(((-881 |#1| |#2|) (-10 -7 (-15 -3678 ((-631 |#1|) |#1|)) (-15 -3678 ((-3 (-2 (|:| -3311 |#1|) (|:| -3324 |#1|)) "failed") |#1| (-758) (-758))) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2109 (|#1| |#1| (-758)))) (-1217 |#2|) (-358)) (T -881)) +((-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-5 *1 (-881 *2 *4)) (-4 *2 (-1217 *4)))) (-3829 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-881 *2 *3)) (-4 *2 (-1217 *3)))) (-3678 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-758)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-881 *3 *5)) (-4 *3 (-1217 *5)))) (-3678 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -3678 ((-631 |#1|) |#1|)) (-15 -3678 ((-3 (-2 (|:| -3311 |#1|) (|:| -3324 |#1|)) "failed") |#1| (-758) (-758))) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2109 (|#1| |#1| (-758)))) +((-1900 (((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140)) 96) (((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140) (-221)) 91) (((-1020) (-883) (-1046)) 83) (((-1020) (-883)) 84)) (-3037 (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883) (-1046)) 59) (((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883)) 61))) +(((-882) (-10 -7 (-15 -1900 ((-1020) (-883))) (-15 -1900 ((-1020) (-883) (-1046))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140) (-221))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883) (-1046))))) (T -882)) +((-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-882)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140))))) (-5 *1 (-882)))) (-1900 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140)) (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1020)) (-5 *1 (-882)))) (-1900 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140)) (-5 *8 (-221)) (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1020)) (-5 *1 (-882)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-882)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-1020)) (-5 *1 (-882))))) +(-10 -7 (-15 -1900 ((-1020) (-883))) (-15 -1900 ((-1020) (-883) (-1046))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140) (-221))) (-15 -1900 ((-1020) (-374) (-374) (-374) (-374) (-758) (-758) (-631 (-311 (-374))) (-631 (-631 (-311 (-374)))) (-1140))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883))) (-15 -3037 ((-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) (|:| |explanations| (-631 (-1140)))) (-883) (-1046)))) +((-3062 (((-112) $ $) NIL)) (-1668 (((-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))) $) 19)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 21) (($ (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) 18)) (-1658 (((-112) $ $) NIL))) +(((-883) (-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))) (-15 -1668 ((-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))) $))))) (T -883)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *1 (-883)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221)))) (-5 *1 (-883))))) +(-13 (-1082) (-10 -8 (-15 -3075 ($ (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))))) (-15 -1668 ((-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| (-631 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-758)) (|:| |boundaryType| (-554)) (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) (|:| |tol| (-221))) $)))) +((-1553 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) 10) (($ $ |#2| (-758)) 12) (($ $ (-631 |#2|) (-631 (-758))) 15)) (-1787 (($ $ |#2|) 16) (($ $ (-631 |#2|)) 18) (($ $ |#2| (-758)) 19) (($ $ (-631 |#2|) (-631 (-758))) 21))) +(((-884 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1787 (|#1| |#1| |#2| (-758))) (-15 -1787 (|#1| |#1| (-631 |#2|))) (-15 -1787 (|#1| |#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#2| (-758))) (-15 -1553 (|#1| |#1| (-631 |#2|))) (-15 -1553 (|#1| |#1| |#2|))) (-885 |#2|) (-1082)) (T -884)) +NIL +(-10 -8 (-15 -1787 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1787 (|#1| |#1| |#2| (-758))) (-15 -1787 (|#1| |#1| (-631 |#2|))) (-15 -1787 (|#1| |#1| |#2|)) (-15 -1553 (|#1| |#1| (-631 |#2|) (-631 (-758)))) (-15 -1553 (|#1| |#1| |#2| (-758))) (-15 -1553 (|#1| |#1| (-631 |#2|))) (-15 -1553 (|#1| |#1| |#2|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-1553 (($ $ |#1|) 42) (($ $ (-631 |#1|)) 41) (($ $ |#1| (-758)) 40) (($ $ (-631 |#1|) (-631 (-758))) 39)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#1|) 38) (($ $ (-631 |#1|)) 37) (($ $ |#1| (-758)) 36) (($ $ (-631 |#1|) (-631 (-758))) 35)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-885 |#1|) (-138) (-1082)) (T -885)) +((-1553 (*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4)) (-4 *4 (-1082)))) (-1787 (*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082)))) (-1787 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082)))) (-1787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4)) (-4 *4 (-1082))))) +(-13 (-1034) (-10 -8 (-15 -1553 ($ $ |t#1|)) (-15 -1553 ($ $ (-631 |t#1|))) (-15 -1553 ($ $ |t#1| (-758))) (-15 -1553 ($ $ (-631 |t#1|) (-631 (-758)))) (-15 -1787 ($ $ |t#1|)) (-15 -1787 ($ $ (-631 |t#1|))) (-15 -1787 ($ $ |t#1| (-758))) (-15 -1787 ($ $ (-631 |t#1|) (-631 (-758)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 26)) (-3019 (((-112) $ (-758)) NIL)) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2336 (($ $ $) NIL (|has| $ (-6 -4374)))) (-2035 (($ $ $) NIL (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) (($ $ "left" $) NIL (|has| $ (-6 -4374))) (($ $ "right" $) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-3324 (($ $) 25)) (-2584 (($ |#1|) 12) (($ $ $) 17)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-3311 (($ $) 23)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) 20)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1181 |#1|) $) 9) (((-848) $) 29 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 21 (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-886 |#1|) (-13 (-119 |#1|) (-601 (-1181 |#1|)) (-10 -8 (-15 -2584 ($ |#1|)) (-15 -2584 ($ $ $)))) (-1082)) (T -886)) +((-2584 (*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082)))) (-2584 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082))))) +(-13 (-119 |#1|) (-601 (-1181 |#1|)) (-10 -8 (-15 -2584 ($ |#1|)) (-15 -2584 ($ $ $)))) +((-1946 ((|#2| (-1124 |#1| |#2|)) 41))) +(((-887 |#1| |#2|) (-10 -7 (-15 -1946 (|#2| (-1124 |#1| |#2|)))) (-906) (-13 (-1034) (-10 -7 (-6 (-4375 "*"))))) (T -887)) +((-1946 (*1 *2 *3) (-12 (-5 *3 (-1124 *4 *2)) (-14 *4 (-906)) (-4 *2 (-13 (-1034) (-10 -7 (-6 (-4375 "*"))))) (-5 *1 (-887 *4 *2))))) +(-10 -7 (-15 -1946 (|#2| (-1124 |#1| |#2|)))) +((-3062 (((-112) $ $) 7)) (-4087 (($) 18 T CONST)) (-1320 (((-3 $ "failed") $) 15)) (-3973 (((-1084 |#1|) $ |#1|) 32)) (-3248 (((-112) $) 17)) (-4223 (($ $ $) 30 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-2706 (($ $ $) 29 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 24)) (-2768 (((-1102) $) 10)) (-2386 ((|#1| $ |#1|) 34)) (-2064 ((|#1| $ |#1|) 33)) (-3374 (($ (-631 (-631 |#1|))) 35)) (-3461 (($ (-631 |#1|)) 36)) (-3992 (($ $ $) 21)) (-1856 (($ $ $) 20)) (-3075 (((-848) $) 11)) (-2014 (($) 19 T CONST)) (-1708 (((-112) $ $) 27 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1686 (((-112) $ $) 26 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 28 (-3994 (|has| |#1| (-836)) (|has| |#1| (-363))))) (-1676 (((-112) $ $) 31)) (-1752 (($ $ $) 23)) (** (($ $ (-906)) 13) (($ $ (-758)) 16) (($ $ (-554)) 22)) (* (($ $ $) 14))) +(((-888 |#1|) (-138) (-1082)) (T -888)) +((-3461 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-888 *3)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-4 *1 (-888 *3)))) (-2386 (*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082)))) (-2064 (*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-1084 *3)))) (-1676 (*1 *2 *1 *1) (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-112))))) +(-13 (-467) (-10 -8 (-15 -3461 ($ (-631 |t#1|))) (-15 -3374 ($ (-631 (-631 |t#1|)))) (-15 -2386 (|t#1| $ |t#1|)) (-15 -2064 (|t#1| $ |t#1|)) (-15 -3973 ((-1084 |t#1|) $ |t#1|)) (-15 -1676 ((-112) $ $)) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-836)) |%noBranch|))) +(((-102) . T) ((-601 (-848)) . T) ((-467) . T) ((-713) . T) ((-836) -3994 (|has| |#1| (-836)) (|has| |#1| (-363))) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-2613 (((-631 (-631 (-758))) $) 108)) (-3208 (((-631 (-758)) (-890 |#1|) $) 130)) (-1818 (((-631 (-758)) (-890 |#1|) $) 131)) (-1974 (((-631 (-890 |#1|)) $) 98)) (-3353 (((-890 |#1|) $ (-554)) 103) (((-890 |#1|) $) 104)) (-4306 (($ (-631 (-890 |#1|))) 110)) (-2342 (((-758) $) 105)) (-3946 (((-1084 (-1084 |#1|)) $) 128)) (-3973 (((-1084 |#1|) $ |#1|) 121) (((-1084 (-1084 |#1|)) $ (-1084 |#1|)) 139) (((-1084 (-631 |#1|)) $ (-631 |#1|)) 142)) (-2304 (((-1084 |#1|) $) 101)) (-3068 (((-112) (-890 |#1|) $) 92)) (-1613 (((-1140) $) NIL)) (-3883 (((-1246) $) 95) (((-1246) $ (-554) (-554)) 143)) (-2768 (((-1102) $) NIL)) (-2201 (((-631 (-890 |#1|)) $) 96)) (-2064 (((-890 |#1|) $ (-758)) 99)) (-3308 (((-758) $) 106)) (-3075 (((-848) $) 119) (((-631 (-890 |#1|)) $) 23) (($ (-631 (-890 |#1|))) 109)) (-3462 (((-631 |#1|) $) 107)) (-1658 (((-112) $ $) 136)) (-1697 (((-112) $ $) 134)) (-1676 (((-112) $ $) 133))) +(((-889 |#1|) (-13 (-1082) (-10 -8 (-15 -3075 ((-631 (-890 |#1|)) $)) (-15 -2201 ((-631 (-890 |#1|)) $)) (-15 -2064 ((-890 |#1|) $ (-758))) (-15 -3353 ((-890 |#1|) $ (-554))) (-15 -3353 ((-890 |#1|) $)) (-15 -2342 ((-758) $)) (-15 -3308 ((-758) $)) (-15 -3462 ((-631 |#1|) $)) (-15 -1974 ((-631 (-890 |#1|)) $)) (-15 -2613 ((-631 (-631 (-758))) $)) (-15 -3075 ($ (-631 (-890 |#1|)))) (-15 -4306 ($ (-631 (-890 |#1|)))) (-15 -3973 ((-1084 |#1|) $ |#1|)) (-15 -3946 ((-1084 (-1084 |#1|)) $)) (-15 -3973 ((-1084 (-1084 |#1|)) $ (-1084 |#1|))) (-15 -3973 ((-1084 (-631 |#1|)) $ (-631 |#1|))) (-15 -3068 ((-112) (-890 |#1|) $)) (-15 -3208 ((-631 (-758)) (-890 |#1|) $)) (-15 -1818 ((-631 (-758)) (-890 |#1|) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -1676 ((-112) $ $)) (-15 -1697 ((-112) $ $)) (-15 -3883 ((-1246) $)) (-15 -3883 ((-1246) $ (-554) (-554))))) (-1082)) (T -889)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4)) (-4 *4 (-1082)))) (-3353 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4)) (-4 *4 (-1082)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-890 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-758)))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3)))) (-4306 (*1 *1 *2) (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1084 (-1084 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-889 *4)) (-5 *3 (-1084 *4)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-631 *4))) (-5 *1 (-889 *4)) (-5 *3 (-631 *4)))) (-3068 (*1 *2 *3 *1) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-889 *4)))) (-3208 (*1 *2 *3 *1) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758))) (-5 *1 (-889 *4)))) (-1818 (*1 *2 *3 *1) (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758))) (-5 *1 (-889 *4)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-1676 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-1697 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-889 *4)) (-4 *4 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -3075 ((-631 (-890 |#1|)) $)) (-15 -2201 ((-631 (-890 |#1|)) $)) (-15 -2064 ((-890 |#1|) $ (-758))) (-15 -3353 ((-890 |#1|) $ (-554))) (-15 -3353 ((-890 |#1|) $)) (-15 -2342 ((-758) $)) (-15 -3308 ((-758) $)) (-15 -3462 ((-631 |#1|) $)) (-15 -1974 ((-631 (-890 |#1|)) $)) (-15 -2613 ((-631 (-631 (-758))) $)) (-15 -3075 ($ (-631 (-890 |#1|)))) (-15 -4306 ($ (-631 (-890 |#1|)))) (-15 -3973 ((-1084 |#1|) $ |#1|)) (-15 -3946 ((-1084 (-1084 |#1|)) $)) (-15 -3973 ((-1084 (-1084 |#1|)) $ (-1084 |#1|))) (-15 -3973 ((-1084 (-631 |#1|)) $ (-631 |#1|))) (-15 -3068 ((-112) (-890 |#1|) $)) (-15 -3208 ((-631 (-758)) (-890 |#1|) $)) (-15 -1818 ((-631 (-758)) (-890 |#1|) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -1676 ((-112) $ $)) (-15 -1697 ((-112) $ $)) (-15 -3883 ((-1246) $)) (-15 -3883 ((-1246) $ (-554) (-554))))) +((-3062 (((-112) $ $) NIL)) (-3303 (((-631 $) (-631 $)) 77)) (-4219 (((-554) $) 60)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-2342 (((-758) $) 58)) (-3973 (((-1084 |#1|) $ |#1|) 49)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) 63)) (-1617 (((-758) $) 61)) (-2304 (((-1084 |#1|) $) 42)) (-4223 (($ $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-2706 (($ $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-3510 (((-2 (|:| |preimage| (-631 |#1|)) (|:| |image| (-631 |#1|))) $) 37)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 93)) (-2768 (((-1102) $) NIL)) (-4109 (((-1084 |#1|) $) 100 (|has| |#1| (-363)))) (-1795 (((-112) $) 59)) (-2386 ((|#1| $ |#1|) 47)) (-2064 ((|#1| $ |#1|) 94)) (-3308 (((-758) $) 44)) (-3374 (($ (-631 (-631 |#1|))) 85)) (-2831 (((-956) $) 53)) (-3461 (($ (-631 |#1|)) 21)) (-3992 (($ $ $) NIL)) (-1856 (($ $ $) NIL)) (-4265 (($ (-631 (-631 |#1|))) 39)) (-2391 (($ (-631 (-631 |#1|))) 88)) (-3045 (($ (-631 |#1|)) 96)) (-3075 (((-848) $) 84) (($ (-631 (-631 |#1|))) 66) (($ (-631 |#1|)) 67)) (-2014 (($) 16 T CONST)) (-1708 (((-112) $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-1658 (((-112) $ $) 45)) (-1697 (((-112) $ $) NIL (-3994 (|has| |#1| (-363)) (|has| |#1| (-836))))) (-1676 (((-112) $ $) 65)) (-1752 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ $ $) 22))) +(((-890 |#1|) (-13 (-888 |#1|) (-10 -8 (-15 -3510 ((-2 (|:| |preimage| (-631 |#1|)) (|:| |image| (-631 |#1|))) $)) (-15 -4265 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 |#1|))) (-15 -2391 ($ (-631 (-631 |#1|)))) (-15 -3308 ((-758) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -2831 ((-956) $)) (-15 -2342 ((-758) $)) (-15 -1617 ((-758) $)) (-15 -4219 ((-554) $)) (-15 -1795 ((-112) $)) (-15 -3273 ((-112) $)) (-15 -3303 ((-631 $) (-631 $))) (IF (|has| |#1| (-363)) (-15 -4109 ((-1084 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -3045 ($ (-631 |#1|))) (IF (|has| |#1| (-363)) (-15 -3045 ($ (-631 |#1|))) |%noBranch|)))) (-1082)) (T -890)) +((-3510 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-631 *3)) (|:| |image| (-631 *3)))) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-4265 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-956)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-3303 (*1 *2 *2) (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-363)) (-4 *3 (-1082)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3))))) +(-13 (-888 |#1|) (-10 -8 (-15 -3510 ((-2 (|:| |preimage| (-631 |#1|)) (|:| |image| (-631 |#1|))) $)) (-15 -4265 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 (-631 |#1|)))) (-15 -3075 ($ (-631 |#1|))) (-15 -2391 ($ (-631 (-631 |#1|)))) (-15 -3308 ((-758) $)) (-15 -2304 ((-1084 |#1|) $)) (-15 -2831 ((-956) $)) (-15 -2342 ((-758) $)) (-15 -1617 ((-758) $)) (-15 -4219 ((-554) $)) (-15 -1795 ((-112) $)) (-15 -3273 ((-112) $)) (-15 -3303 ((-631 $) (-631 $))) (IF (|has| |#1| (-363)) (-15 -4109 ((-1084 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -3045 ($ (-631 |#1|))) (IF (|has| |#1| (-363)) (-15 -3045 ($ (-631 |#1|))) |%noBranch|)))) +((-4142 (((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|)) 128)) (-2774 ((|#1|) 77)) (-3963 (((-413 (-1154 |#4|)) (-1154 |#4|)) 137)) (-2174 (((-413 (-1154 |#4|)) (-631 |#3|) (-1154 |#4|)) 69)) (-3197 (((-413 (-1154 |#4|)) (-1154 |#4|)) 147)) (-3540 (((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|) |#3|) 92))) +(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|))) (-15 -3197 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -3963 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -2774 (|#1|)) (-15 -3540 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|) |#3|)) (-15 -2174 ((-413 (-1154 |#4|)) (-631 |#3|) (-1154 |#4|)))) (-894) (-780) (-836) (-934 |#1| |#2| |#3|)) (T -891)) +((-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *7)) (-4 *7 (-836)) (-4 *5 (-894)) (-4 *6 (-780)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-413 (-1154 *8))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-1154 *8)))) (-3540 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7)) (-4 *7 (-934 *5 *6 *4)) (-4 *5 (-894)) (-4 *6 (-780)) (-4 *4 (-836)) (-5 *1 (-891 *5 *6 *4 *7)))) (-2774 (*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894)) (-5 *1 (-891 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) (-4142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-891 *4 *5 *6 *7))))) +(-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|))) (-15 -3197 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -3963 ((-413 (-1154 |#4|)) (-1154 |#4|))) (-15 -2774 (|#1|)) (-15 -3540 ((-3 (-631 (-1154 |#4|)) "failed") (-631 (-1154 |#4|)) (-1154 |#4|) |#3|)) (-15 -2174 ((-413 (-1154 |#4|)) (-631 |#3|) (-1154 |#4|)))) +((-4142 (((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|)) 36)) (-2774 ((|#1|) 54)) (-3963 (((-413 (-1154 |#2|)) (-1154 |#2|)) 102)) (-2174 (((-413 (-1154 |#2|)) (-1154 |#2|)) 90)) (-3197 (((-413 (-1154 |#2|)) (-1154 |#2|)) 113))) +(((-892 |#1| |#2|) (-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|))) (-15 -3197 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -3963 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -2774 (|#1|)) (-15 -2174 ((-413 (-1154 |#2|)) (-1154 |#2|)))) (-894) (-1217 |#1|)) (T -892)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))) (-2774 (*1 *2) (-12 (-4 *2 (-894)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1217 *2)))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5)))) (-4142 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-894)) (-5 *1 (-892 *4 *5))))) +(-10 -7 (-15 -4142 ((-3 (-631 (-1154 |#2|)) "failed") (-631 (-1154 |#2|)) (-1154 |#2|))) (-15 -3197 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -3963 ((-413 (-1154 |#2|)) (-1154 |#2|))) (-15 -2774 (|#1|)) (-15 -2174 ((-413 (-1154 |#2|)) (-1154 |#2|)))) +((-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 41)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 18)) (-2084 (((-3 $ "failed") $) 35))) +(((-893 |#1|) (-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)))) (-894)) (T -893)) +NIL +(-10 -8 (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 61)) (-3278 (($ $) 52)) (-1565 (((-413 $) $) 53)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 58)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3289 (((-112) $) 54)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-1290 (((-413 (-1154 $)) (-1154 $)) 59)) (-3082 (((-413 (-1154 $)) (-1154 $)) 60)) (-2270 (((-413 $) $) 51)) (-3919 (((-3 $ "failed") $ $) 43)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 57 (|has| $ (-143)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2084 (((-3 $ "failed") $) 56 (|has| $ (-143)))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-894) (-138)) (T -894)) +((-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-894)))) (-4308 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))) (-3082 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))) (-1290 (*1 *2 *3) (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1)))) (-1625 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 (-1154 *1))) (-5 *3 (-1154 *1)) (-4 *1 (-894)))) (-4158 (*1 *2 *3) (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-143)) (-4 *1 (-894)) (-5 *2 (-1241 *1)))) (-2084 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-894))))) +(-13 (-1199) (-10 -8 (-15 -4308 ((-413 (-1154 $)) (-1154 $))) (-15 -3082 ((-413 (-1154 $)) (-1154 $))) (-15 -1290 ((-413 (-1154 $)) (-1154 $))) (-15 -3077 ((-1154 $) (-1154 $) (-1154 $))) (-15 -1625 ((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $))) (IF (|has| $ (-143)) (PROGN (-15 -4158 ((-3 (-1241 $) "failed") (-675 $))) (-15 -2084 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3718 (((-112) $) NIL)) (-1924 (((-758)) NIL)) (-1612 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-1508 (((-758)) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 $ "failed") $) NIL)) (-1668 (($ $) NIL)) (-1651 (($ (-1241 $)) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3157 (($) NIL)) (-2754 (((-112) $) NIL)) (-4122 (($ $) NIL) (($ $ (-758)) NIL)) (-3289 (((-112) $) NIL)) (-2342 (((-820 (-906)) $) NIL) (((-906) $) NIL)) (-3248 (((-112) $) NIL)) (-3227 (($) NIL (|has| $ (-363)))) (-2693 (((-112) $) NIL (|has| $ (-363)))) (-3274 (($ $ (-906)) NIL (|has| $ (-363))) (($ $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-3361 (((-1154 $) $ (-906)) NIL (|has| $ (-363))) (((-1154 $) $) NIL)) (-3830 (((-906) $) NIL)) (-3933 (((-1154 $) $) NIL (|has| $ (-363)))) (-3025 (((-3 (-1154 $) "failed") $ $) NIL (|has| $ (-363))) (((-1154 $) $) NIL (|has| $ (-363)))) (-2300 (($ $ (-1154 $)) NIL (|has| $ (-363)))) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL T CONST)) (-2717 (($ (-906)) NIL)) (-2070 (((-112) $) NIL)) (-2768 (((-1102) $) NIL)) (-4137 (($) NIL (|has| $ (-363)))) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL)) (-2270 (((-413 $) $) NIL)) (-2365 (((-906)) NIL) (((-820 (-906))) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3316 (((-3 (-758) "failed") $ $) NIL) (((-758) $) NIL)) (-3330 (((-133)) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3308 (((-906) $) NIL) (((-820 (-906)) $) NIL)) (-4318 (((-1154 $)) NIL)) (-3944 (($) NIL)) (-2288 (($) NIL (|has| $ (-363)))) (-3656 (((-675 $) (-1241 $)) NIL) (((-1241 $) $) NIL)) (-2927 (((-554) $) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2261 (((-758)) NIL)) (-3782 (((-1241 $) (-906)) NIL) (((-1241 $)) NIL)) (-1909 (((-112) $ $) NIL)) (-3536 (((-112) $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1811 (($ $ (-758)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-895 |#1|) (-13 (-344) (-324 $) (-602 (-554))) (-906)) (T -895)) +NIL +(-13 (-344) (-324 $) (-602 (-554))) +((-1496 (((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)) 79)) (-3877 (((-112) (-331 |#2| |#3| |#4| |#5|)) 17)) (-2342 (((-3 (-758) "failed") (-331 |#2| |#3| |#4| |#5|)) 15))) +(((-896 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -3877 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)))) (-13 (-836) (-546) (-1023 (-554))) (-425 |#1|) (-1217 |#2|) (-1217 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -896)) +((-1496 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *8))) (-5 *1 (-896 *4 *5 *6 *7 *8)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-112)) (-5 *1 (-896 *4 *5 *6 *7 *8)))) (-2342 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-758)) (-5 *1 (-896 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -3877 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)))) +((-1496 (((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#3|)) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)) 56)) (-3877 (((-112) (-331 (-402 (-554)) |#1| |#2| |#3|)) 16)) (-2342 (((-3 (-758) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)) 14))) +(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -3877 ((-112) (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#3|)) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)))) (-1217 (-402 (-554))) (-1217 (-402 |#1|)) (-337 (-402 (-554)) |#1| |#2|)) (T -897)) +((-1496 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *6))) (-5 *1 (-897 *4 *5 *6)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-897 *4 *5 *6)))) (-2342 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-758)) (-5 *1 (-897 *4 *5 *6))))) +(-10 -7 (-15 -2342 ((-3 (-758) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -3877 ((-112) (-331 (-402 (-554)) |#1| |#2| |#3|))) (-15 -1496 ((-3 (-2 (|:| -2342 (-758)) (|:| -2367 |#3|)) "failed") (-331 (-402 (-554)) |#1| |#2| |#3|)))) +((-1312 ((|#2| |#2|) 26)) (-3199 (((-554) (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))))) 15)) (-2996 (((-906) (-554)) 35)) (-2095 (((-554) |#2|) 42)) (-3634 (((-554) |#2|) 21) (((-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))) |#1|) 20))) +(((-898 |#1| |#2|) (-10 -7 (-15 -2996 ((-906) (-554))) (-15 -3634 ((-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))) |#1|)) (-15 -3634 ((-554) |#2|)) (-15 -3199 ((-554) (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))))) (-15 -2095 ((-554) |#2|)) (-15 -1312 (|#2| |#2|))) (-1217 (-402 (-554))) (-1217 (-402 |#1|))) (T -898)) +((-1312 (*1 *2 *2) (-12 (-4 *3 (-1217 (-402 (-554)))) (-5 *1 (-898 *3 *2)) (-4 *2 (-1217 (-402 *3))))) (-2095 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1217 (-402 *4))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))))) (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1217 (-402 *4))))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1217 (-402 *4))))) (-3634 (*1 *2 *3) (-12 (-4 *3 (-1217 (-402 (-554)))) (-5 *2 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))) (-5 *1 (-898 *3 *4)) (-4 *4 (-1217 (-402 *3))))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-554)) (-4 *4 (-1217 (-402 *3))) (-5 *2 (-906)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1217 (-402 *4)))))) +(-10 -7 (-15 -2996 ((-906) (-554))) (-15 -3634 ((-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))) |#1|)) (-15 -3634 ((-554) |#2|)) (-15 -3199 ((-554) (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))))) (-15 -2095 ((-554) |#2|)) (-15 -1312 (|#2| |#2|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 ((|#1| $) 81)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-3964 (($ $ $) NIL)) (-1320 (((-3 $ "failed") $) 75)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2832 (($ |#1| (-413 |#1|)) 73)) (-1298 (((-1154 |#1|) |#1| |#1|) 41)) (-1802 (($ $) 49)) (-3248 (((-112) $) NIL)) (-2479 (((-554) $) 78)) (-3301 (($ $ (-554)) 80)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3261 ((|#1| $) 77)) (-4123 (((-413 |#1|) $) 76)) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) 74)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3891 (($ $) 39)) (-3075 (((-848) $) 99) (($ (-554)) 54) (($ $) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 31) (((-402 |#1|) $) 59) (($ (-402 (-413 |#1|))) 67)) (-2261 (((-758)) 52)) (-1909 (((-112) $ $) NIL)) (-2004 (($) 23 T CONST)) (-2014 (($) 12 T CONST)) (-1658 (((-112) $ $) 68)) (-1752 (($ $ $) NIL)) (-1744 (($ $) 88) (($ $ $) NIL)) (-1735 (($ $ $) 38)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 90) (($ $ $) 37) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-899 |#1|) (-13 (-358) (-38 |#1|) (-10 -8 (-15 -3075 ((-402 |#1|) $)) (-15 -3075 ($ (-402 (-413 |#1|)))) (-15 -3891 ($ $)) (-15 -4123 ((-413 |#1|) $)) (-15 -3261 (|#1| $)) (-15 -3301 ($ $ (-554))) (-15 -2479 ((-554) $)) (-15 -1298 ((-1154 |#1|) |#1| |#1|)) (-15 -1802 ($ $)) (-15 -2832 ($ |#1| (-413 |#1|))) (-15 -3831 (|#1| $)))) (-302)) (T -899)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-899 *3)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-3261 (*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-1298 (*1 *2 *3 *3) (-12 (-5 *2 (-1154 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) (-1802 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-899 *2)))) (-3831 (*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302))))) +(-13 (-358) (-38 |#1|) (-10 -8 (-15 -3075 ((-402 |#1|) $)) (-15 -3075 ($ (-402 (-413 |#1|)))) (-15 -3891 ($ $)) (-15 -4123 ((-413 |#1|) $)) (-15 -3261 (|#1| $)) (-15 -3301 ($ $ (-554))) (-15 -2479 ((-554) $)) (-15 -1298 ((-1154 |#1|) |#1| |#1|)) (-15 -1802 ($ $)) (-15 -2832 ($ |#1| (-413 |#1|))) (-15 -3831 (|#1| $)))) +((-2832 (((-52) (-937 |#1|) (-413 (-937 |#1|)) (-1158)) 17) (((-52) (-402 (-937 |#1|)) (-1158)) 18))) +(((-900 |#1|) (-10 -7 (-15 -2832 ((-52) (-402 (-937 |#1|)) (-1158))) (-15 -2832 ((-52) (-937 |#1|) (-413 (-937 |#1|)) (-1158)))) (-13 (-302) (-145))) (T -900)) +((-2832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-413 (-937 *6))) (-5 *5 (-1158)) (-5 *3 (-937 *6)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *6)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *5))))) +(-10 -7 (-15 -2832 ((-52) (-402 (-937 |#1|)) (-1158))) (-15 -2832 ((-52) (-937 |#1|) (-413 (-937 |#1|)) (-1158)))) +((-3843 ((|#4| (-631 |#4|)) 120) (((-1154 |#4|) (-1154 |#4|) (-1154 |#4|)) 66) ((|#4| |#4| |#4|) 119)) (-2510 (((-1154 |#4|) (-631 (-1154 |#4|))) 113) (((-1154 |#4|) (-1154 |#4|) (-1154 |#4|)) 49) ((|#4| (-631 |#4|)) 54) ((|#4| |#4| |#4|) 83))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2510 (|#4| |#4| |#4|)) (-15 -2510 (|#4| (-631 |#4|))) (-15 -2510 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2510 ((-1154 |#4|) (-631 (-1154 |#4|)))) (-15 -3843 (|#4| |#4| |#4|)) (-15 -3843 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -3843 (|#4| (-631 |#4|)))) (-780) (-836) (-302) (-934 |#3| |#1| |#2|)) (T -901)) +((-3843 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)))) (-3843 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6)))) (-3843 (*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-631 (-1154 *7))) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-1154 *7)) (-5 *1 (-901 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) (-2510 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)))) (-2510 (*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4))))) +(-10 -7 (-15 -2510 (|#4| |#4| |#4|)) (-15 -2510 (|#4| (-631 |#4|))) (-15 -2510 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -2510 ((-1154 |#4|) (-631 (-1154 |#4|)))) (-15 -3843 (|#4| |#4| |#4|)) (-15 -3843 ((-1154 |#4|) (-1154 |#4|) (-1154 |#4|))) (-15 -3843 (|#4| (-631 |#4|)))) +((-2918 (((-889 (-554)) (-956)) 23) (((-889 (-554)) (-631 (-554))) 20)) (-1858 (((-889 (-554)) (-631 (-554))) 48) (((-889 (-554)) (-906)) 49)) (-1867 (((-889 (-554))) 24)) (-4207 (((-889 (-554))) 38) (((-889 (-554)) (-631 (-554))) 37)) (-3367 (((-889 (-554))) 36) (((-889 (-554)) (-631 (-554))) 35)) (-1730 (((-889 (-554))) 34) (((-889 (-554)) (-631 (-554))) 33)) (-2649 (((-889 (-554))) 32) (((-889 (-554)) (-631 (-554))) 31)) (-3522 (((-889 (-554))) 30) (((-889 (-554)) (-631 (-554))) 29)) (-1323 (((-889 (-554))) 40) (((-889 (-554)) (-631 (-554))) 39)) (-1815 (((-889 (-554)) (-631 (-554))) 52) (((-889 (-554)) (-906)) 53)) (-3693 (((-889 (-554)) (-631 (-554))) 50) (((-889 (-554)) (-906)) 51)) (-3229 (((-889 (-554)) (-631 (-554))) 46) (((-889 (-554)) (-906)) 47)) (-1595 (((-889 (-554)) (-631 (-906))) 43))) +(((-902) (-10 -7 (-15 -1858 ((-889 (-554)) (-906))) (-15 -1858 ((-889 (-554)) (-631 (-554)))) (-15 -3229 ((-889 (-554)) (-906))) (-15 -3229 ((-889 (-554)) (-631 (-554)))) (-15 -1595 ((-889 (-554)) (-631 (-906)))) (-15 -3693 ((-889 (-554)) (-906))) (-15 -3693 ((-889 (-554)) (-631 (-554)))) (-15 -1815 ((-889 (-554)) (-906))) (-15 -1815 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)))) (-15 -2649 ((-889 (-554)) (-631 (-554)))) (-15 -2649 ((-889 (-554)))) (-15 -1730 ((-889 (-554)) (-631 (-554)))) (-15 -1730 ((-889 (-554)))) (-15 -3367 ((-889 (-554)) (-631 (-554)))) (-15 -3367 ((-889 (-554)))) (-15 -4207 ((-889 (-554)) (-631 (-554)))) (-15 -4207 ((-889 (-554)))) (-15 -1323 ((-889 (-554)) (-631 (-554)))) (-15 -1323 ((-889 (-554)))) (-15 -1867 ((-889 (-554)))) (-15 -2918 ((-889 (-554)) (-631 (-554)))) (-15 -2918 ((-889 (-554)) (-956))))) (T -902)) +((-2918 (*1 *2 *3) (-12 (-5 *3 (-956)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1867 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1323 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-4207 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3367 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1730 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-2649 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3522 (*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-631 (-906))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(-10 -7 (-15 -1858 ((-889 (-554)) (-906))) (-15 -1858 ((-889 (-554)) (-631 (-554)))) (-15 -3229 ((-889 (-554)) (-906))) (-15 -3229 ((-889 (-554)) (-631 (-554)))) (-15 -1595 ((-889 (-554)) (-631 (-906)))) (-15 -3693 ((-889 (-554)) (-906))) (-15 -3693 ((-889 (-554)) (-631 (-554)))) (-15 -1815 ((-889 (-554)) (-906))) (-15 -1815 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)) (-631 (-554)))) (-15 -3522 ((-889 (-554)))) (-15 -2649 ((-889 (-554)) (-631 (-554)))) (-15 -2649 ((-889 (-554)))) (-15 -1730 ((-889 (-554)) (-631 (-554)))) (-15 -1730 ((-889 (-554)))) (-15 -3367 ((-889 (-554)) (-631 (-554)))) (-15 -3367 ((-889 (-554)))) (-15 -4207 ((-889 (-554)) (-631 (-554)))) (-15 -4207 ((-889 (-554)))) (-15 -1323 ((-889 (-554)) (-631 (-554)))) (-15 -1323 ((-889 (-554)))) (-15 -1867 ((-889 (-554)))) (-15 -2918 ((-889 (-554)) (-631 (-554)))) (-15 -2918 ((-889 (-554)) (-956)))) +((-1834 (((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))) 12)) (-2824 (((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))) 11))) +(((-903 |#1|) (-10 -7 (-15 -2824 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1834 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))))) (-446)) (T -903)) +((-1834 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446)) (-5 *1 (-903 *4)))) (-2824 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446)) (-5 *1 (-903 *4))))) +(-10 -7 (-15 -2824 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -1834 ((-631 (-937 |#1|)) (-631 (-937 |#1|)) (-631 (-1158))))) +((-3075 (((-311 |#1|) (-471)) 16))) +(((-904 |#1|) (-10 -7 (-15 -3075 ((-311 |#1|) (-471)))) (-13 (-836) (-546))) (T -904)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-904 *4)) (-4 *4 (-13 (-836) (-546)))))) +(-10 -7 (-15 -3075 ((-311 |#1|) (-471)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-905) (-138)) (T -905)) +((-3148 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-2 (|:| -1490 (-631 *1)) (|:| -4137 *1))) (-5 *3 (-631 *1)))) (-2431 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-905))))) +(-13 (-446) (-10 -8 (-15 -3148 ((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $))) (-15 -2431 ((-3 (-631 $) "failed") (-631 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2510 (($ $ $) NIL)) (-3075 (((-848) $) NIL)) (-2014 (($) NIL T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ $ $) NIL))) +(((-906) (-13 (-781) (-713) (-10 -8 (-15 -2510 ($ $ $)) (-6 (-4375 "*"))))) (T -906)) +((-2510 (*1 *1 *1 *1) (-5 *1 (-906)))) +(-13 (-781) (-713) (-10 -8 (-15 -2510 ($ $ $)) (-6 (-4375 "*")))) +((-1276 ((|#2| (-631 |#1|) (-631 |#1|)) 24))) +(((-907 |#1| |#2|) (-10 -7 (-15 -1276 (|#2| (-631 |#1|) (-631 |#1|)))) (-358) (-1217 |#1|)) (T -907)) +((-1276 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-4 *2 (-1217 *4)) (-5 *1 (-907 *4 *2))))) +(-10 -7 (-15 -1276 (|#2| (-631 |#1|) (-631 |#1|)))) +((-3523 (((-1154 |#2|) (-631 |#2|) (-631 |#2|)) 17) (((-1214 |#1| |#2|) (-1214 |#1| |#2|) (-631 |#2|) (-631 |#2|)) 13))) +(((-908 |#1| |#2|) (-10 -7 (-15 -3523 ((-1214 |#1| |#2|) (-1214 |#1| |#2|) (-631 |#2|) (-631 |#2|))) (-15 -3523 ((-1154 |#2|) (-631 |#2|) (-631 |#2|)))) (-1158) (-358)) (T -908)) +((-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-358)) (-5 *2 (-1154 *5)) (-5 *1 (-908 *4 *5)) (-14 *4 (-1158)))) (-3523 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1214 *4 *5)) (-5 *3 (-631 *5)) (-14 *4 (-1158)) (-4 *5 (-358)) (-5 *1 (-908 *4 *5))))) +(-10 -7 (-15 -3523 ((-1214 |#1| |#2|) (-1214 |#1| |#2|) (-631 |#2|) (-631 |#2|))) (-15 -3523 ((-1154 |#2|) (-631 |#2|) (-631 |#2|)))) +((-3423 (((-554) (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140)) 139)) (-3066 ((|#4| |#4|) 155)) (-3299 (((-631 (-402 (-937 |#1|))) (-631 (-1158))) 118)) (-1457 (((-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-631 (-631 |#4|)) (-758) (-758) (-554)) 75)) (-2595 (((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-631 |#4|)) 59)) (-1948 (((-675 |#4|) (-675 |#4|) (-631 |#4|)) 55)) (-2724 (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140)) 151)) (-3791 (((-554) (-675 |#4|) (-906) (-1140)) 132) (((-554) (-675 |#4|) (-631 (-1158)) (-906) (-1140)) 131) (((-554) (-675 |#4|) (-631 |#4|) (-906) (-1140)) 130) (((-554) (-675 |#4|) (-1140)) 127) (((-554) (-675 |#4|) (-631 (-1158)) (-1140)) 126) (((-554) (-675 |#4|) (-631 |#4|) (-1140)) 125) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-906)) 124) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)) (-906)) 123) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|) (-906)) 122) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|)) 120) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158))) 119) (((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|)) 115)) (-4235 ((|#4| (-937 |#1|)) 68)) (-1567 (((-112) (-631 |#4|) (-631 (-631 |#4|))) 152)) (-4096 (((-631 (-631 (-554))) (-554) (-554)) 129)) (-2409 (((-631 (-631 |#4|)) (-631 (-631 |#4|))) 88)) (-1305 (((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|))))) 86)) (-3716 (((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|))))) 85)) (-2238 (((-112) (-631 (-937 |#1|))) 17) (((-112) (-631 |#4|)) 13)) (-2150 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-631 |#4|)) (|:| |n0| (-631 |#4|))) (-631 |#4|) (-631 |#4|)) 71)) (-1513 (((-631 |#4|) |#4|) 49)) (-3878 (((-631 (-402 (-937 |#1|))) (-631 |#4|)) 114) (((-675 (-402 (-937 |#1|))) (-675 |#4|)) 56) (((-402 (-937 |#1|)) |#4|) 111)) (-4337 (((-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))))) (|:| |rgsz| (-554))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-758) (-1140) (-554)) 93)) (-2507 (((-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))) (-675 |#4|) (-758)) 84)) (-1430 (((-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-675 |#4|) (-758)) 101)) (-1391 (((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| -2866 (-675 (-402 (-937 |#1|)))) (|:| |vec| (-631 (-402 (-937 |#1|)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) 48))) +(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-906))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-906) (-1140))) (-15 -3423 ((-554) (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -2724 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -4337 ((-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))))) (|:| |rgsz| (-554))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-758) (-1140) (-554))) (-15 -3878 ((-402 (-937 |#1|)) |#4|)) (-15 -3878 ((-675 (-402 (-937 |#1|))) (-675 |#4|))) (-15 -3878 ((-631 (-402 (-937 |#1|))) (-631 |#4|))) (-15 -3299 ((-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -4235 (|#4| (-937 |#1|))) (-15 -2150 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-631 |#4|)) (|:| |n0| (-631 |#4|))) (-631 |#4|) (-631 |#4|))) (-15 -2507 ((-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))) (-675 |#4|) (-758))) (-15 -2595 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-631 |#4|))) (-15 -1391 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| -2866 (-675 (-402 (-937 |#1|)))) (|:| |vec| (-631 (-402 (-937 |#1|)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (-15 -1513 ((-631 |#4|) |#4|)) (-15 -3716 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -1305 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -2409 ((-631 (-631 |#4|)) (-631 (-631 |#4|)))) (-15 -4096 ((-631 (-631 (-554))) (-554) (-554))) (-15 -1567 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -1430 ((-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-675 |#4|) (-758))) (-15 -1948 ((-675 |#4|) (-675 |#4|) (-631 |#4|))) (-15 -1457 ((-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-631 (-631 |#4|)) (-758) (-758) (-554))) (-15 -3066 (|#4| |#4|)) (-15 -2238 ((-112) (-631 |#4|))) (-15 -2238 ((-112) (-631 (-937 |#1|))))) (-13 (-302) (-145)) (-13 (-836) (-602 (-1158))) (-780) (-934 |#1| |#3| |#2|)) (T -909)) +((-2238 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158)))) (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-934 *3 *5 *4)))) (-1457 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-5 *4 (-675 *12)) (-5 *5 (-631 (-402 (-937 *9)))) (-5 *6 (-631 (-631 *12))) (-5 *7 (-758)) (-5 *8 (-554)) (-4 *9 (-13 (-302) (-145))) (-4 *12 (-934 *9 *11 *10)) (-4 *10 (-13 (-836) (-602 (-1158)))) (-4 *11 (-780)) (-5 *2 (-2 (|:| |eqzro| (-631 *12)) (|:| |neqzro| (-631 *12)) (|:| |wcond| (-631 (-937 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *9)))) (|:| -3782 (-631 (-1241 (-402 (-937 *9))))))))) (-5 *1 (-909 *9 *10 *11 *12)))) (-1948 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *7)) (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-758)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |det| *8) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (-5 *1 (-909 *5 *6 *7 *8)))) (-1567 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *5 *6 *7 *8)))) (-4096 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-631 (-554)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *6 *5)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-631 (-631 *6))) (-4 *6 (-934 *3 *5 *4)) (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158)))) (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| *7) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 *7))))) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758)) (-5 *1 (-909 *4 *5 *6 *7)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| *7) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 *7))))) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1513 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-934 *4 *6 *5)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2866 (-675 (-402 (-937 *4)))) (|:| |vec| (-631 (-402 (-937 *4)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))) (-5 *3 (-631 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-934 *4 *6 *5)) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| *8) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 *8))))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-758)))) (-2150 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-4 *7 (-934 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-631 *7)) (|:| |n0| (-631 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-934 *4 *6 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-675 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)))) (-3878 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-402 (-937 *4))) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-934 *4 *6 *5)))) (-4337 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-675 *11)) (-5 *4 (-631 (-402 (-937 *8)))) (-5 *5 (-758)) (-5 *6 (-1140)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-934 *8 *10 *9)) (-4 *9 (-13 (-836) (-602 (-1158)))) (-4 *10 (-780)) (-5 *2 (-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 *11)) (|:| |neqzro| (-631 *11)) (|:| |wcond| (-631 (-937 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *8)))) (|:| -3782 (-631 (-1241 (-402 (-937 *8)))))))))) (|:| |rgsz| (-554)))) (-5 *1 (-909 *8 *9 *10 *11)) (-5 *7 (-554)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7)) (|:| |wcond| (-631 (-937 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))))) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *4 (-1140)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-934 *5 *7 *6)) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-906)) (-5 *5 (-1140)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 (-1158))) (-5 *5 (-906)) (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *7 *8 *9 *10)))) (-3791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 *10)) (-5 *5 (-906)) (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *7 *8 *9 *10)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-1140)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-1140)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 *9)) (-5 *5 (-1140)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-906)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-906)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9)) (|:| |wcond| (-631 (-937 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *6)))) (|:| -3782 (-631 (-1241 (-402 (-937 *6)))))))))) (-5 *1 (-909 *6 *7 *8 *9)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *9)) (-5 *5 (-906)) (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9)) (|:| |wcond| (-631 (-937 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *6)))) (|:| -3782 (-631 (-1241 (-402 (-937 *6)))))))))) (-5 *1 (-909 *6 *7 *8 *9)) (-5 *4 (-631 *9)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7)) (|:| |wcond| (-631 (-937 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))))) (-5 *1 (-909 *4 *5 *6 *7)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-5 *4 (-631 (-1158))) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *1 (-909 *5 *6 *7 *8)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-631 (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) (|:| |wcond| (-631 (-937 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-631 *8))))) +(-10 -7 (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 |#4|) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-631 (-1158)) (-906))) (-15 -3791 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-675 |#4|) (-906))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 |#4|) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-631 (-1158)) (-906) (-1140))) (-15 -3791 ((-554) (-675 |#4|) (-906) (-1140))) (-15 -3423 ((-554) (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -2724 ((-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|))))))))) (-1140))) (-15 -4337 ((-2 (|:| |rgl| (-631 (-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))))) (|:| |rgsz| (-554))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-758) (-1140) (-554))) (-15 -3878 ((-402 (-937 |#1|)) |#4|)) (-15 -3878 ((-675 (-402 (-937 |#1|))) (-675 |#4|))) (-15 -3878 ((-631 (-402 (-937 |#1|))) (-631 |#4|))) (-15 -3299 ((-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -4235 (|#4| (-937 |#1|))) (-15 -2150 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-631 |#4|)) (|:| |n0| (-631 |#4|))) (-631 |#4|) (-631 |#4|))) (-15 -2507 ((-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))) (-675 |#4|) (-758))) (-15 -2595 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-631 |#4|))) (-15 -1391 ((-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))) (-2 (|:| -2866 (-675 (-402 (-937 |#1|)))) (|:| |vec| (-631 (-402 (-937 |#1|)))) (|:| -4186 (-758)) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (-15 -1513 ((-631 |#4|) |#4|)) (-15 -3716 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -1305 ((-758) (-631 (-2 (|:| -4186 (-758)) (|:| |eqns| (-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))))) (|:| |fgb| (-631 |#4|)))))) (-15 -2409 ((-631 (-631 |#4|)) (-631 (-631 |#4|)))) (-15 -4096 ((-631 (-631 (-554))) (-554) (-554))) (-15 -1567 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -1430 ((-631 (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) (-675 |#4|) (-758))) (-15 -1948 ((-675 |#4|) (-675 |#4|) (-631 |#4|))) (-15 -1457 ((-2 (|:| |eqzro| (-631 |#4|)) (|:| |neqzro| (-631 |#4|)) (|:| |wcond| (-631 (-937 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1241 (-402 (-937 |#1|)))) (|:| -3782 (-631 (-1241 (-402 (-937 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554)))) (-675 |#4|) (-631 (-402 (-937 |#1|))) (-631 (-631 |#4|)) (-758) (-758) (-554))) (-15 -3066 (|#4| |#4|)) (-15 -2238 ((-112) (-631 |#4|))) (-15 -2238 ((-112) (-631 (-937 |#1|))))) +((-1663 (((-912) |#1| (-1158)) 17) (((-912) |#1| (-1158) (-1076 (-221))) 21)) (-3650 (((-912) |#1| |#1| (-1158) (-1076 (-221))) 19) (((-912) |#1| (-1158) (-1076 (-221))) 15))) +(((-910 |#1|) (-10 -7 (-15 -3650 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -3650 ((-912) |#1| |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158)))) (-602 (-530))) (T -910)) +((-1663 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) (-3650 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) (-3650 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) (-5 *1 (-910 *3)) (-4 *3 (-602 (-530)))))) +(-10 -7 (-15 -3650 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -3650 ((-912) |#1| |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158) (-1076 (-221)))) (-15 -1663 ((-912) |#1| (-1158)))) +((-2208 (($ $ (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 70)) (-2839 (((-1076 (-221)) $) 40)) (-2829 (((-1076 (-221)) $) 39)) (-2818 (((-1076 (-221)) $) 38)) (-1332 (((-631 (-631 (-221))) $) 43)) (-2374 (((-1076 (-221)) $) 41)) (-2815 (((-554) (-554)) 32)) (-1477 (((-554) (-554)) 28)) (-2139 (((-554) (-554)) 30)) (-1729 (((-112) (-112)) 35)) (-3073 (((-554)) 31)) (-3792 (($ $ (-1076 (-221))) 73) (($ $) 74)) (-3533 (($ (-1 (-928 (-221)) (-221)) (-1076 (-221))) 78) (($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 79)) (-3650 (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 82) (($ $ (-1076 (-221))) 76)) (-2065 (((-554)) 36)) (-1321 (((-554)) 27)) (-1947 (((-554)) 29)) (-3787 (((-631 (-631 (-928 (-221)))) $) 94)) (-2735 (((-112) (-112)) 37)) (-3075 (((-848) $) 93)) (-1291 (((-112)) 34))) +(((-911) (-13 (-959) (-10 -8 (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -1332 ((-631 (-631 (-221))) $)) (-15 -1321 ((-554))) (-15 -1477 ((-554) (-554))) (-15 -1947 ((-554))) (-15 -2139 ((-554) (-554))) (-15 -3073 ((-554))) (-15 -2815 ((-554) (-554))) (-15 -1291 ((-112))) (-15 -1729 ((-112) (-112))) (-15 -2065 ((-554))) (-15 -2735 ((-112) (-112)))))) (T -911)) +((-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3533 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3650 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3650 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-911)))) (-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-2208 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-3792 (*1 *1 *1) (-5 *1 (-911))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-911)))) (-1321 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-1947 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-2139 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-3073 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-1291 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911)))) (-2065 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911))))) +(-13 (-959) (-10 -8 (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -1332 ((-631 (-631 (-221))) $)) (-15 -1321 ((-554))) (-15 -1477 ((-554) (-554))) (-15 -1947 ((-554))) (-15 -2139 ((-554) (-554))) (-15 -3073 ((-554))) (-15 -2815 ((-554) (-554))) (-15 -1291 ((-112))) (-15 -1729 ((-112) (-112))) (-15 -2065 ((-554))) (-15 -2735 ((-112) (-112))))) +((-2208 (($ $ (-1076 (-221))) 70) (($ $ (-1076 (-221)) (-1076 (-221))) 71)) (-2829 (((-1076 (-221)) $) 44)) (-2818 (((-1076 (-221)) $) 43)) (-2374 (((-1076 (-221)) $) 45)) (-3547 (((-554) (-554)) 37)) (-3379 (((-554) (-554)) 33)) (-3774 (((-554) (-554)) 35)) (-3604 (((-112) (-112)) 39)) (-3902 (((-554)) 36)) (-3792 (($ $ (-1076 (-221))) 74) (($ $) 75)) (-3533 (($ (-1 (-928 (-221)) (-221)) (-1076 (-221))) 84) (($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 85)) (-1663 (($ (-1 (-221) (-221)) (-1076 (-221))) 92) (($ (-1 (-221) (-221))) 95)) (-3650 (($ (-1 (-221) (-221)) (-1076 (-221))) 79) (($ (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221))) 80) (($ (-631 (-1 (-221) (-221))) (-1076 (-221))) 87) (($ (-631 (-1 (-221) (-221))) (-1076 (-221)) (-1076 (-221))) 88) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221))) 82) (($ $ (-1076 (-221))) 76)) (-2387 (((-112) $) 40)) (-4331 (((-554)) 41)) (-2477 (((-554)) 32)) (-4179 (((-554)) 34)) (-3787 (((-631 (-631 (-928 (-221)))) $) 23)) (-1778 (((-112) (-112)) 42)) (-3075 (((-848) $) 106)) (-3036 (((-112)) 38))) +(((-912) (-13 (-940) (-10 -8 (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2387 ((-112) $)) (-15 -2208 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -2477 ((-554))) (-15 -3379 ((-554) (-554))) (-15 -4179 ((-554))) (-15 -3774 ((-554) (-554))) (-15 -3902 ((-554))) (-15 -3547 ((-554) (-554))) (-15 -3036 ((-112))) (-15 -3604 ((-112) (-112))) (-15 -4331 ((-554))) (-15 -1778 ((-112) (-112)))))) (T -912)) +((-3650 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *3) (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-3533 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-1663 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) (-5 *1 (-912)))) (-1663 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-912)))) (-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-2208 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-3792 (*1 *1 *1) (-5 *1 (-912))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) (-2477 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-4179 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3902 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-3036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912)))) (-4331 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912)))) (-1778 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912))))) +(-13 (-940) (-10 -8 (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)))) (-15 -3650 ($ (-631 (-1 (-221) (-221))) (-1076 (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)))) (-15 -3650 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)))) (-15 -3533 ($ (-1 (-928 (-221)) (-221)) (-1076 (-221)) (-1076 (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)) (-1076 (-221)))) (-15 -1663 ($ (-1 (-221) (-221)))) (-15 -3650 ($ $ (-1076 (-221)))) (-15 -2387 ((-112) $)) (-15 -2208 ($ $ (-1076 (-221)))) (-15 -2208 ($ $ (-1076 (-221)) (-1076 (-221)))) (-15 -3792 ($ $ (-1076 (-221)))) (-15 -3792 ($ $)) (-15 -2374 ((-1076 (-221)) $)) (-15 -2477 ((-554))) (-15 -3379 ((-554) (-554))) (-15 -4179 ((-554))) (-15 -3774 ((-554) (-554))) (-15 -3902 ((-554))) (-15 -3547 ((-554) (-554))) (-15 -3036 ((-112))) (-15 -3604 ((-112) (-112))) (-15 -4331 ((-554))) (-15 -1778 ((-112) (-112))))) +((-3204 (((-631 (-1076 (-221))) (-631 (-631 (-928 (-221))))) 24))) +(((-913) (-10 -7 (-15 -3204 ((-631 (-1076 (-221))) (-631 (-631 (-928 (-221)))))))) (T -913)) +((-3204 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-631 (-1076 (-221)))) (-5 *1 (-913))))) +(-10 -7 (-15 -3204 ((-631 (-1076 (-221))) (-631 (-631 (-928 (-221))))))) +((-4106 ((|#2| |#2|) 26)) (-3143 ((|#2| |#2|) 27)) (-2397 ((|#2| |#2|) 25)) (-1849 ((|#2| |#2| (-1140)) 24))) +(((-914 |#1| |#2|) (-10 -7 (-15 -1849 (|#2| |#2| (-1140))) (-15 -2397 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -3143 (|#2| |#2|))) (-836) (-425 |#1|)) (T -914)) +((-3143 (*1 *2 *2) (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) (-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-836)) (-5 *1 (-914 *4 *2)) (-4 *2 (-425 *4))))) +(-10 -7 (-15 -1849 (|#2| |#2| (-1140))) (-15 -2397 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -3143 (|#2| |#2|))) +((-4106 (((-311 (-554)) (-1158)) 16)) (-3143 (((-311 (-554)) (-1158)) 14)) (-2397 (((-311 (-554)) (-1158)) 12)) (-1849 (((-311 (-554)) (-1158) (-1140)) 19))) +(((-915) (-10 -7 (-15 -1849 ((-311 (-554)) (-1158) (-1140))) (-15 -2397 ((-311 (-554)) (-1158))) (-15 -4106 ((-311 (-554)) (-1158))) (-15 -3143 ((-311 (-554)) (-1158))))) (T -915)) +((-3143 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1140)) (-5 *2 (-311 (-554))) (-5 *1 (-915))))) +(-10 -7 (-15 -1849 ((-311 (-554)) (-1158) (-1140))) (-15 -2397 ((-311 (-554)) (-1158))) (-15 -4106 ((-311 (-554)) (-1158))) (-15 -3143 ((-311 (-554)) (-1158)))) +((-1655 (((-874 |#1| |#3|) |#2| (-877 |#1|) (-874 |#1| |#3|)) 25)) (-2962 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-916 |#1| |#2| |#3|) (-10 -7 (-15 -2962 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1655 ((-874 |#1| |#3|) |#2| (-877 |#1|) (-874 |#1| |#3|)))) (-1082) (-871 |#1|) (-13 (-1082) (-1023 |#2|))) (T -916)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-13 (-1082) (-1023 *3))) (-4 *3 (-871 *5)) (-5 *1 (-916 *5 *3 *6)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1082) (-1023 *5))) (-4 *5 (-871 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-916 *4 *5 *6))))) +(-10 -7 (-15 -2962 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1655 ((-874 |#1| |#3|) |#2| (-877 |#1|) (-874 |#1| |#3|)))) +((-1655 (((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)) 30))) +(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-1082) (-13 (-546) (-836) (-871 |#1|)) (-13 (-425 |#2|) (-602 (-877 |#1|)) (-871 |#1|) (-1023 (-600 $)))) (T -917)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-425 *6) (-602 *4) (-871 *5) (-1023 (-600 $)))) (-5 *4 (-877 *5)) (-4 *6 (-13 (-546) (-836) (-871 *5))) (-5 *1 (-917 *5 *6 *3))))) +(-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) +((-1655 (((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|)) 13))) +(((-918 |#1|) (-10 -7 (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|)))) (-539)) (T -918)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 (-554) *3)) (-5 *4 (-877 (-554))) (-4 *3 (-539)) (-5 *1 (-918 *3))))) +(-10 -7 (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|)))) +((-1655 (((-874 |#1| |#2|) (-600 |#2|) (-877 |#1|) (-874 |#1| |#2|)) 54))) +(((-919 |#1| |#2|) (-10 -7 (-15 -1655 ((-874 |#1| |#2|) (-600 |#2|) (-877 |#1|) (-874 |#1| |#2|)))) (-1082) (-13 (-836) (-1023 (-600 $)) (-602 (-877 |#1|)) (-871 |#1|))) (T -919)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *6)) (-5 *3 (-600 *6)) (-4 *5 (-1082)) (-4 *6 (-13 (-836) (-1023 (-600 $)) (-602 *4) (-871 *5))) (-5 *4 (-877 *5)) (-5 *1 (-919 *5 *6))))) +(-10 -7 (-15 -1655 ((-874 |#1| |#2|) (-600 |#2|) (-877 |#1|) (-874 |#1| |#2|)))) +((-1655 (((-870 |#1| |#2| |#3|) |#3| (-877 |#1|) (-870 |#1| |#2| |#3|)) 15))) +(((-920 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-870 |#1| |#2| |#3|) |#3| (-877 |#1|) (-870 |#1| |#2| |#3|)))) (-1082) (-871 |#1|) (-652 |#2|)) (T -920)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-870 *5 *6 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-4 *6 (-871 *5)) (-4 *3 (-652 *6)) (-5 *1 (-920 *5 *6 *3))))) +(-10 -7 (-15 -1655 ((-870 |#1| |#2| |#3|) |#3| (-877 |#1|) (-870 |#1| |#2| |#3|)))) +((-1655 (((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|)) 17 (|has| |#3| (-871 |#1|))) (((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|) (-1 (-874 |#1| |#5|) |#3| (-877 |#1|) (-874 |#1| |#5|))) 16))) +(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|) (-1 (-874 |#1| |#5|) |#3| (-877 |#1|) (-874 |#1| |#5|)))) (IF (|has| |#3| (-871 |#1|)) (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|))) |%noBranch|)) (-1082) (-780) (-836) (-13 (-1034) (-836) (-871 |#1|)) (-13 (-934 |#4| |#2| |#3|) (-602 (-877 |#1|)))) (T -921)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-934 *8 *6 *7) (-602 *4))) (-5 *4 (-877 *5)) (-4 *7 (-871 *5)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-13 (-1034) (-836) (-871 *5))) (-5 *1 (-921 *5 *6 *7 *8 *3)))) (-1655 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-874 *6 *3) *8 (-877 *6) (-874 *6 *3))) (-4 *8 (-836)) (-5 *2 (-874 *6 *3)) (-5 *4 (-877 *6)) (-4 *6 (-1082)) (-4 *3 (-13 (-934 *9 *7 *8) (-602 *4))) (-4 *7 (-780)) (-4 *9 (-13 (-1034) (-836) (-871 *6))) (-5 *1 (-921 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|) (-1 (-874 |#1| |#5|) |#3| (-877 |#1|) (-874 |#1| |#5|)))) (IF (|has| |#3| (-871 |#1|)) (-15 -1655 ((-874 |#1| |#5|) |#5| (-877 |#1|) (-874 |#1| |#5|))) |%noBranch|)) +((-3234 ((|#2| |#2| (-631 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -3234 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3234 (|#2| |#2| (-631 (-1 (-112) |#3|))))) (-836) (-425 |#1|) (-1195)) (T -922)) +((-3234 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) (-4 *4 (-836)) (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4)))) (-3234 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1195)) (-4 *4 (-836)) (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4))))) +(-10 -7 (-15 -3234 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3234 (|#2| |#2| (-631 (-1 (-112) |#3|))))) +((-3234 (((-311 (-554)) (-1158) (-631 (-1 (-112) |#1|))) 18) (((-311 (-554)) (-1158) (-1 (-112) |#1|)) 15))) +(((-923 |#1|) (-10 -7 (-15 -3234 ((-311 (-554)) (-1158) (-1 (-112) |#1|))) (-15 -3234 ((-311 (-554)) (-1158) (-631 (-1 (-112) |#1|))))) (-1195)) (T -923)) +((-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) (-5 *2 (-311 (-554))) (-5 *1 (-923 *5)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1195)) (-5 *2 (-311 (-554))) (-5 *1 (-923 *5))))) +(-10 -7 (-15 -3234 ((-311 (-554)) (-1158) (-1 (-112) |#1|))) (-15 -3234 ((-311 (-554)) (-1158) (-631 (-1 (-112) |#1|))))) +((-1655 (((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)) 25))) +(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-1082) (-13 (-546) (-871 |#1|) (-602 (-877 |#1|))) (-977 |#2|)) (T -924)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-977 *6)) (-4 *6 (-13 (-546) (-871 *5) (-602 *4))) (-5 *4 (-877 *5)) (-5 *1 (-924 *5 *6 *3))))) +(-10 -7 (-15 -1655 ((-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) +((-1655 (((-874 |#1| (-1158)) (-1158) (-877 |#1|) (-874 |#1| (-1158))) 17))) +(((-925 |#1|) (-10 -7 (-15 -1655 ((-874 |#1| (-1158)) (-1158) (-877 |#1|) (-874 |#1| (-1158))))) (-1082)) (T -925)) +((-1655 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-874 *5 (-1158))) (-5 *3 (-1158)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-5 *1 (-925 *5))))) +(-10 -7 (-15 -1655 ((-874 |#1| (-1158)) (-1158) (-877 |#1|) (-874 |#1| (-1158))))) +((-4269 (((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) 33)) (-1655 (((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-1 |#3| (-631 |#3|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))) 32))) +(((-926 |#1| |#2| |#3|) (-10 -7 (-15 -1655 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-1 |#3| (-631 |#3|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-15 -4269 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))))) (-1082) (-13 (-1034) (-836)) (-13 (-1034) (-602 (-877 |#1|)) (-1023 |#2|))) (T -926)) +((-4269 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-877 *6))) (-5 *5 (-1 (-874 *6 *8) *8 (-877 *6) (-874 *6 *8))) (-4 *6 (-1082)) (-4 *8 (-13 (-1034) (-602 (-877 *6)) (-1023 *7))) (-5 *2 (-874 *6 *8)) (-4 *7 (-13 (-1034) (-836))) (-5 *1 (-926 *6 *7 *8)))) (-1655 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-631 (-877 *7))) (-5 *5 (-1 *9 (-631 *9))) (-5 *6 (-1 (-874 *7 *9) *9 (-877 *7) (-874 *7 *9))) (-4 *7 (-1082)) (-4 *9 (-13 (-1034) (-602 (-877 *7)) (-1023 *8))) (-5 *2 (-874 *7 *9)) (-5 *3 (-631 *9)) (-4 *8 (-13 (-1034) (-836))) (-5 *1 (-926 *7 *8 *9))))) +(-10 -7 (-15 -1655 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-1 |#3| (-631 |#3|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|)))) (-15 -4269 ((-874 |#1| |#3|) (-631 |#3|) (-631 (-877 |#1|)) (-874 |#1| |#3|) (-1 (-874 |#1| |#3|) |#3| (-877 |#1|) (-874 |#1| |#3|))))) +((-1926 (((-1154 (-402 (-554))) (-554)) 63)) (-3923 (((-1154 (-554)) (-554)) 66)) (-4131 (((-1154 (-554)) (-554)) 60)) (-2074 (((-554) (-1154 (-554))) 55)) (-2285 (((-1154 (-402 (-554))) (-554)) 49)) (-3506 (((-1154 (-554)) (-554)) 38)) (-1398 (((-1154 (-554)) (-554)) 68)) (-1492 (((-1154 (-554)) (-554)) 67)) (-1880 (((-1154 (-402 (-554))) (-554)) 51))) +(((-927) (-10 -7 (-15 -1880 ((-1154 (-402 (-554))) (-554))) (-15 -1492 ((-1154 (-554)) (-554))) (-15 -1398 ((-1154 (-554)) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2285 ((-1154 (-402 (-554))) (-554))) (-15 -2074 ((-554) (-1154 (-554)))) (-15 -4131 ((-1154 (-554)) (-554))) (-15 -3923 ((-1154 (-554)) (-554))) (-15 -1926 ((-1154 (-402 (-554))) (-554))))) (T -927)) +((-1926 (*1 *2 *3) (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))) (-3923 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-4131 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-554)) (-5 *1 (-927)))) (-2285 (*1 *2 *3) (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554)))) (-3506 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554))))) +(-10 -7 (-15 -1880 ((-1154 (-402 (-554))) (-554))) (-15 -1492 ((-1154 (-554)) (-554))) (-15 -1398 ((-1154 (-554)) (-554))) (-15 -3506 ((-1154 (-554)) (-554))) (-15 -2285 ((-1154 (-402 (-554))) (-554))) (-15 -2074 ((-554) (-1154 (-554)))) (-15 -4131 ((-1154 (-554)) (-554))) (-15 -3923 ((-1154 (-554)) (-554))) (-15 -1926 ((-1154 (-402 (-554))) (-554)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758)) NIL (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 11 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-4136 (($ (-631 |#1|)) 13)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) NIL (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) 8)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 10 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2579 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-3731 (((-112) $ (-758)) NIL)) (-2577 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-4282 (($ $ (-631 |#1|)) 26)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 20) (($ $ (-1208 (-554))) NIL)) (-3748 ((|#1| $ $) NIL (|has| |#1| (-1034)))) (-3330 (((-906) $) 16)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3574 (($ $ $) 24)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530)))) (($ (-631 |#1|)) 17)) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1735 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-554) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-713))) (($ $ |#1|) NIL (|has| |#1| (-713)))) (-2563 (((-758) $) 14 (|has| $ (-6 -4373))))) +(((-928 |#1|) (-965 |#1|) (-1034)) (T -928)) +NIL +(-965 |#1|) +((-2912 (((-475 |#1| |#2|) (-937 |#2|)) 20)) (-1554 (((-243 |#1| |#2|) (-937 |#2|)) 33)) (-2743 (((-937 |#2|) (-475 |#1| |#2|)) 25)) (-3884 (((-243 |#1| |#2|) (-475 |#1| |#2|)) 55)) (-2508 (((-937 |#2|) (-243 |#1| |#2|)) 30)) (-4182 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 46))) +(((-929 |#1| |#2|) (-10 -7 (-15 -4182 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3884 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -2912 ((-475 |#1| |#2|) (-937 |#2|))) (-15 -2743 ((-937 |#2|) (-475 |#1| |#2|))) (-15 -2508 ((-937 |#2|) (-243 |#1| |#2|))) (-15 -1554 ((-243 |#1| |#2|) (-937 |#2|)))) (-631 (-1158)) (-1034)) (T -929)) +((-1554 (*1 *2 *3) (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-243 *4 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-475 *4 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158))))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-243 *4 *5)) (-5 *1 (-929 *4 *5)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) (-5 *2 (-475 *4 *5)) (-5 *1 (-929 *4 *5))))) +(-10 -7 (-15 -4182 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3884 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -2912 ((-475 |#1| |#2|) (-937 |#2|))) (-15 -2743 ((-937 |#2|) (-475 |#1| |#2|))) (-15 -2508 ((-937 |#2|) (-243 |#1| |#2|))) (-15 -1554 ((-243 |#1| |#2|) (-937 |#2|)))) +((-3535 (((-631 |#2|) |#2| |#2|) 10)) (-3344 (((-758) (-631 |#1|)) 37 (|has| |#1| (-834)))) (-1511 (((-631 |#2|) |#2|) 11)) (-2369 (((-758) (-631 |#1|) (-554) (-554)) 39 (|has| |#1| (-834)))) (-2310 ((|#1| |#2|) 32 (|has| |#1| (-834))))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3535 ((-631 |#2|) |#2| |#2|)) (-15 -1511 ((-631 |#2|) |#2|)) (IF (|has| |#1| (-834)) (PROGN (-15 -2310 (|#1| |#2|)) (-15 -3344 ((-758) (-631 |#1|))) (-15 -2369 ((-758) (-631 |#1|) (-554) (-554)))) |%noBranch|)) (-358) (-1217 |#1|)) (T -930)) +((-2369 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-554)) (-4 *5 (-834)) (-4 *5 (-358)) (-5 *2 (-758)) (-5 *1 (-930 *5 *6)) (-4 *6 (-1217 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-834)) (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1217 *4)))) (-2310 (*1 *2 *3) (-12 (-4 *2 (-358)) (-4 *2 (-834)) (-5 *1 (-930 *2 *3)) (-4 *3 (-1217 *2)))) (-1511 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1217 *4)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -3535 ((-631 |#2|) |#2| |#2|)) (-15 -1511 ((-631 |#2|) |#2|)) (IF (|has| |#1| (-834)) (PROGN (-15 -2310 (|#1| |#2|)) (-15 -3344 ((-758) (-631 |#1|))) (-15 -2369 ((-758) (-631 |#1|) (-554) (-554)))) |%noBranch|)) +((-2879 (((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)) 19))) +(((-931 |#1| |#2|) (-10 -7 (-15 -2879 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) (-1034) (-1034)) (T -931)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-937 *6)) (-5 *1 (-931 *5 *6))))) +(-10 -7 (-15 -2879 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) +((-2237 (((-1214 |#1| (-937 |#2|)) (-937 |#2|) (-1237 |#1|)) 18))) +(((-932 |#1| |#2|) (-10 -7 (-15 -2237 ((-1214 |#1| (-937 |#2|)) (-937 |#2|) (-1237 |#1|)))) (-1158) (-1034)) (T -932)) +((-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-1237 *5)) (-14 *5 (-1158)) (-4 *6 (-1034)) (-5 *2 (-1214 *5 (-937 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-937 *6))))) +(-10 -7 (-15 -2237 ((-1214 |#1| (-937 |#2|)) (-937 |#2|) (-1237 |#1|)))) +((-3785 (((-758) $) 71) (((-758) $ (-631 |#4|)) 74)) (-3278 (($ $) 173)) (-1565 (((-413 $) $) 165)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 116)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL) (((-554) $) NIL) ((|#4| $) 59)) (-2999 (($ $ $ |#4|) 76)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 106) (((-675 |#2|) (-675 $)) 99)) (-2048 (($ $) 180) (($ $ |#4|) 183)) (-2540 (((-631 $) $) 63)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 199) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 192)) (-3910 (((-631 $) $) 28)) (-2383 (($ |#2| |#3|) NIL) (($ $ |#4| (-758)) NIL) (($ $ (-631 |#4|) (-631 (-758))) 57)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#4|) 162)) (-3778 (((-3 (-631 $) "failed") $) 42)) (-2433 (((-3 (-631 $) "failed") $) 31)) (-3160 (((-3 (-2 (|:| |var| |#4|) (|:| -1407 (-758))) "failed") $) 47)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 109)) (-1290 (((-413 (-1154 $)) (-1154 $)) 122)) (-3082 (((-413 (-1154 $)) (-1154 $)) 120)) (-2270 (((-413 $) $) 140)) (-2386 (($ $ (-631 (-289 $))) 21) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-631 |#4|) (-631 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-631 |#4|) (-631 $)) NIL)) (-1495 (($ $ |#4|) 78)) (-2927 (((-877 (-374)) $) 213) (((-877 (-554)) $) 206) (((-530) $) 221)) (-3276 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 154)) (-1779 ((|#2| $ |#3|) NIL) (($ $ |#4| (-758)) 52) (($ $ (-631 |#4|) (-631 (-758))) 55)) (-2084 (((-3 $ "failed") $) 156)) (-1676 (((-112) $ $) 186))) +(((-933 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2048 (|#1| |#1| |#4|)) (-15 -3276 (|#1| |#1| |#4|)) (-15 -1495 (|#1| |#1| |#4|)) (-15 -2999 (|#1| |#1| |#1| |#4|)) (-15 -2540 ((-631 |#1|) |#1|)) (-15 -3785 ((-758) |#1| (-631 |#4|))) (-15 -3785 ((-758) |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| |#4|) (|:| -1407 (-758))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2383 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -2383 (|#1| |#1| |#4| (-758))) (-15 -4014 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3910 ((-631 |#1|) |#1|)) (-15 -1779 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1779 (|#1| |#1| |#4| (-758))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2383 (|#1| |#2| |#3|)) (-15 -1779 (|#2| |#1| |#3|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -2048 (|#1| |#1|))) (-934 |#2| |#3| |#4|) (-1034) (-780) (-836)) (T -933)) +NIL +(-10 -8 (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -2084 ((-3 |#1| "failed") |#1|)) (-15 -1676 ((-112) |#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -4158 ((-3 (-1241 |#1|) "failed") (-675 |#1|))) (-15 -2048 (|#1| |#1| |#4|)) (-15 -3276 (|#1| |#1| |#4|)) (-15 -1495 (|#1| |#1| |#4|)) (-15 -2999 (|#1| |#1| |#1| |#4|)) (-15 -2540 ((-631 |#1|) |#1|)) (-15 -3785 ((-758) |#1| (-631 |#4|))) (-15 -3785 ((-758) |#1|)) (-15 -3160 ((-3 (-2 (|:| |var| |#4|) (|:| -1407 (-758))) "failed") |#1|)) (-15 -3778 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2433 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -2383 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -2383 (|#1| |#1| |#4| (-758))) (-15 -4014 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3910 ((-631 |#1|) |#1|)) (-15 -1779 (|#1| |#1| (-631 |#4|) (-631 (-758)))) (-15 -1779 (|#1| |#1| |#4| (-758))) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#4| |#1|)) (-15 -2386 (|#1| |#1| (-631 |#4|) (-631 |#2|))) (-15 -2386 (|#1| |#1| |#4| |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -2383 (|#1| |#2| |#3|)) (-15 -1779 (|#2| |#1| |#3|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -2048 (|#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#3|) $) 110)) (-2237 (((-1154 $) $ |#3|) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 |#3|)) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) 136)) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) ((|#3| $) 137)) (-2999 (($ $ $ |#3|) 108 (|has| |#1| (-170)))) (-2550 (($ $) 154)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-1320 (((-3 $ "failed") $) 33)) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ |#3|) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-1344 (($ $ |#1| |#2| $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| |#3| (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| |#3| (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-2393 (($ (-1154 |#1|) |#3|) 117) (($ (-1154 $) |#3|) 116)) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| |#2|) 153) (($ $ |#3| (-758)) 119) (($ $ (-631 |#3|) (-631 (-758))) 118)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 120)) (-3893 ((|#2| $) 170) (((-758) $ |#3|) 122) (((-631 (-758)) $ (-631 |#3|)) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 |#2| |#2|) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-3277 (((-3 |#3| "failed") $) 123)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1613 (((-1140) $) 9)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) 113)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-631 |#3|) (-631 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-631 |#3|) (-631 $)) 138)) (-1495 (($ $ |#3|) 107 (|has| |#1| (-170)))) (-1553 (($ $ |#3|) 42) (($ $ (-631 |#3|)) 41) (($ $ |#3| (-758)) 40) (($ $ (-631 |#3|) (-631 (-758))) 39)) (-3308 ((|#2| $) 150) (((-758) $ |#3|) 130) (((-631 (-758)) $ (-631 |#3|)) 129)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| |#3| (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| |#3| (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| |#3| (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ |#3|) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-546))) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ |#2|) 155) (($ $ |#3| (-758)) 128) (($ $ (-631 |#3|) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ |#3|) 38) (($ $ (-631 |#3|)) 37) (($ $ |#3| (-758)) 36) (($ $ (-631 |#3|) (-631 (-758))) 35)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-934 |#1| |#2| |#3|) (-138) (-1034) (-780) (-836)) (T -934)) +((-2048 (*1 *1 *1) (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-3308 (*1 *2 *1 *3) (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-758)))) (-3308 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758))))) (-1779 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *2 (-836)))) (-1779 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-2237 (*1 *2 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-1154 *1)) (-4 *1 (-934 *4 *5 *3)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-1154 *3)))) (-3277 (*1 *2 *1) (|partial| -12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3893 (*1 *2 *1 *3) (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-758)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758))))) (-4014 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-934 *4 *5 *3)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *2 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)))) (-2393 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1034)) (-4 *1 (-934 *4 *5 *3)) (-4 *5 (-780)) (-4 *3 (-836)))) (-2393 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)))) (-2433 (*1 *2 *1) (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-3160 (*1 *2 *1) (|partial| -12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-758)))))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-758)))) (-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *5)))) (-2540 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) (-2999 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-170)))) (-1495 (*1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-170)))) (-3276 (*1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-446)))) (-2048 (*1 *1 *1 *2) (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *3 (-446)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-1565 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-413 *1)) (-4 *1 (-934 *3 *4 *5))))) +(-13 (-885 |t#3|) (-321 |t#1| |t#2|) (-304 $) (-508 |t#3| |t#1|) (-508 |t#3| $) (-1023 |t#3|) (-372 |t#1|) (-10 -8 (-15 -3308 ((-758) $ |t#3|)) (-15 -3308 ((-631 (-758)) $ (-631 |t#3|))) (-15 -1779 ($ $ |t#3| (-758))) (-15 -1779 ($ $ (-631 |t#3|) (-631 (-758)))) (-15 -3910 ((-631 $) $)) (-15 -2237 ((-1154 $) $ |t#3|)) (-15 -2237 ((-1154 |t#1|) $)) (-15 -3277 ((-3 |t#3| "failed") $)) (-15 -3893 ((-758) $ |t#3|)) (-15 -3893 ((-631 (-758)) $ (-631 |t#3|))) (-15 -4014 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |t#3|)) (-15 -2383 ($ $ |t#3| (-758))) (-15 -2383 ($ $ (-631 |t#3|) (-631 (-758)))) (-15 -2393 ($ (-1154 |t#1|) |t#3|)) (-15 -2393 ($ (-1154 $) |t#3|)) (-15 -2433 ((-3 (-631 $) "failed") $)) (-15 -3778 ((-3 (-631 $) "failed") $)) (-15 -3160 ((-3 (-2 (|:| |var| |t#3|) (|:| -1407 (-758))) "failed") $)) (-15 -3785 ((-758) $)) (-15 -3785 ((-758) $ (-631 |t#3|))) (-15 -2405 ((-631 |t#3|) $)) (-15 -2540 ((-631 $) $)) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (IF (|has| |t#3| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-602 (-877 (-554)))) (IF (|has| |t#3| (-602 (-877 (-554)))) (-6 (-602 (-877 (-554)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-602 (-877 (-374)))) (IF (|has| |t#3| (-602 (-877 (-374)))) (-6 (-602 (-877 (-374)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871 (-554))) (IF (|has| |t#3| (-871 (-554))) (-6 (-871 (-554))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871 (-374))) (IF (|has| |t#3| (-871 (-374))) (-6 (-871 (-374))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -2999 ($ $ $ |t#3|)) (-15 -1495 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-6 (-446)) (-15 -3276 ($ $ |t#3|)) (-15 -2048 ($ $)) (-15 -2048 ($ $ |t#3|)) (-15 -1565 ((-413 $) $)) (-15 -3278 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4371)) (-6 -4371) |%noBranch|) (IF (|has| |t#1| (-894)) (-6 (-894)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 |#3|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446))) ((-508 |#3| |#1|) . T) ((-508 |#3| $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 |#3|) . T) ((-871 (-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) ((-894) |has| |#1| (-894)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1023 |#3|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) |has| |#1| (-894))) +((-2405 (((-631 |#2|) |#5|) 36)) (-2237 (((-1154 |#5|) |#5| |#2| (-1154 |#5|)) 23) (((-402 (-1154 |#5|)) |#5| |#2|) 16)) (-2393 ((|#5| (-402 (-1154 |#5|)) |#2|) 30)) (-3277 (((-3 |#2| "failed") |#5|) 65)) (-3778 (((-3 (-631 |#5|) "failed") |#5|) 59)) (-2920 (((-3 (-2 (|:| |val| |#5|) (|:| -1407 (-554))) "failed") |#5|) 47)) (-2433 (((-3 (-631 |#5|) "failed") |#5|) 61)) (-3160 (((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-554))) "failed") |#5|) 51))) +(((-935 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2405 ((-631 |#2|) |#5|)) (-15 -3277 ((-3 |#2| "failed") |#5|)) (-15 -2237 ((-402 (-1154 |#5|)) |#5| |#2|)) (-15 -2393 (|#5| (-402 (-1154 |#5|)) |#2|)) (-15 -2237 ((-1154 |#5|) |#5| |#2| (-1154 |#5|))) (-15 -2433 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3778 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3160 ((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-554))) "failed") |#5|)) (-15 -2920 ((-3 (-2 (|:| |val| |#5|) (|:| -1407 (-554))) "failed") |#5|))) (-780) (-836) (-1034) (-934 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -3075 ($ |#4|)) (-15 -2810 (|#4| $)) (-15 -2822 (|#4| $))))) (T -935)) +((-2920 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1407 (-554)))) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-3160 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-554)))) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-3778 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3)) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-2433 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3)) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-2237 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))) (-4 *7 (-934 *6 *5 *4)) (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) (-5 *1 (-935 *5 *4 *6 *7 *3)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1154 *2))) (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) (-4 *2 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))) (-5 *1 (-935 *5 *4 *6 *7 *2)) (-4 *7 (-934 *6 *5 *4)))) (-2237 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-402 (-1154 *3))) (-5 *1 (-935 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) (-3277 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-1034)) (-4 *6 (-934 *5 *4 *2)) (-4 *2 (-836)) (-5 *1 (-935 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *6)) (-15 -2810 (*6 $)) (-15 -2822 (*6 $))))))) (-2405 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *5)) (-5 *1 (-935 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))))) +(-10 -7 (-15 -2405 ((-631 |#2|) |#5|)) (-15 -3277 ((-3 |#2| "failed") |#5|)) (-15 -2237 ((-402 (-1154 |#5|)) |#5| |#2|)) (-15 -2393 (|#5| (-402 (-1154 |#5|)) |#2|)) (-15 -2237 ((-1154 |#5|) |#5| |#2| (-1154 |#5|))) (-15 -2433 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3778 ((-3 (-631 |#5|) "failed") |#5|)) (-15 -3160 ((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-554))) "failed") |#5|)) (-15 -2920 ((-3 (-2 (|:| |val| |#5|) (|:| -1407 (-554))) "failed") |#5|))) +((-2879 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2879 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-780) (-836) (-1034) (-934 |#3| |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758)))))) (T -936)) +((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-836)) (-4 *8 (-1034)) (-4 *6 (-780)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758)))))) (-5 *1 (-936 *6 *7 *8 *5 *2)) (-4 *5 (-934 *8 *6 *7))))) +(-10 -7 (-15 -2879 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1158)) $) 16)) (-2237 (((-1154 $) $ (-1158)) 21) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1158))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 8) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1158) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1158) $) NIL)) (-2999 (($ $ $ (-1158)) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1158)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 (-1158)) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1158) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1158) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) (-1158)) NIL) (($ (-1154 $) (-1158)) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1158)) NIL)) (-3893 (((-525 (-1158)) $) NIL) (((-758) $ (-1158)) NIL) (((-631 (-758)) $ (-631 (-1158))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 (-1158)) (-525 (-1158))) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (((-3 (-1158) "failed") $) 19)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1158)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $ (-1158)) 29 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1158) |#1|) NIL) (($ $ (-631 (-1158)) (-631 |#1|)) NIL) (($ $ (-1158) $) NIL) (($ $ (-631 (-1158)) (-631 $)) NIL)) (-1495 (($ $ (-1158)) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-3308 (((-525 (-1158)) $) NIL) (((-758) $ (-1158)) NIL) (((-631 (-758)) $ (-631 (-1158))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1158) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1158) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1158) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1158)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 25) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-1158)) 27) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-937 |#1|) (-13 (-934 |#1| (-525 (-1158)) (-1158)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1158))) |%noBranch|))) (-1034)) (T -937)) +((-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-937 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034))))) +(-13 (-934 |#1| (-525 (-1158)) (-1158)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1158))) |%noBranch|))) +((-3951 (((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#3| (-758)) 38)) (-1294 (((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) (-402 (-554)) (-758)) 34)) (-3940 (((-2 (|:| -1407 (-758)) (|:| -1490 |#4|) (|:| |radicand| (-631 |#4|))) |#4| (-758)) 54)) (-3736 (((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#5| (-758)) 64 (|has| |#3| (-446))))) +(((-938 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3951 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#3| (-758))) (-15 -1294 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) (-402 (-554)) (-758))) (IF (|has| |#3| (-446)) (-15 -3736 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#5| (-758))) |%noBranch|) (-15 -3940 ((-2 (|:| -1407 (-758)) (|:| -1490 |#4|) (|:| |radicand| (-631 |#4|))) |#4| (-758)))) (-780) (-836) (-546) (-934 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -3075 ($ |#4|)) (-15 -2810 (|#4| $)) (-15 -2822 (|#4| $))))) (T -938)) +((-3940 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) (-4 *3 (-934 *7 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| (-631 *3)))) (-5 *1 (-938 *5 *6 *7 *3 *8)) (-5 *4 (-758)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3075 ($ *3)) (-15 -2810 (*3 $)) (-15 -2822 (*3 $))))))) (-3736 (*1 *2 *3 *4) (-12 (-4 *7 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) (-4 *8 (-934 *7 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *3))) (-5 *1 (-938 *5 *6 *7 *8 *3)) (-5 *4 (-758)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $))))))) (-1294 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-554))) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) (-4 *8 (-934 *7 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *9) (|:| |radicand| *9))) (-5 *1 (-938 *5 *6 *7 *8 *9)) (-5 *4 (-758)) (-4 *9 (-13 (-358) (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $))))))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-546)) (-4 *7 (-934 *3 *5 *6)) (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *8) (|:| |radicand| *8))) (-5 *1 (-938 *5 *6 *3 *7 *8)) (-5 *4 (-758)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))))) +(-10 -7 (-15 -3951 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#3| (-758))) (-15 -1294 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) (-402 (-554)) (-758))) (IF (|has| |#3| (-446)) (-15 -3736 ((-2 (|:| -1407 (-758)) (|:| -1490 |#5|) (|:| |radicand| |#5|)) |#5| (-758))) |%noBranch|) (-15 -3940 ((-2 (|:| -1407 (-758)) (|:| -1490 |#4|) (|:| |radicand| (-631 |#4|))) |#4| (-758)))) +((-3062 (((-112) $ $) NIL)) (-4208 (($ (-1102)) 8)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 14) (((-1102) $) 11)) (-1658 (((-112) $ $) 10))) +(((-939) (-13 (-1082) (-601 (-1102)) (-10 -8 (-15 -4208 ($ (-1102)))))) (T -939)) +((-4208 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-939))))) +(-13 (-1082) (-601 (-1102)) (-10 -8 (-15 -4208 ($ (-1102))))) +((-2829 (((-1076 (-221)) $) 8)) (-2818 (((-1076 (-221)) $) 9)) (-3787 (((-631 (-631 (-928 (-221)))) $) 10)) (-3075 (((-848) $) 6))) +(((-940) (-138)) (T -940)) +((-3787 (*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-631 (-631 (-928 (-221))))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221))))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221)))))) +(-13 (-601 (-848)) (-10 -8 (-15 -3787 ((-631 (-631 (-928 (-221)))) $)) (-15 -2818 ((-1076 (-221)) $)) (-15 -2829 ((-1076 (-221)) $)))) +(((-601 (-848)) . T)) +((-1757 (((-3 (-675 |#1|) "failed") |#2| (-906)) 15))) +(((-941 |#1| |#2|) (-10 -7 (-15 -1757 ((-3 (-675 |#1|) "failed") |#2| (-906)))) (-546) (-642 |#1|)) (T -941)) +((-1757 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-906)) (-4 *5 (-546)) (-5 *2 (-675 *5)) (-5 *1 (-941 *5 *3)) (-4 *3 (-642 *5))))) +(-10 -7 (-15 -1757 ((-3 (-675 |#1|) "failed") |#2| (-906)))) +((-4159 (((-943 |#2|) (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|) 16)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|) 18)) (-2879 (((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)) 13))) +(((-942 |#1| |#2|) (-10 -7 (-15 -4159 ((-943 |#2|) (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -2879 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) (-1195) (-1195)) (T -942)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-943 *6)) (-5 *1 (-942 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-943 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-942 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-943 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-943 *5)) (-5 *1 (-942 *6 *5))))) +(-10 -7 (-15 -4159 ((-943 |#2|) (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-943 |#1|) |#2|)) (-15 -2879 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) 16 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 15 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 13)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) |#1|) 12)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) 10 (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) 17 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) 11)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) 14) (($ $ (-1208 (-554))) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) NIL)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-2563 (((-758) $) 8 (|has| $ (-6 -4373))))) +(((-943 |#1|) (-19 |#1|) (-1195)) (T -943)) NIL (-19 |#1|) -((-3144 (($ $ (-1071 $)) 7) (($ $ (-1155)) 6))) -(((-941) (-137)) (T -941)) -((-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-941)))) (-3144 (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-1155))))) -(-13 (-10 -8 (-15 -3144 ($ $ (-1155))) (-15 -3144 ($ $ (-1071 $))))) -((-2484 (((-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 |#1|))) (|:| |prim| (-1151 |#1|))) (-630 (-934 |#1|)) (-630 (-1155)) (-1155)) 25) (((-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 |#1|))) (|:| |prim| (-1151 |#1|))) (-630 (-934 |#1|)) (-630 (-1155))) 26) (((-2 (|:| |coef1| (-553)) (|:| |coef2| (-553)) (|:| |prim| (-1151 |#1|))) (-934 |#1|) (-1155) (-934 |#1|) (-1155)) 43))) -(((-942 |#1|) (-10 -7 (-15 -2484 ((-2 (|:| |coef1| (-553)) (|:| |coef2| (-553)) (|:| |prim| (-1151 |#1|))) (-934 |#1|) (-1155) (-934 |#1|) (-1155))) (-15 -2484 ((-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 |#1|))) (|:| |prim| (-1151 |#1|))) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -2484 ((-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 |#1|))) (|:| |prim| (-1151 |#1|))) (-630 (-934 |#1|)) (-630 (-1155)) (-1155)))) (-13 (-357) (-144))) (T -942)) -((-2484 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 (-934 *6))) (-5 *4 (-630 (-1155))) (-5 *5 (-1155)) (-4 *6 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 *6))) (|:| |prim| (-1151 *6)))) (-5 *1 (-942 *6)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-630 (-1155))) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 *5))) (|:| |prim| (-1151 *5)))) (-5 *1 (-942 *5)))) (-2484 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-934 *5)) (-5 *4 (-1155)) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| |coef1| (-553)) (|:| |coef2| (-553)) (|:| |prim| (-1151 *5)))) (-5 *1 (-942 *5))))) -(-10 -7 (-15 -2484 ((-2 (|:| |coef1| (-553)) (|:| |coef2| (-553)) (|:| |prim| (-1151 |#1|))) (-934 |#1|) (-1155) (-934 |#1|) (-1155))) (-15 -2484 ((-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 |#1|))) (|:| |prim| (-1151 |#1|))) (-630 (-934 |#1|)) (-630 (-1155)))) (-15 -2484 ((-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 |#1|))) (|:| |prim| (-1151 |#1|))) (-630 (-934 |#1|)) (-630 (-1155)) (-1155)))) -((-2177 (((-630 |#1|) |#1| |#1|) 42)) (-3119 (((-111) |#1|) 39)) (-3200 ((|#1| |#1|) 65)) (-2242 ((|#1| |#1|) 64))) -(((-943 |#1|) (-10 -7 (-15 -3119 ((-111) |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -2177 ((-630 |#1|) |#1| |#1|))) (-538)) (T -943)) -((-2177 (*1 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-5 *1 (-943 *3)) (-4 *3 (-538)))) (-3200 (*1 *2 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-538)))) (-2242 (*1 *2 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-538)))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-943 *3)) (-4 *3 (-538))))) -(-10 -7 (-15 -3119 ((-111) |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3200 (|#1| |#1|)) (-15 -2177 ((-630 |#1|) |#1| |#1|))) -((-1873 (((-1243) (-845)) 9))) -(((-944) (-10 -7 (-15 -1873 ((-1243) (-845))))) (T -944)) -((-1873 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-944))))) -(-10 -7 (-15 -1873 ((-1243) (-845)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 61 (|has| |#1| (-545)))) (-1968 (($ $) 62 (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 28)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3678 (($ $) 24)) (-2982 (((-3 $ "failed") $) 35)) (-1655 (($ $) NIL (|has| |#1| (-445)))) (-2686 (($ $ |#1| |#2| $) 48)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) 16)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| |#2|) NIL)) (-2423 ((|#2| $) 19)) (-2241 (($ (-1 |#2| |#2|) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3644 (($ $) 23)) (-3655 ((|#1| $) 21)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) 40)) (-3633 ((|#1| $) NIL)) (-1974 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-545))))) (-3929 (((-3 $ "failed") $ $) 74 (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-545)))) (-3872 ((|#2| $) 17)) (-4198 ((|#1| $) NIL (|has| |#1| (-445)))) (-3110 (((-845) $) NIL) (($ (-553)) 39) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 34) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ |#2|) 31)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) 15)) (-2599 (($ $ $ (-757)) 57 (|has| |#1| (-169)))) (-1639 (((-111) $ $) 67 (|has| |#1| (-545)))) (-1988 (($) 22 T CONST)) (-1997 (($) 12 T CONST)) (-1617 (((-111) $ $) 66)) (-1723 (($ $ |#1|) 75 (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) 54) (($ $ (-757)) 52)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-945 |#1| |#2|) (-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| |#2| (-129)) (-15 -1974 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4367)) (-6 -4367) |%noBranch|))) (-1031) (-778)) (T -945)) -((-1974 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-945 *3 *2)) (-4 *2 (-129)) (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *2 (-778))))) -(-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| |#2| (-129)) (-15 -1974 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4367)) (-6 -4367) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-2345 (($ $ $) 63 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))) (-2910 (((-3 $ "failed") $ $) 50 (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-2571 (((-757)) 34 (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1528 ((|#2| $) 21)) (-1396 ((|#1| $) 20)) (-3820 (($) NIL (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) CONST)) (-2982 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))))) (-3031 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1848 (((-111) $) NIL (-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))))) (-1824 (($ $ $) NIL (-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))))) (-1975 (($ $ $) NIL (-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))))) (-3561 (($ |#1| |#2|) 19)) (-3796 (((-903) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 37 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2735 (($ (-903)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-2786 (((-1099) $) NIL)) (-3199 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-1957 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-3110 (((-845) $) 14)) (-1988 (($) 40 (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) CONST)) (-1997 (($) 24 (-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))) CONST)) (-1669 (((-111) $ $) NIL (-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))))) (-1648 (((-111) $ $) NIL (-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))))) (-1617 (((-111) $ $) 18)) (-1659 (((-111) $ $) NIL (-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))))) (-1636 (((-111) $ $) 66 (-3988 (-12 (|has| |#1| (-779)) (|has| |#2| (-779))) (-12 (|has| |#1| (-833)) (|has| |#2| (-833)))))) (-1723 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-1711 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1700 (($ $ $) 43 (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (** (($ $ (-553)) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466)))) (($ $ (-757)) 31 (-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712))))) (($ $ (-903)) NIL (-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712)))))) (* (($ (-553) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-757) $) 46 (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))) (($ (-903) $) NIL (-3988 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))) (($ $ $) 27 (-3988 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-712)) (|has| |#2| (-712))))))) -(((-946 |#1| |#2|) (-13 (-1079) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-712)) (IF (|has| |#2| (-712)) (-6 (-712)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-833)) (IF (|has| |#2| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (-15 -3561 ($ |#1| |#2|)) (-15 -1396 (|#1| $)) (-15 -1528 (|#2| $)))) (-1079) (-1079)) (T -946)) -((-3561 (*1 *1 *2 *3) (-12 (-5 *1 (-946 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-1396 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-946 *2 *3)) (-4 *3 (-1079)))) (-1528 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-946 *3 *2)) (-4 *3 (-1079))))) -(-13 (-1079) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-712)) (IF (|has| |#2| (-712)) (-6 (-712)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-833)) (IF (|has| |#2| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (-15 -3561 ($ |#1| |#2|)) (-15 -1396 (|#1| $)) (-15 -1528 (|#2| $)))) -((-2821 (((-1083) $) 12)) (-2039 (($ (-1155) (-1083)) 13)) (-4298 (((-1155) $) 10)) (-3110 (((-845) $) 22))) -(((-947) (-13 (-600 (-845)) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -2821 ((-1083) $)) (-15 -2039 ($ (-1155) (-1083)))))) (T -947)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-947)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-947)))) (-2039 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1083)) (-5 *1 (-947))))) -(-13 (-600 (-845)) (-10 -8 (-15 -4298 ((-1155) $)) (-15 -2821 ((-1083) $)) (-15 -2039 ($ (-1155) (-1083))))) -((-3096 (((-111) $ $) NIL)) (-3506 (((-1081 (-1155)) $) 19)) (-2696 (((-111) $) 26)) (-1509 (((-1155) $) 27)) (-3269 (((-111) $) 24)) (-3238 ((|#1| $) 25)) (-3006 (((-855 $ $) $) 34)) (-3378 (((-111) $) 33)) (-3063 (($ $ $) 12)) (-1937 (($ $) 29)) (-2610 (((-111) $) 28)) (-2826 (($ $) 10)) (-1735 (((-1137) $) NIL)) (-3268 (((-855 $ $) $) 36)) (-2738 (((-111) $) 35)) (-1451 (($ $ $) 13)) (-2786 (((-1099) $) NIL)) (-2043 (((-855 $ $) $) 38)) (-2620 (((-111) $) 37)) (-3603 (($ $ $) 14)) (-3110 (((-845) $) 40) (($ |#1|) 7) (($ (-1155)) 9)) (-3254 (((-855 $ $) $) 32)) (-2238 (((-111) $) 30)) (-3726 (($ $ $) 11)) (-1617 (((-111) $ $) NIL))) -(((-948 |#1|) (-13 (-949) (-10 -8 (-15 -3110 ($ |#1|)) (-15 -3110 ($ (-1155))) (-15 -3506 ((-1081 (-1155)) $)) (-15 -3269 ((-111) $)) (-15 -3238 (|#1| $)) (-15 -2696 ((-111) $)) (-15 -1509 ((-1155) $)) (-15 -2610 ((-111) $)) (-15 -1937 ($ $)) (-15 -2238 ((-111) $)) (-15 -3254 ((-855 $ $) $)) (-15 -3378 ((-111) $)) (-15 -3006 ((-855 $ $) $)) (-15 -2738 ((-111) $)) (-15 -3268 ((-855 $ $) $)) (-15 -2620 ((-111) $)) (-15 -2043 ((-855 $ $) $)))) (-949)) (T -948)) -((-3110 (*1 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-949)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-1081 (-1155))) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3238 (*1 *2 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-949)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-1937 (*1 *1 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-949)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(-13 (-949) (-10 -8 (-15 -3110 ($ |#1|)) (-15 -3110 ($ (-1155))) (-15 -3506 ((-1081 (-1155)) $)) (-15 -3269 ((-111) $)) (-15 -3238 (|#1| $)) (-15 -2696 ((-111) $)) (-15 -1509 ((-1155) $)) (-15 -2610 ((-111) $)) (-15 -1937 ($ $)) (-15 -2238 ((-111) $)) (-15 -3254 ((-855 $ $) $)) (-15 -3378 ((-111) $)) (-15 -3006 ((-855 $ $) $)) (-15 -2738 ((-111) $)) (-15 -3268 ((-855 $ $) $)) (-15 -2620 ((-111) $)) (-15 -2043 ((-855 $ $) $)))) -((-3096 (((-111) $ $) 7)) (-3063 (($ $ $) 15)) (-2826 (($ $) 17)) (-1735 (((-1137) $) 9)) (-1451 (($ $ $) 14)) (-2786 (((-1099) $) 10)) (-3603 (($ $ $) 13)) (-3110 (((-845) $) 11)) (-3726 (($ $ $) 16)) (-1617 (((-111) $ $) 6))) -(((-949) (-137)) (T -949)) -((-2826 (*1 *1 *1) (-4 *1 (-949))) (-3726 (*1 *1 *1 *1) (-4 *1 (-949))) (-3063 (*1 *1 *1 *1) (-4 *1 (-949))) (-1451 (*1 *1 *1 *1) (-4 *1 (-949))) (-3603 (*1 *1 *1 *1) (-4 *1 (-949)))) -(-13 (-1079) (-10 -8 (-15 -2826 ($ $)) (-15 -3726 ($ $ $)) (-15 -3063 ($ $ $)) (-15 -1451 ($ $ $)) (-15 -3603 ($ $ $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-1750 (($ $ $) 43)) (-3160 (($ $ $) 44)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1975 ((|#1| $) 45)) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-950 |#1|) (-137) (-833)) (T -950)) -((-1975 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-833)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-833)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-833))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4369) (-15 -1975 (|t#1| $)) (-15 -3160 ($ $ $)) (-15 -1750 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-4050 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2508 |#2|)) |#2| |#2|) 85)) (-1690 ((|#2| |#2| |#2|) 83)) (-3176 (((-2 (|:| |coef2| |#2|) (|:| -2508 |#2|)) |#2| |#2|) 87)) (-1398 (((-2 (|:| |coef1| |#2|) (|:| -2508 |#2|)) |#2| |#2|) 89)) (-1359 (((-2 (|:| |coef2| |#2|) (|:| -3674 |#1|)) |#2| |#2|) 107 (|has| |#1| (-445)))) (-2219 (((-2 (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|) 46)) (-3362 (((-2 (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|) 64)) (-1891 (((-2 (|:| |coef1| |#2|) (|:| -2134 |#1|)) |#2| |#2|) 66)) (-4292 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2664 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757)) 71)) (-2562 (((-2 (|:| |coef2| |#2|) (|:| -3000 |#1|)) |#2|) 97)) (-2443 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757)) 74)) (-2559 (((-630 (-757)) |#2| |#2|) 82)) (-3619 ((|#1| |#2| |#2|) 42)) (-3964 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3674 |#1|)) |#2| |#2|) 105 (|has| |#1| (-445)))) (-3674 ((|#1| |#2| |#2|) 103 (|has| |#1| (-445)))) (-3570 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|) 44)) (-1464 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|) 63)) (-2134 ((|#1| |#2| |#2|) 61)) (-3464 (((-2 (|:| -4120 |#1|) (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2|) 35)) (-4262 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2506 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-4247 ((|#2| |#2| |#2|) 75)) (-3251 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757)) 69)) (-1597 ((|#2| |#2| |#2| (-757)) 67)) (-2508 ((|#2| |#2| |#2|) 111 (|has| |#1| (-445)))) (-3929 (((-1238 |#2|) (-1238 |#2|) |#1|) 21)) (-4032 (((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2|) 39)) (-2736 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3000 |#1|)) |#2|) 95)) (-3000 ((|#1| |#2|) 92)) (-4291 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757)) 73)) (-3514 ((|#2| |#2| |#2| (-757)) 72)) (-4176 (((-630 |#2|) |#2| |#2|) 80)) (-3918 ((|#2| |#2| |#1| |#1| (-757)) 50)) (-2845 ((|#1| |#1| |#1| (-757)) 49)) (* (((-1238 |#2|) |#1| (-1238 |#2|)) 16))) -(((-951 |#1| |#2|) (-10 -7 (-15 -2134 (|#1| |#2| |#2|)) (-15 -1464 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -1891 ((-2 (|:| |coef1| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -1597 (|#2| |#2| |#2| (-757))) (-15 -3251 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -2664 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -3514 (|#2| |#2| |#2| (-757))) (-15 -4291 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -2443 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -4247 (|#2| |#2| |#2|)) (-15 -2506 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4292 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1690 (|#2| |#2| |#2|)) (-15 -4050 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2508 |#2|)) |#2| |#2|)) (-15 -3176 ((-2 (|:| |coef2| |#2|) (|:| -2508 |#2|)) |#2| |#2|)) (-15 -1398 ((-2 (|:| |coef1| |#2|) (|:| -2508 |#2|)) |#2| |#2|)) (-15 -3000 (|#1| |#2|)) (-15 -2736 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3000 |#1|)) |#2|)) (-15 -2562 ((-2 (|:| |coef2| |#2|) (|:| -3000 |#1|)) |#2|)) (-15 -4176 ((-630 |#2|) |#2| |#2|)) (-15 -2559 ((-630 (-757)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -3674 (|#1| |#2| |#2|)) (-15 -3964 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3674 |#1|)) |#2| |#2|)) (-15 -1359 ((-2 (|:| |coef2| |#2|) (|:| -3674 |#1|)) |#2| |#2|)) (-15 -2508 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1238 |#2|) |#1| (-1238 |#2|))) (-15 -3929 ((-1238 |#2|) (-1238 |#2|) |#1|)) (-15 -3464 ((-2 (|:| -4120 |#1|) (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2|)) (-15 -4032 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2|)) (-15 -2845 (|#1| |#1| |#1| (-757))) (-15 -3918 (|#2| |#2| |#1| |#1| (-757))) (-15 -4262 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3619 (|#1| |#2| |#2|)) (-15 -3570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -2219 ((-2 (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|))) (-545) (-1214 |#1|)) (T -951)) -((-2219 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2134 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3570 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2134 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2)))) (-4262 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) (-3918 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-757)) (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) (-2845 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *2 (-545)) (-5 *1 (-951 *2 *4)) (-4 *4 (-1214 *2)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3464 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -4120 *4) (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3929 (*1 *2 *2 *3) (-12 (-5 *2 (-1238 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-545)) (-5 *1 (-951 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1238 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-545)) (-5 *1 (-951 *3 *4)))) (-2508 (*1 *2 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) (-1359 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3674 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3964 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3674 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-4 *2 (-445)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2)))) (-2559 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 (-757))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-4176 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-2562 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3000 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3000 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3000 (*1 *2 *3) (-12 (-4 *2 (-545)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2)))) (-1398 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2508 *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3176 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2508 *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-4050 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2508 *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-1690 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) (-4292 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-4247 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) (-2443 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5)))) (-4291 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5)))) (-3514 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-545)) (-5 *1 (-951 *4 *2)) (-4 *2 (-1214 *4)))) (-2664 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5)))) (-3251 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5)))) (-1597 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-545)) (-5 *1 (-951 *4 *2)) (-4 *2 (-1214 *4)))) (-1891 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2134 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2134 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-1464 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2134 *4))) (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) (-2134 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2))))) -(-10 -7 (-15 -2134 (|#1| |#2| |#2|)) (-15 -1464 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -1891 ((-2 (|:| |coef1| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -1597 (|#2| |#2| |#2| (-757))) (-15 -3251 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -2664 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -3514 (|#2| |#2| |#2| (-757))) (-15 -4291 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -2443 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-757))) (-15 -4247 (|#2| |#2| |#2|)) (-15 -2506 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4292 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1690 (|#2| |#2| |#2|)) (-15 -4050 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2508 |#2|)) |#2| |#2|)) (-15 -3176 ((-2 (|:| |coef2| |#2|) (|:| -2508 |#2|)) |#2| |#2|)) (-15 -1398 ((-2 (|:| |coef1| |#2|) (|:| -2508 |#2|)) |#2| |#2|)) (-15 -3000 (|#1| |#2|)) (-15 -2736 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3000 |#1|)) |#2|)) (-15 -2562 ((-2 (|:| |coef2| |#2|) (|:| -3000 |#1|)) |#2|)) (-15 -4176 ((-630 |#2|) |#2| |#2|)) (-15 -2559 ((-630 (-757)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -3674 (|#1| |#2| |#2|)) (-15 -3964 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3674 |#1|)) |#2| |#2|)) (-15 -1359 ((-2 (|:| |coef2| |#2|) (|:| -3674 |#1|)) |#2| |#2|)) (-15 -2508 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1238 |#2|) |#1| (-1238 |#2|))) (-15 -3929 ((-1238 |#2|) (-1238 |#2|) |#1|)) (-15 -3464 ((-2 (|:| -4120 |#1|) (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2|)) (-15 -4032 ((-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) |#2| |#2|)) (-15 -2845 (|#1| |#1| |#1| (-757))) (-15 -3918 (|#2| |#2| |#1| |#1| (-757))) (-15 -4262 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3619 (|#1| |#2| |#2|)) (-15 -3570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|)) (-15 -2219 ((-2 (|:| |coef2| |#2|) (|:| -2134 |#1|)) |#2| |#2|))) -((-3096 (((-111) $ $) NIL)) (-1378 (((-1191) $) 13)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3456 (((-1114) $) 10)) (-3110 (((-845) $) 22) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-952) (-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -1378 ((-1191) $))))) (T -952)) -((-3456 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-952)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-952))))) -(-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -1378 ((-1191) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) 27)) (-3820 (($) NIL T CONST)) (-2902 (((-630 (-630 (-553))) (-630 (-553))) 29)) (-4192 (((-553) $) 45)) (-3057 (($ (-630 (-553))) 17)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1524 (((-630 (-553)) $) 12)) (-3199 (($ $) 32)) (-3110 (((-845) $) 43) (((-630 (-553)) $) 10)) (-1988 (($) 7 T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 20)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 19)) (-1700 (($ $ $) 21)) (* (($ (-903) $) NIL) (($ (-757) $) 25))) -(((-953) (-13 (-781) (-601 (-630 (-553))) (-600 (-630 (-553))) (-10 -8 (-15 -3057 ($ (-630 (-553)))) (-15 -2902 ((-630 (-630 (-553))) (-630 (-553)))) (-15 -4192 ((-553) $)) (-15 -3199 ($ $))))) (T -953)) -((-3057 (*1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-953)))) (-2902 (*1 *2 *3) (-12 (-5 *2 (-630 (-630 (-553)))) (-5 *1 (-953)) (-5 *3 (-630 (-553))))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-953)))) (-3199 (*1 *1 *1) (-5 *1 (-953)))) -(-13 (-781) (-601 (-630 (-553))) (-600 (-630 (-553))) (-10 -8 (-15 -3057 ($ (-630 (-553)))) (-15 -2902 ((-630 (-630 (-553))) (-630 (-553)))) (-15 -4192 ((-553) $)) (-15 -3199 ($ $)))) -((-1723 (($ $ |#2|) 30)) (-1711 (($ $) 22) (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-401 (-553)) $) 26) (($ $ (-401 (-553))) 28))) -(((-954 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -1723 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) (-955 |#2| |#3| |#4|) (-1031) (-778) (-833)) (T -954)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-401 (-553)))) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 -1723 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 * (|#1| (-903) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 |#3|) $) 77)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-4008 (((-111) $) 76)) (-1848 (((-111) $) 31)) (-1298 (((-111) $) 65)) (-3481 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-630 |#3|) (-630 |#2|)) 78)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-3872 ((|#2| $) 67)) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545))) (($ |#1|) 50 (|has| |#1| (-169)))) (-1624 ((|#1| $ |#2|) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-955 |#1| |#2| |#3|) (-137) (-1031) (-778) (-833)) (T -955)) -((-3655 (*1 *2 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *3 (-778)) (-4 *4 (-833)) (-4 *2 (-1031)))) (-3644 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-778)) (-4 *4 (-833)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *2 *4)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *2 (-778)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-955 *4 *3 *2)) (-4 *4 (-1031)) (-4 *3 (-778)) (-4 *2 (-833)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 *6)) (-5 *3 (-630 *5)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-778)) (-4 *6 (-833)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-778)) (-4 *5 (-833)) (-5 *2 (-630 *5)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-778)) (-4 *5 (-833)) (-5 *2 (-111)))) (-2980 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-778)) (-4 *4 (-833))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3481 ($ $ |t#3| |t#2|)) (-15 -3481 ($ $ (-630 |t#3|) (-630 |t#2|))) (-15 -3644 ($ $)) (-15 -3655 (|t#1| $)) (-15 -3872 (|t#2| $)) (-15 -3506 ((-630 |t#3|) $)) (-15 -4008 ((-111) $)) (-15 -2980 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) |has| |#1| (-38 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-284) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-2490 (((-1073 (-220)) $) 8)) (-2479 (((-1073 (-220)) $) 9)) (-2466 (((-1073 (-220)) $) 10)) (-3792 (((-630 (-630 (-925 (-220)))) $) 11)) (-3110 (((-845) $) 6))) -(((-956) (-137)) (T -956)) -((-3792 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-630 (-630 (-925 (-220))))))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1073 (-220))))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1073 (-220))))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1073 (-220)))))) -(-13 (-600 (-845)) (-10 -8 (-15 -3792 ((-630 (-630 (-925 (-220)))) $)) (-15 -2466 ((-1073 (-220)) $)) (-15 -2479 ((-1073 (-220)) $)) (-15 -2490 ((-1073 (-220)) $)))) -(((-600 (-845)) . T)) -((-3506 (((-630 |#4|) $) 23)) (-1742 (((-111) $) 48)) (-3538 (((-111) $) 47)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#4|) 36)) (-2623 (((-111) $) 49)) (-2032 (((-111) $ $) 55)) (-3559 (((-111) $ $) 58)) (-1921 (((-111) $) 53)) (-4063 (((-630 |#5|) (-630 |#5|) $) 90)) (-4162 (((-630 |#5|) (-630 |#5|) $) 87)) (-1571 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3935 (((-630 |#4|) $) 27)) (-2351 (((-111) |#4| $) 30)) (-3280 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2867 (($ $ |#4|) 33)) (-3721 (($ $ |#4|) 32)) (-1665 (($ $ |#4|) 34)) (-1617 (((-111) $ $) 40))) -(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3538 ((-111) |#1|)) (-15 -4063 ((-630 |#5|) (-630 |#5|) |#1|)) (-15 -4162 ((-630 |#5|) (-630 |#5|) |#1|)) (-15 -1571 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3280 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2623 ((-111) |#1|)) (-15 -3559 ((-111) |#1| |#1|)) (-15 -2032 ((-111) |#1| |#1|)) (-15 -1921 ((-111) |#1|)) (-15 -1742 ((-111) |#1|)) (-15 -2990 ((-2 (|:| |under| |#1|) (|:| -2334 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2867 (|#1| |#1| |#4|)) (-15 -1665 (|#1| |#1| |#4|)) (-15 -3721 (|#1| |#1| |#4|)) (-15 -2351 ((-111) |#4| |#1|)) (-15 -3935 ((-630 |#4|) |#1|)) (-15 -3506 ((-630 |#4|) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-958 |#2| |#3| |#4| |#5|) (-1031) (-779) (-833) (-1045 |#2| |#3| |#4|)) (T -957)) -NIL -(-10 -8 (-15 -3538 ((-111) |#1|)) (-15 -4063 ((-630 |#5|) (-630 |#5|) |#1|)) (-15 -4162 ((-630 |#5|) (-630 |#5|) |#1|)) (-15 -1571 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3280 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2623 ((-111) |#1|)) (-15 -3559 ((-111) |#1| |#1|)) (-15 -2032 ((-111) |#1| |#1|)) (-15 -1921 ((-111) |#1|)) (-15 -1742 ((-111) |#1|)) (-15 -2990 ((-2 (|:| |under| |#1|) (|:| -2334 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2867 (|#1| |#1| |#4|)) (-15 -1665 (|#1| |#1| |#4|)) (-15 -3721 (|#1| |#1| |#4|)) (-15 -2351 ((-111) |#4| |#1|)) (-15 -3935 ((-630 |#4|) |#1|)) (-15 -3506 ((-630 |#4|) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3506 (((-630 |#3|) $) 33)) (-1742 (((-111) $) 26)) (-3538 (((-111) $) 17 (|has| |#1| (-545)))) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) 27)) (-1511 (((-111) $ (-757)) 44)) (-3905 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4369)))) (-3820 (($) 45 T CONST)) (-2623 (((-111) $) 22 (|has| |#1| (-545)))) (-2032 (((-111) $ $) 24 (|has| |#1| (-545)))) (-3559 (((-111) $ $) 23 (|has| |#1| (-545)))) (-1921 (((-111) $) 25 (|has| |#1| (-545)))) (-4063 (((-630 |#4|) (-630 |#4|) $) 18 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) 19 (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 36)) (-2707 (($ (-630 |#4|)) 35)) (-2638 (($ $) 68 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#4| $) 67 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4369)))) (-1408 (((-630 |#4|) $) 52 (|has| $ (-6 -4369)))) (-1470 ((|#3| $) 34)) (-3703 (((-111) $ (-757)) 43)) (-2195 (((-630 |#4|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 47)) (-3935 (((-630 |#3|) $) 32)) (-2351 (((-111) |#3| $) 31)) (-3786 (((-111) $ (-757)) 42)) (-1735 (((-1137) $) 9)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-2786 (((-1099) $) 10)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3341 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) 38)) (-3586 (((-111) $) 41)) (-3222 (($) 40)) (-2796 (((-757) |#4| $) 54 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4369)))) (-1508 (($ $) 39)) (-1524 (((-529) $) 69 (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 60)) (-2867 (($ $ |#3|) 28)) (-3721 (($ $ |#3|) 30)) (-1665 (($ $ |#3|) 29)) (-3110 (((-845) $) 11) (((-630 |#4|) $) 37)) (-3296 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 46 (|has| $ (-6 -4369))))) -(((-958 |#1| |#2| |#3| |#4|) (-137) (-1031) (-779) (-833) (-1045 |t#1| |t#2| |t#3|)) (T -958)) -((-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *1 (-958 *3 *4 *5 *6)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *1 (-958 *3 *4 *5 *6)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-1045 *3 *4 *2)) (-4 *2 (-833)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *5)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *5)))) (-2351 (*1 *2 *3 *1) (-12 (-4 *1 (-958 *4 *5 *3 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-4 *6 (-1045 *4 *5 *3)) (-5 *2 (-111)))) (-3721 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *5 (-1045 *3 *4 *2)))) (-1665 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *5 (-1045 *3 *4 *2)))) (-2867 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)) (-4 *5 (-1045 *3 *4 *2)))) (-2990 (*1 *2 *1 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-4 *6 (-1045 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2334 *1) (|:| |upper| *1))) (-4 *1 (-958 *4 *5 *3 *6)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-111)))) (-2032 (*1 *2 *1 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-111)))) (-3559 (*1 *2 *1 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-111)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-111)))) (-3280 (*1 *2 *3 *1) (-12 (-4 *1 (-958 *4 *5 *6 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1571 (*1 *2 *3 *1) (-12 (-4 *1 (-958 *4 *5 *6 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4162 (*1 *2 *2 *1) (-12 (-5 *2 (-630 *6)) (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)))) (-4063 (*1 *2 *2 *1) (-12 (-5 *2 (-630 *6)) (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-111))))) -(-13 (-1079) (-148 |t#4|) (-600 (-630 |t#4|)) (-10 -8 (-6 -4369) (-15 -1399 ((-3 $ "failed") (-630 |t#4|))) (-15 -2707 ($ (-630 |t#4|))) (-15 -1470 (|t#3| $)) (-15 -3506 ((-630 |t#3|) $)) (-15 -3935 ((-630 |t#3|) $)) (-15 -2351 ((-111) |t#3| $)) (-15 -3721 ($ $ |t#3|)) (-15 -1665 ($ $ |t#3|)) (-15 -2867 ($ $ |t#3|)) (-15 -2990 ((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |t#3|)) (-15 -1742 ((-111) $)) (IF (|has| |t#1| (-545)) (PROGN (-15 -1921 ((-111) $)) (-15 -2032 ((-111) $ $)) (-15 -3559 ((-111) $ $)) (-15 -2623 ((-111) $)) (-15 -3280 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1571 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4162 ((-630 |t#4|) (-630 |t#4|) $)) (-15 -4063 ((-630 |t#4|) (-630 |t#4|) $)) (-15 -3538 ((-111) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-600 (-630 |#4|)) . T) ((-600 (-845)) . T) ((-148 |#4|) . T) ((-601 (-529)) |has| |#4| (-601 (-529))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-482 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-1079) . T) ((-1192) . T)) -((-1962 (((-630 |#4|) |#4| |#4|) 118)) (-2962 (((-630 |#4|) (-630 |#4|) (-111)) 107 (|has| |#1| (-445))) (((-630 |#4|) (-630 |#4|)) 108 (|has| |#1| (-445)))) (-2543 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|)) 35)) (-1302 (((-111) |#4|) 34)) (-1550 (((-630 |#4|) |#4|) 103 (|has| |#1| (-445)))) (-2163 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-1 (-111) |#4|) (-630 |#4|)) 20)) (-2646 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 (-1 (-111) |#4|)) (-630 |#4|)) 22)) (-2332 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 (-1 (-111) |#4|)) (-630 |#4|)) 23)) (-3477 (((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|)) 73)) (-1347 (((-630 |#4|) (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3150 (((-630 |#4|) (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1998 (((-630 |#4|) (-630 |#4|)) 110)) (-3457 (((-630 |#4|) (-630 |#4|) (-630 |#4|) (-111)) 48) (((-630 |#4|) (-630 |#4|) (-630 |#4|)) 50)) (-1663 ((|#4| |#4| (-630 |#4|)) 49)) (-2074 (((-630 |#4|) (-630 |#4|) (-630 |#4|)) 114 (|has| |#1| (-445)))) (-3528 (((-630 |#4|) (-630 |#4|) (-630 |#4|)) 117 (|has| |#1| (-445)))) (-1681 (((-630 |#4|) (-630 |#4|) (-630 |#4|)) 116 (|has| |#1| (-445)))) (-3495 (((-630 |#4|) (-630 |#4|) (-630 |#4|) (-1 (-630 |#4|) (-630 |#4|))) 87) (((-630 |#4|) (-630 |#4|) (-630 |#4|)) 89) (((-630 |#4|) (-630 |#4|) |#4|) 121) (((-630 |#4|) |#4| |#4|) 119) (((-630 |#4|) (-630 |#4|)) 88)) (-2298 (((-630 |#4|) (-630 |#4|) (-630 |#4|)) 100 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2094 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|)) 41)) (-1895 (((-111) (-630 |#4|)) 62)) (-1637 (((-111) (-630 |#4|) (-630 (-630 |#4|))) 53)) (-1644 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|)) 29)) (-4073 (((-111) |#4|) 28)) (-1689 (((-630 |#4|) (-630 |#4|)) 98 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2670 (((-630 |#4|) (-630 |#4|)) 99 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2769 (((-630 |#4|) (-630 |#4|)) 66)) (-3504 (((-630 |#4|) (-630 |#4|)) 79)) (-3443 (((-111) (-630 |#4|) (-630 |#4|)) 51)) (-2078 (((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|)) 39)) (-2906 (((-111) |#4|) 36))) -(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3495 ((-630 |#4|) (-630 |#4|))) (-15 -3495 ((-630 |#4|) |#4| |#4|)) (-15 -1998 ((-630 |#4|) (-630 |#4|))) (-15 -1962 ((-630 |#4|) |#4| |#4|)) (-15 -3495 ((-630 |#4|) (-630 |#4|) |#4|)) (-15 -3495 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -3495 ((-630 |#4|) (-630 |#4|) (-630 |#4|) (-1 (-630 |#4|) (-630 |#4|)))) (-15 -3443 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -1637 ((-111) (-630 |#4|) (-630 (-630 |#4|)))) (-15 -1895 ((-111) (-630 |#4|))) (-15 -2163 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-1 (-111) |#4|) (-630 |#4|))) (-15 -2646 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 (-1 (-111) |#4|)) (-630 |#4|))) (-15 -2332 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 (-1 (-111) |#4|)) (-630 |#4|))) (-15 -2094 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -1302 ((-111) |#4|)) (-15 -2543 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -4073 ((-111) |#4|)) (-15 -1644 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -2906 ((-111) |#4|)) (-15 -2078 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -3457 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -3457 ((-630 |#4|) (-630 |#4|) (-630 |#4|) (-111))) (-15 -1663 (|#4| |#4| (-630 |#4|))) (-15 -2769 ((-630 |#4|) (-630 |#4|))) (-15 -3477 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|))) (-15 -3504 ((-630 |#4|) (-630 |#4|))) (-15 -1347 ((-630 |#4|) (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3150 ((-630 |#4|) (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -1550 ((-630 |#4|) |#4|)) (-15 -2962 ((-630 |#4|) (-630 |#4|))) (-15 -2962 ((-630 |#4|) (-630 |#4|) (-111))) (-15 -2074 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -1681 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -3528 ((-630 |#4|) (-630 |#4|) (-630 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -2670 ((-630 |#4|) (-630 |#4|))) (-15 -1689 ((-630 |#4|) (-630 |#4|))) (-15 -2298 ((-630 |#4|) (-630 |#4|) (-630 |#4|)))) |%noBranch|) |%noBranch|)) (-545) (-779) (-833) (-1045 |#1| |#2| |#3|)) (T -959)) -((-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-1681 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-2962 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-111)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *7)))) (-2962 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *3)) (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) (-3150 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-630 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-959 *5 *6 *7 *8)))) (-1347 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-630 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1045 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-779)) (-4 *8 (-833)) (-5 *1 (-959 *6 *7 *8 *9)))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-3477 (*1 *2 *3) (|partial| -12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -3343 (-630 *7)))) (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-1663 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *2)))) (-3457 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-111)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *7)))) (-3457 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-2906 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) (-2543 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-1302 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) (-2094 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-1 (-111) *8))) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-2 (|:| |goodPols| (-630 *8)) (|:| |badPols| (-630 *8)))) (-5 *1 (-959 *5 *6 *7 *8)) (-5 *4 (-630 *8)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-1 (-111) *8))) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-2 (|:| |goodPols| (-630 *8)) (|:| |badPols| (-630 *8)))) (-5 *1 (-959 *5 *6 *7 *8)) (-5 *4 (-630 *8)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-2 (|:| |goodPols| (-630 *8)) (|:| |badPols| (-630 *8)))) (-5 *1 (-959 *5 *6 *7 *8)) (-5 *4 (-630 *8)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *4 *5 *6 *7)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-630 *8))) (-5 *3 (-630 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *5 *6 *7 *8)))) (-3443 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *4 *5 *6 *7)))) (-3495 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-630 *7) (-630 *7))) (-5 *2 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *7)))) (-3495 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-3495 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *3)))) (-1962 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *3)) (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) (-3495 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *3)) (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6))))) -(-10 -7 (-15 -3495 ((-630 |#4|) (-630 |#4|))) (-15 -3495 ((-630 |#4|) |#4| |#4|)) (-15 -1998 ((-630 |#4|) (-630 |#4|))) (-15 -1962 ((-630 |#4|) |#4| |#4|)) (-15 -3495 ((-630 |#4|) (-630 |#4|) |#4|)) (-15 -3495 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -3495 ((-630 |#4|) (-630 |#4|) (-630 |#4|) (-1 (-630 |#4|) (-630 |#4|)))) (-15 -3443 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -1637 ((-111) (-630 |#4|) (-630 (-630 |#4|)))) (-15 -1895 ((-111) (-630 |#4|))) (-15 -2163 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-1 (-111) |#4|) (-630 |#4|))) (-15 -2646 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 (-1 (-111) |#4|)) (-630 |#4|))) (-15 -2332 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 (-1 (-111) |#4|)) (-630 |#4|))) (-15 -2094 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -1302 ((-111) |#4|)) (-15 -2543 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -4073 ((-111) |#4|)) (-15 -1644 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -2906 ((-111) |#4|)) (-15 -2078 ((-2 (|:| |goodPols| (-630 |#4|)) (|:| |badPols| (-630 |#4|))) (-630 |#4|))) (-15 -3457 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -3457 ((-630 |#4|) (-630 |#4|) (-630 |#4|) (-111))) (-15 -1663 (|#4| |#4| (-630 |#4|))) (-15 -2769 ((-630 |#4|) (-630 |#4|))) (-15 -3477 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|))) (-15 -3504 ((-630 |#4|) (-630 |#4|))) (-15 -1347 ((-630 |#4|) (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3150 ((-630 |#4|) (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -1550 ((-630 |#4|) |#4|)) (-15 -2962 ((-630 |#4|) (-630 |#4|))) (-15 -2962 ((-630 |#4|) (-630 |#4|) (-111))) (-15 -2074 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -1681 ((-630 |#4|) (-630 |#4|) (-630 |#4|))) (-15 -3528 ((-630 |#4|) (-630 |#4|) (-630 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -2670 ((-630 |#4|) (-630 |#4|))) (-15 -1689 ((-630 |#4|) (-630 |#4|))) (-15 -2298 ((-630 |#4|) (-630 |#4|) (-630 |#4|)))) |%noBranch|) |%noBranch|)) -((-3403 (((-2 (|:| R (-674 |#1|)) (|:| A (-674 |#1|)) (|:| |Ainv| (-674 |#1|))) (-674 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3277 (((-630 (-2 (|:| C (-674 |#1|)) (|:| |g| (-1238 |#1|)))) (-674 |#1|) (-1238 |#1|)) 36)) (-1727 (((-674 |#1|) (-674 |#1|) (-674 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-960 |#1|) (-10 -7 (-15 -3403 ((-2 (|:| R (-674 |#1|)) (|:| A (-674 |#1|)) (|:| |Ainv| (-674 |#1|))) (-674 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1727 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3277 ((-630 (-2 (|:| C (-674 |#1|)) (|:| |g| (-1238 |#1|)))) (-674 |#1|) (-1238 |#1|)))) (-357)) (T -960)) -((-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-630 (-2 (|:| C (-674 *5)) (|:| |g| (-1238 *5))))) (-5 *1 (-960 *5)) (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)))) (-1727 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-674 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-960 *5)))) (-3403 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) (-5 *2 (-2 (|:| R (-674 *6)) (|:| A (-674 *6)) (|:| |Ainv| (-674 *6)))) (-5 *1 (-960 *6)) (-5 *3 (-674 *6))))) -(-10 -7 (-15 -3403 ((-2 (|:| R (-674 |#1|)) (|:| A (-674 |#1|)) (|:| |Ainv| (-674 |#1|))) (-674 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -1727 ((-674 |#1|) (-674 |#1|) (-674 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3277 ((-630 (-2 (|:| C (-674 |#1|)) (|:| |g| (-1238 |#1|)))) (-674 |#1|) (-1238 |#1|)))) -((-2708 (((-412 |#4|) |#4|) 48))) -(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-412 |#4|) |#4|))) (-833) (-779) (-445) (-931 |#3| |#2| |#1|)) (T -961)) -((-2708 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-445)) (-5 *2 (-412 *3)) (-5 *1 (-961 *4 *5 *6 *3)) (-4 *3 (-931 *6 *5 *4))))) -(-10 -7 (-15 -2708 ((-412 |#4|) |#4|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2247 (($ (-757)) 112 (|has| |#1| (-23)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4370))) (($ $) 88 (-12 (|has| |#1| (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) |#1|) 52 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-1467 (($ $) 90 (|has| $ (-6 -4370)))) (-3239 (($ $) 100)) (-2638 (($ $) 78 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 77 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 51)) (-1478 (((-553) (-1 (-111) |#1|) $) 97) (((-553) |#1| $) 96 (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) 95 (|has| |#1| (-1079)))) (-1743 (($ (-630 |#1|)) 118)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-1903 (((-674 |#1|) $ $) 105 (|has| |#1| (-1031)))) (-3202 (($ (-757) |#1|) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 87 (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 86 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3312 ((|#1| $) 102 (-12 (|has| |#1| (-1031)) (|has| |#1| (-984))))) (-3786 (((-111) $ (-757)) 10)) (-1899 ((|#1| $) 103 (-12 (|has| |#1| (-1031)) (|has| |#1| (-984))))) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 42 (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2858 (($ $ |#1|) 41 (|has| $ (-6 -4370)))) (-3089 (($ $ (-630 |#1|)) 116)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) |#1|) 50) ((|#1| $ (-553)) 49) (($ $ (-1205 (-553))) 63)) (-1449 ((|#1| $ $) 106 (|has| |#1| (-1031)))) (-1337 (((-903) $) 117)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2533 (($ $ $) 104)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 91 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| |#1| (-601 (-529)))) (($ (-630 |#1|)) 119)) (-3121 (($ (-630 |#1|)) 70)) (-4325 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 84 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 83 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-1659 (((-111) $ $) 85 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 82 (|has| |#1| (-833)))) (-1711 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1700 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-553) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-712))) (($ $ |#1|) 107 (|has| |#1| (-712)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-962 |#1|) (-137) (-1031)) (T -962)) -((-1743 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1031)) (-4 *1 (-962 *3)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1031)) (-5 *2 (-903)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1031)))) (-3089 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *1 (-962 *3)) (-4 *3 (-1031))))) -(-13 (-1236 |t#1|) (-605 (-630 |t#1|)) (-10 -8 (-15 -1743 ($ (-630 |t#1|))) (-15 -1337 ((-903) $)) (-15 -2533 ($ $ $)) (-15 -3089 ($ $ (-630 |t#1|))))) -(((-34) . T) ((-101) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-605 (-630 |#1|)) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-19 |#1|) . T) ((-833) |has| |#1| (-833)) ((-1079) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-1192) . T) ((-1236 |#1|) . T)) -((-1482 (((-925 |#2|) (-1 |#2| |#1|) (-925 |#1|)) 17))) -(((-963 |#1| |#2|) (-10 -7 (-15 -1482 ((-925 |#2|) (-1 |#2| |#1|) (-925 |#1|)))) (-1031) (-1031)) (T -963)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-925 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-5 *2 (-925 *6)) (-5 *1 (-963 *5 *6))))) -(-10 -7 (-15 -1482 ((-925 |#2|) (-1 |#2| |#1|) (-925 |#1|)))) -((-3049 ((|#1| (-925 |#1|)) 13)) (-1606 ((|#1| (-925 |#1|)) 12)) (-1982 ((|#1| (-925 |#1|)) 11)) (-3525 ((|#1| (-925 |#1|)) 15)) (-2311 ((|#1| (-925 |#1|)) 21)) (-1308 ((|#1| (-925 |#1|)) 14)) (-3955 ((|#1| (-925 |#1|)) 16)) (-3478 ((|#1| (-925 |#1|)) 20)) (-2963 ((|#1| (-925 |#1|)) 19))) -(((-964 |#1|) (-10 -7 (-15 -1982 (|#1| (-925 |#1|))) (-15 -1606 (|#1| (-925 |#1|))) (-15 -3049 (|#1| (-925 |#1|))) (-15 -1308 (|#1| (-925 |#1|))) (-15 -3525 (|#1| (-925 |#1|))) (-15 -3955 (|#1| (-925 |#1|))) (-15 -2963 (|#1| (-925 |#1|))) (-15 -3478 (|#1| (-925 |#1|))) (-15 -2311 (|#1| (-925 |#1|)))) (-1031)) (T -964)) -((-2311 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(-10 -7 (-15 -1982 (|#1| (-925 |#1|))) (-15 -1606 (|#1| (-925 |#1|))) (-15 -3049 (|#1| (-925 |#1|))) (-15 -1308 (|#1| (-925 |#1|))) (-15 -3525 (|#1| (-925 |#1|))) (-15 -3955 (|#1| (-925 |#1|))) (-15 -2963 (|#1| (-925 |#1|))) (-15 -3478 (|#1| (-925 |#1|))) (-15 -2311 (|#1| (-925 |#1|)))) -((-2773 (((-3 |#1| "failed") |#1|) 18)) (-2825 (((-3 |#1| "failed") |#1|) 6)) (-2753 (((-3 |#1| "failed") |#1|) 16)) (-3157 (((-3 |#1| "failed") |#1|) 4)) (-2809 (((-3 |#1| "failed") |#1|) 20)) (-3680 (((-3 |#1| "failed") |#1|) 8)) (-2573 (((-3 |#1| "failed") |#1| (-757)) 1)) (-3690 (((-3 |#1| "failed") |#1|) 3)) (-1767 (((-3 |#1| "failed") |#1|) 2)) (-3091 (((-3 |#1| "failed") |#1|) 21)) (-3551 (((-3 |#1| "failed") |#1|) 9)) (-2585 (((-3 |#1| "failed") |#1|) 19)) (-1522 (((-3 |#1| "failed") |#1|) 7)) (-3317 (((-3 |#1| "failed") |#1|) 17)) (-4235 (((-3 |#1| "failed") |#1|) 5)) (-3079 (((-3 |#1| "failed") |#1|) 24)) (-3994 (((-3 |#1| "failed") |#1|) 12)) (-1645 (((-3 |#1| "failed") |#1|) 22)) (-1944 (((-3 |#1| "failed") |#1|) 10)) (-2080 (((-3 |#1| "failed") |#1|) 26)) (-3451 (((-3 |#1| "failed") |#1|) 14)) (-2663 (((-3 |#1| "failed") |#1|) 27)) (-1797 (((-3 |#1| "failed") |#1|) 15)) (-3232 (((-3 |#1| "failed") |#1|) 25)) (-1392 (((-3 |#1| "failed") |#1|) 13)) (-2975 (((-3 |#1| "failed") |#1|) 23)) (-1706 (((-3 |#1| "failed") |#1|) 11))) -(((-965 |#1|) (-137) (-1177)) (T -965)) -((-2663 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2080 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3232 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3079 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1645 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3091 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2809 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2585 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2773 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3317 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2753 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1797 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3451 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1392 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3994 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1706 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1944 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3551 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3680 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1522 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2825 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-4235 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3157 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-3690 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-1767 (*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177)))) (-2573 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-757)) (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(-13 (-10 -7 (-15 -2573 ((-3 |t#1| "failed") |t#1| (-757))) (-15 -1767 ((-3 |t#1| "failed") |t#1|)) (-15 -3690 ((-3 |t#1| "failed") |t#1|)) (-15 -3157 ((-3 |t#1| "failed") |t#1|)) (-15 -4235 ((-3 |t#1| "failed") |t#1|)) (-15 -2825 ((-3 |t#1| "failed") |t#1|)) (-15 -1522 ((-3 |t#1| "failed") |t#1|)) (-15 -3680 ((-3 |t#1| "failed") |t#1|)) (-15 -3551 ((-3 |t#1| "failed") |t#1|)) (-15 -1944 ((-3 |t#1| "failed") |t#1|)) (-15 -1706 ((-3 |t#1| "failed") |t#1|)) (-15 -3994 ((-3 |t#1| "failed") |t#1|)) (-15 -1392 ((-3 |t#1| "failed") |t#1|)) (-15 -3451 ((-3 |t#1| "failed") |t#1|)) (-15 -1797 ((-3 |t#1| "failed") |t#1|)) (-15 -2753 ((-3 |t#1| "failed") |t#1|)) (-15 -3317 ((-3 |t#1| "failed") |t#1|)) (-15 -2773 ((-3 |t#1| "failed") |t#1|)) (-15 -2585 ((-3 |t#1| "failed") |t#1|)) (-15 -2809 ((-3 |t#1| "failed") |t#1|)) (-15 -3091 ((-3 |t#1| "failed") |t#1|)) (-15 -1645 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -3079 ((-3 |t#1| "failed") |t#1|)) (-15 -3232 ((-3 |t#1| "failed") |t#1|)) (-15 -2080 ((-3 |t#1| "failed") |t#1|)) (-15 -2663 ((-3 |t#1| "failed") |t#1|)))) -((-4045 ((|#4| |#4| (-630 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4078 ((|#4| |#4| (-630 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1482 ((|#4| (-1 |#4| (-934 |#1|)) |#4|) 30))) -(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4078 (|#4| |#4| |#3|)) (-15 -4078 (|#4| |#4| (-630 |#3|))) (-15 -4045 (|#4| |#4| |#3|)) (-15 -4045 (|#4| |#4| (-630 |#3|))) (-15 -1482 (|#4| (-1 |#4| (-934 |#1|)) |#4|))) (-1031) (-779) (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155))))) (-931 (-934 |#1|) |#2| |#3|)) (T -966)) -((-1482 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-934 *4))) (-4 *4 (-1031)) (-4 *2 (-931 (-934 *4) *5 *6)) (-4 *5 (-779)) (-4 *6 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-5 *1 (-966 *4 *5 *6 *2)))) (-4045 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *6)) (-4 *6 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-4 *4 (-1031)) (-4 *5 (-779)) (-5 *1 (-966 *4 *5 *6 *2)) (-4 *2 (-931 (-934 *4) *5 *6)))) (-4045 (*1 *2 *2 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-5 *1 (-966 *4 *5 *3 *2)) (-4 *2 (-931 (-934 *4) *5 *3)))) (-4078 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *6)) (-4 *6 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-4 *4 (-1031)) (-4 *5 (-779)) (-5 *1 (-966 *4 *5 *6 *2)) (-4 *2 (-931 (-934 *4) *5 *6)))) (-4078 (*1 *2 *2 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)) (-15 -1509 ((-3 $ "failed") (-1155)))))) (-5 *1 (-966 *4 *5 *3 *2)) (-4 *2 (-931 (-934 *4) *5 *3))))) -(-10 -7 (-15 -4078 (|#4| |#4| |#3|)) (-15 -4078 (|#4| |#4| (-630 |#3|))) (-15 -4045 (|#4| |#4| |#3|)) (-15 -4045 (|#4| |#4| (-630 |#3|))) (-15 -1482 (|#4| (-1 |#4| (-934 |#1|)) |#4|))) -((-1801 ((|#2| |#3|) 35)) (-4009 (((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) |#2|) 73)) (-2827 (((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) 89))) -(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2827 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))))) (-15 -4009 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) |#2|)) (-15 -1801 (|#2| |#3|))) (-343) (-1214 |#1|) (-1214 |#2|) (-710 |#2| |#3|)) (T -967)) -((-1801 (*1 *2 *3) (-12 (-4 *3 (-1214 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-967 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-710 *2 *3)))) (-4009 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 *3)) (-5 *2 (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-674 *3)))) (-5 *1 (-967 *4 *3 *5 *6)) (-4 *6 (-710 *3 *5)))) (-2827 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| -4124 (-674 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-674 *4)))) (-5 *1 (-967 *3 *4 *5 *6)) (-4 *6 (-710 *4 *5))))) -(-10 -7 (-15 -2827 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))))) (-15 -4009 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) |#2|)) (-15 -1801 (|#2| |#3|))) -((-3447 (((-969 (-401 (-553)) (-847 |#1|) (-235 |#2| (-757)) (-242 |#1| (-401 (-553)))) (-969 (-401 (-553)) (-847 |#1|) (-235 |#2| (-757)) (-242 |#1| (-401 (-553))))) 69))) -(((-968 |#1| |#2|) (-10 -7 (-15 -3447 ((-969 (-401 (-553)) (-847 |#1|) (-235 |#2| (-757)) (-242 |#1| (-401 (-553)))) (-969 (-401 (-553)) (-847 |#1|) (-235 |#2| (-757)) (-242 |#1| (-401 (-553))))))) (-630 (-1155)) (-757)) (T -968)) -((-3447 (*1 *2 *2) (-12 (-5 *2 (-969 (-401 (-553)) (-847 *3) (-235 *4 (-757)) (-242 *3 (-401 (-553))))) (-14 *3 (-630 (-1155))) (-14 *4 (-757)) (-5 *1 (-968 *3 *4))))) -(-10 -7 (-15 -3447 ((-969 (-401 (-553)) (-847 |#1|) (-235 |#2| (-757)) (-242 |#1| (-401 (-553)))) (-969 (-401 (-553)) (-847 |#1|) (-235 |#2| (-757)) (-242 |#1| (-401 (-553))))))) -((-3096 (((-111) $ $) NIL)) (-4018 (((-3 (-111) "failed") $) 69)) (-3733 (($ $) 36 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2426 (($ $ (-3 (-111) "failed")) 70)) (-1515 (($ (-630 |#4|) |#4|) 25)) (-1735 (((-1137) $) NIL)) (-4164 (($ $) 67)) (-2786 (((-1099) $) NIL)) (-3586 (((-111) $) 68)) (-3222 (($) 30)) (-3819 ((|#4| $) 72)) (-1947 (((-630 |#4|) $) 71)) (-3110 (((-845) $) 66)) (-1617 (((-111) $ $) NIL))) -(((-969 |#1| |#2| |#3| |#4|) (-13 (-1079) (-600 (-845)) (-10 -8 (-15 -3222 ($)) (-15 -1515 ($ (-630 |#4|) |#4|)) (-15 -4018 ((-3 (-111) "failed") $)) (-15 -2426 ($ $ (-3 (-111) "failed"))) (-15 -3586 ((-111) $)) (-15 -1947 ((-630 |#4|) $)) (-15 -3819 (|#4| $)) (-15 -4164 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -3733 ($ $)) |%noBranch|) |%noBranch|))) (-445) (-833) (-779) (-931 |#1| |#3| |#2|)) (T -969)) -((-3222 (*1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-833)) (-4 *4 (-779)) (-5 *1 (-969 *2 *3 *4 *5)) (-4 *5 (-931 *2 *4 *3)))) (-1515 (*1 *1 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-931 *4 *6 *5)) (-4 *4 (-445)) (-4 *5 (-833)) (-4 *6 (-779)) (-5 *1 (-969 *4 *5 *6 *3)))) (-4018 (*1 *2 *1) (|partial| -12 (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) (-5 *2 (-111)) (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4)))) (-3586 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) (-5 *2 (-111)) (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4)))) (-1947 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) (-5 *2 (-630 *6)) (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4)))) (-3819 (*1 *2 *1) (-12 (-4 *2 (-931 *3 *5 *4)) (-5 *1 (-969 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)))) (-4164 (*1 *1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-833)) (-4 *4 (-779)) (-5 *1 (-969 *2 *3 *4 *5)) (-4 *5 (-931 *2 *4 *3)))) (-3733 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-833)) (-4 *4 (-779)) (-5 *1 (-969 *2 *3 *4 *5)) (-4 *5 (-931 *2 *4 *3))))) -(-13 (-1079) (-600 (-845)) (-10 -8 (-15 -3222 ($)) (-15 -1515 ($ (-630 |#4|) |#4|)) (-15 -4018 ((-3 (-111) "failed") $)) (-15 -2426 ($ $ (-3 (-111) "failed"))) (-15 -3586 ((-111) $)) (-15 -1947 ((-630 |#4|) $)) (-15 -3819 (|#4| $)) (-15 -4164 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -3733 ($ $)) |%noBranch|) |%noBranch|))) -((-1437 (((-111) |#5| |#5|) 38)) (-3981 (((-111) |#5| |#5|) 52)) (-4071 (((-111) |#5| (-630 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-2485 (((-111) (-630 |#4|) (-630 |#4|)) 58)) (-4210 (((-111) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) 63)) (-1406 (((-1243)) 33)) (-3543 (((-1243) (-1137) (-1137) (-1137)) 29)) (-2999 (((-630 |#5|) (-630 |#5|)) 81)) (-2505 (((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) 79)) (-3631 (((-630 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|)))) (-630 |#4|) (-630 |#5|) (-111) (-111)) 101)) (-1763 (((-111) |#5| |#5|) 47)) (-3663 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2697 (((-111) (-630 |#4|) (-630 |#4|)) 57)) (-4303 (((-111) (-630 |#4|) (-630 |#4|)) 59)) (-1990 (((-111) (-630 |#4|) (-630 |#4|)) 60)) (-3432 (((-3 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|))) "failed") (-630 |#4|) |#5| (-630 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-2189 (((-630 |#5|) (-630 |#5|)) 43))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3543 ((-1243) (-1137) (-1137) (-1137))) (-15 -1406 ((-1243))) (-15 -1437 ((-111) |#5| |#5|)) (-15 -2189 ((-630 |#5|) (-630 |#5|))) (-15 -1763 ((-111) |#5| |#5|)) (-15 -3981 ((-111) |#5| |#5|)) (-15 -2485 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -2697 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -4303 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -1990 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -3663 ((-3 (-111) "failed") |#5| |#5|)) (-15 -4071 ((-111) |#5| |#5|)) (-15 -4071 ((-111) |#5| (-630 |#5|))) (-15 -2999 ((-630 |#5|) (-630 |#5|))) (-15 -4210 ((-111) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -2505 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-15 -3631 ((-630 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|)))) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -3432 ((-3 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|))) "failed") (-630 |#4|) |#5| (-630 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|)) (T -970)) -((-3432 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *9 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| -2662 (-630 *9)) (|:| -3233 *4) (|:| |ineq| (-630 *9)))) (-5 *1 (-970 *6 *7 *8 *9 *4)) (-5 *3 (-630 *9)) (-4 *4 (-1051 *6 *7 *8 *9)))) (-3631 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-630 *10)) (-5 *5 (-111)) (-4 *10 (-1051 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *9 (-1045 *6 *7 *8)) (-5 *2 (-630 (-2 (|:| -2662 (-630 *9)) (|:| -3233 *10) (|:| |ineq| (-630 *9))))) (-5 *1 (-970 *6 *7 *8 *9 *10)) (-5 *3 (-630 *9)))) (-2505 (*1 *2 *2) (-12 (-5 *2 (-630 (-2 (|:| |val| (-630 *6)) (|:| -3233 *7)))) (-4 *6 (-1045 *3 *4 *5)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-970 *3 *4 *5 *6 *7)))) (-4210 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *8)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *1 (-970 *3 *4 *5 *6 *7)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-970 *5 *6 *7 *8 *3)))) (-4071 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-3663 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-4303 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-2697 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-2485 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-1763 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *1 (-970 *3 *4 *5 *6 *7)))) (-1437 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-1406 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) (-5 *1 (-970 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) (-3543 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(-10 -7 (-15 -3543 ((-1243) (-1137) (-1137) (-1137))) (-15 -1406 ((-1243))) (-15 -1437 ((-111) |#5| |#5|)) (-15 -2189 ((-630 |#5|) (-630 |#5|))) (-15 -1763 ((-111) |#5| |#5|)) (-15 -3981 ((-111) |#5| |#5|)) (-15 -2485 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -2697 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -4303 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -1990 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -3663 ((-3 (-111) "failed") |#5| |#5|)) (-15 -4071 ((-111) |#5| |#5|)) (-15 -4071 ((-111) |#5| (-630 |#5|))) (-15 -2999 ((-630 |#5|) (-630 |#5|))) (-15 -4210 ((-111) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -2505 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-15 -3631 ((-630 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|)))) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -3432 ((-3 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|))) "failed") (-630 |#4|) |#5| (-630 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-1509 (((-1155) $) 15)) (-2821 (((-1137) $) 16)) (-4304 (($ (-1155) (-1137)) 14)) (-3110 (((-845) $) 13))) -(((-971) (-13 (-600 (-845)) (-10 -8 (-15 -4304 ($ (-1155) (-1137))) (-15 -1509 ((-1155) $)) (-15 -2821 ((-1137) $))))) (T -971)) -((-4304 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1137)) (-5 *1 (-971)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-971)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-971))))) -(-13 (-600 (-845)) (-10 -8 (-15 -4304 ($ (-1155) (-1137))) (-15 -1509 ((-1155) $)) (-15 -2821 ((-1137) $)))) -((-1482 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#4| (-1 |#2| |#1|) |#3|))) (-545) (-545) (-974 |#1|) (-974 |#2|)) (T -972)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-4 *2 (-974 *6)) (-5 *1 (-972 *5 *6 *4 *2)) (-4 *4 (-974 *5))))) -(-10 -7 (-15 -1482 (|#4| (-1 |#2| |#1|) |#3|))) -((-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-1155) "failed") $) 65) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 (-553) "failed") $) 95)) (-2707 ((|#2| $) NIL) (((-1155) $) 60) (((-401 (-553)) $) NIL) (((-553) $) 92)) (-2077 (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) 112) (((-674 |#2|) (-674 $)) 28)) (-3031 (($) 98)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 75) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 84)) (-2181 (($ $) 10)) (-2502 (((-3 $ "failed") $) 20)) (-1482 (($ (-1 |#2| |#2|) $) 22)) (-1945 (($) 16)) (-3785 (($ $) 54)) (-1330 (($ $) NIL) (($ $ (-757)) NIL) (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3161 (($ $) 12)) (-1524 (((-874 (-553)) $) 70) (((-874 (-373)) $) 79) (((-529) $) 40) (((-373) $) 44) (((-220) $) 47)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) 90) (($ |#2|) NIL) (($ (-1155)) 57)) (-1999 (((-757)) 31)) (-1636 (((-111) $ $) 50))) -(((-973 |#1| |#2|) (-10 -8 (-15 -1636 ((-111) |#1| |#1|)) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1524 ((-220) |#1|)) (-15 -1524 ((-373) |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3110 (|#1| (-1155))) (-15 -1399 ((-3 (-1155) "failed") |#1|)) (-15 -2707 ((-1155) |#1|)) (-15 -3031 (|#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -2077 ((-674 |#2|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| |#1|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-974 |#2|) (-545)) (T -973)) -((-1999 (*1 *2) (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-973 *3 *4)) (-4 *3 (-974 *4))))) -(-10 -8 (-15 -1636 ((-111) |#1| |#1|)) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1524 ((-220) |#1|)) (-15 -1524 ((-373) |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3110 (|#1| (-1155))) (-15 -1399 ((-3 (-1155) "failed") |#1|)) (-15 -2707 ((-1155) |#1|)) (-15 -3031 (|#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -2059 ((-871 (-553) |#1|) |#1| (-874 (-553)) (-871 (-553) |#1|))) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -2077 ((-674 |#2|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| |#1|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2751 ((|#1| $) 138 (|has| |#1| (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-1393 (((-412 (-1151 $)) (-1151 $)) 129 (|has| |#1| (-891)))) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 132 (|has| |#1| (-891)))) (-4349 (((-111) $ $) 60)) (-2125 (((-553) $) 119 (|has| |#1| (-806)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 176) (((-3 (-1155) "failed") $) 127 (|has| |#1| (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) 110 (|has| |#1| (-1020 (-553)))) (((-3 (-553) "failed") $) 108 (|has| |#1| (-1020 (-553))))) (-2707 ((|#1| $) 177) (((-1155) $) 128 (|has| |#1| (-1020 (-1155)))) (((-401 (-553)) $) 111 (|has| |#1| (-1020 (-553)))) (((-553) $) 109 (|has| |#1| (-1020 (-553))))) (-3973 (($ $ $) 56)) (-2077 (((-674 (-553)) (-674 $)) 151 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 150 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 149) (((-674 |#1|) (-674 $)) 148)) (-2982 (((-3 $ "failed") $) 33)) (-3031 (($) 136 (|has| |#1| (-538)))) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-3119 (((-111) $) 72)) (-4270 (((-111) $) 121 (|has| |#1| (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 145 (|has| |#1| (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 144 (|has| |#1| (-868 (-373))))) (-1848 (((-111) $) 31)) (-2181 (($ $) 140)) (-3963 ((|#1| $) 142)) (-2502 (((-3 $ "failed") $) 107 (|has| |#1| (-1130)))) (-2797 (((-111) $) 120 (|has| |#1| (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-1824 (($ $ $) 117 (|has| |#1| (-833)))) (-1975 (($ $ $) 116 (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) 168)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-1945 (($) 106 (|has| |#1| (-1130)) CONST)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3785 (($ $) 137 (|has| |#1| (-301)))) (-2334 ((|#1| $) 134 (|has| |#1| (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 131 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 130 (|has| |#1| (-891)))) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) 174 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 172 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) 171 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 170 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) 169 (|has| |#1| (-507 (-1155) |#1|)))) (-3384 (((-757) $) 59)) (-2046 (($ $ |#1|) 175 (|has| |#1| (-280 |#1| |#1|)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-1330 (($ $) 167 (|has| |#1| (-228))) (($ $ (-757)) 165 (|has| |#1| (-228))) (($ $ (-1155)) 163 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 162 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 161 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 160 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3161 (($ $) 139)) (-3974 ((|#1| $) 141)) (-1524 (((-874 (-553)) $) 147 (|has| |#1| (-601 (-874 (-553))))) (((-874 (-373)) $) 146 (|has| |#1| (-601 (-874 (-373))))) (((-529) $) 124 (|has| |#1| (-601 (-529)))) (((-373) $) 123 (|has| |#1| (-1004))) (((-220) $) 122 (|has| |#1| (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 133 (-3726 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67) (($ |#1|) 180) (($ (-1155)) 126 (|has| |#1| (-1020 (-1155))))) (-2941 (((-3 $ "failed") $) 125 (-3988 (|has| |#1| (-142)) (-3726 (|has| $ (-142)) (|has| |#1| (-891)))))) (-1999 (((-757)) 28)) (-2582 ((|#1| $) 135 (|has| |#1| (-538)))) (-1639 (((-111) $ $) 40)) (-3466 (($ $) 118 (|has| |#1| (-806)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $) 166 (|has| |#1| (-228))) (($ $ (-757)) 164 (|has| |#1| (-228))) (($ $ (-1155)) 159 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 158 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 157 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 156 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1669 (((-111) $ $) 114 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 113 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 115 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 112 (|has| |#1| (-833)))) (-1723 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) -(((-974 |#1|) (-137) (-545)) (T -974)) -((-1723 (*1 *1 *2 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)))) (-2181 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-301)))) (-3785 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-301)))) (-3031 (*1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-538)) (-4 *2 (-545)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-538)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-538))))) -(-13 (-357) (-38 |t#1|) (-1020 |t#1|) (-332 |t#1|) (-226 |t#1|) (-371 |t#1|) (-866 |t#1|) (-394 |t#1|) (-10 -8 (-15 -1723 ($ |t#1| |t#1|)) (-15 -3963 (|t#1| $)) (-15 -3974 (|t#1| $)) (-15 -2181 ($ $)) (-15 -3161 ($ $)) (IF (|has| |t#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |t#1| (-1020 (-553))) (PROGN (-6 (-1020 (-553))) (-6 (-1020 (-401 (-553))))) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-806)) (-6 (-806)) |%noBranch|) (IF (|has| |t#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |t#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1020 (-1155))) (-6 (-1020 (-1155))) |%noBranch|) (IF (|has| |t#1| (-301)) (PROGN (-15 -2751 (|t#1| $)) (-15 -3785 ($ $))) |%noBranch|) (IF (|has| |t#1| (-538)) (PROGN (-15 -3031 ($)) (-15 -2582 (|t#1| $)) (-15 -2334 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-891)) (-6 (-891)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 #1=(-1155)) |has| |#1| (-1020 (-1155))) ((-603 |#1|) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-601 (-220)) |has| |#1| (-1004)) ((-601 (-373)) |has| |#1| (-1004)) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-601 (-874 (-373))) |has| |#1| (-601 (-874 (-373)))) ((-601 (-874 (-553))) |has| |#1| (-601 (-874 (-553)))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) . T) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) . T) ((-301) . T) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-445) . T) ((-507 (-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-545) . T) ((-633 #0#) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) . T) ((-703 |#1|) . T) ((-703 $) . T) ((-712) . T) ((-777) |has| |#1| (-806)) ((-778) |has| |#1| (-806)) ((-780) |has| |#1| (-806)) ((-781) |has| |#1| (-806)) ((-806) |has| |#1| (-806)) ((-831) |has| |#1| (-806)) ((-833) -3988 (|has| |#1| (-833)) (|has| |#1| (-806))) ((-882 (-1155)) |has| |#1| (-882 (-1155))) ((-868 (-373)) |has| |#1| (-868 (-373))) ((-868 (-553)) |has| |#1| (-868 (-553))) ((-866 |#1|) . T) ((-891) |has| |#1| (-891)) ((-902) . T) ((-1004) |has| |#1| (-1004)) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-553))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 #1#) |has| |#1| (-1020 (-1155))) ((-1020 |#1|) . T) ((-1037 #0#) . T) ((-1037 |#1|) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) |has| |#1| (-1130)) ((-1192) . T) ((-1196) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1401 (($ (-1121 |#1| |#2|)) 11)) (-3394 (((-1121 |#1| |#2|) $) 12)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2046 ((|#2| $ (-235 |#1| |#2|)) 16)) (-3110 (((-845) $) NIL)) (-1988 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL))) -(((-975 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1401 ($ (-1121 |#1| |#2|))) (-15 -3394 ((-1121 |#1| |#2|) $)) (-15 -2046 (|#2| $ (-235 |#1| |#2|))))) (-903) (-357)) (T -975)) -((-1401 (*1 *1 *2) (-12 (-5 *2 (-1121 *3 *4)) (-14 *3 (-903)) (-4 *4 (-357)) (-5 *1 (-975 *3 *4)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-1121 *3 *4)) (-5 *1 (-975 *3 *4)) (-14 *3 (-903)) (-4 *4 (-357)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-903)) (-4 *2 (-357)) (-5 *1 (-975 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -1401 ($ (-1121 |#1| |#2|))) (-15 -3394 ((-1121 |#1| |#2|) $)) (-15 -2046 (|#2| $ (-235 |#1| |#2|))))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3456 (((-1114) $) 9)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-976) (-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $))))) (T -976)) -((-3456 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-976))))) -(-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-4171 (($ $) 46)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1899 (((-757) $) 45)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2964 ((|#1| $) 44)) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2865 ((|#1| |#1| $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-1456 ((|#1| $) 47)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3732 ((|#1| $) 43)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-977 |#1|) (-137) (-1192)) (T -977)) -((-2865 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192)))) (-1456 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192)))) (-4171 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1192)) (-5 *2 (-757)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4369) (-15 -2865 (|t#1| |t#1| $)) (-15 -1456 (|t#1| $)) (-15 -4171 ($ $)) (-15 -1899 ((-757) $)) (-15 -2964 (|t#1| $)) (-15 -3732 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3769 (((-111) $) 42)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2707 (((-553) $) NIL) (((-401 (-553)) $) NIL) ((|#2| $) 43)) (-3458 (((-3 (-401 (-553)) "failed") $) 78)) (-4323 (((-111) $) 72)) (-1672 (((-401 (-553)) $) 76)) (-1848 (((-111) $) 41)) (-3560 ((|#2| $) 22)) (-1482 (($ (-1 |#2| |#2|) $) 19)) (-3610 (($ $) 61)) (-1330 (($ $) NIL) (($ $ (-757)) NIL) (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1524 (((-529) $) 67)) (-3199 (($ $) 17)) (-3110 (((-845) $) 56) (($ (-553)) 38) (($ |#2|) 36) (($ (-401 (-553))) NIL)) (-1999 (((-757)) 10)) (-3466 ((|#2| $) 71)) (-1617 (((-111) $ $) 25)) (-1636 (((-111) $ $) 69)) (-1711 (($ $) 29) (($ $ $) 28)) (-1700 (($ $ $) 26)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL))) -(((-978 |#1| |#2|) (-10 -8 (-15 -3110 (|#1| (-401 (-553)))) (-15 -1636 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 * (|#1| |#1| (-401 (-553)))) (-15 -3610 (|#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -3466 (|#2| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 -1848 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 -3769 ((-111) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-979 |#2|) (-169)) (T -978)) -((-1999 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-757)) (-5 *1 (-978 *3 *4)) (-4 *3 (-979 *4))))) -(-10 -8 (-15 -3110 (|#1| (-401 (-553)))) (-15 -1636 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-553)) |#1|)) (-15 * (|#1| |#1| (-401 (-553)))) (-15 -3610 (|#1| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -3466 (|#2| |#1|)) (-15 -3560 (|#2| |#1|)) (-15 -3199 (|#1| |#1|)) (-15 -1482 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 -1848 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 * (|#1| (-757) |#1|)) (-15 -3769 ((-111) |#1|)) (-15 * (|#1| (-903) |#1|)) (-15 -1700 (|#1| |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1399 (((-3 (-553) "failed") $) 118 (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 116 (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) 113)) (-2707 (((-553) $) 117 (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) 115 (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) 114)) (-2077 (((-674 (-553)) (-674 $)) 88 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 87 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 86) (((-674 |#1|) (-674 $)) 85)) (-2982 (((-3 $ "failed") $) 33)) (-3375 ((|#1| $) 78)) (-3458 (((-3 (-401 (-553)) "failed") $) 74 (|has| |#1| (-538)))) (-4323 (((-111) $) 76 (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) 75 (|has| |#1| (-538)))) (-3353 (($ |#1| |#1| |#1| |#1|) 79)) (-1848 (((-111) $) 31)) (-3560 ((|#1| $) 80)) (-1824 (($ $ $) 67 (|has| |#1| (-833)))) (-1975 (($ $ $) 66 (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) 89)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71 (|has| |#1| (-357)))) (-2727 ((|#1| $) 81)) (-3005 ((|#1| $) 82)) (-1661 ((|#1| $) 83)) (-2786 (((-1099) $) 10)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) 95 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 93 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) 92 (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) 91 (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) 90 (|has| |#1| (-507 (-1155) |#1|)))) (-2046 (($ $ |#1|) 96 (|has| |#1| (-280 |#1| |#1|)))) (-1330 (($ $) 112 (|has| |#1| (-228))) (($ $ (-757)) 110 (|has| |#1| (-228))) (($ $ (-1155)) 108 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 107 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 106 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 105 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-1524 (((-529) $) 72 (|has| |#1| (-601 (-529))))) (-3199 (($ $) 84)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 38) (($ (-401 (-553))) 61 (-3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553))))))) (-2941 (((-3 $ "failed") $) 73 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-3466 ((|#1| $) 77 (|has| |#1| (-1040)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $) 111 (|has| |#1| (-228))) (($ $ (-757)) 109 (|has| |#1| (-228))) (($ $ (-1155)) 104 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 103 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 102 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 101 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1669 (((-111) $ $) 64 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 63 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 65 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 62 (|has| |#1| (-833)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70 (|has| |#1| (-357)))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-401 (-553))) 69 (|has| |#1| (-357))) (($ (-401 (-553)) $) 68 (|has| |#1| (-357))))) -(((-979 |#1|) (-137) (-169)) (T -979)) -((-3199 (*1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-3353 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)) (-4 *2 (-1040)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-111)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-401 (-553))))) (-3458 (*1 *2 *1) (|partial| -12 (-4 *1 (-979 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-401 (-553)))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-371 |t#1|) (-10 -8 (-15 -3199 ($ $)) (-15 -1661 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -2727 (|t#1| $)) (-15 -3560 (|t#1| $)) (-15 -3353 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3375 (|t#1| $)) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1040)) (-15 -3466 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-538)) (PROGN (-15 -4323 ((-111) $)) (-15 -1672 ((-401 (-553)) $)) (-15 -3458 ((-3 (-401 (-553)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-357)) ((-38 |#1|) . T) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-357)) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-357))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) |has| |#1| (-357)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -3988 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-507 (-1155) |#1|) |has| |#1| (-507 (-1155) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-633 #0#) |has| |#1| (-357)) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) |has| |#1| (-357)) ((-703 |#1|) . T) ((-712) . T) ((-833) |has| |#1| (-833)) ((-882 (-1155)) |has| |#1| (-882 (-1155))) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1037 #0#) |has| |#1| (-357)) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1482 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#3| (-1 |#4| |#2|) |#1|))) (-979 |#2|) (-169) (-979 |#4|) (-169)) (T -980)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-979 *6)) (-5 *1 (-980 *4 *5 *2 *6)) (-4 *4 (-979 *5))))) -(-10 -7 (-15 -1482 (|#3| (-1 |#4| |#2|) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3375 ((|#1| $) 12)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-538)))) (-4323 (((-111) $) NIL (|has| |#1| (-538)))) (-1672 (((-401 (-553)) $) NIL (|has| |#1| (-538)))) (-3353 (($ |#1| |#1| |#1| |#1|) 16)) (-1848 (((-111) $) NIL)) (-3560 ((|#1| $) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-2727 ((|#1| $) 15)) (-3005 ((|#1| $) 14)) (-1661 ((|#1| $) 13)) (-2786 (((-1099) $) NIL)) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-630 (-1155)) (-630 |#1|)) NIL (|has| |#1| (-507 (-1155) |#1|))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-507 (-1155) |#1|)))) (-2046 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-1330 (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3199 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553))))))) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-3466 ((|#1| $) NIL (|has| |#1| (-1040)))) (-1988 (($) 8 T CONST)) (-1997 (($) 10 T CONST)) (-1780 (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-357))) (($ (-401 (-553)) $) NIL (|has| |#1| (-357))))) -(((-981 |#1|) (-979 |#1|) (-169)) (T -981)) -NIL -(-979 |#1|) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1511 (((-111) $ (-757)) NIL)) (-3820 (($) NIL T CONST)) (-4171 (($ $) 20)) (-1673 (($ (-630 |#1|)) 29)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1899 (((-757) $) 22)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1376 ((|#1| $) 24)) (-2636 (($ |#1| $) 15)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2964 ((|#1| $) 23)) (-2949 ((|#1| $) 19)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2865 ((|#1| |#1| $) 14)) (-3586 (((-111) $) 17)) (-3222 (($) NIL)) (-1456 ((|#1| $) 18)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) NIL)) (-3732 ((|#1| $) 26)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-982 |#1|) (-13 (-977 |#1|) (-10 -8 (-15 -1673 ($ (-630 |#1|))))) (-1079)) (T -982)) -((-1673 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-982 *3))))) -(-13 (-977 |#1|) (-10 -8 (-15 -1673 ($ (-630 |#1|))))) -((-3365 (($ $) 12)) (-2406 (($ $ (-553)) 13))) -(((-983 |#1|) (-10 -8 (-15 -3365 (|#1| |#1|)) (-15 -2406 (|#1| |#1| (-553)))) (-984)) (T -983)) -NIL -(-10 -8 (-15 -3365 (|#1| |#1|)) (-15 -2406 (|#1| |#1| (-553)))) -((-3365 (($ $) 6)) (-2406 (($ $ (-553)) 7)) (** (($ $ (-401 (-553))) 8))) -(((-984) (-137)) (T -984)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-401 (-553))))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-553)))) (-3365 (*1 *1 *1) (-4 *1 (-984)))) -(-13 (-10 -8 (-15 -3365 ($ $)) (-15 -2406 ($ $ (-553))) (-15 ** ($ $ (-401 (-553)))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2820 (((-2 (|:| |num| (-1238 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-1968 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2028 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-3989 (((-674 (-401 |#2|)) (-1238 $)) NIL) (((-674 (-401 |#2|))) NIL)) (-1576 (((-401 |#2|) $) NIL)) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| (-401 |#2|) (-343)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2708 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4349 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2571 (((-757)) NIL (|has| (-401 |#2|) (-362)))) (-1753 (((-111)) NIL)) (-2945 (((-111) |#1|) 148) (((-111) |#2|) 153)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| (-401 |#2|) (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-401 |#2|) (-1020 (-401 (-553))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| (-401 |#2|) (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| (-401 |#2|) (-1020 (-401 (-553))))) (((-401 |#2|) $) NIL)) (-3461 (($ (-1238 (-401 |#2|)) (-1238 $)) NIL) (($ (-1238 (-401 |#2|))) 70) (($ (-1238 |#2|) |#2|) NIL)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-3973 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4232 (((-674 (-401 |#2|)) $ (-1238 $)) NIL) (((-674 (-401 |#2|)) $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-401 |#2|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-401 |#2|) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-401 |#2|))) (|:| |vec| (-1238 (-401 |#2|)))) (-674 $) (-1238 $)) NIL) (((-674 (-401 |#2|)) (-674 $)) NIL)) (-3303 (((-1238 $) (-1238 $)) NIL)) (-2654 (($ |#3|) 65) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-2982 (((-3 $ "failed") $) NIL)) (-3071 (((-630 (-630 |#1|))) NIL (|has| |#1| (-362)))) (-3967 (((-111) |#1| |#1|) NIL)) (-2409 (((-903)) NIL)) (-3031 (($) NIL (|has| (-401 |#2|) (-362)))) (-3925 (((-111)) NIL)) (-3999 (((-111) |#1|) 56) (((-111) |#2|) 150)) (-3952 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| (-401 |#2|) (-357)))) (-1655 (($ $) NIL)) (-2484 (($) NIL (|has| (-401 |#2|) (-343)))) (-3637 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-1808 (($ $ (-757)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-3119 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2968 (((-903) $) NIL (|has| (-401 |#2|) (-343))) (((-819 (-903)) $) NIL (|has| (-401 |#2|) (-343)))) (-1848 (((-111) $) NIL)) (-2015 (((-757)) NIL)) (-3149 (((-1238 $) (-1238 $)) NIL)) (-3560 (((-401 |#2|) $) NIL)) (-2954 (((-630 (-934 |#1|)) (-1155)) NIL (|has| |#1| (-357)))) (-2502 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3568 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-3796 (((-903) $) NIL (|has| (-401 |#2|) (-362)))) (-2643 ((|#3| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1735 (((-1137) $) NIL)) (-3212 (((-674 (-401 |#2|))) 52)) (-3609 (((-674 (-401 |#2|))) 51)) (-3610 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2207 (($ (-1238 |#2|) |#2|) 71)) (-3037 (((-674 (-401 |#2|))) 50)) (-2838 (((-674 (-401 |#2|))) 49)) (-3878 (((-2 (|:| |num| (-674 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4084 (((-2 (|:| |num| (-1238 |#2|)) (|:| |den| |#2|)) $) 77)) (-2338 (((-1238 $)) 46)) (-2827 (((-1238 $)) 45)) (-4020 (((-111) $) NIL)) (-1806 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-1945 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-2735 (($ (-903)) NIL (|has| (-401 |#2|) (-362)))) (-2462 (((-3 |#2| "failed")) 63)) (-2786 (((-1099) $) NIL)) (-3118 (((-757)) NIL)) (-4093 (($) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| (-401 |#2|) (-357)))) (-2508 (($ (-630 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| (-401 |#2|) (-343)))) (-3355 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3929 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3384 (((-757) $) NIL (|has| (-401 |#2|) (-357)))) (-2046 ((|#1| $ |#1| |#1|) NIL)) (-3306 (((-3 |#2| "failed")) 62)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3000 (((-401 |#2|) (-1238 $)) NIL) (((-401 |#2|)) 42)) (-3122 (((-757) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-757) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-1330 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-757)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-757)) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2297 (((-674 (-401 |#2|)) (-1238 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-1394 ((|#3|) 53)) (-1469 (($) NIL (|has| (-401 |#2|) (-343)))) (-2855 (((-1238 (-401 |#2|)) $ (-1238 $)) NIL) (((-674 (-401 |#2|)) (-1238 $) (-1238 $)) NIL) (((-1238 (-401 |#2|)) $) 72) (((-674 (-401 |#2|)) (-1238 $)) NIL)) (-1524 (((-1238 (-401 |#2|)) $) NIL) (($ (-1238 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| (-401 |#2|) (-343)))) (-2657 (((-1238 $) (-1238 $)) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-553))) NIL (-3988 (|has| (-401 |#2|) (-1020 (-401 (-553)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2941 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-3547 ((|#3| $) NIL)) (-1999 (((-757)) NIL)) (-3794 (((-111)) 60)) (-3722 (((-111) |#1|) 154) (((-111) |#2|) 155)) (-4124 (((-1238 $)) 125)) (-1639 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2756 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4014 (((-111)) NIL)) (-1988 (($) 94 T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-757)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-882 (-1155))))) (($ $ (-757)) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-3988 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-553)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-553))) NIL (|has| (-401 |#2|) (-357))))) -(((-985 |#1| |#2| |#3| |#4| |#5|) (-336 |#1| |#2| |#3|) (-1196) (-1214 |#1|) (-1214 (-401 |#2|)) (-401 |#2|) (-757)) (T -985)) -NIL -(-336 |#1| |#2| |#3|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2463 (((-630 (-553)) $) 54)) (-2337 (($ (-630 (-553))) 62)) (-2751 (((-553) $) 40 (|has| (-553) (-301)))) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL (|has| (-553) (-806)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) 49) (((-3 (-1155) "failed") $) NIL (|has| (-553) (-1020 (-1155)))) (((-3 (-401 (-553)) "failed") $) 47 (|has| (-553) (-1020 (-553)))) (((-3 (-553) "failed") $) 49 (|has| (-553) (-1020 (-553))))) (-2707 (((-553) $) NIL) (((-1155) $) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) NIL (|has| (-553) (-1020 (-553)))) (((-553) $) NIL (|has| (-553) (-1020 (-553))))) (-3973 (($ $ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| (-553) (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3031 (($) NIL (|has| (-553) (-538)))) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-2900 (((-630 (-553)) $) 60)) (-4270 (((-111) $) NIL (|has| (-553) (-806)))) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (|has| (-553) (-868 (-553)))) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (|has| (-553) (-868 (-373))))) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL)) (-3963 (((-553) $) 37)) (-2502 (((-3 $ "failed") $) NIL (|has| (-553) (-1130)))) (-2797 (((-111) $) NIL (|has| (-553) (-806)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-553) (-833)))) (-1482 (($ (-1 (-553) (-553)) $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL)) (-1945 (($) NIL (|has| (-553) (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3785 (($ $) NIL (|has| (-553) (-301))) (((-401 (-553)) $) 42)) (-2348 (((-1135 (-553)) $) 59)) (-4158 (($ (-630 (-553)) (-630 (-553))) 63)) (-2334 (((-553) $) 53 (|has| (-553) (-538)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| (-553) (-891)))) (-3355 (((-412 $) $) NIL)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-2356 (($ $ (-630 (-553)) (-630 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-553) (-553)) NIL (|has| (-553) (-303 (-553)))) (($ $ (-288 (-553))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-288 (-553)))) NIL (|has| (-553) (-303 (-553)))) (($ $ (-630 (-1155)) (-630 (-553))) NIL (|has| (-553) (-507 (-1155) (-553)))) (($ $ (-1155) (-553)) NIL (|has| (-553) (-507 (-1155) (-553))))) (-3384 (((-757) $) NIL)) (-2046 (($ $ (-553)) NIL (|has| (-553) (-280 (-553) (-553))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $) 11 (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-3161 (($ $) NIL)) (-3974 (((-553) $) 39)) (-4263 (((-630 (-553)) $) 61)) (-1524 (((-874 (-553)) $) NIL (|has| (-553) (-601 (-874 (-553))))) (((-874 (-373)) $) NIL (|has| (-553) (-601 (-874 (-373))))) (((-529) $) NIL (|has| (-553) (-601 (-529)))) (((-373) $) NIL (|has| (-553) (-1004))) (((-220) $) NIL (|has| (-553) (-1004)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-553) (-891))))) (-3110 (((-845) $) 77) (($ (-553)) 43) (($ $) NIL) (($ (-401 (-553))) 20) (($ (-553)) 43) (($ (-1155)) NIL (|has| (-553) (-1020 (-1155)))) (((-401 (-553)) $) 18)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-553) (-891))) (|has| (-553) (-142))))) (-1999 (((-757)) 9)) (-2582 (((-553) $) 51 (|has| (-553) (-538)))) (-1639 (((-111) $ $) NIL)) (-3466 (($ $) NIL (|has| (-553) (-806)))) (-1988 (($) 10 T CONST)) (-1997 (($) 12 T CONST)) (-1780 (($ $) NIL (|has| (-553) (-228))) (($ $ (-757)) NIL (|has| (-553) (-228))) (($ $ (-1155)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| (-553) (-882 (-1155)))) (($ $ (-1 (-553) (-553)) (-757)) NIL) (($ $ (-1 (-553) (-553))) NIL)) (-1669 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1617 (((-111) $ $) 14)) (-1659 (((-111) $ $) NIL (|has| (-553) (-833)))) (-1636 (((-111) $ $) 33 (|has| (-553) (-833)))) (-1723 (($ $ $) 29) (($ (-553) (-553)) 31)) (-1711 (($ $) 15) (($ $ $) 23)) (-1700 (($ $ $) 21)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 25) (($ $ $) 27) (($ $ (-401 (-553))) NIL) (($ (-401 (-553)) $) NIL) (($ (-553) $) 25) (($ $ (-553)) NIL))) -(((-986 |#1|) (-13 (-974 (-553)) (-600 (-401 (-553))) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -2463 ((-630 (-553)) $)) (-15 -2348 ((-1135 (-553)) $)) (-15 -2900 ((-630 (-553)) $)) (-15 -4263 ((-630 (-553)) $)) (-15 -2337 ($ (-630 (-553)))) (-15 -4158 ($ (-630 (-553)) (-630 (-553)))))) (-553)) (T -986)) -((-3785 (*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-1135 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) (-4158 (*1 *1 *2 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) -(-13 (-974 (-553)) (-600 (-401 (-553))) (-10 -8 (-15 -3785 ((-401 (-553)) $)) (-15 -2463 ((-630 (-553)) $)) (-15 -2348 ((-1135 (-553)) $)) (-15 -2900 ((-630 (-553)) $)) (-15 -4263 ((-630 (-553)) $)) (-15 -2337 ($ (-630 (-553)))) (-15 -4158 ($ (-630 (-553)) (-630 (-553)))))) -((-1495 (((-52) (-401 (-553)) (-553)) 9))) -(((-987) (-10 -7 (-15 -1495 ((-52) (-401 (-553)) (-553))))) (T -987)) -((-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-553))) (-5 *4 (-553)) (-5 *2 (-52)) (-5 *1 (-987))))) -(-10 -7 (-15 -1495 ((-52) (-401 (-553)) (-553)))) -((-2571 (((-553)) 13)) (-3890 (((-553)) 16)) (-2706 (((-1243) (-553)) 15)) (-1547 (((-553) (-553)) 17) (((-553)) 12))) -(((-988) (-10 -7 (-15 -1547 ((-553))) (-15 -2571 ((-553))) (-15 -1547 ((-553) (-553))) (-15 -2706 ((-1243) (-553))) (-15 -3890 ((-553))))) (T -988)) -((-3890 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-988)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988)))) (-2571 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988)))) (-1547 (*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988))))) -(-10 -7 (-15 -1547 ((-553))) (-15 -2571 ((-553))) (-15 -1547 ((-553) (-553))) (-15 -2706 ((-1243) (-553))) (-15 -3890 ((-553)))) -((-3519 (((-412 |#1|) |#1|) 41)) (-3355 (((-412 |#1|) |#1|) 40))) -(((-989 |#1|) (-10 -7 (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3519 ((-412 |#1|) |#1|))) (-1214 (-401 (-553)))) (T -989)) -((-3519 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-989 *3)) (-4 *3 (-1214 (-401 (-553)))))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-989 *3)) (-4 *3 (-1214 (-401 (-553))))))) -(-10 -7 (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3519 ((-412 |#1|) |#1|))) -((-3458 (((-3 (-401 (-553)) "failed") |#1|) 15)) (-4323 (((-111) |#1|) 14)) (-1672 (((-401 (-553)) |#1|) 10))) -(((-990 |#1|) (-10 -7 (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|))) (-1020 (-401 (-553)))) (T -990)) -((-3458 (*1 *2 *3) (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-990 *3)) (-4 *3 (-1020 *2)))) (-4323 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-990 *3)) (-4 *3 (-1020 (-401 (-553)))))) (-1672 (*1 *2 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-990 *3)) (-4 *3 (-1020 *2))))) -(-10 -7 (-15 -1672 ((-401 (-553)) |#1|)) (-15 -4323 ((-111) |#1|)) (-15 -3458 ((-3 (-401 (-553)) "failed") |#1|))) -((-1490 ((|#2| $ "value" |#2|) 12)) (-2046 ((|#2| $ "value") 10)) (-3743 (((-111) $ $) 18))) -(((-991 |#1| |#2|) (-10 -8 (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -3743 ((-111) |#1| |#1|)) (-15 -2046 (|#2| |#1| "value"))) (-992 |#2|) (-1192)) (T -991)) -NIL -(-10 -8 (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -3743 ((-111) |#1| |#1|)) (-15 -2046 (|#2| |#1| "value"))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3820 (($) 7 T CONST)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47)) (-3558 (((-553) $ $) 44)) (-1510 (((-111) $) 46)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-992 |#1|) (-137) (-1192)) (T -992)) -((-2860 (*1 *2 *1) (-12 (-4 *3 (-1192)) (-5 *2 (-630 *1)) (-4 *1 (-992 *3)))) (-3167 (*1 *2 *1) (-12 (-4 *3 (-1192)) (-5 *2 (-630 *1)) (-4 *1 (-992 *3)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1192)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-992 *2)) (-4 *2 (-1192)))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-630 *3)))) (-3558 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-553)))) (-3743 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-111)))) (-2284 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-111)))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *1)) (|has| *1 (-6 -4370)) (-4 *1 (-992 *3)) (-4 *3 (-1192)))) (-1490 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4370)) (-4 *1 (-992 *2)) (-4 *2 (-1192)))) (-2884 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-992 *2)) (-4 *2 (-1192))))) -(-13 (-482 |t#1|) (-10 -8 (-15 -2860 ((-630 $) $)) (-15 -3167 ((-630 $) $)) (-15 -3862 ((-111) $)) (-15 -2821 (|t#1| $)) (-15 -2046 (|t#1| $ "value")) (-15 -1510 ((-111) $)) (-15 -3698 ((-630 |t#1|) $)) (-15 -3558 ((-553) $ $)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -3743 ((-111) $ $)) (-15 -2284 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4370)) (PROGN (-15 -2909 ($ $ (-630 $))) (-15 -1490 (|t#1| $ "value" |t#1|)) (-15 -2884 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-3365 (($ $) 9) (($ $ (-903)) 43) (($ (-401 (-553))) 13) (($ (-553)) 15)) (-3906 (((-3 $ "failed") (-1151 $) (-903) (-845)) 23) (((-3 $ "failed") (-1151 $) (-903)) 28)) (-2406 (($ $ (-553)) 49)) (-1999 (((-757)) 17)) (-3408 (((-630 $) (-1151 $)) NIL) (((-630 $) (-1151 (-401 (-553)))) 54) (((-630 $) (-1151 (-553))) 59) (((-630 $) (-934 $)) 63) (((-630 $) (-934 (-401 (-553)))) 67) (((-630 $) (-934 (-553))) 71)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL) (($ $ (-401 (-553))) 47))) -(((-993 |#1|) (-10 -8 (-15 -3365 (|#1| (-553))) (-15 -3365 (|#1| (-401 (-553)))) (-15 -3365 (|#1| |#1| (-903))) (-15 -3408 ((-630 |#1|) (-934 (-553)))) (-15 -3408 ((-630 |#1|) (-934 (-401 (-553))))) (-15 -3408 ((-630 |#1|) (-934 |#1|))) (-15 -3408 ((-630 |#1|) (-1151 (-553)))) (-15 -3408 ((-630 |#1|) (-1151 (-401 (-553))))) (-15 -3408 ((-630 |#1|) (-1151 |#1|))) (-15 -3906 ((-3 |#1| "failed") (-1151 |#1|) (-903))) (-15 -3906 ((-3 |#1| "failed") (-1151 |#1|) (-903) (-845))) (-15 ** (|#1| |#1| (-401 (-553)))) (-15 -2406 (|#1| |#1| (-553))) (-15 -3365 (|#1| |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 -1999 ((-757))) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903)))) (-994)) (T -993)) -((-1999 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-993 *3)) (-4 *3 (-994))))) -(-10 -8 (-15 -3365 (|#1| (-553))) (-15 -3365 (|#1| (-401 (-553)))) (-15 -3365 (|#1| |#1| (-903))) (-15 -3408 ((-630 |#1|) (-934 (-553)))) (-15 -3408 ((-630 |#1|) (-934 (-401 (-553))))) (-15 -3408 ((-630 |#1|) (-934 |#1|))) (-15 -3408 ((-630 |#1|) (-1151 (-553)))) (-15 -3408 ((-630 |#1|) (-1151 (-401 (-553))))) (-15 -3408 ((-630 |#1|) (-1151 |#1|))) (-15 -3906 ((-3 |#1| "failed") (-1151 |#1|) (-903))) (-15 -3906 ((-3 |#1| "failed") (-1151 |#1|) (-903) (-845))) (-15 ** (|#1| |#1| (-401 (-553)))) (-15 -2406 (|#1| |#1| (-553))) (-15 -3365 (|#1| |#1|)) (-15 ** (|#1| |#1| (-553))) (-15 -1999 ((-757))) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 91)) (-1968 (($ $) 92)) (-2028 (((-111) $) 94)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 111)) (-2708 (((-412 $) $) 112)) (-3365 (($ $) 75) (($ $ (-903)) 61) (($ (-401 (-553))) 60) (($ (-553)) 59)) (-4349 (((-111) $ $) 102)) (-2125 (((-553) $) 128)) (-3820 (($) 17 T CONST)) (-3906 (((-3 $ "failed") (-1151 $) (-903) (-845)) 69) (((-3 $ "failed") (-1151 $) (-903)) 68)) (-1399 (((-3 (-553) "failed") $) 88 (|has| (-401 (-553)) (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 86 (|has| (-401 (-553)) (-1020 (-401 (-553))))) (((-3 (-401 (-553)) "failed") $) 83)) (-2707 (((-553) $) 87 (|has| (-401 (-553)) (-1020 (-553)))) (((-401 (-553)) $) 85 (|has| (-401 (-553)) (-1020 (-401 (-553))))) (((-401 (-553)) $) 84)) (-3246 (($ $ (-845)) 58)) (-4237 (($ $ (-845)) 57)) (-3973 (($ $ $) 106)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 105)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 100)) (-3119 (((-111) $) 113)) (-4270 (((-111) $) 126)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 74)) (-2797 (((-111) $) 127)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 109)) (-1824 (($ $ $) 125)) (-1975 (($ $ $) 124)) (-2947 (((-3 (-1151 $) "failed") $) 70)) (-4216 (((-3 (-845) "failed") $) 72)) (-3691 (((-3 (-1151 $) "failed") $) 71)) (-2471 (($ (-630 $)) 98) (($ $ $) 97)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 114)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 99)) (-2508 (($ (-630 $)) 96) (($ $ $) 95)) (-3355 (((-412 $) $) 110)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 107)) (-3929 (((-3 $ "failed") $ $) 90)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 101)) (-3384 (((-757) $) 103)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 104)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 118) (($ $) 89) (($ (-401 (-553))) 82) (($ (-553)) 81) (($ (-401 (-553))) 78)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 93)) (-4327 (((-401 (-553)) $ $) 56)) (-3408 (((-630 $) (-1151 $)) 67) (((-630 $) (-1151 (-401 (-553)))) 66) (((-630 $) (-1151 (-553))) 65) (((-630 $) (-934 $)) 64) (((-630 $) (-934 (-401 (-553)))) 63) (((-630 $) (-934 (-553))) 62)) (-3466 (($ $) 129)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 122)) (-1648 (((-111) $ $) 121)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 123)) (-1636 (((-111) $ $) 120)) (-1723 (($ $ $) 119)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 115) (($ $ (-401 (-553))) 73)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ (-401 (-553)) $) 117) (($ $ (-401 (-553))) 116) (($ (-553) $) 80) (($ $ (-553)) 79) (($ (-401 (-553)) $) 77) (($ $ (-401 (-553))) 76))) -(((-994) (-137)) (T -994)) -((-3365 (*1 *1 *1) (-4 *1 (-994))) (-4216 (*1 *2 *1) (|partial| -12 (-4 *1 (-994)) (-5 *2 (-845)))) (-3691 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151 *1)) (-4 *1 (-994)))) (-2947 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151 *1)) (-4 *1 (-994)))) (-3906 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1151 *1)) (-5 *3 (-903)) (-5 *4 (-845)) (-4 *1 (-994)))) (-3906 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1151 *1)) (-5 *3 (-903)) (-4 *1 (-994)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-1151 *1)) (-4 *1 (-994)) (-5 *2 (-630 *1)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-1151 (-401 (-553)))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-1151 (-553))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-934 *1)) (-4 *1 (-994)) (-5 *2 (-630 *1)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-934 (-401 (-553)))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-934 (-553))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-903)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-4 *1 (-994)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-994)))) (-3246 (*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-845)))) (-4237 (*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-845)))) (-4327 (*1 *2 *1 *1) (-12 (-4 *1 (-994)) (-5 *2 (-401 (-553)))))) -(-13 (-144) (-831) (-169) (-357) (-405 (-401 (-553))) (-38 (-553)) (-38 (-401 (-553))) (-984) (-10 -8 (-15 -4216 ((-3 (-845) "failed") $)) (-15 -3691 ((-3 (-1151 $) "failed") $)) (-15 -2947 ((-3 (-1151 $) "failed") $)) (-15 -3906 ((-3 $ "failed") (-1151 $) (-903) (-845))) (-15 -3906 ((-3 $ "failed") (-1151 $) (-903))) (-15 -3408 ((-630 $) (-1151 $))) (-15 -3408 ((-630 $) (-1151 (-401 (-553))))) (-15 -3408 ((-630 $) (-1151 (-553)))) (-15 -3408 ((-630 $) (-934 $))) (-15 -3408 ((-630 $) (-934 (-401 (-553))))) (-15 -3408 ((-630 $) (-934 (-553)))) (-15 -3365 ($ $ (-903))) (-15 -3365 ($ $)) (-15 -3365 ($ (-401 (-553)))) (-15 -3365 ($ (-553))) (-15 -3246 ($ $ (-845))) (-15 -4237 ($ $ (-845))) (-15 -4327 ((-401 (-553)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 #1=(-553)) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-405 (-401 (-553))) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 #1#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 #1#) . T) ((-703 $) . T) ((-712) . T) ((-777) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-831) . T) ((-833) . T) ((-902) . T) ((-984) . T) ((-1020 (-401 (-553))) . T) ((-1020 (-553)) |has| (-401 (-553)) (-1020 (-553))) ((-1037 #0#) . T) ((-1037 #1#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-2976 (((-2 (|:| |ans| |#2|) (|:| -3323 |#2|) (|:| |sol?| (-111))) (-553) |#2| |#2| (-1155) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|)) (-1 (-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-995 |#1| |#2|) (-10 -7 (-15 -2976 ((-2 (|:| |ans| |#2|) (|:| -3323 |#2|) (|:| |sol?| (-111))) (-553) |#2| |#2| (-1155) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|)) (-1 (-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-27) (-424 |#1|))) (T -995)) -((-2976 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1155)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-630 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2388 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1177) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-833) (-144) (-1020 *3) (-626 *3))) (-5 *3 (-553)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3323 *4) (|:| |sol?| (-111)))) (-5 *1 (-995 *8 *4))))) -(-10 -7 (-15 -2976 ((-2 (|:| |ans| |#2|) (|:| -3323 |#2|) (|:| |sol?| (-111))) (-553) |#2| |#2| (-1155) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|)) (-1 (-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3808 (((-3 (-630 |#2|) "failed") (-553) |#2| |#2| |#2| (-1155) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|)) (-1 (-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-996 |#1| |#2|) (-10 -7 (-15 -3808 ((-3 (-630 |#2|) "failed") (-553) |#2| |#2| |#2| (-1155) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|)) (-1 (-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553))) (-13 (-1177) (-27) (-424 |#1|))) (T -996)) -((-3808 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1155)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-630 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2388 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1177) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-833) (-144) (-1020 *3) (-626 *3))) (-5 *3 (-553)) (-5 *2 (-630 *4)) (-5 *1 (-996 *8 *4))))) -(-10 -7 (-15 -3808 ((-3 (-630 |#2|) "failed") (-553) |#2| |#2| |#2| (-1155) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-630 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|)) (-1 (-3 (-2 (|:| -2388 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3503 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -2662 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-553)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-553) (-1 |#2| |#2|)) 30)) (-2093 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -4334 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 58)) (-2205 (((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|)) 63))) -(((-997 |#1| |#2|) (-10 -7 (-15 -2093 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -4334 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -2205 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -3503 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -2662 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-553)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-553) (-1 |#2| |#2|)))) (-13 (-357) (-144) (-1020 (-553))) (-1214 |#1|)) (T -997)) -((-3503 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1214 *6)) (-4 *6 (-13 (-357) (-144) (-1020 *4))) (-5 *4 (-553)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -2662 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-997 *6 *3)))) (-2205 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) (-5 *1 (-997 *4 *5)) (-5 *3 (-401 *5)))) (-2093 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) (|:| -4334 *6))) (-5 *1 (-997 *5 *6)) (-5 *3 (-401 *6))))) -(-10 -7 (-15 -2093 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -4334 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -2205 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -3503 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -2662 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-553)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-553) (-1 |#2| |#2|)))) -((-1835 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -4334 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 22)) (-2473 (((-3 (-630 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 33))) -(((-998 |#1| |#2|) (-10 -7 (-15 -1835 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -4334 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -2473 ((-3 (-630 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) (-13 (-357) (-144) (-1020 (-553))) (-1214 |#1|)) (T -998)) -((-2473 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) (-4 *5 (-1214 *4)) (-5 *2 (-630 (-401 *5))) (-5 *1 (-998 *4 *5)) (-5 *3 (-401 *5)))) (-1835 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -4334 *6))) (-5 *1 (-998 *5 *6)) (-5 *3 (-401 *6))))) -(-10 -7 (-15 -1835 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -4334 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -2473 ((-3 (-630 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) -((-1618 (((-1 |#1|) (-630 (-2 (|:| -2821 |#1|) (|:| -2342 (-553))))) 37)) (-3018 (((-1 |#1|) (-1081 |#1|)) 45)) (-4203 (((-1 |#1|) (-1238 |#1|) (-1238 (-553)) (-553)) 34))) -(((-999 |#1|) (-10 -7 (-15 -3018 ((-1 |#1|) (-1081 |#1|))) (-15 -1618 ((-1 |#1|) (-630 (-2 (|:| -2821 |#1|) (|:| -2342 (-553)))))) (-15 -4203 ((-1 |#1|) (-1238 |#1|) (-1238 (-553)) (-553)))) (-1079)) (T -999)) -((-4203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1238 *6)) (-5 *4 (-1238 (-553))) (-5 *5 (-553)) (-4 *6 (-1079)) (-5 *2 (-1 *6)) (-5 *1 (-999 *6)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -2821 *4) (|:| -2342 (-553))))) (-4 *4 (-1079)) (-5 *2 (-1 *4)) (-5 *1 (-999 *4)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-1079)) (-5 *2 (-1 *4)) (-5 *1 (-999 *4))))) -(-10 -7 (-15 -3018 ((-1 |#1|) (-1081 |#1|))) (-15 -1618 ((-1 |#1|) (-630 (-2 (|:| -2821 |#1|) (|:| -2342 (-553)))))) (-15 -4203 ((-1 |#1|) (-1238 |#1|) (-1238 (-553)) (-553)))) -((-2968 (((-757) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2968 ((-757) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-357) (-1214 |#1|) (-1214 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-13 (-362) (-357))) (T -1000)) -((-2968 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) (-4 *7 (-1214 *6)) (-4 *4 (-1214 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) (-4 *9 (-13 (-362) (-357))) (-5 *2 (-757)) (-5 *1 (-1000 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2968 ((-757) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3096 (((-111) $ $) NIL)) (-4180 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) NIL) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-1114) $) 11)) (-1617 (((-111) $ $) NIL))) -(((-1001) (-13 (-1062) (-10 -8 (-15 -4180 ((-1114) $)) (-15 -4310 ((-1114) $))))) (T -1001)) -((-4180 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1001)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1001))))) -(-13 (-1062) (-10 -8 (-15 -4180 ((-1114) $)) (-15 -4310 ((-1114) $)))) -((-4125 (((-3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) "failed") |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) 31) (((-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553))) 28)) (-1545 (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553))) 33) (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-401 (-553))) 29) (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) 32) (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1|) 27)) (-3060 (((-630 (-401 (-553))) (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) 19)) (-1859 (((-401 (-553)) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) 16))) -(((-1002 |#1|) (-10 -7 (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1|)) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-401 (-553)))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) "failed") |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -1859 ((-401 (-553)) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -3060 ((-630 (-401 (-553))) (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))))) (-1214 (-553))) (T -1002)) -((-3060 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *2 (-630 (-401 (-553)))) (-5 *1 (-1002 *4)) (-4 *4 (-1214 (-553))))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) (-5 *2 (-401 (-553))) (-5 *1 (-1002 *4)) (-4 *4 (-1214 (-553))))) (-4125 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))))) (-4125 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) (-5 *4 (-401 (-553))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-553))) (-5 *2 (-630 (-2 (|:| -3313 *5) (|:| -3323 *5)))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))) (-5 *4 (-2 (|:| -3313 *5) (|:| -3323 *5))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *2 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))) (-5 *4 (-401 (-553))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *2 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))) (-5 *4 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) (-1545 (*1 *2 *3) (-12 (-5 *2 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553)))))) -(-10 -7 (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1|)) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-401 (-553)))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) "failed") |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -1859 ((-401 (-553)) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -3060 ((-630 (-401 (-553))) (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))))) -((-4125 (((-3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) "failed") |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) 35) (((-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553))) 32)) (-1545 (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553))) 30) (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-401 (-553))) 26) (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) 28) (((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1|) 24))) -(((-1003 |#1|) (-10 -7 (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1|)) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-401 (-553)))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) "failed") |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) (-1214 (-401 (-553)))) (T -1003)) -((-4125 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 (-401 (-553)))))) (-4125 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) (-5 *4 (-401 (-553))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 *4)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-553))) (-5 *2 (-630 (-2 (|:| -3313 *5) (|:| -3323 *5)))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 *5)) (-5 *4 (-2 (|:| -3313 *5) (|:| -3323 *5))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-553))) (-5 *2 (-630 (-2 (|:| -3313 *4) (|:| -3323 *4)))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 *4)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *2 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 (-401 (-553)))) (-5 *4 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) (-1545 (*1 *2 *3) (-12 (-5 *2 (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 (-401 (-553))))))) -(-10 -7 (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1|)) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-401 (-553)))) (-15 -1545 ((-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-401 (-553)))) (-15 -4125 ((-3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) "failed") |#1| (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))) (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) -((-1524 (((-220) $) 6) (((-373) $) 9))) -(((-1004) (-137)) (T -1004)) -NIL -(-13 (-601 (-220)) (-601 (-373))) -(((-601 (-220)) . T) ((-601 (-373)) . T)) -((-1638 (((-630 (-373)) (-934 (-553)) (-373)) 28) (((-630 (-373)) (-934 (-401 (-553))) (-373)) 27)) (-4217 (((-630 (-630 (-373))) (-630 (-934 (-553))) (-630 (-1155)) (-373)) 37))) -(((-1005) (-10 -7 (-15 -1638 ((-630 (-373)) (-934 (-401 (-553))) (-373))) (-15 -1638 ((-630 (-373)) (-934 (-553)) (-373))) (-15 -4217 ((-630 (-630 (-373))) (-630 (-934 (-553))) (-630 (-1155)) (-373))))) (T -1005)) -((-4217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-630 (-1155))) (-5 *2 (-630 (-630 (-373)))) (-5 *1 (-1005)) (-5 *5 (-373)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-934 (-553))) (-5 *2 (-630 (-373))) (-5 *1 (-1005)) (-5 *4 (-373)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-934 (-401 (-553)))) (-5 *2 (-630 (-373))) (-5 *1 (-1005)) (-5 *4 (-373))))) -(-10 -7 (-15 -1638 ((-630 (-373)) (-934 (-401 (-553))) (-373))) (-15 -1638 ((-630 (-373)) (-934 (-553)) (-373))) (-15 -4217 ((-630 (-630 (-373))) (-630 (-934 (-553))) (-630 (-1155)) (-373)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 70)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-3365 (($ $) NIL) (($ $ (-903)) NIL) (($ (-401 (-553))) NIL) (($ (-553)) NIL)) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) 65)) (-3820 (($) NIL T CONST)) (-3906 (((-3 $ "failed") (-1151 $) (-903) (-845)) NIL) (((-3 $ "failed") (-1151 $) (-903)) 50)) (-1399 (((-3 (-401 (-553)) "failed") $) NIL (|has| (-401 (-553)) (-1020 (-401 (-553))))) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-553) "failed") $) NIL (-3988 (|has| (-401 (-553)) (-1020 (-553))) (|has| |#1| (-1020 (-553)))))) (-2707 (((-401 (-553)) $) 15 (|has| (-401 (-553)) (-1020 (-401 (-553))))) (((-401 (-553)) $) 15) ((|#1| $) 108) (((-553) $) NIL (-3988 (|has| (-401 (-553)) (-1020 (-553))) (|has| |#1| (-1020 (-553)))))) (-3246 (($ $ (-845)) 42)) (-4237 (($ $ (-845)) 43)) (-3973 (($ $ $) NIL)) (-3304 (((-401 (-553)) $ $) 19)) (-2982 (((-3 $ "failed") $) 83)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-4270 (((-111) $) 61)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL)) (-2797 (((-111) $) 64)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-2947 (((-3 (-1151 $) "failed") $) 78)) (-4216 (((-3 (-845) "failed") $) 77)) (-3691 (((-3 (-1151 $) "failed") $) 75)) (-4333 (((-3 (-1041 $ (-1151 $)) "failed") $) 73)) (-2471 (($ (-630 $)) NIL) (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 84)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ (-630 $)) NIL) (($ $ $) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-3110 (((-845) $) 82) (($ (-553)) NIL) (($ (-401 (-553))) NIL) (($ $) 58) (($ (-401 (-553))) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL) (($ |#1|) 110)) (-1999 (((-757)) NIL)) (-1639 (((-111) $ $) NIL)) (-4327 (((-401 (-553)) $ $) 25)) (-3408 (((-630 $) (-1151 $)) 56) (((-630 $) (-1151 (-401 (-553)))) NIL) (((-630 $) (-1151 (-553))) NIL) (((-630 $) (-934 $)) NIL) (((-630 $) (-934 (-401 (-553)))) NIL) (((-630 $) (-934 (-553))) NIL)) (-4004 (($ (-1041 $ (-1151 $)) (-845)) 41)) (-3466 (($ $) 20)) (-1988 (($) 29 T CONST)) (-1997 (($) 35 T CONST)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 71)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 22)) (-1723 (($ $ $) 33)) (-1711 (($ $) 34) (($ $ $) 69)) (-1700 (($ $ $) 103)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL) (($ $ (-401 (-553))) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 91) (($ $ $) 96) (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL) (($ (-553) $) 91) (($ $ (-553)) NIL) (($ (-401 (-553)) $) NIL) (($ $ (-401 (-553))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-1006 |#1|) (-13 (-994) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4004 ($ (-1041 $ (-1151 $)) (-845))) (-15 -4333 ((-3 (-1041 $ (-1151 $)) "failed") $)) (-15 -3304 ((-401 (-553)) $ $)))) (-13 (-831) (-357) (-1004))) (T -1006)) -((-4004 (*1 *1 *2 *3) (-12 (-5 *2 (-1041 (-1006 *4) (-1151 (-1006 *4)))) (-5 *3 (-845)) (-5 *1 (-1006 *4)) (-4 *4 (-13 (-831) (-357) (-1004))))) (-4333 (*1 *2 *1) (|partial| -12 (-5 *2 (-1041 (-1006 *3) (-1151 (-1006 *3)))) (-5 *1 (-1006 *3)) (-4 *3 (-13 (-831) (-357) (-1004))))) (-3304 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-1006 *3)) (-4 *3 (-13 (-831) (-357) (-1004)))))) -(-13 (-994) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4004 ($ (-1041 $ (-1151 $)) (-845))) (-15 -4333 ((-3 (-1041 $ (-1151 $)) "failed") $)) (-15 -3304 ((-401 (-553)) $ $)))) -((-3926 (((-2 (|:| -2662 |#2|) (|:| -1463 (-630 |#1|))) |#2| (-630 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -3926 (|#2| |#2| |#1|)) (-15 -3926 ((-2 (|:| -2662 |#2|) (|:| -1463 (-630 |#1|))) |#2| (-630 |#1|)))) (-357) (-641 |#1|)) (T -1007)) -((-3926 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -2662 *3) (|:| -1463 (-630 *5)))) (-5 *1 (-1007 *5 *3)) (-5 *4 (-630 *5)) (-4 *3 (-641 *5)))) (-3926 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-1007 *3 *2)) (-4 *2 (-641 *3))))) -(-10 -7 (-15 -3926 (|#2| |#2| |#1|)) (-15 -3926 ((-2 (|:| -2662 |#2|) (|:| -1463 (-630 |#1|))) |#2| (-630 |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3530 ((|#1| $ |#1|) 14)) (-1490 ((|#1| $ |#1|) 12)) (-1369 (($ |#1|) 10)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2046 ((|#1| $) 11)) (-3585 ((|#1| $) 13)) (-3110 (((-845) $) 21 (|has| |#1| (-1079)))) (-1617 (((-111) $ $) 9))) -(((-1008 |#1|) (-13 (-1192) (-10 -8 (-15 -1369 ($ |#1|)) (-15 -2046 (|#1| $)) (-15 -1490 (|#1| $ |#1|)) (-15 -3585 (|#1| $)) (-15 -3530 (|#1| $ |#1|)) (-15 -1617 ((-111) $ $)) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|))) (-1192)) (T -1008)) -((-1369 (*1 *1 *2) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) (-2046 (*1 *2 *1) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) (-1490 (*1 *2 *1 *2) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) (-3585 (*1 *2 *1) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) (-3530 (*1 *2 *1 *2) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) (-1617 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1008 *3)) (-4 *3 (-1192))))) -(-13 (-1192) (-10 -8 (-15 -1369 ($ |#1|)) (-15 -2046 (|#1| $)) (-15 -1490 (|#1| $ |#1|)) (-15 -3585 (|#1| $)) (-15 -3530 (|#1| $ |#1|)) (-15 -1617 ((-111) $ $)) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) NIL)) (-3247 (((-630 $) (-630 |#4|)) 105) (((-630 $) (-630 |#4|) (-111)) 106) (((-630 $) (-630 |#4|) (-111) (-111)) 104) (((-630 $) (-630 |#4|) (-111) (-111) (-111) (-111)) 107)) (-3506 (((-630 |#3|) $) NIL)) (-1742 (((-111) $) NIL)) (-3538 (((-111) $) NIL (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1484 ((|#4| |#4| $) NIL)) (-1536 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| $) 99)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3905 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 54)) (-3820 (($) NIL T CONST)) (-2623 (((-111) $) 26 (|has| |#1| (-545)))) (-2032 (((-111) $ $) NIL (|has| |#1| (-545)))) (-3559 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1921 (((-111) $) NIL (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4063 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) NIL)) (-2707 (($ (-630 |#4|)) NIL)) (-2616 (((-3 $ "failed") $) 39)) (-4290 ((|#4| |#4| $) 57)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2575 (($ |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-1345 ((|#4| |#4| $) NIL)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) NIL)) (-3217 (((-111) |#4| $) NIL)) (-3077 (((-111) |#4| $) NIL)) (-1497 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1365 (((-2 (|:| |val| (-630 |#4|)) (|:| |towers| (-630 $))) (-630 |#4|) (-111) (-111)) 119)) (-1408 (((-630 |#4|) $) 16 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1470 ((|#3| $) 33)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#4|) $) 17 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2503 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 21)) (-3935 (((-630 |#3|) $) NIL)) (-2351 (((-111) |#3| $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-2025 (((-3 |#4| (-630 $)) |#4| |#4| $) NIL)) (-4247 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| |#4| $) 97)) (-2594 (((-3 |#4| "failed") $) 37)) (-2129 (((-630 $) |#4| $) 80)) (-3184 (((-3 (-111) (-630 $)) |#4| $) NIL)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-1475 (((-630 $) |#4| $) 102) (((-630 $) (-630 |#4|) $) NIL) (((-630 $) (-630 |#4|) (-630 $)) 103) (((-630 $) |#4| (-630 $)) NIL)) (-3380 (((-630 $) (-630 |#4|) (-111) (-111) (-111)) 114)) (-2520 (($ |#4| $) 70) (($ (-630 |#4|) $) 71) (((-630 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-2564 (((-630 |#4|) $) NIL)) (-4299 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4080 ((|#4| |#4| $) NIL)) (-1990 (((-111) $ $) NIL)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3138 ((|#4| |#4| $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-3 |#4| "failed") $) 35)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-2761 (((-3 $ "failed") $ |#4|) 48)) (-3089 (($ $ |#4|) NIL) (((-630 $) |#4| $) 82) (((-630 $) |#4| (-630 $)) NIL) (((-630 $) (-630 |#4|) $) NIL) (((-630 $) (-630 |#4|) (-630 $)) 77)) (-3341 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 15)) (-3222 (($) 13)) (-3872 (((-757) $) NIL)) (-2796 (((-757) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (((-757) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) 12)) (-1524 (((-529) $) NIL (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 20)) (-2867 (($ $ |#3|) 42)) (-3721 (($ $ |#3|) 44)) (-2316 (($ $) NIL)) (-1665 (($ $ |#3|) NIL)) (-3110 (((-845) $) 31) (((-630 |#4|) $) 40)) (-2668 (((-757) $) NIL (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) NIL)) (-4130 (((-630 $) |#4| $) 79) (((-630 $) |#4| (-630 $)) NIL) (((-630 $) (-630 |#4|) $) NIL) (((-630 $) (-630 |#4|) (-630 $)) NIL)) (-3296 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) NIL)) (-1397 (((-111) |#4| $) NIL)) (-4223 (((-111) |#3| $) 53)) (-1617 (((-111) $ $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1009 |#1| |#2| |#3| |#4|) (-13 (-1051 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2520 ((-630 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111) (-111) (-111))) (-15 -3380 ((-630 $) (-630 |#4|) (-111) (-111) (-111))) (-15 -1365 ((-2 (|:| |val| (-630 |#4|)) (|:| |towers| (-630 $))) (-630 |#4|) (-111) (-111))))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|)) (T -1009)) -((-2520 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1009 *5 *6 *7 *3))) (-5 *1 (-1009 *5 *6 *7 *3)) (-4 *3 (-1045 *5 *6 *7)))) (-3247 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1009 *5 *6 *7 *8))) (-5 *1 (-1009 *5 *6 *7 *8)))) (-3247 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1009 *5 *6 *7 *8))) (-5 *1 (-1009 *5 *6 *7 *8)))) (-3380 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1009 *5 *6 *7 *8))) (-5 *1 (-1009 *5 *6 *7 *8)))) (-1365 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-630 *8)) (|:| |towers| (-630 (-1009 *5 *6 *7 *8))))) (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *3 (-630 *8))))) -(-13 (-1051 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2520 ((-630 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111) (-111) (-111))) (-15 -3380 ((-630 $) (-630 |#4|) (-111) (-111) (-111))) (-15 -1365 ((-2 (|:| |val| (-630 |#4|)) (|:| |towers| (-630 $))) (-630 |#4|) (-111) (-111))))) -((-1877 (((-630 (-674 |#1|)) (-630 (-674 |#1|))) 58) (((-674 |#1|) (-674 |#1|)) 57) (((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-630 (-674 |#1|))) 56) (((-674 |#1|) (-674 |#1|) (-674 |#1|)) 53)) (-1542 (((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-903)) 52) (((-674 |#1|) (-674 |#1|) (-903)) 51)) (-1271 (((-630 (-674 (-553))) (-630 (-630 (-553)))) 68) (((-630 (-674 (-553))) (-630 (-887 (-553))) (-553)) 67) (((-674 (-553)) (-630 (-553))) 64) (((-674 (-553)) (-887 (-553)) (-553)) 63)) (-2942 (((-674 (-934 |#1|)) (-757)) 81)) (-1324 (((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-903)) 37 (|has| |#1| (-6 (-4371 "*")))) (((-674 |#1|) (-674 |#1|) (-903)) 35 (|has| |#1| (-6 (-4371 "*")))))) -(((-1010 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4371 "*"))) (-15 -1324 ((-674 |#1|) (-674 |#1|) (-903))) |%noBranch|) (IF (|has| |#1| (-6 (-4371 "*"))) (-15 -1324 ((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-903))) |%noBranch|) (-15 -2942 ((-674 (-934 |#1|)) (-757))) (-15 -1542 ((-674 |#1|) (-674 |#1|) (-903))) (-15 -1542 ((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-903))) (-15 -1877 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -1877 ((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -1877 ((-674 |#1|) (-674 |#1|))) (-15 -1877 ((-630 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -1271 ((-674 (-553)) (-887 (-553)) (-553))) (-15 -1271 ((-674 (-553)) (-630 (-553)))) (-15 -1271 ((-630 (-674 (-553))) (-630 (-887 (-553))) (-553))) (-15 -1271 ((-630 (-674 (-553))) (-630 (-630 (-553)))))) (-1031)) (T -1010)) -((-1271 (*1 *2 *3) (-12 (-5 *3 (-630 (-630 (-553)))) (-5 *2 (-630 (-674 (-553)))) (-5 *1 (-1010 *4)) (-4 *4 (-1031)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-887 (-553)))) (-5 *4 (-553)) (-5 *2 (-630 (-674 *4))) (-5 *1 (-1010 *5)) (-4 *5 (-1031)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-1010 *4)) (-4 *4 (-1031)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-553))) (-5 *4 (-553)) (-5 *2 (-674 *4)) (-5 *1 (-1010 *5)) (-4 *5 (-1031)))) (-1877 (*1 *2 *2) (-12 (-5 *2 (-630 (-674 *3))) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) (-1877 (*1 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) (-1877 (*1 *2 *2 *2) (-12 (-5 *2 (-630 (-674 *3))) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) (-1877 (*1 *2 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *2 (-630 (-674 *4))) (-5 *3 (-903)) (-4 *4 (-1031)) (-5 *1 (-1010 *4)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *2 (-674 *4)) (-5 *3 (-903)) (-4 *4 (-1031)) (-5 *1 (-1010 *4)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-674 (-934 *4))) (-5 *1 (-1010 *4)) (-4 *4 (-1031)))) (-1324 (*1 *2 *2 *3) (-12 (-5 *2 (-630 (-674 *4))) (-5 *3 (-903)) (|has| *4 (-6 (-4371 "*"))) (-4 *4 (-1031)) (-5 *1 (-1010 *4)))) (-1324 (*1 *2 *2 *3) (-12 (-5 *2 (-674 *4)) (-5 *3 (-903)) (|has| *4 (-6 (-4371 "*"))) (-4 *4 (-1031)) (-5 *1 (-1010 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4371 "*"))) (-15 -1324 ((-674 |#1|) (-674 |#1|) (-903))) |%noBranch|) (IF (|has| |#1| (-6 (-4371 "*"))) (-15 -1324 ((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-903))) |%noBranch|) (-15 -2942 ((-674 (-934 |#1|)) (-757))) (-15 -1542 ((-674 |#1|) (-674 |#1|) (-903))) (-15 -1542 ((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-903))) (-15 -1877 ((-674 |#1|) (-674 |#1|) (-674 |#1|))) (-15 -1877 ((-630 (-674 |#1|)) (-630 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -1877 ((-674 |#1|) (-674 |#1|))) (-15 -1877 ((-630 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -1271 ((-674 (-553)) (-887 (-553)) (-553))) (-15 -1271 ((-674 (-553)) (-630 (-553)))) (-15 -1271 ((-630 (-674 (-553))) (-630 (-887 (-553))) (-553))) (-15 -1271 ((-630 (-674 (-553))) (-630 (-630 (-553)))))) -((-2588 (((-674 |#1|) (-630 (-674 |#1|)) (-1238 |#1|)) 50 (|has| |#1| (-301)))) (-3446 (((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-1238 (-1238 |#1|))) 76 (|has| |#1| (-357))) (((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-1238 |#1|)) 79 (|has| |#1| (-357)))) (-3548 (((-1238 |#1|) (-630 (-1238 |#1|)) (-553)) 93 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-3723 (((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-903)) 85 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-111)) 83 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|))) 82 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-111) (-553) (-553)) 81 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-3404 (((-111) (-630 (-674 |#1|))) 71 (|has| |#1| (-357))) (((-111) (-630 (-674 |#1|)) (-553)) 73 (|has| |#1| (-357)))) (-3752 (((-1238 (-1238 |#1|)) (-630 (-674 |#1|)) (-1238 |#1|)) 48 (|has| |#1| (-301)))) (-2144 (((-674 |#1|) (-630 (-674 |#1|)) (-674 |#1|)) 34)) (-3028 (((-674 |#1|) (-1238 (-1238 |#1|))) 31)) (-1589 (((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)) (-553)) 65 (|has| |#1| (-357))) (((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|))) 64 (|has| |#1| (-357))) (((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)) (-111) (-553)) 69 (|has| |#1| (-357))))) -(((-1011 |#1|) (-10 -7 (-15 -3028 ((-674 |#1|) (-1238 (-1238 |#1|)))) (-15 -2144 ((-674 |#1|) (-630 (-674 |#1|)) (-674 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -3752 ((-1238 (-1238 |#1|)) (-630 (-674 |#1|)) (-1238 |#1|))) (-15 -2588 ((-674 |#1|) (-630 (-674 |#1|)) (-1238 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -1589 ((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)) (-111) (-553))) (-15 -1589 ((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -1589 ((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)) (-553))) (-15 -3404 ((-111) (-630 (-674 |#1|)) (-553))) (-15 -3404 ((-111) (-630 (-674 |#1|)))) (-15 -3446 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-1238 |#1|))) (-15 -3446 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-1238 (-1238 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-111) (-553) (-553))) (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)))) (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-111))) (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-903))) (-15 -3548 ((-1238 |#1|) (-630 (-1238 |#1|)) (-553)))) |%noBranch|) |%noBranch|)) (-1031)) (T -1011)) -((-3548 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-1238 *5))) (-5 *4 (-553)) (-5 *2 (-1238 *5)) (-5 *1 (-1011 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1031)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1031)) (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) (-5 *3 (-630 (-674 *5))))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1031)) (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) (-5 *3 (-630 (-674 *5))))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1031)) (-5 *2 (-630 (-630 (-674 *4)))) (-5 *1 (-1011 *4)) (-5 *3 (-630 (-674 *4))))) (-3723 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-553)) (-4 *6 (-357)) (-4 *6 (-362)) (-4 *6 (-1031)) (-5 *2 (-630 (-630 (-674 *6)))) (-5 *1 (-1011 *6)) (-5 *3 (-630 (-674 *6))))) (-3446 (*1 *2 *3 *4) (-12 (-5 *4 (-1238 (-1238 *5))) (-4 *5 (-357)) (-4 *5 (-1031)) (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) (-5 *3 (-630 (-674 *5))))) (-3446 (*1 *2 *3 *4) (-12 (-5 *4 (-1238 *5)) (-4 *5 (-357)) (-4 *5 (-1031)) (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) (-5 *3 (-630 (-674 *5))))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-630 (-674 *4))) (-4 *4 (-357)) (-4 *4 (-1031)) (-5 *2 (-111)) (-5 *1 (-1011 *4)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-674 *5))) (-5 *4 (-553)) (-4 *5 (-357)) (-4 *5 (-1031)) (-5 *2 (-111)) (-5 *1 (-1011 *5)))) (-1589 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-630 (-674 *5))) (-5 *4 (-553)) (-5 *2 (-674 *5)) (-5 *1 (-1011 *5)) (-4 *5 (-357)) (-4 *5 (-1031)))) (-1589 (*1 *2 *3 *3) (-12 (-5 *3 (-630 (-674 *4))) (-5 *2 (-674 *4)) (-5 *1 (-1011 *4)) (-4 *4 (-357)) (-4 *4 (-1031)))) (-1589 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-630 (-674 *6))) (-5 *4 (-111)) (-5 *5 (-553)) (-5 *2 (-674 *6)) (-5 *1 (-1011 *6)) (-4 *6 (-357)) (-4 *6 (-1031)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-674 *5))) (-5 *4 (-1238 *5)) (-4 *5 (-301)) (-4 *5 (-1031)) (-5 *2 (-674 *5)) (-5 *1 (-1011 *5)))) (-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-674 *5))) (-4 *5 (-301)) (-4 *5 (-1031)) (-5 *2 (-1238 (-1238 *5))) (-5 *1 (-1011 *5)) (-5 *4 (-1238 *5)))) (-2144 (*1 *2 *3 *2) (-12 (-5 *3 (-630 (-674 *4))) (-5 *2 (-674 *4)) (-4 *4 (-1031)) (-5 *1 (-1011 *4)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-1238 (-1238 *4))) (-4 *4 (-1031)) (-5 *2 (-674 *4)) (-5 *1 (-1011 *4))))) -(-10 -7 (-15 -3028 ((-674 |#1|) (-1238 (-1238 |#1|)))) (-15 -2144 ((-674 |#1|) (-630 (-674 |#1|)) (-674 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -3752 ((-1238 (-1238 |#1|)) (-630 (-674 |#1|)) (-1238 |#1|))) (-15 -2588 ((-674 |#1|) (-630 (-674 |#1|)) (-1238 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -1589 ((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)) (-111) (-553))) (-15 -1589 ((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -1589 ((-674 |#1|) (-630 (-674 |#1|)) (-630 (-674 |#1|)) (-553))) (-15 -3404 ((-111) (-630 (-674 |#1|)) (-553))) (-15 -3404 ((-111) (-630 (-674 |#1|)))) (-15 -3446 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-1238 |#1|))) (-15 -3446 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-1238 (-1238 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-111) (-553) (-553))) (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)))) (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-111))) (-15 -3723 ((-630 (-630 (-674 |#1|))) (-630 (-674 |#1|)) (-903))) (-15 -3548 ((-1238 |#1|) (-630 (-1238 |#1|)) (-553)))) |%noBranch|) |%noBranch|)) -((-1349 ((|#1| (-903) |#1|) 9))) -(((-1012 |#1|) (-10 -7 (-15 -1349 (|#1| (-903) |#1|))) (-13 (-1079) (-10 -8 (-15 -1700 ($ $ $))))) (T -1012)) -((-1349 (*1 *2 *3 *2) (-12 (-5 *3 (-903)) (-5 *1 (-1012 *2)) (-4 *2 (-13 (-1079) (-10 -8 (-15 -1700 ($ $ $)))))))) -(-10 -7 (-15 -1349 (|#1| (-903) |#1|))) -((-2222 (((-630 (-2 (|:| |radval| (-310 (-553))) (|:| |radmult| (-553)) (|:| |radvect| (-630 (-674 (-310 (-553))))))) (-674 (-401 (-934 (-553))))) 59)) (-3465 (((-630 (-674 (-310 (-553)))) (-310 (-553)) (-674 (-401 (-934 (-553))))) 48)) (-3883 (((-630 (-310 (-553))) (-674 (-401 (-934 (-553))))) 41)) (-3292 (((-630 (-674 (-310 (-553)))) (-674 (-401 (-934 (-553))))) 68)) (-2923 (((-674 (-310 (-553))) (-674 (-310 (-553)))) 34)) (-2581 (((-630 (-674 (-310 (-553)))) (-630 (-674 (-310 (-553))))) 62)) (-3113 (((-3 (-674 (-310 (-553))) "failed") (-674 (-401 (-934 (-553))))) 66))) -(((-1013) (-10 -7 (-15 -2222 ((-630 (-2 (|:| |radval| (-310 (-553))) (|:| |radmult| (-553)) (|:| |radvect| (-630 (-674 (-310 (-553))))))) (-674 (-401 (-934 (-553)))))) (-15 -3465 ((-630 (-674 (-310 (-553)))) (-310 (-553)) (-674 (-401 (-934 (-553)))))) (-15 -3883 ((-630 (-310 (-553))) (-674 (-401 (-934 (-553)))))) (-15 -3113 ((-3 (-674 (-310 (-553))) "failed") (-674 (-401 (-934 (-553)))))) (-15 -2923 ((-674 (-310 (-553))) (-674 (-310 (-553))))) (-15 -2581 ((-630 (-674 (-310 (-553)))) (-630 (-674 (-310 (-553)))))) (-15 -3292 ((-630 (-674 (-310 (-553)))) (-674 (-401 (-934 (-553)))))))) (T -1013)) -((-3292 (*1 *2 *3) (-12 (-5 *3 (-674 (-401 (-934 (-553))))) (-5 *2 (-630 (-674 (-310 (-553))))) (-5 *1 (-1013)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-630 (-674 (-310 (-553))))) (-5 *1 (-1013)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-674 (-310 (-553)))) (-5 *1 (-1013)))) (-3113 (*1 *2 *3) (|partial| -12 (-5 *3 (-674 (-401 (-934 (-553))))) (-5 *2 (-674 (-310 (-553)))) (-5 *1 (-1013)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-674 (-401 (-934 (-553))))) (-5 *2 (-630 (-310 (-553)))) (-5 *1 (-1013)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *4 (-674 (-401 (-934 (-553))))) (-5 *2 (-630 (-674 (-310 (-553))))) (-5 *1 (-1013)) (-5 *3 (-310 (-553))))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-674 (-401 (-934 (-553))))) (-5 *2 (-630 (-2 (|:| |radval| (-310 (-553))) (|:| |radmult| (-553)) (|:| |radvect| (-630 (-674 (-310 (-553)))))))) (-5 *1 (-1013))))) -(-10 -7 (-15 -2222 ((-630 (-2 (|:| |radval| (-310 (-553))) (|:| |radmult| (-553)) (|:| |radvect| (-630 (-674 (-310 (-553))))))) (-674 (-401 (-934 (-553)))))) (-15 -3465 ((-630 (-674 (-310 (-553)))) (-310 (-553)) (-674 (-401 (-934 (-553)))))) (-15 -3883 ((-630 (-310 (-553))) (-674 (-401 (-934 (-553)))))) (-15 -3113 ((-3 (-674 (-310 (-553))) "failed") (-674 (-401 (-934 (-553)))))) (-15 -2923 ((-674 (-310 (-553))) (-674 (-310 (-553))))) (-15 -2581 ((-630 (-674 (-310 (-553)))) (-630 (-674 (-310 (-553)))))) (-15 -3292 ((-630 (-674 (-310 (-553)))) (-674 (-401 (-934 (-553))))))) -((-2882 ((|#1| |#1| (-903)) 9))) -(((-1014 |#1|) (-10 -7 (-15 -2882 (|#1| |#1| (-903)))) (-13 (-1079) (-10 -8 (-15 * ($ $ $))))) (T -1014)) -((-2882 (*1 *2 *2 *3) (-12 (-5 *3 (-903)) (-5 *1 (-1014 *2)) (-4 *2 (-13 (-1079) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2882 (|#1| |#1| (-903)))) -((-3110 ((|#1| (-306)) 11) (((-1243) |#1|) 9))) -(((-1015 |#1|) (-10 -7 (-15 -3110 ((-1243) |#1|)) (-15 -3110 (|#1| (-306)))) (-1192)) (T -1015)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1015 *2)) (-4 *2 (-1192)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-1243)) (-5 *1 (-1015 *3)) (-4 *3 (-1192))))) -(-10 -7 (-15 -3110 ((-1243) |#1|)) (-15 -3110 (|#1| (-306)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2654 (($ |#4|) 25)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-2643 ((|#4| $) 27)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 46) (($ (-553)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1999 (((-757)) 43)) (-1988 (($) 21 T CONST)) (-1997 (($) 23 T CONST)) (-1617 (((-111) $ $) 40)) (-1711 (($ $) 31) (($ $ $) NIL)) (-1700 (($ $ $) 29)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2654 ($ |#4|)) (-15 -3110 ($ |#4|)) (-15 -2643 (|#4| $)))) (-357) (-779) (-833) (-931 |#1| |#2| |#3|) (-630 |#4|)) (T -1016)) -((-2654 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *2 (-931 *3 *4 *5)) (-14 *6 (-630 *2)))) (-3110 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *2 (-931 *3 *4 *5)) (-14 *6 (-630 *2)))) (-2643 (*1 *2 *1) (-12 (-4 *2 (-931 *3 *4 *5)) (-5 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-14 *6 (-630 *2))))) -(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2654 ($ |#4|)) (-15 -3110 ($ |#4|)) (-15 -2643 (|#4| $)))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-1683 (((-1243) $ (-1155) (-1155)) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-3015 (((-111) (-111)) 39)) (-3324 (((-111) (-111)) 38)) (-1490 (((-52) $ (-1155) (-52)) NIL)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 (-52) "failed") (-1155) $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-3986 (($ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-3 (-52) "failed") (-1155) $) NIL)) (-2575 (($ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2515 (((-52) $ (-1155) (-52)) NIL (|has| $ (-6 -4370)))) (-2441 (((-52) $ (-1155)) NIL)) (-1408 (((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-630 (-52)) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-1155) $) NIL (|has| (-1155) (-833)))) (-2195 (((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-630 (-52)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079))))) (-2958 (((-1155) $) NIL (|has| (-1155) (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4370))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-3729 (((-630 (-1155)) $) 34)) (-1570 (((-111) (-1155) $) NIL)) (-1376 (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL)) (-2636 (($ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL)) (-1901 (((-630 (-1155)) $) NIL)) (-3594 (((-111) (-1155) $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-2603 (((-52) $) NIL (|has| (-1155) (-833)))) (-3016 (((-3 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) "failed") (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL)) (-2858 (($ $ (-52)) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-288 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-630 (-52)) (-630 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-630 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079))))) (-1912 (((-630 (-52)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 (((-52) $ (-1155)) 35) (((-52) $ (-1155) (-52)) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (((-757) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079)))) (((-757) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-3110 (((-845) $) 37 (-3988 (|has| (-52) (-600 (-845))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1017) (-13 (-1168 (-1155) (-52)) (-10 -7 (-15 -3015 ((-111) (-111))) (-15 -3324 ((-111) (-111))) (-6 -4369)))) (T -1017)) -((-3015 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1017)))) (-3324 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1017))))) -(-13 (-1168 (-1155) (-52)) (-10 -7 (-15 -3015 ((-111) (-111))) (-15 -3324 ((-111) (-111))) (-6 -4369))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3456 (((-1114) $) 9)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1018) (-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $))))) (T -1018)) -((-3456 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1018))))) -(-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)))) -((-2707 ((|#2| $) 10))) -(((-1019 |#1| |#2|) (-10 -8 (-15 -2707 (|#2| |#1|))) (-1020 |#2|) (-1192)) (T -1019)) -NIL -(-10 -8 (-15 -2707 (|#2| |#1|))) -((-1399 (((-3 |#1| "failed") $) 9)) (-2707 ((|#1| $) 8)) (-3110 (($ |#1|) 6))) -(((-1020 |#1|) (-137) (-1192)) (T -1020)) -((-1399 (*1 *2 *1) (|partial| -12 (-4 *1 (-1020 *2)) (-4 *2 (-1192)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1192))))) -(-13 (-603 |t#1|) (-10 -8 (-15 -1399 ((-3 |t#1| "failed") $)) (-15 -2707 (|t#1| $)))) -(((-603 |#1|) . T)) -((-1293 (((-630 (-630 (-288 (-401 (-934 |#2|))))) (-630 (-934 |#2|)) (-630 (-1155))) 38))) -(((-1021 |#1| |#2|) (-10 -7 (-15 -1293 ((-630 (-630 (-288 (-401 (-934 |#2|))))) (-630 (-934 |#2|)) (-630 (-1155))))) (-545) (-13 (-545) (-1020 |#1|))) (T -1021)) -((-1293 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *6))) (-5 *4 (-630 (-1155))) (-4 *6 (-13 (-545) (-1020 *5))) (-4 *5 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *6)))))) (-5 *1 (-1021 *5 *6))))) -(-10 -7 (-15 -1293 ((-630 (-630 (-288 (-401 (-934 |#2|))))) (-630 (-934 |#2|)) (-630 (-1155))))) -((-4245 (((-373)) 15)) (-3018 (((-1 (-373)) (-373) (-373)) 20)) (-4334 (((-1 (-373)) (-757)) 43)) (-4343 (((-373)) 34)) (-1686 (((-1 (-373)) (-373) (-373)) 35)) (-3613 (((-373)) 26)) (-3901 (((-1 (-373)) (-373)) 27)) (-1855 (((-373) (-757)) 38)) (-3413 (((-1 (-373)) (-757)) 39)) (-3105 (((-1 (-373)) (-757) (-757)) 42)) (-3536 (((-1 (-373)) (-757) (-757)) 40))) -(((-1022) (-10 -7 (-15 -4245 ((-373))) (-15 -4343 ((-373))) (-15 -3613 ((-373))) (-15 -1855 ((-373) (-757))) (-15 -3018 ((-1 (-373)) (-373) (-373))) (-15 -1686 ((-1 (-373)) (-373) (-373))) (-15 -3901 ((-1 (-373)) (-373))) (-15 -3413 ((-1 (-373)) (-757))) (-15 -3536 ((-1 (-373)) (-757) (-757))) (-15 -3105 ((-1 (-373)) (-757) (-757))) (-15 -4334 ((-1 (-373)) (-757))))) (T -1022)) -((-4334 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022)))) (-3105 (*1 *2 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022)))) (-3536 (*1 *2 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022)))) (-3901 (*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1022)) (-5 *3 (-373)))) (-1686 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1022)) (-5 *3 (-373)))) (-3018 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1022)) (-5 *3 (-373)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-373)) (-5 *1 (-1022)))) (-3613 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1022)))) (-4343 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1022)))) (-4245 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1022))))) -(-10 -7 (-15 -4245 ((-373))) (-15 -4343 ((-373))) (-15 -3613 ((-373))) (-15 -1855 ((-373) (-757))) (-15 -3018 ((-1 (-373)) (-373) (-373))) (-15 -1686 ((-1 (-373)) (-373) (-373))) (-15 -3901 ((-1 (-373)) (-373))) (-15 -3413 ((-1 (-373)) (-757))) (-15 -3536 ((-1 (-373)) (-757) (-757))) (-15 -3105 ((-1 (-373)) (-757) (-757))) (-15 -4334 ((-1 (-373)) (-757)))) -((-3355 (((-412 |#1|) |#1|) 33))) -(((-1023 |#1|) (-10 -7 (-15 -3355 ((-412 |#1|) |#1|))) (-1214 (-401 (-934 (-553))))) (T -1023)) -((-3355 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1214 (-401 (-934 (-553)))))))) -(-10 -7 (-15 -3355 ((-412 |#1|) |#1|))) -((-3319 (((-401 (-412 (-934 |#1|))) (-401 (-934 |#1|))) 14))) -(((-1024 |#1|) (-10 -7 (-15 -3319 ((-401 (-412 (-934 |#1|))) (-401 (-934 |#1|))))) (-301)) (T -1024)) -((-3319 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-301)) (-5 *2 (-401 (-412 (-934 *4)))) (-5 *1 (-1024 *4))))) -(-10 -7 (-15 -3319 ((-401 (-412 (-934 |#1|))) (-401 (-934 |#1|))))) -((-3506 (((-630 (-1155)) (-401 (-934 |#1|))) 17)) (-3322 (((-401 (-1151 (-401 (-934 |#1|)))) (-401 (-934 |#1|)) (-1155)) 24)) (-3493 (((-401 (-934 |#1|)) (-401 (-1151 (-401 (-934 |#1|)))) (-1155)) 26)) (-1332 (((-3 (-1155) "failed") (-401 (-934 |#1|))) 20)) (-2356 (((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-630 (-288 (-401 (-934 |#1|))))) 32) (((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|)))) 33) (((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-630 (-1155)) (-630 (-401 (-934 |#1|)))) 28) (((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|))) 29)) (-3110 (((-401 (-934 |#1|)) |#1|) 11))) -(((-1025 |#1|) (-10 -7 (-15 -3506 ((-630 (-1155)) (-401 (-934 |#1|)))) (-15 -1332 ((-3 (-1155) "failed") (-401 (-934 |#1|)))) (-15 -3322 ((-401 (-1151 (-401 (-934 |#1|)))) (-401 (-934 |#1|)) (-1155))) (-15 -3493 ((-401 (-934 |#1|)) (-401 (-1151 (-401 (-934 |#1|)))) (-1155))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|)))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-630 (-1155)) (-630 (-401 (-934 |#1|))))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-630 (-288 (-401 (-934 |#1|)))))) (-15 -3110 ((-401 (-934 |#1|)) |#1|))) (-545)) (T -1025)) -((-3110 (*1 *2 *3) (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-1025 *3)) (-4 *3 (-545)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-288 (-401 (-934 *4))))) (-5 *2 (-401 (-934 *4))) (-4 *4 (-545)) (-5 *1 (-1025 *4)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-401 (-934 *4)))) (-5 *2 (-401 (-934 *4))) (-4 *4 (-545)) (-5 *1 (-1025 *4)))) (-2356 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-630 (-1155))) (-5 *4 (-630 (-401 (-934 *5)))) (-5 *2 (-401 (-934 *5))) (-4 *5 (-545)) (-5 *1 (-1025 *5)))) (-2356 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-401 (-934 *4))) (-5 *3 (-1155)) (-4 *4 (-545)) (-5 *1 (-1025 *4)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1151 (-401 (-934 *5))))) (-5 *4 (-1155)) (-5 *2 (-401 (-934 *5))) (-5 *1 (-1025 *5)) (-4 *5 (-545)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-545)) (-5 *2 (-401 (-1151 (-401 (-934 *5))))) (-5 *1 (-1025 *5)) (-5 *3 (-401 (-934 *5))))) (-1332 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-5 *2 (-1155)) (-5 *1 (-1025 *4)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-5 *2 (-630 (-1155))) (-5 *1 (-1025 *4))))) -(-10 -7 (-15 -3506 ((-630 (-1155)) (-401 (-934 |#1|)))) (-15 -1332 ((-3 (-1155) "failed") (-401 (-934 |#1|)))) (-15 -3322 ((-401 (-1151 (-401 (-934 |#1|)))) (-401 (-934 |#1|)) (-1155))) (-15 -3493 ((-401 (-934 |#1|)) (-401 (-1151 (-401 (-934 |#1|)))) (-1155))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|)))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-630 (-1155)) (-630 (-401 (-934 |#1|))))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-288 (-401 (-934 |#1|))))) (-15 -2356 ((-401 (-934 |#1|)) (-401 (-934 |#1|)) (-630 (-288 (-401 (-934 |#1|)))))) (-15 -3110 ((-401 (-934 |#1|)) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3820 (($) 17 T CONST)) (-2966 ((|#1| $) 22)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1285 ((|#1| $) 21)) (-1820 ((|#1|) 19 T CONST)) (-3110 (((-845) $) 11)) (-2014 ((|#1| $) 20)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15))) -(((-1026 |#1|) (-137) (-23)) (T -1026)) -((-2966 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23)))) (-1285 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23)))) (-1820 (*1 *2) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -2966 (|t#1| $)) (-15 -1285 (|t#1| $)) (-15 -2014 (|t#1| $)) (-15 -1820 (|t#1|) -3879))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-1361 (($) 24 T CONST)) (-3820 (($) 17 T CONST)) (-2966 ((|#1| $) 22)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1285 ((|#1| $) 21)) (-1820 ((|#1|) 19 T CONST)) (-3110 (((-845) $) 11)) (-2014 ((|#1| $) 20)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15))) -(((-1027 |#1|) (-137) (-23)) (T -1027)) -((-1361 (*1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-23))))) -(-13 (-1026 |t#1|) (-10 -8 (-15 -1361 ($) -3879))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-600 (-845)) . T) ((-1026 |#1|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 (-766 |#1| (-847 |#2|)))))) (-630 (-766 |#1| (-847 |#2|)))) NIL)) (-3247 (((-630 $) (-630 (-766 |#1| (-847 |#2|)))) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-111)) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-111) (-111)) NIL)) (-3506 (((-630 (-847 |#2|)) $) NIL)) (-1742 (((-111) $) NIL)) (-3538 (((-111) $) NIL (|has| |#1| (-545)))) (-1592 (((-111) (-766 |#1| (-847 |#2|)) $) NIL) (((-111) $) NIL)) (-1484 (((-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-1536 (((-630 (-2 (|:| |val| (-766 |#1| (-847 |#2|))) (|:| -3233 $))) (-766 |#1| (-847 |#2|)) $) NIL)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ (-847 |#2|)) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3905 (($ (-1 (-111) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 (-766 |#1| (-847 |#2|)) "failed") $ (-847 |#2|)) NIL)) (-3820 (($) NIL T CONST)) (-2623 (((-111) $) NIL (|has| |#1| (-545)))) (-2032 (((-111) $ $) NIL (|has| |#1| (-545)))) (-3559 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1921 (((-111) $) NIL (|has| |#1| (-545)))) (-4345 (((-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|))) $ (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) (-1 (-111) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)))) NIL)) (-4063 (((-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|))) $) NIL (|has| |#1| (-545)))) (-4162 (((-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|))) $) NIL (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 (-766 |#1| (-847 |#2|)))) NIL)) (-2707 (($ (-630 (-766 |#1| (-847 |#2|)))) NIL)) (-2616 (((-3 $ "failed") $) NIL)) (-4290 (((-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-766 |#1| (-847 |#2|)) (-1079))))) (-2575 (($ (-766 |#1| (-847 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-766 |#1| (-847 |#2|)) (-1079)))) (($ (-1 (-111) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-766 |#1| (-847 |#2|))) (|:| |den| |#1|)) (-766 |#1| (-847 |#2|)) $) NIL (|has| |#1| (-545)))) (-3342 (((-111) (-766 |#1| (-847 |#2|)) $ (-1 (-111) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)))) NIL)) (-1345 (((-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-2654 (((-766 |#1| (-847 |#2|)) (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) $ (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-766 |#1| (-847 |#2|)) (-1079)))) (((-766 |#1| (-847 |#2|)) (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) $ (-766 |#1| (-847 |#2|))) NIL (|has| $ (-6 -4369))) (((-766 |#1| (-847 |#2|)) (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $ (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) (-1 (-111) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)))) NIL)) (-2282 (((-2 (|:| -2498 (-630 (-766 |#1| (-847 |#2|)))) (|:| -2984 (-630 (-766 |#1| (-847 |#2|))))) $) NIL)) (-3217 (((-111) (-766 |#1| (-847 |#2|)) $) NIL)) (-3077 (((-111) (-766 |#1| (-847 |#2|)) $) NIL)) (-1497 (((-111) (-766 |#1| (-847 |#2|)) $) NIL) (((-111) $) NIL)) (-1408 (((-630 (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1685 (((-111) (-766 |#1| (-847 |#2|)) $) NIL) (((-111) $) NIL)) (-1470 (((-847 |#2|) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-766 |#1| (-847 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-766 |#1| (-847 |#2|)) (-1079))))) (-2503 (($ (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) $) NIL)) (-3935 (((-630 (-847 |#2|)) $) NIL)) (-2351 (((-111) (-847 |#2|) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-2025 (((-3 (-766 |#1| (-847 |#2|)) (-630 $)) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-4247 (((-630 (-2 (|:| |val| (-766 |#1| (-847 |#2|))) (|:| -3233 $))) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-2594 (((-3 (-766 |#1| (-847 |#2|)) "failed") $) NIL)) (-2129 (((-630 $) (-766 |#1| (-847 |#2|)) $) NIL)) (-3184 (((-3 (-111) (-630 $)) (-766 |#1| (-847 |#2|)) $) NIL)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) (-766 |#1| (-847 |#2|)) $) NIL) (((-111) (-766 |#1| (-847 |#2|)) $) NIL)) (-1475 (((-630 $) (-766 |#1| (-847 |#2|)) $) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) $) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-630 $)) NIL) (((-630 $) (-766 |#1| (-847 |#2|)) (-630 $)) NIL)) (-2520 (($ (-766 |#1| (-847 |#2|)) $) NIL) (($ (-630 (-766 |#1| (-847 |#2|))) $) NIL)) (-2564 (((-630 (-766 |#1| (-847 |#2|))) $) NIL)) (-4299 (((-111) (-766 |#1| (-847 |#2|)) $) NIL) (((-111) $) NIL)) (-4080 (((-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-1990 (((-111) $ $) NIL)) (-3280 (((-2 (|:| |num| (-766 |#1| (-847 |#2|))) (|:| |den| |#1|)) (-766 |#1| (-847 |#2|)) $) NIL (|has| |#1| (-545)))) (-3276 (((-111) (-766 |#1| (-847 |#2|)) $) NIL) (((-111) $) NIL)) (-3138 (((-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-3 (-766 |#1| (-847 |#2|)) "failed") $) NIL)) (-3016 (((-3 (-766 |#1| (-847 |#2|)) "failed") (-1 (-111) (-766 |#1| (-847 |#2|))) $) NIL)) (-2761 (((-3 $ "failed") $ (-766 |#1| (-847 |#2|))) NIL)) (-3089 (($ $ (-766 |#1| (-847 |#2|))) NIL) (((-630 $) (-766 |#1| (-847 |#2|)) $) NIL) (((-630 $) (-766 |#1| (-847 |#2|)) (-630 $)) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) $) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-630 $)) NIL)) (-3341 (((-111) (-1 (-111) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-766 |#1| (-847 |#2|))) (-630 (-766 |#1| (-847 |#2|)))) NIL (-12 (|has| (-766 |#1| (-847 |#2|)) (-303 (-766 |#1| (-847 |#2|)))) (|has| (-766 |#1| (-847 |#2|)) (-1079)))) (($ $ (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|))) NIL (-12 (|has| (-766 |#1| (-847 |#2|)) (-303 (-766 |#1| (-847 |#2|)))) (|has| (-766 |#1| (-847 |#2|)) (-1079)))) (($ $ (-288 (-766 |#1| (-847 |#2|)))) NIL (-12 (|has| (-766 |#1| (-847 |#2|)) (-303 (-766 |#1| (-847 |#2|)))) (|has| (-766 |#1| (-847 |#2|)) (-1079)))) (($ $ (-630 (-288 (-766 |#1| (-847 |#2|))))) NIL (-12 (|has| (-766 |#1| (-847 |#2|)) (-303 (-766 |#1| (-847 |#2|)))) (|has| (-766 |#1| (-847 |#2|)) (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-3872 (((-757) $) NIL)) (-2796 (((-757) (-766 |#1| (-847 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-766 |#1| (-847 |#2|)) (-1079)))) (((-757) (-1 (-111) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-766 |#1| (-847 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-766 |#1| (-847 |#2|)))) NIL)) (-2867 (($ $ (-847 |#2|)) NIL)) (-3721 (($ $ (-847 |#2|)) NIL)) (-2316 (($ $) NIL)) (-1665 (($ $ (-847 |#2|)) NIL)) (-3110 (((-845) $) NIL) (((-630 (-766 |#1| (-847 |#2|))) $) NIL)) (-2668 (((-757) $) NIL (|has| (-847 |#2|) (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 (-766 |#1| (-847 |#2|))))) "failed") (-630 (-766 |#1| (-847 |#2|))) (-1 (-111) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 (-766 |#1| (-847 |#2|))))) "failed") (-630 (-766 |#1| (-847 |#2|))) (-1 (-111) (-766 |#1| (-847 |#2|))) (-1 (-111) (-766 |#1| (-847 |#2|)) (-766 |#1| (-847 |#2|)))) NIL)) (-3283 (((-111) $ (-1 (-111) (-766 |#1| (-847 |#2|)) (-630 (-766 |#1| (-847 |#2|))))) NIL)) (-4130 (((-630 $) (-766 |#1| (-847 |#2|)) $) NIL) (((-630 $) (-766 |#1| (-847 |#2|)) (-630 $)) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) $) NIL) (((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-630 $)) NIL)) (-3296 (((-111) (-1 (-111) (-766 |#1| (-847 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3838 (((-630 (-847 |#2|)) $) NIL)) (-1397 (((-111) (-766 |#1| (-847 |#2|)) $) NIL)) (-4223 (((-111) (-847 |#2|) $) NIL)) (-1617 (((-111) $ $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1028 |#1| |#2|) (-13 (-1051 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|))) (-10 -8 (-15 -3247 ((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-111) (-111))))) (-445) (-630 (-1155))) (T -1028)) -((-3247 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-1028 *5 *6))))) -(-13 (-1051 |#1| (-524 (-847 |#2|)) (-847 |#2|) (-766 |#1| (-847 |#2|))) (-10 -8 (-15 -3247 ((-630 $) (-630 (-766 |#1| (-847 |#2|))) (-111) (-111))))) -((-3018 (((-1 (-553)) (-1073 (-553))) 33)) (-1896 (((-553) (-553) (-553) (-553) (-553)) 30)) (-4092 (((-1 (-553)) |RationalNumber|) NIL)) (-4159 (((-1 (-553)) |RationalNumber|) NIL)) (-1737 (((-1 (-553)) (-553) |RationalNumber|) NIL))) -(((-1029) (-10 -7 (-15 -3018 ((-1 (-553)) (-1073 (-553)))) (-15 -1737 ((-1 (-553)) (-553) |RationalNumber|)) (-15 -4092 ((-1 (-553)) |RationalNumber|)) (-15 -4159 ((-1 (-553)) |RationalNumber|)) (-15 -1896 ((-553) (-553) (-553) (-553) (-553))))) (T -1029)) -((-1896 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1029)))) (-4159 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-553))) (-5 *1 (-1029)))) (-4092 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-553))) (-5 *1 (-1029)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-553))) (-5 *1 (-1029)) (-5 *3 (-553)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-1073 (-553))) (-5 *2 (-1 (-553))) (-5 *1 (-1029))))) -(-10 -7 (-15 -3018 ((-1 (-553)) (-1073 (-553)))) (-15 -1737 ((-1 (-553)) (-553) |RationalNumber|)) (-15 -4092 ((-1 (-553)) |RationalNumber|)) (-15 -4159 ((-1 (-553)) |RationalNumber|)) (-15 -1896 ((-553) (-553) (-553) (-553) (-553)))) -((-3110 (((-845) $) NIL) (($ (-553)) 10))) -(((-1030 |#1|) (-10 -8 (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-1031)) (T -1030)) -NIL -(-10 -8 (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-1031) (-137)) (T -1031)) -((-1999 (*1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-757))))) -(-13 (-1038) (-712) (-633 $) (-603 (-553)) (-10 -7 (-15 -1999 ((-757))) (-6 -4366))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-603 (-553)) . T) ((-600 (-845)) . T) ((-633 $) . T) ((-712) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-2526 (((-401 (-934 |#2|)) (-630 |#2|) (-630 |#2|) (-757) (-757)) 45))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -2526 ((-401 (-934 |#2|)) (-630 |#2|) (-630 |#2|) (-757) (-757)))) (-1155) (-357)) (T -1032)) -((-2526 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-630 *6)) (-5 *4 (-757)) (-4 *6 (-357)) (-5 *2 (-401 (-934 *6))) (-5 *1 (-1032 *5 *6)) (-14 *5 (-1155))))) -(-10 -7 (-15 -2526 ((-401 (-934 |#2|)) (-630 |#2|) (-630 |#2|) (-757) (-757)))) -((-2986 (((-111) $) 29)) (-2086 (((-111) $) 16)) (-4253 (((-757) $) 13)) (-4265 (((-757) $) 14)) (-1564 (((-111) $) 26)) (-4172 (((-111) $) 31))) -(((-1033 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4265 ((-757) |#1|)) (-15 -4253 ((-757) |#1|)) (-15 -4172 ((-111) |#1|)) (-15 -2986 ((-111) |#1|)) (-15 -1564 ((-111) |#1|)) (-15 -2086 ((-111) |#1|))) (-1034 |#2| |#3| |#4| |#5| |#6|) (-757) (-757) (-1031) (-233 |#3| |#4|) (-233 |#2| |#4|)) (T -1033)) -NIL -(-10 -8 (-15 -4265 ((-757) |#1|)) (-15 -4253 ((-757) |#1|)) (-15 -4172 ((-111) |#1|)) (-15 -2986 ((-111) |#1|)) (-15 -1564 ((-111) |#1|)) (-15 -2086 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2986 (((-111) $) 51)) (-2910 (((-3 $ "failed") $ $) 19)) (-2086 (((-111) $) 53)) (-1511 (((-111) $ (-757)) 61)) (-3820 (($) 17 T CONST)) (-3639 (($ $) 34 (|has| |#3| (-301)))) (-3894 ((|#4| $ (-553)) 39)) (-2409 (((-757) $) 33 (|has| |#3| (-545)))) (-2441 ((|#3| $ (-553) (-553)) 41)) (-1408 (((-630 |#3|) $) 68 (|has| $ (-6 -4369)))) (-2016 (((-757) $) 32 (|has| |#3| (-545)))) (-1888 (((-630 |#5|) $) 31 (|has| |#3| (-545)))) (-4253 (((-757) $) 45)) (-4265 (((-757) $) 44)) (-3703 (((-111) $ (-757)) 60)) (-3510 (((-553) $) 49)) (-4116 (((-553) $) 47)) (-2195 (((-630 |#3|) $) 69 (|has| $ (-6 -4369)))) (-1832 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1079)) (|has| $ (-6 -4369))))) (-4275 (((-553) $) 48)) (-3223 (((-553) $) 46)) (-3394 (($ (-630 (-630 |#3|))) 54)) (-2503 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2384 (((-630 (-630 |#3|)) $) 43)) (-3786 (((-111) $ (-757)) 59)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-545)))) (-3341 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#3|) (-630 |#3|)) 75 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-288 |#3|)) 73 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-630 (-288 |#3|))) 72 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079))))) (-2551 (((-111) $ $) 55)) (-3586 (((-111) $) 58)) (-3222 (($) 57)) (-2046 ((|#3| $ (-553) (-553)) 42) ((|#3| $ (-553) (-553) |#3|) 40)) (-1564 (((-111) $) 52)) (-2796 (((-757) |#3| $) 70 (-12 (|has| |#3| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4369)))) (-1508 (($ $) 56)) (-1355 ((|#5| $ (-553)) 38)) (-3110 (((-845) $) 11)) (-3296 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4369)))) (-4172 (((-111) $) 50)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#3|) 35 (|has| |#3| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2563 (((-757) $) 62 (|has| $ (-6 -4369))))) -(((-1034 |#1| |#2| |#3| |#4| |#5|) (-137) (-757) (-757) (-1031) (-233 |t#2| |t#3|) (-233 |t#1| |t#3|)) (T -1034)) -((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *5))) (-4 *5 (-1031)) (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553)))) (-4275 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-757)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-757)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-630 (-630 *5))))) (-2046 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1031)))) (-2441 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1031)))) (-2046 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *2 *6 *7)) (-4 *2 (-1031)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *6 *2 *7)) (-4 *6 (-1031)) (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6)))) (-1355 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *6 *7 *2)) (-4 *6 (-1031)) (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6)))) (-1482 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-3929 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1034 *3 *4 *2 *5 *6)) (-4 *2 (-1031)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-545)))) (-1723 (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *2 *5 *6)) (-4 *2 (-1031)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) (-3639 (*1 *1 *1) (-12 (-4 *1 (-1034 *2 *3 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-545)) (-5 *2 (-757)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-545)) (-5 *2 (-757)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-545)) (-5 *2 (-630 *7))))) -(-13 (-110 |t#3| |t#3|) (-482 |t#3|) (-10 -8 (-6 -4369) (IF (|has| |t#3| (-169)) (-6 (-703 |t#3|)) |%noBranch|) (-15 -3394 ($ (-630 (-630 |t#3|)))) (-15 -2086 ((-111) $)) (-15 -1564 ((-111) $)) (-15 -2986 ((-111) $)) (-15 -4172 ((-111) $)) (-15 -3510 ((-553) $)) (-15 -4275 ((-553) $)) (-15 -4116 ((-553) $)) (-15 -3223 ((-553) $)) (-15 -4253 ((-757) $)) (-15 -4265 ((-757) $)) (-15 -2384 ((-630 (-630 |t#3|)) $)) (-15 -2046 (|t#3| $ (-553) (-553))) (-15 -2441 (|t#3| $ (-553) (-553))) (-15 -2046 (|t#3| $ (-553) (-553) |t#3|)) (-15 -3894 (|t#4| $ (-553))) (-15 -1355 (|t#5| $ (-553))) (-15 -1482 ($ (-1 |t#3| |t#3|) $)) (-15 -1482 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-545)) (-15 -3929 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-357)) (-15 -1723 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-301)) (-15 -3639 ($ $)) |%noBranch|) (IF (|has| |t#3| (-545)) (PROGN (-15 -2409 ((-757) $)) (-15 -2016 ((-757) $)) (-15 -1888 ((-630 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-600 (-845)) . T) ((-303 |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079))) ((-482 |#3|) . T) ((-507 |#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079))) ((-633 |#3|) . T) ((-703 |#3|) |has| |#3| (-169)) ((-1037 |#3|) . T) ((-1079) . T) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2986 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2086 (((-111) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3820 (($) NIL T CONST)) (-3639 (($ $) 43 (|has| |#3| (-301)))) (-3894 (((-235 |#2| |#3|) $ (-553)) 32)) (-3117 (($ (-674 |#3|)) 41)) (-2409 (((-757) $) 45 (|has| |#3| (-545)))) (-2441 ((|#3| $ (-553) (-553)) NIL)) (-1408 (((-630 |#3|) $) NIL (|has| $ (-6 -4369)))) (-2016 (((-757) $) 47 (|has| |#3| (-545)))) (-1888 (((-630 (-235 |#1| |#3|)) $) 51 (|has| |#3| (-545)))) (-4253 (((-757) $) NIL)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3510 (((-553) $) NIL)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#3|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-4275 (((-553) $) NIL)) (-3223 (((-553) $) NIL)) (-3394 (($ (-630 (-630 |#3|))) 27)) (-2503 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2384 (((-630 (-630 |#3|)) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-545)))) (-3341 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#3|) (-630 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-630 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#3| $ (-553) (-553)) NIL) ((|#3| $ (-553) (-553) |#3|) NIL)) (-1337 (((-132)) 54 (|has| |#3| (-357)))) (-1564 (((-111) $) NIL)) (-2796 (((-757) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079)))) (((-757) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) 63 (|has| |#3| (-601 (-529))))) (-1355 (((-235 |#1| |#3|) $ (-553)) 36)) (-3110 (((-845) $) 16) (((-674 |#3|) $) 38)) (-3296 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-4172 (((-111) $) NIL)) (-1988 (($) 13 T CONST)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1035 |#1| |#2| |#3|) (-13 (-1034 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-600 (-674 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1245 |#3|)) |%noBranch|) (IF (|has| |#3| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (-15 -3117 ($ (-674 |#3|))))) (-757) (-757) (-1031)) (T -1035)) -((-3117 (*1 *1 *2) (-12 (-5 *2 (-674 *5)) (-4 *5 (-1031)) (-5 *1 (-1035 *3 *4 *5)) (-14 *3 (-757)) (-14 *4 (-757))))) -(-13 (-1034 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-600 (-674 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1245 |#3|)) |%noBranch|) (IF (|has| |#3| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|) (-15 -3117 ($ (-674 |#3|))))) -((-2654 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1482 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1036 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1482 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2654 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-757) (-757) (-1031) (-233 |#2| |#3|) (-233 |#1| |#3|) (-1034 |#1| |#2| |#3| |#4| |#5|) (-1031) (-233 |#2| |#7|) (-233 |#1| |#7|) (-1034 |#1| |#2| |#7| |#8| |#9|)) (T -1036)) -((-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1031)) (-4 *2 (-1031)) (-14 *5 (-757)) (-14 *6 (-757)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) (-5 *1 (-1036 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1034 *5 *6 *7 *8 *9)) (-4 *12 (-1034 *5 *6 *2 *10 *11)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1031)) (-4 *10 (-1031)) (-14 *5 (-757)) (-14 *6 (-757)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *2 (-1034 *5 *6 *10 *11 *12)) (-5 *1 (-1036 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1034 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) (-4 *12 (-233 *5 *10))))) -(-10 -7 (-15 -1482 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2654 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ |#1|) 23))) -(((-1037 |#1|) (-137) (-1038)) (T -1037)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1038))))) +((-3546 (($ $ (-1074 $)) 7) (($ $ (-1158)) 6))) +(((-944) (-138)) (T -944)) +((-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-944)))) (-3546 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-1158))))) +(-13 (-10 -8 (-15 -3546 ($ $ (-1158))) (-15 -3546 ($ $ (-1074 $))))) +((-3157 (((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)) (-1158)) 25) (((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158))) 26) (((-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 |#1|))) (-937 |#1|) (-1158) (-937 |#1|) (-1158)) 43))) +(((-945 |#1|) (-10 -7 (-15 -3157 ((-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 |#1|))) (-937 |#1|) (-1158) (-937 |#1|) (-1158))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)) (-1158)))) (-13 (-358) (-145))) (T -945)) +((-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-5 *5 (-1158)) (-4 *6 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *6))) (|:| |prim| (-1154 *6)))) (-5 *1 (-945 *6)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *5))) (|:| |prim| (-1154 *5)))) (-5 *1 (-945 *5)))) (-3157 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-937 *5)) (-5 *4 (-1158)) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 *5)))) (-5 *1 (-945 *5))))) +(-10 -7 (-15 -3157 ((-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) (|:| |prim| (-1154 |#1|))) (-937 |#1|) (-1158) (-937 |#1|) (-1158))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)))) (-15 -3157 ((-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 |#1|))) (|:| |prim| (-1154 |#1|))) (-631 (-937 |#1|)) (-631 (-1158)) (-1158)))) +((-3431 (((-631 |#1|) |#1| |#1|) 42)) (-3289 (((-112) |#1|) 39)) (-4002 ((|#1| |#1|) 65)) (-2801 ((|#1| |#1|) 64))) +(((-946 |#1|) (-10 -7 (-15 -3289 ((-112) |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3431 ((-631 |#1|) |#1| |#1|))) (-539)) (T -946)) +((-3431 (*1 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-5 *1 (-946 *3)) (-4 *3 (-539)))) (-4002 (*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539)))) (-2801 (*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539)))) (-3289 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-946 *3)) (-4 *3 (-539))))) +(-10 -7 (-15 -3289 ((-112) |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3431 ((-631 |#1|) |#1| |#1|))) +((-1869 (((-1246) (-848)) 9))) +(((-947) (-10 -7 (-15 -1869 ((-1246) (-848))))) (T -947)) +((-1869 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-947))))) +(-10 -7 (-15 -1869 ((-1246) (-848)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 61 (|has| |#1| (-546)))) (-1976 (($ $) 62 (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 28)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) 24)) (-1320 (((-3 $ "failed") $) 35)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-1344 (($ $ |#1| |#2| $) 48)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 16)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| |#2|) NIL)) (-3893 ((|#2| $) 19)) (-2789 (($ (-1 |#2| |#2|) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2518 (($ $) 23)) (-2530 ((|#1| $) 21)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 40)) (-2505 ((|#1| $) NIL)) (-2034 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-546))))) (-3919 (((-3 $ "failed") $ $) 74 (|has| |#1| (-546))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-546)))) (-3308 ((|#2| $) 17)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) 39) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 34) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ |#2|) 31)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 15)) (-2907 (($ $ $ (-758)) 57 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 67 (|has| |#1| (-546)))) (-2004 (($) 22 T CONST)) (-2014 (($) 12 T CONST)) (-1658 (((-112) $ $) 66)) (-1752 (($ $ |#1|) 75 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) 54) (($ $ (-758)) 52)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-948 |#1| |#2|) (-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| |#2| (-130)) (-15 -2034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) (-1034) (-779)) (T -948)) +((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-948 *3 *2)) (-4 *2 (-130)) (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *2 (-779))))) +(-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| |#2| (-130)) (-15 -2034 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (-1349 (($ $ $) 63 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (-2934 (((-3 $ "failed") $ $) 50 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (-1508 (((-758)) 34 (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3200 ((|#2| $) 21)) (-4340 ((|#1| $) 20)) (-4087 (($) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) CONST)) (-1320 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))) (-3353 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3248 (((-112) $) NIL (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))) (-4223 (($ $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-2706 (($ $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-3287 (($ |#1| |#2|) 19)) (-3830 (((-906) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 37 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2717 (($ (-906)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2768 (((-1102) $) NIL)) (-3992 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-1856 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-3075 (((-848) $) 14)) (-2004 (($) 40 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) CONST)) (-2014 (($) 24 (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))) CONST)) (-1708 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1686 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1658 (((-112) $ $) 18)) (-1697 (((-112) $ $) NIL (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1676 (((-112) $ $) 66 (-3994 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-836)) (|has| |#2| (-836)))))) (-1752 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-1744 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1735 (($ $ $) 43 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (** (($ $ (-554)) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467)))) (($ $ (-758)) 31 (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))))) (($ $ (-906)) NIL (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713)))))) (* (($ (-554) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-758) $) 46 (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (($ (-906) $) NIL (-3994 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (($ $ $) 27 (-3994 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-713)) (|has| |#2| (-713))))))) +(((-949 |#1| |#2|) (-13 (-1082) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-713)) (IF (|has| |#2| (-713)) (-6 (-713)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-780)) (IF (|has| |#2| (-780)) (-6 (-780)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-836)) (IF (|has| |#2| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (-15 -3287 ($ |#1| |#2|)) (-15 -4340 (|#1| $)) (-15 -3200 (|#2| $)))) (-1082) (-1082)) (T -949)) +((-3287 (*1 *1 *2 *3) (-12 (-5 *1 (-949 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4340 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-949 *2 *3)) (-4 *3 (-1082)))) (-3200 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-949 *3 *2)) (-4 *3 (-1082))))) +(-13 (-1082) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-713)) (IF (|has| |#2| (-713)) (-6 (-713)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-780)) (IF (|has| |#2| (-780)) (-6 (-780)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-836)) (IF (|has| |#2| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (-15 -3287 ($ |#1| |#2|)) (-15 -4340 (|#1| $)) (-15 -3200 (|#2| $)))) +((-2794 (((-1086) $) 12)) (-2047 (($ (-1158) (-1086)) 13)) (-4309 (((-1158) $) 10)) (-3075 (((-848) $) 22))) +(((-950) (-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2794 ((-1086) $)) (-15 -2047 ($ (-1158) (-1086)))))) (T -950)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-950)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-950)))) (-2047 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-950))))) +(-13 (-601 (-848)) (-10 -8 (-15 -4309 ((-1158) $)) (-15 -2794 ((-1086) $)) (-15 -2047 ($ (-1158) (-1086))))) +((-3062 (((-112) $ $) NIL)) (-2405 (((-1084 (-1158)) $) 19)) (-1440 (((-112) $) 26)) (-1576 (((-1158) $) 27)) (-3433 (((-112) $) 24)) (-3090 ((|#1| $) 25)) (-1560 (((-858 $ $) $) 34)) (-2011 (((-112) $) 33)) (-3038 (($ $ $) 12)) (-2861 (($ $) 29)) (-2599 (((-112) $) 28)) (-4081 (($ $) 10)) (-1613 (((-1140) $) NIL)) (-3421 (((-858 $ $) $) 36)) (-3711 (((-112) $) 35)) (-3771 (($ $ $) 13)) (-2768 (((-1102) $) NIL)) (-1518 (((-858 $ $) $) 38)) (-1906 (((-112) $) 37)) (-2455 (($ $ $) 14)) (-3075 (((-848) $) 40) (($ |#1|) 7) (($ (-1158)) 9)) (-3268 (((-858 $ $) $) 32)) (-2758 (((-112) $) 30)) (-3726 (($ $ $) 11)) (-1658 (((-112) $ $) NIL))) +(((-951 |#1|) (-13 (-952) (-10 -8 (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-1158))) (-15 -2405 ((-1084 (-1158)) $)) (-15 -3433 ((-112) $)) (-15 -3090 (|#1| $)) (-15 -1440 ((-112) $)) (-15 -1576 ((-1158) $)) (-15 -2599 ((-112) $)) (-15 -2861 ($ $)) (-15 -2758 ((-112) $)) (-15 -3268 ((-858 $ $) $)) (-15 -2011 ((-112) $)) (-15 -1560 ((-858 $ $) $)) (-15 -3711 ((-112) $)) (-15 -3421 ((-858 $ $) $)) (-15 -1906 ((-112) $)) (-15 -1518 ((-858 $ $) $)))) (-952)) (T -951)) +((-3075 (*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-1084 (-1158))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3090 (*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2861 (*1 *1 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(-13 (-952) (-10 -8 (-15 -3075 ($ |#1|)) (-15 -3075 ($ (-1158))) (-15 -2405 ((-1084 (-1158)) $)) (-15 -3433 ((-112) $)) (-15 -3090 (|#1| $)) (-15 -1440 ((-112) $)) (-15 -1576 ((-1158) $)) (-15 -2599 ((-112) $)) (-15 -2861 ($ $)) (-15 -2758 ((-112) $)) (-15 -3268 ((-858 $ $) $)) (-15 -2011 ((-112) $)) (-15 -1560 ((-858 $ $) $)) (-15 -3711 ((-112) $)) (-15 -3421 ((-858 $ $) $)) (-15 -1906 ((-112) $)) (-15 -1518 ((-858 $ $) $)))) +((-3062 (((-112) $ $) 7)) (-3038 (($ $ $) 15)) (-4081 (($ $) 17)) (-1613 (((-1140) $) 9)) (-3771 (($ $ $) 14)) (-2768 (((-1102) $) 10)) (-2455 (($ $ $) 13)) (-3075 (((-848) $) 11)) (-3726 (($ $ $) 16)) (-1658 (((-112) $ $) 6))) +(((-952) (-138)) (T -952)) +((-4081 (*1 *1 *1) (-4 *1 (-952))) (-3726 (*1 *1 *1 *1) (-4 *1 (-952))) (-3038 (*1 *1 *1 *1) (-4 *1 (-952))) (-3771 (*1 *1 *1 *1) (-4 *1 (-952))) (-2455 (*1 *1 *1 *1) (-4 *1 (-952)))) +(-13 (-1082) (-10 -8 (-15 -4081 ($ $)) (-15 -3726 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -3771 ($ $ $)) (-15 -2455 ($ $ $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-3606 (($ $ $) 43)) (-3717 (($ $ $) 44)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2706 ((|#1| $) 45)) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-953 |#1|) (-138) (-836)) (T -953)) +((-2706 (*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))) (-3606 (*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4373) (-15 -2706 (|t#1| $)) (-15 -3717 ($ $ $)) (-15 -3606 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-2427 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|) 85)) (-4286 ((|#2| |#2| |#2|) 83)) (-3761 (((-2 (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|) 87)) (-1281 (((-2 (|:| |coef1| |#2|) (|:| -2510 |#2|)) |#2| |#2|) 89)) (-2359 (((-2 (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|) 107 (|has| |#1| (-446)))) (-2602 (((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 46)) (-1872 (((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 64)) (-2434 (((-2 (|:| |coef1| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 66)) (-2951 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2305 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 71)) (-2617 (((-2 (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|) 97)) (-4090 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 74)) (-2585 (((-631 (-758)) |#2| |#2|) 82)) (-2607 ((|#1| |#2| |#2|) 42)) (-2876 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|) 105 (|has| |#1| (-446)))) (-1942 ((|#1| |#2| |#2|) 103 (|has| |#1| (-446)))) (-3383 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 44)) (-3886 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|) 63)) (-2999 ((|#1| |#2| |#2|) 61)) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|) 35)) (-2676 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3362 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2543 ((|#2| |#2| |#2|) 75)) (-3228 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 69)) (-2678 ((|#2| |#2| |#2| (-758)) 67)) (-2510 ((|#2| |#2| |#2|) 111 (|has| |#1| (-446)))) (-3919 (((-1241 |#2|) (-1241 |#2|) |#1|) 21)) (-2259 (((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|) 39)) (-3700 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|) 95)) (-1495 ((|#1| |#2|) 92)) (-2942 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758)) 73)) (-4033 ((|#2| |#2| |#2| (-758)) 72)) (-4342 (((-631 |#2|) |#2| |#2|) 80)) (-2503 ((|#2| |#2| |#1| |#1| (-758)) 50)) (-3551 ((|#1| |#1| |#1| (-758)) 49)) (* (((-1241 |#2|) |#1| (-1241 |#2|)) 16))) +(((-954 |#1| |#2|) (-10 -7 (-15 -2999 (|#1| |#2| |#2|)) (-15 -3886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -1872 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2434 ((-2 (|:| |coef1| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2678 (|#2| |#2| |#2| (-758))) (-15 -3228 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2305 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4033 (|#2| |#2| |#2| (-758))) (-15 -2942 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4090 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2951 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4286 (|#2| |#2| |#2|)) (-15 -2427 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -3761 ((-2 (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1281 ((-2 (|:| |coef1| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1495 (|#1| |#2|)) (-15 -3700 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -2617 ((-2 (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -4342 ((-631 |#2|) |#2| |#2|)) (-15 -2585 ((-631 (-758)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -1942 (|#1| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2359 ((-2 (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2510 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1241 |#2|) |#1| (-1241 |#2|))) (-15 -3919 ((-1241 |#2|) (-1241 |#2|) |#1|)) (-15 -1680 ((-2 (|:| -1490 |#1|) (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -2259 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -3551 (|#1| |#1| |#1| (-758))) (-15 -2503 (|#2| |#2| |#1| |#1| (-758))) (-15 -2676 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2607 (|#1| |#2| |#2|)) (-15 -3383 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2602 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|))) (-546) (-1217 |#1|)) (T -954)) +((-2602 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3383 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2607 (*1 *2 *3 *3) (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) (-2676 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-2503 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-3551 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *2 (-546)) (-5 *1 (-954 *2 *4)) (-4 *4 (-1217 *2)))) (-2259 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1680 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -1490 *4) (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3919 (*1 *2 *2 *3) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546)) (-5 *1 (-954 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546)) (-5 *1 (-954 *3 *4)))) (-2510 (*1 *2 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-2359 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1942 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1942 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1942 (*1 *2 *3 *3) (-12 (-4 *2 (-546)) (-4 *2 (-446)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) (-2585 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-758))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-4342 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1495 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1495 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1495 (*1 *2 *3) (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) (-1281 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2510 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3761 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2510 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2427 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2510 *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-4286 (*1 *2 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3362 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) (-4090 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-2942 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-4033 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2)) (-4 *2 (-1217 *4)))) (-2305 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-3228 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5)))) (-2678 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2)) (-4 *2 (-1217 *4)))) (-2434 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-1872 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-3886 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4))) (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) (-2999 (*1 *2 *3 *3) (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2))))) +(-10 -7 (-15 -2999 (|#1| |#2| |#2|)) (-15 -3886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -1872 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2434 ((-2 (|:| |coef1| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2678 (|#2| |#2| |#2| (-758))) (-15 -3228 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2305 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4033 (|#2| |#2| |#2| (-758))) (-15 -2942 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -4090 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-758))) (-15 -2543 (|#2| |#2| |#2|)) (-15 -3362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2951 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4286 (|#2| |#2| |#2|)) (-15 -2427 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -3761 ((-2 (|:| |coef2| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1281 ((-2 (|:| |coef1| |#2|) (|:| -2510 |#2|)) |#2| |#2|)) (-15 -1495 (|#1| |#2|)) (-15 -3700 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -2617 ((-2 (|:| |coef2| |#2|) (|:| -1495 |#1|)) |#2|)) (-15 -4342 ((-631 |#2|) |#2| |#2|)) (-15 -2585 ((-631 (-758)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -1942 (|#1| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2359 ((-2 (|:| |coef2| |#2|) (|:| -1942 |#1|)) |#2| |#2|)) (-15 -2510 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1241 |#2|) |#1| (-1241 |#2|))) (-15 -3919 ((-1241 |#2|) (-1241 |#2|) |#1|)) (-15 -1680 ((-2 (|:| -1490 |#1|) (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -2259 ((-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -3551 (|#1| |#1| |#1| (-758))) (-15 -2503 (|#2| |#2| |#1| |#1| (-758))) (-15 -2676 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2607 (|#1| |#2| |#2|)) (-15 -3383 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|)) (-15 -2602 ((-2 (|:| |coef2| |#2|) (|:| -2999 |#1|)) |#2| |#2|))) +((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 10)) (-3075 (((-848) $) 22) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-955) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))) (T -955)) +((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-955)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-955))))) +(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) 27)) (-4087 (($) NIL T CONST)) (-2859 (((-631 (-631 (-554))) (-631 (-554))) 29)) (-3224 (((-554) $) 45)) (-3941 (($ (-631 (-554))) 17)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2927 (((-631 (-554)) $) 12)) (-3992 (($ $) 32)) (-3075 (((-848) $) 43) (((-631 (-554)) $) 10)) (-2004 (($) 7 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 19)) (-1735 (($ $ $) 21)) (* (($ (-906) $) NIL) (($ (-758) $) 25))) +(((-956) (-13 (-782) (-602 (-631 (-554))) (-601 (-631 (-554))) (-10 -8 (-15 -3941 ($ (-631 (-554)))) (-15 -2859 ((-631 (-631 (-554))) (-631 (-554)))) (-15 -3224 ((-554) $)) (-15 -3992 ($ $))))) (T -956)) +((-3941 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-956)))) (-2859 (*1 *2 *3) (-12 (-5 *2 (-631 (-631 (-554)))) (-5 *1 (-956)) (-5 *3 (-631 (-554))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-956)))) (-3992 (*1 *1 *1) (-5 *1 (-956)))) +(-13 (-782) (-602 (-631 (-554))) (-601 (-631 (-554))) (-10 -8 (-15 -3941 ($ (-631 (-554)))) (-15 -2859 ((-631 (-631 (-554))) (-631 (-554)))) (-15 -3224 ((-554) $)) (-15 -3992 ($ $)))) +((-1752 (($ $ |#2|) 30)) (-1744 (($ $) 22) (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-402 (-554)) $) 26) (($ $ (-402 (-554))) 28))) +(((-957 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -1752 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) (-958 |#2| |#3| |#4|) (-1034) (-779) (-836)) (T -957)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-402 (-554)))) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 -1752 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 * (|#1| (-906) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#3|) $) 77)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2051 (((-112) $) 76)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-631 |#3|) (-631 |#2|)) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-3308 ((|#2| $) 67)) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-958 |#1| |#2| |#3|) (-138) (-1034) (-779) (-836)) (T -958)) +((-2530 (*1 *2 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *3 (-779)) (-4 *4 (-836)) (-4 *2 (-1034)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *4 (-836)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *2 *4)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *2 (-779)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-958 *4 *3 *2)) (-4 *4 (-1034)) (-4 *3 (-779)) (-4 *2 (-836)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 *5)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-779)) (-4 *6 (-836)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779)) (-4 *5 (-836)) (-5 *2 (-631 *5)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779)) (-4 *5 (-836)) (-5 *2 (-112)))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779)) (-4 *4 (-836))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2383 ($ $ |t#3| |t#2|)) (-15 -2383 ($ $ (-631 |t#3|) (-631 |t#2|))) (-15 -2518 ($ $)) (-15 -2530 (|t#1| $)) (-15 -3308 (|t#2| $)) (-15 -2405 ((-631 |t#3|) $)) (-15 -2051 ((-112) $)) (-15 -1300 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-285) |has| |#1| (-546)) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2839 (((-1076 (-221)) $) 8)) (-2829 (((-1076 (-221)) $) 9)) (-2818 (((-1076 (-221)) $) 10)) (-3787 (((-631 (-631 (-928 (-221)))) $) 11)) (-3075 (((-848) $) 6))) +(((-959) (-138)) (T -959)) +((-3787 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-631 (-631 (-928 (-221))))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221))))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221)))))) +(-13 (-601 (-848)) (-10 -8 (-15 -3787 ((-631 (-631 (-928 (-221)))) $)) (-15 -2818 ((-1076 (-221)) $)) (-15 -2829 ((-1076 (-221)) $)) (-15 -2839 ((-1076 (-221)) $)))) +(((-601 (-848)) . T)) +((-2405 (((-631 |#4|) $) 23)) (-1678 (((-112) $) 48)) (-3005 (((-112) $) 47)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#4|) 36)) (-1930 (((-112) $) 49)) (-1404 (((-112) $ $) 55)) (-3262 (((-112) $ $) 58)) (-2713 (((-112) $) 53)) (-1380 (((-631 |#5|) (-631 |#5|) $) 90)) (-4204 (((-631 |#5|) (-631 |#5|) $) 87)) (-2423 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2643 (((-631 |#4|) $) 27)) (-1400 (((-112) |#4| $) 30)) (-3548 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2538 (($ $ |#4|) 33)) (-2384 (($ $ |#4|) 32)) (-2128 (($ $ |#4|) 34)) (-1658 (((-112) $ $) 40))) +(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3005 ((-112) |#1|)) (-15 -1380 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -4204 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -2423 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3548 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1930 ((-112) |#1|)) (-15 -3262 ((-112) |#1| |#1|)) (-15 -1404 ((-112) |#1| |#1|)) (-15 -2713 ((-112) |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -3303 ((-2 (|:| |under| |#1|) (|:| -4339 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2128 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -1400 ((-112) |#4| |#1|)) (-15 -2643 ((-631 |#4|) |#1|)) (-15 -2405 ((-631 |#4|) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-961 |#2| |#3| |#4| |#5|) (-1034) (-780) (-836) (-1048 |#2| |#3| |#4|)) (T -960)) +NIL +(-10 -8 (-15 -3005 ((-112) |#1|)) (-15 -1380 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -4204 ((-631 |#5|) (-631 |#5|) |#1|)) (-15 -2423 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3548 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1930 ((-112) |#1|)) (-15 -3262 ((-112) |#1| |#1|)) (-15 -1404 ((-112) |#1| |#1|)) (-15 -2713 ((-112) |#1|)) (-15 -1678 ((-112) |#1|)) (-15 -3303 ((-2 (|:| |under| |#1|) (|:| -4339 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2128 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -1400 ((-112) |#4| |#1|)) (-15 -2643 ((-631 |#4|) |#1|)) (-15 -2405 ((-631 |#4|) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373)))) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373)))) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-2768 (((-1102) $) 10)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373))))) +(((-961 |#1| |#2| |#3| |#4|) (-138) (-1034) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -961)) +((-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *1 (-961 *3 *4 *5 *6)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *1 (-961 *3 *4 *5 *6)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-1048 *3 *4 *2)) (-4 *2 (-836)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) (-1400 (*1 *2 *3 *1) (-12 (-4 *1 (-961 *4 *5 *3 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112)))) (-2384 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))) (-2128 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))) (-2538 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2)))) (-3303 (*1 *2 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4339 *1) (|:| |upper| *1))) (-4 *1 (-961 *4 *5 *3 *6)))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-1404 (*1 *2 *1 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-3262 (*1 *2 *1 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112)))) (-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2423 (*1 *2 *3 *1) (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4204 (*1 *2 *2 *1) (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)))) (-1380 (*1 *2 *2 *1) (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-5 *2 (-112))))) +(-13 (-1082) (-149 |t#4|) (-601 (-631 |t#4|)) (-10 -8 (-6 -4373) (-15 -2784 ((-3 $ "failed") (-631 |t#4|))) (-15 -1668 ($ (-631 |t#4|))) (-15 -3954 (|t#3| $)) (-15 -2405 ((-631 |t#3|) $)) (-15 -2643 ((-631 |t#3|) $)) (-15 -1400 ((-112) |t#3| $)) (-15 -2384 ($ $ |t#3|)) (-15 -2128 ($ $ |t#3|)) (-15 -2538 ($ $ |t#3|)) (-15 -3303 ((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |t#3|)) (-15 -1678 ((-112) $)) (IF (|has| |t#1| (-546)) (PROGN (-15 -2713 ((-112) $)) (-15 -1404 ((-112) $ $)) (-15 -3262 ((-112) $ $)) (-15 -1930 ((-112) $)) (-15 -3548 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2423 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4204 ((-631 |t#4|) (-631 |t#4|) $)) (-15 -1380 ((-631 |t#4|) (-631 |t#4|) $)) (-15 -3005 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-1082) . T) ((-1195) . T)) +((-1905 (((-631 |#4|) |#4| |#4|) 118)) (-2291 (((-631 |#4|) (-631 |#4|) (-112)) 107 (|has| |#1| (-446))) (((-631 |#4|) (-631 |#4|)) 108 (|has| |#1| (-446)))) (-2430 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 35)) (-2971 (((-112) |#4|) 34)) (-3444 (((-631 |#4|) |#4|) 103 (|has| |#1| (-446)))) (-3291 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-1 (-112) |#4|) (-631 |#4|)) 20)) (-2123 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|)) 22)) (-4327 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|)) 23)) (-3672 (((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|)) 73)) (-3223 (((-631 |#4|) (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3611 (((-631 |#4|) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2250 (((-631 |#4|) (-631 |#4|)) 110)) (-1615 (((-631 |#4|) (-631 |#4|) (-631 |#4|) (-112)) 48) (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 50)) (-2117 ((|#4| |#4| (-631 |#4|)) 49)) (-3665 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 114 (|has| |#1| (-446)))) (-4201 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 117 (|has| |#1| (-446)))) (-2277 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 116 (|has| |#1| (-446)))) (-3835 (((-631 |#4|) (-631 |#4|) (-631 |#4|) (-1 (-631 |#4|) (-631 |#4|))) 87) (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 89) (((-631 |#4|) (-631 |#4|) |#4|) 121) (((-631 |#4|) |#4| |#4|) 119) (((-631 |#4|) (-631 |#4|)) 88)) (-2101 (((-631 |#4|) (-631 |#4|) (-631 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3887 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 41)) (-2472 (((-112) (-631 |#4|)) 62)) (-1889 (((-112) (-631 |#4|) (-631 (-631 |#4|))) 53)) (-1970 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 29)) (-1478 (((-112) |#4|) 28)) (-4277 (((-631 |#4|) (-631 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2358 (((-631 |#4|) (-631 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-4029 (((-631 |#4|) (-631 |#4|)) 66)) (-3928 (((-631 |#4|) (-631 |#4|)) 79)) (-1494 (((-112) (-631 |#4|) (-631 |#4|)) 51)) (-3709 (((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|)) 39)) (-2896 (((-112) |#4|) 36))) +(((-962 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3835 ((-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) |#4| |#4|)) (-15 -2250 ((-631 |#4|) (-631 |#4|))) (-15 -1905 ((-631 |#4|) |#4| |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-1 (-631 |#4|) (-631 |#4|)))) (-15 -1494 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1889 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -2472 ((-112) (-631 |#4|))) (-15 -3291 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-1 (-112) |#4|) (-631 |#4|))) (-15 -2123 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -4327 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -3887 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2971 ((-112) |#4|)) (-15 -2430 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1478 ((-112) |#4|)) (-15 -1970 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2896 ((-112) |#4|)) (-15 -3709 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-112))) (-15 -2117 (|#4| |#4| (-631 |#4|))) (-15 -4029 ((-631 |#4|) (-631 |#4|))) (-15 -3672 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|))) (-15 -3928 ((-631 |#4|) (-631 |#4|))) (-15 -3223 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3611 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3444 ((-631 |#4|) |#4|)) (-15 -2291 ((-631 |#4|) (-631 |#4|))) (-15 -2291 ((-631 |#4|) (-631 |#4|) (-112))) (-15 -3665 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -2277 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -4201 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2358 ((-631 |#4|) (-631 |#4|))) (-15 -4277 ((-631 |#4|) (-631 |#4|))) (-15 -2101 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) |%noBranch|)) (-546) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -962)) +((-2101 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-4277 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-4201 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3665 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2291 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-3611 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-962 *5 *6 *7 *8)))) (-3223 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-631 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *1 (-962 *6 *7 *8 *9)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3672 (*1 *2 *3) (|partial| -12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -2292 (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-2117 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *2)))) (-1615 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))) (-1615 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-2896 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-1970 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-2430 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-2971 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-3887 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8)))) (-1494 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7)))) (-3835 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-631 *7) (-631 *7))) (-5 *2 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3835 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *3)))) (-1905 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) (-3835 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))) +(-10 -7 (-15 -3835 ((-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) |#4| |#4|)) (-15 -2250 ((-631 |#4|) (-631 |#4|))) (-15 -1905 ((-631 |#4|) |#4| |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) |#4|)) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -3835 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-1 (-631 |#4|) (-631 |#4|)))) (-15 -1494 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1889 ((-112) (-631 |#4|) (-631 (-631 |#4|)))) (-15 -2472 ((-112) (-631 |#4|))) (-15 -3291 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-1 (-112) |#4|) (-631 |#4|))) (-15 -2123 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -4327 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 (-1 (-112) |#4|)) (-631 |#4|))) (-15 -3887 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2971 ((-112) |#4|)) (-15 -2430 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1478 ((-112) |#4|)) (-15 -1970 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -2896 ((-112) |#4|)) (-15 -3709 ((-2 (|:| |goodPols| (-631 |#4|)) (|:| |badPols| (-631 |#4|))) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -1615 ((-631 |#4|) (-631 |#4|) (-631 |#4|) (-112))) (-15 -2117 (|#4| |#4| (-631 |#4|))) (-15 -4029 ((-631 |#4|) (-631 |#4|))) (-15 -3672 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|))) (-15 -3928 ((-631 |#4|) (-631 |#4|))) (-15 -3223 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3611 ((-631 |#4|) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3444 ((-631 |#4|) |#4|)) (-15 -2291 ((-631 |#4|) (-631 |#4|))) (-15 -2291 ((-631 |#4|) (-631 |#4|) (-112))) (-15 -3665 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -2277 ((-631 |#4|) (-631 |#4|) (-631 |#4|))) (-15 -4201 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2358 ((-631 |#4|) (-631 |#4|))) (-15 -4277 ((-631 |#4|) (-631 |#4|))) (-15 -2101 ((-631 |#4|) (-631 |#4|) (-631 |#4|)))) |%noBranch|) |%noBranch|)) +((-2246 (((-2 (|:| R (-675 |#1|)) (|:| A (-675 |#1|)) (|:| |Ainv| (-675 |#1|))) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3528 (((-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)) 36)) (-1545 (((-675 |#1|) (-675 |#1|) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-963 |#1|) (-10 -7 (-15 -2246 ((-2 (|:| R (-675 |#1|)) (|:| A (-675 |#1|)) (|:| |Ainv| (-675 |#1|))) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1545 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3528 ((-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)))) (-358)) (T -963)) +((-3528 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-631 (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5))))) (-5 *1 (-963 *5)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)))) (-1545 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-675 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-963 *5)))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| R (-675 *6)) (|:| A (-675 *6)) (|:| |Ainv| (-675 *6)))) (-5 *1 (-963 *6)) (-5 *3 (-675 *6))))) +(-10 -7 (-15 -2246 ((-2 (|:| R (-675 |#1|)) (|:| A (-675 |#1|)) (|:| |Ainv| (-675 |#1|))) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1545 ((-675 |#1|) (-675 |#1|) (-675 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3528 ((-631 (-2 (|:| C (-675 |#1|)) (|:| |g| (-1241 |#1|)))) (-675 |#1|) (-1241 |#1|)))) +((-1565 (((-413 |#4|) |#4|) 48))) +(((-964 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1565 ((-413 |#4|) |#4|))) (-836) (-780) (-446) (-934 |#3| |#2| |#1|)) (T -964)) +((-1565 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-446)) (-5 *2 (-413 *3)) (-5 *1 (-964 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4))))) +(-10 -7 (-15 -1565 ((-413 |#4|) |#4|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2275 (($ (-758)) 112 (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-4136 (($ (-631 |#1|)) 118)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) 105 (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2579 ((|#1| $) 102 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-3731 (((-112) $ (-758)) 10)) (-2577 ((|#1| $) 103 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-4282 (($ $ (-631 |#1|)) 116)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-3748 ((|#1| $ $) 106 (|has| |#1| (-1034)))) (-3330 (((-906) $) 117)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-3574 (($ $ $) 104)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530)))) (($ (-631 |#1|)) 119)) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-1744 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1735 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-554) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-713))) (($ $ |#1|) 107 (|has| |#1| (-713)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-965 |#1|) (-138) (-1034)) (T -965)) +((-4136 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-965 *3)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-965 *3)) (-4 *3 (-1034)) (-5 *2 (-906)))) (-3574 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1034)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-965 *3)) (-4 *3 (-1034))))) +(-13 (-1239 |t#1|) (-606 (-631 |t#1|)) (-10 -8 (-15 -4136 ($ (-631 |t#1|))) (-15 -3330 ((-906) $)) (-15 -3574 ($ $ $)) (-15 -4282 ($ $ (-631 |t#1|))))) +(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-606 (-631 |#1|)) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-19 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T) ((-1239 |#1|) . T)) +((-2879 (((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)) 17))) +(((-966 |#1| |#2|) (-10 -7 (-15 -2879 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)))) (-1034) (-1034)) (T -966)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-928 *6)) (-5 *1 (-966 *5 *6))))) +(-10 -7 (-15 -2879 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)))) +((-3849 ((|#1| (-928 |#1|)) 13)) (-2767 ((|#1| (-928 |#1|)) 12)) (-2104 ((|#1| (-928 |#1|)) 11)) (-4166 ((|#1| (-928 |#1|)) 15)) (-2212 ((|#1| (-928 |#1|)) 21)) (-3026 ((|#1| (-928 |#1|)) 14)) (-2804 ((|#1| (-928 |#1|)) 16)) (-3684 ((|#1| (-928 |#1|)) 20)) (-2301 ((|#1| (-928 |#1|)) 19))) +(((-967 |#1|) (-10 -7 (-15 -2104 (|#1| (-928 |#1|))) (-15 -2767 (|#1| (-928 |#1|))) (-15 -3849 (|#1| (-928 |#1|))) (-15 -3026 (|#1| (-928 |#1|))) (-15 -4166 (|#1| (-928 |#1|))) (-15 -2804 (|#1| (-928 |#1|))) (-15 -2301 (|#1| (-928 |#1|))) (-15 -3684 (|#1| (-928 |#1|))) (-15 -2212 (|#1| (-928 |#1|)))) (-1034)) (T -967)) +((-2212 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(-10 -7 (-15 -2104 (|#1| (-928 |#1|))) (-15 -2767 (|#1| (-928 |#1|))) (-15 -3849 (|#1| (-928 |#1|))) (-15 -3026 (|#1| (-928 |#1|))) (-15 -4166 (|#1| (-928 |#1|))) (-15 -2804 (|#1| (-928 |#1|))) (-15 -2301 (|#1| (-928 |#1|))) (-15 -3684 (|#1| (-928 |#1|))) (-15 -2212 (|#1| (-928 |#1|)))) +((-4060 (((-3 |#1| "failed") |#1|) 18)) (-3346 (((-3 |#1| "failed") |#1|) 6)) (-3855 (((-3 |#1| "failed") |#1|) 16)) (-3685 (((-3 |#1| "failed") |#1|) 4)) (-3153 (((-3 |#1| "failed") |#1|) 20)) (-1996 (((-3 |#1| "failed") |#1|) 8)) (-2685 (((-3 |#1| "failed") |#1| (-758)) 1)) (-2097 (((-3 |#1| "failed") |#1|) 3)) (-3765 (((-3 |#1| "failed") |#1|) 2)) (-4288 (((-3 |#1| "failed") |#1|) 21)) (-3158 (((-3 |#1| "failed") |#1|) 9)) (-2785 (((-3 |#1| "failed") |#1|) 19)) (-3136 (((-3 |#1| "failed") |#1|) 7)) (-2622 (((-3 |#1| "failed") |#1|) 17)) (-3660 (((-3 |#1| "failed") |#1|) 5)) (-4181 (((-3 |#1| "failed") |#1|) 24)) (-1950 (((-3 |#1| "failed") |#1|) 12)) (-1980 (((-3 |#1| "failed") |#1|) 22)) (-1767 (((-3 |#1| "failed") |#1|) 10)) (-3729 (((-3 |#1| "failed") |#1|) 26)) (-1568 (((-3 |#1| "failed") |#1|) 14)) (-2296 (((-3 |#1| "failed") |#1|) 27)) (-4031 (((-3 |#1| "failed") |#1|) 15)) (-3041 (((-3 |#1| "failed") |#1|) 25)) (-4297 (((-3 |#1| "failed") |#1|) 13)) (-2402 (((-3 |#1| "failed") |#1|) 23)) (-1357 (((-3 |#1| "failed") |#1|) 11))) +(((-968 |#1|) (-138) (-1180)) (T -968)) +((-2296 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3729 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3041 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4181 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2402 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1980 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4288 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3153 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2785 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4060 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2622 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3855 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4031 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1568 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-4297 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1950 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1357 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1767 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3158 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-1996 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3136 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3346 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3660 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3685 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2097 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-3765 (*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180)))) (-2685 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-758)) (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(-13 (-10 -7 (-15 -2685 ((-3 |t#1| "failed") |t#1| (-758))) (-15 -3765 ((-3 |t#1| "failed") |t#1|)) (-15 -2097 ((-3 |t#1| "failed") |t#1|)) (-15 -3685 ((-3 |t#1| "failed") |t#1|)) (-15 -3660 ((-3 |t#1| "failed") |t#1|)) (-15 -3346 ((-3 |t#1| "failed") |t#1|)) (-15 -3136 ((-3 |t#1| "failed") |t#1|)) (-15 -1996 ((-3 |t#1| "failed") |t#1|)) (-15 -3158 ((-3 |t#1| "failed") |t#1|)) (-15 -1767 ((-3 |t#1| "failed") |t#1|)) (-15 -1357 ((-3 |t#1| "failed") |t#1|)) (-15 -1950 ((-3 |t#1| "failed") |t#1|)) (-15 -4297 ((-3 |t#1| "failed") |t#1|)) (-15 -1568 ((-3 |t#1| "failed") |t#1|)) (-15 -4031 ((-3 |t#1| "failed") |t#1|)) (-15 -3855 ((-3 |t#1| "failed") |t#1|)) (-15 -2622 ((-3 |t#1| "failed") |t#1|)) (-15 -4060 ((-3 |t#1| "failed") |t#1|)) (-15 -2785 ((-3 |t#1| "failed") |t#1|)) (-15 -3153 ((-3 |t#1| "failed") |t#1|)) (-15 -4288 ((-3 |t#1| "failed") |t#1|)) (-15 -1980 ((-3 |t#1| "failed") |t#1|)) (-15 -2402 ((-3 |t#1| "failed") |t#1|)) (-15 -4181 ((-3 |t#1| "failed") |t#1|)) (-15 -3041 ((-3 |t#1| "failed") |t#1|)) (-15 -3729 ((-3 |t#1| "failed") |t#1|)) (-15 -2296 ((-3 |t#1| "failed") |t#1|)))) +((-2380 ((|#4| |#4| (-631 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1516 ((|#4| |#4| (-631 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2879 ((|#4| (-1 |#4| (-937 |#1|)) |#4|) 30))) +(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1516 (|#4| |#4| |#3|)) (-15 -1516 (|#4| |#4| (-631 |#3|))) (-15 -2380 (|#4| |#4| |#3|)) (-15 -2380 (|#4| |#4| (-631 |#3|))) (-15 -2879 (|#4| (-1 |#4| (-937 |#1|)) |#4|))) (-1034) (-780) (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158))))) (-934 (-937 |#1|) |#2| |#3|)) (T -969)) +((-2879 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-937 *4))) (-4 *4 (-1034)) (-4 *2 (-934 (-937 *4) *5 *6)) (-4 *5 (-780)) (-4 *6 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-5 *1 (-969 *4 *5 *6 *2)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2)) (-4 *2 (-934 (-937 *4) *5 *6)))) (-2380 (*1 *2 *2 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3)))) (-1516 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *6)) (-4 *6 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2)) (-4 *2 (-934 (-937 *4) *5 *6)))) (-1516 (*1 *2 *2 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)) (-15 -1576 ((-3 $ "failed") (-1158)))))) (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3))))) +(-10 -7 (-15 -1516 (|#4| |#4| |#3|)) (-15 -1516 (|#4| |#4| (-631 |#3|))) (-15 -2380 (|#4| |#4| |#3|)) (-15 -2380 (|#4| |#4| (-631 |#3|))) (-15 -2879 (|#4| (-1 |#4| (-937 |#1|)) |#4|))) +((-4052 ((|#2| |#3|) 35)) (-2062 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|) 73)) (-3358 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) 89))) +(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|)) (-15 -4052 (|#2| |#3|))) (-344) (-1217 |#1|) (-1217 |#2|) (-711 |#2| |#3|)) (T -970)) +((-4052 (*1 *2 *3) (-12 (-4 *3 (-1217 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-970 *4 *2 *3 *5)) (-4 *4 (-344)) (-4 *5 (-711 *2 *3)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-970 *4 *3 *5 *6)) (-4 *6 (-711 *3 *5)))) (-3358 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-675 *4)))) (-5 *1 (-970 *3 *4 *5 *6)) (-4 *6 (-711 *4 *5))))) +(-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|)) (-15 -4052 (|#2| |#3|))) +((-1525 (((-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))) (-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554))))) 69))) +(((-971 |#1| |#2|) (-10 -7 (-15 -1525 ((-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))) (-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554))))))) (-631 (-1158)) (-758)) (T -971)) +((-1525 (*1 *2 *2) (-12 (-5 *2 (-972 (-402 (-554)) (-850 *3) (-236 *4 (-758)) (-243 *3 (-402 (-554))))) (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-971 *3 *4))))) +(-10 -7 (-15 -1525 ((-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554)))) (-972 (-402 (-554)) (-850 |#1|) (-236 |#2| (-758)) (-243 |#1| (-402 (-554))))))) +((-3062 (((-112) $ $) NIL)) (-3422 (((-3 (-112) "failed") $) 69)) (-1336 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3914 (($ $ (-3 (-112) "failed")) 70)) (-3061 (($ (-631 |#4|) |#4|) 25)) (-1613 (((-1140) $) NIL)) (-4227 (($ $) 67)) (-2768 (((-1102) $) NIL)) (-3543 (((-112) $) 68)) (-4240 (($) 30)) (-4073 ((|#4| $) 72)) (-1783 (((-631 |#4|) $) 71)) (-3075 (((-848) $) 66)) (-1658 (((-112) $ $) NIL))) +(((-972 |#1| |#2| |#3| |#4|) (-13 (-1082) (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -3061 ($ (-631 |#4|) |#4|)) (-15 -3422 ((-3 (-112) "failed") $)) (-15 -3914 ($ $ (-3 (-112) "failed"))) (-15 -3543 ((-112) $)) (-15 -1783 ((-631 |#4|) $)) (-15 -4073 (|#4| $)) (-15 -4227 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1336 ($ $)) |%noBranch|) |%noBranch|))) (-446) (-836) (-780) (-934 |#1| |#3| |#2|)) (T -972)) +((-4240 (*1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))) (-3061 (*1 *1 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-934 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-836)) (-4 *6 (-780)) (-5 *1 (-972 *4 *5 *6 *3)))) (-3422 (*1 *2 *1) (|partial| -12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-3914 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-3543 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-1783 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-631 *6)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) (-4073 (*1 *2 *1) (-12 (-4 *2 (-934 *3 *5 *4)) (-5 *1 (-972 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)))) (-4227 (*1 *1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))) (-1336 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3))))) +(-13 (-1082) (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -3061 ($ (-631 |#4|) |#4|)) (-15 -3422 ((-3 (-112) "failed") $)) (-15 -3914 ($ $ (-3 (-112) "failed"))) (-15 -3543 ((-112) $)) (-15 -1783 ((-631 |#4|) $)) (-15 -4073 (|#4| $)) (-15 -4227 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1336 ($ $)) |%noBranch|) |%noBranch|))) +((-3621 (((-112) |#5| |#5|) 38)) (-3000 (((-112) |#5| |#5|) 52)) (-1459 (((-112) |#5| (-631 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3170 (((-112) (-631 |#4|) (-631 |#4|)) 58)) (-3406 (((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 63)) (-1351 (((-1246)) 33)) (-3059 (((-1246) (-1140) (-1140) (-1140)) 29)) (-1481 (((-631 |#5|) (-631 |#5|)) 81)) (-3350 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) 79)) (-2704 (((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112)) 101)) (-3723 (((-112) |#5| |#5|) 47)) (-1840 (((-3 (-112) "failed") |#5| |#5|) 71)) (-1453 (((-112) (-631 |#4|) (-631 |#4|)) 57)) (-3050 (((-112) (-631 |#4|) (-631 |#4|)) 59)) (-2178 (((-112) (-631 |#4|) (-631 |#4|)) 60)) (-1370 (((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3549 (((-631 |#5|) (-631 |#5|)) 43))) +(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -973)) +((-1370 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9)))) (-5 *1 (-973 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9)) (-4 *4 (-1054 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9))))) (-5 *1 (-973 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7)))) (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8 *3)))) (-1459 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3170 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3723 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1351 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-973 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3059 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1576 (((-1158) $) 15)) (-2794 (((-1140) $) 16)) (-1401 (($ (-1158) (-1140)) 14)) (-3075 (((-848) $) 13))) +(((-974) (-13 (-601 (-848)) (-10 -8 (-15 -1401 ($ (-1158) (-1140))) (-15 -1576 ((-1158) $)) (-15 -2794 ((-1140) $))))) (T -974)) +((-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-974)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-974)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-974))))) +(-13 (-601 (-848)) (-10 -8 (-15 -1401 ($ (-1158) (-1140))) (-15 -1576 ((-1158) $)) (-15 -2794 ((-1140) $)))) +((-2879 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|))) (-546) (-546) (-977 |#1|) (-977 |#2|)) (T -975)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-546)) (-4 *6 (-546)) (-4 *2 (-977 *6)) (-5 *1 (-975 *5 *6 *4 *2)) (-4 *4 (-977 *5))))) +(-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|))) +((-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-1158) "failed") $) 65) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) 95)) (-1668 ((|#2| $) NIL) (((-1158) $) 60) (((-402 (-554)) $) NIL) (((-554) $) 92)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 112) (((-675 |#2|) (-675 $)) 28)) (-3353 (($) 98)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 75) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84)) (-3472 (($ $) 10)) (-3339 (((-3 $ "failed") $) 20)) (-2879 (($ (-1 |#2| |#2|) $) 22)) (-3834 (($) 16)) (-3722 (($ $) 54)) (-1553 (($ $) NIL) (($ $ (-758)) NIL) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3623 (($ $) 12)) (-2927 (((-877 (-554)) $) 70) (((-877 (-374)) $) 79) (((-530) $) 40) (((-374) $) 44) (((-221) $) 47)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 90) (($ |#2|) NIL) (($ (-1158)) 57)) (-2261 (((-758)) 31)) (-1676 (((-112) $ $) 50))) +(((-976 |#1| |#2|) (-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -3353 (|#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-977 |#2|) (-546)) (T -976)) +((-2261 (*1 *2) (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-976 *3 *4)) (-4 *3 (-977 *4))))) +(-10 -8 (-15 -1676 ((-112) |#1| |#1|)) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -3075 (|#1| (-1158))) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -3353 (|#1|)) (-15 -3722 (|#1| |#1|)) (-15 -3623 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -1655 ((-874 (-554) |#1|) |#1| (-877 (-554)) (-874 (-554) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -3699 ((-675 |#2|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 ((|#1| $) 138 (|has| |#1| (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 129 (|has| |#1| (-894)))) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 132 (|has| |#1| (-894)))) (-2286 (((-112) $ $) 60)) (-4219 (((-554) $) 119 (|has| |#1| (-807)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 176) (((-3 (-1158) "failed") $) 127 (|has| |#1| (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) 110 (|has| |#1| (-1023 (-554)))) (((-3 (-554) "failed") $) 108 (|has| |#1| (-1023 (-554))))) (-1668 ((|#1| $) 177) (((-1158) $) 128 (|has| |#1| (-1023 (-1158)))) (((-402 (-554)) $) 111 (|has| |#1| (-1023 (-554)))) (((-554) $) 109 (|has| |#1| (-1023 (-554))))) (-3964 (($ $ $) 56)) (-3699 (((-675 (-554)) (-675 $)) 151 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 150 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 149) (((-675 |#1|) (-675 $)) 148)) (-1320 (((-3 $ "failed") $) 33)) (-3353 (($) 136 (|has| |#1| (-539)))) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-2745 (((-112) $) 121 (|has| |#1| (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 145 (|has| |#1| (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 144 (|has| |#1| (-871 (-374))))) (-3248 (((-112) $) 31)) (-3472 (($ $) 140)) (-2810 ((|#1| $) 142)) (-3339 (((-3 $ "failed") $) 107 (|has| |#1| (-1133)))) (-4304 (((-112) $) 120 (|has| |#1| (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-4223 (($ $ $) 117 (|has| |#1| (-836)))) (-2706 (($ $ $) 116 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 168)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-3834 (($) 106 (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3722 (($ $) 137 (|has| |#1| (-302)))) (-4339 ((|#1| $) 134 (|has| |#1| (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 131 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 130 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 174 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 172 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 171 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 170 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 169 (|has| |#1| (-508 (-1158) |#1|)))) (-2072 (((-758) $) 59)) (-2064 (($ $ |#1|) 175 (|has| |#1| (-281 |#1| |#1|)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-1553 (($ $) 167 (|has| |#1| (-229))) (($ $ (-758)) 165 (|has| |#1| (-229))) (($ $ (-1158)) 163 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 162 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 161 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 160 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3623 (($ $) 139)) (-2822 ((|#1| $) 141)) (-2927 (((-877 (-554)) $) 147 (|has| |#1| (-602 (-877 (-554))))) (((-877 (-374)) $) 146 (|has| |#1| (-602 (-877 (-374))))) (((-530) $) 124 (|has| |#1| (-602 (-530)))) (((-374) $) 123 (|has| |#1| (-1007))) (((-221) $) 122 (|has| |#1| (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 133 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ |#1|) 180) (($ (-1158)) 126 (|has| |#1| (-1023 (-1158))))) (-2084 (((-3 $ "failed") $) 125 (-3994 (|has| |#1| (-143)) (-3726 (|has| $ (-143)) (|has| |#1| (-894)))))) (-2261 (((-758)) 28)) (-2755 ((|#1| $) 135 (|has| |#1| (-539)))) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 118 (|has| |#1| (-807)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 166 (|has| |#1| (-229))) (($ $ (-758)) 164 (|has| |#1| (-229))) (($ $ (-1158)) 159 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 158 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 157 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 156 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1708 (((-112) $ $) 114 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 113 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 115 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 112 (|has| |#1| (-836)))) (-1752 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) +(((-977 |#1|) (-138) (-546)) (T -977)) +((-1752 (*1 *1 *2 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-3623 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302)))) (-3722 (*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302)))) (-3353 (*1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-539)) (-4 *2 (-546)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539))))) +(-13 (-358) (-38 |t#1|) (-1023 |t#1|) (-333 |t#1|) (-227 |t#1|) (-372 |t#1|) (-869 |t#1|) (-395 |t#1|) (-10 -8 (-15 -1752 ($ |t#1| |t#1|)) (-15 -2810 (|t#1| $)) (-15 -2822 (|t#1| $)) (-15 -3472 ($ $)) (-15 -3623 ($ $)) (IF (|has| |t#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |t#1| (-1023 (-554))) (PROGN (-6 (-1023 (-554))) (-6 (-1023 (-402 (-554))))) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-6 (-1007)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1023 (-1158))) (-6 (-1023 (-1158))) |%noBranch|) (IF (|has| |t#1| (-302)) (PROGN (-15 -3831 (|t#1| $)) (-15 -3722 ($ $))) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -3353 ($)) (-15 -2755 (|t#1| $)) (-15 -4339 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-894)) (-6 (-894)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 #1=(-1158)) |has| |#1| (-1023 (-1158))) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-221)) |has| |#1| (-1007)) ((-602 (-374)) |has| |#1| (-1007)) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-602 (-877 (-374))) |has| |#1| (-602 (-877 (-374)))) ((-602 (-877 (-554))) |has| |#1| (-602 (-877 (-554)))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-302) . T) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-446) . T) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) . T) ((-704 |#1|) . T) ((-704 $) . T) ((-713) . T) ((-778) |has| |#1| (-807)) ((-779) |has| |#1| (-807)) ((-781) |has| |#1| (-807)) ((-782) |has| |#1| (-807)) ((-807) |has| |#1| (-807)) ((-834) |has| |#1| (-807)) ((-836) -3994 (|has| |#1| (-836)) (|has| |#1| (-807))) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-871 (-374)) |has| |#1| (-871 (-374))) ((-871 (-554)) |has| |#1| (-871 (-554))) ((-869 |#1|) . T) ((-894) |has| |#1| (-894)) ((-905) . T) ((-1007) |has| |#1| (-1007)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-554))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #1#) |has| |#1| (-1023 (-1158))) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-1133)) ((-1195) . T) ((-1199) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1301 (($ (-1124 |#1| |#2|)) 11)) (-1899 (((-1124 |#1| |#2|) $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2064 ((|#2| $ (-236 |#1| |#2|)) 16)) (-3075 (((-848) $) NIL)) (-2004 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL))) +(((-978 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1301 ($ (-1124 |#1| |#2|))) (-15 -1899 ((-1124 |#1| |#2|) $)) (-15 -2064 (|#2| $ (-236 |#1| |#2|))))) (-906) (-358)) (T -978)) +((-1301 (*1 *1 *2) (-12 (-5 *2 (-1124 *3 *4)) (-14 *3 (-906)) (-4 *4 (-358)) (-5 *1 (-978 *3 *4)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-1124 *3 *4)) (-5 *1 (-978 *3 *4)) (-14 *3 (-906)) (-4 *4 (-358)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-906)) (-4 *2 (-358)) (-5 *1 (-978 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -1301 ($ (-1124 |#1| |#2|))) (-15 -1899 ((-1124 |#1| |#2|) $)) (-15 -2064 (|#2| $ (-236 |#1| |#2|))))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 9)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-979) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $))))) (T -979)) +((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-979))))) +(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-4289 (($ $) 46)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2577 (((-758) $) 45)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2312 ((|#1| $) 44)) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-2515 ((|#1| |#1| $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-3817 ((|#1| $) 47)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-1325 ((|#1| $) 43)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-980 |#1|) (-138) (-1195)) (T -980)) +((-2515 (*1 *2 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-4289 (*1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4373) (-15 -2515 (|t#1| |t#1| $)) (-15 -3817 (|t#1| $)) (-15 -4289 ($ $)) (-15 -2577 ((-758) $)) (-15 -2312 (|t#1| $)) (-15 -1325 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-1695 (((-112) $) 42)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#2| $) 43)) (-1623 (((-3 (-402 (-554)) "failed") $) 78)) (-2069 (((-112) $) 72)) (-2197 (((-402 (-554)) $) 76)) (-3248 (((-112) $) 41)) (-3274 ((|#2| $) 22)) (-2879 (($ (-1 |#2| |#2|) $) 19)) (-2483 (($ $) 61)) (-1553 (($ $) NIL) (($ $ (-758)) NIL) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2927 (((-530) $) 67)) (-3992 (($ $) 17)) (-3075 (((-848) $) 56) (($ (-554)) 38) (($ |#2|) 36) (($ (-402 (-554))) NIL)) (-2261 (((-758)) 10)) (-1700 ((|#2| $) 71)) (-1658 (((-112) $ $) 25)) (-1676 (((-112) $ $) 69)) (-1744 (($ $) 29) (($ $ $) 28)) (-1735 (($ $ $) 26)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL))) +(((-981 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 -2483 (|#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3248 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-982 |#2|) (-170)) (T -981)) +((-2261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-981 *3 *4)) (-4 *3 (-982 *4))))) +(-10 -8 (-15 -3075 (|#1| (-402 (-554)))) (-15 -1676 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-554)) |#1|)) (-15 * (|#1| |#1| (-402 (-554)))) (-15 -2483 (|#1| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1700 (|#2| |#1|)) (-15 -3274 (|#2| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2879 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3248 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 * (|#1| (-758) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 * (|#1| (-906) |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2784 (((-3 (-554) "failed") $) 118 (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 116 (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) 113)) (-1668 (((-554) $) 117 (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) 115 (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) 114)) (-3699 (((-675 (-554)) (-675 $)) 88 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 87 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 86) (((-675 |#1|) (-675 $)) 85)) (-1320 (((-3 $ "failed") $) 33)) (-2293 ((|#1| $) 78)) (-1623 (((-3 (-402 (-554)) "failed") $) 74 (|has| |#1| (-539)))) (-2069 (((-112) $) 76 (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) 75 (|has| |#1| (-539)))) (-1799 (($ |#1| |#1| |#1| |#1|) 79)) (-3248 (((-112) $) 31)) (-3274 ((|#1| $) 80)) (-4223 (($ $ $) 67 (|has| |#1| (-836)))) (-2706 (($ $ $) 66 (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) 89)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71 (|has| |#1| (-358)))) (-1743 ((|#1| $) 81)) (-1548 ((|#1| $) 82)) (-2099 ((|#1| $) 83)) (-2768 (((-1102) $) 10)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 95 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 93 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) 92 (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) 91 (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) 90 (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) 96 (|has| |#1| (-281 |#1| |#1|)))) (-1553 (($ $) 112 (|has| |#1| (-229))) (($ $ (-758)) 110 (|has| |#1| (-229))) (($ $ (-1158)) 108 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 107 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 106 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 105 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2927 (((-530) $) 72 (|has| |#1| (-602 (-530))))) (-3992 (($ $) 84)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 38) (($ (-402 (-554))) 61 (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (((-3 $ "failed") $) 73 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1700 ((|#1| $) 77 (|has| |#1| (-1043)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $) 111 (|has| |#1| (-229))) (($ $ (-758)) 109 (|has| |#1| (-229))) (($ $ (-1158)) 104 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 103 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 102 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 101 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1708 (((-112) $ $) 64 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 63 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 65 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 62 (|has| |#1| (-836)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70 (|has| |#1| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-402 (-554))) 69 (|has| |#1| (-358))) (($ (-402 (-554)) $) 68 (|has| |#1| (-358))))) +(((-982 |#1|) (-138) (-170)) (T -982)) +((-3992 (*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1799 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554))))) (-1623 (*1 *2 *1) (|partial| -12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-402 (-554)))))) +(-13 (-38 |t#1|) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-372 |t#1|) (-10 -8 (-15 -3992 ($ $)) (-15 -2099 (|t#1| $)) (-15 -1548 (|t#1| $)) (-15 -1743 (|t#1| $)) (-15 -3274 (|t#1| $)) (-15 -1799 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2293 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1043)) (-15 -1700 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2069 ((-112) $)) (-15 -2197 ((-402 (-554)) $)) (-15 -1623 ((-3 (-402 (-554)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-358)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-358)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-358))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) |has| |#1| (-358)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3994 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-508 (-1158) |#1|) |has| |#1| (-508 (-1158) |#1|)) ((-508 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-634 #0#) |has| |#1| (-358)) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-358)) ((-704 |#1|) . T) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1040 #0#) |has| |#1| (-358)) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2879 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) (-982 |#2|) (-170) (-982 |#4|) (-170)) (T -983)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-982 *6)) (-5 *1 (-983 *4 *5 *2 *6)) (-4 *4 (-982 *5))))) +(-10 -7 (-15 -2879 (|#3| (-1 |#4| |#2|) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2293 ((|#1| $) 12)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-539)))) (-2069 (((-112) $) NIL (|has| |#1| (-539)))) (-2197 (((-402 (-554)) $) NIL (|has| |#1| (-539)))) (-1799 (($ |#1| |#1| |#1| |#1|) 16)) (-3248 (((-112) $) NIL)) (-3274 ((|#1| $) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-1743 ((|#1| $) 15)) (-1548 ((|#1| $) 14)) (-2099 ((|#1| $) 13)) (-2768 (((-1102) $) NIL)) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-508 (-1158) |#1|))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-508 (-1158) |#1|)))) (-2064 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-1553 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3992 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1700 ((|#1| $) NIL (|has| |#1| (-1043)))) (-2004 (($) 8 T CONST)) (-2014 (($) 10 T CONST)) (-1787 (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-358))))) +(((-984 |#1|) (-982 |#1|) (-170)) (T -984)) +NIL +(-982 |#1|) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-4289 (($ $) 20)) (-2211 (($ (-631 |#1|)) 29)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2577 (((-758) $) 22)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 24)) (-2045 (($ |#1| $) 15)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2312 ((|#1| $) 23)) (-2152 ((|#1| $) 19)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-2515 ((|#1| |#1| $) 14)) (-3543 (((-112) $) 17)) (-4240 (($) NIL)) (-3817 ((|#1| $) 18)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) NIL)) (-1325 ((|#1| $) 26)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-985 |#1|) (-13 (-980 |#1|) (-10 -8 (-15 -2211 ($ (-631 |#1|))))) (-1082)) (T -985)) +((-2211 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-985 *3))))) +(-13 (-980 |#1|) (-10 -8 (-15 -2211 ($ (-631 |#1|))))) +((-2282 (($ $) 12)) (-3734 (($ $ (-554)) 13))) +(((-986 |#1|) (-10 -8 (-15 -2282 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-554)))) (-987)) (T -986)) +NIL +(-10 -8 (-15 -2282 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-554)))) +((-2282 (($ $) 6)) (-3734 (($ $ (-554)) 7)) (** (($ $ (-402 (-554))) 8))) +(((-987) (-138)) (T -987)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-402 (-554))))) (-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-554)))) (-2282 (*1 *1 *1) (-4 *1 (-987)))) +(-13 (-10 -8 (-15 -2282 ($ $)) (-15 -3734 ($ $ (-554))) (-15 ** ($ $ (-402 (-554)))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3293 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-1976 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1363 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1903 (((-675 (-402 |#2|)) (-1241 $)) NIL) (((-675 (-402 |#2|))) NIL)) (-1612 (((-402 |#2|) $) NIL)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| (-402 |#2|) (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1565 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2286 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1508 (((-758)) NIL (|has| (-402 |#2|) (-363)))) (-3626 (((-112)) NIL)) (-2120 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| (-402 |#2|) (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| (-402 |#2|) (-1023 (-402 (-554))))) (((-402 |#2|) $) NIL)) (-1651 (($ (-1241 (-402 |#2|)) (-1241 $)) NIL) (($ (-1241 (-402 |#2|))) 70) (($ (-1241 |#2|) |#2|) NIL)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-3964 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3629 (((-675 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-402 |#2|) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-402 |#2|))) (|:| |vec| (-1241 (-402 |#2|)))) (-675 $) (-1241 $)) NIL) (((-675 (-402 |#2|)) (-675 $)) NIL)) (-2501 (((-1241 $) (-1241 $)) NIL)) (-3676 (($ |#3|) 65) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-4092 (((-631 (-631 |#1|))) NIL (|has| |#1| (-363)))) (-2895 (((-112) |#1| |#1|) NIL)) (-4186 (((-906)) NIL)) (-3353 (($) NIL (|has| (-402 |#2|) (-363)))) (-2568 (((-112)) NIL)) (-1993 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-3943 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| (-402 |#2|) (-358)))) (-2048 (($ $) NIL)) (-3157 (($) NIL (|has| (-402 |#2|) (-344)))) (-2754 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-4122 (($ $ (-758)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-3289 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2342 (((-906) $) NIL (|has| (-402 |#2|) (-344))) (((-820 (-906)) $) NIL (|has| (-402 |#2|) (-344)))) (-3248 (((-112) $) NIL)) (-4324 (((-758)) NIL)) (-3600 (((-1241 $) (-1241 $)) NIL)) (-3274 (((-402 |#2|) $) NIL)) (-2214 (((-631 (-937 |#1|)) (-1158)) NIL (|has| |#1| (-358)))) (-3339 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-3361 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-3830 (((-906) $) NIL (|has| (-402 |#2|) (-363)))) (-3662 ((|#3| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1613 (((-1140) $) NIL)) (-4132 (((-675 (-402 |#2|))) 52)) (-2519 (((-675 (-402 |#2|))) 51)) (-2483 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2488 (($ (-1241 |#2|) |#2|) 71)) (-1835 (((-675 (-402 |#2|))) 50)) (-3470 (((-675 (-402 |#2|))) 49)) (-3368 (((-2 (|:| |num| (-675 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1579 (((-2 (|:| |num| (-1241 |#2|)) (|:| |den| |#2|)) $) 77)) (-1279 (((-1241 $)) 46)) (-3358 (((-1241 $)) 45)) (-2141 (((-112) $) NIL)) (-4099 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3834 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-2717 (($ (-906)) NIL (|has| (-402 |#2|) (-363)))) (-4261 (((-3 |#2| "failed")) 63)) (-2768 (((-1102) $) NIL)) (-3271 (((-758)) NIL)) (-4137 (($) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| (-402 |#2|) (-358)))) (-2510 (($ (-631 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| (-402 |#2|) (-344)))) (-2270 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2072 (((-758) $) NIL (|has| (-402 |#2|) (-358)))) (-2064 ((|#1| $ |#1| |#1|) NIL)) (-2535 (((-3 |#2| "failed")) 62)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1495 (((-402 |#2|) (-1241 $)) NIL) (((-402 |#2|)) 42)) (-3316 (((-758) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-758) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-1553 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2092 (((-675 (-402 |#2|)) (-1241 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-4318 ((|#3|) 53)) (-3944 (($) NIL (|has| (-402 |#2|) (-344)))) (-3656 (((-1241 (-402 |#2|)) $ (-1241 $)) NIL) (((-675 (-402 |#2|)) (-1241 $) (-1241 $)) NIL) (((-1241 (-402 |#2|)) $) 72) (((-675 (-402 |#2|)) (-1241 $)) NIL)) (-2927 (((-1241 (-402 |#2|)) $) NIL) (($ (-1241 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| (-402 |#2|) (-344)))) (-2239 (((-1241 $) (-1241 $)) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| (-402 |#2|) (-1023 (-402 (-554)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2084 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3109 ((|#3| $) NIL)) (-2261 (((-758)) NIL)) (-3809 (((-112)) 60)) (-2394 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-3782 (((-1241 $)) 125)) (-1909 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3889 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2102 (((-112)) NIL)) (-2004 (($) 94 T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-758)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-885 (-1158))))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-3994 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-554)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-554))) NIL (|has| (-402 |#2|) (-358))))) +(((-988 |#1| |#2| |#3| |#4| |#5|) (-337 |#1| |#2| |#3|) (-1199) (-1217 |#1|) (-1217 (-402 |#2|)) (-402 |#2|) (-758)) (T -988)) +NIL +(-337 |#1| |#2| |#3|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-4271 (((-631 (-554)) $) 54)) (-4350 (($ (-631 (-554))) 62)) (-3831 (((-554) $) 40 (|has| (-554) (-302)))) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL (|has| (-554) (-807)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) 49) (((-3 (-1158) "failed") $) NIL (|has| (-554) (-1023 (-1158)))) (((-3 (-402 (-554)) "failed") $) 47 (|has| (-554) (-1023 (-554)))) (((-3 (-554) "failed") $) 49 (|has| (-554) (-1023 (-554))))) (-1668 (((-554) $) NIL) (((-1158) $) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) NIL (|has| (-554) (-1023 (-554)))) (((-554) $) NIL (|has| (-554) (-1023 (-554))))) (-3964 (($ $ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| (-554) (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3353 (($) NIL (|has| (-554) (-539)))) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2847 (((-631 (-554)) $) 60)) (-2745 (((-112) $) NIL (|has| (-554) (-807)))) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (|has| (-554) (-871 (-554)))) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (|has| (-554) (-871 (-374))))) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL)) (-2810 (((-554) $) 37)) (-3339 (((-3 $ "failed") $) NIL (|has| (-554) (-1133)))) (-4304 (((-112) $) NIL (|has| (-554) (-807)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-554) (-836)))) (-2879 (($ (-1 (-554) (-554)) $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL)) (-3834 (($) NIL (|has| (-554) (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-3722 (($ $) NIL (|has| (-554) (-302))) (((-402 (-554)) $) 42)) (-1369 (((-1138 (-554)) $) 59)) (-4154 (($ (-631 (-554)) (-631 (-554))) 63)) (-4339 (((-554) $) 53 (|has| (-554) (-539)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| (-554) (-894)))) (-2270 (((-413 $) $) NIL)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2386 (($ $ (-631 (-554)) (-631 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-554) (-554)) NIL (|has| (-554) (-304 (-554)))) (($ $ (-289 (-554))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-289 (-554)))) NIL (|has| (-554) (-304 (-554)))) (($ $ (-631 (-1158)) (-631 (-554))) NIL (|has| (-554) (-508 (-1158) (-554)))) (($ $ (-1158) (-554)) NIL (|has| (-554) (-508 (-1158) (-554))))) (-2072 (((-758) $) NIL)) (-2064 (($ $ (-554)) NIL (|has| (-554) (-281 (-554) (-554))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $) 11 (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-3623 (($ $) NIL)) (-2822 (((-554) $) 39)) (-2686 (((-631 (-554)) $) 61)) (-2927 (((-877 (-554)) $) NIL (|has| (-554) (-602 (-877 (-554))))) (((-877 (-374)) $) NIL (|has| (-554) (-602 (-877 (-374))))) (((-530) $) NIL (|has| (-554) (-602 (-530)))) (((-374) $) NIL (|has| (-554) (-1007))) (((-221) $) NIL (|has| (-554) (-1007)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-554) (-894))))) (-3075 (((-848) $) 77) (($ (-554)) 43) (($ $) NIL) (($ (-402 (-554))) 20) (($ (-554)) 43) (($ (-1158)) NIL (|has| (-554) (-1023 (-1158)))) (((-402 (-554)) $) 18)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-554) (-894))) (|has| (-554) (-143))))) (-2261 (((-758)) 9)) (-2755 (((-554) $) 51 (|has| (-554) (-539)))) (-1909 (((-112) $ $) NIL)) (-1700 (($ $) NIL (|has| (-554) (-807)))) (-2004 (($) 10 T CONST)) (-2014 (($) 12 T CONST)) (-1787 (($ $) NIL (|has| (-554) (-229))) (($ $ (-758)) NIL (|has| (-554) (-229))) (($ $ (-1158)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| (-554) (-885 (-1158)))) (($ $ (-1 (-554) (-554)) (-758)) NIL) (($ $ (-1 (-554) (-554))) NIL)) (-1708 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1658 (((-112) $ $) 14)) (-1697 (((-112) $ $) NIL (|has| (-554) (-836)))) (-1676 (((-112) $ $) 33 (|has| (-554) (-836)))) (-1752 (($ $ $) 29) (($ (-554) (-554)) 31)) (-1744 (($ $) 15) (($ $ $) 23)) (-1735 (($ $ $) 21)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 25) (($ $ $) 27) (($ $ (-402 (-554))) NIL) (($ (-402 (-554)) $) NIL) (($ (-554) $) 25) (($ $ (-554)) NIL))) +(((-989 |#1|) (-13 (-977 (-554)) (-601 (-402 (-554))) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -4271 ((-631 (-554)) $)) (-15 -1369 ((-1138 (-554)) $)) (-15 -2847 ((-631 (-554)) $)) (-15 -2686 ((-631 (-554)) $)) (-15 -4350 ($ (-631 (-554)))) (-15 -4154 ($ (-631 (-554)) (-631 (-554)))))) (-554)) (T -989)) +((-3722 (*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-4350 (*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) (-4154 (*1 *1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) +(-13 (-977 (-554)) (-601 (-402 (-554))) (-10 -8 (-15 -3722 ((-402 (-554)) $)) (-15 -4271 ((-631 (-554)) $)) (-15 -1369 ((-1138 (-554)) $)) (-15 -2847 ((-631 (-554)) $)) (-15 -2686 ((-631 (-554)) $)) (-15 -4350 ($ (-631 (-554)))) (-15 -4154 ($ (-631 (-554)) (-631 (-554)))))) +((-4170 (((-52) (-402 (-554)) (-554)) 9))) +(((-990) (-10 -7 (-15 -4170 ((-52) (-402 (-554)) (-554))))) (T -990)) +((-4170 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-554))) (-5 *4 (-554)) (-5 *2 (-52)) (-5 *1 (-990))))) +(-10 -7 (-15 -4170 ((-52) (-402 (-554)) (-554)))) +((-1508 (((-554)) 13)) (-3487 (((-554)) 16)) (-1555 (((-1246) (-554)) 15)) (-3408 (((-554) (-554)) 17) (((-554)) 12))) +(((-991) (-10 -7 (-15 -3408 ((-554))) (-15 -1508 ((-554))) (-15 -3408 ((-554) (-554))) (-15 -1555 ((-1246) (-554))) (-15 -3487 ((-554))))) (T -991)) +((-3487 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-991)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) (-1508 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) (-3408 (*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991))))) +(-10 -7 (-15 -3408 ((-554))) (-15 -1508 ((-554))) (-15 -3408 ((-554) (-554))) (-15 -1555 ((-1246) (-554))) (-15 -3487 ((-554)))) +((-4091 (((-413 |#1|) |#1|) 41)) (-2270 (((-413 |#1|) |#1|) 40))) +(((-992 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|))) (-1217 (-402 (-554)))) (T -992)) +((-4091 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1217 (-402 (-554)))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1217 (-402 (-554))))))) +(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|))) +((-1623 (((-3 (-402 (-554)) "failed") |#1|) 15)) (-2069 (((-112) |#1|) 14)) (-2197 (((-402 (-554)) |#1|) 10))) +(((-993 |#1|) (-10 -7 (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|))) (-1023 (-402 (-554)))) (T -993)) +((-1623 (*1 *2 *3) (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) (-4 *3 (-1023 *2)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-993 *3)) (-4 *3 (-1023 (-402 (-554)))))) (-2197 (*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) (-4 *3 (-1023 *2))))) +(-10 -7 (-15 -2197 ((-402 (-554)) |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -1623 ((-3 (-402 (-554)) "failed") |#1|))) +((-1501 ((|#2| $ "value" |#2|) 12)) (-2064 ((|#2| $ "value") 10)) (-1441 (((-112) $ $) 18))) +(((-994 |#1| |#2|) (-10 -8 (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -2064 (|#2| |#1| "value"))) (-995 |#2|) (-1195)) (T -994)) +NIL +(-10 -8 (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -2064 (|#2| |#1| "value"))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) 7 T CONST)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-995 |#1|) (-138) (-1195)) (T -995)) +((-2461 (*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-554)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-1990 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-2923 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *1)) (|has| *1 (-6 -4374)) (-4 *1 (-995 *3)) (-4 *3 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-2690 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) (-4 *2 (-1195))))) +(-13 (-483 |t#1|) (-10 -8 (-15 -2461 ((-631 $) $)) (-15 -3677 ((-631 $) $)) (-15 -3216 ((-112) $)) (-15 -2794 (|t#1| $)) (-15 -2064 (|t#1| $ "value")) (-15 -3008 ((-112) $)) (-15 -2306 ((-631 |t#1|) $)) (-15 -3250 ((-554) $ $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -1441 ((-112) $ $)) (-15 -1990 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4374)) (PROGN (-15 -2923 ($ $ (-631 $))) (-15 -1501 (|t#1| $ "value" |t#1|)) (-15 -2690 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-2282 (($ $) 9) (($ $ (-906)) 43) (($ (-402 (-554))) 13) (($ (-554)) 15)) (-3625 (((-3 $ "failed") (-1154 $) (-906) (-848)) 23) (((-3 $ "failed") (-1154 $) (-906)) 28)) (-3734 (($ $ (-554)) 49)) (-2261 (((-758)) 17)) (-2299 (((-631 $) (-1154 $)) NIL) (((-631 $) (-1154 (-402 (-554)))) 54) (((-631 $) (-1154 (-554))) 59) (((-631 $) (-937 $)) 63) (((-631 $) (-937 (-402 (-554)))) 67) (((-631 $) (-937 (-554))) 71)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ $ (-402 (-554))) 47))) +(((-996 |#1|) (-10 -8 (-15 -2282 (|#1| (-554))) (-15 -2282 (|#1| (-402 (-554)))) (-15 -2282 (|#1| |#1| (-906))) (-15 -2299 ((-631 |#1|) (-937 (-554)))) (-15 -2299 ((-631 |#1|) (-937 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-937 |#1|))) (-15 -2299 ((-631 |#1|) (-1154 (-554)))) (-15 -2299 ((-631 |#1|) (-1154 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-1154 |#1|))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906) (-848))) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3734 (|#1| |#1| (-554))) (-15 -2282 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -2261 ((-758))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906)))) (-997)) (T -996)) +((-2261 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-996 *3)) (-4 *3 (-997))))) +(-10 -8 (-15 -2282 (|#1| (-554))) (-15 -2282 (|#1| (-402 (-554)))) (-15 -2282 (|#1| |#1| (-906))) (-15 -2299 ((-631 |#1|) (-937 (-554)))) (-15 -2299 ((-631 |#1|) (-937 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-937 |#1|))) (-15 -2299 ((-631 |#1|) (-1154 (-554)))) (-15 -2299 ((-631 |#1|) (-1154 (-402 (-554))))) (-15 -2299 ((-631 |#1|) (-1154 |#1|))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906))) (-15 -3625 ((-3 |#1| "failed") (-1154 |#1|) (-906) (-848))) (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -3734 (|#1| |#1| (-554))) (-15 -2282 (|#1| |#1|)) (-15 ** (|#1| |#1| (-554))) (-15 -2261 ((-758))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 91)) (-1976 (($ $) 92)) (-1363 (((-112) $) 94)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 111)) (-1565 (((-413 $) $) 112)) (-2282 (($ $) 75) (($ $ (-906)) 61) (($ (-402 (-554))) 60) (($ (-554)) 59)) (-2286 (((-112) $ $) 102)) (-4219 (((-554) $) 128)) (-4087 (($) 17 T CONST)) (-3625 (((-3 $ "failed") (-1154 $) (-906) (-848)) 69) (((-3 $ "failed") (-1154 $) (-906)) 68)) (-2784 (((-3 (-554) "failed") $) 88 (|has| (-402 (-554)) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 86 (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-3 (-402 (-554)) "failed") $) 83)) (-1668 (((-554) $) 87 (|has| (-402 (-554)) (-1023 (-554)))) (((-402 (-554)) $) 85 (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-402 (-554)) $) 84)) (-3163 (($ $ (-848)) 58)) (-3686 (($ $ (-848)) 57)) (-3964 (($ $ $) 106)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 105)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 100)) (-3289 (((-112) $) 113)) (-2745 (((-112) $) 126)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 74)) (-4304 (((-112) $) 127)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 109)) (-4223 (($ $ $) 125)) (-2706 (($ $ $) 124)) (-2142 (((-3 (-1154 $) "failed") $) 70)) (-3467 (((-3 (-848) "failed") $) 72)) (-2106 (((-3 (-1154 $) "failed") $) 71)) (-2475 (($ (-631 $)) 98) (($ $ $) 97)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 114)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 99)) (-2510 (($ (-631 $)) 96) (($ $ $) 95)) (-2270 (((-413 $) $) 110)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 107)) (-3919 (((-3 $ "failed") $ $) 90)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 101)) (-2072 (((-758) $) 103)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 104)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 118) (($ $) 89) (($ (-402 (-554))) 82) (($ (-554)) 81) (($ (-402 (-554))) 78)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 93)) (-4333 (((-402 (-554)) $ $) 56)) (-2299 (((-631 $) (-1154 $)) 67) (((-631 $) (-1154 (-402 (-554)))) 66) (((-631 $) (-1154 (-554))) 65) (((-631 $) (-937 $)) 64) (((-631 $) (-937 (-402 (-554)))) 63) (((-631 $) (-937 (-554))) 62)) (-1700 (($ $) 129)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 122)) (-1686 (((-112) $ $) 121)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 123)) (-1676 (((-112) $ $) 120)) (-1752 (($ $ $) 119)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 115) (($ $ (-402 (-554))) 73)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ (-402 (-554)) $) 117) (($ $ (-402 (-554))) 116) (($ (-554) $) 80) (($ $ (-554)) 79) (($ (-402 (-554)) $) 77) (($ $ (-402 (-554))) 76))) +(((-997) (-138)) (T -997)) +((-2282 (*1 *1 *1) (-4 *1 (-997))) (-3467 (*1 *2 *1) (|partial| -12 (-4 *1 (-997)) (-5 *2 (-848)))) (-2106 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997)))) (-2142 (*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997)))) (-3625 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-5 *4 (-848)) (-4 *1 (-997)))) (-3625 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1154 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) (-2282 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-906)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-997)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-997)))) (-3163 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848)))) (-3686 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848)))) (-4333 (*1 *2 *1 *1) (-12 (-4 *1 (-997)) (-5 *2 (-402 (-554)))))) +(-13 (-145) (-834) (-170) (-358) (-406 (-402 (-554))) (-38 (-554)) (-38 (-402 (-554))) (-987) (-10 -8 (-15 -3467 ((-3 (-848) "failed") $)) (-15 -2106 ((-3 (-1154 $) "failed") $)) (-15 -2142 ((-3 (-1154 $) "failed") $)) (-15 -3625 ((-3 $ "failed") (-1154 $) (-906) (-848))) (-15 -3625 ((-3 $ "failed") (-1154 $) (-906))) (-15 -2299 ((-631 $) (-1154 $))) (-15 -2299 ((-631 $) (-1154 (-402 (-554))))) (-15 -2299 ((-631 $) (-1154 (-554)))) (-15 -2299 ((-631 $) (-937 $))) (-15 -2299 ((-631 $) (-937 (-402 (-554))))) (-15 -2299 ((-631 $) (-937 (-554)))) (-15 -2282 ($ $ (-906))) (-15 -2282 ($ $)) (-15 -2282 ($ (-402 (-554)))) (-15 -2282 ($ (-554))) (-15 -3163 ($ $ (-848))) (-15 -3686 ($ $ (-848))) (-15 -4333 ((-402 (-554)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 #1=(-554)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-406 (-402 (-554))) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 #1#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 #1#) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-905) . T) ((-987) . T) ((-1023 (-402 (-554))) . T) ((-1023 (-554)) |has| (-402 (-554)) (-1023 (-554))) ((-1040 #0#) . T) ((-1040 #1#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-2410 (((-2 (|:| |ans| |#2|) (|:| -3324 |#2|) (|:| |sol?| (-112))) (-554) |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-998 |#1| |#2|) (-10 -7 (-15 -2410 ((-2 (|:| |ans| |#2|) (|:| -3324 |#2|) (|:| |sol?| (-112))) (-554) |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-27) (-425 |#1|))) (T -998)) +((-2410 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1158)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-631 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1180) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3))) (-5 *3 (-554)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112)))) (-5 *1 (-998 *8 *4))))) +(-10 -7 (-15 -2410 ((-2 (|:| |ans| |#2|) (|:| -3324 |#2|) (|:| |sol?| (-112))) (-554) |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3958 (((-3 (-631 |#2|) "failed") (-554) |#2| |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-999 |#1| |#2|) (-10 -7 (-15 -3958 ((-3 (-631 |#2|) "failed") (-554) |#2| |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554))) (-13 (-1180) (-27) (-425 |#1|))) (T -999)) +((-3958 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1158)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-631 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1180) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3))) (-5 *3 (-554)) (-5 *2 (-631 *4)) (-5 *1 (-999 *8 *4))))) +(-10 -7 (-15 -3958 ((-3 (-631 |#2|) "failed") (-554) |#2| |#2| |#2| (-1158) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-631 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|)) (-1 (-3 (-2 (|:| -1709 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3915 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-554)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-554) (-1 |#2| |#2|)) 30)) (-3876 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 58)) (-2468 (((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|)) 63))) +(((-1000 |#1| |#2|) (-10 -7 (-15 -3876 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2468 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3915 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-554)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-554) (-1 |#2| |#2|)))) (-13 (-358) (-145) (-1023 (-554))) (-1217 |#1|)) (T -1000)) +((-3915 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1217 *6)) (-4 *6 (-13 (-358) (-145) (-1023 *4))) (-5 *4 (-554)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1000 *6 *3)))) (-2468 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1000 *4 *5)) (-5 *3 (-402 *5)))) (-3876 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -4341 *6))) (-5 *1 (-1000 *5 *6)) (-5 *3 (-402 *6))))) +(-10 -7 (-15 -3876 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2468 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3915 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4329 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-554)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-554) (-1 |#2| |#2|)))) +((-3095 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 22)) (-3058 (((-3 (-631 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 33))) +(((-1001 |#1| |#2|) (-10 -7 (-15 -3095 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3058 ((-3 (-631 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) (-13 (-358) (-145) (-1023 (-554))) (-1217 |#1|)) (T -1001)) +((-3058 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) (-5 *2 (-631 (-402 *5))) (-5 *1 (-1001 *4 *5)) (-5 *3 (-402 *5)))) (-3095 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -4341 *6))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-402 *6))))) +(-10 -7 (-15 -3095 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -4341 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3058 ((-3 (-631 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) +((-1726 (((-1 |#1|) (-631 (-2 (|:| -2794 |#1|) (|:| -1316 (-554))))) 37)) (-1671 (((-1 |#1|) (-1084 |#1|)) 45)) (-3328 (((-1 |#1|) (-1241 |#1|) (-1241 (-554)) (-554)) 34))) +(((-1002 |#1|) (-10 -7 (-15 -1671 ((-1 |#1|) (-1084 |#1|))) (-15 -1726 ((-1 |#1|) (-631 (-2 (|:| -2794 |#1|) (|:| -1316 (-554)))))) (-15 -3328 ((-1 |#1|) (-1241 |#1|) (-1241 (-554)) (-554)))) (-1082)) (T -1002)) +((-3328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1241 *6)) (-5 *4 (-1241 (-554))) (-5 *5 (-554)) (-4 *6 (-1082)) (-5 *2 (-1 *6)) (-5 *1 (-1002 *6)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -2794 *4) (|:| -1316 (-554))))) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1002 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1002 *4))))) +(-10 -7 (-15 -1671 ((-1 |#1|) (-1084 |#1|))) (-15 -1726 ((-1 |#1|) (-631 (-2 (|:| -2794 |#1|) (|:| -1316 (-554)))))) (-15 -3328 ((-1 |#1|) (-1241 |#1|) (-1241 (-554)) (-554)))) +((-2342 (((-758) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-358) (-1217 |#1|) (-1217 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-13 (-363) (-358))) (T -1003)) +((-2342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) (-4 *7 (-1217 *6)) (-4 *4 (-1217 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) (-4 *9 (-13 (-363) (-358))) (-5 *2 (-758)) (-5 *1 (-1003 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2342 ((-758) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3062 (((-112) $ $) NIL)) (-3086 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) NIL) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 11)) (-1658 (((-112) $ $) NIL))) +(((-1004) (-13 (-1065) (-10 -8 (-15 -3086 ((-1117) $)) (-15 -4319 ((-1117) $))))) (T -1004)) +((-3086 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004))))) +(-13 (-1065) (-10 -8 (-15 -3086 ((-1117) $)) (-15 -4319 ((-1117) $)))) +((-3792 (((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 31) (((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 28)) (-3388 (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 33) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554))) 29) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 32) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|) 27)) (-3974 (((-631 (-402 (-554))) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) 19)) (-3381 (((-402 (-554)) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 16))) +(((-1005 |#1|) (-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3381 ((-402 (-554)) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3974 ((-631 (-402 (-554))) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))))) (-1217 (-554))) (T -1005)) +((-3974 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *2 (-631 (-402 (-554)))) (-5 *1 (-1005 *4)) (-4 *4 (-1217 (-554))))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *2 (-402 (-554))) (-5 *1 (-1005 *4)) (-4 *4 (-1217 (-554))))) (-3792 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) (-3792 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *4 (-402 (-554))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) (-3388 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-554))) (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5))))) (-3388 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-402 (-554))))) (-3388 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-3388 (*1 *2 *3) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554)))))) +(-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3381 ((-402 (-554)) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3974 ((-631 (-402 (-554))) (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))))) +((-3792 (((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 35) (((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 32)) (-3388 (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554))) 30) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554))) 26) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) 28) (((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|) 24))) +(((-1006 |#1|) (-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-1217 (-402 (-554)))) (T -1006)) +((-3792 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))))) (-3792 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) (-5 *4 (-402 (-554))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *4)))) (-3388 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-554))) (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *5)) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5))))) (-3388 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-554))) (-5 *2 (-631 (-2 (|:| -3311 *4) (|:| -3324 *4)))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *4)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))) (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) (-3388 (*1 *2 *3) (-12 (-5 *2 (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554))))))) +(-10 -7 (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1|)) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-402 (-554)))) (-15 -3388 ((-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-402 (-554)))) (-15 -3792 ((-3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) "failed") |#1| (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))) (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) +((-2927 (((-221) $) 6) (((-374) $) 9))) +(((-1007) (-138)) (T -1007)) +NIL +(-13 (-602 (-221)) (-602 (-374))) +(((-602 (-221)) . T) ((-602 (-374)) . T)) +((-1900 (((-631 (-374)) (-937 (-554)) (-374)) 28) (((-631 (-374)) (-937 (-402 (-554))) (-374)) 27)) (-3481 (((-631 (-631 (-374))) (-631 (-937 (-554))) (-631 (-1158)) (-374)) 37))) +(((-1008) (-10 -7 (-15 -1900 ((-631 (-374)) (-937 (-402 (-554))) (-374))) (-15 -1900 ((-631 (-374)) (-937 (-554)) (-374))) (-15 -3481 ((-631 (-631 (-374))) (-631 (-937 (-554))) (-631 (-1158)) (-374))))) (T -1008)) +((-3481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 (-374)))) (-5 *1 (-1008)) (-5 *5 (-374)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 (-374))) (-5 *1 (-1008)) (-5 *4 (-374)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 (-374))) (-5 *1 (-1008)) (-5 *4 (-374))))) +(-10 -7 (-15 -1900 ((-631 (-374)) (-937 (-402 (-554))) (-374))) (-15 -1900 ((-631 (-374)) (-937 (-554)) (-374))) (-15 -3481 ((-631 (-631 (-374))) (-631 (-937 (-554))) (-631 (-1158)) (-374)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 70)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2282 (($ $) NIL) (($ $ (-906)) NIL) (($ (-402 (-554))) NIL) (($ (-554)) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) 65)) (-4087 (($) NIL T CONST)) (-3625 (((-3 $ "failed") (-1154 $) (-906) (-848)) NIL) (((-3 $ "failed") (-1154 $) (-906)) 50)) (-2784 (((-3 (-402 (-554)) "failed") $) NIL (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-554) "failed") $) NIL (-3994 (|has| (-402 (-554)) (-1023 (-554))) (|has| |#1| (-1023 (-554)))))) (-1668 (((-402 (-554)) $) 15 (|has| (-402 (-554)) (-1023 (-402 (-554))))) (((-402 (-554)) $) 15) ((|#1| $) 108) (((-554) $) NIL (-3994 (|has| (-402 (-554)) (-1023 (-554))) (|has| |#1| (-1023 (-554)))))) (-3163 (($ $ (-848)) 42)) (-3686 (($ $ (-848)) 43)) (-3964 (($ $ $) NIL)) (-2513 (((-402 (-554)) $ $) 19)) (-1320 (((-3 $ "failed") $) 83)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2745 (((-112) $) 61)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL)) (-4304 (((-112) $) 64)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-2142 (((-3 (-1154 $) "failed") $) 78)) (-3467 (((-3 (-848) "failed") $) 77)) (-2106 (((-3 (-1154 $) "failed") $) 75)) (-2136 (((-3 (-1044 $ (-1154 $)) "failed") $) 73)) (-2475 (($ (-631 $)) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 84)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ (-631 $)) NIL) (($ $ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3075 (((-848) $) 82) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ $) 58) (($ (-402 (-554))) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ |#1|) 110)) (-2261 (((-758)) NIL)) (-1909 (((-112) $ $) NIL)) (-4333 (((-402 (-554)) $ $) 25)) (-2299 (((-631 $) (-1154 $)) 56) (((-631 $) (-1154 (-402 (-554)))) NIL) (((-631 $) (-1154 (-554))) NIL) (((-631 $) (-937 $)) NIL) (((-631 $) (-937 (-402 (-554)))) NIL) (((-631 $) (-937 (-554))) NIL)) (-2033 (($ (-1044 $ (-1154 $)) (-848)) 41)) (-1700 (($ $) 20)) (-2004 (($) 29 T CONST)) (-2014 (($) 35 T CONST)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 71)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 22)) (-1752 (($ $ $) 33)) (-1744 (($ $) 34) (($ $ $) 69)) (-1735 (($ $ $) 103)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL) (($ $ (-402 (-554))) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 91) (($ $ $) 96) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ (-554) $) 91) (($ $ (-554)) NIL) (($ (-402 (-554)) $) NIL) (($ $ (-402 (-554))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-1009 |#1|) (-13 (-997) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -2033 ($ (-1044 $ (-1154 $)) (-848))) (-15 -2136 ((-3 (-1044 $ (-1154 $)) "failed") $)) (-15 -2513 ((-402 (-554)) $ $)))) (-13 (-834) (-358) (-1007))) (T -1009)) +((-2033 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-1009 *4) (-1154 (-1009 *4)))) (-5 *3 (-848)) (-5 *1 (-1009 *4)) (-4 *4 (-13 (-834) (-358) (-1007))))) (-2136 (*1 *2 *1) (|partial| -12 (-5 *2 (-1044 (-1009 *3) (-1154 (-1009 *3)))) (-5 *1 (-1009 *3)) (-4 *3 (-13 (-834) (-358) (-1007))))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-1009 *3)) (-4 *3 (-13 (-834) (-358) (-1007)))))) +(-13 (-997) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -2033 ($ (-1044 $ (-1154 $)) (-848))) (-15 -2136 ((-3 (-1044 $ (-1154 $)) "failed") $)) (-15 -2513 ((-402 (-554)) $ $)))) +((-2581 (((-2 (|:| -4329 |#2|) (|:| -1482 (-631 |#1|))) |#2| (-631 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -2581 (|#2| |#2| |#1|)) (-15 -2581 ((-2 (|:| -4329 |#2|) (|:| -1482 (-631 |#1|))) |#2| (-631 |#1|)))) (-358) (-642 |#1|)) (T -1010)) +((-2581 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -4329 *3) (|:| -1482 (-631 *5)))) (-5 *1 (-1010 *5 *3)) (-5 *4 (-631 *5)) (-4 *3 (-642 *5)))) (-2581 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1010 *3 *2)) (-4 *2 (-642 *3))))) +(-10 -7 (-15 -2581 (|#2| |#2| |#1|)) (-15 -2581 ((-2 (|:| -4329 |#2|) (|:| -1482 (-631 |#1|))) |#2| (-631 |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-4225 ((|#1| $ |#1|) 14)) (-1501 ((|#1| $ |#1|) 12)) (-3636 (($ |#1|) 10)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2064 ((|#1| $) 11)) (-3534 ((|#1| $) 13)) (-3075 (((-848) $) 21 (|has| |#1| (-1082)))) (-1658 (((-112) $ $) 9))) +(((-1011 |#1|) (-13 (-1195) (-10 -8 (-15 -3636 ($ |#1|)) (-15 -2064 (|#1| $)) (-15 -1501 (|#1| $ |#1|)) (-15 -3534 (|#1| $)) (-15 -4225 (|#1| $ |#1|)) (-15 -1658 ((-112) $ $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) (-1195)) (T -1011)) +((-3636 (*1 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-3534 (*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-4225 (*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) (-1658 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1195))))) +(-13 (-1195) (-10 -8 (-15 -3636 ($ |#1|)) (-15 -2064 (|#1| $)) (-15 -1501 (|#1| $ |#1|)) (-15 -3534 (|#1| $)) (-15 -4225 (|#1| $ |#1|)) (-15 -1658 ((-112) $ $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) 105) (((-631 $) (-631 |#4|) (-112)) 106) (((-631 $) (-631 |#4|) (-112) (-112)) 104) (((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 99)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 54)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) 26 (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 39)) (-2930 ((|#4| |#4| $) 57)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-4183 (((-112) |#4| $) NIL)) (-4155 (((-112) |#4| $) NIL)) (-2892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112)) 119)) (-2466 (((-631 |#4|) $) 16 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 33)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 17 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) NIL)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 97)) (-2597 (((-3 |#4| "failed") $) 37)) (-2953 (((-631 $) |#4| $) 80)) (-3841 (((-3 (-112) (-631 $)) |#4| $) NIL)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3977 (((-631 $) |#4| $) 102) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 103) (((-631 $) |#4| (-631 $)) NIL)) (-2031 (((-631 $) (-631 |#4|) (-112) (-112) (-112)) 114)) (-3479 (($ |#4| $) 70) (($ (-631 |#4|) $) 71) (((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2627 (((-631 |#4|) $) NIL)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 35)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) 48)) (-4282 (($ $ |#4|) NIL) (((-631 $) |#4| $) 82) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 77)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 13)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 12)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 20)) (-2538 (($ $ |#3|) 42)) (-2384 (($ $ |#3|) 44)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 31) (((-631 |#4|) $) 40)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-3850 (((-631 $) |#4| $) 79) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-4351 (((-112) |#4| $) NIL)) (-3536 (((-112) |#3| $) 53)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1012 |#1| |#2| |#3| |#4|) (-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112))))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -1012)) +((-3479 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *3))) (-5 *1 (-1012 *5 *6 *7 *3)) (-4 *3 (-1048 *5 *6 *7)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) (-3176 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) (-2031 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-631 *8)) (|:| |towers| (-631 (-1012 *5 *6 *7 *8))))) (-5 *1 (-1012 *5 *6 *7 *8)) (-5 *3 (-631 *8))))) +(-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112))))) +((-3552 (((-631 (-675 |#1|)) (-631 (-675 |#1|))) 58) (((-675 |#1|) (-675 |#1|)) 57) (((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-631 (-675 |#1|))) 56) (((-675 |#1|) (-675 |#1|) (-675 |#1|)) 53)) (-3354 (((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906)) 52) (((-675 |#1|) (-675 |#1|) (-906)) 51)) (-1916 (((-631 (-675 (-554))) (-631 (-631 (-554)))) 68) (((-631 (-675 (-554))) (-631 (-890 (-554))) (-554)) 67) (((-675 (-554)) (-631 (-554))) 64) (((-675 (-554)) (-890 (-554)) (-554)) 63)) (-2093 (((-675 (-937 |#1|)) (-758)) 81)) (-3186 (((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906)) 37 (|has| |#1| (-6 (-4375 "*")))) (((-675 |#1|) (-675 |#1|) (-906)) 35 (|has| |#1| (-6 (-4375 "*")))))) +(((-1013 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-675 |#1|) (-675 |#1|) (-906))) |%noBranch|) (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) |%noBranch|) (-15 -2093 ((-675 (-937 |#1|)) (-758))) (-15 -3354 ((-675 |#1|) (-675 |#1|) (-906))) (-15 -3354 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) (-15 -3552 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3552 ((-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -1916 ((-675 (-554)) (-890 (-554)) (-554))) (-15 -1916 ((-675 (-554)) (-631 (-554)))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-890 (-554))) (-554))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-631 (-554)))))) (-1034)) (T -1013)) +((-1916 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-554)))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-1013 *4)) (-4 *4 (-1034)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-890 (-554)))) (-5 *4 (-554)) (-5 *2 (-631 (-675 *4))) (-5 *1 (-1013 *5)) (-4 *5 (-1034)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1013 *4)) (-4 *4 (-1034)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-554))) (-5 *4 (-554)) (-5 *2 (-675 *4)) (-5 *1 (-1013 *5)) (-4 *5 (-1034)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3552 (*1 *2 *2 *2) (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3552 (*1 *2 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) (-3354 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) (-3354 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-675 (-937 *4))) (-5 *1 (-1013 *4)) (-4 *4 (-1034)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) (|has| *4 (-6 (-4375 "*"))) (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) (-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (|has| *4 (-6 (-4375 "*"))) (-4 *4 (-1034)) (-5 *1 (-1013 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-675 |#1|) (-675 |#1|) (-906))) |%noBranch|) (IF (|has| |#1| (-6 (-4375 "*"))) (-15 -3186 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) |%noBranch|) (-15 -2093 ((-675 (-937 |#1|)) (-758))) (-15 -3354 ((-675 |#1|) (-675 |#1|) (-906))) (-15 -3354 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-906))) (-15 -3552 ((-675 |#1|) (-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3552 ((-675 |#1|) (-675 |#1|))) (-15 -3552 ((-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -1916 ((-675 (-554)) (-890 (-554)) (-554))) (-15 -1916 ((-675 (-554)) (-631 (-554)))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-890 (-554))) (-554))) (-15 -1916 ((-631 (-675 (-554))) (-631 (-631 (-554)))))) +((-2819 (((-675 |#1|) (-631 (-675 |#1|)) (-1241 |#1|)) 50 (|has| |#1| (-302)))) (-1515 (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 (-1241 |#1|))) 76 (|has| |#1| (-358))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 |#1|)) 79 (|has| |#1| (-358)))) (-3122 (((-1241 |#1|) (-631 (-1241 |#1|)) (-554)) 93 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-4334 (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-906)) 85 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112)) 83 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|))) 82 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112) (-554) (-554)) 81 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-2257 (((-112) (-631 (-675 |#1|))) 71 (|has| |#1| (-358))) (((-112) (-631 (-675 |#1|)) (-554)) 73 (|has| |#1| (-358)))) (-1529 (((-1241 (-1241 |#1|)) (-631 (-675 |#1|)) (-1241 |#1|)) 48 (|has| |#1| (-302)))) (-3091 (((-675 |#1|) (-631 (-675 |#1|)) (-675 |#1|)) 34)) (-1766 (((-675 |#1|) (-1241 (-1241 |#1|))) 31)) (-2600 (((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-554)) 65 (|has| |#1| (-358))) (((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|))) 64 (|has| |#1| (-358))) (((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-112) (-554)) 69 (|has| |#1| (-358))))) +(((-1014 |#1|) (-10 -7 (-15 -1766 ((-675 |#1|) (-1241 (-1241 |#1|)))) (-15 -3091 ((-675 |#1|) (-631 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1529 ((-1241 (-1241 |#1|)) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -2819 ((-675 |#1|) (-631 (-675 |#1|)) (-1241 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-112) (-554))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 (-1241 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112) (-554) (-554))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-906))) (-15 -3122 ((-1241 |#1|) (-631 (-1241 |#1|)) (-554)))) |%noBranch|) |%noBranch|)) (-1034)) (T -1014)) +((-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1241 *5))) (-5 *4 (-554)) (-5 *2 (-1241 *5)) (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-4334 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1034)) (-5 *2 (-631 (-631 (-675 *4)))) (-5 *1 (-1014 *4)) (-5 *3 (-631 (-675 *4))))) (-4334 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-554)) (-4 *6 (-358)) (-4 *6 (-363)) (-4 *6 (-1034)) (-5 *2 (-631 (-631 (-675 *6)))) (-5 *1 (-1014 *6)) (-5 *3 (-631 (-675 *6))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-1241 (-1241 *5))) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) (-5 *3 (-631 (-675 *5))))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) (-4 *4 (-1034)) (-5 *2 (-112)) (-5 *1 (-1014 *4)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-4 *5 (-358)) (-4 *5 (-1034)) (-5 *2 (-112)) (-5 *1 (-1014 *5)))) (-2600 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-5 *2 (-675 *5)) (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-1034)))) (-2600 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-5 *1 (-1014 *4)) (-4 *4 (-358)) (-4 *4 (-1034)))) (-2600 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-631 (-675 *6))) (-5 *4 (-112)) (-5 *5 (-554)) (-5 *2 (-675 *6)) (-5 *1 (-1014 *6)) (-4 *6 (-358)) (-4 *6 (-1034)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-1241 *5)) (-4 *5 (-302)) (-4 *5 (-1034)) (-5 *2 (-675 *5)) (-5 *1 (-1014 *5)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-675 *5))) (-4 *5 (-302)) (-4 *5 (-1034)) (-5 *2 (-1241 (-1241 *5))) (-5 *1 (-1014 *5)) (-5 *4 (-1241 *5)))) (-3091 (*1 *2 *3 *2) (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-4 *4 (-1034)) (-5 *1 (-1014 *4)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1241 (-1241 *4))) (-4 *4 (-1034)) (-5 *2 (-675 *4)) (-5 *1 (-1014 *4))))) +(-10 -7 (-15 -1766 ((-675 |#1|) (-1241 (-1241 |#1|)))) (-15 -3091 ((-675 |#1|) (-631 (-675 |#1|)) (-675 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1529 ((-1241 (-1241 |#1|)) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -2819 ((-675 |#1|) (-631 (-675 |#1|)) (-1241 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-112) (-554))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -2600 ((-675 |#1|) (-631 (-675 |#1|)) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)) (-554))) (-15 -2257 ((-112) (-631 (-675 |#1|)))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 |#1|))) (-15 -1515 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-1241 (-1241 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112) (-554) (-554))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-112))) (-15 -4334 ((-631 (-631 (-675 |#1|))) (-631 (-675 |#1|)) (-906))) (-15 -3122 ((-1241 |#1|) (-631 (-1241 |#1|)) (-554)))) |%noBranch|) |%noBranch|)) +((-1914 ((|#1| (-906) |#1|) 9))) +(((-1015 |#1|) (-10 -7 (-15 -1914 (|#1| (-906) |#1|))) (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $))))) (T -1015)) +((-1914 (*1 *2 *3 *2) (-12 (-5 *3 (-906)) (-5 *1 (-1015 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)))))))) +(-10 -7 (-15 -1914 (|#1| (-906) |#1|))) +((-2632 (((-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554))))))) (-675 (-402 (-937 (-554))))) 59)) (-1690 (((-631 (-675 (-311 (-554)))) (-311 (-554)) (-675 (-402 (-937 (-554))))) 48)) (-3412 (((-631 (-311 (-554))) (-675 (-402 (-937 (-554))))) 41)) (-2417 (((-631 (-675 (-311 (-554)))) (-675 (-402 (-937 (-554))))) 68)) (-1904 (((-675 (-311 (-554))) (-675 (-311 (-554)))) 34)) (-2744 (((-631 (-675 (-311 (-554)))) (-631 (-675 (-311 (-554))))) 62)) (-3225 (((-3 (-675 (-311 (-554))) "failed") (-675 (-402 (-937 (-554))))) 66))) +(((-1016) (-10 -7 (-15 -2632 ((-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554))))))) (-675 (-402 (-937 (-554)))))) (-15 -1690 ((-631 (-675 (-311 (-554)))) (-311 (-554)) (-675 (-402 (-937 (-554)))))) (-15 -3412 ((-631 (-311 (-554))) (-675 (-402 (-937 (-554)))))) (-15 -3225 ((-3 (-675 (-311 (-554))) "failed") (-675 (-402 (-937 (-554)))))) (-15 -1904 ((-675 (-311 (-554))) (-675 (-311 (-554))))) (-15 -2744 ((-631 (-675 (-311 (-554)))) (-631 (-675 (-311 (-554)))))) (-15 -2417 ((-631 (-675 (-311 (-554)))) (-675 (-402 (-937 (-554)))))))) (T -1016)) +((-2417 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016)))) (-3225 (*1 *2 *3) (|partial| -12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-311 (-554)))) (-5 *1 (-1016)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *4 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)) (-5 *3 (-311 (-554))))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554)))))))) (-5 *1 (-1016))))) +(-10 -7 (-15 -2632 ((-631 (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) (|:| |radvect| (-631 (-675 (-311 (-554))))))) (-675 (-402 (-937 (-554)))))) (-15 -1690 ((-631 (-675 (-311 (-554)))) (-311 (-554)) (-675 (-402 (-937 (-554)))))) (-15 -3412 ((-631 (-311 (-554))) (-675 (-402 (-937 (-554)))))) (-15 -3225 ((-3 (-675 (-311 (-554))) "failed") (-675 (-402 (-937 (-554)))))) (-15 -1904 ((-675 (-311 (-554))) (-675 (-311 (-554))))) (-15 -2744 ((-631 (-675 (-311 (-554)))) (-631 (-675 (-311 (-554)))))) (-15 -2417 ((-631 (-675 (-311 (-554)))) (-675 (-402 (-937 (-554))))))) +((-2672 ((|#1| |#1| (-906)) 9))) +(((-1017 |#1|) (-10 -7 (-15 -2672 (|#1| |#1| (-906)))) (-13 (-1082) (-10 -8 (-15 * ($ $ $))))) (T -1017)) +((-2672 (*1 *2 *2 *3) (-12 (-5 *3 (-906)) (-5 *1 (-1017 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2672 (|#1| |#1| (-906)))) +((-3075 ((|#1| (-307)) 11) (((-1246) |#1|) 9))) +(((-1018 |#1|) (-10 -7 (-15 -3075 ((-1246) |#1|)) (-15 -3075 (|#1| (-307)))) (-1195)) (T -1018)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1018 *2)) (-4 *2 (-1195)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1246)) (-5 *1 (-1018 *3)) (-4 *3 (-1195))))) +(-10 -7 (-15 -3075 ((-1246) |#1|)) (-15 -3075 (|#1| (-307)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-3676 (($ |#4|) 25)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-3662 ((|#4| $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 46) (($ (-554)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2261 (((-758)) 43)) (-2004 (($) 21 T CONST)) (-2014 (($) 23 T CONST)) (-1658 (((-112) $ $) 40)) (-1744 (($ $) 31) (($ $ $) NIL)) (-1735 (($ $ $) 29)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -3676 ($ |#4|)) (-15 -3075 ($ |#4|)) (-15 -3662 (|#4| $)))) (-358) (-780) (-836) (-934 |#1| |#2| |#3|) (-631 |#4|)) (T -1019)) +((-3676 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5)) (-14 *6 (-631 *2)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5)) (-14 *6 (-631 *2)))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-934 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-14 *6 (-631 *2))))) +(-13 (-170) (-38 |#1|) (-10 -8 (-15 -3676 ($ |#4|)) (-15 -3075 ($ |#4|)) (-15 -3662 (|#4| $)))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-4233 (((-1246) $ (-1158) (-1158)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1643 (((-112) (-112)) 39)) (-2670 (((-112) (-112)) 38)) (-1501 (((-52) $ (-1158) (-52)) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 (-52) "failed") (-1158) $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-3 (-52) "failed") (-1158) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-52) $ (-1158) (-52)) NIL (|has| $ (-6 -4374)))) (-2796 (((-52) $ (-1158)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2256 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2944 (((-631 (-1158)) $) 34)) (-2415 (((-112) (-1158) $) NIL)) (-4150 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2529 (((-631 (-1158)) $) NIL)) (-3618 (((-112) (-1158) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-1539 (((-52) $) NIL (|has| (-1158) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) "failed") (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL)) (-2441 (($ $ (-52)) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-52)) (-631 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-631 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2625 (((-631 (-52)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-52) $ (-1158)) 35) (((-52) $ (-1158) (-52)) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-758) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082)))) (((-758) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-3075 (((-848) $) 37 (-3994 (|has| (-52) (-601 (-848))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1020) (-13 (-1171 (-1158) (-52)) (-10 -7 (-15 -1643 ((-112) (-112))) (-15 -2670 ((-112) (-112))) (-6 -4373)))) (T -1020)) +((-1643 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020))))) +(-13 (-1171 (-1158) (-52)) (-10 -7 (-15 -1643 ((-112) (-112))) (-15 -2670 ((-112) (-112))) (-6 -4373))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 9)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1021) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $))))) (T -1021)) +((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1021))))) +(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)))) +((-1668 ((|#2| $) 10))) +(((-1022 |#1| |#2|) (-10 -8 (-15 -1668 (|#2| |#1|))) (-1023 |#2|) (-1195)) (T -1022)) +NIL +(-10 -8 (-15 -1668 (|#2| |#1|))) +((-2784 (((-3 |#1| "failed") $) 9)) (-1668 ((|#1| $) 8)) (-3075 (($ |#1|) 6))) +(((-1023 |#1|) (-138) (-1195)) (T -1023)) +((-2784 (*1 *2 *1) (|partial| -12 (-4 *1 (-1023 *2)) (-4 *2 (-1195)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1195))))) +(-13 (-604 |t#1|) (-10 -8 (-15 -2784 ((-3 |t#1| "failed") $)) (-15 -1668 (|t#1| $)))) +(((-604 |#1|) . T)) +((-3475 (((-631 (-631 (-289 (-402 (-937 |#2|))))) (-631 (-937 |#2|)) (-631 (-1158))) 38))) +(((-1024 |#1| |#2|) (-10 -7 (-15 -3475 ((-631 (-631 (-289 (-402 (-937 |#2|))))) (-631 (-937 |#2|)) (-631 (-1158))))) (-546) (-13 (-546) (-1023 |#1|))) (T -1024)) +((-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-4 *6 (-13 (-546) (-1023 *5))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *6)))))) (-5 *1 (-1024 *5 *6))))) +(-10 -7 (-15 -3475 ((-631 (-631 (-289 (-402 (-937 |#2|))))) (-631 (-937 |#2|)) (-631 (-1158))))) +((-2522 (((-374)) 15)) (-1671 (((-1 (-374)) (-374) (-374)) 20)) (-4341 (((-1 (-374)) (-758)) 43)) (-2219 (((-374)) 34)) (-3312 (((-1 (-374)) (-374) (-374)) 35)) (-2552 (((-374)) 26)) (-3581 (((-1 (-374)) (-374)) 27)) (-3337 (((-374) (-758)) 38)) (-2352 (((-1 (-374)) (-758)) 39)) (-3085 (((-1 (-374)) (-758) (-758)) 42)) (-4280 (((-1 (-374)) (-758) (-758)) 40))) +(((-1025) (-10 -7 (-15 -2522 ((-374))) (-15 -2219 ((-374))) (-15 -2552 ((-374))) (-15 -3337 ((-374) (-758))) (-15 -1671 ((-1 (-374)) (-374) (-374))) (-15 -3312 ((-1 (-374)) (-374) (-374))) (-15 -3581 ((-1 (-374)) (-374))) (-15 -2352 ((-1 (-374)) (-758))) (-15 -4280 ((-1 (-374)) (-758) (-758))) (-15 -3085 ((-1 (-374)) (-758) (-758))) (-15 -4341 ((-1 (-374)) (-758))))) (T -1025)) +((-4341 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-4280 (*1 *2 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) (-3581 (*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) (-1671 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-374)) (-5 *1 (-1025)))) (-2552 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))) (-2219 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025)))) (-2522 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025))))) +(-10 -7 (-15 -2522 ((-374))) (-15 -2219 ((-374))) (-15 -2552 ((-374))) (-15 -3337 ((-374) (-758))) (-15 -1671 ((-1 (-374)) (-374) (-374))) (-15 -3312 ((-1 (-374)) (-374) (-374))) (-15 -3581 ((-1 (-374)) (-374))) (-15 -2352 ((-1 (-374)) (-758))) (-15 -4280 ((-1 (-374)) (-758) (-758))) (-15 -3085 ((-1 (-374)) (-758) (-758))) (-15 -4341 ((-1 (-374)) (-758)))) +((-2270 (((-413 |#1|) |#1|) 33))) +(((-1026 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|))) (-1217 (-402 (-937 (-554))))) (T -1026)) +((-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1217 (-402 (-937 (-554)))))))) +(-10 -7 (-15 -2270 ((-413 |#1|) |#1|))) +((-2641 (((-402 (-413 (-937 |#1|))) (-402 (-937 |#1|))) 14))) +(((-1027 |#1|) (-10 -7 (-15 -2641 ((-402 (-413 (-937 |#1|))) (-402 (-937 |#1|))))) (-302)) (T -1027)) +((-2641 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-413 (-937 *4)))) (-5 *1 (-1027 *4))))) +(-10 -7 (-15 -2641 ((-402 (-413 (-937 |#1|))) (-402 (-937 |#1|))))) +((-2405 (((-631 (-1158)) (-402 (-937 |#1|))) 17)) (-2237 (((-402 (-1154 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158)) 24)) (-2393 (((-402 (-937 |#1|)) (-402 (-1154 (-402 (-937 |#1|)))) (-1158)) 26)) (-3277 (((-3 (-1158) "failed") (-402 (-937 |#1|))) 20)) (-2386 (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-289 (-402 (-937 |#1|))))) 32) (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|)))) 33) (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-1158)) (-631 (-402 (-937 |#1|)))) 28) (((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|))) 29)) (-3075 (((-402 (-937 |#1|)) |#1|) 11))) +(((-1028 |#1|) (-10 -7 (-15 -2405 ((-631 (-1158)) (-402 (-937 |#1|)))) (-15 -3277 ((-3 (-1158) "failed") (-402 (-937 |#1|)))) (-15 -2237 ((-402 (-1154 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -2393 ((-402 (-937 |#1|)) (-402 (-1154 (-402 (-937 |#1|)))) (-1158))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-1158)) (-631 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -3075 ((-402 (-937 |#1|)) |#1|))) (-546)) (T -1028)) +((-3075 (*1 *2 *3) (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-1028 *3)) (-4 *3 (-546)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) (-5 *2 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *1 (-1028 *4)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *3 (-289 (-402 (-937 *4)))) (-5 *2 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *1 (-1028 *4)))) (-2386 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-631 (-1158))) (-5 *4 (-631 (-402 (-937 *5)))) (-5 *2 (-402 (-937 *5))) (-4 *5 (-546)) (-5 *1 (-1028 *5)))) (-2386 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) (-4 *4 (-546)) (-5 *1 (-1028 *4)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1154 (-402 (-937 *5))))) (-5 *4 (-1158)) (-5 *2 (-402 (-937 *5))) (-5 *1 (-1028 *5)) (-4 *5 (-546)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-546)) (-5 *2 (-402 (-1154 (-402 (-937 *5))))) (-5 *1 (-1028 *5)) (-5 *3 (-402 (-937 *5))))) (-3277 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-1158)) (-5 *1 (-1028 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-1158))) (-5 *1 (-1028 *4))))) +(-10 -7 (-15 -2405 ((-631 (-1158)) (-402 (-937 |#1|)))) (-15 -3277 ((-3 (-1158) "failed") (-402 (-937 |#1|)))) (-15 -2237 ((-402 (-1154 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -2393 ((-402 (-937 |#1|)) (-402 (-1154 (-402 (-937 |#1|)))) (-1158))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-1158)) (-631 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-289 (-402 (-937 |#1|))))) (-15 -2386 ((-402 (-937 |#1|)) (-402 (-937 |#1|)) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -3075 ((-402 (-937 |#1|)) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-4087 (($) 17 T CONST)) (-2323 ((|#1| $) 22)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4006 ((|#1| $) 21)) (-2958 ((|#1|) 19 T CONST)) (-3075 (((-848) $) 11)) (-4312 ((|#1| $) 20)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15))) +(((-1029 |#1|) (-138) (-23)) (T -1029)) +((-2323 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23)))) (-2958 (*1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2323 (|t#1| $)) (-15 -4006 (|t#1| $)) (-15 -4312 (|t#1| $)) (-15 -2958 (|t#1|) -2397))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3434 (($) 24 T CONST)) (-4087 (($) 17 T CONST)) (-2323 ((|#1| $) 22)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4006 ((|#1| $) 21)) (-2958 ((|#1|) 19 T CONST)) (-3075 (((-848) $) 11)) (-4312 ((|#1| $) 20)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15))) +(((-1030 |#1|) (-138) (-23)) (T -1030)) +((-3434 (*1 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-23))))) +(-13 (-1029 |t#1|) (-10 -8 (-15 -3434 ($) -2397))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-601 (-848)) . T) ((-1029 |#1|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 (-767 |#1| (-850 |#2|)))))) (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-3176 (((-631 $) (-631 (-767 |#1| (-850 |#2|)))) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112)) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112) (-112)) NIL)) (-2405 (((-631 (-850 |#2|)) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-4057 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-3278 (((-631 (-2 (|:| |val| (-767 |#1| (-850 |#2|))) (|:| -2143 $))) (-767 |#1| (-850 |#2|)) $) NIL)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ (-850 |#2|)) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 (-767 |#1| (-850 |#2|)) "failed") $ (-850 |#2|)) NIL)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) NIL (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))) $ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-1380 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-1668 (($ (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2930 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082))))) (-2574 (($ (-767 |#1| (-850 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-767 |#1| (-850 |#2|))) (|:| |den| |#1|)) (-767 |#1| (-850 |#2|)) $) NIL (|has| |#1| (-546)))) (-2857 (((-112) (-767 |#1| (-850 |#2|)) $ (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-4210 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-3676 (((-767 |#1| (-850 |#2|)) (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $ (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (((-767 |#1| (-850 |#2|)) (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $ (-767 |#1| (-850 |#2|))) NIL (|has| $ (-6 -4373))) (((-767 |#1| (-850 |#2|)) (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-1971 (((-2 (|:| -2498 (-631 (-767 |#1| (-850 |#2|)))) (|:| -1303 (-631 (-767 |#1| (-850 |#2|))))) $) NIL)) (-4183 (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-4155 (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-2892 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-2466 (((-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-4253 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-3954 (((-850 |#2|) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-767 |#1| (-850 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082))))) (-2849 (($ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) $) NIL)) (-2643 (((-631 (-850 |#2|)) $) NIL)) (-1400 (((-112) (-850 |#2|) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1343 (((-3 (-767 |#1| (-850 |#2|)) (-631 $)) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2543 (((-631 (-2 (|:| |val| (-767 |#1| (-850 |#2|))) (|:| -2143 $))) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2597 (((-3 (-767 |#1| (-850 |#2|)) "failed") $) NIL)) (-2953 (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL)) (-3841 (((-3 (-112) (-631 $)) (-767 |#1| (-850 |#2|)) $) NIL)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-3977 (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-631 $)) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) (-631 $)) NIL)) (-3479 (($ (-767 |#1| (-850 |#2|)) $) NIL) (($ (-631 (-767 |#1| (-850 |#2|))) $) NIL)) (-2627 (((-631 (-767 |#1| (-850 |#2|))) $) NIL)) (-3007 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-1536 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| (-767 |#1| (-850 |#2|))) (|:| |den| |#1|)) (-767 |#1| (-850 |#2|)) $) NIL (|has| |#1| (-546)))) (-3518 (((-112) (-767 |#1| (-850 |#2|)) $) NIL) (((-112) $) NIL)) (-3492 (((-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 (-767 |#1| (-850 |#2|)) "failed") $) NIL)) (-1652 (((-3 (-767 |#1| (-850 |#2|)) "failed") (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL)) (-3948 (((-3 $ "failed") $ (-767 |#1| (-850 |#2|))) NIL)) (-4282 (($ $ (-767 |#1| (-850 |#2|))) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) (-631 $)) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-631 $)) NIL)) (-2845 (((-112) (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-767 |#1| (-850 |#2|))) (-631 (-767 |#1| (-850 |#2|)))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ $ (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ $ (-289 (-767 |#1| (-850 |#2|)))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (($ $ (-631 (-289 (-767 |#1| (-850 |#2|))))) NIL (-12 (|has| (-767 |#1| (-850 |#2|)) (-304 (-767 |#1| (-850 |#2|)))) (|has| (-767 |#1| (-850 |#2|)) (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-3308 (((-758) $) NIL)) (-2777 (((-758) (-767 |#1| (-850 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-767 |#1| (-850 |#2|)) (-1082)))) (((-758) (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-767 |#1| (-850 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-767 |#1| (-850 |#2|)))) NIL)) (-2538 (($ $ (-850 |#2|)) NIL)) (-2384 (($ $ (-850 |#2|)) NIL)) (-2258 (($ $) NIL)) (-2128 (($ $ (-850 |#2|)) NIL)) (-3075 (((-848) $) NIL) (((-631 (-767 |#1| (-850 |#2|))) $) NIL)) (-2347 (((-758) $) NIL (|has| (-850 |#2|) (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 (-767 |#1| (-850 |#2|))))) "failed") (-631 (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 (-767 |#1| (-850 |#2|))))) "failed") (-631 (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|))) (-1 (-112) (-767 |#1| (-850 |#2|)) (-767 |#1| (-850 |#2|)))) NIL)) (-3579 (((-112) $ (-1 (-112) (-767 |#1| (-850 |#2|)) (-631 (-767 |#1| (-850 |#2|))))) NIL)) (-3850 (((-631 $) (-767 |#1| (-850 |#2|)) $) NIL) (((-631 $) (-767 |#1| (-850 |#2|)) (-631 $)) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) $) NIL) (((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-631 $)) NIL)) (-2438 (((-112) (-1 (-112) (-767 |#1| (-850 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 (-850 |#2|)) $) NIL)) (-4351 (((-112) (-767 |#1| (-850 |#2|)) $) NIL)) (-3536 (((-112) (-850 |#2|) $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1031 |#1| |#2|) (-13 (-1054 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) (-10 -8 (-15 -3176 ((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112) (-112))))) (-446) (-631 (-1158))) (T -1031)) +((-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1031 *5 *6))))) +(-13 (-1054 |#1| (-525 (-850 |#2|)) (-850 |#2|) (-767 |#1| (-850 |#2|))) (-10 -8 (-15 -3176 ((-631 $) (-631 (-767 |#1| (-850 |#2|))) (-112) (-112))))) +((-1671 (((-1 (-554)) (-1076 (-554))) 33)) (-2482 (((-554) (-554) (-554) (-554) (-554)) 30)) (-1653 (((-1 (-554)) |RationalNumber|) NIL)) (-4168 (((-1 (-554)) |RationalNumber|) NIL)) (-1629 (((-1 (-554)) (-554) |RationalNumber|) NIL))) +(((-1032) (-10 -7 (-15 -1671 ((-1 (-554)) (-1076 (-554)))) (-15 -1629 ((-1 (-554)) (-554) |RationalNumber|)) (-15 -1653 ((-1 (-554)) |RationalNumber|)) (-15 -4168 ((-1 (-554)) |RationalNumber|)) (-15 -2482 ((-554) (-554) (-554) (-554) (-554))))) (T -1032)) +((-2482 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1032)))) (-4168 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))) (-1653 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)) (-5 *3 (-554)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1076 (-554))) (-5 *2 (-1 (-554))) (-5 *1 (-1032))))) +(-10 -7 (-15 -1671 ((-1 (-554)) (-1076 (-554)))) (-15 -1629 ((-1 (-554)) (-554) |RationalNumber|)) (-15 -1653 ((-1 (-554)) |RationalNumber|)) (-15 -4168 ((-1 (-554)) |RationalNumber|)) (-15 -2482 ((-554) (-554) (-554) (-554) (-554)))) +((-3075 (((-848) $) NIL) (($ (-554)) 10))) +(((-1033 |#1|) (-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1034)) (T -1033)) +NIL +(-10 -8 (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-1034) (-138)) (T -1034)) +((-2261 (*1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-758))))) +(-13 (-1041) (-713) (-634 $) (-604 (-554)) (-10 -7 (-15 -2261 ((-758))) (-6 -4370))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-604 (-554)) . T) ((-601 (-848)) . T) ((-634 $) . T) ((-713) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3523 (((-402 (-937 |#2|)) (-631 |#2|) (-631 |#2|) (-758) (-758)) 45))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -3523 ((-402 (-937 |#2|)) (-631 |#2|) (-631 |#2|) (-758) (-758)))) (-1158) (-358)) (T -1035)) +((-3523 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-758)) (-4 *6 (-358)) (-5 *2 (-402 (-937 *6))) (-5 *1 (-1035 *5 *6)) (-14 *5 (-1158))))) +(-10 -7 (-15 -3523 ((-402 (-937 |#2|)) (-631 |#2|) (-631 |#2|) (-758) (-758)))) +((-1350 (((-112) $) 29)) (-3795 (((-112) $) 16)) (-4130 (((-758) $) 13)) (-4143 (((-758) $) 14)) (-2361 (((-112) $) 26)) (-4299 (((-112) $) 31))) +(((-1036 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4143 ((-758) |#1|)) (-15 -4130 ((-758) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|))) (-1037 |#2| |#3| |#4| |#5| |#6|) (-758) (-758) (-1034) (-234 |#3| |#4|) (-234 |#2| |#4|)) (T -1036)) +NIL +(-10 -8 (-15 -4143 ((-758) |#1|)) (-15 -4130 ((-758) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -1350 ((-112) |#1|)) (-15 -2361 ((-112) |#1|)) (-15 -3795 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1350 (((-112) $) 51)) (-2934 (((-3 $ "failed") $ $) 19)) (-3795 (((-112) $) 53)) (-3019 (((-112) $ (-758)) 61)) (-4087 (($) 17 T CONST)) (-2775 (($ $) 34 (|has| |#3| (-302)))) (-3519 ((|#4| $ (-554)) 39)) (-4186 (((-758) $) 33 (|has| |#3| (-546)))) (-2796 ((|#3| $ (-554) (-554)) 41)) (-2466 (((-631 |#3|) $) 68 (|has| $ (-6 -4373)))) (-4332 (((-758) $) 32 (|has| |#3| (-546)))) (-2412 (((-631 |#5|) $) 31 (|has| |#3| (-546)))) (-4130 (((-758) $) 45)) (-4143 (((-758) $) 44)) (-2230 (((-112) $ (-758)) 60)) (-3985 (((-554) $) 49)) (-1817 (((-554) $) 47)) (-2379 (((-631 |#3|) $) 69 (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 48)) (-4249 (((-554) $) 46)) (-1899 (($ (-631 (-631 |#3|))) 54)) (-2849 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1679 (((-631 (-631 |#3|)) $) 43)) (-3731 (((-112) $ (-758)) 59)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-546)))) (-2845 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#3|) (-631 |#3|)) 75 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) 73 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 (-289 |#3|))) 72 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) 55)) (-3543 (((-112) $) 58)) (-4240 (($) 57)) (-2064 ((|#3| $ (-554) (-554)) 42) ((|#3| $ (-554) (-554) |#3|) 40)) (-2361 (((-112) $) 52)) (-2777 (((-758) |#3| $) 70 (-12 (|has| |#3| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4373)))) (-1521 (($ $) 56)) (-3259 ((|#5| $ (-554)) 38)) (-3075 (((-848) $) 11)) (-2438 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4373)))) (-4299 (((-112) $) 50)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#3|) 35 (|has| |#3| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2563 (((-758) $) 62 (|has| $ (-6 -4373))))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-138) (-758) (-758) (-1034) (-234 |t#2| |t#3|) (-234 |t#1| |t#3|)) (T -1037)) +((-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *5))) (-4 *5 (-1034)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-631 (-631 *5))))) (-2064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034)))) (-2064 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *2 (-1034)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *2 *7)) (-4 *6 (-1034)) (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *7 *2)) (-4 *6 (-1034)) (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3919 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-546)))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) (-5 *2 (-758)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) (-5 *2 (-758)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) (-5 *2 (-631 *7))))) +(-13 (-111 |t#3| |t#3|) (-483 |t#3|) (-10 -8 (-6 -4373) (IF (|has| |t#3| (-170)) (-6 (-704 |t#3|)) |%noBranch|) (-15 -1899 ($ (-631 (-631 |t#3|)))) (-15 -3795 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -1350 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -3985 ((-554) $)) (-15 -2787 ((-554) $)) (-15 -1817 ((-554) $)) (-15 -4249 ((-554) $)) (-15 -4130 ((-758) $)) (-15 -4143 ((-758) $)) (-15 -1679 ((-631 (-631 |t#3|)) $)) (-15 -2064 (|t#3| $ (-554) (-554))) (-15 -2796 (|t#3| $ (-554) (-554))) (-15 -2064 (|t#3| $ (-554) (-554) |t#3|)) (-15 -3519 (|t#4| $ (-554))) (-15 -3259 (|t#5| $ (-554))) (-15 -2879 ($ (-1 |t#3| |t#3|) $)) (-15 -2879 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-546)) (-15 -3919 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-358)) (-15 -1752 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-302)) (-15 -2775 ($ $)) |%noBranch|) (IF (|has| |t#3| (-546)) (PROGN (-15 -4186 ((-758) $)) (-15 -4332 ((-758) $)) (-15 -2412 ((-631 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-601 (-848)) . T) ((-304 |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))) ((-483 |#3|) . T) ((-508 |#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))) ((-634 |#3|) . T) ((-704 |#3|) |has| |#3| (-170)) ((-1040 |#3|) . T) ((-1082) . T) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1350 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 43 (|has| |#3| (-302)))) (-3519 (((-236 |#2| |#3|) $ (-554)) 32)) (-3265 (($ (-675 |#3|)) 41)) (-4186 (((-758) $) 45 (|has| |#3| (-546)))) (-2796 ((|#3| $ (-554) (-554)) NIL)) (-2466 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-4332 (((-758) $) 47 (|has| |#3| (-546)))) (-2412 (((-631 (-236 |#1| |#3|)) $) 51 (|has| |#3| (-546)))) (-4130 (((-758) $) NIL)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#3|))) 27)) (-2849 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1679 (((-631 (-631 |#3|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-546)))) (-2845 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#3|) (-631 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#3| $ (-554) (-554)) NIL) ((|#3| $ (-554) (-554) |#3|) NIL)) (-3330 (((-133)) 54 (|has| |#3| (-358)))) (-2361 (((-112) $) NIL)) (-2777 (((-758) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082)))) (((-758) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 63 (|has| |#3| (-602 (-530))))) (-3259 (((-236 |#1| |#3|) $ (-554)) 36)) (-3075 (((-848) $) 16) (((-675 |#3|) $) 38)) (-2438 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-2004 (($) 13 T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1038 |#1| |#2| |#3|) (-13 (-1037 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-601 (-675 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1248 |#3|)) |%noBranch|) (IF (|has| |#3| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (-15 -3265 ($ (-675 |#3|))))) (-758) (-758) (-1034)) (T -1038)) +((-3265 (*1 *1 *2) (-12 (-5 *2 (-675 *5)) (-4 *5 (-1034)) (-5 *1 (-1038 *3 *4 *5)) (-14 *3 (-758)) (-14 *4 (-758))))) +(-13 (-1037 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-601 (-675 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1248 |#3|)) |%noBranch|) (IF (|has| |#3| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|) (-15 -3265 ($ (-675 |#3|))))) +((-3676 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2879 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1039 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2879 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3676 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-758) (-758) (-1034) (-234 |#2| |#3|) (-234 |#1| |#3|) (-1037 |#1| |#2| |#3| |#4| |#5|) (-1034) (-234 |#2| |#7|) (-234 |#1| |#7|) (-1037 |#1| |#2| |#7| |#8| |#9|)) (T -1039)) +((-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1034)) (-4 *2 (-1034)) (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *12 (-1037 *5 *6 *2 *10 *11)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1034)) (-4 *10 (-1034)) (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *2 (-1037 *5 *6 *10 *11 *12)) (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) (-4 *12 (-234 *5 *10))))) +(-10 -7 (-15 -2879 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3676 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ |#1|) 23))) +(((-1040 |#1|) (-138) (-1041)) (T -1040)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1041))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-1038) (-137)) (T -1038)) -NIL -(-13 (-21) (-1091)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-600 (-845)) . T) ((-1091) . T) ((-1079) . T)) -((-1728 (($ $) 16)) (-2641 (($ $) 22)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 49)) (-3560 (($ $) 24)) (-3785 (($ $) 11)) (-2334 (($ $) 38)) (-1524 (((-373) $) NIL) (((-220) $) NIL) (((-874 (-373)) $) 33)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL) (($ (-401 (-553))) 28) (($ (-553)) NIL) (($ (-401 (-553))) 28)) (-1999 (((-757)) 8)) (-2582 (($ $) 39))) -(((-1039 |#1|) (-10 -8 (-15 -2641 (|#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| (-553))) (-15 -1524 ((-220) |#1|)) (-15 -1524 ((-373) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| |#1|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-1040)) (T -1039)) -((-1999 (*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-1039 *3)) (-4 *3 (-1040))))) -(-10 -8 (-15 -2641 (|#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -2059 ((-871 (-373) |#1|) |#1| (-874 (-373)) (-871 (-373) |#1|))) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| (-553))) (-15 -1524 ((-220) |#1|)) (-15 -1524 ((-373) |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| |#1|)) (-15 -1999 ((-757))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2751 (((-553) $) 90)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-1728 (($ $) 88)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-3365 (($ $) 98)) (-4349 (((-111) $ $) 60)) (-2125 (((-553) $) 115)) (-3820 (($) 17 T CONST)) (-2641 (($ $) 87)) (-1399 (((-3 (-553) "failed") $) 103) (((-3 (-401 (-553)) "failed") $) 100)) (-2707 (((-553) $) 104) (((-401 (-553)) $) 101)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-3119 (((-111) $) 72)) (-4270 (((-111) $) 113)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 94)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 97)) (-3560 (($ $) 93)) (-2797 (((-111) $) 114)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-1824 (($ $ $) 112)) (-1975 (($ $ $) 111)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3785 (($ $) 89)) (-2334 (($ $) 91)) (-3355 (((-412 $) $) 75)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-1524 (((-373) $) 106) (((-220) $) 105) (((-874 (-373)) $) 95)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67) (($ (-553)) 102) (($ (-401 (-553))) 99)) (-1999 (((-757)) 28)) (-2582 (($ $) 92)) (-1639 (((-111) $ $) 40)) (-3466 (($ $) 116)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1669 (((-111) $ $) 109)) (-1648 (((-111) $ $) 108)) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 110)) (-1636 (((-111) $ $) 107)) (-1723 (($ $ $) 66)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70) (($ $ (-401 (-553))) 96)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68))) -(((-1040) (-137)) (T -1040)) -((-3466 (*1 *1 *1) (-4 *1 (-1040))) (-3560 (*1 *1 *1) (-4 *1 (-1040))) (-2582 (*1 *1 *1) (-4 *1 (-1040))) (-2334 (*1 *1 *1) (-4 *1 (-1040))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-553)))) (-3785 (*1 *1 *1) (-4 *1 (-1040))) (-1728 (*1 *1 *1) (-4 *1 (-1040))) (-2641 (*1 *1 *1) (-4 *1 (-1040)))) -(-13 (-357) (-831) (-1004) (-1020 (-553)) (-1020 (-401 (-553))) (-984) (-601 (-874 (-373))) (-868 (-373)) (-144) (-10 -8 (-15 -3560 ($ $)) (-15 -2582 ($ $)) (-15 -2334 ($ $)) (-15 -2751 ((-553) $)) (-15 -3785 ($ $)) (-15 -1728 ($ $)) (-15 -2641 ($ $)) (-15 -3466 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-601 (-220)) . T) ((-601 (-373)) . T) ((-601 (-874 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 $) . T) ((-712) . T) ((-777) . T) ((-778) . T) ((-780) . T) ((-781) . T) ((-831) . T) ((-833) . T) ((-868 (-373)) . T) ((-902) . T) ((-984) . T) ((-1004) . T) ((-1020 (-401 (-553))) . T) ((-1020 (-553)) . T) ((-1037 #0#) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) |#2| $) 23)) (-2571 ((|#1| $) 10)) (-2125 (((-553) |#2| $) 88)) (-3906 (((-3 $ "failed") |#2| (-903)) 57)) (-3323 ((|#1| $) 28)) (-3304 ((|#1| |#2| $ |#1|) 37)) (-4125 (($ $) 25)) (-2982 (((-3 |#2| "failed") |#2| $) 87)) (-4270 (((-111) |#2| $) NIL)) (-2797 (((-111) |#2| $) NIL)) (-1777 (((-111) |#2| $) 24)) (-2567 ((|#1| $) 89)) (-3313 ((|#1| $) 27)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1394 ((|#2| $) 79)) (-3110 (((-845) $) 70)) (-4327 ((|#1| |#2| $ |#1|) 38)) (-3408 (((-630 $) |#2|) 59)) (-1617 (((-111) $ $) 74))) -(((-1041 |#1| |#2|) (-13 (-1048 |#1| |#2|) (-10 -8 (-15 -3313 (|#1| $)) (-15 -3323 (|#1| $)) (-15 -2571 (|#1| $)) (-15 -2567 (|#1| $)) (-15 -4125 ($ $)) (-15 -1777 ((-111) |#2| $)) (-15 -3304 (|#1| |#2| $ |#1|)))) (-13 (-831) (-357)) (-1214 |#1|)) (T -1041)) -((-3304 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-1214 *2)))) (-3313 (*1 *2 *1) (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-1214 *2)))) (-3323 (*1 *2 *1) (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-1214 *2)))) (-2571 (*1 *2 *1) (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-1214 *2)))) (-2567 (*1 *2 *1) (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-1214 *2)))) (-4125 (*1 *1 *1) (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) (-4 *3 (-1214 *2)))) (-1777 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-831) (-357))) (-5 *2 (-111)) (-5 *1 (-1041 *4 *3)) (-4 *3 (-1214 *4))))) -(-13 (-1048 |#1| |#2|) (-10 -8 (-15 -3313 (|#1| $)) (-15 -3323 (|#1| $)) (-15 -2571 (|#1| $)) (-15 -2567 (|#1| $)) (-15 -4125 ($ $)) (-15 -1777 ((-111) |#2| $)) (-15 -3304 (|#1| |#2| $ |#1|)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-4227 (($ $ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2464 (($ $ $ $) NIL)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL)) (-1608 (($ $ $) NIL)) (-3820 (($) NIL T CONST)) (-3084 (($ (-1155)) 10) (($ (-553)) 7)) (-1399 (((-3 (-553) "failed") $) NIL)) (-2707 (((-553) $) NIL)) (-3973 (($ $ $) NIL)) (-2077 (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-674 (-553)) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL)) (-4323 (((-111) $) NIL)) (-1672 (((-401 (-553)) $) NIL)) (-3031 (($) NIL) (($ $) NIL)) (-3952 (($ $ $) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-3405 (($ $ $ $) NIL)) (-2084 (($ $ $) NIL)) (-4270 (((-111) $) NIL)) (-2340 (($ $ $) NIL)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL)) (-1848 (((-111) $) NIL)) (-1850 (((-111) $) NIL)) (-2502 (((-3 $ "failed") $) NIL)) (-2797 (((-111) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-4322 (($ $ $ $) NIL)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-3871 (($ $) NIL)) (-1899 (($ $) NIL)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3563 (($ $ $) NIL)) (-1945 (($) NIL T CONST)) (-3802 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) NIL) (($ (-630 $)) NIL)) (-3757 (($ $) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3781 (((-111) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-1330 (($ $ (-757)) NIL) (($ $) NIL)) (-3163 (($ $) NIL)) (-1508 (($ $) NIL)) (-1524 (((-553) $) 16) (((-529) $) NIL) (((-874 (-553)) $) NIL) (((-373) $) NIL) (((-220) $) NIL) (($ (-1155)) 9)) (-3110 (((-845) $) 20) (($ (-553)) 6) (($ $) NIL) (($ (-553)) 6)) (-1999 (((-757)) NIL)) (-3694 (((-111) $ $) NIL)) (-1737 (($ $ $) NIL)) (-2959 (($) NIL)) (-1639 (((-111) $ $) NIL)) (-4028 (($ $ $ $) NIL)) (-3466 (($ $) NIL)) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) NIL)) (-1711 (($ $) 19) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL))) -(((-1042) (-13 (-538) (-605 (-1155)) (-10 -8 (-6 -4356) (-6 -4361) (-6 -4357) (-15 -3084 ($ (-1155))) (-15 -3084 ($ (-553)))))) (T -1042)) -((-3084 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1042)))) (-3084 (*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1042))))) -(-13 (-538) (-605 (-1155)) (-10 -8 (-6 -4356) (-6 -4361) (-6 -4357) (-15 -3084 ($ (-1155))) (-15 -3084 ($ (-553))))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-1683 (((-1243) $ (-1155) (-1155)) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-2271 (($) 9)) (-1490 (((-52) $ (-1155) (-52)) NIL)) (-1701 (($ $) 30)) (-2639 (($ $) 28)) (-2822 (($ $) 27)) (-2903 (($ $) 29)) (-4244 (($ $) 32)) (-4267 (($ $) 33)) (-3021 (($ $) 26)) (-1487 (($ $) 31)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) 25 (|has| $ (-6 -4369)))) (-2972 (((-3 (-52) "failed") (-1155) $) 40)) (-3820 (($) NIL T CONST)) (-2496 (($) 7)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-3986 (($ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) 50 (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-3 (-52) "failed") (-1155) $) NIL)) (-2575 (($ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369)))) (-2876 (((-3 (-1137) "failed") $ (-1137) (-553)) 59)) (-2515 (((-52) $ (-1155) (-52)) NIL (|has| $ (-6 -4370)))) (-2441 (((-52) $ (-1155)) NIL)) (-1408 (((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-630 (-52)) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-1155) $) NIL (|has| (-1155) (-833)))) (-2195 (((-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) 35 (|has| $ (-6 -4369))) (((-630 (-52)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079))))) (-2958 (((-1155) $) NIL (|has| (-1155) (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4370))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-3729 (((-630 (-1155)) $) NIL)) (-1570 (((-111) (-1155) $) NIL)) (-1376 (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL)) (-2636 (($ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) 43)) (-1901 (((-630 (-1155)) $) NIL)) (-3594 (((-111) (-1155) $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-2072 (((-373) $ (-1155)) 49)) (-3135 (((-630 (-1137)) $ (-1137)) 60)) (-2603 (((-52) $) NIL (|has| (-1155) (-833)))) (-3016 (((-3 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) "failed") (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL)) (-2858 (($ $ (-52)) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-288 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL (-12 (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-303 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (($ $ (-630 (-52)) (-630 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079)))) (($ $ (-630 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079))))) (-1912 (((-630 (-52)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 (((-52) $ (-1155)) NIL) (((-52) $ (-1155) (-52)) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-2483 (($ $ (-1155)) 51)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079)))) (((-757) (-52) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-52) (-1079)))) (((-757) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) 37)) (-4325 (($ $ $) 38)) (-3110 (((-845) $) NIL (-3988 (|has| (-52) (-600 (-845))) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-600 (-845)))))) (-3050 (($ $ (-1155) (-373)) 47)) (-3483 (($ $ (-1155) (-373)) 48)) (-2711 (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 (-1155)) (|:| -3256 (-52)))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-52) (-1079)) (|has| (-2 (|:| -2578 (-1155)) (|:| -3256 (-52))) (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1043) (-13 (-1168 (-1155) (-52)) (-10 -8 (-15 -4325 ($ $ $)) (-15 -2496 ($)) (-15 -3021 ($ $)) (-15 -2822 ($ $)) (-15 -2639 ($ $)) (-15 -2903 ($ $)) (-15 -1487 ($ $)) (-15 -1701 ($ $)) (-15 -4244 ($ $)) (-15 -4267 ($ $)) (-15 -3050 ($ $ (-1155) (-373))) (-15 -3483 ($ $ (-1155) (-373))) (-15 -2072 ((-373) $ (-1155))) (-15 -3135 ((-630 (-1137)) $ (-1137))) (-15 -2483 ($ $ (-1155))) (-15 -2271 ($)) (-15 -2876 ((-3 (-1137) "failed") $ (-1137) (-553))) (-6 -4369)))) (T -1043)) -((-4325 (*1 *1 *1 *1) (-5 *1 (-1043))) (-2496 (*1 *1) (-5 *1 (-1043))) (-3021 (*1 *1 *1) (-5 *1 (-1043))) (-2822 (*1 *1 *1) (-5 *1 (-1043))) (-2639 (*1 *1 *1) (-5 *1 (-1043))) (-2903 (*1 *1 *1) (-5 *1 (-1043))) (-1487 (*1 *1 *1) (-5 *1 (-1043))) (-1701 (*1 *1 *1) (-5 *1 (-1043))) (-4244 (*1 *1 *1) (-5 *1 (-1043))) (-4267 (*1 *1 *1) (-5 *1 (-1043))) (-3050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-373)) (-5 *1 (-1043)))) (-3483 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-373)) (-5 *1 (-1043)))) (-2072 (*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-373)) (-5 *1 (-1043)))) (-3135 (*1 *2 *1 *3) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1043)) (-5 *3 (-1137)))) (-2483 (*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1043)))) (-2271 (*1 *1) (-5 *1 (-1043))) (-2876 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1137)) (-5 *3 (-553)) (-5 *1 (-1043))))) -(-13 (-1168 (-1155) (-52)) (-10 -8 (-15 -4325 ($ $ $)) (-15 -2496 ($)) (-15 -3021 ($ $)) (-15 -2822 ($ $)) (-15 -2639 ($ $)) (-15 -2903 ($ $)) (-15 -1487 ($ $)) (-15 -1701 ($ $)) (-15 -4244 ($ $)) (-15 -4267 ($ $)) (-15 -3050 ($ $ (-1155) (-373))) (-15 -3483 ($ $ (-1155) (-373))) (-15 -2072 ((-373) $ (-1155))) (-15 -3135 ((-630 (-1137)) $ (-1137))) (-15 -2483 ($ $ (-1155))) (-15 -2271 ($)) (-15 -2876 ((-3 (-1137) "failed") $ (-1137) (-553))) (-6 -4369))) -((-1787 (($ $) 45)) (-3848 (((-111) $ $) 74)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 (-553) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-934 (-401 (-553)))) 227) (((-3 $ "failed") (-934 (-553))) 226) (((-3 $ "failed") (-934 |#2|)) 229)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) NIL) (((-553) $) NIL) ((|#4| $) NIL) (($ (-934 (-401 (-553)))) 215) (($ (-934 (-553))) 211) (($ (-934 |#2|)) 231)) (-3678 (($ $) NIL) (($ $ |#4|) 43)) (-3342 (((-111) $ $) 112) (((-111) $ (-630 $)) 113)) (-1384 (((-111) $) 56)) (-3464 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 107)) (-2105 (($ $) 138)) (-2632 (($ $) 134)) (-3903 (($ $) 133)) (-2456 (($ $ $) 79) (($ $ $ |#4|) 84)) (-4302 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1685 (((-111) $ $) 121) (((-111) $ (-630 $)) 122)) (-1470 ((|#4| $) 33)) (-1622 (($ $ $) 110)) (-3939 (((-111) $) 55)) (-3424 (((-757) $) 35)) (-3332 (($ $) 152)) (-2674 (($ $) 149)) (-2935 (((-630 $) $) 68)) (-3779 (($ $) 57)) (-2318 (($ $) 145)) (-3454 (((-630 $) $) 65)) (-1448 (($ $) 59)) (-3655 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4274 (-757))) $ $) 111)) (-3630 (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $) 108) (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $ |#4|) 109)) (-3128 (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $) 104) (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $ |#4|) 105)) (-3788 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2887 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2612 (((-630 $) $) 51)) (-4299 (((-111) $ $) 118) (((-111) $ (-630 $)) 119)) (-4080 (($ $ $) 103)) (-1945 (($ $) 37)) (-1990 (((-111) $ $) 72)) (-3276 (((-111) $ $) 114) (((-111) $ (-630 $)) 116)) (-3138 (($ $ $) 101)) (-2117 (($ $) 40)) (-2508 ((|#2| |#2| $) 142) (($ (-630 $)) NIL) (($ $ $) NIL)) (-3097 (($ $ |#2|) NIL) (($ $ $) 131)) (-2410 (($ $ |#2|) 126) (($ $ $) 129)) (-2369 (($ $) 48)) (-4002 (($ $) 52)) (-1524 (((-874 (-373)) $) NIL) (((-874 (-553)) $) NIL) (((-529) $) NIL) (($ (-934 (-401 (-553)))) 217) (($ (-934 (-553))) 213) (($ (-934 |#2|)) 228) (((-1137) $) 250) (((-934 |#2|) $) 162)) (-3110 (((-845) $) 30) (($ (-553)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-934 |#2|) $) 163) (($ (-401 (-553))) NIL) (($ $) NIL)) (-1675 (((-3 (-111) "failed") $ $) 71))) -(((-1044 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3110 (|#1| |#1|)) (-15 -2508 (|#1| |#1| |#1|)) (-15 -2508 (|#1| (-630 |#1|))) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 ((-934 |#2|) |#1|)) (-15 -1524 ((-934 |#2|) |#1|)) (-15 -1524 ((-1137) |#1|)) (-15 -3332 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2105 (|#1| |#1|)) (-15 -2508 (|#2| |#2| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 -3097 (|#1| |#1| |#2|)) (-15 -2410 (|#1| |#1| |#2|)) (-15 -2632 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -1524 (|#1| (-934 |#2|))) (-15 -2707 (|#1| (-934 |#2|))) (-15 -1399 ((-3 |#1| "failed") (-934 |#2|))) (-15 -1524 (|#1| (-934 (-553)))) (-15 -2707 (|#1| (-934 (-553)))) (-15 -1399 ((-3 |#1| "failed") (-934 (-553)))) (-15 -1524 (|#1| (-934 (-401 (-553))))) (-15 -2707 (|#1| (-934 (-401 (-553))))) (-15 -1399 ((-3 |#1| "failed") (-934 (-401 (-553))))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3138 (|#1| |#1| |#1|)) (-15 -4102 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4274 (-757))) |#1| |#1|)) (-15 -1622 (|#1| |#1| |#1|)) (-15 -3464 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3630 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1| |#4|)) (-15 -3630 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3128 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -1571 |#1|)) |#1| |#1| |#4|)) (-15 -3128 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -2887 (|#1| |#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#1| |#4|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1| |#4|)) (-15 -2456 (|#1| |#1| |#1| |#4|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -1685 ((-111) |#1| (-630 |#1|))) (-15 -1685 ((-111) |#1| |#1|)) (-15 -4299 ((-111) |#1| (-630 |#1|))) (-15 -4299 ((-111) |#1| |#1|)) (-15 -3276 ((-111) |#1| (-630 |#1|))) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3342 ((-111) |#1| (-630 |#1|))) (-15 -3342 ((-111) |#1| |#1|)) (-15 -3848 ((-111) |#1| |#1|)) (-15 -1990 ((-111) |#1| |#1|)) (-15 -1675 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2935 ((-630 |#1|) |#1|)) (-15 -3454 ((-630 |#1|) |#1|)) (-15 -1448 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -1384 ((-111) |#1|)) (-15 -3939 ((-111) |#1|)) (-15 -3678 (|#1| |#1| |#4|)) (-15 -3655 (|#1| |#1| |#4|)) (-15 -4002 (|#1| |#1|)) (-15 -2612 ((-630 |#1|) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -3424 ((-757) |#1|)) (-15 -1470 (|#4| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -3110 (|#1| |#4|)) (-15 -1399 ((-3 |#4| "failed") |#1|)) (-15 -2707 (|#4| |#1|)) (-15 -3655 (|#2| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-1045 |#2| |#3| |#4|) (-1031) (-779) (-833)) (T -1044)) -NIL -(-10 -8 (-15 -3110 (|#1| |#1|)) (-15 -2508 (|#1| |#1| |#1|)) (-15 -2508 (|#1| (-630 |#1|))) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 ((-934 |#2|) |#1|)) (-15 -1524 ((-934 |#2|) |#1|)) (-15 -1524 ((-1137) |#1|)) (-15 -3332 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2105 (|#1| |#1|)) (-15 -2508 (|#2| |#2| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 -3097 (|#1| |#1| |#2|)) (-15 -2410 (|#1| |#1| |#2|)) (-15 -2632 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -1524 (|#1| (-934 |#2|))) (-15 -2707 (|#1| (-934 |#2|))) (-15 -1399 ((-3 |#1| "failed") (-934 |#2|))) (-15 -1524 (|#1| (-934 (-553)))) (-15 -2707 (|#1| (-934 (-553)))) (-15 -1399 ((-3 |#1| "failed") (-934 (-553)))) (-15 -1524 (|#1| (-934 (-401 (-553))))) (-15 -2707 (|#1| (-934 (-401 (-553))))) (-15 -1399 ((-3 |#1| "failed") (-934 (-401 (-553))))) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3138 (|#1| |#1| |#1|)) (-15 -4102 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4274 (-757))) |#1| |#1|)) (-15 -1622 (|#1| |#1| |#1|)) (-15 -3464 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3630 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1| |#4|)) (-15 -3630 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3128 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -1571 |#1|)) |#1| |#1| |#4|)) (-15 -3128 ((-2 (|:| -4120 |#1|) (|:| |gap| (-757)) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -2887 (|#1| |#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#1| |#4|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1| |#4|)) (-15 -2456 (|#1| |#1| |#1| |#4|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -1685 ((-111) |#1| (-630 |#1|))) (-15 -1685 ((-111) |#1| |#1|)) (-15 -4299 ((-111) |#1| (-630 |#1|))) (-15 -4299 ((-111) |#1| |#1|)) (-15 -3276 ((-111) |#1| (-630 |#1|))) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3342 ((-111) |#1| (-630 |#1|))) (-15 -3342 ((-111) |#1| |#1|)) (-15 -3848 ((-111) |#1| |#1|)) (-15 -1990 ((-111) |#1| |#1|)) (-15 -1675 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2935 ((-630 |#1|) |#1|)) (-15 -3454 ((-630 |#1|) |#1|)) (-15 -1448 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -1384 ((-111) |#1|)) (-15 -3939 ((-111) |#1|)) (-15 -3678 (|#1| |#1| |#4|)) (-15 -3655 (|#1| |#1| |#4|)) (-15 -4002 (|#1| |#1|)) (-15 -2612 ((-630 |#1|) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -3424 ((-757) |#1|)) (-15 -1470 (|#4| |#1|)) (-15 -1524 ((-529) |#1|)) (-15 -1524 ((-874 (-553)) |#1|)) (-15 -1524 ((-874 (-373)) |#1|)) (-15 -3110 (|#1| |#4|)) (-15 -1399 ((-3 |#4| "failed") |#1|)) (-15 -2707 (|#4| |#1|)) (-15 -3655 (|#2| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 |#3|) $) 110)) (-3322 (((-1151 $) $ |#3|) 125) (((-1151 |#1|) $) 124)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 87 (|has| |#1| (-545)))) (-1968 (($ $) 88 (|has| |#1| (-545)))) (-2028 (((-111) $) 90 (|has| |#1| (-545)))) (-2085 (((-757) $) 112) (((-757) $ (-630 |#3|)) 111)) (-1787 (($ $) 271)) (-3848 (((-111) $ $) 257)) (-2910 (((-3 $ "failed") $ $) 19)) (-1690 (($ $ $) 216 (|has| |#1| (-545)))) (-3008 (((-630 $) $ $) 211 (|has| |#1| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) 100 (|has| |#1| (-891)))) (-1536 (($ $) 98 (|has| |#1| (-445)))) (-2708 (((-412 $) $) 97 (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 103 (|has| |#1| (-891)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 164) (((-3 (-401 (-553)) "failed") $) 161 (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) 159 (|has| |#1| (-1020 (-553)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-934 (-401 (-553)))) 231 (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155))))) (((-3 $ "failed") (-934 (-553))) 228 (-3988 (-12 (-2826 (|has| |#1| (-38 (-401 (-553))))) (|has| |#1| (-38 (-553))) (|has| |#3| (-601 (-1155)))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155)))))) (((-3 $ "failed") (-934 |#1|)) 225 (-3988 (-12 (-2826 (|has| |#1| (-38 (-401 (-553))))) (-2826 (|has| |#1| (-38 (-553)))) (|has| |#3| (-601 (-1155)))) (-12 (-2826 (|has| |#1| (-538))) (-2826 (|has| |#1| (-38 (-401 (-553))))) (|has| |#1| (-38 (-553))) (|has| |#3| (-601 (-1155)))) (-12 (-2826 (|has| |#1| (-974 (-553)))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155))))))) (-2707 ((|#1| $) 163) (((-401 (-553)) $) 162 (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) 160 (|has| |#1| (-1020 (-553)))) ((|#3| $) 137) (($ (-934 (-401 (-553)))) 230 (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155))))) (($ (-934 (-553))) 227 (-3988 (-12 (-2826 (|has| |#1| (-38 (-401 (-553))))) (|has| |#1| (-38 (-553))) (|has| |#3| (-601 (-1155)))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155)))))) (($ (-934 |#1|)) 224 (-3988 (-12 (-2826 (|has| |#1| (-38 (-401 (-553))))) (-2826 (|has| |#1| (-38 (-553)))) (|has| |#3| (-601 (-1155)))) (-12 (-2826 (|has| |#1| (-538))) (-2826 (|has| |#1| (-38 (-401 (-553))))) (|has| |#1| (-38 (-553))) (|has| |#3| (-601 (-1155)))) (-12 (-2826 (|has| |#1| (-974 (-553)))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155))))))) (-2134 (($ $ $ |#3|) 108 (|has| |#1| (-169))) (($ $ $) 212 (|has| |#1| (-545)))) (-3678 (($ $) 154) (($ $ |#3|) 266)) (-2077 (((-674 (-553)) (-674 $)) 134 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 133 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 132) (((-674 |#1|) (-674 $)) 131)) (-3342 (((-111) $ $) 256) (((-111) $ (-630 $)) 255)) (-2982 (((-3 $ "failed") $) 33)) (-1384 (((-111) $) 264)) (-3464 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 236)) (-2105 (($ $) 205 (|has| |#1| (-445)))) (-1655 (($ $) 176 (|has| |#1| (-445))) (($ $ |#3|) 105 (|has| |#1| (-445)))) (-3667 (((-630 $) $) 109)) (-3119 (((-111) $) 96 (|has| |#1| (-891)))) (-2632 (($ $) 221 (|has| |#1| (-545)))) (-3903 (($ $) 222 (|has| |#1| (-545)))) (-2456 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4302 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2686 (($ $ |#1| |#2| $) 172)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 84 (-12 (|has| |#3| (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 83 (-12 (|has| |#3| (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-1848 (((-111) $) 31)) (-1984 (((-757) $) 169)) (-1685 (((-111) $ $) 250) (((-111) $ (-630 $)) 249)) (-3264 (($ $ $ $ $) 207 (|has| |#1| (-545)))) (-1470 ((|#3| $) 275)) (-3493 (($ (-1151 |#1|) |#3|) 117) (($ (-1151 $) |#3|) 116)) (-2096 (((-630 $) $) 126)) (-1298 (((-111) $) 152)) (-3481 (($ |#1| |#2|) 153) (($ $ |#3| (-757)) 119) (($ $ (-630 |#3|) (-630 (-757))) 118)) (-1622 (($ $ $) 235)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#3|) 120)) (-3939 (((-111) $) 265)) (-2423 ((|#2| $) 170) (((-757) $ |#3|) 122) (((-630 (-757)) $ (-630 |#3|)) 121)) (-1824 (($ $ $) 79 (|has| |#1| (-833)))) (-3424 (((-757) $) 274)) (-1975 (($ $ $) 78 (|has| |#1| (-833)))) (-2241 (($ (-1 |#2| |#2|) $) 171)) (-1482 (($ (-1 |#1| |#1|) $) 151)) (-1332 (((-3 |#3| "failed") $) 123)) (-3332 (($ $) 202 (|has| |#1| (-445)))) (-2674 (($ $) 203 (|has| |#1| (-445)))) (-2935 (((-630 $) $) 260)) (-3779 (($ $) 263)) (-2318 (($ $) 204 (|has| |#1| (-445)))) (-3454 (((-630 $) $) 261)) (-1448 (($ $) 262)) (-3644 (($ $) 149)) (-3655 ((|#1| $) 148) (($ $ |#3|) 267)) (-2471 (($ (-630 $)) 94 (|has| |#1| (-445))) (($ $ $) 93 (|has| |#1| (-445)))) (-4102 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4274 (-757))) $ $) 234)) (-3630 (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $) 238) (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $ |#3|) 237)) (-3128 (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $) 240) (((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $ |#3|) 239)) (-3788 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2887 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1735 (((-1137) $) 9)) (-4247 (($ $ $) 210 (|has| |#1| (-545)))) (-2612 (((-630 $) $) 269)) (-2411 (((-3 (-630 $) "failed") $) 114)) (-2201 (((-3 (-630 $) "failed") $) 115)) (-3107 (((-3 (-2 (|:| |var| |#3|) (|:| -2692 (-757))) "failed") $) 113)) (-4299 (((-111) $ $) 252) (((-111) $ (-630 $)) 251)) (-4080 (($ $ $) 232)) (-1945 (($ $) 273)) (-1990 (((-111) $ $) 258)) (-3276 (((-111) $ $) 254) (((-111) $ (-630 $)) 253)) (-3138 (($ $ $) 233)) (-2117 (($ $) 272)) (-2786 (((-1099) $) 10)) (-4264 (((-2 (|:| -2508 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-545)))) (-3270 (((-2 (|:| -2508 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-545)))) (-3623 (((-111) $) 166)) (-3633 ((|#1| $) 167)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 95 (|has| |#1| (-445)))) (-2508 ((|#1| |#1| $) 206 (|has| |#1| (-445))) (($ (-630 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 102 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 101 (|has| |#1| (-891)))) (-3355 (((-412 $) $) 99 (|has| |#1| (-891)))) (-2675 (((-2 (|:| -2508 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-545)))) (-3929 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-545)))) (-3097 (($ $ |#1|) 219 (|has| |#1| (-545))) (($ $ $) 217 (|has| |#1| (-545)))) (-2410 (($ $ |#1|) 220 (|has| |#1| (-545))) (($ $ $) 218 (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) 145) (($ $ (-288 $)) 144) (($ $ $ $) 143) (($ $ (-630 $) (-630 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-630 |#3|) (-630 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-630 |#3|) (-630 $)) 138)) (-3000 (($ $ |#3|) 107 (|has| |#1| (-169)))) (-1330 (($ $ |#3|) 42) (($ $ (-630 |#3|)) 41) (($ $ |#3| (-757)) 40) (($ $ (-630 |#3|) (-630 (-757))) 39)) (-3872 ((|#2| $) 150) (((-757) $ |#3|) 130) (((-630 (-757)) $ (-630 |#3|)) 129)) (-2369 (($ $) 270)) (-4002 (($ $) 268)) (-1524 (((-874 (-373)) $) 82 (-12 (|has| |#3| (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) 81 (-12 (|has| |#3| (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) 80 (-12 (|has| |#3| (-601 (-529))) (|has| |#1| (-601 (-529))))) (($ (-934 (-401 (-553)))) 229 (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155))))) (($ (-934 (-553))) 226 (-3988 (-12 (-2826 (|has| |#1| (-38 (-401 (-553))))) (|has| |#1| (-38 (-553))) (|has| |#3| (-601 (-1155)))) (-12 (|has| |#1| (-38 (-401 (-553)))) (|has| |#3| (-601 (-1155)))))) (($ (-934 |#1|)) 223 (|has| |#3| (-601 (-1155)))) (((-1137) $) 201 (-12 (|has| |#1| (-1020 (-553))) (|has| |#3| (-601 (-1155))))) (((-934 |#1|) $) 200 (|has| |#3| (-601 (-1155))))) (-4198 ((|#1| $) 175 (|has| |#1| (-445))) (($ $ |#3|) 106 (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 104 (-3726 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-934 |#1|) $) 199 (|has| |#3| (-601 (-1155)))) (($ (-401 (-553))) 72 (-3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553)))))) (($ $) 85 (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) 168)) (-1624 ((|#1| $ |#2|) 155) (($ $ |#3| (-757)) 128) (($ $ (-630 |#3|) (-630 (-757))) 127)) (-2941 (((-3 $ "failed") $) 73 (-3988 (-3726 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) 28)) (-2599 (($ $ $ (-757)) 173 (|has| |#1| (-169)))) (-1639 (((-111) $ $) 89 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1675 (((-3 (-111) "failed") $ $) 259)) (-1997 (($) 30 T CONST)) (-1303 (($ $ $ $ (-757)) 208 (|has| |#1| (-545)))) (-4181 (($ $ $ (-757)) 209 (|has| |#1| (-545)))) (-1780 (($ $ |#3|) 38) (($ $ (-630 |#3|)) 37) (($ $ |#3| (-757)) 36) (($ $ (-630 |#3|) (-630 (-757))) 35)) (-1669 (((-111) $ $) 76 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 75 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 77 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 74 (|has| |#1| (-833)))) (-1723 (($ $ |#1|) 156 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 158 (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) 157 (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1045 |#1| |#2| |#3|) (-137) (-1031) (-779) (-833)) (T -1045)) -((-1470 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-757)))) (-1945 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-1787 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-2612 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1045 *3 *4 *5)))) (-4002 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-3655 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-3678 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-3779 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-1448 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-3454 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1045 *3 *4 *5)))) (-2935 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1045 *3 *4 *5)))) (-1675 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-1990 (*1 *2 *1 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-3848 (*1 *2 *1 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-3342 (*1 *2 *1 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-3342 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) (-3276 (*1 *2 *1 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-3276 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) (-4299 (*1 *2 *1 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) (-1685 (*1 *2 *1 *1) (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)))) (-1685 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) (-2456 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-4302 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-2456 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-4302 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-3788 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-2887 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-3788 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-2887 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *2 (-833)))) (-3128 (*1 *2 *1 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -1571 *1))) (-4 *1 (-1045 *3 *4 *5)))) (-3128 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -1571 *1))) (-4 *1 (-1045 *4 *5 *3)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1045 *3 *4 *5)))) (-3630 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1045 *4 *5 *3)))) (-3464 (*1 *2 *1 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1045 *3 *4 *5)))) (-1622 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-4102 (*1 *2 *1 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4274 (-757)))) (-4 *1 (-1045 *3 *4 *5)))) (-3138 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)))) (-1399 (*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-401 (-553)))) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-934 (-401 (-553)))) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-934 (-401 (-553)))) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)))) (-1399 (*1 *1 *2) (|partial| -3988 (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) (-2707 (*1 *1 *2) (-3988 (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) (-1524 (*1 *1 *2) (-3988 (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) (-1399 (*1 *1 *2) (|partial| -3988 (-12 (-5 *2 (-934 *3)) (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-2826 (-4 *3 (-38 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 *3)) (-12 (-2826 (-4 *3 (-538))) (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 *3)) (-12 (-2826 (-4 *3 (-974 (-553)))) (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833))))) (-2707 (*1 *1 *2) (-3988 (-12 (-5 *2 (-934 *3)) (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-2826 (-4 *3 (-38 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 *3)) (-12 (-2826 (-4 *3 (-538))) (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833))) (-12 (-5 *2 (-934 *3)) (-12 (-2826 (-4 *3 (-974 (-553)))) (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) (-4 *5 (-833))))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *5 (-601 (-1155))) (-4 *4 (-779)) (-4 *5 (-833)))) (-3903 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-2632 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-3097 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-2410 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-3097 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-2675 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| -2508 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1045 *3 *4 *5)))) (-3270 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| -2508 *1) (|:| |coef1| *1))) (-4 *1 (-1045 *3 *4 *5)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-2 (|:| -2508 *1) (|:| |coef2| *1))) (-4 *1 (-1045 *3 *4 *5)))) (-2134 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-3008 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1045 *3 *4 *5)))) (-4247 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-4181 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *3 (-545)))) (-1303 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *3 (-545)))) (-3264 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-545)))) (-2508 (*1 *2 *2 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445)))) (-2105 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445)))) (-2318 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445)))) (-2674 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445)))) (-3332 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-445))))) -(-13 (-931 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1470 (|t#3| $)) (-15 -3424 ((-757) $)) (-15 -1945 ($ $)) (-15 -2117 ($ $)) (-15 -1787 ($ $)) (-15 -2369 ($ $)) (-15 -2612 ((-630 $) $)) (-15 -4002 ($ $)) (-15 -3655 ($ $ |t#3|)) (-15 -3678 ($ $ |t#3|)) (-15 -3939 ((-111) $)) (-15 -1384 ((-111) $)) (-15 -3779 ($ $)) (-15 -1448 ($ $)) (-15 -3454 ((-630 $) $)) (-15 -2935 ((-630 $) $)) (-15 -1675 ((-3 (-111) "failed") $ $)) (-15 -1990 ((-111) $ $)) (-15 -3848 ((-111) $ $)) (-15 -3342 ((-111) $ $)) (-15 -3342 ((-111) $ (-630 $))) (-15 -3276 ((-111) $ $)) (-15 -3276 ((-111) $ (-630 $))) (-15 -4299 ((-111) $ $)) (-15 -4299 ((-111) $ (-630 $))) (-15 -1685 ((-111) $ $)) (-15 -1685 ((-111) $ (-630 $))) (-15 -2456 ($ $ $)) (-15 -4302 ($ $ $)) (-15 -2456 ($ $ $ |t#3|)) (-15 -4302 ($ $ $ |t#3|)) (-15 -3788 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -3788 ($ $ $ |t#3|)) (-15 -2887 ($ $ $ |t#3|)) (-15 -3128 ((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $)) (-15 -3128 ((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -1571 $)) $ $ |t#3|)) (-15 -3630 ((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3630 ((-2 (|:| -4120 $) (|:| |gap| (-757)) (|:| -2666 $) (|:| -1571 $)) $ $ |t#3|)) (-15 -3464 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -1622 ($ $ $)) (-15 -4102 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4274 (-757))) $ $)) (-15 -3138 ($ $ $)) (-15 -4080 ($ $ $)) (IF (|has| |t#3| (-601 (-1155))) (PROGN (-6 (-600 (-934 |t#1|))) (-6 (-601 (-934 |t#1|))) (IF (|has| |t#1| (-38 (-401 (-553)))) (PROGN (-15 -1399 ((-3 $ "failed") (-934 (-401 (-553))))) (-15 -2707 ($ (-934 (-401 (-553))))) (-15 -1524 ($ (-934 (-401 (-553))))) (-15 -1399 ((-3 $ "failed") (-934 (-553)))) (-15 -2707 ($ (-934 (-553)))) (-15 -1524 ($ (-934 (-553)))) (IF (|has| |t#1| (-974 (-553))) |%noBranch| (PROGN (-15 -1399 ((-3 $ "failed") (-934 |t#1|))) (-15 -2707 ($ (-934 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-553))) (IF (|has| |t#1| (-38 (-401 (-553)))) |%noBranch| (PROGN (-15 -1399 ((-3 $ "failed") (-934 (-553)))) (-15 -2707 ($ (-934 (-553)))) (-15 -1524 ($ (-934 (-553)))) (IF (|has| |t#1| (-538)) |%noBranch| (PROGN (-15 -1399 ((-3 $ "failed") (-934 |t#1|))) (-15 -2707 ($ (-934 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-553))) |%noBranch| (IF (|has| |t#1| (-38 (-401 (-553)))) |%noBranch| (PROGN (-15 -1399 ((-3 $ "failed") (-934 |t#1|))) (-15 -2707 ($ (-934 |t#1|)))))) (-15 -1524 ($ (-934 |t#1|))) (IF (|has| |t#1| (-1020 (-553))) (-6 (-601 (-1137))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3903 ($ $)) (-15 -2632 ($ $)) (-15 -2410 ($ $ |t#1|)) (-15 -3097 ($ $ |t#1|)) (-15 -2410 ($ $ $)) (-15 -3097 ($ $ $)) (-15 -1690 ($ $ $)) (-15 -2675 ((-2 (|:| -2508 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3270 ((-2 (|:| -2508 $) (|:| |coef1| $)) $ $)) (-15 -4264 ((-2 (|:| -2508 $) (|:| |coef2| $)) $ $)) (-15 -2134 ($ $ $)) (-15 -3008 ((-630 $) $ $)) (-15 -4247 ($ $ $)) (-15 -4181 ($ $ $ (-757))) (-15 -1303 ($ $ $ $ (-757))) (-15 -3264 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -2508 (|t#1| |t#1| $)) (-15 -2105 ($ $)) (-15 -2318 ($ $)) (-15 -2674 ($ $)) (-15 -3332 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 |#3|) . T) ((-603 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-600 (-845)) . T) ((-600 (-934 |#1|)) |has| |#3| (-601 (-1155))) ((-169) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-601 (-529)) -12 (|has| |#1| (-601 (-529))) (|has| |#3| (-601 (-529)))) ((-601 (-874 (-373))) -12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#3| (-601 (-874 (-373))))) ((-601 (-874 (-553))) -12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#3| (-601 (-874 (-553))))) ((-601 (-934 |#1|)) |has| |#3| (-601 (-1155))) ((-601 (-1137)) -12 (|has| |#1| (-1020 (-553))) (|has| |#3| (-601 (-1155)))) ((-284) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -3988 (|has| |#1| (-891)) (|has| |#1| (-445))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445))) ((-712) . T) ((-833) |has| |#1| (-833)) ((-882 |#3|) . T) ((-868 (-373)) -12 (|has| |#1| (-868 (-373))) (|has| |#3| (-868 (-373)))) ((-868 (-553)) -12 (|has| |#1| (-868 (-553))) (|has| |#3| (-868 (-553)))) ((-931 |#1| |#2| |#3|) . T) ((-891) |has| |#1| (-891)) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 |#1|) . T) ((-1020 |#3|) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) |has| |#1| (-891))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-1517 (((-630 (-1114)) $) 13)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 24) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-1114) $) 15)) (-1617 (((-111) $ $) NIL))) -(((-1046) (-13 (-1062) (-10 -8 (-15 -1517 ((-630 (-1114)) $)) (-15 -4310 ((-1114) $))))) (T -1046)) -((-1517 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-1046)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1046))))) -(-13 (-1062) (-10 -8 (-15 -1517 ((-630 (-1114)) $)) (-15 -4310 ((-1114) $)))) -((-3769 (((-111) |#3| $) 13)) (-3906 (((-3 $ "failed") |#3| (-903)) 23)) (-2982 (((-3 |#3| "failed") |#3| $) 38)) (-4270 (((-111) |#3| $) 16)) (-2797 (((-111) |#3| $) 14))) -(((-1047 |#1| |#2| |#3|) (-10 -8 (-15 -3906 ((-3 |#1| "failed") |#3| (-903))) (-15 -2982 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4270 ((-111) |#3| |#1|)) (-15 -2797 ((-111) |#3| |#1|)) (-15 -3769 ((-111) |#3| |#1|))) (-1048 |#2| |#3|) (-13 (-831) (-357)) (-1214 |#2|)) (T -1047)) -NIL -(-10 -8 (-15 -3906 ((-3 |#1| "failed") |#3| (-903))) (-15 -2982 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4270 ((-111) |#3| |#1|)) (-15 -2797 ((-111) |#3| |#1|)) (-15 -3769 ((-111) |#3| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) |#2| $) 21)) (-2125 (((-553) |#2| $) 22)) (-3906 (((-3 $ "failed") |#2| (-903)) 15)) (-3304 ((|#1| |#2| $ |#1|) 13)) (-2982 (((-3 |#2| "failed") |#2| $) 18)) (-4270 (((-111) |#2| $) 19)) (-2797 (((-111) |#2| $) 20)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1394 ((|#2| $) 17)) (-3110 (((-845) $) 11)) (-4327 ((|#1| |#2| $ |#1|) 14)) (-3408 (((-630 $) |#2|) 16)) (-1617 (((-111) $ $) 6))) -(((-1048 |#1| |#2|) (-137) (-13 (-831) (-357)) (-1214 |t#1|)) (T -1048)) -((-2125 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) (-4 *3 (-1214 *4)) (-5 *2 (-553)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) (-4 *3 (-1214 *4)) (-5 *2 (-111)))) (-2797 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) (-4 *3 (-1214 *4)) (-5 *2 (-111)))) (-4270 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) (-4 *3 (-1214 *4)) (-5 *2 (-111)))) (-2982 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1048 *3 *2)) (-4 *3 (-13 (-831) (-357))) (-4 *2 (-1214 *3)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2)) (-4 *3 (-13 (-831) (-357))) (-4 *2 (-1214 *3)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-831) (-357))) (-4 *3 (-1214 *4)) (-5 *2 (-630 *1)) (-4 *1 (-1048 *4 *3)))) (-3906 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-903)) (-4 *4 (-13 (-831) (-357))) (-4 *1 (-1048 *4 *2)) (-4 *2 (-1214 *4)))) (-4327 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1048 *2 *3)) (-4 *2 (-13 (-831) (-357))) (-4 *3 (-1214 *2)))) (-3304 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1048 *2 *3)) (-4 *2 (-13 (-831) (-357))) (-4 *3 (-1214 *2))))) -(-13 (-1079) (-10 -8 (-15 -2125 ((-553) |t#2| $)) (-15 -3769 ((-111) |t#2| $)) (-15 -2797 ((-111) |t#2| $)) (-15 -4270 ((-111) |t#2| $)) (-15 -2982 ((-3 |t#2| "failed") |t#2| $)) (-15 -1394 (|t#2| $)) (-15 -3408 ((-630 $) |t#2|)) (-15 -3906 ((-3 $ "failed") |t#2| (-903))) (-15 -4327 (|t#1| |t#2| $ |t#1|)) (-15 -3304 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3249 (((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 |#4|) (-630 |#5|) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-757)) 96)) (-2045 (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757)) 56)) (-1955 (((-1243) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-757)) 87)) (-2904 (((-757) (-630 |#4|) (-630 |#5|)) 27)) (-2058 (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757)) 58) (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757) (-111)) 60)) (-2075 (((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111)) 79)) (-1524 (((-1137) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) 82)) (-1870 (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-111)) 55)) (-1343 (((-757) (-630 |#4|) (-630 |#5|)) 19))) -(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1343 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -2904 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -1870 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-111))) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757) (-111))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3249 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 |#4|) (-630 |#5|) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-757))) (-15 -1524 ((-1137) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -1955 ((-1243) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-757)))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|)) (T -1049)) -((-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) (-5 *4 (-757)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-1243)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1137)) (-5 *1 (-1049 *4 *5 *6 *7 *8)))) (-3249 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-630 *11)) (|:| |todo| (-630 (-2 (|:| |val| *3) (|:| -3233 *11)))))) (-5 *6 (-757)) (-5 *2 (-630 (-2 (|:| |val| (-630 *10)) (|:| -3233 *11)))) (-5 *3 (-630 *10)) (-5 *4 (-630 *11)) (-4 *10 (-1045 *7 *8 *9)) (-4 *11 (-1051 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-779)) (-4 *9 (-833)) (-5 *1 (-1049 *7 *8 *9 *10 *11)))) (-2075 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-2075 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-2058 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) (-2058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-757)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-779)) (-4 *9 (-833)) (-4 *3 (-1045 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1049 *7 *8 *9 *3 *4)) (-4 *4 (-1051 *7 *8 *9 *3)))) (-2045 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) (-1870 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1049 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1343 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -2904 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -1870 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-111))) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757) (-111))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3249 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 |#4|) (-630 |#5|) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-757))) (-15 -1524 ((-1137) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -1955 ((-1243) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-757)))) -((-3217 (((-111) |#5| $) 21)) (-3077 (((-111) |#5| $) 24)) (-1497 (((-111) |#5| $) 16) (((-111) $) 45)) (-1475 (((-630 $) |#5| $) NIL) (((-630 $) (-630 |#5|) $) 77) (((-630 $) (-630 |#5|) (-630 $)) 75) (((-630 $) |#5| (-630 $)) 78)) (-3089 (($ $ |#5|) NIL) (((-630 $) |#5| $) NIL) (((-630 $) |#5| (-630 $)) 60) (((-630 $) (-630 |#5|) $) 62) (((-630 $) (-630 |#5|) (-630 $)) 64)) (-4130 (((-630 $) |#5| $) NIL) (((-630 $) |#5| (-630 $)) 54) (((-630 $) (-630 |#5|) $) 56) (((-630 $) (-630 |#5|) (-630 $)) 58)) (-1397 (((-111) |#5| $) 27))) -(((-1050 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3089 ((-630 |#1|) (-630 |#5|) (-630 |#1|))) (-15 -3089 ((-630 |#1|) (-630 |#5|) |#1|)) (-15 -3089 ((-630 |#1|) |#5| (-630 |#1|))) (-15 -3089 ((-630 |#1|) |#5| |#1|)) (-15 -4130 ((-630 |#1|) (-630 |#5|) (-630 |#1|))) (-15 -4130 ((-630 |#1|) (-630 |#5|) |#1|)) (-15 -4130 ((-630 |#1|) |#5| (-630 |#1|))) (-15 -4130 ((-630 |#1|) |#5| |#1|)) (-15 -1475 ((-630 |#1|) |#5| (-630 |#1|))) (-15 -1475 ((-630 |#1|) (-630 |#5|) (-630 |#1|))) (-15 -1475 ((-630 |#1|) (-630 |#5|) |#1|)) (-15 -1475 ((-630 |#1|) |#5| |#1|)) (-15 -3077 ((-111) |#5| |#1|)) (-15 -1497 ((-111) |#1|)) (-15 -1397 ((-111) |#5| |#1|)) (-15 -3217 ((-111) |#5| |#1|)) (-15 -1497 ((-111) |#5| |#1|)) (-15 -3089 (|#1| |#1| |#5|))) (-1051 |#2| |#3| |#4| |#5|) (-445) (-779) (-833) (-1045 |#2| |#3| |#4|)) (T -1050)) -NIL -(-10 -8 (-15 -3089 ((-630 |#1|) (-630 |#5|) (-630 |#1|))) (-15 -3089 ((-630 |#1|) (-630 |#5|) |#1|)) (-15 -3089 ((-630 |#1|) |#5| (-630 |#1|))) (-15 -3089 ((-630 |#1|) |#5| |#1|)) (-15 -4130 ((-630 |#1|) (-630 |#5|) (-630 |#1|))) (-15 -4130 ((-630 |#1|) (-630 |#5|) |#1|)) (-15 -4130 ((-630 |#1|) |#5| (-630 |#1|))) (-15 -4130 ((-630 |#1|) |#5| |#1|)) (-15 -1475 ((-630 |#1|) |#5| (-630 |#1|))) (-15 -1475 ((-630 |#1|) (-630 |#5|) (-630 |#1|))) (-15 -1475 ((-630 |#1|) (-630 |#5|) |#1|)) (-15 -1475 ((-630 |#1|) |#5| |#1|)) (-15 -3077 ((-111) |#5| |#1|)) (-15 -1497 ((-111) |#1|)) (-15 -1397 ((-111) |#5| |#1|)) (-15 -3217 ((-111) |#5| |#1|)) (-15 -1497 ((-111) |#5| |#1|)) (-15 -3089 (|#1| |#1| |#5|))) -((-3096 (((-111) $ $) 7)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) 85)) (-3247 (((-630 $) (-630 |#4|)) 86) (((-630 $) (-630 |#4|) (-111)) 111)) (-3506 (((-630 |#3|) $) 33)) (-1742 (((-111) $) 26)) (-3538 (((-111) $) 17 (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) 101) (((-111) $) 97)) (-1484 ((|#4| |#4| $) 92)) (-1536 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| $) 126)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) 27)) (-1511 (((-111) $ (-757)) 44)) (-3905 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 79)) (-3820 (($) 45 T CONST)) (-2623 (((-111) $) 22 (|has| |#1| (-545)))) (-2032 (((-111) $ $) 24 (|has| |#1| (-545)))) (-3559 (((-111) $ $) 23 (|has| |#1| (-545)))) (-1921 (((-111) $) 25 (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4063 (((-630 |#4|) (-630 |#4|) $) 18 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) 19 (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 36)) (-2707 (($ (-630 |#4|)) 35)) (-2616 (((-3 $ "failed") $) 82)) (-4290 ((|#4| |#4| $) 89)) (-2638 (($ $) 68 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#4| $) 67 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-1345 ((|#4| |#4| $) 87)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) 105)) (-3217 (((-111) |#4| $) 136)) (-3077 (((-111) |#4| $) 133)) (-1497 (((-111) |#4| $) 137) (((-111) $) 134)) (-1408 (((-630 |#4|) $) 52 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) 104) (((-111) $) 103)) (-1470 ((|#3| $) 34)) (-3703 (((-111) $ (-757)) 43)) (-2195 (((-630 |#4|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 47)) (-3935 (((-630 |#3|) $) 32)) (-2351 (((-111) |#3| $) 31)) (-3786 (((-111) $ (-757)) 42)) (-1735 (((-1137) $) 9)) (-2025 (((-3 |#4| (-630 $)) |#4| |#4| $) 128)) (-4247 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| |#4| $) 127)) (-2594 (((-3 |#4| "failed") $) 83)) (-2129 (((-630 $) |#4| $) 129)) (-3184 (((-3 (-111) (-630 $)) |#4| $) 132)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-1475 (((-630 $) |#4| $) 125) (((-630 $) (-630 |#4|) $) 124) (((-630 $) (-630 |#4|) (-630 $)) 123) (((-630 $) |#4| (-630 $)) 122)) (-2520 (($ |#4| $) 117) (($ (-630 |#4|) $) 116)) (-2564 (((-630 |#4|) $) 107)) (-4299 (((-111) |#4| $) 99) (((-111) $) 95)) (-4080 ((|#4| |#4| $) 90)) (-1990 (((-111) $ $) 110)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) 100) (((-111) $) 96)) (-3138 ((|#4| |#4| $) 91)) (-2786 (((-1099) $) 10)) (-2603 (((-3 |#4| "failed") $) 84)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2761 (((-3 $ "failed") $ |#4|) 78)) (-3089 (($ $ |#4|) 77) (((-630 $) |#4| $) 115) (((-630 $) |#4| (-630 $)) 114) (((-630 $) (-630 |#4|) $) 113) (((-630 $) (-630 |#4|) (-630 $)) 112)) (-3341 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) 38)) (-3586 (((-111) $) 41)) (-3222 (($) 40)) (-3872 (((-757) $) 106)) (-2796 (((-757) |#4| $) 54 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4369)))) (-1508 (($ $) 39)) (-1524 (((-529) $) 69 (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 60)) (-2867 (($ $ |#3|) 28)) (-3721 (($ $ |#3|) 30)) (-2316 (($ $) 88)) (-1665 (($ $ |#3|) 29)) (-3110 (((-845) $) 11) (((-630 |#4|) $) 37)) (-2668 (((-757) $) 76 (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) 98)) (-4130 (((-630 $) |#4| $) 121) (((-630 $) |#4| (-630 $)) 120) (((-630 $) (-630 |#4|) $) 119) (((-630 $) (-630 |#4|) (-630 $)) 118)) (-3296 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) 81)) (-1397 (((-111) |#4| $) 135)) (-4223 (((-111) |#3| $) 80)) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 46 (|has| $ (-6 -4369))))) -(((-1051 |#1| |#2| |#3| |#4|) (-137) (-445) (-779) (-833) (-1045 |t#1| |t#2| |t#3|)) (T -1051)) -((-1497 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-3217 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-1397 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-3077 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-3184 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-3 (-111) (-630 *1))) (-4 *1 (-1051 *4 *5 *6 *3)))) (-1461 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *1)))) (-4 *1 (-1051 *4 *5 *6 *3)))) (-1461 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-2129 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)))) (-2025 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-3 *3 (-630 *1))) (-4 *1 (-1051 *4 *5 *6 *3)))) (-4247 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *1)))) (-4 *1 (-1051 *4 *5 *6 *3)))) (-1536 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *1)))) (-4 *1 (-1051 *4 *5 *6 *3)))) (-1475 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)))) (-1475 (*1 *2 *3 *1) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *7)))) (-1475 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *1)) (-5 *3 (-630 *7)) (-4 *1 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)))) (-1475 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)))) (-4130 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)))) (-4130 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)))) (-4130 (*1 *2 *3 *1) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *7)))) (-4130 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *1)) (-5 *3 (-630 *7)) (-4 *1 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)))) (-2520 (*1 *1 *2 *1) (-12 (-4 *1 (-1051 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-2520 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *6)) (-4 *1 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)))) (-3089 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)))) (-3089 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)))) (-3089 (*1 *2 *3 *1) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *7)))) (-3089 (*1 *2 *3 *2) (-12 (-5 *2 (-630 *1)) (-5 *3 (-630 *7)) (-4 *1 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1051 *5 *6 *7 *8))))) -(-13 (-1185 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1497 ((-111) |t#4| $)) (-15 -3217 ((-111) |t#4| $)) (-15 -1397 ((-111) |t#4| $)) (-15 -1497 ((-111) $)) (-15 -3077 ((-111) |t#4| $)) (-15 -3184 ((-3 (-111) (-630 $)) |t#4| $)) (-15 -1461 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |t#4| $)) (-15 -1461 ((-111) |t#4| $)) (-15 -2129 ((-630 $) |t#4| $)) (-15 -2025 ((-3 |t#4| (-630 $)) |t#4| |t#4| $)) (-15 -4247 ((-630 (-2 (|:| |val| |t#4|) (|:| -3233 $))) |t#4| |t#4| $)) (-15 -1536 ((-630 (-2 (|:| |val| |t#4|) (|:| -3233 $))) |t#4| $)) (-15 -1475 ((-630 $) |t#4| $)) (-15 -1475 ((-630 $) (-630 |t#4|) $)) (-15 -1475 ((-630 $) (-630 |t#4|) (-630 $))) (-15 -1475 ((-630 $) |t#4| (-630 $))) (-15 -4130 ((-630 $) |t#4| $)) (-15 -4130 ((-630 $) |t#4| (-630 $))) (-15 -4130 ((-630 $) (-630 |t#4|) $)) (-15 -4130 ((-630 $) (-630 |t#4|) (-630 $))) (-15 -2520 ($ |t#4| $)) (-15 -2520 ($ (-630 |t#4|) $)) (-15 -3089 ((-630 $) |t#4| $)) (-15 -3089 ((-630 $) |t#4| (-630 $))) (-15 -3089 ((-630 $) (-630 |t#4|) $)) (-15 -3089 ((-630 $) (-630 |t#4|) (-630 $))) (-15 -3247 ((-630 $) (-630 |t#4|) (-111))))) -(((-34) . T) ((-101) . T) ((-600 (-630 |#4|)) . T) ((-600 (-845)) . T) ((-148 |#4|) . T) ((-601 (-529)) |has| |#4| (-601 (-529))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-482 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-958 |#1| |#2| |#3| |#4|) . T) ((-1079) . T) ((-1185 |#1| |#2| |#3| |#4|) . T) ((-1192) . T)) -((-2699 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|) 81)) (-2275 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|) 113)) (-2217 (((-630 |#5|) |#4| |#5|) 70)) (-2138 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3971 (((-1243)) 37)) (-3188 (((-1243)) 26)) (-1790 (((-1243) (-1137) (-1137) (-1137)) 33)) (-2127 (((-1243) (-1137) (-1137) (-1137)) 22)) (-2354 (((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#4| |#4| |#5|) 96)) (-4191 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#3| (-111)) 107) (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-1466 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|) 102))) -(((-1052 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2127 ((-1243) (-1137) (-1137) (-1137))) (-15 -3188 ((-1243))) (-15 -1790 ((-1243) (-1137) (-1137) (-1137))) (-15 -3971 ((-1243))) (-15 -2354 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -4191 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -4191 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#3| (-111))) (-15 -1466 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -2275 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -2138 ((-111) |#4| |#5|)) (-15 -2138 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -2217 ((-630 |#5|) |#4| |#5|)) (-15 -2699 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|)) (T -1052)) -((-2699 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2217 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2138 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2138 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2275 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-1466 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-4191 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) (-5 *5 (-111)) (-4 *8 (-1045 *6 *7 *4)) (-4 *9 (-1051 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *4 (-833)) (-5 *2 (-630 (-2 (|:| |val| *8) (|:| -3233 *9)))) (-5 *1 (-1052 *6 *7 *4 *8 *9)))) (-4191 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) (-2354 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3971 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) (-1790 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-3188 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) (-2127 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(-10 -7 (-15 -2127 ((-1243) (-1137) (-1137) (-1137))) (-15 -3188 ((-1243))) (-15 -1790 ((-1243) (-1137) (-1137) (-1137))) (-15 -3971 ((-1243))) (-15 -2354 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -4191 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -4191 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#3| (-111))) (-15 -1466 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -2275 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -2138 ((-111) |#4| |#5|)) (-15 -2138 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -2217 ((-630 |#5|) |#4| |#5|)) (-15 -2699 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|))) -((-3096 (((-111) $ $) NIL)) (-1378 (((-1191) $) 13)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3456 (((-1114) $) 10)) (-3110 (((-845) $) 22) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1053) (-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -1378 ((-1191) $))))) (T -1053)) -((-3456 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1053)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1053))))) -(-13 (-1062) (-10 -8 (-15 -3456 ((-1114) $)) (-15 -1378 ((-1191) $)))) -((-3096 (((-111) $ $) NIL)) (-4298 (((-1155) $) 8)) (-1735 (((-1137) $) 16)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 13))) -(((-1054 |#1|) (-13 (-1079) (-10 -8 (-15 -4298 ((-1155) $)))) (-1155)) (T -1054)) -((-4298 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1054 *3)) (-14 *3 *2)))) -(-13 (-1079) (-10 -8 (-15 -4298 ((-1155) $)))) -((-3096 (((-111) $ $) NIL)) (-3893 (($ $ (-630 (-1155)) (-1 (-111) (-630 |#3|))) 33)) (-1799 (($ |#3| |#3|) 22) (($ |#3| |#3| (-630 (-1155))) 20)) (-1314 ((|#3| $) 13)) (-1399 (((-3 (-288 |#3|) "failed") $) 58)) (-2707 (((-288 |#3|) $) NIL)) (-1468 (((-630 (-1155)) $) 16)) (-2289 (((-874 |#1|) $) 11)) (-1301 ((|#3| $) 12)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2046 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-903)) 39)) (-3110 (((-845) $) 86) (($ (-288 |#3|)) 21)) (-1617 (((-111) $ $) 36))) -(((-1055 |#1| |#2| |#3|) (-13 (-1079) (-280 |#3| |#3|) (-1020 (-288 |#3|)) (-10 -8 (-15 -1799 ($ |#3| |#3|)) (-15 -1799 ($ |#3| |#3| (-630 (-1155)))) (-15 -3893 ($ $ (-630 (-1155)) (-1 (-111) (-630 |#3|)))) (-15 -2289 ((-874 |#1|) $)) (-15 -1301 (|#3| $)) (-15 -1314 (|#3| $)) (-15 -2046 (|#3| $ |#3| (-903))) (-15 -1468 ((-630 (-1155)) $)))) (-1079) (-13 (-1031) (-868 |#1|) (-833) (-601 (-874 |#1|))) (-13 (-424 |#2|) (-868 |#1|) (-601 (-874 |#1|)))) (T -1055)) -((-1799 (*1 *1 *2 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) (-5 *1 (-1055 *3 *4 *2)) (-4 *2 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))))) (-1799 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-630 (-1155))) (-4 *4 (-1079)) (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) (-5 *1 (-1055 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))))) (-3893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-1 (-111) (-630 *6))) (-4 *6 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))) (-4 *4 (-1079)) (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) (-5 *1 (-1055 *4 *5 *6)))) (-2289 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 *2))) (-5 *2 (-874 *3)) (-5 *1 (-1055 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-868 *3) (-601 *2))))) (-1301 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *2 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))) (-5 *1 (-1055 *3 *4 *2)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))))) (-1314 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *2 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))) (-5 *1 (-1055 *3 *4 *2)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))))) (-2046 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-903)) (-4 *4 (-1079)) (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) (-5 *1 (-1055 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))))) (-1468 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) (-5 *2 (-630 (-1155))) (-5 *1 (-1055 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-868 *3) (-601 (-874 *3))))))) -(-13 (-1079) (-280 |#3| |#3|) (-1020 (-288 |#3|)) (-10 -8 (-15 -1799 ($ |#3| |#3|)) (-15 -1799 ($ |#3| |#3| (-630 (-1155)))) (-15 -3893 ($ $ (-630 (-1155)) (-1 (-111) (-630 |#3|)))) (-15 -2289 ((-874 |#1|) $)) (-15 -1301 (|#3| $)) (-15 -1314 (|#3| $)) (-15 -2046 (|#3| $ |#3| (-903))) (-15 -1468 ((-630 (-1155)) $)))) -((-3096 (((-111) $ $) NIL)) (-3857 (($ (-630 (-1055 |#1| |#2| |#3|))) 13)) (-2672 (((-630 (-1055 |#1| |#2| |#3|)) $) 20)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2046 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-903)) 26)) (-3110 (((-845) $) 16)) (-1617 (((-111) $ $) 19))) -(((-1056 |#1| |#2| |#3|) (-13 (-1079) (-280 |#3| |#3|) (-10 -8 (-15 -3857 ($ (-630 (-1055 |#1| |#2| |#3|)))) (-15 -2672 ((-630 (-1055 |#1| |#2| |#3|)) $)) (-15 -2046 (|#3| $ |#3| (-903))))) (-1079) (-13 (-1031) (-868 |#1|) (-833) (-601 (-874 |#1|))) (-13 (-424 |#2|) (-868 |#1|) (-601 (-874 |#1|)))) (T -1056)) -((-3857 (*1 *1 *2) (-12 (-5 *2 (-630 (-1055 *3 *4 *5))) (-4 *3 (-1079)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) (-4 *5 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))) (-5 *1 (-1056 *3 *4 *5)))) (-2672 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) (-5 *2 (-630 (-1055 *3 *4 *5))) (-5 *1 (-1056 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))))) (-2046 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-903)) (-4 *4 (-1079)) (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) (-5 *1 (-1056 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4))))))) -(-13 (-1079) (-280 |#3| |#3|) (-10 -8 (-15 -3857 ($ (-630 (-1055 |#1| |#2| |#3|)))) (-15 -2672 ((-630 (-1055 |#1| |#2| |#3|)) $)) (-15 -2046 (|#3| $ |#3| (-903))))) -((-3844 (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111)) 75) (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|))) 77) (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111)) 76))) -(((-1057 |#1| |#2|) (-10 -7 (-15 -3844 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111))) (-15 -3844 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)))) (-15 -3844 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111)))) (-13 (-301) (-144)) (-630 (-1155))) (T -1057)) -((-3844 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) (-5 *1 (-1057 *5 *6)) (-5 *3 (-630 (-934 *5))) (-14 *6 (-630 (-1155))))) (-3844 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *4)) (|:| -2855 (-630 (-934 *4)))))) (-5 *1 (-1057 *4 *5)) (-5 *3 (-630 (-934 *4))) (-14 *5 (-630 (-1155))))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) (-5 *1 (-1057 *5 *6)) (-5 *3 (-630 (-934 *5))) (-14 *6 (-630 (-1155)))))) -(-10 -7 (-15 -3844 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111))) (-15 -3844 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)))) (-15 -3844 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111)))) -((-3355 (((-412 |#3|) |#3|) 18))) -(((-1058 |#1| |#2| |#3|) (-10 -7 (-15 -3355 ((-412 |#3|) |#3|))) (-1214 (-401 (-553))) (-13 (-357) (-144) (-710 (-401 (-553)) |#1|)) (-1214 |#2|)) (T -1058)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-13 (-357) (-144) (-710 (-401 (-553)) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1058 *4 *5 *3)) (-4 *3 (-1214 *5))))) -(-10 -7 (-15 -3355 ((-412 |#3|) |#3|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 126)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-357)))) (-1968 (($ $) NIL (|has| |#1| (-357)))) (-2028 (((-111) $) NIL (|has| |#1| (-357)))) (-3989 (((-674 |#1|) (-1238 $)) NIL) (((-674 |#1|)) 115)) (-1576 ((|#1| $) 119)) (-3555 (((-1165 (-903) (-757)) (-553)) NIL (|has| |#1| (-343)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2571 (((-757)) 40 (|has| |#1| (-362)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3461 (($ (-1238 |#1|) (-1238 $)) NIL) (($ (-1238 |#1|)) 43)) (-1922 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-4232 (((-674 |#1|) $ (-1238 $)) NIL) (((-674 |#1|) $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 106) (((-674 |#1|) (-674 $)) 101)) (-2654 (($ |#2|) 61) (((-3 $ "failed") (-401 |#2|)) NIL (|has| |#1| (-357)))) (-2982 (((-3 $ "failed") $) NIL)) (-2409 (((-903)) 77)) (-3031 (($) 44 (|has| |#1| (-362)))) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-2484 (($) NIL (|has| |#1| (-343)))) (-3637 (((-111) $) NIL (|has| |#1| (-343)))) (-1808 (($ $ (-757)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-2968 (((-903) $) NIL (|has| |#1| (-343))) (((-819 (-903)) $) NIL (|has| |#1| (-343)))) (-1848 (((-111) $) NIL)) (-3560 ((|#1| $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-3568 ((|#2| $) 84 (|has| |#1| (-357)))) (-3796 (((-903) $) 131 (|has| |#1| (-362)))) (-2643 ((|#2| $) 58)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-1945 (($) NIL (|has| |#1| (-343)) CONST)) (-2735 (($ (-903)) 125 (|has| |#1| (-362)))) (-2786 (((-1099) $) NIL)) (-4093 (($) 121)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3484 (((-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553))))) NIL (|has| |#1| (-343)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-3000 ((|#1| (-1238 $)) NIL) ((|#1|) 109)) (-3122 (((-757) $) NIL (|has| |#1| (-343))) (((-3 (-757) "failed") $ $) NIL (|has| |#1| (-343)))) (-1330 (($ $) NIL (-3988 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-757)) NIL (-3988 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-1 |#1| |#1|) (-757)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-2297 (((-674 |#1|) (-1238 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1394 ((|#2|) 73)) (-1469 (($) NIL (|has| |#1| (-343)))) (-2855 (((-1238 |#1|) $ (-1238 $)) 89) (((-674 |#1|) (-1238 $) (-1238 $)) NIL) (((-1238 |#1|) $) 71) (((-674 |#1|) (-1238 $)) 85)) (-1524 (((-1238 |#1|) $) NIL) (($ (-1238 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (|has| |#1| (-343)))) (-3110 (((-845) $) 57) (($ (-553)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-357))) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-357)) (|has| |#1| (-1020 (-401 (-553))))))) (-2941 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3547 ((|#2| $) 82)) (-1999 (((-757)) 75)) (-4124 (((-1238 $)) 81)) (-1639 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1988 (($) 30 T CONST)) (-1997 (($) 19 T CONST)) (-1780 (($ $) NIL (-3988 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-757)) NIL (-3988 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-882 (-1155))))) (($ $ (-1 |#1| |#1|) (-757)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1617 (((-111) $ $) 63)) (-1723 (($ $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) 67) (($ $ $) NIL)) (-1700 (($ $ $) 65)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-401 (-553)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-553))) NIL (|has| |#1| (-357))))) -(((-1059 |#1| |#2| |#3|) (-710 |#1| |#2|) (-169) (-1214 |#1|) |#2|) (T -1059)) -NIL -(-710 |#1| |#2|) -((-3355 (((-412 |#3|) |#3|) 19))) -(((-1060 |#1| |#2| |#3|) (-10 -7 (-15 -3355 ((-412 |#3|) |#3|))) (-1214 (-401 (-934 (-553)))) (-13 (-357) (-144) (-710 (-401 (-934 (-553))) |#1|)) (-1214 |#2|)) (T -1060)) -((-3355 (*1 *2 *3) (-12 (-4 *4 (-1214 (-401 (-934 (-553))))) (-4 *5 (-13 (-357) (-144) (-710 (-401 (-934 (-553))) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1060 *4 *5 *3)) (-4 *3 (-1214 *5))))) -(-10 -7 (-15 -3355 ((-412 |#3|) |#3|))) -((-3096 (((-111) $ $) NIL)) (-1824 (($ $ $) 14)) (-1975 (($ $ $) 15)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3909 (($) 6)) (-1524 (((-1155) $) 18)) (-3110 (((-845) $) 12)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 13)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 8))) -(((-1061) (-13 (-833) (-601 (-1155)) (-10 -8 (-15 -3909 ($))))) (T -1061)) -((-3909 (*1 *1) (-5 *1 (-1061)))) -(-13 (-833) (-601 (-1155)) (-10 -8 (-15 -3909 ($)))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-1160)) 16) (((-1160) $) 15)) (-1617 (((-111) $ $) 6))) -(((-1062) (-137)) (T -1062)) -NIL -(-13 (-92)) -(((-92) . T) ((-101) . T) ((-603 #0=(-1160)) . T) ((-600 (-845)) . T) ((-600 #0#) . T) ((-483 #0#) . T) ((-1079) . T)) -((-2305 ((|#1| |#1| (-1 (-553) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-1707 (((-1243)) 15)) (-3615 (((-630 |#1|)) 9))) -(((-1063 |#1|) (-10 -7 (-15 -1707 ((-1243))) (-15 -3615 ((-630 |#1|))) (-15 -2305 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2305 (|#1| |#1| (-1 (-553) |#1| |#1|)))) (-130)) (T -1063)) -((-2305 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-553) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1063 *2)))) (-2305 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1063 *2)))) (-3615 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-130)))) (-1707 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1063 *3)) (-4 *3 (-130))))) -(-10 -7 (-15 -1707 ((-1243))) (-15 -3615 ((-630 |#1|))) (-15 -2305 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2305 (|#1| |#1| (-1 (-553) |#1| |#1|)))) -((-1286 (($ (-108) $) 16)) (-1905 (((-3 (-108) "failed") (-1155) $) 15)) (-3222 (($) 7)) (-2815 (($) 17)) (-3853 (($) 18)) (-4335 (((-630 (-172)) $) 10)) (-3110 (((-845) $) 21))) -(((-1064) (-13 (-600 (-845)) (-10 -8 (-15 -3222 ($)) (-15 -4335 ((-630 (-172)) $)) (-15 -1905 ((-3 (-108) "failed") (-1155) $)) (-15 -1286 ($ (-108) $)) (-15 -2815 ($)) (-15 -3853 ($))))) (T -1064)) -((-3222 (*1 *1) (-5 *1 (-1064))) (-4335 (*1 *2 *1) (-12 (-5 *2 (-630 (-172))) (-5 *1 (-1064)))) (-1905 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-108)) (-5 *1 (-1064)))) (-1286 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1064)))) (-2815 (*1 *1) (-5 *1 (-1064))) (-3853 (*1 *1) (-5 *1 (-1064)))) -(-13 (-600 (-845)) (-10 -8 (-15 -3222 ($)) (-15 -4335 ((-630 (-172)) $)) (-15 -1905 ((-3 (-108) "failed") (-1155) $)) (-15 -1286 ($ (-108) $)) (-15 -2815 ($)) (-15 -3853 ($)))) -((-3836 (((-1238 (-674 |#1|)) (-630 (-674 |#1|))) 42) (((-1238 (-674 (-934 |#1|))) (-630 (-1155)) (-674 (-934 |#1|))) 63) (((-1238 (-674 (-401 (-934 |#1|)))) (-630 (-1155)) (-674 (-401 (-934 |#1|)))) 79)) (-2855 (((-1238 |#1|) (-674 |#1|) (-630 (-674 |#1|))) 36))) -(((-1065 |#1|) (-10 -7 (-15 -3836 ((-1238 (-674 (-401 (-934 |#1|)))) (-630 (-1155)) (-674 (-401 (-934 |#1|))))) (-15 -3836 ((-1238 (-674 (-934 |#1|))) (-630 (-1155)) (-674 (-934 |#1|)))) (-15 -3836 ((-1238 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -2855 ((-1238 |#1|) (-674 |#1|) (-630 (-674 |#1|))))) (-357)) (T -1065)) -((-2855 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-674 *5))) (-5 *3 (-674 *5)) (-4 *5 (-357)) (-5 *2 (-1238 *5)) (-5 *1 (-1065 *5)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-630 (-674 *4))) (-4 *4 (-357)) (-5 *2 (-1238 (-674 *4))) (-5 *1 (-1065 *4)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-1155))) (-4 *5 (-357)) (-5 *2 (-1238 (-674 (-934 *5)))) (-5 *1 (-1065 *5)) (-5 *4 (-674 (-934 *5))))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-1155))) (-4 *5 (-357)) (-5 *2 (-1238 (-674 (-401 (-934 *5))))) (-5 *1 (-1065 *5)) (-5 *4 (-674 (-401 (-934 *5))))))) -(-10 -7 (-15 -3836 ((-1238 (-674 (-401 (-934 |#1|)))) (-630 (-1155)) (-674 (-401 (-934 |#1|))))) (-15 -3836 ((-1238 (-674 (-934 |#1|))) (-630 (-1155)) (-674 (-934 |#1|)))) (-15 -3836 ((-1238 (-674 |#1|)) (-630 (-674 |#1|)))) (-15 -2855 ((-1238 |#1|) (-674 |#1|) (-630 (-674 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2991 (((-630 (-757)) $) NIL) (((-630 (-757)) $ (-1155)) NIL)) (-2342 (((-757) $) NIL) (((-757) $ (-1155)) NIL)) (-3506 (((-630 (-1067 (-1155))) $) NIL)) (-3322 (((-1151 $) $ (-1067 (-1155))) NIL) (((-1151 |#1|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1067 (-1155)))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-2387 (($ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-1067 (-1155)) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL) (((-3 (-1104 |#1| (-1155)) "failed") $) NIL)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-1067 (-1155)) $) NIL) (((-1155) $) NIL) (((-1104 |#1| (-1155)) $) NIL)) (-2134 (($ $ $ (-1067 (-1155))) NIL (|has| |#1| (-169)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1067 (-1155))) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-524 (-1067 (-1155))) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1067 (-1155)) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1067 (-1155)) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-2968 (((-757) $ (-1155)) NIL) (((-757) $) NIL)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-3493 (($ (-1151 |#1|) (-1067 (-1155))) NIL) (($ (-1151 $) (-1067 (-1155))) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-524 (-1067 (-1155)))) NIL) (($ $ (-1067 (-1155)) (-757)) NIL) (($ $ (-630 (-1067 (-1155))) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1067 (-1155))) NIL)) (-2423 (((-524 (-1067 (-1155))) $) NIL) (((-757) $ (-1067 (-1155))) NIL) (((-630 (-757)) $ (-630 (-1067 (-1155)))) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-524 (-1067 (-1155))) (-524 (-1067 (-1155)))) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3553 (((-1 $ (-757)) (-1155)) NIL) (((-1 $ (-757)) $) NIL (|has| |#1| (-228)))) (-1332 (((-3 (-1067 (-1155)) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2415 (((-1067 (-1155)) $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-2296 (((-111) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-1067 (-1155))) (|:| -2692 (-757))) "failed") $) NIL)) (-2901 (($ $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1067 (-1155)) |#1|) NIL) (($ $ (-630 (-1067 (-1155))) (-630 |#1|)) NIL) (($ $ (-1067 (-1155)) $) NIL) (($ $ (-630 (-1067 (-1155))) (-630 $)) NIL) (($ $ (-1155) $) NIL (|has| |#1| (-228))) (($ $ (-630 (-1155)) (-630 $)) NIL (|has| |#1| (-228))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-228))) (($ $ (-630 (-1155)) (-630 |#1|)) NIL (|has| |#1| (-228)))) (-3000 (($ $ (-1067 (-1155))) NIL (|has| |#1| (-169)))) (-1330 (($ $ (-1067 (-1155))) NIL) (($ $ (-630 (-1067 (-1155)))) NIL) (($ $ (-1067 (-1155)) (-757)) NIL) (($ $ (-630 (-1067 (-1155))) (-630 (-757))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3193 (((-630 (-1155)) $) NIL)) (-3872 (((-524 (-1067 (-1155))) $) NIL) (((-757) $ (-1067 (-1155))) NIL) (((-630 (-757)) $ (-630 (-1067 (-1155)))) NIL) (((-757) $ (-1155)) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-1067 (-1155)) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-1067 (-1155)) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-1067 (-1155)) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1067 (-1155))) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-1067 (-1155))) NIL) (($ (-1155)) NIL) (($ (-1104 |#1| (-1155))) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-524 (-1067 (-1155)))) NIL) (($ $ (-1067 (-1155)) (-757)) NIL) (($ $ (-630 (-1067 (-1155))) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-1067 (-1155))) NIL) (($ $ (-630 (-1067 (-1155)))) NIL) (($ $ (-1067 (-1155)) (-757)) NIL) (($ $ (-630 (-1067 (-1155))) (-630 (-757))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-757)) NIL (|has| |#1| (-228))) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1066 |#1|) (-13 (-247 |#1| (-1155) (-1067 (-1155)) (-524 (-1067 (-1155)))) (-1020 (-1104 |#1| (-1155)))) (-1031)) (T -1066)) -NIL -(-13 (-247 |#1| (-1155) (-1067 (-1155)) (-524 (-1067 (-1155)))) (-1020 (-1104 |#1| (-1155)))) -((-3096 (((-111) $ $) NIL)) (-2342 (((-757) $) NIL)) (-1509 ((|#1| $) 10)) (-1399 (((-3 |#1| "failed") $) NIL)) (-2707 ((|#1| $) NIL)) (-2968 (((-757) $) 11)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-3553 (($ |#1| (-757)) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-1330 (($ $) NIL) (($ $ (-757)) NIL)) (-3110 (((-845) $) NIL) (($ |#1|) NIL)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 15))) -(((-1067 |#1|) (-260 |#1|) (-833)) (T -1067)) -NIL -(-260 |#1|) -((-1482 (((-630 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 24 (|has| |#1| (-831))) (((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 14))) -(((-1068 |#1| |#2|) (-10 -7 (-15 -1482 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (IF (|has| |#1| (-831)) (-15 -1482 ((-630 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) |%noBranch|)) (-1192) (-1192)) (T -1068)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-831)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-630 *6)) (-5 *1 (-1068 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1073 *6)) (-5 *1 (-1068 *5 *6))))) -(-10 -7 (-15 -1482 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) (IF (|has| |#1| (-831)) (-15 -1482 ((-630 |#2|) (-1 |#2| |#1|) (-1073 |#1|))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1893 (((-630 (-1114)) $) 9)) (-1617 (((-111) $ $) NIL))) -(((-1069) (-13 (-1062) (-10 -8 (-15 -1893 ((-630 (-1114)) $))))) (T -1069)) -((-1893 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-1069))))) -(-13 (-1062) (-10 -8 (-15 -1893 ((-630 (-1114)) $)))) -((-1482 (((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)) 19))) -(((-1070 |#1| |#2|) (-10 -7 (-15 -1482 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)))) (-1192) (-1192)) (T -1070)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1071 *6)) (-5 *1 (-1070 *5 *6))))) -(-10 -7 (-15 -1482 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1509 (((-1155) $) 11)) (-1474 (((-1073 |#1|) $) 12)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-4304 (($ (-1155) (-1073 |#1|)) 10)) (-3110 (((-845) $) 20 (|has| |#1| (-1079)))) (-1617 (((-111) $ $) 15 (|has| |#1| (-1079))))) -(((-1071 |#1|) (-13 (-1192) (-10 -8 (-15 -4304 ($ (-1155) (-1073 |#1|))) (-15 -1509 ((-1155) $)) (-15 -1474 ((-1073 |#1|) $)) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|))) (-1192)) (T -1071)) -((-4304 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1073 *4)) (-4 *4 (-1192)) (-5 *1 (-1071 *4)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1071 *3)) (-4 *3 (-1192)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-1192))))) -(-13 (-1192) (-10 -8 (-15 -4304 ($ (-1155) (-1073 |#1|))) (-15 -1509 ((-1155) $)) (-15 -1474 ((-1073 |#1|) $)) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|))) -((-1474 (($ |#1| |#1|) 8)) (-3162 ((|#1| $) 11)) (-4179 ((|#1| $) 13)) (-4189 (((-553) $) 9)) (-3640 ((|#1| $) 10)) (-4201 ((|#1| $) 12)) (-1524 (($ |#1|) 6)) (-4260 (($ |#1| |#1|) 15)) (-1436 (($ $ (-553)) 14))) -(((-1072 |#1|) (-137) (-1192)) (T -1072)) -((-4260 (*1 *1 *2 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-1072 *3)) (-4 *3 (-1192)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1192)) (-5 *2 (-553)))) (-1474 (*1 *1 *2 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192))))) -(-13 (-605 |t#1|) (-10 -8 (-15 -4260 ($ |t#1| |t#1|)) (-15 -1436 ($ $ (-553))) (-15 -4179 (|t#1| $)) (-15 -4201 (|t#1| $)) (-15 -3162 (|t#1| $)) (-15 -3640 (|t#1| $)) (-15 -4189 ((-553) $)) (-15 -1474 ($ |t#1| |t#1|)))) -(((-605 |#1|) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1474 (($ |#1| |#1|) 15)) (-1482 (((-630 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-831)))) (-3162 ((|#1| $) 10)) (-4179 ((|#1| $) 9)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-4189 (((-553) $) 14)) (-3640 ((|#1| $) 12)) (-4201 ((|#1| $) 11)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3873 (((-630 |#1|) $) 36 (|has| |#1| (-831))) (((-630 |#1|) (-630 $)) 35 (|has| |#1| (-831)))) (-1524 (($ |#1|) 26)) (-3110 (((-845) $) 25 (|has| |#1| (-1079)))) (-4260 (($ |#1| |#1|) 8)) (-1436 (($ $ (-553)) 16)) (-1617 (((-111) $ $) 19 (|has| |#1| (-1079))))) -(((-1073 |#1|) (-13 (-1072 |#1|) (-10 -7 (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-1074 |#1| (-630 |#1|))) |%noBranch|))) (-1192)) (T -1073)) -NIL -(-13 (-1072 |#1|) (-10 -7 (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-1074 |#1| (-630 |#1|))) |%noBranch|))) -((-1474 (($ |#1| |#1|) 8)) (-1482 ((|#2| (-1 |#1| |#1|) $) 16)) (-3162 ((|#1| $) 11)) (-4179 ((|#1| $) 13)) (-4189 (((-553) $) 9)) (-3640 ((|#1| $) 10)) (-4201 ((|#1| $) 12)) (-3873 ((|#2| (-630 $)) 18) ((|#2| $) 17)) (-1524 (($ |#1|) 6)) (-4260 (($ |#1| |#1|) 15)) (-1436 (($ $ (-553)) 14))) -(((-1074 |#1| |#2|) (-137) (-831) (-1128 |t#1|)) (T -1074)) -((-3873 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1074 *4 *2)) (-4 *4 (-831)) (-4 *2 (-1128 *4)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-831)) (-4 *2 (-1128 *3)))) (-1482 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1074 *4 *2)) (-4 *4 (-831)) (-4 *2 (-1128 *4))))) -(-13 (-1072 |t#1|) (-10 -8 (-15 -3873 (|t#2| (-630 $))) (-15 -3873 (|t#2| $)) (-15 -1482 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-605 |#1|) . T) ((-1072 |#1|) . T)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2594 (((-1114) $) 12)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20) (($ (-1160)) NIL) (((-1160) $) NIL)) (-4310 (((-630 (-1114)) $) 10)) (-1617 (((-111) $ $) NIL))) -(((-1075) (-13 (-1062) (-10 -8 (-15 -4310 ((-630 (-1114)) $)) (-15 -2594 ((-1114) $))))) (T -1075)) -((-4310 (*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-1075)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1075))))) -(-13 (-1062) (-10 -8 (-15 -4310 ((-630 (-1114)) $)) (-15 -2594 ((-1114) $)))) -((-3368 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2745 (($ $ $) 10)) (-2507 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1076 |#1| |#2|) (-10 -8 (-15 -3368 (|#1| |#2| |#1|)) (-15 -3368 (|#1| |#1| |#2|)) (-15 -3368 (|#1| |#1| |#1|)) (-15 -2745 (|#1| |#1| |#1|)) (-15 -2507 (|#1| |#1| |#2|)) (-15 -2507 (|#1| |#1| |#1|))) (-1077 |#2|) (-1079)) (T -1076)) -NIL -(-10 -8 (-15 -3368 (|#1| |#2| |#1|)) (-15 -3368 (|#1| |#1| |#2|)) (-15 -3368 (|#1| |#1| |#1|)) (-15 -2745 (|#1| |#1| |#1|)) (-15 -2507 (|#1| |#1| |#2|)) (-15 -2507 (|#1| |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3368 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2745 (($ $ $) 20)) (-4048 (((-111) $ $) 19)) (-1511 (((-111) $ (-757)) 35)) (-1471 (($) 25) (($ (-630 |#1|)) 24)) (-3905 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4369)))) (-3820 (($) 36 T CONST)) (-2638 (($ $) 59 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 58 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4369)))) (-1408 (((-630 |#1|) $) 43 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) 28)) (-3703 (((-111) $ (-757)) 34)) (-2195 (((-630 |#1|) $) 44 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 38)) (-3786 (((-111) $ (-757)) 33)) (-1735 (((-1137) $) 9)) (-1475 (($ $ $) 23)) (-2786 (((-1099) $) 10)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-3341 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#1|) (-630 |#1|)) 50 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 48 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 (-288 |#1|))) 47 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 29)) (-3586 (((-111) $) 32)) (-3222 (($) 31)) (-2507 (($ $ $) 22) (($ $ |#1|) 21)) (-2796 (((-757) |#1| $) 45 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4369)))) (-1508 (($ $) 30)) (-1524 (((-529) $) 60 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 51)) (-3110 (((-845) $) 11)) (-3420 (($) 27) (($ (-630 |#1|)) 26)) (-3296 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 37 (|has| $ (-6 -4369))))) -(((-1077 |#1|) (-137) (-1079)) (T -1077)) -((-2024 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3)) (-4 *3 (-1079)) (-5 *2 (-111)))) (-3420 (*1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-1077 *3)))) (-1471 (*1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-1471 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-1077 *3)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-2507 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-2507 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-2745 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-4048 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3)) (-4 *3 (-1079)) (-5 *2 (-111)))) (-3368 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-3368 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) (-3368 (*1 *1 *2 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) -(-13 (-1079) (-148 |t#1|) (-10 -8 (-6 -4359) (-15 -2024 ((-111) $ $)) (-15 -3420 ($)) (-15 -3420 ($ (-630 |t#1|))) (-15 -1471 ($)) (-15 -1471 ($ (-630 |t#1|))) (-15 -1475 ($ $ $)) (-15 -2507 ($ $ $)) (-15 -2507 ($ $ |t#1|)) (-15 -2745 ($ $ $)) (-15 -4048 ((-111) $ $)) (-15 -3368 ($ $ $)) (-15 -3368 ($ $ |t#1|)) (-15 -3368 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-600 (-845)) . T) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) . T) ((-1192) . T)) -((-1735 (((-1137) $) 10)) (-2786 (((-1099) $) 8))) -(((-1078 |#1|) (-10 -8 (-15 -1735 ((-1137) |#1|)) (-15 -2786 ((-1099) |#1|))) (-1079)) (T -1078)) -NIL -(-10 -8 (-15 -1735 ((-1137) |#1|)) (-15 -2786 ((-1099) |#1|))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-1079) (-137)) (T -1079)) -((-2786 (*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-1099)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-1137))))) -(-13 (-101) (-600 (-845)) (-10 -8 (-15 -2786 ((-1099) $)) (-15 -1735 ((-1137) $)))) -(((-101) . T) ((-600 (-845)) . T)) -((-3096 (((-111) $ $) NIL)) (-2571 (((-757)) 30)) (-3682 (($ (-630 (-903))) 52)) (-3734 (((-3 $ "failed") $ (-903) (-903)) 58)) (-3031 (($) 32)) (-1832 (((-111) (-903) $) 35)) (-3796 (((-903) $) 50)) (-1735 (((-1137) $) NIL)) (-2735 (($ (-903)) 31)) (-2049 (((-3 $ "failed") $ (-903)) 55)) (-2786 (((-1099) $) NIL)) (-3455 (((-1238 $)) 40)) (-3661 (((-630 (-903)) $) 24)) (-2245 (((-757) $ (-903) (-903)) 56)) (-3110 (((-845) $) 29)) (-1617 (((-111) $ $) 21))) -(((-1080 |#1| |#2|) (-13 (-362) (-10 -8 (-15 -2049 ((-3 $ "failed") $ (-903))) (-15 -3734 ((-3 $ "failed") $ (-903) (-903))) (-15 -3661 ((-630 (-903)) $)) (-15 -3682 ($ (-630 (-903)))) (-15 -3455 ((-1238 $))) (-15 -1832 ((-111) (-903) $)) (-15 -2245 ((-757) $ (-903) (-903))))) (-903) (-903)) (T -1080)) -((-2049 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-903)) (-5 *1 (-1080 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3734 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-903)) (-5 *1 (-1080 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903)))) (-3682 (*1 *1 *2) (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903)))) (-3455 (*1 *2) (-12 (-5 *2 (-1238 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903)))) (-1832 (*1 *2 *3 *1) (-12 (-5 *3 (-903)) (-5 *2 (-111)) (-5 *1 (-1080 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-903)) (-5 *2 (-757)) (-5 *1 (-1080 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-362) (-10 -8 (-15 -2049 ((-3 $ "failed") $ (-903))) (-15 -3734 ((-3 $ "failed") $ (-903) (-903))) (-15 -3661 ((-630 (-903)) $)) (-15 -3682 ($ (-630 (-903)))) (-15 -3455 ((-1238 $))) (-15 -1832 ((-111) (-903) $)) (-15 -2245 ((-757) $ (-903) (-903))))) -((-3096 (((-111) $ $) NIL)) (-2841 (($) NIL (|has| |#1| (-362)))) (-3368 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2745 (($ $ $) 72)) (-4048 (((-111) $ $) 73)) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| |#1| (-362)))) (-1471 (($ (-630 |#1|)) NIL) (($) 13)) (-2955 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-3986 (($ |#1| $) 67 (|has| $ (-6 -4369))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4369)))) (-3031 (($) NIL (|has| |#1| (-362)))) (-1408 (((-630 |#1|) $) 19 (|has| $ (-6 -4369)))) (-2024 (((-111) $ $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-1824 ((|#1| $) 57 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1975 ((|#1| $) 55 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 34)) (-3796 (((-903) $) NIL (|has| |#1| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1475 (($ $ $) 70)) (-1376 ((|#1| $) 25)) (-2636 (($ |#1| $) 65)) (-2735 (($ (-903)) NIL (|has| |#1| (-362)))) (-2786 (((-1099) $) NIL)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-2949 ((|#1| $) 27)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 21)) (-3222 (($) 11)) (-2507 (($ $ |#1|) NIL) (($ $ $) 71)) (-3093 (($) NIL) (($ (-630 |#1|)) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 16)) (-1524 (((-529) $) 52 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 61)) (-3845 (($ $) NIL (|has| |#1| (-362)))) (-3110 (((-845) $) NIL)) (-2416 (((-757) $) NIL)) (-3420 (($ (-630 |#1|)) NIL) (($) 12)) (-2711 (($ (-630 |#1|)) NIL)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 54)) (-2563 (((-757) $) 10 (|has| $ (-6 -4369))))) -(((-1081 |#1|) (-419 |#1|) (-1079)) (T -1081)) -NIL -(-419 |#1|) -((-3096 (((-111) $ $) 7)) (-3115 (((-111) $) 32)) (-3444 ((|#2| $) 27)) (-3851 (((-111) $) 33)) (-3950 ((|#1| $) 28)) (-4178 (((-111) $) 35)) (-4099 (((-111) $) 37)) (-1845 (((-111) $) 34)) (-1735 (((-1137) $) 9)) (-2339 (((-111) $) 31)) (-3468 ((|#3| $) 26)) (-2786 (((-1099) $) 10)) (-1819 (((-111) $) 30)) (-3293 ((|#4| $) 25)) (-1473 ((|#5| $) 24)) (-2662 (((-111) $ $) 38)) (-2046 (($ $ (-553)) 20) (($ $ (-630 (-553))) 19)) (-3431 (((-630 $) $) 29)) (-1524 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-630 $)) 39)) (-3110 (((-845) $) 11)) (-2504 (($ $) 22)) (-2491 (($ $) 23)) (-3197 (((-111) $) 36)) (-1617 (((-111) $ $) 6)) (-2563 (((-553) $) 21))) -(((-1082 |#1| |#2| |#3| |#4| |#5|) (-137) (-1079) (-1079) (-1079) (-1079) (-1079)) (T -1082)) -((-2662 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111)))) (-3431 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-630 *1)) (-4 *1 (-1082 *3 *4 *5 *6 *7)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1082 *2 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *2 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *2 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *2 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *2)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)))) (-2491 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4 *5 *6)) (-4 *2 (-1079)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)))) (-2504 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4 *5 *6)) (-4 *2 (-1079)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-553)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079))))) -(-13 (-1079) (-605 |t#1|) (-605 |t#2|) (-605 |t#3|) (-605 |t#4|) (-605 |t#4|) (-605 |t#5|) (-605 (-630 $)) (-10 -8 (-15 -2662 ((-111) $ $)) (-15 -4099 ((-111) $)) (-15 -3197 ((-111) $)) (-15 -4178 ((-111) $)) (-15 -1845 ((-111) $)) (-15 -3851 ((-111) $)) (-15 -3115 ((-111) $)) (-15 -2339 ((-111) $)) (-15 -1819 ((-111) $)) (-15 -3431 ((-630 $) $)) (-15 -3950 (|t#1| $)) (-15 -3444 (|t#2| $)) (-15 -3468 (|t#3| $)) (-15 -3293 (|t#4| $)) (-15 -1473 (|t#5| $)) (-15 -2491 ($ $)) (-15 -2504 ($ $)) (-15 -2563 ((-553) $)) (-15 -2046 ($ $ (-553))) (-15 -2046 ($ $ (-630 (-553)))))) -(((-101) . T) ((-600 (-845)) . T) ((-605 (-630 $)) . T) ((-605 |#1|) . T) ((-605 |#2|) . T) ((-605 |#3|) . T) ((-605 |#4|) . T) ((-605 |#5|) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-3115 (((-111) $) NIL)) (-3444 (((-1155) $) NIL)) (-3851 (((-111) $) NIL)) (-3950 (((-1137) $) NIL)) (-4178 (((-111) $) NIL)) (-4099 (((-111) $) NIL)) (-1845 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-2339 (((-111) $) NIL)) (-3468 (((-553) $) NIL)) (-2786 (((-1099) $) NIL)) (-1819 (((-111) $) NIL)) (-3293 (((-220) $) NIL)) (-1473 (((-845) $) NIL)) (-2662 (((-111) $ $) NIL)) (-2046 (($ $ (-553)) NIL) (($ $ (-630 (-553))) NIL)) (-3431 (((-630 $) $) NIL)) (-1524 (($ (-1137)) NIL) (($ (-1155)) NIL) (($ (-553)) NIL) (($ (-220)) NIL) (($ (-845)) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL)) (-2504 (($ $) NIL)) (-2491 (($ $) NIL)) (-3197 (((-111) $) NIL)) (-1617 (((-111) $ $) NIL)) (-2563 (((-553) $) NIL))) -(((-1083) (-1082 (-1137) (-1155) (-553) (-220) (-845))) (T -1083)) -NIL -(-1082 (-1137) (-1155) (-553) (-220) (-845)) -((-3096 (((-111) $ $) NIL)) (-3115 (((-111) $) 40)) (-3444 ((|#2| $) 43)) (-3851 (((-111) $) 18)) (-3950 ((|#1| $) 19)) (-4178 (((-111) $) 38)) (-4099 (((-111) $) 14)) (-1845 (((-111) $) 39)) (-1735 (((-1137) $) NIL)) (-2339 (((-111) $) 41)) (-3468 ((|#3| $) 45)) (-2786 (((-1099) $) NIL)) (-1819 (((-111) $) 42)) (-3293 ((|#4| $) 44)) (-1473 ((|#5| $) 46)) (-2662 (((-111) $ $) 37)) (-2046 (($ $ (-553)) 57) (($ $ (-630 (-553))) 59)) (-3431 (((-630 $) $) 25)) (-1524 (($ |#1|) 48) (($ |#2|) 49) (($ |#3|) 50) (($ |#4|) 51) (($ |#5|) 52) (($ (-630 $)) 47)) (-3110 (((-845) $) 26)) (-2504 (($ $) 24)) (-2491 (($ $) 53)) (-3197 (((-111) $) 21)) (-1617 (((-111) $ $) 36)) (-2563 (((-553) $) 55))) -(((-1084 |#1| |#2| |#3| |#4| |#5|) (-1082 |#1| |#2| |#3| |#4| |#5|) (-1079) (-1079) (-1079) (-1079) (-1079)) (T -1084)) -NIL -(-1082 |#1| |#2| |#3| |#4| |#5|) -((-4005 (((-1243) $) 23)) (-4271 (($ (-1155) (-428) |#2|) 11)) (-3110 (((-845) $) 16))) -(((-1085 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -4271 ($ (-1155) (-428) |#2|)))) (-833) (-424 |#1|)) (T -1085)) -((-4271 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1155)) (-5 *3 (-428)) (-4 *5 (-833)) (-5 *1 (-1085 *5 *4)) (-4 *4 (-424 *5))))) -(-13 (-389) (-10 -8 (-15 -4271 ($ (-1155) (-428) |#2|)))) -((-1437 (((-111) |#5| |#5|) 38)) (-3981 (((-111) |#5| |#5|) 52)) (-4071 (((-111) |#5| (-630 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-2485 (((-111) (-630 |#4|) (-630 |#4|)) 58)) (-4210 (((-111) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) 63)) (-1406 (((-1243)) 33)) (-3543 (((-1243) (-1137) (-1137) (-1137)) 29)) (-2999 (((-630 |#5|) (-630 |#5|)) 82)) (-2505 (((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) 80)) (-3631 (((-630 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|)))) (-630 |#4|) (-630 |#5|) (-111) (-111)) 102)) (-1763 (((-111) |#5| |#5|) 47)) (-3663 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2697 (((-111) (-630 |#4|) (-630 |#4|)) 57)) (-4303 (((-111) (-630 |#4|) (-630 |#4|)) 59)) (-1990 (((-111) (-630 |#4|) (-630 |#4|)) 60)) (-3432 (((-3 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|))) "failed") (-630 |#4|) |#5| (-630 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-2189 (((-630 |#5|) (-630 |#5|)) 43))) -(((-1086 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3543 ((-1243) (-1137) (-1137) (-1137))) (-15 -1406 ((-1243))) (-15 -1437 ((-111) |#5| |#5|)) (-15 -2189 ((-630 |#5|) (-630 |#5|))) (-15 -1763 ((-111) |#5| |#5|)) (-15 -3981 ((-111) |#5| |#5|)) (-15 -2485 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -2697 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -4303 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -1990 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -3663 ((-3 (-111) "failed") |#5| |#5|)) (-15 -4071 ((-111) |#5| |#5|)) (-15 -4071 ((-111) |#5| (-630 |#5|))) (-15 -2999 ((-630 |#5|) (-630 |#5|))) (-15 -4210 ((-111) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -2505 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-15 -3631 ((-630 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|)))) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -3432 ((-3 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|))) "failed") (-630 |#4|) |#5| (-630 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|)) (T -1086)) -((-3432 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *9 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| -2662 (-630 *9)) (|:| -3233 *4) (|:| |ineq| (-630 *9)))) (-5 *1 (-1086 *6 *7 *8 *9 *4)) (-5 *3 (-630 *9)) (-4 *4 (-1051 *6 *7 *8 *9)))) (-3631 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-630 *10)) (-5 *5 (-111)) (-4 *10 (-1051 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *9 (-1045 *6 *7 *8)) (-5 *2 (-630 (-2 (|:| -2662 (-630 *9)) (|:| -3233 *10) (|:| |ineq| (-630 *9))))) (-5 *1 (-1086 *6 *7 *8 *9 *10)) (-5 *3 (-630 *9)))) (-2505 (*1 *2 *2) (-12 (-5 *2 (-630 (-2 (|:| |val| (-630 *6)) (|:| -3233 *7)))) (-4 *6 (-1045 *3 *4 *5)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-1086 *3 *4 *5 *6 *7)))) (-4210 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *8)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *1 (-1086 *3 *4 *5 *6 *7)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1086 *5 *6 *7 *8 *3)))) (-4071 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-3663 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-4303 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-2697 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-2485 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-1763 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *1 (-1086 *3 *4 *5 *6 *7)))) (-1437 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) (-1406 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) (-5 *1 (-1086 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) (-3543 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(-10 -7 (-15 -3543 ((-1243) (-1137) (-1137) (-1137))) (-15 -1406 ((-1243))) (-15 -1437 ((-111) |#5| |#5|)) (-15 -2189 ((-630 |#5|) (-630 |#5|))) (-15 -1763 ((-111) |#5| |#5|)) (-15 -3981 ((-111) |#5| |#5|)) (-15 -2485 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -2697 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -4303 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -1990 ((-111) (-630 |#4|) (-630 |#4|))) (-15 -3663 ((-3 (-111) "failed") |#5| |#5|)) (-15 -4071 ((-111) |#5| |#5|)) (-15 -4071 ((-111) |#5| (-630 |#5|))) (-15 -2999 ((-630 |#5|) (-630 |#5|))) (-15 -4210 ((-111) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -2505 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-15 -3631 ((-630 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|)))) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -3432 ((-3 (-2 (|:| -2662 (-630 |#4|)) (|:| -3233 |#5|) (|:| |ineq| (-630 |#4|))) "failed") (-630 |#4|) |#5| (-630 |#4|) (-111) (-111) (-111) (-111) (-111)))) -((-3916 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|) 96)) (-1714 (((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#4| |#4| |#5|) 72)) (-2842 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|) 90)) (-4255 (((-630 |#5|) |#4| |#5|) 110)) (-3727 (((-630 |#5|) |#4| |#5|) 117)) (-2063 (((-630 |#5|) |#4| |#5|) 118)) (-1965 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|) 97)) (-1919 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|) 116)) (-3817 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-3476 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#3| (-111)) 84) (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3656 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|) 79)) (-3971 (((-1243)) 37)) (-3188 (((-1243)) 26)) (-1790 (((-1243) (-1137) (-1137) (-1137)) 33)) (-2127 (((-1243) (-1137) (-1137) (-1137)) 22))) -(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2127 ((-1243) (-1137) (-1137) (-1137))) (-15 -3188 ((-1243))) (-15 -1790 ((-1243) (-1137) (-1137) (-1137))) (-15 -3971 ((-1243))) (-15 -1714 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -3476 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3476 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#3| (-111))) (-15 -3656 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -3817 ((-111) |#4| |#5|)) (-15 -1965 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -4255 ((-630 |#5|) |#4| |#5|)) (-15 -1919 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -3727 ((-630 |#5|) |#4| |#5|)) (-15 -3817 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -2063 ((-630 |#5|) |#4| |#5|)) (-15 -3916 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1051 |#1| |#2| |#3| |#4|)) (T -1087)) -((-3916 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2063 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3727 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-1919 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-4255 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-1965 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3817 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-2842 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3656 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) (-5 *5 (-111)) (-4 *8 (-1045 *6 *7 *4)) (-4 *9 (-1051 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *4 (-833)) (-5 *2 (-630 (-2 (|:| |val| *8) (|:| -3233 *9)))) (-5 *1 (-1087 *6 *7 *4 *8 *9)))) (-3476 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) (-1714 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) (-3971 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) (-1790 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) (-3188 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) (-2127 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(-10 -7 (-15 -2127 ((-1243) (-1137) (-1137) (-1137))) (-15 -3188 ((-1243))) (-15 -1790 ((-1243) (-1137) (-1137) (-1137))) (-15 -3971 ((-1243))) (-15 -1714 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -3476 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -3476 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) |#3| (-111))) (-15 -3656 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#4| |#5|)) (-15 -3817 ((-111) |#4| |#5|)) (-15 -1965 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -4255 ((-630 |#5|) |#4| |#5|)) (-15 -1919 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -3727 ((-630 |#5|) |#4| |#5|)) (-15 -3817 ((-630 (-2 (|:| |val| (-111)) (|:| -3233 |#5|))) |#4| |#5|)) (-15 -2063 ((-630 |#5|) |#4| |#5|)) (-15 -3916 ((-630 (-2 (|:| |val| |#4|) (|:| -3233 |#5|))) |#4| |#5|))) -((-3096 (((-111) $ $) 7)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) 85)) (-3247 (((-630 $) (-630 |#4|)) 86) (((-630 $) (-630 |#4|) (-111)) 111)) (-3506 (((-630 |#3|) $) 33)) (-1742 (((-111) $) 26)) (-3538 (((-111) $) 17 (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) 101) (((-111) $) 97)) (-1484 ((|#4| |#4| $) 92)) (-1536 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| $) 126)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) 27)) (-1511 (((-111) $ (-757)) 44)) (-3905 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 79)) (-3820 (($) 45 T CONST)) (-2623 (((-111) $) 22 (|has| |#1| (-545)))) (-2032 (((-111) $ $) 24 (|has| |#1| (-545)))) (-3559 (((-111) $ $) 23 (|has| |#1| (-545)))) (-1921 (((-111) $) 25 (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4063 (((-630 |#4|) (-630 |#4|) $) 18 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) 19 (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 36)) (-2707 (($ (-630 |#4|)) 35)) (-2616 (((-3 $ "failed") $) 82)) (-4290 ((|#4| |#4| $) 89)) (-2638 (($ $) 68 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#4| $) 67 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-1345 ((|#4| |#4| $) 87)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) 105)) (-3217 (((-111) |#4| $) 136)) (-3077 (((-111) |#4| $) 133)) (-1497 (((-111) |#4| $) 137) (((-111) $) 134)) (-1408 (((-630 |#4|) $) 52 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) 104) (((-111) $) 103)) (-1470 ((|#3| $) 34)) (-3703 (((-111) $ (-757)) 43)) (-2195 (((-630 |#4|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 47)) (-3935 (((-630 |#3|) $) 32)) (-2351 (((-111) |#3| $) 31)) (-3786 (((-111) $ (-757)) 42)) (-1735 (((-1137) $) 9)) (-2025 (((-3 |#4| (-630 $)) |#4| |#4| $) 128)) (-4247 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| |#4| $) 127)) (-2594 (((-3 |#4| "failed") $) 83)) (-2129 (((-630 $) |#4| $) 129)) (-3184 (((-3 (-111) (-630 $)) |#4| $) 132)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-1475 (((-630 $) |#4| $) 125) (((-630 $) (-630 |#4|) $) 124) (((-630 $) (-630 |#4|) (-630 $)) 123) (((-630 $) |#4| (-630 $)) 122)) (-2520 (($ |#4| $) 117) (($ (-630 |#4|) $) 116)) (-2564 (((-630 |#4|) $) 107)) (-4299 (((-111) |#4| $) 99) (((-111) $) 95)) (-4080 ((|#4| |#4| $) 90)) (-1990 (((-111) $ $) 110)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) 100) (((-111) $) 96)) (-3138 ((|#4| |#4| $) 91)) (-2786 (((-1099) $) 10)) (-2603 (((-3 |#4| "failed") $) 84)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2761 (((-3 $ "failed") $ |#4|) 78)) (-3089 (($ $ |#4|) 77) (((-630 $) |#4| $) 115) (((-630 $) |#4| (-630 $)) 114) (((-630 $) (-630 |#4|) $) 113) (((-630 $) (-630 |#4|) (-630 $)) 112)) (-3341 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) 38)) (-3586 (((-111) $) 41)) (-3222 (($) 40)) (-3872 (((-757) $) 106)) (-2796 (((-757) |#4| $) 54 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4369)))) (-1508 (($ $) 39)) (-1524 (((-529) $) 69 (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 60)) (-2867 (($ $ |#3|) 28)) (-3721 (($ $ |#3|) 30)) (-2316 (($ $) 88)) (-1665 (($ $ |#3|) 29)) (-3110 (((-845) $) 11) (((-630 |#4|) $) 37)) (-2668 (((-757) $) 76 (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) 98)) (-4130 (((-630 $) |#4| $) 121) (((-630 $) |#4| (-630 $)) 120) (((-630 $) (-630 |#4|) $) 119) (((-630 $) (-630 |#4|) (-630 $)) 118)) (-3296 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) 81)) (-1397 (((-111) |#4| $) 135)) (-4223 (((-111) |#3| $) 80)) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 46 (|has| $ (-6 -4369))))) -(((-1088 |#1| |#2| |#3| |#4|) (-137) (-445) (-779) (-833) (-1045 |t#1| |t#2| |t#3|)) (T -1088)) -NIL -(-13 (-1051 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-600 (-630 |#4|)) . T) ((-600 (-845)) . T) ((-148 |#4|) . T) ((-601 (-529)) |has| |#4| (-601 (-529))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-482 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-958 |#1| |#2| |#3| |#4|) . T) ((-1051 |#1| |#2| |#3| |#4|) . T) ((-1079) . T) ((-1185 |#1| |#2| |#3| |#4|) . T) ((-1192) . T)) -((-1649 (((-630 (-553)) (-553) (-553) (-553)) 22)) (-3647 (((-630 (-553)) (-553) (-553) (-553)) 12)) (-4209 (((-630 (-553)) (-553) (-553) (-553)) 18)) (-1926 (((-553) (-553) (-553)) 9)) (-2888 (((-1238 (-553)) (-630 (-553)) (-1238 (-553)) (-553)) 46) (((-1238 (-553)) (-1238 (-553)) (-1238 (-553)) (-553)) 41)) (-1989 (((-630 (-553)) (-630 (-553)) (-630 (-553)) (-111)) 28)) (-1809 (((-674 (-553)) (-630 (-553)) (-630 (-553)) (-674 (-553))) 45)) (-3123 (((-674 (-553)) (-630 (-553)) (-630 (-553))) 33)) (-1942 (((-630 (-674 (-553))) (-630 (-553))) 35)) (-1898 (((-630 (-553)) (-630 (-553)) (-630 (-553)) (-674 (-553))) 49)) (-1867 (((-674 (-553)) (-630 (-553)) (-630 (-553)) (-630 (-553))) 57))) -(((-1089) (-10 -7 (-15 -1867 ((-674 (-553)) (-630 (-553)) (-630 (-553)) (-630 (-553)))) (-15 -1898 ((-630 (-553)) (-630 (-553)) (-630 (-553)) (-674 (-553)))) (-15 -1942 ((-630 (-674 (-553))) (-630 (-553)))) (-15 -3123 ((-674 (-553)) (-630 (-553)) (-630 (-553)))) (-15 -1809 ((-674 (-553)) (-630 (-553)) (-630 (-553)) (-674 (-553)))) (-15 -1989 ((-630 (-553)) (-630 (-553)) (-630 (-553)) (-111))) (-15 -2888 ((-1238 (-553)) (-1238 (-553)) (-1238 (-553)) (-553))) (-15 -2888 ((-1238 (-553)) (-630 (-553)) (-1238 (-553)) (-553))) (-15 -1926 ((-553) (-553) (-553))) (-15 -4209 ((-630 (-553)) (-553) (-553) (-553))) (-15 -3647 ((-630 (-553)) (-553) (-553) (-553))) (-15 -1649 ((-630 (-553)) (-553) (-553) (-553))))) (T -1089)) -((-1649 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-1089)) (-5 *3 (-553)))) (-3647 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-1089)) (-5 *3 (-553)))) (-4209 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-1089)) (-5 *3 (-553)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1089)))) (-2888 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1238 (-553))) (-5 *3 (-630 (-553))) (-5 *4 (-553)) (-5 *1 (-1089)))) (-2888 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1238 (-553))) (-5 *3 (-553)) (-5 *1 (-1089)))) (-1989 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 (-553))) (-5 *3 (-111)) (-5 *1 (-1089)))) (-1809 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-674 (-553))) (-5 *3 (-630 (-553))) (-5 *1 (-1089)))) (-3123 (*1 *2 *3 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-1089)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-630 (-674 (-553)))) (-5 *1 (-1089)))) (-1898 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 (-553))) (-5 *3 (-674 (-553))) (-5 *1 (-1089)))) (-1867 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-1089))))) -(-10 -7 (-15 -1867 ((-674 (-553)) (-630 (-553)) (-630 (-553)) (-630 (-553)))) (-15 -1898 ((-630 (-553)) (-630 (-553)) (-630 (-553)) (-674 (-553)))) (-15 -1942 ((-630 (-674 (-553))) (-630 (-553)))) (-15 -3123 ((-674 (-553)) (-630 (-553)) (-630 (-553)))) (-15 -1809 ((-674 (-553)) (-630 (-553)) (-630 (-553)) (-674 (-553)))) (-15 -1989 ((-630 (-553)) (-630 (-553)) (-630 (-553)) (-111))) (-15 -2888 ((-1238 (-553)) (-1238 (-553)) (-1238 (-553)) (-553))) (-15 -2888 ((-1238 (-553)) (-630 (-553)) (-1238 (-553)) (-553))) (-15 -1926 ((-553) (-553) (-553))) (-15 -4209 ((-630 (-553)) (-553) (-553) (-553))) (-15 -3647 ((-630 (-553)) (-553) (-553) (-553))) (-15 -1649 ((-630 (-553)) (-553) (-553) (-553)))) -((** (($ $ (-903)) 10))) -(((-1090 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-903)))) (-1091)) (T -1090)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-903)))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6)) (** (($ $ (-903)) 13)) (* (($ $ $) 14))) -(((-1091) (-137)) (T -1091)) -((* (*1 *1 *1 *1) (-4 *1 (-1091))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1091)) (-5 *2 (-903))))) -(-13 (-1079) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-903))))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL (|has| |#3| (-1079)))) (-3769 (((-111) $) NIL (|has| |#3| (-129)))) (-1561 (($ (-903)) NIL (|has| |#3| (-1031)))) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2345 (($ $ $) NIL (|has| |#3| (-779)))) (-2910 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-1511 (((-111) $ (-757)) NIL)) (-2571 (((-757)) NIL (|has| |#3| (-362)))) (-2125 (((-553) $) NIL (|has| |#3| (-831)))) (-1490 ((|#3| $ (-553) |#3|) NIL (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1079)))) (-2707 (((-553) $) NIL (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079)))) (((-401 (-553)) $) NIL (-12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) ((|#3| $) NIL (|has| |#3| (-1079)))) (-2077 (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#3| (-626 (-553))) (|has| |#3| (-1031)))) (((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 $) (-1238 $)) NIL (|has| |#3| (-1031))) (((-674 |#3|) (-674 $)) NIL (|has| |#3| (-1031)))) (-2982 (((-3 $ "failed") $) NIL (|has| |#3| (-712)))) (-3031 (($) NIL (|has| |#3| (-362)))) (-2515 ((|#3| $ (-553) |#3|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#3| $ (-553)) 12)) (-4270 (((-111) $) NIL (|has| |#3| (-831)))) (-1408 (((-630 |#3|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL (|has| |#3| (-712)))) (-2797 (((-111) $) NIL (|has| |#3| (-831)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-2195 (((-630 |#3|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-2503 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#3| |#3|) $) NIL)) (-3796 (((-903) $) NIL (|has| |#3| (-362)))) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#3| (-1079)))) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2735 (($ (-903)) NIL (|has| |#3| (-362)))) (-2786 (((-1099) $) NIL (|has| |#3| (-1079)))) (-2603 ((|#3| $) NIL (|has| (-553) (-833)))) (-2858 (($ $ |#3|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079)))) (($ $ (-630 |#3|) (-630 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-1912 (((-630 |#3|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#3| $ (-553) |#3|) NIL) ((|#3| $ (-553)) NIL)) (-1449 ((|#3| $ $) NIL (|has| |#3| (-1031)))) (-3398 (($ (-1238 |#3|)) NIL)) (-1337 (((-132)) NIL (|has| |#3| (-357)))) (-1330 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1 |#3| |#3|) (-757)) NIL (|has| |#3| (-1031))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1031)))) (-2796 (((-757) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369))) (((-757) |#3| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#3| (-1079))))) (-1508 (($ $) NIL)) (-3110 (((-1238 |#3|) $) NIL) (($ (-553)) NIL (-3988 (-12 (|has| |#3| (-1020 (-553))) (|has| |#3| (-1079))) (|has| |#3| (-1031)))) (($ (-401 (-553))) NIL (-12 (|has| |#3| (-1020 (-401 (-553)))) (|has| |#3| (-1079)))) (($ |#3|) NIL (|has| |#3| (-1079))) (((-845) $) NIL (|has| |#3| (-600 (-845))))) (-1999 (((-757)) NIL (|has| |#3| (-1031)))) (-3296 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4369)))) (-3466 (($ $) NIL (|has| |#3| (-831)))) (-1988 (($) NIL (|has| |#3| (-129)) CONST)) (-1997 (($) NIL (|has| |#3| (-712)) CONST)) (-1780 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031)))) (($ $ (-757)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1031)))) (($ $ (-1155)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#3| (-882 (-1155))) (|has| |#3| (-1031)))) (($ $ (-1 |#3| |#3|) (-757)) NIL (|has| |#3| (-1031))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1031)))) (-1669 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1648 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1617 (((-111) $ $) NIL (|has| |#3| (-1079)))) (-1659 (((-111) $ $) NIL (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1636 (((-111) $ $) 17 (-3988 (|has| |#3| (-779)) (|has| |#3| (-831))))) (-1723 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-1711 (($ $ $) NIL (|has| |#3| (-1031))) (($ $) NIL (|has| |#3| (-1031)))) (-1700 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-757)) NIL (|has| |#3| (-712))) (($ $ (-903)) NIL (|has| |#3| (-712)))) (* (($ (-553) $) NIL (|has| |#3| (-1031))) (($ $ $) NIL (|has| |#3| (-712))) (($ $ |#3|) NIL (|has| |#3| (-712))) (($ |#3| $) NIL (|has| |#3| (-712))) (($ (-757) $) NIL (|has| |#3| (-129))) (($ (-903) $) NIL (|has| |#3| (-25)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1092 |#1| |#2| |#3|) (-233 |#1| |#3|) (-757) (-757) (-779)) (T -1092)) -NIL -(-233 |#1| |#3|) -((-3234 (((-630 (-1211 |#2| |#1|)) (-1211 |#2| |#1|) (-1211 |#2| |#1|)) 37)) (-2262 (((-553) (-1211 |#2| |#1|)) 69 (|has| |#1| (-445)))) (-3910 (((-553) (-1211 |#2| |#1|)) 54)) (-3224 (((-630 (-1211 |#2| |#1|)) (-1211 |#2| |#1|) (-1211 |#2| |#1|)) 45)) (-3658 (((-553) (-1211 |#2| |#1|) (-1211 |#2| |#1|)) 68 (|has| |#1| (-445)))) (-2509 (((-630 |#1|) (-1211 |#2| |#1|) (-1211 |#2| |#1|)) 48)) (-4214 (((-553) (-1211 |#2| |#1|) (-1211 |#2| |#1|)) 53))) -(((-1093 |#1| |#2|) (-10 -7 (-15 -3234 ((-630 (-1211 |#2| |#1|)) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -3224 ((-630 (-1211 |#2| |#1|)) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -2509 ((-630 |#1|) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -4214 ((-553) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -3910 ((-553) (-1211 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -3658 ((-553) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -2262 ((-553) (-1211 |#2| |#1|)))) |%noBranch|)) (-806) (-1155)) (T -1093)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-445)) (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-553)) (-5 *1 (-1093 *4 *5)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-445)) (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-553)) (-5 *1 (-1093 *4 *5)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-553)) (-5 *1 (-1093 *4 *5)))) (-4214 (*1 *2 *3 *3) (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-553)) (-5 *1 (-1093 *4 *5)))) (-2509 (*1 *2 *3 *3) (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-630 *4)) (-5 *1 (-1093 *4 *5)))) (-3224 (*1 *2 *3 *3) (-12 (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-630 (-1211 *5 *4))) (-5 *1 (-1093 *4 *5)) (-5 *3 (-1211 *5 *4)))) (-3234 (*1 *2 *3 *3) (-12 (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-630 (-1211 *5 *4))) (-5 *1 (-1093 *4 *5)) (-5 *3 (-1211 *5 *4))))) -(-10 -7 (-15 -3234 ((-630 (-1211 |#2| |#1|)) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -3224 ((-630 (-1211 |#2| |#1|)) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -2509 ((-630 |#1|) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -4214 ((-553) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -3910 ((-553) (-1211 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -3658 ((-553) (-1211 |#2| |#1|) (-1211 |#2| |#1|))) (-15 -2262 ((-553) (-1211 |#2| |#1|)))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-2771 (($ (-499) (-1097)) 14)) (-1356 (((-1097) $) 20)) (-4298 (((-499) $) 17)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 28) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1094) (-13 (-1062) (-10 -8 (-15 -2771 ($ (-499) (-1097))) (-15 -4298 ((-499) $)) (-15 -1356 ((-1097) $))))) (T -1094)) -((-2771 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1097)) (-5 *1 (-1094)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1094)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1094))))) -(-13 (-1062) (-10 -8 (-15 -2771 ($ (-499) (-1097))) (-15 -4298 ((-499) $)) (-15 -1356 ((-1097) $)))) -((-2125 (((-3 (-553) "failed") |#2| (-1155) |#2| (-1137)) 17) (((-3 (-553) "failed") |#2| (-1155) (-826 |#2|)) 15) (((-3 (-553) "failed") |#2|) 54))) -(((-1095 |#1| |#2|) (-10 -7 (-15 -2125 ((-3 (-553) "failed") |#2|)) (-15 -2125 ((-3 (-553) "failed") |#2| (-1155) (-826 |#2|))) (-15 -2125 ((-3 (-553) "failed") |#2| (-1155) |#2| (-1137)))) (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)) (-445)) (-13 (-27) (-1177) (-424 |#1|))) (T -1095)) -((-2125 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-1137)) (-4 *6 (-13 (-545) (-833) (-1020 *2) (-626 *2) (-445))) (-5 *2 (-553)) (-5 *1 (-1095 *6 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))))) (-2125 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-826 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) (-4 *6 (-13 (-545) (-833) (-1020 *2) (-626 *2) (-445))) (-5 *2 (-553)) (-5 *1 (-1095 *6 *3)))) (-2125 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-833) (-1020 *2) (-626 *2) (-445))) (-5 *2 (-553)) (-5 *1 (-1095 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4)))))) -(-10 -7 (-15 -2125 ((-3 (-553) "failed") |#2|)) (-15 -2125 ((-3 (-553) "failed") |#2| (-1155) (-826 |#2|))) (-15 -2125 ((-3 (-553) "failed") |#2| (-1155) |#2| (-1137)))) -((-2125 (((-3 (-553) "failed") (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|)) (-1137)) 35) (((-3 (-553) "failed") (-401 (-934 |#1|)) (-1155) (-826 (-401 (-934 |#1|)))) 30) (((-3 (-553) "failed") (-401 (-934 |#1|))) 13))) -(((-1096 |#1|) (-10 -7 (-15 -2125 ((-3 (-553) "failed") (-401 (-934 |#1|)))) (-15 -2125 ((-3 (-553) "failed") (-401 (-934 |#1|)) (-1155) (-826 (-401 (-934 |#1|))))) (-15 -2125 ((-3 (-553) "failed") (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|)) (-1137)))) (-445)) (T -1096)) -((-2125 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-401 (-934 *6))) (-5 *4 (-1155)) (-5 *5 (-1137)) (-4 *6 (-445)) (-5 *2 (-553)) (-5 *1 (-1096 *6)))) (-2125 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-826 (-401 (-934 *6)))) (-5 *3 (-401 (-934 *6))) (-4 *6 (-445)) (-5 *2 (-553)) (-5 *1 (-1096 *6)))) (-2125 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-445)) (-5 *2 (-553)) (-5 *1 (-1096 *4))))) -(-10 -7 (-15 -2125 ((-3 (-553) "failed") (-401 (-934 |#1|)))) (-15 -2125 ((-3 (-553) "failed") (-401 (-934 |#1|)) (-1155) (-826 (-401 (-934 |#1|))))) (-15 -2125 ((-3 (-553) "failed") (-401 (-934 |#1|)) (-1155) (-401 (-934 |#1|)) (-1137)))) -((-3096 (((-111) $ $) NIL)) (-1378 (((-1160) $) 10)) (-2455 (((-630 (-1160)) $) 11)) (-1356 (($ (-630 (-1160)) (-1160)) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 20)) (-1617 (((-111) $ $) 14))) -(((-1097) (-13 (-1079) (-10 -8 (-15 -1356 ($ (-630 (-1160)) (-1160))) (-15 -1378 ((-1160) $)) (-15 -2455 ((-630 (-1160)) $))))) (T -1097)) -((-1356 (*1 *1 *2 *3) (-12 (-5 *2 (-630 (-1160))) (-5 *3 (-1160)) (-5 *1 (-1097)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1097)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-1097))))) -(-13 (-1079) (-10 -8 (-15 -1356 ($ (-630 (-1160)) (-1160))) (-15 -1378 ((-1160) $)) (-15 -2455 ((-630 (-1160)) $)))) -((-3733 (((-310 (-553)) (-48)) 12))) -(((-1098) (-10 -7 (-15 -3733 ((-310 (-553)) (-48))))) (T -1098)) -((-3733 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-553))) (-5 *1 (-1098))))) -(-10 -7 (-15 -3733 ((-310 (-553)) (-48)))) -((-3096 (((-111) $ $) NIL)) (-2965 (($ $) 41)) (-3769 (((-111) $) 65)) (-2370 (($ $ $) 48)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 86)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-4227 (($ $ $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2464 (($ $ $ $) 75)) (-1536 (($ $) NIL)) (-2708 (((-412 $) $) NIL)) (-4349 (((-111) $ $) NIL)) (-2125 (((-553) $) NIL)) (-1608 (($ $ $) 72)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL)) (-2707 (((-553) $) NIL)) (-3973 (($ $ $) 59)) (-2077 (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 80) (((-674 (-553)) (-674 $)) 28)) (-2982 (((-3 $ "failed") $) NIL)) (-3458 (((-3 (-401 (-553)) "failed") $) NIL)) (-4323 (((-111) $) NIL)) (-1672 (((-401 (-553)) $) NIL)) (-3031 (($) 83) (($ $) 84)) (-3952 (($ $ $) 58)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL)) (-3119 (((-111) $) NIL)) (-3405 (($ $ $ $) NIL)) (-2084 (($ $ $) 81)) (-4270 (((-111) $) NIL)) (-2340 (($ $ $) NIL)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL)) (-1848 (((-111) $) 66)) (-1850 (((-111) $) 64)) (-2826 (($ $) 42)) (-2502 (((-3 $ "failed") $) NIL)) (-2797 (((-111) $) 76)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-4322 (($ $ $ $) 73)) (-1824 (($ $ $) 68) (($) 39)) (-1975 (($ $ $) 67) (($) 38)) (-3871 (($ $) NIL)) (-1899 (($ $) 71)) (-2471 (($ $ $) NIL) (($ (-630 $)) NIL)) (-1735 (((-1137) $) NIL)) (-3563 (($ $ $) NIL)) (-1945 (($) NIL T CONST)) (-3802 (($ $) 50)) (-2786 (((-1099) $) 70)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL)) (-2508 (($ $ $) 62) (($ (-630 $)) NIL)) (-3757 (($ $) NIL)) (-3355 (((-412 $) $) NIL)) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL)) (-3929 (((-3 $ "failed") $ $) NIL)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL)) (-3781 (((-111) $) NIL)) (-3384 (((-757) $) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 61)) (-1330 (($ $ (-757)) NIL) (($ $) NIL)) (-3163 (($ $) 51)) (-1508 (($ $) NIL)) (-1524 (((-553) $) 32) (((-529) $) NIL) (((-874 (-553)) $) NIL) (((-373) $) NIL) (((-220) $) NIL)) (-3110 (((-845) $) 31) (($ (-553)) 82) (($ $) NIL) (($ (-553)) 82)) (-1999 (((-757)) NIL)) (-3694 (((-111) $ $) NIL)) (-1737 (($ $ $) NIL)) (-2959 (($) 37)) (-1639 (((-111) $ $) NIL)) (-4028 (($ $ $ $) 74)) (-3466 (($ $) 63)) (-2007 (($ $ $) 44)) (-1988 (($) 35 T CONST)) (-2278 (($ $ $) 47)) (-1997 (($) 36 T CONST)) (-3205 (((-1137) $) 21) (((-1137) $ (-111)) 23) (((-1243) (-808) $) 24) (((-1243) (-808) $ (-111)) 25)) (-2290 (($ $) 45)) (-1780 (($ $ (-757)) NIL) (($ $) NIL)) (-2267 (($ $ $) 46)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 40)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 49)) (-1996 (($ $ $) 43)) (-1711 (($ $) 52) (($ $ $) 54)) (-1700 (($ $ $) 53)) (** (($ $ (-903)) NIL) (($ $ (-757)) 57)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 34) (($ $ $) 55))) -(((-1099) (-13 (-538) (-646) (-814) (-10 -8 (-6 -4356) (-6 -4361) (-6 -4357) (-15 -1975 ($)) (-15 -1824 ($)) (-15 -2826 ($ $)) (-15 -2965 ($ $)) (-15 -1996 ($ $ $)) (-15 -2007 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2290 ($ $)) (-15 -2267 ($ $ $)) (-15 -2278 ($ $ $))))) (T -1099)) -((-2007 (*1 *1 *1 *1) (-5 *1 (-1099))) (-1996 (*1 *1 *1 *1) (-5 *1 (-1099))) (-2965 (*1 *1 *1) (-5 *1 (-1099))) (-1975 (*1 *1) (-5 *1 (-1099))) (-1824 (*1 *1) (-5 *1 (-1099))) (-2826 (*1 *1 *1) (-5 *1 (-1099))) (-2370 (*1 *1 *1 *1) (-5 *1 (-1099))) (-2290 (*1 *1 *1) (-5 *1 (-1099))) (-2267 (*1 *1 *1 *1) (-5 *1 (-1099))) (-2278 (*1 *1 *1 *1) (-5 *1 (-1099)))) -(-13 (-538) (-646) (-814) (-10 -8 (-6 -4356) (-6 -4361) (-6 -4357) (-15 -1975 ($)) (-15 -1824 ($)) (-15 -2826 ($ $)) (-15 -2965 ($ $)) (-15 -1996 ($ $ $)) (-15 -2007 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2290 ($ $)) (-15 -2267 ($ $ $)) (-15 -2278 ($ $ $)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-3343 ((|#1| $) 44)) (-1511 (((-111) $ (-757)) 8)) (-3820 (($) 7 T CONST)) (-2260 ((|#1| |#1| $) 46)) (-3196 ((|#1| $) 45)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1376 ((|#1| $) 39)) (-2636 (($ |#1| $) 40)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2949 ((|#1| $) 41)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-3090 (((-757) $) 43)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) 42)) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1100 |#1|) (-137) (-1192)) (T -1100)) -((-2260 (*1 *2 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1192)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1192)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1192)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1192)) (-5 *2 (-757))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4369) (-15 -2260 (|t#1| |t#1| $)) (-15 -3196 (|t#1| $)) (-15 -3343 (|t#1| $)) (-15 -3090 ((-757) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-1576 ((|#3| $) 76)) (-1399 (((-3 (-553) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2707 (((-553) $) NIL) (((-401 (-553)) $) NIL) ((|#3| $) 37)) (-2077 (((-674 (-553)) (-674 $)) NIL) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL) (((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 $) (-1238 $)) 73) (((-674 |#3|) (-674 $)) 65)) (-1330 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155)) NIL) (($ $ (-757)) NIL) (($ $) NIL)) (-4193 ((|#3| $) 78)) (-2421 ((|#4| $) 32)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-401 (-553))) NIL) (($ |#3|) 16)) (** (($ $ (-903)) NIL) (($ $ (-757)) 15) (($ $ (-553)) 82))) -(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-553))) (-15 -4193 (|#3| |#1|)) (-15 -1576 (|#3| |#1|)) (-15 -2421 (|#4| |#1|)) (-15 -2077 ((-674 |#3|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -3110 (|#1| |#3|)) (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|) (-757))) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3110 (|#1| (-553))) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903))) (-15 -3110 ((-845) |#1|))) (-1102 |#2| |#3| |#4| |#5|) (-757) (-1031) (-233 |#2| |#3|) (-233 |#2| |#3|)) (T -1101)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-553))) (-15 -4193 (|#3| |#1|)) (-15 -1576 (|#3| |#1|)) (-15 -2421 (|#4| |#1|)) (-15 -2077 ((-674 |#3|) (-674 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 |#3|)) (|:| |vec| (-1238 |#3|))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 |#1|) (-1238 |#1|))) (-15 -2077 ((-674 (-553)) (-674 |#1|))) (-15 -3110 (|#1| |#3|)) (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|) (-757))) (-15 -1330 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3110 (|#1| (-553))) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-1576 ((|#2| $) 71)) (-2986 (((-111) $) 111)) (-2910 (((-3 $ "failed") $ $) 19)) (-2086 (((-111) $) 109)) (-1511 (((-111) $ (-757)) 101)) (-3747 (($ |#2|) 74)) (-3820 (($) 17 T CONST)) (-3639 (($ $) 128 (|has| |#2| (-301)))) (-3894 ((|#3| $ (-553)) 123)) (-1399 (((-3 (-553) "failed") $) 86 (|has| |#2| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) 83 (|has| |#2| (-1020 (-401 (-553))))) (((-3 |#2| "failed") $) 80)) (-2707 (((-553) $) 85 (|has| |#2| (-1020 (-553)))) (((-401 (-553)) $) 82 (|has| |#2| (-1020 (-401 (-553))))) ((|#2| $) 81)) (-2077 (((-674 (-553)) (-674 $)) 78 (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 77 (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) 76) (((-674 |#2|) (-674 $)) 75)) (-2982 (((-3 $ "failed") $) 33)) (-2409 (((-757) $) 129 (|has| |#2| (-545)))) (-2441 ((|#2| $ (-553) (-553)) 121)) (-1408 (((-630 |#2|) $) 94 (|has| $ (-6 -4369)))) (-1848 (((-111) $) 31)) (-2016 (((-757) $) 130 (|has| |#2| (-545)))) (-1888 (((-630 |#4|) $) 131 (|has| |#2| (-545)))) (-4253 (((-757) $) 117)) (-4265 (((-757) $) 118)) (-3703 (((-111) $ (-757)) 102)) (-3714 ((|#2| $) 66 (|has| |#2| (-6 (-4371 "*"))))) (-3510 (((-553) $) 113)) (-4116 (((-553) $) 115)) (-2195 (((-630 |#2|) $) 93 (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) 91 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-4275 (((-553) $) 114)) (-3223 (((-553) $) 116)) (-3394 (($ (-630 (-630 |#2|))) 108)) (-2503 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-2384 (((-630 (-630 |#2|)) $) 119)) (-3786 (((-111) $ (-757)) 103)) (-1735 (((-1137) $) 9)) (-1614 (((-3 $ "failed") $) 65 (|has| |#2| (-357)))) (-2786 (((-1099) $) 10)) (-3929 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-545)))) (-3341 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) 90 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) 89 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) 87 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) 107)) (-3586 (((-111) $) 104)) (-3222 (($) 105)) (-2046 ((|#2| $ (-553) (-553) |#2|) 122) ((|#2| $ (-553) (-553)) 120)) (-1330 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-757)) 51) (($ $ (-630 (-1155)) (-630 (-757))) 44 (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) 43 (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) 42 (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) 41 (|has| |#2| (-882 (-1155)))) (($ $ (-757)) 39 (|has| |#2| (-228))) (($ $) 37 (|has| |#2| (-228)))) (-4193 ((|#2| $) 70)) (-1325 (($ (-630 |#2|)) 73)) (-1564 (((-111) $) 110)) (-2421 ((|#3| $) 72)) (-1938 ((|#2| $) 67 (|has| |#2| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4369))) (((-757) |#2| $) 92 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 106)) (-1355 ((|#4| $ (-553)) 124)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 84 (|has| |#2| (-1020 (-401 (-553))))) (($ |#2|) 79)) (-1999 (((-757)) 28)) (-3296 (((-111) (-1 (-111) |#2|) $) 97 (|has| $ (-6 -4369)))) (-4172 (((-111) $) 112)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-757)) 49) (($ $ (-630 (-1155)) (-630 (-757))) 48 (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) 47 (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) 46 (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) 45 (|has| |#2| (-882 (-1155)))) (($ $ (-757)) 40 (|has| |#2| (-228))) (($ $) 38 (|has| |#2| (-228)))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#2|) 127 (|has| |#2| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 64 (|has| |#2| (-357)))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2563 (((-757) $) 100 (|has| $ (-6 -4369))))) -(((-1102 |#1| |#2| |#3| |#4|) (-137) (-757) (-1031) (-233 |t#1| |t#2|) (-233 |t#1| |t#2|)) (T -1102)) -((-3747 (*1 *1 *2) (-12 (-4 *2 (-1031)) (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-1031)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *2 *5)) (-4 *4 (-1031)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1031)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1031)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *4 (-1031)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *2 *5)) (-4 *4 (-1031)) (-4 *2 (-233 *3 *4)) (-4 *5 (-233 *3 *4)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031)))) (-1614 (*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *4 (-1031)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357))))) -(-13 (-226 |t#2|) (-110 |t#2| |t#2|) (-1034 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-371 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-703 |t#2|)) |%noBranch|) (-15 -3747 ($ |t#2|)) (-15 -1325 ($ (-630 |t#2|))) (-15 -2421 (|t#3| $)) (-15 -1576 (|t#2| $)) (-15 -4193 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4371 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1938 (|t#2| $)) (-15 -3714 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-357)) (PROGN (-15 -1614 ((-3 $ "failed") $)) (-15 ** ($ $ (-553)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4371 "*"))) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-603 #0=(-401 (-553))) |has| |#2| (-1020 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#2|) . T) ((-600 (-845)) . T) ((-226 |#2|) . T) ((-228) |has| |#2| (-228)) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-371 |#2|) . T) ((-405 |#2|) . T) ((-482 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-633 |#2|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#2| (-626 (-553))) ((-626 |#2|) . T) ((-703 |#2|) -3988 (|has| |#2| (-169)) (|has| |#2| (-6 (-4371 "*")))) ((-712) . T) ((-882 (-1155)) |has| |#2| (-882 (-1155))) ((-1034 |#1| |#1| |#2| |#3| |#4|) . T) ((-1020 #0#) |has| |#2| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#2| (-1020 (-553))) ((-1020 |#2|) . T) ((-1037 |#2|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1192) . T)) -((-3282 ((|#4| |#4|) 70)) (-1492 ((|#4| |#4|) 65)) (-3825 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|))) |#4| |#3|) 78)) (-2472 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-4117 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1103 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1492 (|#4| |#4|)) (-15 -4117 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3282 (|#4| |#4|)) (-15 -2472 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3825 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|))) |#4| |#3|))) (-301) (-367 |#1|) (-367 |#1|) (-672 |#1| |#2| |#3|)) (T -1103)) -((-3825 (*1 *2 *3 *4) (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) (-5 *1 (-1103 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4)))) (-2472 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1103 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-3282 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-4117 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1103 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(-10 -7 (-15 -1492 (|#4| |#4|)) (-15 -4117 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3282 (|#4| |#4|)) (-15 -2472 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3825 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4124 (-630 |#3|))) |#4| |#3|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 17)) (-3506 (((-630 |#2|) $) 159)) (-3322 (((-1151 $) $ |#2|) 54) (((-1151 |#1|) $) 43)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 108 (|has| |#1| (-545)))) (-1968 (($ $) 110 (|has| |#1| (-545)))) (-2028 (((-111) $) 112 (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 |#2|)) 192)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) 156) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 |#2| "failed") $) NIL)) (-2707 ((|#1| $) 154) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) ((|#2| $) NIL)) (-2134 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-3678 (($ $) 196)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) 82)) (-1655 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-524 |#2|) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| |#1| (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| |#1| (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-1848 (((-111) $) 19)) (-1984 (((-757) $) 26)) (-3493 (($ (-1151 |#1|) |#2|) 48) (($ (-1151 $) |#2|) 64)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) 32)) (-3481 (($ |#1| (-524 |#2|)) 71) (($ $ |#2| (-757)) 52) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ |#2|) NIL)) (-2423 (((-524 |#2|) $) 186) (((-757) $ |#2|) 187) (((-630 (-757)) $ (-630 |#2|)) 188)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) 120)) (-1332 (((-3 |#2| "failed") $) 161)) (-3644 (($ $) 195)) (-3655 ((|#1| $) 37)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| |#2|) (|:| -2692 (-757))) "failed") $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) 33)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 138 (|has| |#1| (-445)))) (-2508 (($ (-630 $)) 143 (|has| |#1| (-445))) (($ $ $) 130 (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#1| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-891)))) (-3929 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-545)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-630 |#2|) (-630 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-630 |#2|) (-630 $)) 176)) (-3000 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-1330 (($ $ |#2|) 194) (($ $ (-630 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-3872 (((-524 |#2|) $) 182) (((-757) $ |#2|) 178) (((-630 (-757)) $ (-630 |#2|)) 180)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| |#1| (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| |#1| (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| |#1| (-601 (-529))) (|has| |#2| (-601 (-529)))))) (-4198 ((|#1| $) 126 (|has| |#1| (-445))) (($ $ |#2|) 129 (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-3110 (((-845) $) 149) (($ (-553)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-545))) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-3987 (((-630 |#1|) $) 152)) (-1624 ((|#1| $ (-524 |#2|)) 73) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) 79)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) 115 (|has| |#1| (-545)))) (-1988 (($) 12 T CONST)) (-1997 (($) 14 T CONST)) (-1780 (($ $ |#2|) NIL) (($ $ (-630 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 97)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) 124 (|has| |#1| (-357)))) (-1711 (($ $) 85) (($ $ $) 95)) (-1700 (($ $ $) 49)) (** (($ $ (-903)) 102) (($ $ (-757)) 100)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 88) (($ $ $) 65) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1104 |#1| |#2|) (-931 |#1| (-524 |#2|) |#2|) (-1031) (-833)) (T -1104)) -NIL -(-931 |#1| (-524 |#2|) |#2|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 |#2|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2380 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 117 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2357 (($ $) 137 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 113 (|has| |#1| (-38 (-401 (-553)))))) (-2403 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-4219 (((-934 |#1|) $ (-757)) NIL) (((-934 |#1|) $ (-757) (-757)) NIL)) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-757) $ |#2|) NIL) (((-757) $ |#2| (-757)) NIL)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1298 (((-111) $) NIL)) (-3481 (($ $ (-630 |#2|) (-630 (-524 |#2|))) NIL) (($ $ |#2| (-524 |#2|)) NIL) (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-757)) 56) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2366 (($ $) 111 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-3406 (($ $ |#2|) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-1279 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-401 (-553)))))) (-3089 (($ $ (-757)) 13)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2743 (($ $) 109 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (($ $ |#2| $) 95) (($ $ (-630 |#2|) (-630 $)) 88) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL)) (-1330 (($ $ |#2|) 98) (($ $ (-630 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-3872 (((-524 |#2|) $) NIL)) (-2243 (((-1 (-1135 |#3|) |#3|) (-630 |#2|) (-630 (-1135 |#3|))) 77)) (-2414 (($ $) 147 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 139 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 115 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 15)) (-3110 (((-845) $) 180) (($ (-553)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-545))) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#2|) 63) (($ |#3|) 61)) (-1624 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL) ((|#3| $ (-757)) 38)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-2447 (($ $) 153 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 129 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) 149 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 157 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2570 (($ $) 159 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 135 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 155 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 151 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 127 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 47 T CONST)) (-1997 (($) 55 T CONST)) (-1780 (($ $ |#2|) NIL) (($ $ (-630 |#2|)) NIL) (($ $ |#2| (-757)) NIL) (($ $ (-630 |#2|) (-630 (-757))) NIL)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) 182 (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 59)) (** (($ $ (-903)) NIL) (($ $ (-757)) 68) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 101 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 58) (($ $ (-401 (-553))) 106 (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) 104 (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1105 |#1| |#2| |#3|) (-13 (-726 |#1| |#2|) (-10 -8 (-15 -1624 (|#3| $ (-757))) (-15 -3110 ($ |#2|)) (-15 -3110 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2243 ((-1 (-1135 |#3|) |#3|) (-630 |#2|) (-630 (-1135 |#3|)))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $ |#2| |#1|)) (-15 -1279 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1031) (-833) (-931 |#1| (-524 |#2|) |#2|)) (T -1105)) -((-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *2 (-931 *4 (-524 *5) *5)) (-5 *1 (-1105 *4 *5 *2)) (-4 *4 (-1031)) (-4 *5 (-833)))) (-3110 (*1 *1 *2) (-12 (-4 *3 (-1031)) (-4 *2 (-833)) (-5 *1 (-1105 *3 *2 *4)) (-4 *4 (-931 *3 (-524 *2) *2)))) (-3110 (*1 *1 *2) (-12 (-4 *3 (-1031)) (-4 *4 (-833)) (-5 *1 (-1105 *3 *4 *2)) (-4 *2 (-931 *3 (-524 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1031)) (-4 *4 (-833)) (-5 *1 (-1105 *3 *4 *2)) (-4 *2 (-931 *3 (-524 *4) *4)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 (-1135 *7))) (-4 *6 (-833)) (-4 *7 (-931 *5 (-524 *6) *6)) (-4 *5 (-1031)) (-5 *2 (-1 (-1135 *7) *7)) (-5 *1 (-1105 *5 *6 *7)))) (-3406 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-4 *2 (-833)) (-5 *1 (-1105 *3 *2 *4)) (-4 *4 (-931 *3 (-524 *2) *2)))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1105 *4 *3 *5))) (-4 *4 (-38 (-401 (-553)))) (-4 *4 (-1031)) (-4 *3 (-833)) (-5 *1 (-1105 *4 *3 *5)) (-4 *5 (-931 *4 (-524 *3) *3))))) -(-13 (-726 |#1| |#2|) (-10 -8 (-15 -1624 (|#3| $ (-757))) (-15 -3110 ($ |#2|)) (-15 -3110 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2243 ((-1 (-1135 |#3|) |#3|) (-630 |#2|) (-630 (-1135 |#3|)))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $ |#2| |#1|)) (-15 -1279 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3096 (((-111) $ $) 7)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) 85)) (-3247 (((-630 $) (-630 |#4|)) 86) (((-630 $) (-630 |#4|) (-111)) 111)) (-3506 (((-630 |#3|) $) 33)) (-1742 (((-111) $) 26)) (-3538 (((-111) $) 17 (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) 101) (((-111) $) 97)) (-1484 ((|#4| |#4| $) 92)) (-1536 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| $) 126)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) 27)) (-1511 (((-111) $ (-757)) 44)) (-3905 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 79)) (-3820 (($) 45 T CONST)) (-2623 (((-111) $) 22 (|has| |#1| (-545)))) (-2032 (((-111) $ $) 24 (|has| |#1| (-545)))) (-3559 (((-111) $ $) 23 (|has| |#1| (-545)))) (-1921 (((-111) $) 25 (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4063 (((-630 |#4|) (-630 |#4|) $) 18 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) 19 (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 36)) (-2707 (($ (-630 |#4|)) 35)) (-2616 (((-3 $ "failed") $) 82)) (-4290 ((|#4| |#4| $) 89)) (-2638 (($ $) 68 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#4| $) 67 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-1345 ((|#4| |#4| $) 87)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) 105)) (-3217 (((-111) |#4| $) 136)) (-3077 (((-111) |#4| $) 133)) (-1497 (((-111) |#4| $) 137) (((-111) $) 134)) (-1408 (((-630 |#4|) $) 52 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) 104) (((-111) $) 103)) (-1470 ((|#3| $) 34)) (-3703 (((-111) $ (-757)) 43)) (-2195 (((-630 |#4|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 47)) (-3935 (((-630 |#3|) $) 32)) (-2351 (((-111) |#3| $) 31)) (-3786 (((-111) $ (-757)) 42)) (-1735 (((-1137) $) 9)) (-2025 (((-3 |#4| (-630 $)) |#4| |#4| $) 128)) (-4247 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| |#4| $) 127)) (-2594 (((-3 |#4| "failed") $) 83)) (-2129 (((-630 $) |#4| $) 129)) (-3184 (((-3 (-111) (-630 $)) |#4| $) 132)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-1475 (((-630 $) |#4| $) 125) (((-630 $) (-630 |#4|) $) 124) (((-630 $) (-630 |#4|) (-630 $)) 123) (((-630 $) |#4| (-630 $)) 122)) (-2520 (($ |#4| $) 117) (($ (-630 |#4|) $) 116)) (-2564 (((-630 |#4|) $) 107)) (-4299 (((-111) |#4| $) 99) (((-111) $) 95)) (-4080 ((|#4| |#4| $) 90)) (-1990 (((-111) $ $) 110)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) 100) (((-111) $) 96)) (-3138 ((|#4| |#4| $) 91)) (-2786 (((-1099) $) 10)) (-2603 (((-3 |#4| "failed") $) 84)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2761 (((-3 $ "failed") $ |#4|) 78)) (-3089 (($ $ |#4|) 77) (((-630 $) |#4| $) 115) (((-630 $) |#4| (-630 $)) 114) (((-630 $) (-630 |#4|) $) 113) (((-630 $) (-630 |#4|) (-630 $)) 112)) (-3341 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) 38)) (-3586 (((-111) $) 41)) (-3222 (($) 40)) (-3872 (((-757) $) 106)) (-2796 (((-757) |#4| $) 54 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4369)))) (-1508 (($ $) 39)) (-1524 (((-529) $) 69 (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 60)) (-2867 (($ $ |#3|) 28)) (-3721 (($ $ |#3|) 30)) (-2316 (($ $) 88)) (-1665 (($ $ |#3|) 29)) (-3110 (((-845) $) 11) (((-630 |#4|) $) 37)) (-2668 (((-757) $) 76 (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) 98)) (-4130 (((-630 $) |#4| $) 121) (((-630 $) |#4| (-630 $)) 120) (((-630 $) (-630 |#4|) $) 119) (((-630 $) (-630 |#4|) (-630 $)) 118)) (-3296 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) 81)) (-1397 (((-111) |#4| $) 135)) (-4223 (((-111) |#3| $) 80)) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 46 (|has| $ (-6 -4369))))) -(((-1106 |#1| |#2| |#3| |#4|) (-137) (-445) (-779) (-833) (-1045 |t#1| |t#2| |t#3|)) (T -1106)) -NIL -(-13 (-1088 |t#1| |t#2| |t#3| |t#4|) (-770 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-600 (-630 |#4|)) . T) ((-600 (-845)) . T) ((-148 |#4|) . T) ((-601 (-529)) |has| |#4| (-601 (-529))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-482 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-770 |#1| |#2| |#3| |#4|) . T) ((-958 |#1| |#2| |#3| |#4|) . T) ((-1051 |#1| |#2| |#3| |#4|) . T) ((-1079) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1185 |#1| |#2| |#3| |#4|) . T) ((-1192) . T)) -((-1638 (((-630 |#2|) |#1|) 12)) (-3427 (((-630 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-630 |#2|) |#1|) 49)) (-2712 (((-630 |#2|) |#2| |#2| |#2|) 36) (((-630 |#2|) |#1|) 47)) (-1958 ((|#2| |#1|) 43)) (-3697 (((-2 (|:| |solns| (-630 |#2|)) (|:| |maps| (-630 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-4196 (((-630 |#2|) |#2| |#2|) 35) (((-630 |#2|) |#1|) 46)) (-2068 (((-630 |#2|) |#2| |#2| |#2| |#2|) 37) (((-630 |#2|) |#1|) 48)) (-1814 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-1428 ((|#2| |#2| |#2| |#2|) 40)) (-2823 ((|#2| |#2| |#2|) 39)) (-3659 ((|#2| |#2| |#2| |#2| |#2|) 41))) -(((-1107 |#1| |#2|) (-10 -7 (-15 -1638 ((-630 |#2|) |#1|)) (-15 -1958 (|#2| |#1|)) (-15 -3697 ((-2 (|:| |solns| (-630 |#2|)) (|:| |maps| (-630 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4196 ((-630 |#2|) |#1|)) (-15 -2712 ((-630 |#2|) |#1|)) (-15 -2068 ((-630 |#2|) |#1|)) (-15 -3427 ((-630 |#2|) |#1|)) (-15 -4196 ((-630 |#2|) |#2| |#2|)) (-15 -2712 ((-630 |#2|) |#2| |#2| |#2|)) (-15 -2068 ((-630 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3427 ((-630 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2823 (|#2| |#2| |#2|)) (-15 -1428 (|#2| |#2| |#2| |#2|)) (-15 -3659 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1814 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1214 |#2|) (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (T -1107)) -((-1814 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2)))) (-3659 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2)))) (-1428 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2)))) (-2823 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2)))) (-3427 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3)))) (-2068 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3)))) (-2712 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3)))) (-4196 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) (-4196 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-2 (|:| |solns| (-630 *5)) (|:| |maps| (-630 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1107 *3 *5)) (-4 *3 (-1214 *5)))) (-1958 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -1638 ((-630 |#2|) |#1|)) (-15 -1958 (|#2| |#1|)) (-15 -3697 ((-2 (|:| |solns| (-630 |#2|)) (|:| |maps| (-630 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4196 ((-630 |#2|) |#1|)) (-15 -2712 ((-630 |#2|) |#1|)) (-15 -2068 ((-630 |#2|) |#1|)) (-15 -3427 ((-630 |#2|) |#1|)) (-15 -4196 ((-630 |#2|) |#2| |#2|)) (-15 -2712 ((-630 |#2|) |#2| |#2| |#2|)) (-15 -2068 ((-630 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3427 ((-630 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2823 (|#2| |#2| |#2|)) (-15 -1428 (|#2| |#2| |#2| |#2|)) (-15 -3659 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1814 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3448 (((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-401 (-934 |#1|))))) 95) (((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-401 (-934 |#1|)))) (-630 (-1155))) 94) (((-630 (-630 (-288 (-310 |#1|)))) (-630 (-401 (-934 |#1|)))) 92) (((-630 (-630 (-288 (-310 |#1|)))) (-630 (-401 (-934 |#1|))) (-630 (-1155))) 90) (((-630 (-288 (-310 |#1|))) (-288 (-401 (-934 |#1|)))) 75) (((-630 (-288 (-310 |#1|))) (-288 (-401 (-934 |#1|))) (-1155)) 76) (((-630 (-288 (-310 |#1|))) (-401 (-934 |#1|))) 70) (((-630 (-288 (-310 |#1|))) (-401 (-934 |#1|)) (-1155)) 59)) (-2372 (((-630 (-630 (-310 |#1|))) (-630 (-401 (-934 |#1|))) (-630 (-1155))) 88) (((-630 (-310 |#1|)) (-401 (-934 |#1|)) (-1155)) 43)) (-1879 (((-1144 (-630 (-310 |#1|)) (-630 (-288 (-310 |#1|)))) (-401 (-934 |#1|)) (-1155)) 98) (((-1144 (-630 (-310 |#1|)) (-630 (-288 (-310 |#1|)))) (-288 (-401 (-934 |#1|))) (-1155)) 97))) -(((-1108 |#1|) (-10 -7 (-15 -3448 ((-630 (-288 (-310 |#1|))) (-401 (-934 |#1|)) (-1155))) (-15 -3448 ((-630 (-288 (-310 |#1|))) (-401 (-934 |#1|)))) (-15 -3448 ((-630 (-288 (-310 |#1|))) (-288 (-401 (-934 |#1|))) (-1155))) (-15 -3448 ((-630 (-288 (-310 |#1|))) (-288 (-401 (-934 |#1|))))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-401 (-934 |#1|))))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-401 (-934 |#1|)))) (-630 (-1155)))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-401 (-934 |#1|)))))) (-15 -2372 ((-630 (-310 |#1|)) (-401 (-934 |#1|)) (-1155))) (-15 -2372 ((-630 (-630 (-310 |#1|))) (-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -1879 ((-1144 (-630 (-310 |#1|)) (-630 (-288 (-310 |#1|)))) (-288 (-401 (-934 |#1|))) (-1155))) (-15 -1879 ((-1144 (-630 (-310 |#1|)) (-630 (-288 (-310 |#1|)))) (-401 (-934 |#1|)) (-1155)))) (-13 (-301) (-833) (-144))) (T -1108)) -((-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-1144 (-630 (-310 *5)) (-630 (-288 (-310 *5))))) (-5 *1 (-1108 *5)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-934 *5)))) (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-1144 (-630 (-310 *5)) (-630 (-288 (-310 *5))))) (-5 *1 (-1108 *5)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-630 (-310 *5)))) (-5 *1 (-1108 *5)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-310 *5))) (-5 *1 (-1108 *5)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-630 (-288 (-401 (-934 *4))))) (-4 *4 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-630 (-288 (-310 *4))))) (-5 *1 (-1108 *4)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-288 (-401 (-934 *5))))) (-5 *4 (-630 (-1155))) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-630 (-288 (-310 *5))))) (-5 *1 (-1108 *5)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-630 (-401 (-934 *4)))) (-4 *4 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-630 (-288 (-310 *4))))) (-5 *1 (-1108 *4)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-630 (-288 (-310 *5))))) (-5 *1 (-1108 *5)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-288 (-401 (-934 *4)))) (-4 *4 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1108 *4)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-934 *5)))) (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *5)))) (-5 *1 (-1108 *5)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1108 *4)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *5)))) (-5 *1 (-1108 *5))))) -(-10 -7 (-15 -3448 ((-630 (-288 (-310 |#1|))) (-401 (-934 |#1|)) (-1155))) (-15 -3448 ((-630 (-288 (-310 |#1|))) (-401 (-934 |#1|)))) (-15 -3448 ((-630 (-288 (-310 |#1|))) (-288 (-401 (-934 |#1|))) (-1155))) (-15 -3448 ((-630 (-288 (-310 |#1|))) (-288 (-401 (-934 |#1|))))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-401 (-934 |#1|))))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-401 (-934 |#1|)))) (-630 (-1155)))) (-15 -3448 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-401 (-934 |#1|)))))) (-15 -2372 ((-630 (-310 |#1|)) (-401 (-934 |#1|)) (-1155))) (-15 -2372 ((-630 (-630 (-310 |#1|))) (-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -1879 ((-1144 (-630 (-310 |#1|)) (-630 (-288 (-310 |#1|)))) (-288 (-401 (-934 |#1|))) (-1155))) (-15 -1879 ((-1144 (-630 (-310 |#1|)) (-630 (-288 (-310 |#1|)))) (-401 (-934 |#1|)) (-1155)))) -((-3126 (((-401 (-1151 (-310 |#1|))) (-1238 (-310 |#1|)) (-401 (-1151 (-310 |#1|))) (-553)) 29)) (-3230 (((-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|)))) 40))) -(((-1109 |#1|) (-10 -7 (-15 -3230 ((-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))))) (-15 -3126 ((-401 (-1151 (-310 |#1|))) (-1238 (-310 |#1|)) (-401 (-1151 (-310 |#1|))) (-553)))) (-13 (-545) (-833))) (T -1109)) -((-3126 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-401 (-1151 (-310 *5)))) (-5 *3 (-1238 (-310 *5))) (-5 *4 (-553)) (-4 *5 (-13 (-545) (-833))) (-5 *1 (-1109 *5)))) (-3230 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-401 (-1151 (-310 *3)))) (-4 *3 (-13 (-545) (-833))) (-5 *1 (-1109 *3))))) -(-10 -7 (-15 -3230 ((-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))) (-401 (-1151 (-310 |#1|))))) (-15 -3126 ((-401 (-1151 (-310 |#1|))) (-1238 (-310 |#1|)) (-401 (-1151 (-310 |#1|))) (-553)))) -((-1638 (((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-310 |#1|))) (-630 (-1155))) 222) (((-630 (-288 (-310 |#1|))) (-310 |#1|) (-1155)) 20) (((-630 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1155)) 26) (((-630 (-288 (-310 |#1|))) (-288 (-310 |#1|))) 25) (((-630 (-288 (-310 |#1|))) (-310 |#1|)) 21))) -(((-1110 |#1|) (-10 -7 (-15 -1638 ((-630 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -1638 ((-630 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -1638 ((-630 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1155))) (-15 -1638 ((-630 (-288 (-310 |#1|))) (-310 |#1|) (-1155))) (-15 -1638 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-310 |#1|))) (-630 (-1155))))) (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (T -1110)) -((-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-1155))) (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-630 (-630 (-288 (-310 *5))))) (-5 *1 (-1110 *5)) (-5 *3 (-630 (-288 (-310 *5)))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-630 (-288 (-310 *5)))) (-5 *1 (-1110 *5)) (-5 *3 (-310 *5)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-630 (-288 (-310 *5)))) (-5 *1 (-1110 *5)) (-5 *3 (-288 (-310 *5))))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1110 *4)) (-5 *3 (-288 (-310 *4))))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1110 *4)) (-5 *3 (-310 *4))))) -(-10 -7 (-15 -1638 ((-630 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -1638 ((-630 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -1638 ((-630 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1155))) (-15 -1638 ((-630 (-288 (-310 |#1|))) (-310 |#1|) (-1155))) (-15 -1638 ((-630 (-630 (-288 (-310 |#1|)))) (-630 (-288 (-310 |#1|))) (-630 (-1155))))) -((-2035 ((|#2| |#2|) 20 (|has| |#1| (-833))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-3030 ((|#2| |#2|) 19 (|has| |#1| (-833))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -3030 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2035 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-833)) (PROGN (-15 -3030 (|#2| |#2|)) (-15 -2035 (|#2| |#2|))) |%noBranch|)) (-1192) (-13 (-591 (-553) |#1|) (-10 -7 (-6 -4369) (-6 -4370)))) (T -1111)) -((-2035 (*1 *2 *2) (-12 (-4 *3 (-833)) (-4 *3 (-1192)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-591 (-553) *3) (-10 -7 (-6 -4369) (-6 -4370)))))) (-3030 (*1 *2 *2) (-12 (-4 *3 (-833)) (-4 *3 (-1192)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-591 (-553) *3) (-10 -7 (-6 -4369) (-6 -4370)))))) (-2035 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-1111 *4 *2)) (-4 *2 (-13 (-591 (-553) *4) (-10 -7 (-6 -4369) (-6 -4370)))))) (-3030 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-1111 *4 *2)) (-4 *2 (-13 (-591 (-553) *4) (-10 -7 (-6 -4369) (-6 -4370))))))) -(-10 -7 (-15 -3030 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2035 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-833)) (PROGN (-15 -3030 (|#2| |#2|)) (-15 -2035 (|#2| |#2|))) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-3139 (((-1143 3 |#1|) $) 107)) (-3125 (((-111) $) 72)) (-3899 (($ $ (-630 (-925 |#1|))) 20) (($ $ (-630 (-630 |#1|))) 75) (($ (-630 (-925 |#1|))) 74) (((-630 (-925 |#1|)) $) 73)) (-3325 (((-111) $) 41)) (-1743 (($ $ (-925 |#1|)) 46) (($ $ (-630 |#1|)) 51) (($ $ (-757)) 53) (($ (-925 |#1|)) 47) (((-925 |#1|) $) 45)) (-2948 (((-2 (|:| -2723 (-757)) (|:| |curves| (-757)) (|:| |polygons| (-757)) (|:| |constructs| (-757))) $) 105)) (-1702 (((-757) $) 26)) (-2015 (((-757) $) 25)) (-3611 (($ $ (-757) (-925 |#1|)) 39)) (-2087 (((-111) $) 82)) (-1465 (($ $ (-630 (-630 (-925 |#1|))) (-630 (-168)) (-168)) 89) (($ $ (-630 (-630 (-630 |#1|))) (-630 (-168)) (-168)) 91) (($ $ (-630 (-630 (-925 |#1|))) (-111) (-111)) 85) (($ $ (-630 (-630 (-630 |#1|))) (-111) (-111)) 93) (($ (-630 (-630 (-925 |#1|)))) 86) (($ (-630 (-630 (-925 |#1|))) (-111) (-111)) 87) (((-630 (-630 (-925 |#1|))) $) 84)) (-3160 (($ (-630 $)) 28) (($ $ $) 29)) (-3294 (((-630 (-168)) $) 102)) (-2209 (((-630 (-925 |#1|)) $) 96)) (-3645 (((-630 (-630 (-168))) $) 101)) (-3705 (((-630 (-630 (-630 (-925 |#1|)))) $) NIL)) (-3103 (((-630 (-630 (-630 (-757)))) $) 99)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2546 (((-757) $ (-630 (-925 |#1|))) 37)) (-2397 (((-111) $) 54)) (-1543 (($ $ (-630 (-925 |#1|))) 56) (($ $ (-630 (-630 |#1|))) 62) (($ (-630 (-925 |#1|))) 57) (((-630 (-925 |#1|)) $) 55)) (-3369 (($) 23) (($ (-1143 3 |#1|)) 24)) (-1508 (($ $) 35)) (-3552 (((-630 $) $) 34)) (-2255 (($ (-630 $)) 31)) (-1558 (((-630 $) $) 33)) (-3110 (((-845) $) 111)) (-2000 (((-111) $) 64)) (-2329 (($ $ (-630 (-925 |#1|))) 66) (($ $ (-630 (-630 |#1|))) 69) (($ (-630 (-925 |#1|))) 67) (((-630 (-925 |#1|)) $) 65)) (-2915 (($ $) 106)) (-1617 (((-111) $ $) NIL))) -(((-1112 |#1|) (-1113 |#1|) (-1031)) (T -1112)) -NIL -(-1113 |#1|) -((-3096 (((-111) $ $) 7)) (-3139 (((-1143 3 |#1|) $) 13)) (-3125 (((-111) $) 29)) (-3899 (($ $ (-630 (-925 |#1|))) 33) (($ $ (-630 (-630 |#1|))) 32) (($ (-630 (-925 |#1|))) 31) (((-630 (-925 |#1|)) $) 30)) (-3325 (((-111) $) 44)) (-1743 (($ $ (-925 |#1|)) 49) (($ $ (-630 |#1|)) 48) (($ $ (-757)) 47) (($ (-925 |#1|)) 46) (((-925 |#1|) $) 45)) (-2948 (((-2 (|:| -2723 (-757)) (|:| |curves| (-757)) (|:| |polygons| (-757)) (|:| |constructs| (-757))) $) 15)) (-1702 (((-757) $) 58)) (-2015 (((-757) $) 59)) (-3611 (($ $ (-757) (-925 |#1|)) 50)) (-2087 (((-111) $) 21)) (-1465 (($ $ (-630 (-630 (-925 |#1|))) (-630 (-168)) (-168)) 28) (($ $ (-630 (-630 (-630 |#1|))) (-630 (-168)) (-168)) 27) (($ $ (-630 (-630 (-925 |#1|))) (-111) (-111)) 26) (($ $ (-630 (-630 (-630 |#1|))) (-111) (-111)) 25) (($ (-630 (-630 (-925 |#1|)))) 24) (($ (-630 (-630 (-925 |#1|))) (-111) (-111)) 23) (((-630 (-630 (-925 |#1|))) $) 22)) (-3160 (($ (-630 $)) 57) (($ $ $) 56)) (-3294 (((-630 (-168)) $) 16)) (-2209 (((-630 (-925 |#1|)) $) 20)) (-3645 (((-630 (-630 (-168))) $) 17)) (-3705 (((-630 (-630 (-630 (-925 |#1|)))) $) 18)) (-3103 (((-630 (-630 (-630 (-757)))) $) 19)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-2546 (((-757) $ (-630 (-925 |#1|))) 51)) (-2397 (((-111) $) 39)) (-1543 (($ $ (-630 (-925 |#1|))) 43) (($ $ (-630 (-630 |#1|))) 42) (($ (-630 (-925 |#1|))) 41) (((-630 (-925 |#1|)) $) 40)) (-3369 (($) 61) (($ (-1143 3 |#1|)) 60)) (-1508 (($ $) 52)) (-3552 (((-630 $) $) 53)) (-2255 (($ (-630 $)) 55)) (-1558 (((-630 $) $) 54)) (-3110 (((-845) $) 11)) (-2000 (((-111) $) 34)) (-2329 (($ $ (-630 (-925 |#1|))) 38) (($ $ (-630 (-630 |#1|))) 37) (($ (-630 (-925 |#1|))) 36) (((-630 (-925 |#1|)) $) 35)) (-2915 (($ $) 14)) (-1617 (((-111) $ $) 6))) -(((-1113 |#1|) (-137) (-1031)) (T -1113)) -((-3110 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-845)))) (-3369 (*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-1143 3 *3)) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-1558 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-5 *2 (-630 *1)) (-4 *1 (-1113 *3)))) (-3552 (*1 *2 *1) (-12 (-4 *3 (-1031)) (-5 *2 (-630 *1)) (-4 *1 (-1113 *3)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031)))) (-2546 (*1 *2 *1 *3) (-12 (-5 *3 (-630 (-925 *4))) (-4 *1 (-1113 *4)) (-4 *4 (-1031)) (-5 *2 (-757)))) (-3611 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *3 (-925 *4)) (-4 *1 (-1113 *4)) (-4 *4 (-1031)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-925 *3)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-1743 (*1 *1 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-925 *3)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111)))) (-1543 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-925 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-1543 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-630 (-925 *3))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-925 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-630 (-925 *3))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111)))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-925 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) (-3899 (*1 *1 *2) (-12 (-5 *2 (-630 (-925 *3))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111)))) (-1465 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-630 (-630 (-925 *5)))) (-5 *3 (-630 (-168))) (-5 *4 (-168)) (-4 *1 (-1113 *5)) (-4 *5 (-1031)))) (-1465 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-630 (-630 (-630 *5)))) (-5 *3 (-630 (-168))) (-5 *4 (-168)) (-4 *1 (-1113 *5)) (-4 *5 (-1031)))) (-1465 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-630 (-630 (-925 *4)))) (-5 *3 (-111)) (-4 *1 (-1113 *4)) (-4 *4 (-1031)))) (-1465 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-630 (-630 (-630 *4)))) (-5 *3 (-111)) (-4 *1 (-1113 *4)) (-4 *4 (-1031)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-925 *3)))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) (-1465 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-630 (-630 (-925 *4)))) (-5 *3 (-111)) (-4 *4 (-1031)) (-4 *1 (-1113 *4)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-630 (-925 *3)))))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-630 (-630 (-757))))))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-630 (-630 (-925 *3))))))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-630 (-168)))))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-168))))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2723 (-757)) (|:| |curves| (-757)) (|:| |polygons| (-757)) (|:| |constructs| (-757)))))) (-2915 (*1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031)))) (-3139 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-1143 3 *3))))) -(-13 (-1079) (-10 -8 (-15 -3369 ($)) (-15 -3369 ($ (-1143 3 |t#1|))) (-15 -2015 ((-757) $)) (-15 -1702 ((-757) $)) (-15 -3160 ($ (-630 $))) (-15 -3160 ($ $ $)) (-15 -2255 ($ (-630 $))) (-15 -1558 ((-630 $) $)) (-15 -3552 ((-630 $) $)) (-15 -1508 ($ $)) (-15 -2546 ((-757) $ (-630 (-925 |t#1|)))) (-15 -3611 ($ $ (-757) (-925 |t#1|))) (-15 -1743 ($ $ (-925 |t#1|))) (-15 -1743 ($ $ (-630 |t#1|))) (-15 -1743 ($ $ (-757))) (-15 -1743 ($ (-925 |t#1|))) (-15 -1743 ((-925 |t#1|) $)) (-15 -3325 ((-111) $)) (-15 -1543 ($ $ (-630 (-925 |t#1|)))) (-15 -1543 ($ $ (-630 (-630 |t#1|)))) (-15 -1543 ($ (-630 (-925 |t#1|)))) (-15 -1543 ((-630 (-925 |t#1|)) $)) (-15 -2397 ((-111) $)) (-15 -2329 ($ $ (-630 (-925 |t#1|)))) (-15 -2329 ($ $ (-630 (-630 |t#1|)))) (-15 -2329 ($ (-630 (-925 |t#1|)))) (-15 -2329 ((-630 (-925 |t#1|)) $)) (-15 -2000 ((-111) $)) (-15 -3899 ($ $ (-630 (-925 |t#1|)))) (-15 -3899 ($ $ (-630 (-630 |t#1|)))) (-15 -3899 ($ (-630 (-925 |t#1|)))) (-15 -3899 ((-630 (-925 |t#1|)) $)) (-15 -3125 ((-111) $)) (-15 -1465 ($ $ (-630 (-630 (-925 |t#1|))) (-630 (-168)) (-168))) (-15 -1465 ($ $ (-630 (-630 (-630 |t#1|))) (-630 (-168)) (-168))) (-15 -1465 ($ $ (-630 (-630 (-925 |t#1|))) (-111) (-111))) (-15 -1465 ($ $ (-630 (-630 (-630 |t#1|))) (-111) (-111))) (-15 -1465 ($ (-630 (-630 (-925 |t#1|))))) (-15 -1465 ($ (-630 (-630 (-925 |t#1|))) (-111) (-111))) (-15 -1465 ((-630 (-630 (-925 |t#1|))) $)) (-15 -2087 ((-111) $)) (-15 -2209 ((-630 (-925 |t#1|)) $)) (-15 -3103 ((-630 (-630 (-630 (-757)))) $)) (-15 -3705 ((-630 (-630 (-630 (-925 |t#1|)))) $)) (-15 -3645 ((-630 (-630 (-168))) $)) (-15 -3294 ((-630 (-168)) $)) (-15 -2948 ((-2 (|:| -2723 (-757)) (|:| |curves| (-757)) (|:| |polygons| (-757)) (|:| |constructs| (-757))) $)) (-15 -2915 ($ $)) (-15 -3139 ((-1143 3 |t#1|) $)) (-15 -3110 ((-845) $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 176) (($ (-1160)) NIL) (((-1160) $) 7)) (-3192 (((-111) $ (|[\|\|]| (-517))) 17) (((-111) $ (|[\|\|]| (-213))) 21) (((-111) $ (|[\|\|]| (-661))) 25) (((-111) $ (|[\|\|]| (-1248))) 29) (((-111) $ (|[\|\|]| (-136))) 33) (((-111) $ (|[\|\|]| (-131))) 37) (((-111) $ (|[\|\|]| (-1094))) 41) (((-111) $ (|[\|\|]| (-95))) 45) (((-111) $ (|[\|\|]| (-666))) 49) (((-111) $ (|[\|\|]| (-510))) 53) (((-111) $ (|[\|\|]| (-1046))) 57) (((-111) $ (|[\|\|]| (-1249))) 61) (((-111) $ (|[\|\|]| (-518))) 65) (((-111) $ (|[\|\|]| (-151))) 69) (((-111) $ (|[\|\|]| (-656))) 73) (((-111) $ (|[\|\|]| (-305))) 77) (((-111) $ (|[\|\|]| (-1018))) 81) (((-111) $ (|[\|\|]| (-177))) 85) (((-111) $ (|[\|\|]| (-952))) 89) (((-111) $ (|[\|\|]| (-1053))) 93) (((-111) $ (|[\|\|]| (-1069))) 97) (((-111) $ (|[\|\|]| (-1075))) 101) (((-111) $ (|[\|\|]| (-613))) 105) (((-111) $ (|[\|\|]| (-1145))) 109) (((-111) $ (|[\|\|]| (-153))) 113) (((-111) $ (|[\|\|]| (-135))) 117) (((-111) $ (|[\|\|]| (-471))) 121) (((-111) $ (|[\|\|]| (-580))) 125) (((-111) $ (|[\|\|]| (-499))) 131) (((-111) $ (|[\|\|]| (-1137))) 135) (((-111) $ (|[\|\|]| (-553))) 139)) (-1534 (((-517) $) 18) (((-213) $) 22) (((-661) $) 26) (((-1248) $) 30) (((-136) $) 34) (((-131) $) 38) (((-1094) $) 42) (((-95) $) 46) (((-666) $) 50) (((-510) $) 54) (((-1046) $) 58) (((-1249) $) 62) (((-518) $) 66) (((-151) $) 70) (((-656) $) 74) (((-305) $) 78) (((-1018) $) 82) (((-177) $) 86) (((-952) $) 90) (((-1053) $) 94) (((-1069) $) 98) (((-1075) $) 102) (((-613) $) 106) (((-1145) $) 110) (((-153) $) 114) (((-135) $) 118) (((-471) $) 122) (((-580) $) 126) (((-499) $) 132) (((-1137) $) 136) (((-553) $) 140)) (-1617 (((-111) $ $) NIL))) -(((-1114) (-1116)) (T -1114)) -NIL -(-1116) -((-2621 (((-630 (-1160)) (-1137)) 9))) -(((-1115) (-10 -7 (-15 -2621 ((-630 (-1160)) (-1137))))) (T -1115)) -((-2621 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-630 (-1160))) (-5 *1 (-1115))))) -(-10 -7 (-15 -2621 ((-630 (-1160)) (-1137)))) -((-3096 (((-111) $ $) 7)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-1160)) 16) (((-1160) $) 15)) (-3192 (((-111) $ (|[\|\|]| (-517))) 80) (((-111) $ (|[\|\|]| (-213))) 78) (((-111) $ (|[\|\|]| (-661))) 76) (((-111) $ (|[\|\|]| (-1248))) 74) (((-111) $ (|[\|\|]| (-136))) 72) (((-111) $ (|[\|\|]| (-131))) 70) (((-111) $ (|[\|\|]| (-1094))) 68) (((-111) $ (|[\|\|]| (-95))) 66) (((-111) $ (|[\|\|]| (-666))) 64) (((-111) $ (|[\|\|]| (-510))) 62) (((-111) $ (|[\|\|]| (-1046))) 60) (((-111) $ (|[\|\|]| (-1249))) 58) (((-111) $ (|[\|\|]| (-518))) 56) (((-111) $ (|[\|\|]| (-151))) 54) (((-111) $ (|[\|\|]| (-656))) 52) (((-111) $ (|[\|\|]| (-305))) 50) (((-111) $ (|[\|\|]| (-1018))) 48) (((-111) $ (|[\|\|]| (-177))) 46) (((-111) $ (|[\|\|]| (-952))) 44) (((-111) $ (|[\|\|]| (-1053))) 42) (((-111) $ (|[\|\|]| (-1069))) 40) (((-111) $ (|[\|\|]| (-1075))) 38) (((-111) $ (|[\|\|]| (-613))) 36) (((-111) $ (|[\|\|]| (-1145))) 34) (((-111) $ (|[\|\|]| (-153))) 32) (((-111) $ (|[\|\|]| (-135))) 30) (((-111) $ (|[\|\|]| (-471))) 28) (((-111) $ (|[\|\|]| (-580))) 26) (((-111) $ (|[\|\|]| (-499))) 24) (((-111) $ (|[\|\|]| (-1137))) 22) (((-111) $ (|[\|\|]| (-553))) 20)) (-1534 (((-517) $) 79) (((-213) $) 77) (((-661) $) 75) (((-1248) $) 73) (((-136) $) 71) (((-131) $) 69) (((-1094) $) 67) (((-95) $) 65) (((-666) $) 63) (((-510) $) 61) (((-1046) $) 59) (((-1249) $) 57) (((-518) $) 55) (((-151) $) 53) (((-656) $) 51) (((-305) $) 49) (((-1018) $) 47) (((-177) $) 45) (((-952) $) 43) (((-1053) $) 41) (((-1069) $) 39) (((-1075) $) 37) (((-613) $) 35) (((-1145) $) 33) (((-153) $) 31) (((-135) $) 29) (((-471) $) 27) (((-580) $) 25) (((-499) $) 23) (((-1137) $) 21) (((-553) $) 19)) (-1617 (((-111) $ $) 6))) -(((-1116) (-137)) (T -1116)) -((-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-517)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-213)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-661)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1248))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1248)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-136)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-131)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1094)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-95)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-666)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-510)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1046))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1046)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1249))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1249)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-518)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-151)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-656)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-305)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1018))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1018)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-177)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-952))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-952)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1053)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1069)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1075)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-613)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1145)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-153)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-135)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-471)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-580))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-580)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-499)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1137)))) (-3192 (*1 *2 *1 *3) (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-553))) (-5 *2 (-111)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-553))))) -(-13 (-1062) (-1233) (-10 -8 (-15 -3192 ((-111) $ (|[\|\|]| (-517)))) (-15 -1534 ((-517) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-213)))) (-15 -1534 ((-213) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-661)))) (-15 -1534 ((-661) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1248)))) (-15 -1534 ((-1248) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-136)))) (-15 -1534 ((-136) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-131)))) (-15 -1534 ((-131) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1094)))) (-15 -1534 ((-1094) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-95)))) (-15 -1534 ((-95) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-666)))) (-15 -1534 ((-666) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-510)))) (-15 -1534 ((-510) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1046)))) (-15 -1534 ((-1046) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1249)))) (-15 -1534 ((-1249) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-518)))) (-15 -1534 ((-518) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-151)))) (-15 -1534 ((-151) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-656)))) (-15 -1534 ((-656) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-305)))) (-15 -1534 ((-305) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1018)))) (-15 -1534 ((-1018) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-177)))) (-15 -1534 ((-177) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-952)))) (-15 -1534 ((-952) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1053)))) (-15 -1534 ((-1053) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1069)))) (-15 -1534 ((-1069) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1075)))) (-15 -1534 ((-1075) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-613)))) (-15 -1534 ((-613) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1145)))) (-15 -1534 ((-1145) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-153)))) (-15 -1534 ((-153) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-135)))) (-15 -1534 ((-135) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-471)))) (-15 -1534 ((-471) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-580)))) (-15 -1534 ((-580) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-499)))) (-15 -1534 ((-499) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-1137)))) (-15 -1534 ((-1137) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-553)))) (-15 -1534 ((-553) $)))) -(((-92) . T) ((-101) . T) ((-603 #0=(-1160)) . T) ((-600 (-845)) . T) ((-600 #0#) . T) ((-483 #0#) . T) ((-1079) . T) ((-1062) . T) ((-1233) . T)) -((-1513 (((-1243) (-630 (-845))) 23) (((-1243) (-845)) 22)) (-1847 (((-1243) (-630 (-845))) 21) (((-1243) (-845)) 20)) (-4005 (((-1243) (-630 (-845))) 19) (((-1243) (-845)) 11) (((-1243) (-1137) (-845)) 17))) -(((-1117) (-10 -7 (-15 -4005 ((-1243) (-1137) (-845))) (-15 -4005 ((-1243) (-845))) (-15 -1847 ((-1243) (-845))) (-15 -1513 ((-1243) (-845))) (-15 -4005 ((-1243) (-630 (-845)))) (-15 -1847 ((-1243) (-630 (-845)))) (-15 -1513 ((-1243) (-630 (-845)))))) (T -1117)) -((-1513 (*1 *2 *3) (-12 (-5 *3 (-630 (-845))) (-5 *2 (-1243)) (-5 *1 (-1117)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-630 (-845))) (-5 *2 (-1243)) (-5 *1 (-1117)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-630 (-845))) (-5 *2 (-1243)) (-5 *1 (-1117)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) (-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-1137)) (-5 *4 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117))))) -(-10 -7 (-15 -4005 ((-1243) (-1137) (-845))) (-15 -4005 ((-1243) (-845))) (-15 -1847 ((-1243) (-845))) (-15 -1513 ((-1243) (-845))) (-15 -4005 ((-1243) (-630 (-845)))) (-15 -1847 ((-1243) (-630 (-845)))) (-15 -1513 ((-1243) (-630 (-845))))) -((-2391 (($ $ $) 10)) (-1599 (($ $) 9)) (-2624 (($ $ $) 13)) (-1966 (($ $ $) 15)) (-2534 (($ $ $) 12)) (-3039 (($ $ $) 14)) (-3660 (($ $) 17)) (-1643 (($ $) 16)) (-3466 (($ $) 6)) (-3595 (($ $ $) 11) (($ $) 7)) (-3536 (($ $ $) 8))) -(((-1118) (-137)) (T -1118)) -((-3660 (*1 *1 *1) (-4 *1 (-1118))) (-1643 (*1 *1 *1) (-4 *1 (-1118))) (-1966 (*1 *1 *1 *1) (-4 *1 (-1118))) (-3039 (*1 *1 *1 *1) (-4 *1 (-1118))) (-2624 (*1 *1 *1 *1) (-4 *1 (-1118))) (-2534 (*1 *1 *1 *1) (-4 *1 (-1118))) (-3595 (*1 *1 *1 *1) (-4 *1 (-1118))) (-2391 (*1 *1 *1 *1) (-4 *1 (-1118))) (-1599 (*1 *1 *1) (-4 *1 (-1118))) (-3536 (*1 *1 *1 *1) (-4 *1 (-1118))) (-3595 (*1 *1 *1) (-4 *1 (-1118))) (-3466 (*1 *1 *1) (-4 *1 (-1118)))) -(-13 (-10 -8 (-15 -3466 ($ $)) (-15 -3595 ($ $)) (-15 -3536 ($ $ $)) (-15 -1599 ($ $)) (-15 -2391 ($ $ $)) (-15 -3595 ($ $ $)) (-15 -2534 ($ $ $)) (-15 -2624 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -1966 ($ $ $)) (-15 -1643 ($ $)) (-15 -3660 ($ $)))) -((-3096 (((-111) $ $) 41)) (-2821 ((|#1| $) 15)) (-3515 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-4018 (((-111) $) 17)) (-2293 (($ $ |#1|) 28)) (-3218 (($ $ (-111)) 30)) (-3799 (($ $) 31)) (-1739 (($ $ |#2|) 29)) (-1735 (((-1137) $) NIL)) (-3831 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-2786 (((-1099) $) NIL)) (-3586 (((-111) $) 14)) (-3222 (($) 10)) (-1508 (($ $) 27)) (-3121 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3233 |#2|))) 21) (((-630 $) (-630 (-2 (|:| |val| |#1|) (|:| -3233 |#2|)))) 24) (((-630 $) |#1| (-630 |#2|)) 26)) (-3870 ((|#2| $) 16)) (-3110 (((-845) $) 50)) (-1617 (((-111) $ $) 39))) -(((-1119 |#1| |#2|) (-13 (-1079) (-10 -8 (-15 -3222 ($)) (-15 -3586 ((-111) $)) (-15 -2821 (|#1| $)) (-15 -3870 (|#2| $)) (-15 -4018 ((-111) $)) (-15 -3121 ($ |#1| |#2| (-111))) (-15 -3121 ($ |#1| |#2|)) (-15 -3121 ($ (-2 (|:| |val| |#1|) (|:| -3233 |#2|)))) (-15 -3121 ((-630 $) (-630 (-2 (|:| |val| |#1|) (|:| -3233 |#2|))))) (-15 -3121 ((-630 $) |#1| (-630 |#2|))) (-15 -1508 ($ $)) (-15 -2293 ($ $ |#1|)) (-15 -1739 ($ $ |#2|)) (-15 -3218 ($ $ (-111))) (-15 -3799 ($ $)) (-15 -3831 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -3515 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1079) (-34)) (-13 (-1079) (-34))) (T -1119)) -((-3222 (*1 *1) (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))))) (-2821 (*1 *2 *1) (-12 (-4 *2 (-13 (-1079) (-34))) (-5 *1 (-1119 *2 *3)) (-4 *3 (-13 (-1079) (-34))))) (-3870 (*1 *2 *1) (-12 (-4 *2 (-13 (-1079) (-34))) (-5 *1 (-1119 *3 *2)) (-4 *3 (-13 (-1079) (-34))))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))))) (-3121 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-3121 (*1 *1 *2 *3) (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3233 *4))) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1119 *3 *4)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-630 (-2 (|:| |val| *4) (|:| -3233 *5)))) (-4 *4 (-13 (-1079) (-34))) (-4 *5 (-13 (-1079) (-34))) (-5 *2 (-630 (-1119 *4 *5))) (-5 *1 (-1119 *4 *5)))) (-3121 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *5)) (-4 *5 (-13 (-1079) (-34))) (-5 *2 (-630 (-1119 *3 *5))) (-5 *1 (-1119 *3 *5)) (-4 *3 (-13 (-1079) (-34))))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-2293 (*1 *1 *1 *2) (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-1739 (*1 *1 *1 *2) (-12 (-5 *1 (-1119 *3 *2)) (-4 *3 (-13 (-1079) (-34))) (-4 *2 (-13 (-1079) (-34))))) (-3218 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-3831 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1079) (-34))) (-4 *6 (-13 (-1079) (-34))) (-5 *2 (-111)) (-5 *1 (-1119 *5 *6)))) (-3515 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1079) (-34))) (-5 *2 (-111)) (-5 *1 (-1119 *4 *5)) (-4 *4 (-13 (-1079) (-34)))))) -(-13 (-1079) (-10 -8 (-15 -3222 ($)) (-15 -3586 ((-111) $)) (-15 -2821 (|#1| $)) (-15 -3870 (|#2| $)) (-15 -4018 ((-111) $)) (-15 -3121 ($ |#1| |#2| (-111))) (-15 -3121 ($ |#1| |#2|)) (-15 -3121 ($ (-2 (|:| |val| |#1|) (|:| -3233 |#2|)))) (-15 -3121 ((-630 $) (-630 (-2 (|:| |val| |#1|) (|:| -3233 |#2|))))) (-15 -3121 ((-630 $) |#1| (-630 |#2|))) (-15 -1508 ($ $)) (-15 -2293 ($ $ |#1|)) (-15 -1739 ($ $ |#2|)) (-15 -3218 ($ $ (-111))) (-15 -3799 ($ $)) (-15 -3831 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -3515 ((-111) $ $ (-1 (-111) |#2| |#2|))))) -((-3096 (((-111) $ $) NIL (|has| (-1119 |#1| |#2|) (-1079)))) (-2821 (((-1119 |#1| |#2|) $) 25)) (-2428 (($ $) 76)) (-2171 (((-111) (-1119 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-3337 (($ $ $ (-630 (-1119 |#1| |#2|))) 90) (($ $ $ (-630 (-1119 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-1511 (((-111) $ (-757)) NIL)) (-2884 (((-1119 |#1| |#2|) $ (-1119 |#1| |#2|)) 43 (|has| $ (-6 -4370)))) (-1490 (((-1119 |#1| |#2|) $ "value" (-1119 |#1| |#2|)) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1284 (((-630 (-2 (|:| |val| |#1|) (|:| -3233 |#2|))) $) 80)) (-3986 (($ (-1119 |#1| |#2|) $) 39)) (-2575 (($ (-1119 |#1| |#2|) $) 31)) (-1408 (((-630 (-1119 |#1| |#2|)) $) NIL (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 51)) (-3082 (((-111) (-1119 |#1| |#2|) $) 82)) (-2284 (((-111) $ $) NIL (|has| (-1119 |#1| |#2|) (-1079)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 (-1119 |#1| |#2|)) $) 55 (|has| $ (-6 -4369)))) (-1832 (((-111) (-1119 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-1119 |#1| |#2|) (-1079))))) (-2503 (($ (-1 (-1119 |#1| |#2|) (-1119 |#1| |#2|)) $) 47 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-1119 |#1| |#2|) (-1119 |#1| |#2|)) $) 46)) (-3786 (((-111) $ (-757)) NIL)) (-3698 (((-630 (-1119 |#1| |#2|)) $) 53)) (-3862 (((-111) $) 42)) (-1735 (((-1137) $) NIL (|has| (-1119 |#1| |#2|) (-1079)))) (-2786 (((-1099) $) NIL (|has| (-1119 |#1| |#2|) (-1079)))) (-3330 (((-3 $ "failed") $) 75)) (-3341 (((-111) (-1 (-111) (-1119 |#1| |#2|)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-1119 |#1| |#2|)))) NIL (-12 (|has| (-1119 |#1| |#2|) (-303 (-1119 |#1| |#2|))) (|has| (-1119 |#1| |#2|) (-1079)))) (($ $ (-288 (-1119 |#1| |#2|))) NIL (-12 (|has| (-1119 |#1| |#2|) (-303 (-1119 |#1| |#2|))) (|has| (-1119 |#1| |#2|) (-1079)))) (($ $ (-1119 |#1| |#2|) (-1119 |#1| |#2|)) NIL (-12 (|has| (-1119 |#1| |#2|) (-303 (-1119 |#1| |#2|))) (|has| (-1119 |#1| |#2|) (-1079)))) (($ $ (-630 (-1119 |#1| |#2|)) (-630 (-1119 |#1| |#2|))) NIL (-12 (|has| (-1119 |#1| |#2|) (-303 (-1119 |#1| |#2|))) (|has| (-1119 |#1| |#2|) (-1079))))) (-2551 (((-111) $ $) 50)) (-3586 (((-111) $) 22)) (-3222 (($) 24)) (-2046 (((-1119 |#1| |#2|) $ "value") NIL)) (-3558 (((-553) $ $) NIL)) (-1510 (((-111) $) 44)) (-2796 (((-757) (-1 (-111) (-1119 |#1| |#2|)) $) NIL (|has| $ (-6 -4369))) (((-757) (-1119 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-1119 |#1| |#2|) (-1079))))) (-1508 (($ $) 49)) (-3121 (($ (-1119 |#1| |#2|)) 9) (($ |#1| |#2| (-630 $)) 12) (($ |#1| |#2| (-630 (-1119 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-630 |#2|)) 17)) (-1784 (((-630 |#2|) $) 81)) (-3110 (((-845) $) 73 (|has| (-1119 |#1| |#2|) (-600 (-845))))) (-2860 (((-630 $) $) 28)) (-3743 (((-111) $ $) NIL (|has| (-1119 |#1| |#2|) (-1079)))) (-3296 (((-111) (-1 (-111) (-1119 |#1| |#2|)) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 64 (|has| (-1119 |#1| |#2|) (-1079)))) (-2563 (((-757) $) 58 (|has| $ (-6 -4369))))) -(((-1120 |#1| |#2|) (-13 (-992 (-1119 |#1| |#2|)) (-10 -8 (-6 -4370) (-6 -4369) (-15 -3330 ((-3 $ "failed") $)) (-15 -2428 ($ $)) (-15 -3121 ($ (-1119 |#1| |#2|))) (-15 -3121 ($ |#1| |#2| (-630 $))) (-15 -3121 ($ |#1| |#2| (-630 (-1119 |#1| |#2|)))) (-15 -3121 ($ |#1| |#2| |#1| (-630 |#2|))) (-15 -1784 ((-630 |#2|) $)) (-15 -1284 ((-630 (-2 (|:| |val| |#1|) (|:| -3233 |#2|))) $)) (-15 -3082 ((-111) (-1119 |#1| |#2|) $)) (-15 -2171 ((-111) (-1119 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2575 ($ (-1119 |#1| |#2|) $)) (-15 -3986 ($ (-1119 |#1| |#2|) $)) (-15 -3337 ($ $ $ (-630 (-1119 |#1| |#2|)))) (-15 -3337 ($ $ $ (-630 (-1119 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1079) (-34)) (-13 (-1079) (-34))) (T -1120)) -((-3330 (*1 *1 *1) (|partial| -12 (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-2428 (*1 *1 *1) (-12 (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4)))) (-3121 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-630 (-1120 *2 *3))) (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) (-3121 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-630 (-1119 *2 *3))) (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))) (-5 *1 (-1120 *2 *3)))) (-3121 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-1079) (-34))) (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-630 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) (-5 *1 (-1120 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))))) (-3082 (*1 *2 *3 *1) (-12 (-5 *3 (-1119 *4 *5)) (-4 *4 (-13 (-1079) (-34))) (-4 *5 (-13 (-1079) (-34))) (-5 *2 (-111)) (-5 *1 (-1120 *4 *5)))) (-2171 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1119 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1079) (-34))) (-4 *6 (-13 (-1079) (-34))) (-5 *2 (-111)) (-5 *1 (-1120 *5 *6)))) (-2575 (*1 *1 *2 *1) (-12 (-5 *2 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4)))) (-3986 (*1 *1 *2 *1) (-12 (-5 *2 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4)))) (-3337 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-630 (-1119 *3 *4))) (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4)))) (-3337 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-1119 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1079) (-34))) (-4 *5 (-13 (-1079) (-34))) (-5 *1 (-1120 *4 *5))))) -(-13 (-992 (-1119 |#1| |#2|)) (-10 -8 (-6 -4370) (-6 -4369) (-15 -3330 ((-3 $ "failed") $)) (-15 -2428 ($ $)) (-15 -3121 ($ (-1119 |#1| |#2|))) (-15 -3121 ($ |#1| |#2| (-630 $))) (-15 -3121 ($ |#1| |#2| (-630 (-1119 |#1| |#2|)))) (-15 -3121 ($ |#1| |#2| |#1| (-630 |#2|))) (-15 -1784 ((-630 |#2|) $)) (-15 -1284 ((-630 (-2 (|:| |val| |#1|) (|:| -3233 |#2|))) $)) (-15 -3082 ((-111) (-1119 |#1| |#2|) $)) (-15 -2171 ((-111) (-1119 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2575 ($ (-1119 |#1| |#2|) $)) (-15 -3986 ($ (-1119 |#1| |#2|) $)) (-15 -3337 ($ $ $ (-630 (-1119 |#1| |#2|)))) (-15 -3337 ($ $ $ (-630 (-1119 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-1605 (($ $) NIL)) (-1576 ((|#2| $) NIL)) (-2986 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2323 (($ (-674 |#2|)) 50)) (-2086 (((-111) $) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3747 (($ |#2|) 10)) (-3820 (($) NIL T CONST)) (-3639 (($ $) 63 (|has| |#2| (-301)))) (-3894 (((-235 |#1| |#2|) $ (-553)) 36)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 |#2| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) ((|#2| $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) 77)) (-2409 (((-757) $) 65 (|has| |#2| (-545)))) (-2441 ((|#2| $ (-553) (-553)) NIL)) (-1408 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1848 (((-111) $) NIL)) (-2016 (((-757) $) 67 (|has| |#2| (-545)))) (-1888 (((-630 (-235 |#1| |#2|)) $) 71 (|has| |#2| (-545)))) (-4253 (((-757) $) NIL)) (-3202 (($ |#2|) 20)) (-4265 (((-757) $) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-3714 ((|#2| $) 61 (|has| |#2| (-6 (-4371 "*"))))) (-3510 (((-553) $) NIL)) (-4116 (((-553) $) NIL)) (-2195 (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-4275 (((-553) $) NIL)) (-3223 (((-553) $) NIL)) (-3394 (($ (-630 (-630 |#2|))) 31)) (-2503 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2384 (((-630 (-630 |#2|)) $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-1614 (((-3 $ "failed") $) 74 (|has| |#2| (-357)))) (-2786 (((-1099) $) NIL)) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-3341 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ (-553) (-553) |#2|) NIL) ((|#2| $ (-553) (-553)) NIL)) (-1330 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-4193 ((|#2| $) NIL)) (-1325 (($ (-630 |#2|)) 44)) (-1564 (((-111) $) NIL)) (-2421 (((-235 |#1| |#2|) $) NIL)) (-1938 ((|#2| $) 59 (|has| |#2| (-6 (-4371 "*"))))) (-2796 (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1508 (($ $) NIL)) (-1524 (((-529) $) 86 (|has| |#2| (-601 (-529))))) (-1355 (((-235 |#1| |#2|) $ (-553)) 38)) (-3110 (((-845) $) 41) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#2| (-1020 (-401 (-553))))) (($ |#2|) NIL) (((-674 |#2|) $) 46)) (-1999 (((-757)) 18)) (-3296 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-4172 (((-111) $) NIL)) (-1988 (($) 12 T CONST)) (-1997 (($) 15 T CONST)) (-1780 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-757)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) 57) (($ $ (-553)) 76 (|has| |#2| (-357)))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) 53) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) 55)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1121 |#1| |#2|) (-13 (-1102 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-600 (-674 |#2|)) (-10 -8 (-15 -3202 ($ |#2|)) (-15 -1605 ($ $)) (-15 -2323 ($ (-674 |#2|))) (IF (|has| |#2| (-6 (-4371 "*"))) (-6 -4358) |%noBranch|) (IF (|has| |#2| (-6 (-4371 "*"))) (IF (|has| |#2| (-6 -4366)) (-6 -4366) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|))) (-757) (-1031)) (T -1121)) -((-3202 (*1 *1 *2) (-12 (-5 *1 (-1121 *3 *2)) (-14 *3 (-757)) (-4 *2 (-1031)))) (-1605 (*1 *1 *1) (-12 (-5 *1 (-1121 *2 *3)) (-14 *2 (-757)) (-4 *3 (-1031)))) (-2323 (*1 *1 *2) (-12 (-5 *2 (-674 *4)) (-4 *4 (-1031)) (-5 *1 (-1121 *3 *4)) (-14 *3 (-757))))) -(-13 (-1102 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-600 (-674 |#2|)) (-10 -8 (-15 -3202 ($ |#2|)) (-15 -1605 ($ $)) (-15 -2323 ($ (-674 |#2|))) (IF (|has| |#2| (-6 (-4371 "*"))) (-6 -4358) |%noBranch|) (IF (|has| |#2| (-6 (-4371 "*"))) (IF (|has| |#2| (-6 -4366)) (-6 -4366) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-601 (-529))) (-6 (-601 (-529))) |%noBranch|))) -((-3913 (($ $) 19)) (-2009 (($ $ (-141)) 10) (($ $ (-138)) 14)) (-1294 (((-111) $ $) 24)) (-2924 (($ $) 17)) (-2046 (((-141) $ (-553) (-141)) NIL) (((-141) $ (-553)) NIL) (($ $ (-1205 (-553))) NIL) (($ $ $) 29)) (-3110 (($ (-141)) 27) (((-845) $) NIL))) -(((-1122 |#1|) (-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -2046 (|#1| |#1| |#1|)) (-15 -2009 (|#1| |#1| (-138))) (-15 -2009 (|#1| |#1| (-141))) (-15 -3110 (|#1| (-141))) (-15 -1294 ((-111) |#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -2046 ((-141) |#1| (-553))) (-15 -2046 ((-141) |#1| (-553) (-141)))) (-1123)) (T -1122)) -NIL -(-10 -8 (-15 -3110 ((-845) |#1|)) (-15 -2046 (|#1| |#1| |#1|)) (-15 -2009 (|#1| |#1| (-138))) (-15 -2009 (|#1| |#1| (-141))) (-15 -3110 (|#1| (-141))) (-15 -1294 ((-111) |#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -2046 ((-141) |#1| (-553))) (-15 -2046 ((-141) |#1| (-553) (-141)))) -((-3096 (((-111) $ $) 19 (|has| (-141) (-1079)))) (-3968 (($ $) 120)) (-3913 (($ $) 121)) (-2009 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-1272 (((-111) $ $) 118)) (-4324 (((-111) $ $ (-553)) 117)) (-3446 (((-630 $) $ (-141)) 110) (((-630 $) $ (-138)) 109)) (-2768 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-833)))) (-1587 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4370))) (($ $) 88 (-12 (|has| (-141) (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-833)))) (-1511 (((-111) $ (-757)) 8)) (-1490 (((-141) $ (-553) (-141)) 52 (|has| $ (-6 -4370))) (((-141) $ (-1205 (-553)) (-141)) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2168 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-1467 (($ $) 90 (|has| $ (-6 -4370)))) (-3239 (($ $) 100)) (-2691 (($ $ (-1205 (-553)) $) 114)) (-2638 (($ $) 78 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ (-141) $) 77 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4369)))) (-2654 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4369))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4369)))) (-2515 (((-141) $ (-553) (-141)) 53 (|has| $ (-6 -4370)))) (-2441 (((-141) $ (-553)) 51)) (-1294 (((-111) $ $) 119)) (-1478 (((-553) (-1 (-111) (-141)) $) 97) (((-553) (-141) $) 96 (|has| (-141) (-1079))) (((-553) (-141) $ (-553)) 95 (|has| (-141) (-1079))) (((-553) $ $ (-553)) 113) (((-553) (-138) $ (-553)) 112)) (-1408 (((-630 (-141)) $) 30 (|has| $ (-6 -4369)))) (-3202 (($ (-757) (-141)) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 87 (|has| (-141) (-833)))) (-3160 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-833)))) (-2195 (((-630 (-141)) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 86 (|has| (-141) (-833)))) (-1529 (((-111) $ $ (-141)) 115)) (-1794 (((-757) $ $ (-141)) 116)) (-2503 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-2477 (($ $) 122)) (-2924 (($ $) 123)) (-3786 (((-111) $ (-757)) 10)) (-2179 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-1735 (((-1137) $) 22 (|has| (-141) (-1079)))) (-1774 (($ (-141) $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| (-141) (-1079)))) (-2603 (((-141) $) 42 (|has| (-553) (-833)))) (-3016 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-2858 (($ $ (-141)) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-630 (-141)) (-630 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-1912 (((-630 (-141)) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 (((-141) $ (-553) (-141)) 50) (((-141) $ (-553)) 49) (($ $ (-1205 (-553))) 63) (($ $ $) 102)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2796 (((-757) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4369))) (((-757) (-141) $) 28 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 91 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| (-141) (-601 (-529))))) (-3121 (($ (-630 (-141))) 70)) (-4325 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (($ (-141)) 111) (((-845) $) 18 (|has| (-141) (-600 (-845))))) (-3296 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 84 (|has| (-141) (-833)))) (-1648 (((-111) $ $) 83 (|has| (-141) (-833)))) (-1617 (((-111) $ $) 20 (|has| (-141) (-1079)))) (-1659 (((-111) $ $) 85 (|has| (-141) (-833)))) (-1636 (((-111) $ $) 82 (|has| (-141) (-833)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1123) (-137)) (T -1123)) -((-2924 (*1 *1 *1) (-4 *1 (-1123))) (-2477 (*1 *1 *1) (-4 *1 (-1123))) (-3913 (*1 *1 *1) (-4 *1 (-1123))) (-3968 (*1 *1 *1) (-4 *1 (-1123))) (-1294 (*1 *2 *1 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-111)))) (-1272 (*1 *2 *1 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-111)))) (-4324 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1123)) (-5 *3 (-553)) (-5 *2 (-111)))) (-1794 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1123)) (-5 *3 (-141)) (-5 *2 (-757)))) (-1529 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1123)) (-5 *3 (-141)) (-5 *2 (-111)))) (-2691 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-1205 (-553))))) (-1478 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-553)))) (-1478 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-553)) (-5 *3 (-138)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1123)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-630 *1)) (-4 *1 (-1123)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-630 *1)) (-4 *1 (-1123)))) (-2009 (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-141)))) (-2009 (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-138)))) (-2179 (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-141)))) (-2179 (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-138)))) (-2168 (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-141)))) (-2168 (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-138)))) (-2046 (*1 *1 *1 *1) (-4 *1 (-1123)))) -(-13 (-19 (-141)) (-10 -8 (-15 -2924 ($ $)) (-15 -2477 ($ $)) (-15 -3913 ($ $)) (-15 -3968 ($ $)) (-15 -1294 ((-111) $ $)) (-15 -1272 ((-111) $ $)) (-15 -4324 ((-111) $ $ (-553))) (-15 -1794 ((-757) $ $ (-141))) (-15 -1529 ((-111) $ $ (-141))) (-15 -2691 ($ $ (-1205 (-553)) $)) (-15 -1478 ((-553) $ $ (-553))) (-15 -1478 ((-553) (-138) $ (-553))) (-15 -3110 ($ (-141))) (-15 -3446 ((-630 $) $ (-141))) (-15 -3446 ((-630 $) $ (-138))) (-15 -2009 ($ $ (-141))) (-15 -2009 ($ $ (-138))) (-15 -2179 ($ $ (-141))) (-15 -2179 ($ $ (-138))) (-15 -2168 ($ $ (-141))) (-15 -2168 ($ $ (-138))) (-15 -2046 ($ $ $)))) -(((-34) . T) ((-101) -3988 (|has| (-141) (-1079)) (|has| (-141) (-833))) ((-600 (-845)) -3988 (|has| (-141) (-1079)) (|has| (-141) (-833)) (|has| (-141) (-600 (-845)))) ((-148 #0=(-141)) . T) ((-601 (-529)) |has| (-141) (-601 (-529))) ((-280 #1=(-553) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))) ((-367 #0#) . T) ((-482 #0#) . T) ((-591 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))) ((-636 #0#) . T) ((-19 #0#) . T) ((-833) |has| (-141) (-833)) ((-1079) -3988 (|has| (-141) (-1079)) (|has| (-141) (-833))) ((-1192) . T)) -((-3249 (((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 |#4|) (-630 |#5|) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-757)) 94)) (-2045 (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757)) 54)) (-1955 (((-1243) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-757)) 85)) (-2904 (((-757) (-630 |#4|) (-630 |#5|)) 27)) (-2058 (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757)) 56) (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757) (-111)) 58)) (-2075 (((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111)) 77)) (-1524 (((-1137) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) 80)) (-1870 (((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|) 53)) (-1343 (((-757) (-630 |#4|) (-630 |#5|)) 19))) -(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1343 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -2904 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -1870 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757) (-111))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3249 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 |#4|) (-630 |#5|) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-757))) (-15 -1524 ((-1137) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -1955 ((-1243) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-757)))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1124)) -((-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) (-5 *4 (-757)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-1243)) (-5 *1 (-1124 *5 *6 *7 *8 *9)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1137)) (-5 *1 (-1124 *4 *5 *6 *7 *8)))) (-3249 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-630 *11)) (|:| |todo| (-630 (-2 (|:| |val| *3) (|:| -3233 *11)))))) (-5 *6 (-757)) (-5 *2 (-630 (-2 (|:| |val| (-630 *10)) (|:| -3233 *11)))) (-5 *3 (-630 *10)) (-5 *4 (-630 *11)) (-4 *10 (-1045 *7 *8 *9)) (-4 *11 (-1088 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-779)) (-4 *9 (-833)) (-5 *1 (-1124 *7 *8 *9 *10 *11)))) (-2075 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1124 *5 *6 *7 *8 *9)))) (-2075 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1124 *5 *6 *7 *8 *9)))) (-2058 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-2058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-757)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-779)) (-4 *9 (-833)) (-4 *3 (-1045 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1124 *7 *8 *9 *3 *4)) (-4 *4 (-1088 *7 *8 *9 *3)))) (-2045 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *3 (-1045 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-1870 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-630 *4)) (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1124 *5 *6 *7 *8 *9)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1124 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1343 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -2904 ((-757) (-630 |#4|) (-630 |#5|))) (-15 -1870 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2045 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757) (-111))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5| (-757))) (-15 -2058 ((-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) |#4| |#5|)) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111))) (-15 -2075 ((-630 |#5|) (-630 |#4|) (-630 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3249 ((-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-630 |#4|) (-630 |#5|) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-2 (|:| |done| (-630 |#5|)) (|:| |todo| (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))))) (-757))) (-15 -1524 ((-1137) (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|)))) (-15 -1955 ((-1243) (-630 (-2 (|:| |val| (-630 |#4|)) (|:| -3233 |#5|))) (-757)))) -((-3096 (((-111) $ $) NIL)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) NIL)) (-3247 (((-630 $) (-630 |#4|)) 110) (((-630 $) (-630 |#4|) (-111)) 111) (((-630 $) (-630 |#4|) (-111) (-111)) 109) (((-630 $) (-630 |#4|) (-111) (-111) (-111) (-111)) 112)) (-3506 (((-630 |#3|) $) NIL)) (-1742 (((-111) $) NIL)) (-3538 (((-111) $) NIL (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1484 ((|#4| |#4| $) NIL)) (-1536 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| $) 84)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3905 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 62)) (-3820 (($) NIL T CONST)) (-2623 (((-111) $) 26 (|has| |#1| (-545)))) (-2032 (((-111) $ $) NIL (|has| |#1| (-545)))) (-3559 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1921 (((-111) $) NIL (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4063 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) NIL)) (-2707 (($ (-630 |#4|)) NIL)) (-2616 (((-3 $ "failed") $) 39)) (-4290 ((|#4| |#4| $) 65)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2575 (($ |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-1345 ((|#4| |#4| $) NIL)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) NIL)) (-3217 (((-111) |#4| $) NIL)) (-3077 (((-111) |#4| $) NIL)) (-1497 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1365 (((-2 (|:| |val| (-630 |#4|)) (|:| |towers| (-630 $))) (-630 |#4|) (-111) (-111)) 124)) (-1408 (((-630 |#4|) $) 16 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1470 ((|#3| $) 33)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#4|) $) 17 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2503 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 21)) (-3935 (((-630 |#3|) $) NIL)) (-2351 (((-111) |#3| $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-2025 (((-3 |#4| (-630 $)) |#4| |#4| $) NIL)) (-4247 (((-630 (-2 (|:| |val| |#4|) (|:| -3233 $))) |#4| |#4| $) 103)) (-2594 (((-3 |#4| "failed") $) 37)) (-2129 (((-630 $) |#4| $) 88)) (-3184 (((-3 (-111) (-630 $)) |#4| $) NIL)) (-1461 (((-630 (-2 (|:| |val| (-111)) (|:| -3233 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-1475 (((-630 $) |#4| $) 107) (((-630 $) (-630 |#4|) $) NIL) (((-630 $) (-630 |#4|) (-630 $)) 108) (((-630 $) |#4| (-630 $)) NIL)) (-3380 (((-630 $) (-630 |#4|) (-111) (-111) (-111)) 119)) (-2520 (($ |#4| $) 75) (($ (-630 |#4|) $) 76) (((-630 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-2564 (((-630 |#4|) $) NIL)) (-4299 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4080 ((|#4| |#4| $) NIL)) (-1990 (((-111) $ $) NIL)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3138 ((|#4| |#4| $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-3 |#4| "failed") $) 35)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-2761 (((-3 $ "failed") $ |#4|) 48)) (-3089 (($ $ |#4|) NIL) (((-630 $) |#4| $) 90) (((-630 $) |#4| (-630 $)) NIL) (((-630 $) (-630 |#4|) $) NIL) (((-630 $) (-630 |#4|) (-630 $)) 86)) (-3341 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 15)) (-3222 (($) 13)) (-3872 (((-757) $) NIL)) (-2796 (((-757) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (((-757) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) 12)) (-1524 (((-529) $) NIL (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 20)) (-2867 (($ $ |#3|) 42)) (-3721 (($ $ |#3|) 44)) (-2316 (($ $) NIL)) (-1665 (($ $ |#3|) NIL)) (-3110 (((-845) $) 31) (((-630 |#4|) $) 40)) (-2668 (((-757) $) NIL (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) NIL)) (-4130 (((-630 $) |#4| $) 54) (((-630 $) |#4| (-630 $)) NIL) (((-630 $) (-630 |#4|) $) NIL) (((-630 $) (-630 |#4|) (-630 $)) NIL)) (-3296 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) NIL)) (-1397 (((-111) |#4| $) NIL)) (-4223 (((-111) |#3| $) 61)) (-1617 (((-111) $ $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1125 |#1| |#2| |#3| |#4|) (-13 (-1088 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2520 ((-630 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111) (-111) (-111))) (-15 -3380 ((-630 $) (-630 |#4|) (-111) (-111) (-111))) (-15 -1365 ((-2 (|:| |val| (-630 |#4|)) (|:| |towers| (-630 $))) (-630 |#4|) (-111) (-111))))) (-445) (-779) (-833) (-1045 |#1| |#2| |#3|)) (T -1125)) -((-2520 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1125 *5 *6 *7 *3))) (-5 *1 (-1125 *5 *6 *7 *3)) (-4 *3 (-1045 *5 *6 *7)))) (-3247 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1125 *5 *6 *7 *8))) (-5 *1 (-1125 *5 *6 *7 *8)))) (-3247 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1125 *5 *6 *7 *8))) (-5 *1 (-1125 *5 *6 *7 *8)))) (-3380 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 (-1125 *5 *6 *7 *8))) (-5 *1 (-1125 *5 *6 *7 *8)))) (-1365 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-630 *8)) (|:| |towers| (-630 (-1125 *5 *6 *7 *8))))) (-5 *1 (-1125 *5 *6 *7 *8)) (-5 *3 (-630 *8))))) -(-13 (-1088 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2520 ((-630 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111))) (-15 -3247 ((-630 $) (-630 |#4|) (-111) (-111) (-111) (-111))) (-15 -3380 ((-630 $) (-630 |#4|) (-111) (-111) (-111))) (-15 -1365 ((-2 (|:| |val| (-630 |#4|)) (|:| |towers| (-630 $))) (-630 |#4|) (-111) (-111))))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3343 ((|#1| $) 34)) (-1650 (($ (-630 |#1|)) 39)) (-1511 (((-111) $ (-757)) NIL)) (-3820 (($) NIL T CONST)) (-2260 ((|#1| |#1| $) 36)) (-3196 ((|#1| $) 32)) (-1408 (((-630 |#1|) $) 18 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 22)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1376 ((|#1| $) 35)) (-2636 (($ |#1| $) 37)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2949 ((|#1| $) 33)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 31)) (-3222 (($) 38)) (-3090 (((-757) $) 29)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 27)) (-3110 (((-845) $) 14 (|has| |#1| (-600 (-845))))) (-2711 (($ (-630 |#1|)) NIL)) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 17 (|has| |#1| (-1079)))) (-2563 (((-757) $) 30 (|has| $ (-6 -4369))))) -(((-1126 |#1|) (-13 (-1100 |#1|) (-10 -8 (-15 -1650 ($ (-630 |#1|))))) (-1192)) (T -1126)) -((-1650 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-1126 *3))))) -(-13 (-1100 |#1|) (-10 -8 (-15 -1650 ($ (-630 |#1|))))) -((-1490 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1205 (-553)) |#2|) 44) ((|#2| $ (-553) |#2|) 41)) (-3145 (((-111) $) 12)) (-2503 (($ (-1 |#2| |#2|) $) 39)) (-2603 ((|#2| $) NIL) (($ $ (-757)) 17)) (-2858 (($ $ |#2|) 40)) (-1411 (((-111) $) 11)) (-2046 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1205 (-553))) 31) ((|#2| $ (-553)) 23) ((|#2| $ (-553) |#2|) NIL)) (-2269 (($ $ $) 47) (($ $ |#2|) NIL)) (-4325 (($ $ $) 33) (($ |#2| $) NIL) (($ (-630 $)) 36) (($ $ |#2|) NIL))) -(((-1127 |#1| |#2|) (-10 -8 (-15 -3145 ((-111) |#1|)) (-15 -1411 ((-111) |#1|)) (-15 -1490 (|#2| |#1| (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553))) (-15 -2858 (|#1| |#1| |#2|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -4325 (|#1| (-630 |#1|))) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -1490 (|#2| |#1| (-1205 (-553)) |#2|)) (-15 -1490 (|#2| |#1| "last" |#2|)) (-15 -1490 (|#1| |#1| "rest" |#1|)) (-15 -1490 (|#2| |#1| "first" |#2|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2046 (|#2| |#1| "last")) (-15 -2046 (|#1| |#1| "rest")) (-15 -2603 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "first")) (-15 -2603 (|#2| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#1|)) (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -2046 (|#2| |#1| "value")) (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|))) (-1128 |#2|) (-1192)) (T -1127)) -NIL -(-10 -8 (-15 -3145 ((-111) |#1|)) (-15 -1411 ((-111) |#1|)) (-15 -1490 (|#2| |#1| (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553) |#2|)) (-15 -2046 (|#2| |#1| (-553))) (-15 -2858 (|#1| |#1| |#2|)) (-15 -4325 (|#1| |#1| |#2|)) (-15 -4325 (|#1| (-630 |#1|))) (-15 -2046 (|#1| |#1| (-1205 (-553)))) (-15 -1490 (|#2| |#1| (-1205 (-553)) |#2|)) (-15 -1490 (|#2| |#1| "last" |#2|)) (-15 -1490 (|#1| |#1| "rest" |#1|)) (-15 -1490 (|#2| |#1| "first" |#2|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2046 (|#2| |#1| "last")) (-15 -2046 (|#1| |#1| "rest")) (-15 -2603 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "first")) (-15 -2603 (|#2| |#1|)) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#1|)) (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -2046 (|#2| |#1| "value")) (-15 -2503 (|#1| (-1 |#2| |#2|) |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-1787 (($ $) 67)) (-1683 (((-1243) $ (-553) (-553)) 97 (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) 52 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-2314 (($ $ $) 56 (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) 54 (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) 58 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4370))) (($ $ "rest" $) 55 (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 117 (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) 86 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4369)))) (-2123 ((|#1| $) 66)) (-3820 (($) 7 T CONST)) (-2616 (($ $) 73) (($ $ (-757)) 71)) (-2638 (($ $) 99 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4369))) (($ |#1| $) 100 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2515 ((|#1| $ (-553) |#1|) 85 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 87)) (-3145 (((-111) $) 83)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-3202 (($ (-757) |#1|) 108)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 95 (|has| (-553) (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 94 (|has| (-553) (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2594 ((|#1| $) 70) (($ $ (-757)) 68)) (-1774 (($ $ $ (-553)) 116) (($ |#1| $ (-553)) 115)) (-1901 (((-630 (-553)) $) 92)) (-3594 (((-111) (-553) $) 91)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 76) (($ $ (-757)) 74)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-2858 (($ $ |#1|) 96 (|has| $ (-6 -4370)))) (-1411 (((-111) $) 84)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 90)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1205 (-553))) 112) ((|#1| $ (-553)) 89) ((|#1| $ (-553) |#1|) 88)) (-3558 (((-553) $ $) 44)) (-2005 (($ $ (-1205 (-553))) 114) (($ $ (-553)) 113)) (-1510 (((-111) $) 46)) (-2383 (($ $) 62)) (-1566 (($ $) 59 (|has| $ (-6 -4370)))) (-2586 (((-757) $) 63)) (-4321 (($ $) 64)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-1524 (((-529) $) 98 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 107)) (-2269 (($ $ $) 61 (|has| $ (-6 -4370))) (($ $ |#1|) 60 (|has| $ (-6 -4370)))) (-4325 (($ $ $) 78) (($ |#1| $) 77) (($ (-630 $)) 110) (($ $ |#1|) 109)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1128 |#1|) (-137) (-1192)) (T -1128)) -((-1411 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1192)) (-5 *2 (-111))))) -(-13 (-1226 |t#1|) (-636 |t#1|) (-10 -8 (-15 -1411 ((-111) $)) (-15 -3145 ((-111) $)))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-992 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1192) . T) ((-1226 |#1|) . T)) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#2| $ |#1| |#2|) NIL)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) NIL)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3729 (((-630 |#1|) $) NIL)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1901 (((-630 |#1|) $) NIL)) (-3594 (((-111) |#1| $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1129 |#1| |#2| |#3|) (-1168 |#1| |#2|) (-1079) (-1079) |#2|) (T -1129)) -NIL -(-1168 |#1| |#2|) -((-3096 (((-111) $ $) 7)) (-2502 (((-3 $ "failed") $) 13)) (-1735 (((-1137) $) 9)) (-1945 (($) 14 T CONST)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11)) (-1617 (((-111) $ $) 6))) -(((-1130) (-137)) (T -1130)) -((-1945 (*1 *1) (-4 *1 (-1130))) (-2502 (*1 *1 *1) (|partial| -4 *1 (-1130)))) -(-13 (-1079) (-10 -8 (-15 -1945 ($) -3879) (-15 -2502 ((-3 $ "failed") $)))) -(((-101) . T) ((-600 (-845)) . T) ((-1079) . T)) -((-3257 (((-1135 |#1|) (-1135 |#1|)) 17)) (-1687 (((-1135 |#1|) (-1135 |#1|)) 13)) (-4168 (((-1135 |#1|) (-1135 |#1|) (-553) (-553)) 20)) (-1902 (((-1135 |#1|) (-1135 |#1|)) 15))) -(((-1131 |#1|) (-10 -7 (-15 -1687 ((-1135 |#1|) (-1135 |#1|))) (-15 -1902 ((-1135 |#1|) (-1135 |#1|))) (-15 -3257 ((-1135 |#1|) (-1135 |#1|))) (-15 -4168 ((-1135 |#1|) (-1135 |#1|) (-553) (-553)))) (-13 (-545) (-144))) (T -1131)) -((-4168 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-13 (-545) (-144))) (-5 *1 (-1131 *4)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-13 (-545) (-144))) (-5 *1 (-1131 *3)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-13 (-545) (-144))) (-5 *1 (-1131 *3)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-13 (-545) (-144))) (-5 *1 (-1131 *3))))) -(-10 -7 (-15 -1687 ((-1135 |#1|) (-1135 |#1|))) (-15 -1902 ((-1135 |#1|) (-1135 |#1|))) (-15 -3257 ((-1135 |#1|) (-1135 |#1|))) (-15 -4168 ((-1135 |#1|) (-1135 |#1|) (-553) (-553)))) -((-4325 (((-1135 |#1|) (-1135 (-1135 |#1|))) 15))) -(((-1132 |#1|) (-10 -7 (-15 -4325 ((-1135 |#1|) (-1135 (-1135 |#1|))))) (-1192)) (T -1132)) -((-4325 (*1 *2 *3) (-12 (-5 *3 (-1135 (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1132 *4)) (-4 *4 (-1192))))) -(-10 -7 (-15 -4325 ((-1135 |#1|) (-1135 (-1135 |#1|))))) -((-3215 (((-1135 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1135 |#1|)) 25)) (-2654 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1135 |#1|)) 26)) (-1482 (((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|)) 16))) -(((-1133 |#1| |#2|) (-10 -7 (-15 -1482 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (-15 -3215 ((-1135 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1135 |#1|))) (-15 -2654 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1135 |#1|)))) (-1192) (-1192)) (T -1133)) -((-2654 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1135 *5)) (-4 *5 (-1192)) (-4 *2 (-1192)) (-5 *1 (-1133 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1135 *6)) (-4 *6 (-1192)) (-4 *3 (-1192)) (-5 *2 (-1135 *3)) (-5 *1 (-1133 *6 *3)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1135 *6)) (-5 *1 (-1133 *5 *6))))) -(-10 -7 (-15 -1482 ((-1135 |#2|) (-1 |#2| |#1|) (-1135 |#1|))) (-15 -3215 ((-1135 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1135 |#1|))) (-15 -2654 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1135 |#1|)))) -((-1482 (((-1135 |#3|) (-1 |#3| |#1| |#2|) (-1135 |#1|) (-1135 |#2|)) 21))) -(((-1134 |#1| |#2| |#3|) (-10 -7 (-15 -1482 ((-1135 |#3|) (-1 |#3| |#1| |#2|) (-1135 |#1|) (-1135 |#2|)))) (-1192) (-1192) (-1192)) (T -1134)) -((-1482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1135 *6)) (-5 *5 (-1135 *7)) (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-1135 *8)) (-5 *1 (-1134 *6 *7 *8))))) -(-10 -7 (-15 -1482 ((-1135 |#3|) (-1 |#3| |#1| |#2|) (-1135 |#1|) (-1135 |#2|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-1787 (($ $) 52)) (-1683 (((-1243) $ (-553) (-553)) 77 (|has| $ (-6 -4370)))) (-3945 (($ $ (-553)) 111 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-2724 (((-845) $) 41 (|has| |#1| (-1079)))) (-2186 (((-111)) 40 (|has| |#1| (-1079)))) (-2884 ((|#1| $ |#1|) NIL (|has| $ (-6 -4370)))) (-2314 (($ $ $) 99 (|has| $ (-6 -4370))) (($ $ (-553) $) 123)) (-3357 ((|#1| $ |#1|) 108 (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) 103 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4370))) (($ $ "rest" $) 107 (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 90 (|has| $ (-6 -4370))) ((|#1| $ (-553) |#1|) 56 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 59)) (-2123 ((|#1| $) NIL)) (-3820 (($) NIL T CONST)) (-4242 (($ $) 14)) (-2616 (($ $) 29) (($ $ (-757)) 89)) (-1856 (((-111) (-630 |#1|) $) 117 (|has| |#1| (-1079)))) (-2164 (($ (-630 |#1|)) 113)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) 58)) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-3145 (((-111) $) NIL)) (-1408 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3706 (((-1243) (-553) $) 122 (|has| |#1| (-1079)))) (-2256 (((-757) $) 119)) (-3167 (((-630 $) $) NIL)) (-2284 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-3786 (((-111) $ (-757)) NIL)) (-3698 (((-630 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-3822 (($ $) 91)) (-2151 (((-111) $) 13)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2594 ((|#1| $) NIL) (($ $ (-757)) NIL)) (-1774 (($ $ $ (-553)) NIL) (($ |#1| $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) 75)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-4337 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2361 ((|#1| $) 10)) (-2603 ((|#1| $) 28) (($ $ (-757)) 50)) (-2412 (((-2 (|:| |cycle?| (-111)) (|:| -2608 (-757)) (|:| |period| (-757))) (-757) $) 25)) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3885 (($ (-1 (-111) |#1|) $) 127)) (-3895 (($ (-1 (-111) |#1|) $) 128)) (-2858 (($ $ |#1|) 69 (|has| $ (-6 -4370)))) (-3089 (($ $ (-553)) 32)) (-1411 (((-111) $) 73)) (-4038 (((-111) $) 12)) (-3036 (((-111) $) 118)) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 20)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) 15)) (-3222 (($) 45)) (-2046 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1205 (-553))) NIL) ((|#1| $ (-553)) 55) ((|#1| $ (-553) |#1|) NIL)) (-3558 (((-553) $ $) 49)) (-2005 (($ $ (-1205 (-553))) NIL) (($ $ (-553)) NIL)) (-3936 (($ (-1 $)) 48)) (-1510 (((-111) $) 70)) (-2383 (($ $) 71)) (-1566 (($ $) 100 (|has| $ (-6 -4370)))) (-2586 (((-757) $) NIL)) (-4321 (($ $) NIL)) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 44)) (-1524 (((-529) $) NIL (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 54)) (-2386 (($ |#1| $) 98)) (-2269 (($ $ $) 101 (|has| $ (-6 -4370))) (($ $ |#1|) 102 (|has| $ (-6 -4370)))) (-4325 (($ $ $) 79) (($ |#1| $) 46) (($ (-630 $)) 84) (($ $ |#1|) 78)) (-2980 (($ $) 51)) (-3110 (($ (-630 |#1|)) 112) (((-845) $) 42 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) NIL)) (-3743 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 115 (|has| |#1| (-1079)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1135 |#1|) (-13 (-659 |#1|) (-603 (-630 |#1|)) (-10 -8 (-6 -4370) (-15 -2164 ($ (-630 |#1|))) (IF (|has| |#1| (-1079)) (-15 -1856 ((-111) (-630 |#1|) $)) |%noBranch|) (-15 -2412 ((-2 (|:| |cycle?| (-111)) (|:| -2608 (-757)) (|:| |period| (-757))) (-757) $)) (-15 -3936 ($ (-1 $))) (-15 -2386 ($ |#1| $)) (IF (|has| |#1| (-1079)) (PROGN (-15 -3706 ((-1243) (-553) $)) (-15 -2724 ((-845) $)) (-15 -2186 ((-111)))) |%noBranch|) (-15 -2314 ($ $ (-553) $)) (-15 -4337 ($ (-1 |#1|))) (-15 -4337 ($ (-1 |#1| |#1|) |#1|)) (-15 -3885 ($ (-1 (-111) |#1|) $)) (-15 -3895 ($ (-1 (-111) |#1|) $)))) (-1192)) (T -1135)) -((-2164 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3)))) (-1856 (*1 *2 *3 *1) (-12 (-5 *3 (-630 *4)) (-4 *4 (-1079)) (-4 *4 (-1192)) (-5 *2 (-111)) (-5 *1 (-1135 *4)))) (-2412 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2608 (-757)) (|:| |period| (-757)))) (-5 *1 (-1135 *4)) (-4 *4 (-1192)) (-5 *3 (-757)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-1 (-1135 *3))) (-5 *1 (-1135 *3)) (-4 *3 (-1192)))) (-2386 (*1 *1 *2 *1) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1192)))) (-3706 (*1 *2 *3 *1) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-1135 *4)) (-4 *4 (-1079)) (-4 *4 (-1192)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-1135 *3)) (-4 *3 (-1079)) (-4 *3 (-1192)))) (-2186 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1135 *3)) (-4 *3 (-1079)) (-4 *3 (-1192)))) (-2314 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1135 *3)) (-4 *3 (-1192)))) (-4337 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3)))) (-4337 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3)))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3)))) (-3895 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3))))) -(-13 (-659 |#1|) (-603 (-630 |#1|)) (-10 -8 (-6 -4370) (-15 -2164 ($ (-630 |#1|))) (IF (|has| |#1| (-1079)) (-15 -1856 ((-111) (-630 |#1|) $)) |%noBranch|) (-15 -2412 ((-2 (|:| |cycle?| (-111)) (|:| -2608 (-757)) (|:| |period| (-757))) (-757) $)) (-15 -3936 ($ (-1 $))) (-15 -2386 ($ |#1| $)) (IF (|has| |#1| (-1079)) (PROGN (-15 -3706 ((-1243) (-553) $)) (-15 -2724 ((-845) $)) (-15 -2186 ((-111)))) |%noBranch|) (-15 -2314 ($ $ (-553) $)) (-15 -4337 ($ (-1 |#1|))) (-15 -4337 ($ (-1 |#1| |#1|) |#1|)) (-15 -3885 ($ (-1 (-111) |#1|) $)) (-15 -3895 ($ (-1 (-111) |#1|) $)))) -((-3096 (((-111) $ $) 19)) (-3968 (($ $) 120)) (-3913 (($ $) 121)) (-2009 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-1272 (((-111) $ $) 118)) (-4324 (((-111) $ $ (-553)) 117)) (-3950 (($ (-553)) 127)) (-3446 (((-630 $) $ (-141)) 110) (((-630 $) $ (-138)) 109)) (-2768 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-833)))) (-1587 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4370))) (($ $) 88 (-12 (|has| (-141) (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-833)))) (-1511 (((-111) $ (-757)) 8)) (-1490 (((-141) $ (-553) (-141)) 52 (|has| $ (-6 -4370))) (((-141) $ (-1205 (-553)) (-141)) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-2168 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-1467 (($ $) 90 (|has| $ (-6 -4370)))) (-3239 (($ $) 100)) (-2691 (($ $ (-1205 (-553)) $) 114)) (-2638 (($ $) 78 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ (-141) $) 77 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4369)))) (-2654 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4369))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4369)))) (-2515 (((-141) $ (-553) (-141)) 53 (|has| $ (-6 -4370)))) (-2441 (((-141) $ (-553)) 51)) (-1294 (((-111) $ $) 119)) (-1478 (((-553) (-1 (-111) (-141)) $) 97) (((-553) (-141) $) 96 (|has| (-141) (-1079))) (((-553) (-141) $ (-553)) 95 (|has| (-141) (-1079))) (((-553) $ $ (-553)) 113) (((-553) (-138) $ (-553)) 112)) (-1408 (((-630 (-141)) $) 30 (|has| $ (-6 -4369)))) (-3202 (($ (-757) (-141)) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 87 (|has| (-141) (-833)))) (-3160 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-833)))) (-2195 (((-630 (-141)) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 86 (|has| (-141) (-833)))) (-1529 (((-111) $ $ (-141)) 115)) (-1794 (((-757) $ $ (-141)) 116)) (-2503 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-2477 (($ $) 122)) (-2924 (($ $) 123)) (-3786 (((-111) $ (-757)) 10)) (-2179 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-1735 (((-1137) $) 22)) (-1774 (($ (-141) $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21)) (-2603 (((-141) $) 42 (|has| (-553) (-833)))) (-3016 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-2858 (($ $ (-141)) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-630 (-141)) (-630 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-1912 (((-630 (-141)) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 (((-141) $ (-553) (-141)) 50) (((-141) $ (-553)) 49) (($ $ (-1205 (-553))) 63) (($ $ $) 102)) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2796 (((-757) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4369))) (((-757) (-141) $) 28 (-12 (|has| (-141) (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 91 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| (-141) (-601 (-529))))) (-3121 (($ (-630 (-141))) 70)) (-4325 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (($ (-141)) 111) (((-845) $) 18)) (-3296 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4369)))) (-3205 (((-1137) $) 131) (((-1137) $ (-111)) 130) (((-1243) (-808) $) 129) (((-1243) (-808) $ (-111)) 128)) (-1669 (((-111) $ $) 84 (|has| (-141) (-833)))) (-1648 (((-111) $ $) 83 (|has| (-141) (-833)))) (-1617 (((-111) $ $) 20)) (-1659 (((-111) $ $) 85 (|has| (-141) (-833)))) (-1636 (((-111) $ $) 82 (|has| (-141) (-833)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1136) (-137)) (T -1136)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-1136))))) -(-13 (-1123) (-1079) (-814) (-10 -8 (-15 -3950 ($ (-553))))) -(((-34) . T) ((-101) . T) ((-600 (-845)) . T) ((-148 #0=(-141)) . T) ((-601 (-529)) |has| (-141) (-601 (-529))) ((-280 #1=(-553) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))) ((-367 #0#) . T) ((-482 #0#) . T) ((-591 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))) ((-636 #0#) . T) ((-19 #0#) . T) ((-814) . T) ((-833) |has| (-141) (-833)) ((-1079) . T) ((-1123) . T) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3968 (($ $) NIL)) (-3913 (($ $) NIL)) (-2009 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-1272 (((-111) $ $) NIL)) (-4324 (((-111) $ $ (-553)) NIL)) (-3950 (($ (-553)) 7)) (-3446 (((-630 $) $ (-141)) NIL) (((-630 $) $ (-138)) NIL)) (-2768 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-833)))) (-1587 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| (-141) (-833))))) (-2990 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 (((-141) $ (-553) (-141)) NIL (|has| $ (-6 -4370))) (((-141) $ (-1205 (-553)) (-141)) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-2168 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2691 (($ $ (-1205 (-553)) $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2575 (($ (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4369))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2515 (((-141) $ (-553) (-141)) NIL (|has| $ (-6 -4370)))) (-2441 (((-141) $ (-553)) NIL)) (-1294 (((-111) $ $) NIL)) (-1478 (((-553) (-1 (-111) (-141)) $) NIL) (((-553) (-141) $) NIL (|has| (-141) (-1079))) (((-553) (-141) $ (-553)) NIL (|has| (-141) (-1079))) (((-553) $ $ (-553)) NIL) (((-553) (-138) $ (-553)) NIL)) (-1408 (((-630 (-141)) $) NIL (|has| $ (-6 -4369)))) (-3202 (($ (-757) (-141)) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| (-141) (-833)))) (-3160 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-833)))) (-2195 (((-630 (-141)) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| (-141) (-833)))) (-1529 (((-111) $ $ (-141)) NIL)) (-1794 (((-757) $ $ (-141)) NIL)) (-2503 (($ (-1 (-141) (-141)) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-2477 (($ $) NIL)) (-2924 (($ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-2179 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-1735 (((-1137) $) NIL)) (-1774 (($ (-141) $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-141) $) NIL (|has| (-553) (-833)))) (-3016 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-2858 (($ $ (-141)) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079)))) (($ $ (-630 (-141)) (-630 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-1912 (((-630 (-141)) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 (((-141) $ (-553) (-141)) NIL) (((-141) $ (-553)) NIL) (($ $ (-1205 (-553))) NIL) (($ $ $) NIL)) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2796 (((-757) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369))) (((-757) (-141) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-141) (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-141) (-601 (-529))))) (-3121 (($ (-630 (-141))) NIL)) (-4325 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (($ (-141)) NIL) (((-845) $) NIL)) (-3296 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4369)))) (-3205 (((-1137) $) 18) (((-1137) $ (-111)) 20) (((-1243) (-808) $) 21) (((-1243) (-808) $ (-111)) 22)) (-1669 (((-111) $ $) NIL (|has| (-141) (-833)))) (-1648 (((-111) $ $) NIL (|has| (-141) (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| (-141) (-833)))) (-1636 (((-111) $ $) NIL (|has| (-141) (-833)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1137) (-1136)) (T -1137)) -NIL -(-1136) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)) (|has| |#1| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL)) (-1683 (((-1243) $ (-1137) (-1137)) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-1137) |#1|) NIL)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#1| "failed") (-1137) $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#1| "failed") (-1137) $) NIL)) (-2575 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-1137) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-1137)) NIL)) (-1408 (((-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-1137) $) NIL (|has| (-1137) (-833)))) (-2195 (((-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-1137) $) NIL (|has| (-1137) (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)) (|has| |#1| (-1079))))) (-3729 (((-630 (-1137)) $) NIL)) (-1570 (((-111) (-1137) $) NIL)) (-1376 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL)) (-1901 (((-630 (-1137)) $) NIL)) (-3594 (((-111) (-1137) $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)) (|has| |#1| (-1079))))) (-2603 ((|#1| $) NIL (|has| (-1137) (-833)))) (-3016 (((-3 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) "failed") (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL (-12 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-303 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-1137)) NIL) ((|#1| $ (-1137) |#1|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-600 (-845))) (|has| |#1| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 (-1137)) (|:| -3256 |#1|)) (-1079)) (|has| |#1| (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1138 |#1|) (-13 (-1168 (-1137) |#1|) (-10 -7 (-6 -4369))) (-1079)) (T -1138)) -NIL -(-13 (-1168 (-1137) |#1|) (-10 -7 (-6 -4369))) -((-3591 (((-1135 |#1|) (-1135 |#1|)) 77)) (-2982 (((-3 (-1135 |#1|) "failed") (-1135 |#1|)) 37)) (-2700 (((-1135 |#1|) (-401 (-553)) (-1135 |#1|)) 121 (|has| |#1| (-38 (-401 (-553)))))) (-4274 (((-1135 |#1|) |#1| (-1135 |#1|)) 127 (|has| |#1| (-357)))) (-2535 (((-1135 |#1|) (-1135 |#1|)) 90)) (-1318 (((-1135 (-553)) (-553)) 57)) (-1976 (((-1135 |#1|) (-1135 (-1135 |#1|))) 109 (|has| |#1| (-38 (-401 (-553)))))) (-1762 (((-1135 |#1|) (-553) (-553) (-1135 |#1|)) 95)) (-1718 (((-1135 |#1|) |#1| (-553)) 45)) (-1438 (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 60)) (-2115 (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 124 (|has| |#1| (-357)))) (-3109 (((-1135 |#1|) |#1| (-1 (-1135 |#1|))) 108 (|has| |#1| (-38 (-401 (-553)))))) (-3182 (((-1135 |#1|) (-1 |#1| (-553)) |#1| (-1 (-1135 |#1|))) 125 (|has| |#1| (-357)))) (-3620 (((-1135 |#1|) (-1135 |#1|)) 89)) (-2677 (((-1135 |#1|) (-1135 |#1|)) 76)) (-3942 (((-1135 |#1|) (-553) (-553) (-1135 |#1|)) 96)) (-3406 (((-1135 |#1|) |#1| (-1135 |#1|)) 105 (|has| |#1| (-38 (-401 (-553)))))) (-1906 (((-1135 (-553)) (-553)) 56)) (-2060 (((-1135 |#1|) |#1|) 59)) (-2438 (((-1135 |#1|) (-1135 |#1|) (-553) (-553)) 92)) (-2917 (((-1135 |#1|) (-1 |#1| (-553)) (-1135 |#1|)) 66)) (-3929 (((-3 (-1135 |#1|) "failed") (-1135 |#1|) (-1135 |#1|)) 35)) (-1377 (((-1135 |#1|) (-1135 |#1|)) 91)) (-2356 (((-1135 |#1|) (-1135 |#1|) |#1|) 71)) (-3411 (((-1135 |#1|) (-1135 |#1|)) 62)) (-1604 (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 72)) (-3110 (((-1135 |#1|) |#1|) 67)) (-2365 (((-1135 |#1|) (-1135 (-1135 |#1|))) 82)) (-1723 (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 36)) (-1711 (((-1135 |#1|) (-1135 |#1|)) 21) (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 23)) (-1700 (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 17)) (* (((-1135 |#1|) (-1135 |#1|) |#1|) 29) (((-1135 |#1|) |#1| (-1135 |#1|)) 26) (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 27))) -(((-1139 |#1|) (-10 -7 (-15 -1700 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -1711 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -1711 ((-1135 |#1|) (-1135 |#1|))) (-15 * ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 * ((-1135 |#1|) |#1| (-1135 |#1|))) (-15 * ((-1135 |#1|) (-1135 |#1|) |#1|)) (-15 -3929 ((-3 (-1135 |#1|) "failed") (-1135 |#1|) (-1135 |#1|))) (-15 -1723 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2982 ((-3 (-1135 |#1|) "failed") (-1135 |#1|))) (-15 -1718 ((-1135 |#1|) |#1| (-553))) (-15 -1906 ((-1135 (-553)) (-553))) (-15 -1318 ((-1135 (-553)) (-553))) (-15 -2060 ((-1135 |#1|) |#1|)) (-15 -1438 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -3411 ((-1135 |#1|) (-1135 |#1|))) (-15 -2917 ((-1135 |#1|) (-1 |#1| (-553)) (-1135 |#1|))) (-15 -3110 ((-1135 |#1|) |#1|)) (-15 -2356 ((-1135 |#1|) (-1135 |#1|) |#1|)) (-15 -1604 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2677 ((-1135 |#1|) (-1135 |#1|))) (-15 -3591 ((-1135 |#1|) (-1135 |#1|))) (-15 -2365 ((-1135 |#1|) (-1135 (-1135 |#1|)))) (-15 -3620 ((-1135 |#1|) (-1135 |#1|))) (-15 -2535 ((-1135 |#1|) (-1135 |#1|))) (-15 -1377 ((-1135 |#1|) (-1135 |#1|))) (-15 -2438 ((-1135 |#1|) (-1135 |#1|) (-553) (-553))) (-15 -1762 ((-1135 |#1|) (-553) (-553) (-1135 |#1|))) (-15 -3942 ((-1135 |#1|) (-553) (-553) (-1135 |#1|))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ((-1135 |#1|) |#1| (-1135 |#1|))) (-15 -3109 ((-1135 |#1|) |#1| (-1 (-1135 |#1|)))) (-15 -1976 ((-1135 |#1|) (-1135 (-1135 |#1|)))) (-15 -2700 ((-1135 |#1|) (-401 (-553)) (-1135 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2115 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -3182 ((-1135 |#1|) (-1 |#1| (-553)) |#1| (-1 (-1135 |#1|)))) (-15 -4274 ((-1135 |#1|) |#1| (-1135 |#1|)))) |%noBranch|)) (-1031)) (T -1139)) -((-4274 (*1 *2 *3 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-357)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-553))) (-5 *5 (-1 (-1135 *4))) (-4 *4 (-357)) (-4 *4 (-1031)) (-5 *2 (-1135 *4)) (-5 *1 (-1139 *4)))) (-2115 (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-357)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-2700 (*1 *2 *3 *2) (-12 (-5 *2 (-1135 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1031)) (-5 *3 (-401 (-553))) (-5 *1 (-1139 *4)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1135 (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1139 *4)) (-4 *4 (-38 (-401 (-553)))) (-4 *4 (-1031)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1135 *3))) (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)))) (-3406 (*1 *2 *3 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-3942 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-1031)) (-5 *1 (-1139 *4)))) (-1762 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-1031)) (-5 *1 (-1139 *4)))) (-2438 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-1031)) (-5 *1 (-1139 *4)))) (-1377 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-1135 (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1139 *4)) (-4 *4 (-1031)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-1604 (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1031)))) (-2917 (*1 *2 *3 *2) (-12 (-5 *2 (-1135 *4)) (-5 *3 (-1 *4 (-553))) (-4 *4 (-1031)) (-5 *1 (-1139 *4)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-2060 (*1 *2 *3) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1031)))) (-1318 (*1 *2 *3) (-12 (-5 *2 (-1135 (-553))) (-5 *1 (-1139 *4)) (-4 *4 (-1031)) (-5 *3 (-553)))) (-1906 (*1 *2 *3) (-12 (-5 *2 (-1135 (-553))) (-5 *1 (-1139 *4)) (-4 *4 (-1031)) (-5 *3 (-553)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *4 (-553)) (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1031)))) (-2982 (*1 *2 *2) (|partial| -12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-1723 (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-3929 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-1711 (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) (-1700 (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3))))) -(-10 -7 (-15 -1700 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -1711 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -1711 ((-1135 |#1|) (-1135 |#1|))) (-15 * ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 * ((-1135 |#1|) |#1| (-1135 |#1|))) (-15 * ((-1135 |#1|) (-1135 |#1|) |#1|)) (-15 -3929 ((-3 (-1135 |#1|) "failed") (-1135 |#1|) (-1135 |#1|))) (-15 -1723 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2982 ((-3 (-1135 |#1|) "failed") (-1135 |#1|))) (-15 -1718 ((-1135 |#1|) |#1| (-553))) (-15 -1906 ((-1135 (-553)) (-553))) (-15 -1318 ((-1135 (-553)) (-553))) (-15 -2060 ((-1135 |#1|) |#1|)) (-15 -1438 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -3411 ((-1135 |#1|) (-1135 |#1|))) (-15 -2917 ((-1135 |#1|) (-1 |#1| (-553)) (-1135 |#1|))) (-15 -3110 ((-1135 |#1|) |#1|)) (-15 -2356 ((-1135 |#1|) (-1135 |#1|) |#1|)) (-15 -1604 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2677 ((-1135 |#1|) (-1135 |#1|))) (-15 -3591 ((-1135 |#1|) (-1135 |#1|))) (-15 -2365 ((-1135 |#1|) (-1135 (-1135 |#1|)))) (-15 -3620 ((-1135 |#1|) (-1135 |#1|))) (-15 -2535 ((-1135 |#1|) (-1135 |#1|))) (-15 -1377 ((-1135 |#1|) (-1135 |#1|))) (-15 -2438 ((-1135 |#1|) (-1135 |#1|) (-553) (-553))) (-15 -1762 ((-1135 |#1|) (-553) (-553) (-1135 |#1|))) (-15 -3942 ((-1135 |#1|) (-553) (-553) (-1135 |#1|))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ((-1135 |#1|) |#1| (-1135 |#1|))) (-15 -3109 ((-1135 |#1|) |#1| (-1 (-1135 |#1|)))) (-15 -1976 ((-1135 |#1|) (-1135 (-1135 |#1|)))) (-15 -2700 ((-1135 |#1|) (-401 (-553)) (-1135 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2115 ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -3182 ((-1135 |#1|) (-1 |#1| (-553)) |#1| (-1 (-1135 |#1|)))) (-15 -4274 ((-1135 |#1|) |#1| (-1135 |#1|)))) |%noBranch|)) -((-2380 (((-1135 |#1|) (-1135 |#1|)) 57)) (-2246 (((-1135 |#1|) (-1135 |#1|)) 39)) (-2357 (((-1135 |#1|) (-1135 |#1|)) 53)) (-2224 (((-1135 |#1|) (-1135 |#1|)) 35)) (-2403 (((-1135 |#1|) (-1135 |#1|)) 60)) (-2268 (((-1135 |#1|) (-1135 |#1|)) 42)) (-2366 (((-1135 |#1|) (-1135 |#1|)) 31)) (-2743 (((-1135 |#1|) (-1135 |#1|)) 27)) (-2414 (((-1135 |#1|) (-1135 |#1|)) 61)) (-2279 (((-1135 |#1|) (-1135 |#1|)) 43)) (-2392 (((-1135 |#1|) (-1135 |#1|)) 58)) (-2257 (((-1135 |#1|) (-1135 |#1|)) 40)) (-2368 (((-1135 |#1|) (-1135 |#1|)) 55)) (-2234 (((-1135 |#1|) (-1135 |#1|)) 37)) (-2447 (((-1135 |#1|) (-1135 |#1|)) 65)) (-2313 (((-1135 |#1|) (-1135 |#1|)) 47)) (-2425 (((-1135 |#1|) (-1135 |#1|)) 63)) (-2291 (((-1135 |#1|) (-1135 |#1|)) 45)) (-3791 (((-1135 |#1|) (-1135 |#1|)) 68)) (-2336 (((-1135 |#1|) (-1135 |#1|)) 50)) (-2570 (((-1135 |#1|) (-1135 |#1|)) 69)) (-2346 (((-1135 |#1|) (-1135 |#1|)) 51)) (-3780 (((-1135 |#1|) (-1135 |#1|)) 67)) (-2324 (((-1135 |#1|) (-1135 |#1|)) 49)) (-2435 (((-1135 |#1|) (-1135 |#1|)) 66)) (-2302 (((-1135 |#1|) (-1135 |#1|)) 48)) (** (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 33))) -(((-1140 |#1|) (-10 -7 (-15 -2743 ((-1135 |#1|) (-1135 |#1|))) (-15 -2366 ((-1135 |#1|) (-1135 |#1|))) (-15 ** ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2224 ((-1135 |#1|) (-1135 |#1|))) (-15 -2234 ((-1135 |#1|) (-1135 |#1|))) (-15 -2246 ((-1135 |#1|) (-1135 |#1|))) (-15 -2257 ((-1135 |#1|) (-1135 |#1|))) (-15 -2268 ((-1135 |#1|) (-1135 |#1|))) (-15 -2279 ((-1135 |#1|) (-1135 |#1|))) (-15 -2291 ((-1135 |#1|) (-1135 |#1|))) (-15 -2302 ((-1135 |#1|) (-1135 |#1|))) (-15 -2313 ((-1135 |#1|) (-1135 |#1|))) (-15 -2324 ((-1135 |#1|) (-1135 |#1|))) (-15 -2336 ((-1135 |#1|) (-1135 |#1|))) (-15 -2346 ((-1135 |#1|) (-1135 |#1|))) (-15 -2357 ((-1135 |#1|) (-1135 |#1|))) (-15 -2368 ((-1135 |#1|) (-1135 |#1|))) (-15 -2380 ((-1135 |#1|) (-1135 |#1|))) (-15 -2392 ((-1135 |#1|) (-1135 |#1|))) (-15 -2403 ((-1135 |#1|) (-1135 |#1|))) (-15 -2414 ((-1135 |#1|) (-1135 |#1|))) (-15 -2425 ((-1135 |#1|) (-1135 |#1|))) (-15 -2435 ((-1135 |#1|) (-1135 |#1|))) (-15 -2447 ((-1135 |#1|) (-1135 |#1|))) (-15 -3780 ((-1135 |#1|) (-1135 |#1|))) (-15 -3791 ((-1135 |#1|) (-1135 |#1|))) (-15 -2570 ((-1135 |#1|) (-1135 |#1|)))) (-38 (-401 (-553)))) (T -1140)) -((-2570 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2425 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2302 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1140 *3))))) -(-10 -7 (-15 -2743 ((-1135 |#1|) (-1135 |#1|))) (-15 -2366 ((-1135 |#1|) (-1135 |#1|))) (-15 ** ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2224 ((-1135 |#1|) (-1135 |#1|))) (-15 -2234 ((-1135 |#1|) (-1135 |#1|))) (-15 -2246 ((-1135 |#1|) (-1135 |#1|))) (-15 -2257 ((-1135 |#1|) (-1135 |#1|))) (-15 -2268 ((-1135 |#1|) (-1135 |#1|))) (-15 -2279 ((-1135 |#1|) (-1135 |#1|))) (-15 -2291 ((-1135 |#1|) (-1135 |#1|))) (-15 -2302 ((-1135 |#1|) (-1135 |#1|))) (-15 -2313 ((-1135 |#1|) (-1135 |#1|))) (-15 -2324 ((-1135 |#1|) (-1135 |#1|))) (-15 -2336 ((-1135 |#1|) (-1135 |#1|))) (-15 -2346 ((-1135 |#1|) (-1135 |#1|))) (-15 -2357 ((-1135 |#1|) (-1135 |#1|))) (-15 -2368 ((-1135 |#1|) (-1135 |#1|))) (-15 -2380 ((-1135 |#1|) (-1135 |#1|))) (-15 -2392 ((-1135 |#1|) (-1135 |#1|))) (-15 -2403 ((-1135 |#1|) (-1135 |#1|))) (-15 -2414 ((-1135 |#1|) (-1135 |#1|))) (-15 -2425 ((-1135 |#1|) (-1135 |#1|))) (-15 -2435 ((-1135 |#1|) (-1135 |#1|))) (-15 -2447 ((-1135 |#1|) (-1135 |#1|))) (-15 -3780 ((-1135 |#1|) (-1135 |#1|))) (-15 -3791 ((-1135 |#1|) (-1135 |#1|))) (-15 -2570 ((-1135 |#1|) (-1135 |#1|)))) -((-2380 (((-1135 |#1|) (-1135 |#1|)) 100)) (-2246 (((-1135 |#1|) (-1135 |#1|)) 64)) (-1290 (((-2 (|:| -2357 (-1135 |#1|)) (|:| -2368 (-1135 |#1|))) (-1135 |#1|)) 96)) (-2357 (((-1135 |#1|) (-1135 |#1|)) 97)) (-2722 (((-2 (|:| -2224 (-1135 |#1|)) (|:| -2234 (-1135 |#1|))) (-1135 |#1|)) 53)) (-2224 (((-1135 |#1|) (-1135 |#1|)) 54)) (-2403 (((-1135 |#1|) (-1135 |#1|)) 102)) (-2268 (((-1135 |#1|) (-1135 |#1|)) 71)) (-2366 (((-1135 |#1|) (-1135 |#1|)) 39)) (-2743 (((-1135 |#1|) (-1135 |#1|)) 36)) (-2414 (((-1135 |#1|) (-1135 |#1|)) 103)) (-2279 (((-1135 |#1|) (-1135 |#1|)) 72)) (-2392 (((-1135 |#1|) (-1135 |#1|)) 101)) (-2257 (((-1135 |#1|) (-1135 |#1|)) 67)) (-2368 (((-1135 |#1|) (-1135 |#1|)) 98)) (-2234 (((-1135 |#1|) (-1135 |#1|)) 55)) (-2447 (((-1135 |#1|) (-1135 |#1|)) 111)) (-2313 (((-1135 |#1|) (-1135 |#1|)) 86)) (-2425 (((-1135 |#1|) (-1135 |#1|)) 105)) (-2291 (((-1135 |#1|) (-1135 |#1|)) 82)) (-3791 (((-1135 |#1|) (-1135 |#1|)) 115)) (-2336 (((-1135 |#1|) (-1135 |#1|)) 90)) (-2570 (((-1135 |#1|) (-1135 |#1|)) 117)) (-2346 (((-1135 |#1|) (-1135 |#1|)) 92)) (-3780 (((-1135 |#1|) (-1135 |#1|)) 113)) (-2324 (((-1135 |#1|) (-1135 |#1|)) 88)) (-2435 (((-1135 |#1|) (-1135 |#1|)) 107)) (-2302 (((-1135 |#1|) (-1135 |#1|)) 84)) (** (((-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) 40))) -(((-1141 |#1|) (-10 -7 (-15 -2743 ((-1135 |#1|) (-1135 |#1|))) (-15 -2366 ((-1135 |#1|) (-1135 |#1|))) (-15 ** ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2722 ((-2 (|:| -2224 (-1135 |#1|)) (|:| -2234 (-1135 |#1|))) (-1135 |#1|))) (-15 -2224 ((-1135 |#1|) (-1135 |#1|))) (-15 -2234 ((-1135 |#1|) (-1135 |#1|))) (-15 -2246 ((-1135 |#1|) (-1135 |#1|))) (-15 -2257 ((-1135 |#1|) (-1135 |#1|))) (-15 -2268 ((-1135 |#1|) (-1135 |#1|))) (-15 -2279 ((-1135 |#1|) (-1135 |#1|))) (-15 -2291 ((-1135 |#1|) (-1135 |#1|))) (-15 -2302 ((-1135 |#1|) (-1135 |#1|))) (-15 -2313 ((-1135 |#1|) (-1135 |#1|))) (-15 -2324 ((-1135 |#1|) (-1135 |#1|))) (-15 -2336 ((-1135 |#1|) (-1135 |#1|))) (-15 -2346 ((-1135 |#1|) (-1135 |#1|))) (-15 -1290 ((-2 (|:| -2357 (-1135 |#1|)) (|:| -2368 (-1135 |#1|))) (-1135 |#1|))) (-15 -2357 ((-1135 |#1|) (-1135 |#1|))) (-15 -2368 ((-1135 |#1|) (-1135 |#1|))) (-15 -2380 ((-1135 |#1|) (-1135 |#1|))) (-15 -2392 ((-1135 |#1|) (-1135 |#1|))) (-15 -2403 ((-1135 |#1|) (-1135 |#1|))) (-15 -2414 ((-1135 |#1|) (-1135 |#1|))) (-15 -2425 ((-1135 |#1|) (-1135 |#1|))) (-15 -2435 ((-1135 |#1|) (-1135 |#1|))) (-15 -2447 ((-1135 |#1|) (-1135 |#1|))) (-15 -3780 ((-1135 |#1|) (-1135 |#1|))) (-15 -3791 ((-1135 |#1|) (-1135 |#1|))) (-15 -2570 ((-1135 |#1|) (-1135 |#1|)))) (-38 (-401 (-553)))) (T -1141)) -((-2570 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2425 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-1290 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-553)))) (-5 *2 (-2 (|:| -2357 (-1135 *4)) (|:| -2368 (-1135 *4)))) (-5 *1 (-1141 *4)) (-5 *3 (-1135 *4)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2302 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-553)))) (-5 *2 (-2 (|:| -2224 (-1135 *4)) (|:| -2234 (-1135 *4)))) (-5 *1 (-1141 *4)) (-5 *3 (-1135 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1141 *3))))) -(-10 -7 (-15 -2743 ((-1135 |#1|) (-1135 |#1|))) (-15 -2366 ((-1135 |#1|) (-1135 |#1|))) (-15 ** ((-1135 |#1|) (-1135 |#1|) (-1135 |#1|))) (-15 -2722 ((-2 (|:| -2224 (-1135 |#1|)) (|:| -2234 (-1135 |#1|))) (-1135 |#1|))) (-15 -2224 ((-1135 |#1|) (-1135 |#1|))) (-15 -2234 ((-1135 |#1|) (-1135 |#1|))) (-15 -2246 ((-1135 |#1|) (-1135 |#1|))) (-15 -2257 ((-1135 |#1|) (-1135 |#1|))) (-15 -2268 ((-1135 |#1|) (-1135 |#1|))) (-15 -2279 ((-1135 |#1|) (-1135 |#1|))) (-15 -2291 ((-1135 |#1|) (-1135 |#1|))) (-15 -2302 ((-1135 |#1|) (-1135 |#1|))) (-15 -2313 ((-1135 |#1|) (-1135 |#1|))) (-15 -2324 ((-1135 |#1|) (-1135 |#1|))) (-15 -2336 ((-1135 |#1|) (-1135 |#1|))) (-15 -2346 ((-1135 |#1|) (-1135 |#1|))) (-15 -1290 ((-2 (|:| -2357 (-1135 |#1|)) (|:| -2368 (-1135 |#1|))) (-1135 |#1|))) (-15 -2357 ((-1135 |#1|) (-1135 |#1|))) (-15 -2368 ((-1135 |#1|) (-1135 |#1|))) (-15 -2380 ((-1135 |#1|) (-1135 |#1|))) (-15 -2392 ((-1135 |#1|) (-1135 |#1|))) (-15 -2403 ((-1135 |#1|) (-1135 |#1|))) (-15 -2414 ((-1135 |#1|) (-1135 |#1|))) (-15 -2425 ((-1135 |#1|) (-1135 |#1|))) (-15 -2435 ((-1135 |#1|) (-1135 |#1|))) (-15 -2447 ((-1135 |#1|) (-1135 |#1|))) (-15 -3780 ((-1135 |#1|) (-1135 |#1|))) (-15 -3791 ((-1135 |#1|) (-1135 |#1|))) (-15 -2570 ((-1135 |#1|) (-1135 |#1|)))) -((-2528 (((-940 |#2|) |#2| |#2|) 35)) (-1655 ((|#2| |#2| |#1|) 19 (|has| |#1| (-301))))) -(((-1142 |#1| |#2|) (-10 -7 (-15 -2528 ((-940 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -1655 (|#2| |#2| |#1|)) |%noBranch|)) (-545) (-1214 |#1|)) (T -1142)) -((-1655 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-4 *3 (-545)) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1214 *3)))) (-2528 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-940 *3)) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -2528 ((-940 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -1655 (|#2| |#2| |#1|)) |%noBranch|)) -((-3096 (((-111) $ $) NIL)) (-3228 (($ $ (-630 (-757))) 67)) (-3139 (($) 26)) (-3061 (($ $) 42)) (-2436 (((-630 $) $) 51)) (-1441 (((-111) $) 16)) (-2487 (((-630 (-925 |#2|)) $) 74)) (-1443 (($ $) 68)) (-1305 (((-757) $) 37)) (-3202 (($) 25)) (-3381 (($ $ (-630 (-757)) (-925 |#2|)) 60) (($ $ (-630 (-757)) (-757)) 61) (($ $ (-757) (-925 |#2|)) 63)) (-3160 (($ $ $) 48) (($ (-630 $)) 50)) (-2402 (((-757) $) 75)) (-3862 (((-111) $) 15)) (-1735 (((-1137) $) NIL)) (-4150 (((-111) $) 18)) (-2786 (((-1099) $) NIL)) (-4095 (((-168) $) 73)) (-3809 (((-925 |#2|) $) 69)) (-2056 (((-757) $) 70)) (-2652 (((-111) $) 72)) (-1610 (($ $ (-630 (-757)) (-168)) 66)) (-2044 (($ $) 43)) (-3110 (((-845) $) 86)) (-3155 (($ $ (-630 (-757)) (-111)) 65)) (-2860 (((-630 $) $) 11)) (-3206 (($ $ (-757)) 36)) (-4058 (($ $) 32)) (-2362 (($ $ $ (-925 |#2|) (-757)) 56)) (-1278 (($ $ (-925 |#2|)) 55)) (-3833 (($ $ (-630 (-757)) (-925 |#2|)) 54) (($ $ (-630 (-757)) (-757)) 58) (((-757) $ (-925 |#2|)) 59)) (-1617 (((-111) $ $) 80))) -(((-1143 |#1| |#2|) (-13 (-1079) (-10 -8 (-15 -3862 ((-111) $)) (-15 -1441 ((-111) $)) (-15 -4150 ((-111) $)) (-15 -3202 ($)) (-15 -3139 ($)) (-15 -4058 ($ $)) (-15 -3206 ($ $ (-757))) (-15 -2860 ((-630 $) $)) (-15 -1305 ((-757) $)) (-15 -3061 ($ $)) (-15 -2044 ($ $)) (-15 -3160 ($ $ $)) (-15 -3160 ($ (-630 $))) (-15 -2436 ((-630 $) $)) (-15 -3833 ($ $ (-630 (-757)) (-925 |#2|))) (-15 -1278 ($ $ (-925 |#2|))) (-15 -2362 ($ $ $ (-925 |#2|) (-757))) (-15 -3381 ($ $ (-630 (-757)) (-925 |#2|))) (-15 -3833 ($ $ (-630 (-757)) (-757))) (-15 -3381 ($ $ (-630 (-757)) (-757))) (-15 -3833 ((-757) $ (-925 |#2|))) (-15 -3381 ($ $ (-757) (-925 |#2|))) (-15 -3155 ($ $ (-630 (-757)) (-111))) (-15 -1610 ($ $ (-630 (-757)) (-168))) (-15 -3228 ($ $ (-630 (-757)))) (-15 -3809 ((-925 |#2|) $)) (-15 -2056 ((-757) $)) (-15 -2652 ((-111) $)) (-15 -4095 ((-168) $)) (-15 -2402 ((-757) $)) (-15 -1443 ($ $)) (-15 -2487 ((-630 (-925 |#2|)) $)))) (-903) (-1031)) (T -1143)) -((-3862 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-3202 (*1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-3139 (*1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-4058 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-3206 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-630 (-1143 *3 *4))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-2044 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-3160 (*1 *1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-630 (-1143 *3 *4))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-630 (-1143 *3 *4))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-3833 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-757))) (-5 *3 (-925 *5)) (-4 *5 (-1031)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-925 *4)) (-4 *4 (-1031)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)))) (-2362 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-925 *5)) (-5 *3 (-757)) (-4 *5 (-1031)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) (-3381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-757))) (-5 *3 (-925 *5)) (-4 *5 (-1031)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) (-3833 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-757))) (-5 *3 (-757)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)) (-4 *5 (-1031)))) (-3381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-757))) (-5 *3 (-757)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)) (-4 *5 (-1031)))) (-3833 (*1 *2 *1 *3) (-12 (-5 *3 (-925 *5)) (-4 *5 (-1031)) (-5 *2 (-757)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) (-3381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *3 (-925 *5)) (-4 *5 (-1031)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) (-3155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-757))) (-5 *3 (-111)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)) (-4 *5 (-1031)))) (-1610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-630 (-757))) (-5 *3 (-168)) (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)) (-4 *5 (-1031)))) (-3228 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-757))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-925 *4)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031)))) (-1443 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-630 (-925 *4))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) (-4 *4 (-1031))))) -(-13 (-1079) (-10 -8 (-15 -3862 ((-111) $)) (-15 -1441 ((-111) $)) (-15 -4150 ((-111) $)) (-15 -3202 ($)) (-15 -3139 ($)) (-15 -4058 ($ $)) (-15 -3206 ($ $ (-757))) (-15 -2860 ((-630 $) $)) (-15 -1305 ((-757) $)) (-15 -3061 ($ $)) (-15 -2044 ($ $)) (-15 -3160 ($ $ $)) (-15 -3160 ($ (-630 $))) (-15 -2436 ((-630 $) $)) (-15 -3833 ($ $ (-630 (-757)) (-925 |#2|))) (-15 -1278 ($ $ (-925 |#2|))) (-15 -2362 ($ $ $ (-925 |#2|) (-757))) (-15 -3381 ($ $ (-630 (-757)) (-925 |#2|))) (-15 -3833 ($ $ (-630 (-757)) (-757))) (-15 -3381 ($ $ (-630 (-757)) (-757))) (-15 -3833 ((-757) $ (-925 |#2|))) (-15 -3381 ($ $ (-757) (-925 |#2|))) (-15 -3155 ($ $ (-630 (-757)) (-111))) (-15 -1610 ($ $ (-630 (-757)) (-168))) (-15 -3228 ($ $ (-630 (-757)))) (-15 -3809 ((-925 |#2|) $)) (-15 -2056 ((-757) $)) (-15 -2652 ((-111) $)) (-15 -4095 ((-168) $)) (-15 -2402 ((-757) $)) (-15 -1443 ($ $)) (-15 -2487 ((-630 (-925 |#2|)) $)))) -((-3096 (((-111) $ $) NIL)) (-1314 ((|#2| $) 11)) (-1301 ((|#1| $) 10)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3121 (($ |#1| |#2|) 9)) (-3110 (((-845) $) 16)) (-1617 (((-111) $ $) NIL))) -(((-1144 |#1| |#2|) (-13 (-1079) (-10 -8 (-15 -3121 ($ |#1| |#2|)) (-15 -1301 (|#1| $)) (-15 -1314 (|#2| $)))) (-1079) (-1079)) (T -1144)) -((-3121 (*1 *1 *2 *3) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-1301 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-1144 *2 *3)) (-4 *3 (-1079)))) (-1314 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1079))))) -(-13 (-1079) (-10 -8 (-15 -3121 ($ |#1| |#2|)) (-15 -1301 (|#1| $)) (-15 -1314 (|#2| $)))) -((-3096 (((-111) $ $) NIL)) (-3927 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1145) (-13 (-1062) (-10 -8 (-15 -3927 ((-1114) $))))) (T -1145)) -((-3927 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1145))))) -(-13 (-1062) (-10 -8 (-15 -3927 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-1153 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 11)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-1968 (($ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-2028 (((-111) $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-1728 (($ $ (-553)) NIL) (($ $ (-553) (-553)) 66)) (-2140 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) NIL)) (-1993 (((-1153 |#1| |#2| |#3|) $) 36)) (-1388 (((-3 (-1153 |#1| |#2| |#3|) "failed") $) 29)) (-3562 (((-1153 |#1| |#2| |#3|) $) 30)) (-2380 (($ $) 107 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 83 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) 103 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 79 (|has| |#1| (-38 (-401 (-553)))))) (-2125 (((-553) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-1779 (($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) 111 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 87 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-1153 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1155) "failed") $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-1155))) (|has| |#1| (-357)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357)))) (((-3 (-553) "failed") $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357))))) (-2707 (((-1153 |#1| |#2| |#3|) $) 131) (((-1155) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-1155))) (|has| |#1| (-357)))) (((-401 (-553)) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357)))) (((-553) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357))))) (-4106 (($ $) 34) (($ (-553) $) 35)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-1153 |#1| |#2| |#3|)) (-674 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 (-1153 |#1| |#2| |#3|))) (|:| |vec| (-1238 (-1153 |#1| |#2| |#3|)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-626 (-553))) (|has| |#1| (-357)))) (((-674 (-553)) (-674 $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-626 (-553))) (|has| |#1| (-357))))) (-2982 (((-3 $ "failed") $) 48)) (-3539 (((-401 (-934 |#1|)) $ (-553)) 65 (|has| |#1| (-545))) (((-401 (-934 |#1|)) $ (-553) (-553)) 67 (|has| |#1| (-545)))) (-3031 (($) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-538)) (|has| |#1| (-357))))) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4270 (((-111) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-4008 (((-111) $) 25)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-868 (-373))) (|has| |#1| (-357)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-868 (-553))) (|has| |#1| (-357))))) (-2968 (((-553) $) NIL) (((-553) $ (-553)) 24)) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL (|has| |#1| (-357)))) (-3963 (((-1153 |#1| |#2| |#3|) $) 38 (|has| |#1| (-357)))) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2502 (((-3 $ "failed") $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1130)) (|has| |#1| (-357))))) (-2797 (((-111) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-2166 (($ $ (-903)) NIL)) (-2341 (($ (-1 |#1| (-553)) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-553)) 18) (($ $ (-1061) (-553)) NIL) (($ $ (-630 (-1061)) (-630 (-553))) NIL)) (-1824 (($ $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1975 (($ $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-2366 (($ $) 72 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3575 (($ (-553) (-1153 |#1| |#2| |#3|)) 33)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-3406 (($ $) 70 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 71 (|has| |#1| (-38 (-401 (-553)))))) (-1945 (($) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1130)) (|has| |#1| (-357))) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3785 (($ $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-2334 (((-1153 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-538)) (|has| |#1| (-357))))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-553)) 145)) (-3929 (((-3 $ "failed") $ $) 49 (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) 73 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-553))))) (($ $ (-1155) (-1153 |#1| |#2| |#3|)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-507 (-1155) (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-630 (-1155)) (-630 (-1153 |#1| |#2| |#3|))) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-507 (-1155) (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-630 (-288 (-1153 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-303 (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1153 |#1| |#2| |#3|))) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-303 (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-303 (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-630 (-1153 |#1| |#2| |#3|)) (-630 (-1153 |#1| |#2| |#3|))) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-303 (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-553)) NIL) (($ $ $) 54 (|has| (-553) (-1091))) (($ $ (-1153 |#1| |#2| |#3|)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-280 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-1 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|)) (-757)) NIL (|has| |#1| (-357))) (($ $ (-1234 |#2|)) 51) (($ $ (-757)) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) 50 (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155) (-757)) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-630 (-1155))) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))))) (-3161 (($ $) NIL (|has| |#1| (-357)))) (-3974 (((-1153 |#1| |#2| |#3|) $) 41 (|has| |#1| (-357)))) (-3872 (((-553) $) 37)) (-2414 (($ $) 113 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 89 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 109 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 85 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 105 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 81 (|has| |#1| (-38 (-401 (-553)))))) (-1524 (((-529) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-601 (-529))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1004)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1004)) (|has| |#1| (-357)))) (((-874 (-373)) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-601 (-874 (-373)))) (|has| |#1| (-357)))) (((-874 (-553)) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-601 (-874 (-553)))) (|has| |#1| (-357))))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) 149) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1153 |#1| |#2| |#3|)) 27) (($ (-1234 |#2|)) 23) (($ (-1155)) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-1155))) (|has| |#1| (-357)))) (($ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545)))) (($ (-401 (-553))) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-553))))))) (-1624 ((|#1| $ (-553)) 68)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 12)) (-2582 (((-1153 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-538)) (|has| |#1| (-357))))) (-2447 (($ $) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 95 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-2425 (($ $) 115 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 91 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 99 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-553)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-553)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 101 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 97 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 117 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 93 (|has| |#1| (-38 (-401 (-553)))))) (-3466 (($ $) NIL (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-1988 (($) 20 T CONST)) (-1997 (($) 16 T CONST)) (-1780 (($ $ (-1 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|)) (-757)) NIL (|has| |#1| (-357))) (($ $ (-757)) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155) (-757)) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-630 (-1155))) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))))) (-1669 (((-111) $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1648 (((-111) $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1636 (((-111) $ $) NIL (-3988 (-12 (|has| (-1153 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1153 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 44 (|has| |#1| (-357))) (($ (-1153 |#1| |#2| |#3|) (-1153 |#1| |#2| |#3|)) 45 (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 21)) (** (($ $ (-903)) NIL) (($ $ (-757)) 53) (($ $ (-553)) NIL (|has| |#1| (-357))) (($ $ $) 74 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 128 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1153 |#1| |#2| |#3|)) 43 (|has| |#1| (-357))) (($ (-1153 |#1| |#2| |#3|) $) 42 (|has| |#1| (-357))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1146 |#1| |#2| |#3|) (-13 (-1200 |#1| (-1153 |#1| |#2| |#3|)) (-10 -8 (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -1146)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1200 |#1| (-1153 |#1| |#2| |#3|)) (-10 -8 (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-2868 ((|#2| |#2| (-1071 |#2|)) 26) ((|#2| |#2| (-1155)) 28))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -2868 (|#2| |#2| (-1155))) (-15 -2868 (|#2| |#2| (-1071 |#2|)))) (-13 (-545) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-424 |#1|) (-157) (-27) (-1177))) (T -1147)) -((-2868 (*1 *2 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1177))) (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1147 *4 *2)))) (-2868 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1177)))))) -(-10 -7 (-15 -2868 (|#2| |#2| (-1155))) (-15 -2868 (|#2| |#2| (-1071 |#2|)))) -((-2868 (((-3 (-401 (-934 |#1|)) (-310 |#1|)) (-401 (-934 |#1|)) (-1071 (-401 (-934 |#1|)))) 31) (((-401 (-934 |#1|)) (-934 |#1|) (-1071 (-934 |#1|))) 44) (((-3 (-401 (-934 |#1|)) (-310 |#1|)) (-401 (-934 |#1|)) (-1155)) 33) (((-401 (-934 |#1|)) (-934 |#1|) (-1155)) 36))) -(((-1148 |#1|) (-10 -7 (-15 -2868 ((-401 (-934 |#1|)) (-934 |#1|) (-1155))) (-15 -2868 ((-3 (-401 (-934 |#1|)) (-310 |#1|)) (-401 (-934 |#1|)) (-1155))) (-15 -2868 ((-401 (-934 |#1|)) (-934 |#1|) (-1071 (-934 |#1|)))) (-15 -2868 ((-3 (-401 (-934 |#1|)) (-310 |#1|)) (-401 (-934 |#1|)) (-1071 (-401 (-934 |#1|)))))) (-13 (-545) (-833) (-1020 (-553)))) (T -1148)) -((-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-1071 (-401 (-934 *5)))) (-5 *3 (-401 (-934 *5))) (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-3 *3 (-310 *5))) (-5 *1 (-1148 *5)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-1071 (-934 *5))) (-5 *3 (-934 *5)) (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-401 *3)) (-5 *1 (-1148 *5)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-3 (-401 (-934 *5)) (-310 *5))) (-5 *1 (-1148 *5)) (-5 *3 (-401 (-934 *5))))) (-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-401 (-934 *5))) (-5 *1 (-1148 *5)) (-5 *3 (-934 *5))))) -(-10 -7 (-15 -2868 ((-401 (-934 |#1|)) (-934 |#1|) (-1155))) (-15 -2868 ((-3 (-401 (-934 |#1|)) (-310 |#1|)) (-401 (-934 |#1|)) (-1155))) (-15 -2868 ((-401 (-934 |#1|)) (-934 |#1|) (-1071 (-934 |#1|)))) (-15 -2868 ((-3 (-401 (-934 |#1|)) (-310 |#1|)) (-401 (-934 |#1|)) (-1071 (-401 (-934 |#1|)))))) -((-1482 (((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|)) 13))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -1482 ((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|)))) (-1031) (-1031)) (T -1149)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-5 *2 (-1151 *6)) (-5 *1 (-1149 *5 *6))))) -(-10 -7 (-15 -1482 ((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|)))) -((-2708 (((-412 (-1151 (-401 |#4|))) (-1151 (-401 |#4|))) 51)) (-3355 (((-412 (-1151 (-401 |#4|))) (-1151 (-401 |#4|))) 52))) -(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3355 ((-412 (-1151 (-401 |#4|))) (-1151 (-401 |#4|)))) (-15 -2708 ((-412 (-1151 (-401 |#4|))) (-1151 (-401 |#4|))))) (-779) (-833) (-445) (-931 |#3| |#1| |#2|)) (T -1150)) -((-2708 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-445)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-412 (-1151 (-401 *7)))) (-5 *1 (-1150 *4 *5 *6 *7)) (-5 *3 (-1151 (-401 *7))))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-445)) (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-412 (-1151 (-401 *7)))) (-5 *1 (-1150 *4 *5 *6 *7)) (-5 *3 (-1151 (-401 *7)))))) -(-10 -7 (-15 -3355 ((-412 (-1151 (-401 |#4|))) (-1151 (-401 |#4|)))) (-15 -2708 ((-412 (-1151 (-401 |#4|))) (-1151 (-401 |#4|))))) -((-3096 (((-111) $ $) 137)) (-3769 (((-111) $) 27)) (-2862 (((-1238 |#1|) $ (-757)) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-3376 (($ (-1151 |#1|)) NIL)) (-3322 (((-1151 $) $ (-1061)) 58) (((-1151 |#1|) $) 47)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) 132 (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1061))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1690 (($ $ $) 126 (|has| |#1| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) 71 (|has| |#1| (-891)))) (-1536 (($ $) NIL (|has| |#1| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 91 (|has| |#1| (-891)))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2998 (($ $ (-757)) 39)) (-1300 (($ $ (-757)) 40)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-1061) "failed") $) NIL)) (-2707 ((|#1| $) NIL) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-1061) $) NIL)) (-2134 (($ $ $ (-1061)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) 56)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) NIL) (((-674 |#1|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-2539 (($ $ $) 104)) (-3301 (($ $ $) NIL (|has| |#1| (-545)))) (-3464 (((-2 (|:| -4120 |#1|) (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-1655 (($ $) 133 (|has| |#1| (-445))) (($ $ (-1061)) NIL (|has| |#1| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-757) $) 45)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1061) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1061) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-3783 (((-845) $ (-845)) 117)) (-2968 (((-757) $ $) NIL (|has| |#1| (-545)))) (-1848 (((-111) $) 30)) (-1984 (((-757) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| |#1| (-1130)))) (-3493 (($ (-1151 |#1|) (-1061)) 49) (($ (-1151 $) (-1061)) 65)) (-2166 (($ $ (-757)) 32)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) 63) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1061)) NIL) (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 121)) (-2423 (((-757) $) NIL) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2241 (($ (-1 (-757) (-757)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1504 (((-1151 |#1|) $) NIL)) (-1332 (((-3 (-1061) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) 52)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1735 (((-1137) $) NIL)) (-3395 (((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757)) 38)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-1061)) (|:| -2692 (-757))) "failed") $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1945 (($) NIL (|has| |#1| (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) 31)) (-3633 ((|#1| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 79 (|has| |#1| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-445))) (($ $ $) 135 (|has| |#1| (-445)))) (-1974 (($ $ (-757) |#1| $) 99)) (-2979 (((-412 (-1151 $)) (-1151 $)) 77 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 76 (|has| |#1| (-891)))) (-3355 (((-412 $) $) 84 (|has| |#1| (-891)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1061) |#1|) NIL) (($ $ (-630 (-1061)) (-630 |#1|)) NIL) (($ $ (-1061) $) NIL) (($ $ (-630 (-1061)) (-630 $)) NIL)) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-545))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-545)))) (-2580 (((-3 $ "failed") $ (-757)) 35)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 138 (|has| |#1| (-357)))) (-3000 (($ $ (-1061)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-1330 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3872 (((-757) $) 54) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-1061) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) 130 (|has| |#1| (-445))) (($ $ (-1061)) NIL (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-891))))) (-2255 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-545)))) (-3110 (((-845) $) 118) (($ (-553)) NIL) (($ |#1|) 53) (($ (-1061)) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) 25 (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) 15 T CONST)) (-1997 (($) 16 T CONST)) (-1780 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) 96)) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1723 (($ $ |#1|) 139 (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 66)) (** (($ $ (-903)) 14) (($ $ (-757)) 12)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 24) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1151 |#1|) (-13 (-1214 |#1|) (-10 -8 (-15 -3783 ((-845) $ (-845))) (-15 -1974 ($ $ (-757) |#1| $)))) (-1031)) (T -1151)) -((-3783 (*1 *2 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1151 *3)) (-4 *3 (-1031)))) (-1974 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1151 *3)) (-4 *3 (-1031))))) -(-13 (-1214 |#1|) (-10 -8 (-15 -3783 ((-845) $ (-845))) (-15 -1974 ($ $ (-757) |#1| $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 11)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) NIL) (($ $ (-401 (-553)) (-401 (-553))) NIL)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) NIL)) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1153 |#1| |#2| |#3|) "failed") $) 36)) (-2707 (((-1146 |#1| |#2| |#3|) $) NIL) (((-1153 |#1| |#2| |#3|) $) NIL)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1611 (((-401 (-553)) $) 55)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-3587 (($ (-401 (-553)) (-1146 |#1| |#2| |#3|)) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) NIL) (((-401 (-553)) $ (-401 (-553))) NIL)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) NIL) (($ $ (-401 (-553))) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-401 (-553))) 20) (($ $ (-1061) (-401 (-553))) NIL) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1656 (((-1146 |#1| |#2| |#3|) $) 41)) (-1733 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL)) (-3575 (((-1146 |#1| |#2| |#3|) $) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-3406 (($ $) 39 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 40 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) NIL)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) NIL) (($ $ $) NIL (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $ (-1234 |#2|)) 38)) (-3872 (((-401 (-553)) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) 58) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1146 |#1| |#2| |#3|)) 30) (($ (-1153 |#1| |#2| |#3|)) 31) (($ (-1234 |#2|)) 26) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 12)) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 22 T CONST)) (-1997 (($) 16 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 24)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1152 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1146 |#1| |#2| |#3|)) (-1020 (-1153 |#1| |#2| |#3|)) (-603 (-1234 |#2|)) (-10 -8 (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -1152)) -((-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1152 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1152 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1221 |#1| (-1146 |#1| |#2| |#3|)) (-1020 (-1153 |#1| |#2| |#3|)) (-603 (-1234 |#2|)) (-10 -8 (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 125)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 116)) (-2704 (((-1211 |#2| |#1|) $ (-757)) 63)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-757)) 79) (($ $ (-757) (-757)) 76)) (-2140 (((-1135 (-2 (|:| |k| (-757)) (|:| |c| |#1|))) $) 102)) (-2380 (($ $) 169 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2357 (($ $) 165 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-1135 (-2 (|:| |k| (-757)) (|:| |c| |#1|)))) 115) (($ (-1135 |#1|)) 110)) (-2403 (($ $) 173 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 149 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) 23)) (-3262 (($ $) 26)) (-4219 (((-934 |#1|) $ (-757)) 75) (((-934 |#1|) $ (-757) (-757)) 77)) (-4008 (((-111) $) 120)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-757) $) 122) (((-757) $ (-757)) 124)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) NIL)) (-2341 (($ (-1 |#1| (-553)) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) 13) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2366 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-3406 (($ $) 129 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 130 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-3089 (($ $ (-757)) 15)) (-3929 (((-3 $ "failed") $ $) 24 (|has| |#1| (-545)))) (-2743 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-757)))))) (-2046 ((|#1| $ (-757)) 119) (($ $ $) 128 (|has| (-757) (-1091)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $ (-1234 |#2|)) 29)) (-3872 (((-757) $) NIL)) (-2414 (($ $) 175 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 151 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 171 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 147 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 167 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) 201) (($ (-553)) NIL) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1211 |#2| |#1|)) 51) (($ (-1234 |#2|)) 32)) (-3987 (((-1135 |#1|) $) 98)) (-1624 ((|#1| $ (-757)) 118)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 54)) (-2447 (($ $) 181 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 157 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) 177 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 153 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 185 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 161 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-757)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-757)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 187 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 163 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 183 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 159 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 179 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 155 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 17 T CONST)) (-1997 (($) 19 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) 194)) (-1700 (($ $ $) 31)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ |#1|) 198 (|has| |#1| (-357))) (($ $ $) 134 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 137 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1153 |#1| |#2| |#3|) (-13 (-1229 |#1|) (-10 -8 (-15 -3110 ($ (-1211 |#2| |#1|))) (-15 -2704 ((-1211 |#2| |#1|) $ (-757))) (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -1153)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1211 *4 *3)) (-4 *3 (-1031)) (-14 *4 (-1155)) (-14 *5 *3) (-5 *1 (-1153 *3 *4 *5)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1211 *5 *4)) (-5 *1 (-1153 *4 *5 *6)) (-4 *4 (-1031)) (-14 *5 (-1155)) (-14 *6 *4))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1153 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1229 |#1|) (-10 -8 (-15 -3110 ($ (-1211 |#2| |#1|))) (-15 -2704 ((-1211 |#2| |#1|) $ (-757))) (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-3110 (((-845) $) 27) (($ (-1155)) 29)) (-3988 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 40)) (-3978 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 33) (($ $) 34)) (-2172 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 35)) (-2161 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 37)) (-2149 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 36)) (-2139 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 38)) (-3244 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 39))) -(((-1154) (-13 (-600 (-845)) (-10 -8 (-15 -3110 ($ (-1155))) (-15 -2172 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2149 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2161 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2139 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3988 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3244 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3978 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3978 ($ $))))) (T -1154)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1154)))) (-2172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-2149 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-2161 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-2139 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-3988 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-3244 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) (-5 *1 (-1154)))) (-3978 (*1 *1 *1) (-5 *1 (-1154)))) -(-13 (-600 (-845)) (-10 -8 (-15 -3110 ($ (-1155))) (-15 -2172 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2149 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2161 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -2139 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3988 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3244 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3978 ($ (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3978 ($ $)))) -((-3096 (((-111) $ $) NIL)) (-1281 (($ $ (-630 (-845))) 59)) (-4281 (($ $ (-630 (-845))) 57)) (-3950 (((-1137) $) 84)) (-1910 (((-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845)))) $) 87)) (-2916 (((-111) $) 22)) (-3829 (($ $ (-630 (-630 (-845)))) 56) (($ $ (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845))))) 82)) (-3820 (($) 124 T CONST)) (-2188 (((-1243)) 106)) (-2059 (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 66) (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 73)) (-3202 (($) 95) (($ $) 101)) (-4298 (($ $) 83)) (-1824 (($ $ $) NIL)) (-1975 (($ $ $) NIL)) (-2480 (((-630 $) $) 107)) (-1735 (((-1137) $) 90)) (-2786 (((-1099) $) NIL)) (-2046 (($ $ (-630 (-845))) 58)) (-1524 (((-529) $) 46) (((-1155) $) 47) (((-874 (-553)) $) 77) (((-874 (-373)) $) 75)) (-3110 (((-845) $) 53) (($ (-1137)) 48)) (-1280 (($ $ (-630 (-845))) 60)) (-3205 (((-1137) $) 33) (((-1137) $ (-111)) 34) (((-1243) (-808) $) 35) (((-1243) (-808) $ (-111)) 36)) (-1669 (((-111) $ $) NIL)) (-1648 (((-111) $ $) NIL)) (-1617 (((-111) $ $) 49)) (-1659 (((-111) $ $) NIL)) (-1636 (((-111) $ $) 50))) -(((-1155) (-13 (-833) (-601 (-529)) (-814) (-601 (-1155)) (-603 (-1137)) (-601 (-874 (-553))) (-601 (-874 (-373))) (-868 (-553)) (-868 (-373)) (-10 -8 (-15 -3202 ($)) (-15 -3202 ($ $)) (-15 -2188 ((-1243))) (-15 -4298 ($ $)) (-15 -2916 ((-111) $)) (-15 -1910 ((-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845)))) $)) (-15 -3829 ($ $ (-630 (-630 (-845))))) (-15 -3829 ($ $ (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845)))))) (-15 -4281 ($ $ (-630 (-845)))) (-15 -1281 ($ $ (-630 (-845)))) (-15 -1280 ($ $ (-630 (-845)))) (-15 -2046 ($ $ (-630 (-845)))) (-15 -3950 ((-1137) $)) (-15 -2480 ((-630 $) $)) (-15 -3820 ($) -3879)))) (T -1155)) -((-3202 (*1 *1) (-5 *1 (-1155))) (-3202 (*1 *1 *1) (-5 *1 (-1155))) (-2188 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1155)))) (-4298 (*1 *1 *1) (-5 *1 (-1155))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845))))) (-5 *1 (-1155)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-630 (-845)))) (-5 *1 (-1155)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845))))) (-5 *1 (-1155)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1155)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1155)))) (-3820 (*1 *1) (-5 *1 (-1155)))) -(-13 (-833) (-601 (-529)) (-814) (-601 (-1155)) (-603 (-1137)) (-601 (-874 (-553))) (-601 (-874 (-373))) (-868 (-553)) (-868 (-373)) (-10 -8 (-15 -3202 ($)) (-15 -3202 ($ $)) (-15 -2188 ((-1243))) (-15 -4298 ($ $)) (-15 -2916 ((-111) $)) (-15 -1910 ((-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845)))) $)) (-15 -3829 ($ $ (-630 (-630 (-845))))) (-15 -3829 ($ $ (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) (|:| |args| (-630 (-845)))))) (-15 -4281 ($ $ (-630 (-845)))) (-15 -1281 ($ $ (-630 (-845)))) (-15 -1280 ($ $ (-630 (-845)))) (-15 -2046 ($ $ (-630 (-845)))) (-15 -3950 ((-1137) $)) (-15 -2480 ((-630 $) $)) (-15 -3820 ($) -3879))) -((-1795 (((-1238 |#1|) |#1| (-903)) 16) (((-1238 |#1|) (-630 |#1|)) 20))) -(((-1156 |#1|) (-10 -7 (-15 -1795 ((-1238 |#1|) (-630 |#1|))) (-15 -1795 ((-1238 |#1|) |#1| (-903)))) (-1031)) (T -1156)) -((-1795 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-5 *2 (-1238 *3)) (-5 *1 (-1156 *3)) (-4 *3 (-1031)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-1031)) (-5 *2 (-1238 *4)) (-5 *1 (-1156 *4))))) -(-10 -7 (-15 -1795 ((-1238 |#1|) (-630 |#1|))) (-15 -1795 ((-1238 |#1|) |#1| (-903)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| |#1| (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#1| (-1020 (-401 (-553))))) (((-3 |#1| "failed") $) NIL)) (-2707 (((-553) $) NIL (|has| |#1| (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| |#1| (-1020 (-401 (-553))))) ((|#1| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1655 (($ $) NIL (|has| |#1| (-445)))) (-2686 (($ $ |#1| (-953) $) NIL)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-953)) NIL)) (-2423 (((-953) $) NIL)) (-2241 (($ (-1 (-953) (-953)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#1| $) NIL)) (-1974 (($ $ (-953) |#1| $) NIL (-12 (|has| (-953) (-129)) (|has| |#1| (-545))))) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-3872 (((-953) $) NIL)) (-4198 ((|#1| $) NIL (|has| |#1| (-445)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) NIL) (($ (-401 (-553))) NIL (-3988 (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-1020 (-401 (-553))))))) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ (-953)) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#1| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1988 (($) 9 T CONST)) (-1997 (($) 14 T CONST)) (-1617 (((-111) $ $) 16)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 19)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1157 |#1|) (-13 (-320 |#1| (-953)) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| (-953) (-129)) (-15 -1974 ($ $ (-953) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4367)) (-6 -4367) |%noBranch|))) (-1031)) (T -1157)) -((-1974 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-953)) (-4 *2 (-129)) (-5 *1 (-1157 *3)) (-4 *3 (-545)) (-4 *3 (-1031))))) -(-13 (-320 |#1| (-953)) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| (-953) (-129)) (-15 -1974 ($ $ (-953) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4367)) (-6 -4367) |%noBranch|))) -((-2995 (((-1159) (-1155) $) 25)) (-3333 (($) 29)) (-1381 (((-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-1155) $) 22)) (-1549 (((-1243) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void")) $) 41) (((-1243) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) 42) (((-1243) (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) 43)) (-2424 (((-1243) (-1155)) 58)) (-1917 (((-1243) (-1155) $) 55) (((-1243) (-1155)) 56) (((-1243)) 57)) (-2019 (((-1243) (-1155)) 37)) (-3221 (((-1155)) 36)) (-3222 (($) 34)) (-1410 (((-431) (-1155) (-431) (-1155) $) 45) (((-431) (-630 (-1155)) (-431) (-1155) $) 49) (((-431) (-1155) (-431)) 46) (((-431) (-1155) (-431) (-1155)) 50)) (-1967 (((-1155)) 35)) (-3110 (((-845) $) 28)) (-2937 (((-1243)) 30) (((-1243) (-1155)) 33)) (-2759 (((-630 (-1155)) (-1155) $) 24)) (-1602 (((-1243) (-1155) (-630 (-1155)) $) 38) (((-1243) (-1155) (-630 (-1155))) 39) (((-1243) (-630 (-1155))) 40))) -(((-1158) (-13 (-600 (-845)) (-10 -8 (-15 -3333 ($)) (-15 -2937 ((-1243))) (-15 -2937 ((-1243) (-1155))) (-15 -1410 ((-431) (-1155) (-431) (-1155) $)) (-15 -1410 ((-431) (-630 (-1155)) (-431) (-1155) $)) (-15 -1410 ((-431) (-1155) (-431))) (-15 -1410 ((-431) (-1155) (-431) (-1155))) (-15 -2019 ((-1243) (-1155))) (-15 -1967 ((-1155))) (-15 -3221 ((-1155))) (-15 -1602 ((-1243) (-1155) (-630 (-1155)) $)) (-15 -1602 ((-1243) (-1155) (-630 (-1155)))) (-15 -1602 ((-1243) (-630 (-1155)))) (-15 -1549 ((-1243) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void")) $)) (-15 -1549 ((-1243) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void")))) (-15 -1549 ((-1243) (-3 (|:| |fst| (-428)) (|:| -1875 "void")))) (-15 -1917 ((-1243) (-1155) $)) (-15 -1917 ((-1243) (-1155))) (-15 -1917 ((-1243))) (-15 -2424 ((-1243) (-1155))) (-15 -3222 ($)) (-15 -1381 ((-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-1155) $)) (-15 -2759 ((-630 (-1155)) (-1155) $)) (-15 -2995 ((-1159) (-1155) $))))) (T -1158)) -((-3333 (*1 *1) (-5 *1 (-1158))) (-2937 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1158)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1410 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1158)))) (-1410 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-431)) (-5 *3 (-630 (-1155))) (-5 *4 (-1155)) (-5 *1 (-1158)))) (-1410 (*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1158)))) (-1410 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1158)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1967 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1158)))) (-3221 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1158)))) (-1602 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1549 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1155)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1917 (*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-1917 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1158)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) (-3222 (*1 *1) (-5 *1 (-1158))) (-1381 (*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *1 (-1158)))) (-2759 (*1 *2 *3 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1158)) (-5 *3 (-1155)))) (-2995 (*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-1159)) (-5 *1 (-1158))))) -(-13 (-600 (-845)) (-10 -8 (-15 -3333 ($)) (-15 -2937 ((-1243))) (-15 -2937 ((-1243) (-1155))) (-15 -1410 ((-431) (-1155) (-431) (-1155) $)) (-15 -1410 ((-431) (-630 (-1155)) (-431) (-1155) $)) (-15 -1410 ((-431) (-1155) (-431))) (-15 -1410 ((-431) (-1155) (-431) (-1155))) (-15 -2019 ((-1243) (-1155))) (-15 -1967 ((-1155))) (-15 -3221 ((-1155))) (-15 -1602 ((-1243) (-1155) (-630 (-1155)) $)) (-15 -1602 ((-1243) (-1155) (-630 (-1155)))) (-15 -1602 ((-1243) (-630 (-1155)))) (-15 -1549 ((-1243) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void")) $)) (-15 -1549 ((-1243) (-1155) (-3 (|:| |fst| (-428)) (|:| -1875 "void")))) (-15 -1549 ((-1243) (-3 (|:| |fst| (-428)) (|:| -1875 "void")))) (-15 -1917 ((-1243) (-1155) $)) (-15 -1917 ((-1243) (-1155))) (-15 -1917 ((-1243))) (-15 -2424 ((-1243) (-1155))) (-15 -3222 ($)) (-15 -1381 ((-3 (|:| |fst| (-428)) (|:| -1875 "void")) (-1155) $)) (-15 -2759 ((-630 (-1155)) (-1155) $)) (-15 -2995 ((-1159) (-1155) $)))) -((-1900 (((-630 (-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553))))))))) $) 59)) (-2352 (((-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553)))))))) (-428) $) 43)) (-3940 (($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-431))))) 17)) (-2424 (((-1243) $) 67)) (-2973 (((-630 (-1155)) $) 22)) (-3088 (((-1083) $) 55)) (-3704 (((-431) (-1155) $) 27)) (-2630 (((-630 (-1155)) $) 30)) (-3222 (($) 19)) (-1410 (((-431) (-630 (-1155)) (-431) $) 25) (((-431) (-1155) (-431) $) 24)) (-3110 (((-845) $) 9) (((-1165 (-1155) (-431)) $) 13))) -(((-1159) (-13 (-600 (-845)) (-10 -8 (-15 -3110 ((-1165 (-1155) (-431)) $)) (-15 -3222 ($)) (-15 -1410 ((-431) (-630 (-1155)) (-431) $)) (-15 -1410 ((-431) (-1155) (-431) $)) (-15 -3704 ((-431) (-1155) $)) (-15 -2973 ((-630 (-1155)) $)) (-15 -2352 ((-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553)))))))) (-428) $)) (-15 -2630 ((-630 (-1155)) $)) (-15 -1900 ((-630 (-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553))))))))) $)) (-15 -3088 ((-1083) $)) (-15 -2424 ((-1243) $)) (-15 -3940 ($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-431))))))))) (T -1159)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-1165 (-1155) (-431))) (-5 *1 (-1159)))) (-3222 (*1 *1) (-5 *1 (-1159))) (-1410 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-630 (-1155))) (-5 *1 (-1159)))) (-1410 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1159)))) (-3704 (*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-431)) (-5 *1 (-1159)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1159)))) (-2352 (*1 *2 *3 *1) (-12 (-5 *3 (-428)) (-5 *2 (-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553))))))))) (-5 *1 (-1159)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1159)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553)))))))))) (-5 *1 (-1159)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1159)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1159)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-431))))) (-5 *1 (-1159))))) -(-13 (-600 (-845)) (-10 -8 (-15 -3110 ((-1165 (-1155) (-431)) $)) (-15 -3222 ($)) (-15 -1410 ((-431) (-630 (-1155)) (-431) $)) (-15 -1410 ((-431) (-1155) (-431) $)) (-15 -3704 ((-431) (-1155) $)) (-15 -2973 ((-630 (-1155)) $)) (-15 -2352 ((-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553)))))))) (-428) $)) (-15 -2630 ((-630 (-1155)) $)) (-15 -1900 ((-630 (-630 (-3 (|:| -4298 (-1155)) (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553))))))))) $)) (-15 -3088 ((-1083) $)) (-15 -2424 ((-1243) $)) (-15 -3940 ($ (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-431)))))))) -((-3096 (((-111) $ $) NIL)) (-1399 (((-3 (-553) "failed") $) 29) (((-3 (-220) "failed") $) 35) (((-3 (-1155) "failed") $) 41) (((-3 (-1137) "failed") $) 47)) (-2707 (((-553) $) 30) (((-220) $) 36) (((-1155) $) 42) (((-1137) $) 48)) (-1853 (((-111) $) 53)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2701 (((-3 (-553) (-220) (-1155) (-1137) $) $) 55)) (-4134 (((-630 $) $) 57)) (-1524 (((-1083) $) 24) (($ (-1083)) 25)) (-4021 (((-111) $) 56)) (-3110 (((-845) $) 23) (($ (-553)) 26) (($ (-220)) 32) (($ (-1155)) 38) (($ (-1137)) 44) (((-553) $) 31) (((-220) $) 37) (((-1155) $) 43) (((-1137) $) 49)) (-3192 (((-111) $ (|[\|\|]| (-553))) 10) (((-111) $ (|[\|\|]| (-220))) 13) (((-111) $ (|[\|\|]| (-1155))) 19) (((-111) $ (|[\|\|]| (-1137))) 16)) (-3766 (($ (-1155) (-630 $)) 51) (($ $ (-630 $)) 52)) (-1534 (((-553) $) 27) (((-220) $) 33) (((-1155) $) 39) (((-1137) $) 45)) (-1617 (((-111) $ $) 7))) -(((-1160) (-13 (-1233) (-1079) (-1020 (-553)) (-1020 (-220)) (-1020 (-1155)) (-1020 (-1137)) (-10 -8 (-15 -1524 ((-1083) $)) (-15 -1524 ($ (-1083))) (-15 -3110 ((-553) $)) (-15 -1534 ((-553) $)) (-15 -3110 ((-220) $)) (-15 -1534 ((-220) $)) (-15 -3110 ((-1155) $)) (-15 -1534 ((-1155) $)) (-15 -3110 ((-1137) $)) (-15 -1534 ((-1137) $)) (-15 -3766 ($ (-1155) (-630 $))) (-15 -3766 ($ $ (-630 $))) (-15 -1853 ((-111) $)) (-15 -2701 ((-3 (-553) (-220) (-1155) (-1137) $) $)) (-15 -4134 ((-630 $) $)) (-15 -4021 ((-111) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-553)))) (-15 -3192 ((-111) $ (|[\|\|]| (-220)))) (-15 -3192 ((-111) $ (|[\|\|]| (-1155)))) (-15 -3192 ((-111) $ (|[\|\|]| (-1137))))))) (T -1160)) -((-1524 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1160)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1160)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1160)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1160)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1160)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1160)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1160)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1160)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1160)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1160)))) (-3766 (*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-1160))) (-5 *1 (-1160)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-1160)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1160)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-3 (-553) (-220) (-1155) (-1137) (-1160))) (-5 *1 (-1160)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-1160)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1160)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-553))) (-5 *2 (-111)) (-5 *1 (-1160)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1160)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-111)) (-5 *1 (-1160)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-111)) (-5 *1 (-1160))))) -(-13 (-1233) (-1079) (-1020 (-553)) (-1020 (-220)) (-1020 (-1155)) (-1020 (-1137)) (-10 -8 (-15 -1524 ((-1083) $)) (-15 -1524 ($ (-1083))) (-15 -3110 ((-553) $)) (-15 -1534 ((-553) $)) (-15 -3110 ((-220) $)) (-15 -1534 ((-220) $)) (-15 -3110 ((-1155) $)) (-15 -1534 ((-1155) $)) (-15 -3110 ((-1137) $)) (-15 -1534 ((-1137) $)) (-15 -3766 ($ (-1155) (-630 $))) (-15 -3766 ($ $ (-630 $))) (-15 -1853 ((-111) $)) (-15 -2701 ((-3 (-553) (-220) (-1155) (-1137) $) $)) (-15 -4134 ((-630 $) $)) (-15 -4021 ((-111) $)) (-15 -3192 ((-111) $ (|[\|\|]| (-553)))) (-15 -3192 ((-111) $ (|[\|\|]| (-220)))) (-15 -3192 ((-111) $ (|[\|\|]| (-1155)))) (-15 -3192 ((-111) $ (|[\|\|]| (-1137)))))) -((-2494 (((-630 (-630 (-934 |#1|))) (-630 (-401 (-934 |#1|))) (-630 (-1155))) 57)) (-1638 (((-630 (-288 (-401 (-934 |#1|)))) (-288 (-401 (-934 |#1|)))) 69) (((-630 (-288 (-401 (-934 |#1|)))) (-401 (-934 |#1|))) 65) (((-630 (-288 (-401 (-934 |#1|)))) (-288 (-401 (-934 |#1|))) (-1155)) 70) (((-630 (-288 (-401 (-934 |#1|)))) (-401 (-934 |#1|)) (-1155)) 64) (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-288 (-401 (-934 |#1|))))) 93) (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-401 (-934 |#1|)))) 92) (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-288 (-401 (-934 |#1|)))) (-630 (-1155))) 94) (((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-401 (-934 |#1|))) (-630 (-1155))) 91))) -(((-1161 |#1|) (-10 -7 (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-288 (-401 (-934 |#1|)))) (-630 (-1155)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-401 (-934 |#1|))))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-288 (-401 (-934 |#1|)))))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-401 (-934 |#1|)) (-1155))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-288 (-401 (-934 |#1|))) (-1155))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-401 (-934 |#1|)))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-288 (-401 (-934 |#1|))))) (-15 -2494 ((-630 (-630 (-934 |#1|))) (-630 (-401 (-934 |#1|))) (-630 (-1155))))) (-545)) (T -1161)) -((-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) (-4 *5 (-545)) (-5 *2 (-630 (-630 (-934 *5)))) (-5 *1 (-1161 *5)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 (-288 (-401 (-934 *4))))) (-5 *1 (-1161 *4)) (-5 *3 (-288 (-401 (-934 *4)))))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 (-288 (-401 (-934 *4))))) (-5 *1 (-1161 *4)) (-5 *3 (-401 (-934 *4))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-545)) (-5 *2 (-630 (-288 (-401 (-934 *5))))) (-5 *1 (-1161 *5)) (-5 *3 (-288 (-401 (-934 *5)))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1155)) (-4 *5 (-545)) (-5 *2 (-630 (-288 (-401 (-934 *5))))) (-5 *1 (-1161 *5)) (-5 *3 (-401 (-934 *5))))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-1161 *4)) (-5 *3 (-630 (-288 (-401 (-934 *4))))))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-630 (-401 (-934 *4)))) (-4 *4 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-1161 *4)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-1155))) (-4 *5 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-1161 *5)) (-5 *3 (-630 (-288 (-401 (-934 *5))))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) (-4 *5 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-1161 *5))))) -(-10 -7 (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-401 (-934 |#1|))) (-630 (-1155)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-288 (-401 (-934 |#1|)))) (-630 (-1155)))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-401 (-934 |#1|))))) (-15 -1638 ((-630 (-630 (-288 (-401 (-934 |#1|))))) (-630 (-288 (-401 (-934 |#1|)))))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-401 (-934 |#1|)) (-1155))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-288 (-401 (-934 |#1|))) (-1155))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-401 (-934 |#1|)))) (-15 -1638 ((-630 (-288 (-401 (-934 |#1|)))) (-288 (-401 (-934 |#1|))))) (-15 -2494 ((-630 (-630 (-934 |#1|))) (-630 (-401 (-934 |#1|))) (-630 (-1155))))) -((-3760 (((-1137)) 7)) (-3003 (((-1137)) 9)) (-2308 (((-1243) (-1137)) 11)) (-2173 (((-1137)) 8))) -(((-1162) (-10 -7 (-15 -3760 ((-1137))) (-15 -2173 ((-1137))) (-15 -3003 ((-1137))) (-15 -2308 ((-1243) (-1137))))) (T -1162)) -((-2308 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1162)))) (-3003 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1162)))) (-2173 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1162)))) (-3760 (*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1162))))) -(-10 -7 (-15 -3760 ((-1137))) (-15 -2173 ((-1137))) (-15 -3003 ((-1137))) (-15 -2308 ((-1243) (-1137)))) -((-1839 (((-630 (-630 |#1|)) (-630 (-630 |#1|)) (-630 (-630 (-630 |#1|)))) 38)) (-3707 (((-630 (-630 (-630 |#1|))) (-630 (-630 |#1|))) 24)) (-3080 (((-1164 (-630 |#1|)) (-630 |#1|)) 34)) (-1953 (((-630 (-630 |#1|)) (-630 |#1|)) 30)) (-1822 (((-2 (|:| |f1| (-630 |#1|)) (|:| |f2| (-630 (-630 (-630 |#1|)))) (|:| |f3| (-630 (-630 |#1|))) (|:| |f4| (-630 (-630 (-630 |#1|))))) (-630 (-630 (-630 |#1|)))) 37)) (-3596 (((-2 (|:| |f1| (-630 |#1|)) (|:| |f2| (-630 (-630 (-630 |#1|)))) (|:| |f3| (-630 (-630 |#1|))) (|:| |f4| (-630 (-630 (-630 |#1|))))) (-630 |#1|) (-630 (-630 (-630 |#1|))) (-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))) (-630 (-630 (-630 |#1|))) (-630 (-630 (-630 |#1|)))) 36)) (-1326 (((-630 (-630 |#1|)) (-630 (-630 |#1|))) 28)) (-1614 (((-630 |#1|) (-630 |#1|)) 31)) (-3428 (((-630 (-630 (-630 |#1|))) (-630 |#1|) (-630 (-630 (-630 |#1|)))) 18)) (-1977 (((-630 (-630 (-630 |#1|))) (-1 (-111) |#1| |#1|) (-630 |#1|) (-630 (-630 (-630 |#1|)))) 16)) (-2648 (((-2 (|:| |fs| (-111)) (|:| |sd| (-630 |#1|)) (|:| |td| (-630 (-630 |#1|)))) (-1 (-111) |#1| |#1|) (-630 |#1|) (-630 (-630 |#1|))) 14)) (-1818 (((-630 (-630 |#1|)) (-630 (-630 (-630 |#1|)))) 39)) (-2315 (((-630 (-630 |#1|)) (-1164 (-630 |#1|))) 41))) -(((-1163 |#1|) (-10 -7 (-15 -2648 ((-2 (|:| |fs| (-111)) (|:| |sd| (-630 |#1|)) (|:| |td| (-630 (-630 |#1|)))) (-1 (-111) |#1| |#1|) (-630 |#1|) (-630 (-630 |#1|)))) (-15 -1977 ((-630 (-630 (-630 |#1|))) (-1 (-111) |#1| |#1|) (-630 |#1|) (-630 (-630 (-630 |#1|))))) (-15 -3428 ((-630 (-630 (-630 |#1|))) (-630 |#1|) (-630 (-630 (-630 |#1|))))) (-15 -1839 ((-630 (-630 |#1|)) (-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))))) (-15 -1818 ((-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))))) (-15 -2315 ((-630 (-630 |#1|)) (-1164 (-630 |#1|)))) (-15 -3707 ((-630 (-630 (-630 |#1|))) (-630 (-630 |#1|)))) (-15 -3080 ((-1164 (-630 |#1|)) (-630 |#1|))) (-15 -1326 ((-630 (-630 |#1|)) (-630 (-630 |#1|)))) (-15 -1953 ((-630 (-630 |#1|)) (-630 |#1|))) (-15 -1614 ((-630 |#1|) (-630 |#1|))) (-15 -3596 ((-2 (|:| |f1| (-630 |#1|)) (|:| |f2| (-630 (-630 (-630 |#1|)))) (|:| |f3| (-630 (-630 |#1|))) (|:| |f4| (-630 (-630 (-630 |#1|))))) (-630 |#1|) (-630 (-630 (-630 |#1|))) (-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))) (-630 (-630 (-630 |#1|))) (-630 (-630 (-630 |#1|))))) (-15 -1822 ((-2 (|:| |f1| (-630 |#1|)) (|:| |f2| (-630 (-630 (-630 |#1|)))) (|:| |f3| (-630 (-630 |#1|))) (|:| |f4| (-630 (-630 (-630 |#1|))))) (-630 (-630 (-630 |#1|)))))) (-833)) (T -1163)) -((-1822 (*1 *2 *3) (-12 (-4 *4 (-833)) (-5 *2 (-2 (|:| |f1| (-630 *4)) (|:| |f2| (-630 (-630 (-630 *4)))) (|:| |f3| (-630 (-630 *4))) (|:| |f4| (-630 (-630 (-630 *4)))))) (-5 *1 (-1163 *4)) (-5 *3 (-630 (-630 (-630 *4)))))) (-3596 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-833)) (-5 *3 (-630 *6)) (-5 *5 (-630 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-630 *5)) (|:| |f3| *5) (|:| |f4| (-630 *5)))) (-5 *1 (-1163 *6)) (-5 *4 (-630 *5)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-1163 *3)))) (-1953 (*1 *2 *3) (-12 (-4 *4 (-833)) (-5 *2 (-630 (-630 *4))) (-5 *1 (-1163 *4)) (-5 *3 (-630 *4)))) (-1326 (*1 *2 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-833)) (-5 *1 (-1163 *3)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-833)) (-5 *2 (-1164 (-630 *4))) (-5 *1 (-1163 *4)) (-5 *3 (-630 *4)))) (-3707 (*1 *2 *3) (-12 (-4 *4 (-833)) (-5 *2 (-630 (-630 (-630 *4)))) (-5 *1 (-1163 *4)) (-5 *3 (-630 (-630 *4))))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1164 (-630 *4))) (-4 *4 (-833)) (-5 *2 (-630 (-630 *4))) (-5 *1 (-1163 *4)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-630 (-630 (-630 *4)))) (-5 *2 (-630 (-630 *4))) (-5 *1 (-1163 *4)) (-4 *4 (-833)))) (-1839 (*1 *2 *2 *3) (-12 (-5 *3 (-630 (-630 (-630 *4)))) (-5 *2 (-630 (-630 *4))) (-4 *4 (-833)) (-5 *1 (-1163 *4)))) (-3428 (*1 *2 *3 *2) (-12 (-5 *2 (-630 (-630 (-630 *4)))) (-5 *3 (-630 *4)) (-4 *4 (-833)) (-5 *1 (-1163 *4)))) (-1977 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-630 (-630 (-630 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-630 *5)) (-4 *5 (-833)) (-5 *1 (-1163 *5)))) (-2648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-833)) (-5 *4 (-630 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-630 *4)))) (-5 *1 (-1163 *6)) (-5 *5 (-630 *4))))) -(-10 -7 (-15 -2648 ((-2 (|:| |fs| (-111)) (|:| |sd| (-630 |#1|)) (|:| |td| (-630 (-630 |#1|)))) (-1 (-111) |#1| |#1|) (-630 |#1|) (-630 (-630 |#1|)))) (-15 -1977 ((-630 (-630 (-630 |#1|))) (-1 (-111) |#1| |#1|) (-630 |#1|) (-630 (-630 (-630 |#1|))))) (-15 -3428 ((-630 (-630 (-630 |#1|))) (-630 |#1|) (-630 (-630 (-630 |#1|))))) (-15 -1839 ((-630 (-630 |#1|)) (-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))))) (-15 -1818 ((-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))))) (-15 -2315 ((-630 (-630 |#1|)) (-1164 (-630 |#1|)))) (-15 -3707 ((-630 (-630 (-630 |#1|))) (-630 (-630 |#1|)))) (-15 -3080 ((-1164 (-630 |#1|)) (-630 |#1|))) (-15 -1326 ((-630 (-630 |#1|)) (-630 (-630 |#1|)))) (-15 -1953 ((-630 (-630 |#1|)) (-630 |#1|))) (-15 -1614 ((-630 |#1|) (-630 |#1|))) (-15 -3596 ((-2 (|:| |f1| (-630 |#1|)) (|:| |f2| (-630 (-630 (-630 |#1|)))) (|:| |f3| (-630 (-630 |#1|))) (|:| |f4| (-630 (-630 (-630 |#1|))))) (-630 |#1|) (-630 (-630 (-630 |#1|))) (-630 (-630 |#1|)) (-630 (-630 (-630 |#1|))) (-630 (-630 (-630 |#1|))) (-630 (-630 (-630 |#1|))))) (-15 -1822 ((-2 (|:| |f1| (-630 |#1|)) (|:| |f2| (-630 (-630 (-630 |#1|)))) (|:| |f3| (-630 (-630 |#1|))) (|:| |f4| (-630 (-630 (-630 |#1|))))) (-630 (-630 (-630 |#1|)))))) -((-3020 (($ (-630 (-630 |#1|))) 10)) (-2384 (((-630 (-630 |#1|)) $) 11)) (-3110 (((-845) $) 26))) -(((-1164 |#1|) (-10 -8 (-15 -3020 ($ (-630 (-630 |#1|)))) (-15 -2384 ((-630 (-630 |#1|)) $)) (-15 -3110 ((-845) $))) (-1079)) (T -1164)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-1164 *3)) (-4 *3 (-1079)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-630 (-630 *3))) (-5 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-1164 *3))))) -(-10 -8 (-15 -3020 ($ (-630 (-630 |#1|)))) (-15 -2384 ((-630 (-630 |#1|)) $)) (-15 -3110 ((-845) $))) -((-3096 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3190 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-1683 (((-1243) $ |#1| |#1|) NIL (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#2| $ |#1| |#2|) NIL)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) NIL)) (-3820 (($) NIL T CONST)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) NIL)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) NIL)) (-2800 ((|#1| $) NIL (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-630 |#2|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-2958 ((|#1| $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-3729 (((-630 |#1|) $) NIL)) (-1570 (((-111) |#1| $) NIL)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-1901 (((-630 |#1|) $) NIL)) (-3594 (((-111) |#1| $) NIL)) (-2786 (((-1099) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2603 ((|#2| $) NIL (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL)) (-2858 (($ $ |#2|) NIL (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3093 (($) NIL) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) NIL (-12 (|has| $ (-6 -4369)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (((-757) |#2| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079)))) (((-757) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3110 (((-845) $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845))) (|has| |#2| (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) NIL)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) NIL (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) NIL (-3988 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| |#2| (-1079))))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1165 |#1| |#2|) (-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) (-1079) (-1079)) (T -1165)) -NIL -(-13 (-1168 |#1| |#2|) (-10 -7 (-6 -4369))) -((-3828 ((|#1| (-630 |#1|)) 32)) (-2360 ((|#1| |#1| (-553)) 18)) (-1927 (((-1151 |#1|) |#1| (-903)) 15))) -(((-1166 |#1|) (-10 -7 (-15 -3828 (|#1| (-630 |#1|))) (-15 -1927 ((-1151 |#1|) |#1| (-903))) (-15 -2360 (|#1| |#1| (-553)))) (-357)) (T -1166)) -((-2360 (*1 *2 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-1166 *2)) (-4 *2 (-357)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *4 (-903)) (-5 *2 (-1151 *3)) (-5 *1 (-1166 *3)) (-4 *3 (-357)))) (-3828 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-5 *1 (-1166 *2)) (-4 *2 (-357))))) -(-10 -7 (-15 -3828 (|#1| (-630 |#1|))) (-15 -1927 ((-1151 |#1|) |#1| (-903))) (-15 -2360 (|#1| |#1| (-553)))) -((-3190 (($) 10) (($ (-630 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)))) 14)) (-3986 (($ (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1408 (((-630 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) 39) (((-630 |#3|) $) 41)) (-2503 (($ (-1 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1482 (($ (-1 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1376 (((-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) $) 54)) (-2636 (($ (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) $) 16)) (-1901 (((-630 |#2|) $) 19)) (-3594 (((-111) |#2| $) 59)) (-3016 (((-3 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) "failed") (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) 58)) (-2949 (((-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) $) 63)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-1912 (((-630 |#3|) $) 43)) (-2046 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) NIL) (((-757) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) $) NIL) (((-757) |#3| $) NIL) (((-757) (-1 (-111) |#3|) $) 68)) (-3110 (((-845) $) 27)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-1617 (((-111) $ $) 49))) -(((-1167 |#1| |#2| |#3|) (-10 -8 (-15 -1617 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1482 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3190 (|#1| (-630 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))))) (-15 -3190 (|#1|)) (-15 -1482 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2503 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2796 ((-757) (-1 (-111) |#3|) |#1|)) (-15 -1408 ((-630 |#3|) |#1|)) (-15 -2796 ((-757) |#3| |#1|)) (-15 -2046 (|#3| |#1| |#2| |#3|)) (-15 -2046 (|#3| |#1| |#2|)) (-15 -1912 ((-630 |#3|) |#1|)) (-15 -3594 ((-111) |#2| |#1|)) (-15 -1901 ((-630 |#2|) |#1|)) (-15 -3986 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3986 (|#1| (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -3986 (|#1| (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -3016 ((-3 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) "failed") (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -1376 ((-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -2636 (|#1| (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -2949 ((-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -2796 ((-757) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -1408 ((-630 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -2796 ((-757) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -3341 ((-111) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -3296 ((-111) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -2503 (|#1| (-1 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -1482 (|#1| (-1 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|))) (-1168 |#2| |#3|) (-1079) (-1079)) (T -1167)) -NIL -(-10 -8 (-15 -1617 ((-111) |#1| |#1|)) (-15 -3110 ((-845) |#1|)) (-15 -1482 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3190 (|#1| (-630 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))))) (-15 -3190 (|#1|)) (-15 -1482 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2503 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3296 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3341 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2796 ((-757) (-1 (-111) |#3|) |#1|)) (-15 -1408 ((-630 |#3|) |#1|)) (-15 -2796 ((-757) |#3| |#1|)) (-15 -2046 (|#3| |#1| |#2| |#3|)) (-15 -2046 (|#3| |#1| |#2|)) (-15 -1912 ((-630 |#3|) |#1|)) (-15 -3594 ((-111) |#2| |#1|)) (-15 -1901 ((-630 |#2|) |#1|)) (-15 -3986 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3986 (|#1| (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -3986 (|#1| (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -3016 ((-3 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) "failed") (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -1376 ((-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -2636 (|#1| (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -2949 ((-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -2796 ((-757) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) |#1|)) (-15 -1408 ((-630 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -2796 ((-757) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -3341 ((-111) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -3296 ((-111) (-1 (-111) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -2503 (|#1| (-1 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|)) (-15 -1482 (|#1| (-1 (-2 (|:| -2578 |#2|) (|:| -3256 |#3|)) (-2 (|:| -2578 |#2|) (|:| -3256 |#3|))) |#1|))) -((-3096 (((-111) $ $) 19 (-3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3190 (($) 72) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 71)) (-1683 (((-1243) $ |#1| |#1|) 99 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#2| $ |#1| |#2|) 73)) (-2955 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 45 (|has| $ (-6 -4369)))) (-3905 (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 55 (|has| $ (-6 -4369)))) (-2972 (((-3 |#2| "failed") |#1| $) 61)) (-3820 (($) 7 T CONST)) (-2638 (($ $) 58 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369))))) (-3986 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 47 (|has| $ (-6 -4369))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 46 (|has| $ (-6 -4369))) (((-3 |#2| "failed") |#1| $) 62)) (-2575 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 54 (|has| $ (-6 -4369)))) (-2654 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 56 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 53 (|has| $ (-6 -4369))) (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 52 (|has| $ (-6 -4369)))) (-2515 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4370)))) (-2441 ((|#2| $ |#1|) 88)) (-1408 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 30 (|has| $ (-6 -4369))) (((-630 |#2|) $) 79 (|has| $ (-6 -4369)))) (-3703 (((-111) $ (-757)) 9)) (-2800 ((|#1| $) 96 (|has| |#1| (-833)))) (-2195 (((-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 29 (|has| $ (-6 -4369))) (((-630 |#2|) $) 80 (|has| $ (-6 -4369)))) (-1832 (((-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369))))) (-2958 ((|#1| $) 95 (|has| |#1| (-833)))) (-2503 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 34 (|has| $ (-6 -4370))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4370)))) (-1482 (($ (-1 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3786 (((-111) $ (-757)) 10)) (-1735 (((-1137) $) 22 (-3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-3729 (((-630 |#1|) $) 63)) (-1570 (((-111) |#1| $) 64)) (-1376 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 39)) (-2636 (($ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 40)) (-1901 (((-630 |#1|) $) 93)) (-3594 (((-111) |#1| $) 92)) (-2786 (((-1099) $) 21 (-3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2603 ((|#2| $) 97 (|has| |#1| (-833)))) (-3016 (((-3 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) "failed") (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 51)) (-2858 (($ $ |#2|) 98 (|has| $ (-6 -4370)))) (-2949 (((-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 41)) (-3341 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 32 (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))))) 26 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-288 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 25 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) 24 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 23 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)))) (($ $ (-630 |#2|) (-630 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079)))) (($ $ (-630 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4369)) (|has| |#2| (-1079))))) (-1912 (((-630 |#2|) $) 91)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3093 (($) 49) (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 48)) (-2796 (((-757) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 31 (|has| $ (-6 -4369))) (((-757) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| $ (-6 -4369)))) (((-757) |#2| $) 81 (-12 (|has| |#2| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4369)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 59 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))))) (-3121 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 50)) (-3110 (((-845) $) 18 (-3988 (|has| |#2| (-600 (-845))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845)))))) (-2711 (($ (-630 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) 42)) (-3296 (((-111) (-1 (-111) (-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) $) 33 (|has| $ (-6 -4369))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (-3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1168 |#1| |#2|) (-137) (-1079) (-1079)) (T -1168)) -((-1490 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079)))) (-3190 (*1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-630 (-2 (|:| -2578 *3) (|:| -3256 *4)))) (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *1 (-1168 *3 *4)))) (-1482 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079))))) -(-13 (-597 |t#1| |t#2|) (-591 |t#1| |t#2|) (-10 -8 (-15 -1490 (|t#2| $ |t#1| |t#2|)) (-15 -3190 ($)) (-15 -3190 ($ (-630 (-2 (|:| -2578 |t#1|) (|:| -3256 |t#2|))))) (-15 -1482 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -2578 |#1|) (|:| -3256 |#2|))) . T) ((-101) -3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-600 (-845)) -3988 (|has| |#2| (-1079)) (|has| |#2| (-600 (-845))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-600 (-845)))) ((-148 #0#) . T) ((-601 (-529)) |has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-601 (-529))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 #0#) -12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-482 #0#) . T) ((-482 |#2|) . T) ((-591 |#1| |#2|) . T) ((-507 #0# #0#) -12 (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-303 (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)))) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-507 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1079))) ((-597 |#1| |#2|) . T) ((-1079) -3988 (|has| |#2| (-1079)) (|has| (-2 (|:| -2578 |#1|) (|:| -3256 |#2|)) (-1079))) ((-1192) . T)) -((-1914 (((-111)) 24)) (-2197 (((-1243) (-1137)) 26)) (-2861 (((-111)) 36)) (-3597 (((-1243)) 34)) (-3618 (((-1243) (-1137) (-1137)) 25)) (-3859 (((-111)) 37)) (-2636 (((-1243) |#1| |#2|) 44)) (-3372 (((-1243)) 20)) (-2431 (((-3 |#2| "failed") |#1|) 42)) (-1761 (((-1243)) 35))) -(((-1169 |#1| |#2|) (-10 -7 (-15 -3372 ((-1243))) (-15 -3618 ((-1243) (-1137) (-1137))) (-15 -2197 ((-1243) (-1137))) (-15 -3597 ((-1243))) (-15 -1761 ((-1243))) (-15 -1914 ((-111))) (-15 -2861 ((-111))) (-15 -3859 ((-111))) (-15 -2431 ((-3 |#2| "failed") |#1|)) (-15 -2636 ((-1243) |#1| |#2|))) (-1079) (-1079)) (T -1169)) -((-2636 (*1 *2 *3 *4) (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-2431 (*1 *2 *3) (|partial| -12 (-4 *2 (-1079)) (-5 *1 (-1169 *3 *2)) (-4 *3 (-1079)))) (-3859 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-2861 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-1914 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-1761 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-3597 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) (-2197 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1169 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1079)))) (-3618 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1169 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1079)))) (-3372 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079))))) -(-10 -7 (-15 -3372 ((-1243))) (-15 -3618 ((-1243) (-1137) (-1137))) (-15 -2197 ((-1243) (-1137))) (-15 -3597 ((-1243))) (-15 -1761 ((-1243))) (-15 -1914 ((-111))) (-15 -2861 ((-111))) (-15 -3859 ((-111))) (-15 -2431 ((-3 |#2| "failed") |#1|)) (-15 -2636 ((-1243) |#1| |#2|))) -((-3907 (((-1137) (-1137)) 18)) (-3001 (((-52) (-1137)) 21))) -(((-1170) (-10 -7 (-15 -3001 ((-52) (-1137))) (-15 -3907 ((-1137) (-1137))))) (T -1170)) -((-3907 (*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1170)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-52)) (-5 *1 (-1170))))) -(-10 -7 (-15 -3001 ((-52) (-1137))) (-15 -3907 ((-1137) (-1137)))) -((-3110 (((-1172) |#1|) 11))) -(((-1171 |#1|) (-10 -7 (-15 -3110 ((-1172) |#1|))) (-1079)) (T -1171)) -((-3110 (*1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *1 (-1171 *3)) (-4 *3 (-1079))))) -(-10 -7 (-15 -3110 ((-1172) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3864 (((-630 (-1137)) $) 34)) (-4097 (((-630 (-1137)) $ (-630 (-1137))) 37)) (-4136 (((-630 (-1137)) $ (-630 (-1137))) 36)) (-2191 (((-630 (-1137)) $ (-630 (-1137))) 38)) (-1852 (((-630 (-1137)) $) 33)) (-3202 (($) 22)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2069 (((-630 (-1137)) $) 35)) (-2524 (((-1243) $ (-553)) 29) (((-1243) $) 30)) (-1524 (($ (-845) (-553)) 26) (($ (-845) (-553) (-845)) NIL)) (-3110 (((-845) $) 40) (($ (-845)) 24)) (-1617 (((-111) $ $) NIL))) -(((-1172) (-13 (-1079) (-603 (-845)) (-10 -8 (-15 -1524 ($ (-845) (-553))) (-15 -1524 ($ (-845) (-553) (-845))) (-15 -2524 ((-1243) $ (-553))) (-15 -2524 ((-1243) $)) (-15 -2069 ((-630 (-1137)) $)) (-15 -3864 ((-630 (-1137)) $)) (-15 -3202 ($)) (-15 -1852 ((-630 (-1137)) $)) (-15 -2191 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -4097 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -4136 ((-630 (-1137)) $ (-630 (-1137))))))) (T -1172)) -((-1524 (*1 *1 *2 *3) (-12 (-5 *2 (-845)) (-5 *3 (-553)) (-5 *1 (-1172)))) (-1524 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-553)) (-5 *1 (-1172)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-1172)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1172)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172)))) (-3202 (*1 *1) (-5 *1 (-1172))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172)))) (-2191 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172)))) (-4097 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172)))) (-4136 (*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) -(-13 (-1079) (-603 (-845)) (-10 -8 (-15 -1524 ($ (-845) (-553))) (-15 -1524 ($ (-845) (-553) (-845))) (-15 -2524 ((-1243) $ (-553))) (-15 -2524 ((-1243) $)) (-15 -2069 ((-630 (-1137)) $)) (-15 -3864 ((-630 (-1137)) $)) (-15 -3202 ($)) (-15 -1852 ((-630 (-1137)) $)) (-15 -2191 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -4097 ((-630 (-1137)) $ (-630 (-1137)))) (-15 -4136 ((-630 (-1137)) $ (-630 (-1137)))))) -((-3096 (((-111) $ $) NIL)) (-3923 (((-1137) $ (-1137)) 17) (((-1137) $) 16)) (-3172 (((-1137) $ (-1137)) 15)) (-3985 (($ $ (-1137)) NIL)) (-4042 (((-3 (-1137) "failed") $) 11)) (-3053 (((-1137) $) 8)) (-2792 (((-3 (-1137) "failed") $) 12)) (-3131 (((-1137) $) 9)) (-2984 (($ (-382)) NIL) (($ (-382) (-1137)) NIL)) (-4298 (((-382) $) NIL)) (-1735 (((-1137) $) NIL)) (-4086 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-4152 (((-111) $) 18)) (-3110 (((-845) $) NIL)) (-2407 (($ $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1173) (-13 (-358 (-382) (-1137)) (-10 -8 (-15 -3923 ((-1137) $ (-1137))) (-15 -3923 ((-1137) $)) (-15 -3053 ((-1137) $)) (-15 -4042 ((-3 (-1137) "failed") $)) (-15 -2792 ((-3 (-1137) "failed") $)) (-15 -4152 ((-111) $))))) (T -1173)) -((-3923 (*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1173)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1173)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1173)))) (-4042 (*1 *2 *1) (|partial| -12 (-5 *2 (-1137)) (-5 *1 (-1173)))) (-2792 (*1 *2 *1) (|partial| -12 (-5 *2 (-1137)) (-5 *1 (-1173)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1173))))) -(-13 (-358 (-382) (-1137)) (-10 -8 (-15 -3923 ((-1137) $ (-1137))) (-15 -3923 ((-1137) $)) (-15 -3053 ((-1137) $)) (-15 -4042 ((-3 (-1137) "failed") $)) (-15 -2792 ((-3 (-1137) "failed") $)) (-15 -4152 ((-111) $)))) -((-2125 (((-3 (-553) "failed") |#1|) 19)) (-1713 (((-3 (-553) "failed") |#1|) 14)) (-2038 (((-553) (-1137)) 28))) -(((-1174 |#1|) (-10 -7 (-15 -2125 ((-3 (-553) "failed") |#1|)) (-15 -1713 ((-3 (-553) "failed") |#1|)) (-15 -2038 ((-553) (-1137)))) (-1031)) (T -1174)) -((-2038 (*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-553)) (-5 *1 (-1174 *4)) (-4 *4 (-1031)))) (-1713 (*1 *2 *3) (|partial| -12 (-5 *2 (-553)) (-5 *1 (-1174 *3)) (-4 *3 (-1031)))) (-2125 (*1 *2 *3) (|partial| -12 (-5 *2 (-553)) (-5 *1 (-1174 *3)) (-4 *3 (-1031))))) -(-10 -7 (-15 -2125 ((-3 (-553) "failed") |#1|)) (-15 -1713 ((-3 (-553) "failed") |#1|)) (-15 -2038 ((-553) (-1137)))) -((-1842 (((-1112 (-220))) 9))) -(((-1175) (-10 -7 (-15 -1842 ((-1112 (-220)))))) (T -1175)) -((-1842 (*1 *2) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-1175))))) -(-10 -7 (-15 -1842 ((-1112 (-220))))) -((-3996 (($) 11)) (-2447 (($ $) 35)) (-2425 (($ $) 33)) (-2291 (($ $) 25)) (-3791 (($ $) 17)) (-2570 (($ $) 15)) (-3780 (($ $) 19)) (-2324 (($ $) 30)) (-2435 (($ $) 34)) (-2302 (($ $) 29))) -(((-1176 |#1|) (-10 -8 (-15 -3996 (|#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2302 (|#1| |#1|))) (-1177)) (T -1176)) -NIL -(-10 -8 (-15 -3996 (|#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2302 (|#1| |#1|))) -((-2380 (($ $) 26)) (-2246 (($ $) 11)) (-2357 (($ $) 27)) (-2224 (($ $) 10)) (-2403 (($ $) 28)) (-2268 (($ $) 9)) (-3996 (($) 16)) (-2366 (($ $) 19)) (-2743 (($ $) 18)) (-2414 (($ $) 29)) (-2279 (($ $) 8)) (-2392 (($ $) 30)) (-2257 (($ $) 7)) (-2368 (($ $) 31)) (-2234 (($ $) 6)) (-2447 (($ $) 20)) (-2313 (($ $) 32)) (-2425 (($ $) 21)) (-2291 (($ $) 33)) (-3791 (($ $) 22)) (-2336 (($ $) 34)) (-2570 (($ $) 23)) (-2346 (($ $) 35)) (-3780 (($ $) 24)) (-2324 (($ $) 36)) (-2435 (($ $) 25)) (-2302 (($ $) 37)) (** (($ $ $) 17))) -(((-1177) (-137)) (T -1177)) -((-3996 (*1 *1) (-4 *1 (-1177)))) -(-13 (-1180) (-94) (-486) (-35) (-278) (-10 -8 (-15 -3996 ($)))) -(((-35) . T) ((-94) . T) ((-278) . T) ((-486) . T) ((-1180) . T)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2821 ((|#1| $) 17)) (-3045 (($ |#1| (-630 $)) 23) (($ (-630 |#1|)) 27) (($ |#1|) 25)) (-1511 (((-111) $ (-757)) 48)) (-2884 ((|#1| $ |#1|) 14 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 13 (|has| $ (-6 -4370)))) (-3820 (($) NIL T CONST)) (-1408 (((-630 |#1|) $) 52 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 43)) (-2284 (((-111) $ $) 33 (|has| |#1| (-1079)))) (-3703 (((-111) $ (-757)) 41)) (-2195 (((-630 |#1|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2503 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 22)) (-3786 (((-111) $ (-757)) 40)) (-3698 (((-630 |#1|) $) 37)) (-3862 (((-111) $) 36)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3341 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 74)) (-3586 (((-111) $) 9)) (-3222 (($) 10)) (-2046 ((|#1| $ "value") NIL)) (-3558 (((-553) $ $) 32)) (-3984 (((-630 $) $) 59)) (-4211 (((-111) $ $) 77)) (-2001 (((-630 $) $) 72)) (-3025 (($ $) 73)) (-1510 (((-111) $) 56)) (-2796 (((-757) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4369))) (((-757) |#1| $) 16 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1508 (($ $) 58)) (-3110 (((-845) $) 61 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 12)) (-3743 (((-111) $ $) 29 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 28 (|has| |#1| (-1079)))) (-2563 (((-757) $) 39 (|has| $ (-6 -4369))))) -(((-1178 |#1|) (-13 (-992 |#1|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -3045 ($ |#1| (-630 $))) (-15 -3045 ($ (-630 |#1|))) (-15 -3045 ($ |#1|)) (-15 -1510 ((-111) $)) (-15 -3025 ($ $)) (-15 -2001 ((-630 $) $)) (-15 -4211 ((-111) $ $)) (-15 -3984 ((-630 $) $)))) (-1079)) (T -1178)) -((-1510 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1178 *3)) (-4 *3 (-1079)))) (-3045 (*1 *1 *2 *3) (-12 (-5 *3 (-630 (-1178 *2))) (-5 *1 (-1178 *2)) (-4 *2 (-1079)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-1178 *3)))) (-3045 (*1 *1 *2) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1079)))) (-3025 (*1 *1 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1079)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-630 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1079)))) (-4211 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1178 *3)) (-4 *3 (-1079)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-630 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1079))))) -(-13 (-992 |#1|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -3045 ($ |#1| (-630 $))) (-15 -3045 ($ (-630 |#1|))) (-15 -3045 ($ |#1|)) (-15 -1510 ((-111) $)) (-15 -3025 ($ $)) (-15 -2001 ((-630 $) $)) (-15 -4211 ((-111) $ $)) (-15 -3984 ((-630 $) $)))) -((-2246 (($ $) 15)) (-2268 (($ $) 12)) (-2279 (($ $) 10)) (-2257 (($ $) 17))) -(((-1179 |#1|) (-10 -8 (-15 -2257 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) (-1180)) (T -1179)) -NIL -(-10 -8 (-15 -2257 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) -((-2246 (($ $) 11)) (-2224 (($ $) 10)) (-2268 (($ $) 9)) (-2279 (($ $) 8)) (-2257 (($ $) 7)) (-2234 (($ $) 6))) -(((-1180) (-137)) (T -1180)) -((-2246 (*1 *1 *1) (-4 *1 (-1180))) (-2224 (*1 *1 *1) (-4 *1 (-1180))) (-2268 (*1 *1 *1) (-4 *1 (-1180))) (-2279 (*1 *1 *1) (-4 *1 (-1180))) (-2257 (*1 *1 *1) (-4 *1 (-1180))) (-2234 (*1 *1 *1) (-4 *1 (-1180)))) -(-13 (-10 -8 (-15 -2234 ($ $)) (-15 -2257 ($ $)) (-15 -2279 ($ $)) (-15 -2268 ($ $)) (-15 -2224 ($ $)) (-15 -2246 ($ $)))) -((-3266 ((|#2| |#2|) 88)) (-3034 (((-111) |#2|) 26)) (-3375 ((|#2| |#2|) 30)) (-3387 ((|#2| |#2|) 32)) (-1676 ((|#2| |#2| (-1155)) 83) ((|#2| |#2|) 84)) (-4069 (((-166 |#2|) |#2|) 28)) (-2299 ((|#2| |#2| (-1155)) 85) ((|#2| |#2|) 86))) -(((-1181 |#1| |#2|) (-10 -7 (-15 -1676 (|#2| |#2|)) (-15 -1676 (|#2| |#2| (-1155))) (-15 -2299 (|#2| |#2|)) (-15 -2299 (|#2| |#2| (-1155))) (-15 -3266 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3034 ((-111) |#2|)) (-15 -4069 ((-166 |#2|) |#2|))) (-13 (-445) (-833) (-1020 (-553)) (-626 (-553))) (-13 (-27) (-1177) (-424 |#1|))) (T -1181)) -((-4069 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-166 *3)) (-5 *1 (-1181 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4))))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *2 (-111)) (-5 *1 (-1181 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *4))))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) (-2299 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) (-1676 (*1 *2 *2 *3) (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3)))))) -(-10 -7 (-15 -1676 (|#2| |#2|)) (-15 -1676 (|#2| |#2| (-1155))) (-15 -2299 (|#2| |#2|)) (-15 -2299 (|#2| |#2| (-1155))) (-15 -3266 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3034 ((-111) |#2|)) (-15 -4069 ((-166 |#2|) |#2|))) -((-1455 ((|#4| |#4| |#1|) 27)) (-1620 ((|#4| |#4| |#1|) 28))) -(((-1182 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1455 (|#4| |#4| |#1|)) (-15 -1620 (|#4| |#4| |#1|))) (-545) (-367 |#1|) (-367 |#1|) (-672 |#1| |#2| |#3|)) (T -1182)) -((-1620 (*1 *2 *2 *3) (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1182 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) (-1455 (*1 *2 *2 *3) (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1182 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(-10 -7 (-15 -1455 (|#4| |#4| |#1|)) (-15 -1620 (|#4| |#4| |#1|))) -((-2306 ((|#2| |#2|) 133)) (-1918 ((|#2| |#2|) 130)) (-2294 ((|#2| |#2|) 121)) (-2788 ((|#2| |#2|) 118)) (-4085 ((|#2| |#2|) 126)) (-2022 ((|#2| |#2|) 114)) (-4276 ((|#2| |#2|) 43)) (-3887 ((|#2| |#2|) 94)) (-3733 ((|#2| |#2|) 74)) (-3738 ((|#2| |#2|) 128)) (-1969 ((|#2| |#2|) 116)) (-1948 ((|#2| |#2|) 138)) (-1538 ((|#2| |#2|) 136)) (-2926 ((|#2| |#2|) 137)) (-1322 ((|#2| |#2|) 135)) (-1696 ((|#2| |#2|) 148)) (-3881 ((|#2| |#2|) 30 (-12 (|has| |#2| (-601 (-874 |#1|))) (|has| |#2| (-868 |#1|)) (|has| |#1| (-601 (-874 |#1|))) (|has| |#1| (-868 |#1|))))) (-1422 ((|#2| |#2|) 75)) (-3152 ((|#2| |#2|) 139)) (-3873 ((|#2| |#2|) 140)) (-3837 ((|#2| |#2|) 127)) (-3877 ((|#2| |#2|) 115)) (-2579 ((|#2| |#2|) 134)) (-2987 ((|#2| |#2|) 132)) (-3818 ((|#2| |#2|) 122)) (-3693 ((|#2| |#2|) 120)) (-1328 ((|#2| |#2|) 124)) (-3463 ((|#2| |#2|) 112))) -(((-1183 |#1| |#2|) (-10 -7 (-15 -3873 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2788 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (IF (|has| |#1| (-868 |#1|)) (IF (|has| |#1| (-601 (-874 |#1|))) (IF (|has| |#2| (-601 (-874 |#1|))) (IF (|has| |#2| (-868 |#1|)) (-15 -3881 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-833) (-445)) (-13 (-424 |#1|) (-1177))) (T -1183)) -((-3881 (*1 *2 *2) (-12 (-4 *3 (-601 (-874 *3))) (-4 *3 (-868 *3)) (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-601 (-874 *3))) (-4 *2 (-868 *3)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2788 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1969 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-2579 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1422 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-4276 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-1696 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3733 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177))))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) (-4 *2 (-13 (-424 *3) (-1177)))))) -(-10 -7 (-15 -3873 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -3818 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2788 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (IF (|has| |#1| (-868 |#1|)) (IF (|has| |#1| (-601 (-874 |#1|))) (IF (|has| |#2| (-601 (-874 |#1|))) (IF (|has| |#2| (-868 |#1|)) (-15 -3881 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1592 (((-111) |#5| $) 60) (((-111) $) 102)) (-1484 ((|#5| |#5| $) 75)) (-3905 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4345 (((-630 |#5|) (-630 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-1399 (((-3 $ "failed") (-630 |#5|)) 126)) (-2616 (((-3 $ "failed") $) 112)) (-4290 ((|#5| |#5| $) 94)) (-3342 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-1345 ((|#5| |#5| $) 98)) (-2654 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-2282 (((-2 (|:| -2498 (-630 |#5|)) (|:| -2984 (-630 |#5|))) $) 55)) (-1685 (((-111) |#5| $) 58) (((-111) $) 103)) (-1470 ((|#4| $) 108)) (-2594 (((-3 |#5| "failed") $) 110)) (-2564 (((-630 |#5|) $) 49)) (-4299 (((-111) |#5| $) 67) (((-111) $) 107)) (-4080 ((|#5| |#5| $) 81)) (-1990 (((-111) $ $) 27)) (-3276 (((-111) |#5| $) 63) (((-111) $) 105)) (-3138 ((|#5| |#5| $) 78)) (-2603 (((-3 |#5| "failed") $) 109)) (-3089 (($ $ |#5|) 127)) (-3872 (((-757) $) 52)) (-3121 (($ (-630 |#5|)) 124)) (-2867 (($ $ |#4|) 122)) (-3721 (($ $ |#4|) 121)) (-2316 (($ $) 120)) (-3110 (((-845) $) NIL) (((-630 |#5|) $) 113)) (-2668 (((-757) $) 130)) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#5|))) "failed") (-630 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#5|))) "failed") (-630 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-3283 (((-111) $ (-1 (-111) |#5| (-630 |#5|))) 100)) (-3838 (((-630 |#4|) $) 115)) (-4223 (((-111) |#4| $) 118)) (-1617 (((-111) $ $) 19))) -(((-1184 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2668 ((-757) |#1|)) (-15 -3089 (|#1| |#1| |#5|)) (-15 -3905 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4223 ((-111) |#4| |#1|)) (-15 -3838 ((-630 |#4|) |#1|)) (-15 -2616 ((-3 |#1| "failed") |#1|)) (-15 -2594 ((-3 |#5| "failed") |#1|)) (-15 -2603 ((-3 |#5| "failed") |#1|)) (-15 -1345 (|#5| |#5| |#1|)) (-15 -2316 (|#1| |#1|)) (-15 -4290 (|#5| |#5| |#1|)) (-15 -4080 (|#5| |#5| |#1|)) (-15 -3138 (|#5| |#5| |#1|)) (-15 -1484 (|#5| |#5| |#1|)) (-15 -4345 ((-630 |#5|) (-630 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2654 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4299 ((-111) |#1|)) (-15 -3276 ((-111) |#1|)) (-15 -1592 ((-111) |#1|)) (-15 -3283 ((-111) |#1| (-1 (-111) |#5| (-630 |#5|)))) (-15 -4299 ((-111) |#5| |#1|)) (-15 -3276 ((-111) |#5| |#1|)) (-15 -1592 ((-111) |#5| |#1|)) (-15 -3342 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -1685 ((-111) |#1|)) (-15 -1685 ((-111) |#5| |#1|)) (-15 -2282 ((-2 (|:| -2498 (-630 |#5|)) (|:| -2984 (-630 |#5|))) |#1|)) (-15 -3872 ((-757) |#1|)) (-15 -2564 ((-630 |#5|) |#1|)) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -3343 (-630 |#5|))) "failed") (-630 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -3343 (-630 |#5|))) "failed") (-630 |#5|) (-1 (-111) |#5| |#5|))) (-15 -1990 ((-111) |#1| |#1|)) (-15 -2867 (|#1| |#1| |#4|)) (-15 -3721 (|#1| |#1| |#4|)) (-15 -1470 (|#4| |#1|)) (-15 -1399 ((-3 |#1| "failed") (-630 |#5|))) (-15 -3110 ((-630 |#5|) |#1|)) (-15 -3121 (|#1| (-630 |#5|))) (-15 -2654 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3905 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -2654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) (-1185 |#2| |#3| |#4| |#5|) (-545) (-779) (-833) (-1045 |#2| |#3| |#4|)) (T -1184)) -NIL -(-10 -8 (-15 -2668 ((-757) |#1|)) (-15 -3089 (|#1| |#1| |#5|)) (-15 -3905 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4223 ((-111) |#4| |#1|)) (-15 -3838 ((-630 |#4|) |#1|)) (-15 -2616 ((-3 |#1| "failed") |#1|)) (-15 -2594 ((-3 |#5| "failed") |#1|)) (-15 -2603 ((-3 |#5| "failed") |#1|)) (-15 -1345 (|#5| |#5| |#1|)) (-15 -2316 (|#1| |#1|)) (-15 -4290 (|#5| |#5| |#1|)) (-15 -4080 (|#5| |#5| |#1|)) (-15 -3138 (|#5| |#5| |#1|)) (-15 -1484 (|#5| |#5| |#1|)) (-15 -4345 ((-630 |#5|) (-630 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2654 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -4299 ((-111) |#1|)) (-15 -3276 ((-111) |#1|)) (-15 -1592 ((-111) |#1|)) (-15 -3283 ((-111) |#1| (-1 (-111) |#5| (-630 |#5|)))) (-15 -4299 ((-111) |#5| |#1|)) (-15 -3276 ((-111) |#5| |#1|)) (-15 -1592 ((-111) |#5| |#1|)) (-15 -3342 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -1685 ((-111) |#1|)) (-15 -1685 ((-111) |#5| |#1|)) (-15 -2282 ((-2 (|:| -2498 (-630 |#5|)) (|:| -2984 (-630 |#5|))) |#1|)) (-15 -3872 ((-757) |#1|)) (-15 -2564 ((-630 |#5|) |#1|)) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -3343 (-630 |#5|))) "failed") (-630 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -3343 (-630 |#5|))) "failed") (-630 |#5|) (-1 (-111) |#5| |#5|))) (-15 -1990 ((-111) |#1| |#1|)) (-15 -2867 (|#1| |#1| |#4|)) (-15 -3721 (|#1| |#1| |#4|)) (-15 -1470 (|#4| |#1|)) (-15 -1399 ((-3 |#1| "failed") (-630 |#5|))) (-15 -3110 ((-630 |#5|) |#1|)) (-15 -3121 (|#1| (-630 |#5|))) (-15 -2654 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3905 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -2654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3110 ((-845) |#1|)) (-15 -1617 ((-111) |#1| |#1|))) -((-3096 (((-111) $ $) 7)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) 85)) (-3247 (((-630 $) (-630 |#4|)) 86)) (-3506 (((-630 |#3|) $) 33)) (-1742 (((-111) $) 26)) (-3538 (((-111) $) 17 (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) 101) (((-111) $) 97)) (-1484 ((|#4| |#4| $) 92)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) 27)) (-1511 (((-111) $ (-757)) 44)) (-3905 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) 79)) (-3820 (($) 45 T CONST)) (-2623 (((-111) $) 22 (|has| |#1| (-545)))) (-2032 (((-111) $ $) 24 (|has| |#1| (-545)))) (-3559 (((-111) $ $) 23 (|has| |#1| (-545)))) (-1921 (((-111) $) 25 (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4063 (((-630 |#4|) (-630 |#4|) $) 18 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) 19 (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) 36)) (-2707 (($ (-630 |#4|)) 35)) (-2616 (((-3 $ "failed") $) 82)) (-4290 ((|#4| |#4| $) 89)) (-2638 (($ $) 68 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#4| $) 67 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-1345 ((|#4| |#4| $) 87)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) 105)) (-1408 (((-630 |#4|) $) 52 (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) 104) (((-111) $) 103)) (-1470 ((|#3| $) 34)) (-3703 (((-111) $ (-757)) 43)) (-2195 (((-630 |#4|) $) 53 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) 47)) (-3935 (((-630 |#3|) $) 32)) (-2351 (((-111) |#3| $) 31)) (-3786 (((-111) $ (-757)) 42)) (-1735 (((-1137) $) 9)) (-2594 (((-3 |#4| "failed") $) 83)) (-2564 (((-630 |#4|) $) 107)) (-4299 (((-111) |#4| $) 99) (((-111) $) 95)) (-4080 ((|#4| |#4| $) 90)) (-1990 (((-111) $ $) 110)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) 100) (((-111) $) 96)) (-3138 ((|#4| |#4| $) 91)) (-2786 (((-1099) $) 10)) (-2603 (((-3 |#4| "failed") $) 84)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-2761 (((-3 $ "failed") $ |#4|) 78)) (-3089 (($ $ |#4|) 77)) (-3341 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) 38)) (-3586 (((-111) $) 41)) (-3222 (($) 40)) (-3872 (((-757) $) 106)) (-2796 (((-757) |#4| $) 54 (-12 (|has| |#4| (-1079)) (|has| $ (-6 -4369)))) (((-757) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4369)))) (-1508 (($ $) 39)) (-1524 (((-529) $) 69 (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) 60)) (-2867 (($ $ |#3|) 28)) (-3721 (($ $ |#3|) 30)) (-2316 (($ $) 88)) (-1665 (($ $ |#3|) 29)) (-3110 (((-845) $) 11) (((-630 |#4|) $) 37)) (-2668 (((-757) $) 76 (|has| |#3| (-362)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) 98)) (-3296 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) 81)) (-4223 (((-111) |#3| $) 80)) (-1617 (((-111) $ $) 6)) (-2563 (((-757) $) 46 (|has| $ (-6 -4369))))) -(((-1185 |#1| |#2| |#3| |#4|) (-137) (-545) (-779) (-833) (-1045 |t#1| |t#2| |t#3|)) (T -1185)) -((-1990 (*1 *2 *1 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3343 (-630 *8)))) (-5 *3 (-630 *8)) (-4 *1 (-1185 *5 *6 *7 *8)))) (-2895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1045 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-779)) (-4 *8 (-833)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3343 (-630 *9)))) (-5 *3 (-630 *9)) (-4 *1 (-1185 *6 *7 *8 *9)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *6)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-757)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-2 (|:| -2498 (-630 *6)) (|:| -2984 (-630 *6)))))) (-1685 (*1 *2 *3 *1) (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-3342 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1185 *5 *6 *7 *3)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-111)))) (-1592 (*1 *2 *3 *1) (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-3276 (*1 *2 *3 *1) (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-4299 (*1 *2 *3 *1) (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-3283 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-630 *7))) (-4 *1 (-1185 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) (-2654 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1185 *5 *6 *7 *2)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *2 (-1045 *5 *6 *7)))) (-4345 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-630 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1185 *5 *6 *7 *8)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)))) (-1484 (*1 *2 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-3138 (*1 *2 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-4080 (*1 *2 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-4290 (*1 *2 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-2316 (*1 *1 *1) (-12 (-4 *1 (-1185 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-1045 *2 *3 *4)))) (-1345 (*1 *2 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) (-4 *1 (-1185 *4 *5 *6 *7)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-630 (-2 (|:| -2498 *1) (|:| -2984 (-630 *7))))) (-5 *3 (-630 *7)) (-4 *1 (-1185 *4 *5 *6 *7)))) (-2603 (*1 *2 *1) (|partial| -12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-2594 (*1 *2 *1) (|partial| -12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-2616 (*1 *1 *1) (|partial| -12 (-4 *1 (-1185 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-1045 *2 *3 *4)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *5)))) (-4223 (*1 *2 *3 *1) (-12 (-4 *1 (-1185 *4 *5 *3 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *3 (-833)) (-4 *6 (-1045 *4 *5 *3)) (-5 *2 (-111)))) (-3905 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1185 *4 *5 *3 *2)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *3 (-833)) (-4 *2 (-1045 *4 *5 *3)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-3089 (*1 *1 *1 *2) (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *5 (-362)) (-5 *2 (-757))))) -(-13 (-958 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4369) (-6 -4370) (-15 -1990 ((-111) $ $)) (-15 -2895 ((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |t#4|))) "failed") (-630 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2895 ((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |t#4|))) "failed") (-630 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2564 ((-630 |t#4|) $)) (-15 -3872 ((-757) $)) (-15 -2282 ((-2 (|:| -2498 (-630 |t#4|)) (|:| -2984 (-630 |t#4|))) $)) (-15 -1685 ((-111) |t#4| $)) (-15 -1685 ((-111) $)) (-15 -3342 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -1592 ((-111) |t#4| $)) (-15 -3276 ((-111) |t#4| $)) (-15 -4299 ((-111) |t#4| $)) (-15 -3283 ((-111) $ (-1 (-111) |t#4| (-630 |t#4|)))) (-15 -1592 ((-111) $)) (-15 -3276 ((-111) $)) (-15 -4299 ((-111) $)) (-15 -2654 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4345 ((-630 |t#4|) (-630 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -1484 (|t#4| |t#4| $)) (-15 -3138 (|t#4| |t#4| $)) (-15 -4080 (|t#4| |t#4| $)) (-15 -4290 (|t#4| |t#4| $)) (-15 -2316 ($ $)) (-15 -1345 (|t#4| |t#4| $)) (-15 -3247 ((-630 $) (-630 |t#4|))) (-15 -3508 ((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |t#4|)))) (-630 |t#4|))) (-15 -2603 ((-3 |t#4| "failed") $)) (-15 -2594 ((-3 |t#4| "failed") $)) (-15 -2616 ((-3 $ "failed") $)) (-15 -3838 ((-630 |t#3|) $)) (-15 -4223 ((-111) |t#3| $)) (-15 -3905 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2761 ((-3 $ "failed") $ |t#4|)) (-15 -3089 ($ $ |t#4|)) (IF (|has| |t#3| (-362)) (-15 -2668 ((-757) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-600 (-630 |#4|)) . T) ((-600 (-845)) . T) ((-148 |#4|) . T) ((-601 (-529)) |has| |#4| (-601 (-529))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-482 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))) ((-958 |#1| |#2| |#3| |#4|) . T) ((-1079) . T) ((-1192) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1155)) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-4219 (((-934 |#1|) $ (-757)) 17) (((-934 |#1|) $ (-757) (-757)) NIL)) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-757) $ (-1155)) NIL) (((-757) $ (-1155) (-757)) NIL)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1298 (((-111) $) NIL)) (-3481 (($ $ (-630 (-1155)) (-630 (-524 (-1155)))) NIL) (($ $ (-1155) (-524 (-1155))) NIL) (($ |#1| (-524 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-3406 (($ $ (-1155)) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155) |#1|) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-1279 (($ (-1 $) (-1155) |#1|) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3089 (($ $ (-757)) NIL)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2356 (($ $ (-1155) $) NIL) (($ $ (-630 (-1155)) (-630 $)) NIL) (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL)) (-1330 (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-3872 (((-524 (-1155)) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-545))) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-1155)) NIL) (($ (-934 |#1|)) NIL)) (-1624 ((|#1| $ (-524 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (((-934 |#1|) $ (-757)) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) NIL T CONST)) (-1997 (($) NIL T CONST)) (-1780 (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1186 |#1|) (-13 (-726 |#1| (-1155)) (-10 -8 (-15 -1624 ((-934 |#1|) $ (-757))) (-15 -3110 ($ (-1155))) (-15 -3110 ($ (-934 |#1|))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $ (-1155) |#1|)) (-15 -1279 ($ (-1 $) (-1155) |#1|))) |%noBranch|))) (-1031)) (T -1186)) -((-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *2 (-934 *4)) (-5 *1 (-1186 *4)) (-4 *4 (-1031)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1186 *3)) (-4 *3 (-1031)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1031)) (-5 *1 (-1186 *3)))) (-3406 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *1 (-1186 *3)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1186 *4))) (-5 *3 (-1155)) (-5 *1 (-1186 *4)) (-4 *4 (-38 (-401 (-553)))) (-4 *4 (-1031))))) -(-13 (-726 |#1| (-1155)) (-10 -8 (-15 -1624 ((-934 |#1|) $ (-757))) (-15 -3110 ($ (-1155))) (-15 -3110 ($ (-934 |#1|))) (IF (|has| |#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $ (-1155) |#1|)) (-15 -1279 ($ (-1 $) (-1155) |#1|))) |%noBranch|))) -((-2912 (($ |#1| (-630 (-630 (-925 (-220)))) (-111)) 19)) (-3590 (((-111) $ (-111)) 18)) (-1963 (((-111) $) 17)) (-2215 (((-630 (-630 (-925 (-220)))) $) 13)) (-1924 ((|#1| $) 8)) (-1518 (((-111) $) 15))) -(((-1187 |#1|) (-10 -8 (-15 -1924 (|#1| $)) (-15 -2215 ((-630 (-630 (-925 (-220)))) $)) (-15 -1518 ((-111) $)) (-15 -1963 ((-111) $)) (-15 -3590 ((-111) $ (-111))) (-15 -2912 ($ |#1| (-630 (-630 (-925 (-220)))) (-111)))) (-956)) (T -1187)) -((-2912 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-111)) (-5 *1 (-1187 *2)) (-4 *2 (-956)))) (-3590 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1187 *3)) (-4 *3 (-956)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1187 *3)) (-4 *3 (-956)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1187 *3)) (-4 *3 (-956)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-1187 *3)) (-4 *3 (-956)))) (-1924 (*1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-956))))) -(-10 -8 (-15 -1924 (|#1| $)) (-15 -2215 ((-630 (-630 (-925 (-220)))) $)) (-15 -1518 ((-111) $)) (-15 -1963 ((-111) $)) (-15 -3590 ((-111) $ (-111))) (-15 -2912 ($ |#1| (-630 (-630 (-925 (-220)))) (-111)))) -((-1561 (((-925 (-220)) (-925 (-220))) 25)) (-1743 (((-925 (-220)) (-220) (-220) (-220) (-220)) 10)) (-2395 (((-630 (-925 (-220))) (-925 (-220)) (-925 (-220)) (-925 (-220)) (-220) (-630 (-630 (-220)))) 37)) (-1449 (((-220) (-925 (-220)) (-925 (-220))) 21)) (-2533 (((-925 (-220)) (-925 (-220)) (-925 (-220))) 22)) (-2619 (((-630 (-630 (-220))) (-553)) 31)) (-1711 (((-925 (-220)) (-925 (-220)) (-925 (-220))) 20)) (-1700 (((-925 (-220)) (-925 (-220)) (-925 (-220))) 19)) (* (((-925 (-220)) (-220) (-925 (-220))) 18))) -(((-1188) (-10 -7 (-15 -1743 ((-925 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-925 (-220)) (-220) (-925 (-220)))) (-15 -1700 ((-925 (-220)) (-925 (-220)) (-925 (-220)))) (-15 -1711 ((-925 (-220)) (-925 (-220)) (-925 (-220)))) (-15 -1449 ((-220) (-925 (-220)) (-925 (-220)))) (-15 -2533 ((-925 (-220)) (-925 (-220)) (-925 (-220)))) (-15 -1561 ((-925 (-220)) (-925 (-220)))) (-15 -2619 ((-630 (-630 (-220))) (-553))) (-15 -2395 ((-630 (-925 (-220))) (-925 (-220)) (-925 (-220)) (-925 (-220)) (-220) (-630 (-630 (-220))))))) (T -1188)) -((-2395 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-630 (-630 (-220)))) (-5 *4 (-220)) (-5 *2 (-630 (-925 *4))) (-5 *1 (-1188)) (-5 *3 (-925 *4)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-553)) (-5 *2 (-630 (-630 (-220)))) (-5 *1 (-1188)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) (-2533 (*1 *2 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) (-1449 (*1 *2 *3 *3) (-12 (-5 *3 (-925 (-220))) (-5 *2 (-220)) (-5 *1 (-1188)))) (-1711 (*1 *2 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) (-1700 (*1 *2 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-925 (-220))) (-5 *3 (-220)) (-5 *1 (-1188)))) (-1743 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)) (-5 *3 (-220))))) -(-10 -7 (-15 -1743 ((-925 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-925 (-220)) (-220) (-925 (-220)))) (-15 -1700 ((-925 (-220)) (-925 (-220)) (-925 (-220)))) (-15 -1711 ((-925 (-220)) (-925 (-220)) (-925 (-220)))) (-15 -1449 ((-220) (-925 (-220)) (-925 (-220)))) (-15 -2533 ((-925 (-220)) (-925 (-220)) (-925 (-220)))) (-15 -1561 ((-925 (-220)) (-925 (-220)))) (-15 -2619 ((-630 (-630 (-220))) (-553))) (-15 -2395 ((-630 (-925 (-220))) (-925 (-220)) (-925 (-220)) (-925 (-220)) (-220) (-630 (-630 (-220)))))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-3905 ((|#1| $ (-757)) 13)) (-1899 (((-757) $) 12)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3110 (((-940 |#1|) $) 10) (($ (-940 |#1|)) 9) (((-845) $) 23 (|has| |#1| (-600 (-845))))) (-1617 (((-111) $ $) 16 (|has| |#1| (-1079))))) -(((-1189 |#1|) (-13 (-483 (-940 |#1|)) (-10 -8 (-15 -3905 (|#1| $ (-757))) (-15 -1899 ((-757) $)) (IF (|has| |#1| (-600 (-845))) (-6 (-600 (-845))) |%noBranch|) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|))) (-1192)) (T -1189)) -((-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-1189 *2)) (-4 *2 (-1192)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1189 *3)) (-4 *3 (-1192))))) -(-13 (-483 (-940 |#1|)) (-10 -8 (-15 -3905 (|#1| $ (-757))) (-15 -1899 ((-757) $)) (IF (|has| |#1| (-600 (-845))) (-6 (-600 (-845))) |%noBranch|) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|))) -((-2834 (((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)) (-553)) 80)) (-3670 (((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|))) 74)) (-1640 (((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|))) 59))) -(((-1190 |#1|) (-10 -7 (-15 -3670 ((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)))) (-15 -1640 ((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)))) (-15 -2834 ((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)) (-553)))) (-343)) (T -1190)) -((-2834 (*1 *2 *3 *4) (-12 (-5 *4 (-553)) (-4 *5 (-343)) (-5 *2 (-412 (-1151 (-1151 *5)))) (-5 *1 (-1190 *5)) (-5 *3 (-1151 (-1151 *5))))) (-1640 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1151 (-1151 *4)))) (-5 *1 (-1190 *4)) (-5 *3 (-1151 (-1151 *4))))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1151 (-1151 *4)))) (-5 *1 (-1190 *4)) (-5 *3 (-1151 (-1151 *4)))))) -(-10 -7 (-15 -3670 ((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)))) (-15 -1640 ((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)))) (-15 -2834 ((-412 (-1151 (-1151 |#1|))) (-1151 (-1151 |#1|)) (-553)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 9) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1191) (-1062)) (T -1191)) -NIL -(-1062) -NIL -(((-1192) (-137)) (T -1192)) -NIL -(-13 (-10 -7 (-6 -4289))) -((-1413 (((-111)) 15)) (-2740 (((-1243) (-630 |#1|) (-630 |#1|)) 19) (((-1243) (-630 |#1|)) 20)) (-3703 (((-111) |#1| |#1|) 32 (|has| |#1| (-833)))) (-3786 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-2103 ((|#1| (-630 |#1|)) 33 (|has| |#1| (-833))) ((|#1| (-630 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-3374 (((-2 (|:| -3162 (-630 |#1|)) (|:| -3640 (-630 |#1|)))) 17))) -(((-1193 |#1|) (-10 -7 (-15 -2740 ((-1243) (-630 |#1|))) (-15 -2740 ((-1243) (-630 |#1|) (-630 |#1|))) (-15 -3374 ((-2 (|:| -3162 (-630 |#1|)) (|:| -3640 (-630 |#1|))))) (-15 -3786 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3786 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -2103 (|#1| (-630 |#1|) (-1 (-111) |#1| |#1|))) (-15 -1413 ((-111))) (IF (|has| |#1| (-833)) (PROGN (-15 -2103 (|#1| (-630 |#1|))) (-15 -3703 ((-111) |#1| |#1|))) |%noBranch|)) (-1079)) (T -1193)) -((-3703 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1193 *3)) (-4 *3 (-833)) (-4 *3 (-1079)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-833)) (-5 *1 (-1193 *2)))) (-1413 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1193 *3)) (-4 *3 (-1079)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1193 *2)) (-4 *2 (-1079)))) (-3786 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1079)) (-5 *2 (-111)) (-5 *1 (-1193 *3)))) (-3786 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1193 *3)) (-4 *3 (-1079)))) (-3374 (*1 *2) (-12 (-5 *2 (-2 (|:| -3162 (-630 *3)) (|:| -3640 (-630 *3)))) (-5 *1 (-1193 *3)) (-4 *3 (-1079)))) (-2740 (*1 *2 *3 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-1079)) (-5 *2 (-1243)) (-5 *1 (-1193 *4)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-1079)) (-5 *2 (-1243)) (-5 *1 (-1193 *4))))) -(-10 -7 (-15 -2740 ((-1243) (-630 |#1|))) (-15 -2740 ((-1243) (-630 |#1|) (-630 |#1|))) (-15 -3374 ((-2 (|:| -3162 (-630 |#1|)) (|:| -3640 (-630 |#1|))))) (-15 -3786 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3786 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -2103 (|#1| (-630 |#1|) (-1 (-111) |#1| |#1|))) (-15 -1413 ((-111))) (IF (|has| |#1| (-833)) (PROGN (-15 -2103 (|#1| (-630 |#1|))) (-15 -3703 ((-111) |#1| |#1|))) |%noBranch|)) -((-3298 (((-1243) (-630 (-1155)) (-630 (-1155))) 13) (((-1243) (-630 (-1155))) 11)) (-2848 (((-1243)) 14)) (-3855 (((-2 (|:| -3640 (-630 (-1155))) (|:| -3162 (-630 (-1155))))) 18))) -(((-1194) (-10 -7 (-15 -3298 ((-1243) (-630 (-1155)))) (-15 -3298 ((-1243) (-630 (-1155)) (-630 (-1155)))) (-15 -3855 ((-2 (|:| -3640 (-630 (-1155))) (|:| -3162 (-630 (-1155)))))) (-15 -2848 ((-1243))))) (T -1194)) -((-2848 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1194)))) (-3855 (*1 *2) (-12 (-5 *2 (-2 (|:| -3640 (-630 (-1155))) (|:| -3162 (-630 (-1155))))) (-5 *1 (-1194)))) (-3298 (*1 *2 *3 *3) (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1243)) (-5 *1 (-1194)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1243)) (-5 *1 (-1194))))) -(-10 -7 (-15 -3298 ((-1243) (-630 (-1155)))) (-15 -3298 ((-1243) (-630 (-1155)) (-630 (-1155)))) (-15 -3855 ((-2 (|:| -3640 (-630 (-1155))) (|:| -3162 (-630 (-1155)))))) (-15 -2848 ((-1243)))) -((-1536 (($ $) 17)) (-3119 (((-111) $) 24))) -(((-1195 |#1|) (-10 -8 (-15 -1536 (|#1| |#1|)) (-15 -3119 ((-111) |#1|))) (-1196)) (T -1195)) -NIL -(-10 -8 (-15 -1536 (|#1| |#1|)) (-15 -3119 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 52)) (-2708 (((-412 $) $) 53)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-3119 (((-111) $) 54)) (-1848 (((-111) $) 31)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3355 (((-412 $) $) 51)) (-3929 (((-3 $ "failed") $ $) 43)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44)) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24))) -(((-1196) (-137)) (T -1196)) -((-3119 (*1 *2 *1) (-12 (-4 *1 (-1196)) (-5 *2 (-111)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1196)))) (-1536 (*1 *1 *1) (-4 *1 (-1196))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1196))))) -(-13 (-445) (-10 -8 (-15 -3119 ((-111) $)) (-15 -2708 ((-412 $) $)) (-15 -1536 ($ $)) (-15 -3355 ((-412 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-545) . T) ((-633 $) . T) ((-703 $) . T) ((-712) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1482 (((-1202 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1202 |#1| |#3| |#5|)) 23))) -(((-1197 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1482 ((-1202 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1202 |#1| |#3| |#5|)))) (-1031) (-1031) (-1155) (-1155) |#1| |#2|) (T -1197)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5 *7 *9)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-14 *7 (-1155)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1202 *6 *8 *10)) (-5 *1 (-1197 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1155))))) -(-10 -7 (-15 -1482 ((-1202 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1202 |#1| |#3| |#5|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 (-1061)) $) 77)) (-1509 (((-1155) $) 106)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-1728 (($ $ (-553)) 101) (($ $ (-553) (-553)) 100)) (-2140 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) 108)) (-2380 (($ $) 138 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 165 (|has| |#1| (-357)))) (-2708 (((-412 $) $) 166 (|has| |#1| (-357)))) (-3365 (($ $) 120 (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) 156 (|has| |#1| (-357)))) (-2357 (($ $) 137 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 122 (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) 176)) (-2403 (($ $) 136 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) 17 T CONST)) (-3973 (($ $ $) 160 (|has| |#1| (-357)))) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-3539 (((-401 (-934 |#1|)) $ (-553)) 174 (|has| |#1| (-545))) (((-401 (-934 |#1|)) $ (-553) (-553)) 173 (|has| |#1| (-545)))) (-3952 (($ $ $) 159 (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 154 (|has| |#1| (-357)))) (-3119 (((-111) $) 167 (|has| |#1| (-357)))) (-4008 (((-111) $) 76)) (-3996 (($) 148 (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-553) $) 103) (((-553) $ (-553)) 102)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) 104)) (-2341 (($ (-1 |#1| (-553)) $) 175)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 163 (|has| |#1| (-357)))) (-1298 (((-111) $) 65)) (-3481 (($ |#1| (-553)) 64) (($ $ (-1061) (-553)) 79) (($ $ (-630 (-1061)) (-630 (-553))) 78)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-2366 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-2471 (($ (-630 $)) 152 (|has| |#1| (-357))) (($ $ $) 151 (|has| |#1| (-357)))) (-1735 (((-1137) $) 9)) (-3610 (($ $) 168 (|has| |#1| (-357)))) (-3406 (($ $) 172 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 171 (-3988 (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-941)) (|has| |#1| (-1177)) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-38 (-401 (-553)))))))) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 153 (|has| |#1| (-357)))) (-2508 (($ (-630 $)) 150 (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357)))) (-3355 (((-412 $) $) 164 (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 161 (|has| |#1| (-357)))) (-3089 (($ $ (-553)) 98)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 155 (|has| |#1| (-357)))) (-2743 (($ $) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-553)))))) (-3384 (((-757) $) 157 (|has| |#1| (-357)))) (-2046 ((|#1| $ (-553)) 107) (($ $ $) 84 (|has| (-553) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 158 (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) 92 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-1155) (-757)) 91 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155))) 90 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-1155)) 89 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-757)) 87 (|has| |#1| (-15 * (|#1| (-553) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (-3872 (((-553) $) 67)) (-2414 (($ $) 135 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 124 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 134 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 126 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 50 (|has| |#1| (-169))) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545)))) (-1624 ((|#1| $ (-553)) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-4010 ((|#1| $) 105)) (-2447 (($ $) 144 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 132 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-2425 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 142 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 130 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-553)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-553)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 129 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 140 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 128 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 139 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 127 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) 96 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-1155) (-757)) 95 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155))) 94 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-1155)) 93 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-757)) 88 (|has| |#1| (-15 * (|#1| (-553) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357))) (($ $ $) 170 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 169 (|has| |#1| (-357))) (($ $ $) 147 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 118 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-1198 |#1|) (-137) (-1031)) (T -1198)) -((-1779 (*1 *1 *2) (-12 (-5 *2 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *3)))) (-4 *3 (-1031)) (-4 *1 (-1198 *3)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-553))) (-4 *1 (-1198 *3)) (-4 *3 (-1031)))) (-3539 (*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-1198 *4)) (-4 *4 (-1031)) (-4 *4 (-545)) (-5 *2 (-401 (-934 *4))))) (-3539 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-4 *1 (-1198 *4)) (-4 *4 (-1031)) (-4 *4 (-545)) (-5 *2 (-401 (-934 *4))))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) (-3406 (*1 *1 *1 *2) (-3988 (-12 (-5 *2 (-1155)) (-4 *1 (-1198 *3)) (-4 *3 (-1031)) (-12 (-4 *3 (-29 (-553))) (-4 *3 (-941)) (-4 *3 (-1177)) (-4 *3 (-38 (-401 (-553)))))) (-12 (-5 *2 (-1155)) (-4 *1 (-1198 *3)) (-4 *3 (-1031)) (-12 (|has| *3 (-15 -3506 ((-630 *2) *3))) (|has| *3 (-15 -3406 (*3 *3 *2))) (-4 *3 (-38 (-401 (-553))))))))) -(-13 (-1216 |t#1| (-553)) (-10 -8 (-15 -1779 ($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |t#1|))))) (-15 -2341 ($ (-1 |t#1| (-553)) $)) (IF (|has| |t#1| (-545)) (PROGN (-15 -3539 ((-401 (-934 |t#1|)) $ (-553))) (-15 -3539 ((-401 (-934 |t#1|)) $ (-553) (-553)))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $)) (IF (|has| |t#1| (-15 -3406 (|t#1| |t#1| (-1155)))) (IF (|has| |t#1| (-15 -3506 ((-630 (-1155)) |t#1|))) (-15 -3406 ($ $ (-1155))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1177)) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-29 (-553))) (-15 -3406 ($ $ (-1155))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-984)) (-6 (-1177))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-553)) . T) ((-25) . T) ((-38 #1=(-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-553)))) ((-94) |has| |#1| (-38 (-401 (-553)))) ((-101) . T) ((-110 #1# #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-553) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-553)))) ((-280 $ $) |has| (-553) (-1091)) ((-284) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-486) |has| |#1| (-38 (-401 (-553)))) ((-545) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-633 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-712) . T) ((-882 (-1155)) -12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))) ((-955 |#1| #0# (-1061)) . T) ((-902) |has| |#1| (-357)) ((-984) |has| |#1| (-38 (-401 (-553)))) ((-1037 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1177) |has| |#1| (-38 (-401 (-553)))) ((-1180) |has| |#1| (-38 (-401 (-553)))) ((-1196) |has| |#1| (-357)) ((-1216 |#1| #0#) . T)) -((-3769 (((-111) $) 12)) (-1399 (((-3 |#3| "failed") $) 17) (((-3 (-1155) "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 (-553) "failed") $) NIL)) (-2707 ((|#3| $) 14) (((-1155) $) NIL) (((-401 (-553)) $) NIL) (((-553) $) NIL))) -(((-1199 |#1| |#2| |#3|) (-10 -8 (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-1155) "failed") |#1|)) (-15 -2707 ((-1155) |#1|)) (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -3769 ((-111) |#1|))) (-1200 |#2| |#3|) (-1031) (-1229 |#2|)) (T -1199)) -NIL -(-10 -8 (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -1399 ((-3 (-1155) "failed") |#1|)) (-15 -2707 ((-1155) |#1|)) (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -3769 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2751 ((|#2| $) 231 (-3726 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-3506 (((-630 (-1061)) $) 77)) (-1509 (((-1155) $) 106)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-1728 (($ $ (-553)) 101) (($ $ (-553) (-553)) 100)) (-2140 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) 108)) (-1993 ((|#2| $) 267)) (-1388 (((-3 |#2| "failed") $) 263)) (-3562 ((|#2| $) 264)) (-2380 (($ $) 138 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) 19)) (-1393 (((-412 (-1151 $)) (-1151 $)) 240 (-3726 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-1536 (($ $) 165 (|has| |#1| (-357)))) (-2708 (((-412 $) $) 166 (|has| |#1| (-357)))) (-3365 (($ $) 120 (|has| |#1| (-38 (-401 (-553)))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 237 (-3726 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-4349 (((-111) $ $) 156 (|has| |#1| (-357)))) (-2357 (($ $) 137 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 122 (|has| |#1| (-38 (-401 (-553)))))) (-2125 (((-553) $) 249 (-3726 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-1779 (($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) 176)) (-2403 (($ $) 136 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#2| "failed") $) 270) (((-3 (-553) "failed") $) 260 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-3 (-401 (-553)) "failed") $) 258 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-3 (-1155) "failed") $) 242 (-3726 (|has| |#2| (-1020 (-1155))) (|has| |#1| (-357))))) (-2707 ((|#2| $) 271) (((-553) $) 259 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-401 (-553)) $) 257 (-3726 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-1155) $) 241 (-3726 (|has| |#2| (-1020 (-1155))) (|has| |#1| (-357))))) (-4106 (($ $) 266) (($ (-553) $) 265)) (-3973 (($ $ $) 160 (|has| |#1| (-357)))) (-3678 (($ $) 63)) (-2077 (((-674 |#2|) (-674 $)) 221 (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) 220 (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 219 (-3726 (|has| |#2| (-626 (-553))) (|has| |#1| (-357)))) (((-674 (-553)) (-674 $)) 218 (-3726 (|has| |#2| (-626 (-553))) (|has| |#1| (-357))))) (-2982 (((-3 $ "failed") $) 33)) (-3539 (((-401 (-934 |#1|)) $ (-553)) 174 (|has| |#1| (-545))) (((-401 (-934 |#1|)) $ (-553) (-553)) 173 (|has| |#1| (-545)))) (-3031 (($) 233 (-3726 (|has| |#2| (-538)) (|has| |#1| (-357))))) (-3952 (($ $ $) 159 (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 154 (|has| |#1| (-357)))) (-3119 (((-111) $) 167 (|has| |#1| (-357)))) (-4270 (((-111) $) 247 (-3726 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-4008 (((-111) $) 76)) (-3996 (($) 148 (|has| |#1| (-38 (-401 (-553)))))) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 225 (-3726 (|has| |#2| (-868 (-373))) (|has| |#1| (-357)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 224 (-3726 (|has| |#2| (-868 (-553))) (|has| |#1| (-357))))) (-2968 (((-553) $) 103) (((-553) $ (-553)) 102)) (-1848 (((-111) $) 31)) (-2181 (($ $) 229 (|has| |#1| (-357)))) (-3963 ((|#2| $) 227 (|has| |#1| (-357)))) (-2406 (($ $ (-553)) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2502 (((-3 $ "failed") $) 261 (-3726 (|has| |#2| (-1130)) (|has| |#1| (-357))))) (-2797 (((-111) $) 248 (-3726 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-2166 (($ $ (-903)) 104)) (-2341 (($ (-1 |#1| (-553)) $) 175)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 163 (|has| |#1| (-357)))) (-1298 (((-111) $) 65)) (-3481 (($ |#1| (-553)) 64) (($ $ (-1061) (-553)) 79) (($ $ (-630 (-1061)) (-630 (-553))) 78)) (-1824 (($ $ $) 251 (-3726 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1975 (($ $ $) 252 (-3726 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1482 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-357)))) (-2366 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-2471 (($ (-630 $)) 152 (|has| |#1| (-357))) (($ $ $) 151 (|has| |#1| (-357)))) (-3575 (($ (-553) |#2|) 268)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 168 (|has| |#1| (-357)))) (-3406 (($ $) 172 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 171 (-3988 (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-941)) (|has| |#1| (-1177)) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-38 (-401 (-553)))))))) (-1945 (($) 262 (-3726 (|has| |#2| (-1130)) (|has| |#1| (-357))) CONST)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 153 (|has| |#1| (-357)))) (-2508 (($ (-630 $)) 150 (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357)))) (-3785 (($ $) 232 (-3726 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-2334 ((|#2| $) 235 (-3726 (|has| |#2| (-538)) (|has| |#1| (-357))))) (-2979 (((-412 (-1151 $)) (-1151 $)) 238 (-3726 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-1834 (((-412 (-1151 $)) (-1151 $)) 239 (-3726 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-3355 (((-412 $) $) 164 (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 161 (|has| |#1| (-357)))) (-3089 (($ $ (-553)) 98)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 155 (|has| |#1| (-357)))) (-2743 (($ $) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-553))))) (($ $ (-1155) |#2|) 212 (-3726 (|has| |#2| (-507 (-1155) |#2|)) (|has| |#1| (-357)))) (($ $ (-630 (-1155)) (-630 |#2|)) 211 (-3726 (|has| |#2| (-507 (-1155) |#2|)) (|has| |#1| (-357)))) (($ $ (-630 (-288 |#2|))) 210 (-3726 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) 209 (-3726 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) 208 (-3726 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-630 |#2|) (-630 |#2|)) 207 (-3726 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-3384 (((-757) $) 157 (|has| |#1| (-357)))) (-2046 ((|#1| $ (-553)) 107) (($ $ $) 84 (|has| (-553) (-1091))) (($ $ |#2|) 206 (-3726 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 158 (|has| |#1| (-357)))) (-1330 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-757)) 216 (|has| |#1| (-357))) (($ $ (-757)) 87 (-3988 (-3726 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) 85 (-3988 (-3726 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) 92 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))))) (($ $ (-1155) (-757)) 91 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))))) (($ $ (-630 (-1155))) 90 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))))) (($ $ (-1155)) 89 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))))) (-3161 (($ $) 230 (|has| |#1| (-357)))) (-3974 ((|#2| $) 228 (|has| |#1| (-357)))) (-3872 (((-553) $) 67)) (-2414 (($ $) 135 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 124 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 134 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 126 (|has| |#1| (-38 (-401 (-553)))))) (-1524 (((-220) $) 246 (-3726 (|has| |#2| (-1004)) (|has| |#1| (-357)))) (((-373) $) 245 (-3726 (|has| |#2| (-1004)) (|has| |#1| (-357)))) (((-529) $) 244 (-3726 (|has| |#2| (-601 (-529))) (|has| |#1| (-357)))) (((-874 (-373)) $) 223 (-3726 (|has| |#2| (-601 (-874 (-373)))) (|has| |#1| (-357)))) (((-874 (-553)) $) 222 (-3726 (|has| |#2| (-601 (-874 (-553)))) (|has| |#1| (-357))))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 236 (-3726 (-3726 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#1| (-357))))) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 50 (|has| |#1| (-169))) (($ |#2|) 269) (($ (-1155)) 243 (-3726 (|has| |#2| (-1020 (-1155))) (|has| |#1| (-357)))) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545)))) (-1624 ((|#1| $ (-553)) 62)) (-2941 (((-3 $ "failed") $) 51 (-3988 (-3726 (-3988 (|has| |#2| (-142)) (-3726 (|has| $ (-142)) (|has| |#2| (-891)))) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-1999 (((-757)) 28)) (-4010 ((|#1| $) 105)) (-2582 ((|#2| $) 234 (-3726 (|has| |#2| (-538)) (|has| |#1| (-357))))) (-2447 (($ $) 144 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 132 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-2425 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 142 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 130 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-553)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-553)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 129 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 140 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 128 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 139 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 127 (|has| |#1| (-38 (-401 (-553)))))) (-3466 (($ $) 250 (-3726 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-757)) 214 (|has| |#1| (-357))) (($ $ (-757)) 88 (-3988 (-3726 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) 86 (-3988 (-3726 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) 96 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))))) (($ $ (-1155) (-757)) 95 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))))) (($ $ (-630 (-1155))) 94 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))))) (($ $ (-1155)) 93 (-3988 (-3726 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))))) (-1669 (((-111) $ $) 254 (-3726 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1648 (((-111) $ $) 255 (-3726 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 253 (-3726 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1636 (((-111) $ $) 256 (-3726 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357))) (($ $ $) 170 (|has| |#1| (-357))) (($ |#2| |#2|) 226 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 169 (|has| |#1| (-357))) (($ $ $) 147 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 118 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-357))) (($ |#2| $) 204 (|has| |#1| (-357))) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-1200 |#1| |#2|) (-137) (-1031) (-1229 |t#1|)) (T -1200)) -((-3872 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1229 *3)) (-5 *2 (-553)))) (-3575 (*1 *1 *2 *3) (-12 (-5 *2 (-553)) (-4 *4 (-1031)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-1229 *4)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1229 *3)))) (-4106 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-1229 *2)))) (-4106 (*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1229 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1229 *3)))) (-1388 (*1 *2 *1) (|partial| -12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1229 *3))))) -(-13 (-1198 |t#1|) (-1020 |t#2|) (-603 |t#2|) (-10 -8 (-15 -3575 ($ (-553) |t#2|)) (-15 -3872 ((-553) $)) (-15 -1993 (|t#2| $)) (-15 -4106 ($ $)) (-15 -4106 ($ (-553) $)) (-15 -3562 (|t#2| $)) (-15 -1388 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-357)) (-6 (-974 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-553)) . T) ((-25) . T) ((-38 #1=(-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-357)) ((-38 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-553)))) ((-94) |has| |#1| (-38 (-401 (-553)))) ((-101) . T) ((-110 #1# #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-357)) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) -3988 (-12 (|has| |#1| (-357)) (|has| |#2| (-142))) (|has| |#1| (-142))) ((-144) -3988 (-12 (|has| |#1| (-357)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-603 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 #2=(-1155)) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-1155)))) ((-603 |#1|) |has| |#1| (-169)) ((-603 |#2|) . T) ((-603 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-601 (-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1004))) ((-601 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1004))) ((-601 (-529)) -12 (|has| |#1| (-357)) (|has| |#2| (-601 (-529)))) ((-601 (-874 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-601 (-874 (-373))))) ((-601 (-874 (-553))) -12 (|has| |#1| (-357)) (|has| |#2| (-601 (-874 (-553))))) ((-226 |#2|) |has| |#1| (-357)) ((-228) -3988 (-12 (|has| |#1| (-357)) (|has| |#2| (-228))) (|has| |#1| (-15 * (|#1| (-553) |#1|)))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-553)))) ((-280 |#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) ((-280 $ $) |has| (-553) (-1091)) ((-284) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-357) |has| |#1| (-357)) ((-332 |#2|) |has| |#1| (-357)) ((-371 |#2|) |has| |#1| (-357)) ((-394 |#2|) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-486) |has| |#1| (-38 (-401 (-553)))) ((-507 (-1155) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-507 (-1155) |#2|))) ((-507 |#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-545) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-633 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-633 |#1|) . T) ((-633 |#2|) |has| |#1| (-357)) ((-633 $) . T) ((-626 (-553)) -12 (|has| |#1| (-357)) (|has| |#2| (-626 (-553)))) ((-626 |#2|) |has| |#1| (-357)) ((-703 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-703 |#1|) |has| |#1| (-169)) ((-703 |#2|) |has| |#1| (-357)) ((-703 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-712) . T) ((-777) -12 (|has| |#1| (-357)) (|has| |#2| (-806))) ((-778) -12 (|has| |#1| (-357)) (|has| |#2| (-806))) ((-780) -12 (|has| |#1| (-357)) (|has| |#2| (-806))) ((-781) -12 (|has| |#1| (-357)) (|has| |#2| (-806))) ((-806) -12 (|has| |#1| (-357)) (|has| |#2| (-806))) ((-831) -12 (|has| |#1| (-357)) (|has| |#2| (-806))) ((-833) -3988 (-12 (|has| |#1| (-357)) (|has| |#2| (-833))) (-12 (|has| |#1| (-357)) (|has| |#2| (-806)))) ((-882 (-1155)) -3988 (-12 (|has| |#1| (-357)) (|has| |#2| (-882 (-1155)))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))) ((-868 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-868 (-373)))) ((-868 (-553)) -12 (|has| |#1| (-357)) (|has| |#2| (-868 (-553)))) ((-866 |#2|) |has| |#1| (-357)) ((-891) -12 (|has| |#1| (-357)) (|has| |#2| (-891))) ((-955 |#1| #0# (-1061)) . T) ((-902) |has| |#1| (-357)) ((-974 |#2|) |has| |#1| (-357)) ((-984) |has| |#1| (-38 (-401 (-553)))) ((-1004) -12 (|has| |#1| (-357)) (|has| |#2| (-1004))) ((-1020 (-401 (-553))) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-553)))) ((-1020 (-553)) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-553)))) ((-1020 #2#) -12 (|has| |#1| (-357)) (|has| |#2| (-1020 (-1155)))) ((-1020 |#2|) . T) ((-1037 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-1037 |#1|) . T) ((-1037 |#2|) |has| |#1| (-357)) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) -12 (|has| |#1| (-357)) (|has| |#2| (-1130))) ((-1177) |has| |#1| (-38 (-401 (-553)))) ((-1180) |has| |#1| (-38 (-401 (-553)))) ((-1192) |has| |#1| (-357)) ((-1196) |has| |#1| (-357)) ((-1198 |#1|) . T) ((-1216 |#1| #0#) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 70)) (-2751 ((|#2| $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 88)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-553)) 97) (($ $ (-553) (-553)) 99)) (-2140 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) 47)) (-1993 ((|#2| $) 11)) (-1388 (((-3 |#2| "failed") $) 30)) (-3562 ((|#2| $) 31)) (-2380 (($ $) 192 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 168 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) 188 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 164 (|has| |#1| (-38 (-401 (-553)))))) (-2125 (((-553) $) NIL (-12 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-1779 (($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) 57)) (-2403 (($ $) 196 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 172 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) 144) (((-3 (-553) "failed") $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-3 (-1155) "failed") $) NIL (-12 (|has| |#2| (-1020 (-1155))) (|has| |#1| (-357))))) (-2707 ((|#2| $) 143) (((-553) $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-401 (-553)) $) NIL (-12 (|has| |#2| (-1020 (-553))) (|has| |#1| (-357)))) (((-1155) $) NIL (-12 (|has| |#2| (-1020 (-1155))) (|has| |#1| (-357))))) (-4106 (($ $) 61) (($ (-553) $) 24)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2077 (((-674 |#2|) (-674 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#1| (-357)))) (((-674 (-553)) (-674 $)) NIL (-12 (|has| |#2| (-626 (-553))) (|has| |#1| (-357))))) (-2982 (((-3 $ "failed") $) 77)) (-3539 (((-401 (-934 |#1|)) $ (-553)) 112 (|has| |#1| (-545))) (((-401 (-934 |#1|)) $ (-553) (-553)) 114 (|has| |#1| (-545)))) (-3031 (($) NIL (-12 (|has| |#2| (-538)) (|has| |#1| (-357))))) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4270 (((-111) $) NIL (-12 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-4008 (((-111) $) 64)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| |#2| (-868 (-373))) (|has| |#1| (-357)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| |#2| (-868 (-553))) (|has| |#1| (-357))))) (-2968 (((-553) $) 93) (((-553) $ (-553)) 95)) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL (|has| |#1| (-357)))) (-3963 ((|#2| $) 151 (|has| |#1| (-357)))) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2502 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1130)) (|has| |#1| (-357))))) (-2797 (((-111) $) NIL (-12 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-2166 (($ $ (-903)) 136)) (-2341 (($ (-1 |#1| (-553)) $) 132)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-553)) 19) (($ $ (-1061) (-553)) NIL) (($ $ (-630 (-1061)) (-630 (-553))) NIL)) (-1824 (($ $ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1975 (($ $ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1482 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-357)))) (-2366 (($ $) 162 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3575 (($ (-553) |#2|) 10)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 145 (|has| |#1| (-357)))) (-3406 (($ $) 214 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 219 (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177)))))) (-1945 (($) NIL (-12 (|has| |#2| (-1130)) (|has| |#1| (-357))) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3785 (($ $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-2334 ((|#2| $) NIL (-12 (|has| |#2| (-538)) (|has| |#1| (-357))))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| |#2| (-891)) (|has| |#1| (-357))))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-553)) 126)) (-3929 (((-3 $ "failed") $ $) 116 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) 160 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-553))))) (($ $ (-1155) |#2|) NIL (-12 (|has| |#2| (-507 (-1155) |#2|)) (|has| |#1| (-357)))) (($ $ (-630 (-1155)) (-630 |#2|)) NIL (-12 (|has| |#2| (-507 (-1155) |#2|)) (|has| |#1| (-357)))) (($ $ (-630 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-630 |#2|) (-630 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-553)) 91) (($ $ $) 79 (|has| (-553) (-1091))) (($ $ |#2|) NIL (-12 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#1| (-357))) (($ $ (-757)) NIL (-3988 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) 137 (-3988 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155) (-757)) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-630 (-1155))) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155)) 140 (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))))) (-3161 (($ $) NIL (|has| |#1| (-357)))) (-3974 ((|#2| $) 152 (|has| |#1| (-357)))) (-3872 (((-553) $) 12)) (-2414 (($ $) 198 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 174 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 194 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 170 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 190 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 166 (|has| |#1| (-38 (-401 (-553)))))) (-1524 (((-220) $) NIL (-12 (|has| |#2| (-1004)) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| |#2| (-1004)) (|has| |#1| (-357)))) (((-529) $) NIL (-12 (|has| |#2| (-601 (-529))) (|has| |#1| (-357)))) (((-874 (-373)) $) NIL (-12 (|has| |#2| (-601 (-874 (-373)))) (|has| |#1| (-357)))) (((-874 (-553)) $) NIL (-12 (|has| |#2| (-601 (-874 (-553)))) (|has| |#1| (-357))))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891)) (|has| |#1| (-357))))) (-2980 (($ $) 124)) (-3110 (((-845) $) 245) (($ (-553)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1155)) NIL (-12 (|has| |#2| (-1020 (-1155))) (|has| |#1| (-357)))) (($ (-401 (-553))) 155 (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545)))) (-1624 ((|#1| $ (-553)) 74)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891)) (|has| |#1| (-357))) (-12 (|has| |#2| (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-1999 (((-757)) 142)) (-4010 ((|#1| $) 90)) (-2582 ((|#2| $) NIL (-12 (|has| |#2| (-538)) (|has| |#1| (-357))))) (-2447 (($ $) 204 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 180 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) 200 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 176 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 208 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 184 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-553)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-553)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 210 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 186 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 206 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 182 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 202 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 178 (|has| |#1| (-38 (-401 (-553)))))) (-3466 (($ $) NIL (-12 (|has| |#2| (-806)) (|has| |#1| (-357))))) (-1988 (($) 13 T CONST)) (-1997 (($) 17 T CONST)) (-1780 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-757)) NIL (|has| |#1| (-357))) (($ $ (-757)) NIL (-3988 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) NIL (-3988 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155) (-757)) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-630 (-1155))) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#2| (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))))) (-1669 (((-111) $ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1648 (((-111) $ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1617 (((-111) $ $) 63)) (-1659 (((-111) $ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1636 (((-111) $ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-357))))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357))) (($ |#2| |#2|) 150 (|has| |#1| (-357)))) (-1711 (($ $) 213) (($ $ $) 68)) (-1700 (($ $ $) 66)) (** (($ $ (-903)) NIL) (($ $ (-757)) 73) (($ $ (-553)) 146 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 158 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-357))) (($ |#2| $) 147 (|has| |#1| (-357))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1201 |#1| |#2|) (-1200 |#1| |#2|) (-1031) (-1229 |#1|)) (T -1201)) -NIL -(-1200 |#1| |#2|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2751 (((-1230 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 10)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-1968 (($ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-2028 (((-111) $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-1728 (($ $ (-553)) NIL) (($ $ (-553) (-553)) NIL)) (-2140 (((-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|))) $) NIL)) (-1993 (((-1230 |#1| |#2| |#3|) $) NIL)) (-1388 (((-3 (-1230 |#1| |#2| |#3|) "failed") $) NIL)) (-3562 (((-1230 |#1| |#2| |#3|) $) NIL)) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2125 (((-553) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-1779 (($ (-1135 (-2 (|:| |k| (-553)) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-1230 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1155) "failed") $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-1155))) (|has| |#1| (-357)))) (((-3 (-401 (-553)) "failed") $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357)))) (((-3 (-553) "failed") $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357))))) (-2707 (((-1230 |#1| |#2| |#3|) $) NIL) (((-1155) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-1155))) (|has| |#1| (-357)))) (((-401 (-553)) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357)))) (((-553) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357))))) (-4106 (($ $) NIL) (($ (-553) $) NIL)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-1230 |#1| |#2| |#3|)) (-674 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 (-1230 |#1| |#2| |#3|))) (|:| |vec| (-1238 (-1230 |#1| |#2| |#3|)))) (-674 $) (-1238 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-626 (-553))) (|has| |#1| (-357)))) (((-674 (-553)) (-674 $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-626 (-553))) (|has| |#1| (-357))))) (-2982 (((-3 $ "failed") $) NIL)) (-3539 (((-401 (-934 |#1|)) $ (-553)) NIL (|has| |#1| (-545))) (((-401 (-934 |#1|)) $ (-553) (-553)) NIL (|has| |#1| (-545)))) (-3031 (($) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-538)) (|has| |#1| (-357))))) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4270 (((-111) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-868 (-373))) (|has| |#1| (-357)))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-868 (-553))) (|has| |#1| (-357))))) (-2968 (((-553) $) NIL) (((-553) $ (-553)) NIL)) (-1848 (((-111) $) NIL)) (-2181 (($ $) NIL (|has| |#1| (-357)))) (-3963 (((-1230 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2502 (((-3 $ "failed") $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1130)) (|has| |#1| (-357))))) (-2797 (((-111) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-2166 (($ $ (-903)) NIL)) (-2341 (($ (-1 |#1| (-553)) $) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-553)) 17) (($ $ (-1061) (-553)) NIL) (($ $ (-630 (-1061)) (-630 (-553))) NIL)) (-1824 (($ $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1975 (($ $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3575 (($ (-553) (-1230 |#1| |#2| |#3|)) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-3406 (($ $) 25 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 26 (|has| |#1| (-38 (-401 (-553)))))) (-1945 (($) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1130)) (|has| |#1| (-357))) CONST)) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3785 (($ $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-2334 (((-1230 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-538)) (|has| |#1| (-357))))) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-553)) NIL)) (-3929 (((-3 $ "failed") $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-553))))) (($ $ (-1155) (-1230 |#1| |#2| |#3|)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-507 (-1155) (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-630 (-1155)) (-630 (-1230 |#1| |#2| |#3|))) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-507 (-1155) (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-630 (-288 (-1230 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-303 (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1230 |#1| |#2| |#3|))) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-303 (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-303 (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-630 (-1230 |#1| |#2| |#3|)) (-630 (-1230 |#1| |#2| |#3|))) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-303 (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-553)) NIL) (($ $ $) NIL (|has| (-553) (-1091))) (($ $ (-1230 |#1| |#2| |#3|)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-280 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-1 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|)) (-757)) NIL (|has| |#1| (-357))) (($ $ (-1234 |#2|)) 24) (($ $ (-757)) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) 23 (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155) (-757)) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-630 (-1155))) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))))) (-3161 (($ $) NIL (|has| |#1| (-357)))) (-3974 (((-1230 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-3872 (((-553) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1524 (((-529) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-601 (-529))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1004)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1004)) (|has| |#1| (-357)))) (((-874 (-373)) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-601 (-874 (-373)))) (|has| |#1| (-357)))) (((-874 (-553)) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-601 (-874 (-553)))) (|has| |#1| (-357))))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1230 |#1| |#2| |#3|)) NIL) (($ (-1234 |#2|)) 22) (($ (-1155)) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-1155))) (|has| |#1| (-357)))) (($ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545)))) (($ (-401 (-553))) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-1020 (-553))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-553))))))) (-1624 ((|#1| $ (-553)) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 11)) (-2582 (((-1230 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-538)) (|has| |#1| (-357))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-891)) (|has| |#1| (-357))) (|has| |#1| (-545))))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-553)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-553)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3466 (($ $) NIL (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))))) (-1988 (($) 19 T CONST)) (-1997 (($) 15 T CONST)) (-1780 (($ $ (-1 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|)) (-757)) NIL (|has| |#1| (-357))) (($ $ (-757)) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-553) |#1|))))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155) (-757)) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-630 (-1155))) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155)))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-882 (-1155))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-553) |#1|))) (|has| |#1| (-882 (-1155))))))) (-1669 (((-111) $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1648 (((-111) $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1636 (((-111) $ $) NIL (-3988 (-12 (|has| (-1230 |#1| |#2| |#3|) (-806)) (|has| |#1| (-357))) (-12 (|has| (-1230 |#1| |#2| |#3|) (-833)) (|has| |#1| (-357)))))) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357))) (($ (-1230 |#1| |#2| |#3|) (-1230 |#1| |#2| |#3|)) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 20)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1230 |#1| |#2| |#3|)) NIL (|has| |#1| (-357))) (($ (-1230 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357))) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1202 |#1| |#2| |#3|) (-13 (-1200 |#1| (-1230 |#1| |#2| |#3|)) (-10 -8 (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -1202)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1202 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1202 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1202 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1200 |#1| (-1230 |#1| |#2| |#3|)) (-10 -8 (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-1788 (((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111)) 12)) (-3519 (((-412 |#1|) |#1|) 22)) (-3355 (((-412 |#1|) |#1|) 21))) -(((-1203 |#1|) (-10 -7 (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3519 ((-412 |#1|) |#1|)) (-15 -1788 ((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111)))) (-1214 (-553))) (T -1203)) -((-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) (-5 *1 (-1203 *3)) (-4 *3 (-1214 (-553))))) (-3519 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1203 *3)) (-4 *3 (-1214 (-553))))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1203 *3)) (-4 *3 (-1214 (-553)))))) -(-10 -7 (-15 -3355 ((-412 |#1|) |#1|)) (-15 -3519 ((-412 |#1|) |#1|)) (-15 -1788 ((-2 (|:| |contp| (-553)) (|:| -3713 (-630 (-2 (|:| |irr| |#1|) (|:| -3220 (-553)))))) |#1| (-111)))) -((-1482 (((-1135 |#2|) (-1 |#2| |#1|) (-1205 |#1|)) 23 (|has| |#1| (-831))) (((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|)) 17))) -(((-1204 |#1| |#2|) (-10 -7 (-15 -1482 ((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) (IF (|has| |#1| (-831)) (-15 -1482 ((-1135 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) |%noBranch|)) (-1192) (-1192)) (T -1204)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-831)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1135 *6)) (-5 *1 (-1204 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1205 *6)) (-5 *1 (-1204 *5 *6))))) -(-10 -7 (-15 -1482 ((-1205 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) (IF (|has| |#1| (-831)) (-15 -1482 ((-1135 |#2|) (-1 |#2| |#1|) (-1205 |#1|))) |%noBranch|)) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1474 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1482 (((-1135 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-831)))) (-3162 ((|#1| $) 14)) (-4179 ((|#1| $) 10)) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-4189 (((-553) $) 18)) (-3640 ((|#1| $) 17)) (-4201 ((|#1| $) 11)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-3489 (((-111) $) 16)) (-3873 (((-1135 |#1|) $) 38 (|has| |#1| (-831))) (((-1135 |#1|) (-630 $)) 37 (|has| |#1| (-831)))) (-1524 (($ |#1|) 25)) (-3110 (($ (-1073 |#1|)) 24) (((-845) $) 34 (|has| |#1| (-1079)))) (-4260 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1436 (($ $ (-553)) 13)) (-1617 (((-111) $ $) 27 (|has| |#1| (-1079))))) -(((-1205 |#1|) (-13 (-1072 |#1|) (-10 -8 (-15 -4260 ($ |#1|)) (-15 -1474 ($ |#1|)) (-15 -3110 ($ (-1073 |#1|))) (-15 -3489 ((-111) $)) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-1074 |#1| (-1135 |#1|))) |%noBranch|))) (-1192)) (T -1205)) -((-4260 (*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1192)))) (-1474 (*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1192)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-1192)) (-5 *1 (-1205 *3)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1205 *3)) (-4 *3 (-1192))))) -(-13 (-1072 |#1|) (-10 -8 (-15 -4260 ($ |#1|)) (-15 -1474 ($ |#1|)) (-15 -3110 ($ (-1073 |#1|))) (-15 -3489 ((-111) $)) (IF (|has| |#1| (-1079)) (-6 (-1079)) |%noBranch|) (IF (|has| |#1| (-831)) (-6 (-1074 |#1| (-1135 |#1|))) |%noBranch|))) -((-1482 (((-1211 |#3| |#4|) (-1 |#4| |#2|) (-1211 |#1| |#2|)) 15))) -(((-1206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 ((-1211 |#3| |#4|) (-1 |#4| |#2|) (-1211 |#1| |#2|)))) (-1155) (-1031) (-1155) (-1031)) (T -1206)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1211 *5 *6)) (-14 *5 (-1155)) (-4 *6 (-1031)) (-4 *8 (-1031)) (-5 *2 (-1211 *7 *8)) (-5 *1 (-1206 *5 *6 *7 *8)) (-14 *7 (-1155))))) -(-10 -7 (-15 -1482 ((-1211 |#3| |#4|) (-1 |#4| |#2|) (-1211 |#1| |#2|)))) -((-4320 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3632 ((|#1| |#3|) 13)) (-1623 ((|#3| |#3|) 19))) -(((-1207 |#1| |#2| |#3|) (-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -1623 (|#3| |#3|)) (-15 -4320 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-545) (-974 |#1|) (-1214 |#2|)) (T -1207)) -((-4320 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1207 *4 *5 *3)) (-4 *3 (-1214 *5)))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *4 (-974 *3)) (-5 *1 (-1207 *3 *4 *2)) (-4 *2 (-1214 *4)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-1207 *2 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -1623 (|#3| |#3|)) (-15 -4320 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3934 (((-3 |#2| "failed") |#2| (-757) |#1|) 29)) (-2349 (((-3 |#2| "failed") |#2| (-757)) 30)) (-3320 (((-3 (-2 (|:| -3313 |#2|) (|:| -3323 |#2|)) "failed") |#2|) 43)) (-2835 (((-630 |#2|) |#2|) 45)) (-1423 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1208 |#1| |#2|) (-10 -7 (-15 -2349 ((-3 |#2| "failed") |#2| (-757))) (-15 -3934 ((-3 |#2| "failed") |#2| (-757) |#1|)) (-15 -1423 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3320 ((-3 (-2 (|:| -3313 |#2|) (|:| -3323 |#2|)) "failed") |#2|)) (-15 -2835 ((-630 |#2|) |#2|))) (-13 (-545) (-144)) (-1214 |#1|)) (T -1208)) -((-2835 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-144))) (-5 *2 (-630 *3)) (-5 *1 (-1208 *4 *3)) (-4 *3 (-1214 *4)))) (-3320 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-144))) (-5 *2 (-2 (|:| -3313 *3) (|:| -3323 *3))) (-5 *1 (-1208 *4 *3)) (-4 *3 (-1214 *4)))) (-1423 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-1214 *3)))) (-3934 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-757)) (-4 *4 (-13 (-545) (-144))) (-5 *1 (-1208 *4 *2)) (-4 *2 (-1214 *4)))) (-2349 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-757)) (-4 *4 (-13 (-545) (-144))) (-5 *1 (-1208 *4 *2)) (-4 *2 (-1214 *4))))) -(-10 -7 (-15 -2349 ((-3 |#2| "failed") |#2| (-757))) (-15 -3934 ((-3 |#2| "failed") |#2| (-757) |#1|)) (-15 -1423 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3320 ((-3 (-2 (|:| -3313 |#2|) (|:| -3323 |#2|)) "failed") |#2|)) (-15 -2835 ((-630 |#2|) |#2|))) -((-2863 (((-3 (-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) "failed") |#2| |#2|) 32))) -(((-1209 |#1| |#2|) (-10 -7 (-15 -2863 ((-3 (-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) "failed") |#2| |#2|))) (-545) (-1214 |#1|)) (T -1209)) -((-2863 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-1209 *4 *3)) (-4 *3 (-1214 *4))))) -(-10 -7 (-15 -2863 ((-3 (-2 (|:| -2666 |#2|) (|:| -1571 |#2|)) "failed") |#2| |#2|))) -((-1535 ((|#2| |#2| |#2|) 19)) (-2193 ((|#2| |#2| |#2|) 30)) (-2130 ((|#2| |#2| |#2| (-757) (-757)) 36))) -(((-1210 |#1| |#2|) (-10 -7 (-15 -1535 (|#2| |#2| |#2|)) (-15 -2193 (|#2| |#2| |#2|)) (-15 -2130 (|#2| |#2| |#2| (-757) (-757)))) (-1031) (-1214 |#1|)) (T -1210)) -((-2130 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-757)) (-4 *4 (-1031)) (-5 *1 (-1210 *4 *2)) (-4 *2 (-1214 *4)))) (-2193 (*1 *2 *2 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-1214 *3)))) (-1535 (*1 *2 *2 *2) (-12 (-4 *3 (-1031)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-1214 *3))))) -(-10 -7 (-15 -1535 (|#2| |#2| |#2|)) (-15 -2193 (|#2| |#2| |#2|)) (-15 -2130 (|#2| |#2| |#2| (-757) (-757)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2862 (((-1238 |#2|) $ (-757)) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-3376 (($ (-1151 |#2|)) NIL)) (-3322 (((-1151 $) $ (-1061)) NIL) (((-1151 |#2|) $) NIL)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-1968 (($ $) NIL (|has| |#2| (-545)))) (-2028 (((-111) $) NIL (|has| |#2| (-545)))) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1061))) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-1690 (($ $ $) NIL (|has| |#2| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1536 (($ $) NIL (|has| |#2| (-445)))) (-2708 (((-412 $) $) NIL (|has| |#2| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-4349 (((-111) $ $) NIL (|has| |#2| (-357)))) (-2998 (($ $ (-757)) NIL)) (-1300 (($ $ (-757)) NIL)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-445)))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-553)) "failed") $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) NIL (|has| |#2| (-1020 (-553)))) (((-3 (-1061) "failed") $) NIL)) (-2707 ((|#2| $) NIL) (((-401 (-553)) $) NIL (|has| |#2| (-1020 (-401 (-553))))) (((-553) $) NIL (|has| |#2| (-1020 (-553)))) (((-1061) $) NIL)) (-2134 (($ $ $ (-1061)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-3973 (($ $ $) NIL (|has| |#2| (-357)))) (-3678 (($ $) NIL)) (-2077 (((-674 (-553)) (-674 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) NIL (|has| |#2| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#2|)) (|:| |vec| (-1238 |#2|))) (-674 $) (-1238 $)) NIL) (((-674 |#2|) (-674 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3952 (($ $ $) NIL (|has| |#2| (-357)))) (-2539 (($ $ $) NIL)) (-3301 (($ $ $) NIL (|has| |#2| (-545)))) (-3464 (((-2 (|:| -4120 |#2|) (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#2| (-357)))) (-1655 (($ $) NIL (|has| |#2| (-445))) (($ $ (-1061)) NIL (|has| |#2| (-445)))) (-3667 (((-630 $) $) NIL)) (-3119 (((-111) $) NIL (|has| |#2| (-891)))) (-2686 (($ $ |#2| (-757) $) NIL)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) NIL (-12 (|has| (-1061) (-868 (-373))) (|has| |#2| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) NIL (-12 (|has| (-1061) (-868 (-553))) (|has| |#2| (-868 (-553)))))) (-2968 (((-757) $ $) NIL (|has| |#2| (-545)))) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-2502 (((-3 $ "failed") $) NIL (|has| |#2| (-1130)))) (-3493 (($ (-1151 |#2|) (-1061)) NIL) (($ (-1151 $) (-1061)) NIL)) (-2166 (($ $ (-757)) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#2| (-357)))) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-3481 (($ |#2| (-757)) 17) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1061)) NIL) (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL)) (-2423 (((-757) $) NIL) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1824 (($ $ $) NIL (|has| |#2| (-833)))) (-1975 (($ $ $) NIL (|has| |#2| (-833)))) (-2241 (($ (-1 (-757) (-757)) $) NIL)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1504 (((-1151 |#2|) $) NIL)) (-1332 (((-3 (-1061) "failed") $) NIL)) (-3644 (($ $) NIL)) (-3655 ((|#2| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1735 (((-1137) $) NIL)) (-3395 (((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757)) NIL)) (-2411 (((-3 (-630 $) "failed") $) NIL)) (-2201 (((-3 (-630 $) "failed") $) NIL)) (-3107 (((-3 (-2 (|:| |var| (-1061)) (|:| -2692 (-757))) "failed") $) NIL)) (-3406 (($ $) NIL (|has| |#2| (-38 (-401 (-553)))))) (-1945 (($) NIL (|has| |#2| (-1130)) CONST)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 ((|#2| $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#2| (-445)))) (-2508 (($ (-630 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1974 (($ $ (-757) |#2| $) NIL)) (-2979 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) NIL (|has| |#2| (-891)))) (-3355 (((-412 $) $) NIL (|has| |#2| (-891)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#2| (-357)))) (-3929 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#2| (-357)))) (-2356 (($ $ (-630 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1061) |#2|) NIL) (($ $ (-630 (-1061)) (-630 |#2|)) NIL) (($ $ (-1061) $) NIL) (($ $ (-630 (-1061)) (-630 $)) NIL)) (-3384 (((-757) $) NIL (|has| |#2| (-357)))) (-2046 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#2| (-545))) ((|#2| (-401 $) |#2|) NIL (|has| |#2| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#2| (-545)))) (-2580 (((-3 $ "failed") $ (-757)) NIL)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#2| (-357)))) (-3000 (($ $ (-1061)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-1330 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3872 (((-757) $) NIL) (((-757) $ (-1061)) NIL) (((-630 (-757)) $ (-630 (-1061))) NIL)) (-1524 (((-874 (-373)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-373)))) (|has| |#2| (-601 (-874 (-373)))))) (((-874 (-553)) $) NIL (-12 (|has| (-1061) (-601 (-874 (-553)))) (|has| |#2| (-601 (-874 (-553)))))) (((-529) $) NIL (-12 (|has| (-1061) (-601 (-529))) (|has| |#2| (-601 (-529)))))) (-4198 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-1061)) NIL (|has| |#2| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-891))))) (-2255 (((-3 $ "failed") $ $) NIL (|has| |#2| (-545))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#2| (-545)))) (-3110 (((-845) $) 13) (($ (-553)) NIL) (($ |#2|) NIL) (($ (-1061)) NIL) (($ (-1234 |#1|)) 19) (($ (-401 (-553))) NIL (-3988 (|has| |#2| (-38 (-401 (-553)))) (|has| |#2| (-1020 (-401 (-553)))))) (($ $) NIL (|has| |#2| (-545)))) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-757)) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-2941 (((-3 $ "failed") $) NIL (-3988 (-12 (|has| $ (-142)) (|has| |#2| (-891))) (|has| |#2| (-142))))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| |#2| (-169)))) (-1639 (((-111) $ $) NIL (|has| |#2| (-545)))) (-1988 (($) NIL T CONST)) (-1997 (($) 14 T CONST)) (-1780 (($ $ (-1061)) NIL) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) NIL) (($ $ (-1155)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1155) (-757)) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) NIL (|has| |#2| (-882 (-1155)))) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1669 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1617 (((-111) $ $) NIL)) (-1659 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#2| (-833)))) (-1723 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-401 (-553))) NIL (|has| |#2| (-38 (-401 (-553))))) (($ (-401 (-553)) $) NIL (|has| |#2| (-38 (-401 (-553))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1211 |#1| |#2|) (-13 (-1214 |#2|) (-603 (-1234 |#1|)) (-10 -8 (-15 -1974 ($ $ (-757) |#2| $)))) (-1155) (-1031)) (T -1211)) -((-1974 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1211 *4 *3)) (-14 *4 (-1155)) (-4 *3 (-1031))))) -(-13 (-1214 |#2|) (-603 (-1234 |#1|)) (-10 -8 (-15 -1974 ($ $ (-757) |#2| $)))) -((-1482 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1212 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|))) (-1031) (-1214 |#1|) (-1031) (-1214 |#3|)) (T -1212)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-4 *2 (-1214 *6)) (-5 *1 (-1212 *5 *4 *6 *2)) (-4 *4 (-1214 *5))))) -(-10 -7 (-15 -1482 (|#4| (-1 |#3| |#1|) |#2|))) -((-2862 (((-1238 |#2|) $ (-757)) 114)) (-3506 (((-630 (-1061)) $) 15)) (-3376 (($ (-1151 |#2|)) 67)) (-2085 (((-757) $) NIL) (((-757) $ (-630 (-1061))) 18)) (-1393 (((-412 (-1151 $)) (-1151 $)) 185)) (-1536 (($ $) 175)) (-2708 (((-412 $) $) 173)) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 82)) (-2998 (($ $ (-757)) 71)) (-1300 (($ $ (-757)) 73)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1399 (((-3 |#2| "failed") $) 117) (((-3 (-401 (-553)) "failed") $) NIL) (((-3 (-553) "failed") $) NIL) (((-3 (-1061) "failed") $) NIL)) (-2707 ((|#2| $) 115) (((-401 (-553)) $) NIL) (((-553) $) NIL) (((-1061) $) NIL)) (-3301 (($ $ $) 151)) (-3464 (((-2 (|:| -4120 |#2|) (|:| -2666 $) (|:| -1571 $)) $ $) 153)) (-2968 (((-757) $ $) 170)) (-2502 (((-3 $ "failed") $) 123)) (-3481 (($ |#2| (-757)) NIL) (($ $ (-1061) (-757)) 47) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-2423 (((-757) $) NIL) (((-757) $ (-1061)) 42) (((-630 (-757)) $ (-630 (-1061))) 43)) (-1504 (((-1151 |#2|) $) 59)) (-1332 (((-3 (-1061) "failed") $) 40)) (-3395 (((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757)) 70)) (-3406 (($ $) 197)) (-1945 (($) 119)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 182)) (-2979 (((-412 (-1151 $)) (-1151 $)) 88)) (-1834 (((-412 (-1151 $)) (-1151 $)) 86)) (-3355 (((-412 $) $) 107)) (-2356 (($ $ (-630 (-288 $))) 39) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-630 $) (-630 $)) NIL) (($ $ (-1061) |#2|) 31) (($ $ (-630 (-1061)) (-630 |#2|)) 28) (($ $ (-1061) $) 25) (($ $ (-630 (-1061)) (-630 $)) 23)) (-3384 (((-757) $) 188)) (-2046 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) 147) ((|#2| (-401 $) |#2|) 187) (((-401 $) $ (-401 $)) 169)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 191)) (-1330 (($ $ (-1061)) 140) (($ $ (-630 (-1061))) NIL) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL) (($ $ (-757)) NIL) (($ $) 138) (($ $ (-1155)) NIL) (($ $ (-630 (-1155))) NIL) (($ $ (-1155) (-757)) NIL) (($ $ (-630 (-1155)) (-630 (-757))) NIL) (($ $ (-1 |#2| |#2|) (-757)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3872 (((-757) $) NIL) (((-757) $ (-1061)) 16) (((-630 (-757)) $ (-630 (-1061))) 20)) (-4198 ((|#2| $) NIL) (($ $ (-1061)) 125)) (-2255 (((-3 $ "failed") $ $) 161) (((-3 (-401 $) "failed") (-401 $) $) 157)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#2|) NIL) (($ (-1061)) 51) (($ (-401 (-553))) NIL) (($ $) NIL))) -(((-1213 |#1| |#2|) (-10 -8 (-15 -3110 (|#1| |#1|)) (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|))) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -2046 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -3384 ((-757) |#1|)) (-15 -4032 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2046 (|#2| (-401 |#1|) |#2|)) (-15 -2436 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3464 ((-2 (|:| -4120 |#2|) (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|)) (-15 -2255 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2255 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2968 ((-757) |#1| |#1|)) (-15 -2046 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1300 (|#1| |#1| (-757))) (-15 -2998 (|#1| |#1| (-757))) (-15 -3395 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| (-757))) (-15 -3376 (|#1| (-1151 |#2|))) (-15 -1504 ((-1151 |#2|) |#1|)) (-15 -2862 ((-1238 |#2|) |#1| (-757))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -2046 (|#1| |#1| |#1|)) (-15 -2046 (|#2| |#1| |#2|)) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -1393 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -1834 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -2979 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -4198 (|#1| |#1| (-1061))) (-15 -3506 ((-630 (-1061)) |#1|)) (-15 -2085 ((-757) |#1| (-630 (-1061)))) (-15 -2085 ((-757) |#1|)) (-15 -3481 (|#1| |#1| (-630 (-1061)) (-630 (-757)))) (-15 -3481 (|#1| |#1| (-1061) (-757))) (-15 -2423 ((-630 (-757)) |#1| (-630 (-1061)))) (-15 -2423 ((-757) |#1| (-1061))) (-15 -1332 ((-3 (-1061) "failed") |#1|)) (-15 -3872 ((-630 (-757)) |#1| (-630 (-1061)))) (-15 -3872 ((-757) |#1| (-1061))) (-15 -3110 (|#1| (-1061))) (-15 -1399 ((-3 (-1061) "failed") |#1|)) (-15 -2707 ((-1061) |#1|)) (-15 -2356 (|#1| |#1| (-630 (-1061)) (-630 |#1|))) (-15 -2356 (|#1| |#1| (-1061) |#1|)) (-15 -2356 (|#1| |#1| (-630 (-1061)) (-630 |#2|))) (-15 -2356 (|#1| |#1| (-1061) |#2|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -3872 ((-757) |#1|)) (-15 -3481 (|#1| |#2| (-757))) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -2423 ((-757) |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -1330 (|#1| |#1| (-630 (-1061)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1061) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1061)))) (-15 -1330 (|#1| |#1| (-1061))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) (-1214 |#2|) (-1031)) (T -1213)) -NIL -(-10 -8 (-15 -3110 (|#1| |#1|)) (-15 -3237 ((-1151 |#1|) (-1151 |#1|) (-1151 |#1|))) (-15 -2708 ((-412 |#1|) |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -1945 (|#1|)) (-15 -2502 ((-3 |#1| "failed") |#1|)) (-15 -2046 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -3384 ((-757) |#1|)) (-15 -4032 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2046 (|#2| (-401 |#1|) |#2|)) (-15 -2436 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3464 ((-2 (|:| -4120 |#2|) (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|)) (-15 -2255 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2255 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2968 ((-757) |#1| |#1|)) (-15 -2046 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1300 (|#1| |#1| (-757))) (-15 -2998 (|#1| |#1| (-757))) (-15 -3395 ((-2 (|:| -2666 |#1|) (|:| -1571 |#1|)) |#1| (-757))) (-15 -3376 (|#1| (-1151 |#2|))) (-15 -1504 ((-1151 |#2|) |#1|)) (-15 -2862 ((-1238 |#2|) |#1| (-757))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1330 (|#1| |#1| (-1 |#2| |#2|) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1155) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1155)))) (-15 -1330 (|#1| |#1| (-1155))) (-15 -1330 (|#1| |#1|)) (-15 -1330 (|#1| |#1| (-757))) (-15 -2046 (|#1| |#1| |#1|)) (-15 -2046 (|#2| |#1| |#2|)) (-15 -3355 ((-412 |#1|) |#1|)) (-15 -1393 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -1834 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -2979 ((-412 (-1151 |#1|)) (-1151 |#1|))) (-15 -3013 ((-3 (-630 (-1151 |#1|)) "failed") (-630 (-1151 |#1|)) (-1151 |#1|))) (-15 -4198 (|#1| |#1| (-1061))) (-15 -3506 ((-630 (-1061)) |#1|)) (-15 -2085 ((-757) |#1| (-630 (-1061)))) (-15 -2085 ((-757) |#1|)) (-15 -3481 (|#1| |#1| (-630 (-1061)) (-630 (-757)))) (-15 -3481 (|#1| |#1| (-1061) (-757))) (-15 -2423 ((-630 (-757)) |#1| (-630 (-1061)))) (-15 -2423 ((-757) |#1| (-1061))) (-15 -1332 ((-3 (-1061) "failed") |#1|)) (-15 -3872 ((-630 (-757)) |#1| (-630 (-1061)))) (-15 -3872 ((-757) |#1| (-1061))) (-15 -3110 (|#1| (-1061))) (-15 -1399 ((-3 (-1061) "failed") |#1|)) (-15 -2707 ((-1061) |#1|)) (-15 -2356 (|#1| |#1| (-630 (-1061)) (-630 |#1|))) (-15 -2356 (|#1| |#1| (-1061) |#1|)) (-15 -2356 (|#1| |#1| (-630 (-1061)) (-630 |#2|))) (-15 -2356 (|#1| |#1| (-1061) |#2|)) (-15 -2356 (|#1| |#1| (-630 |#1|) (-630 |#1|))) (-15 -2356 (|#1| |#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| (-288 |#1|))) (-15 -2356 (|#1| |#1| (-630 (-288 |#1|)))) (-15 -3872 ((-757) |#1|)) (-15 -3481 (|#1| |#2| (-757))) (-15 -1399 ((-3 (-553) "failed") |#1|)) (-15 -2707 ((-553) |#1|)) (-15 -1399 ((-3 (-401 (-553)) "failed") |#1|)) (-15 -2707 ((-401 (-553)) |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -1399 ((-3 |#2| "failed") |#1|)) (-15 -3110 (|#1| |#2|)) (-15 -2423 ((-757) |#1|)) (-15 -4198 (|#2| |#1|)) (-15 -1330 (|#1| |#1| (-630 (-1061)) (-630 (-757)))) (-15 -1330 (|#1| |#1| (-1061) (-757))) (-15 -1330 (|#1| |#1| (-630 (-1061)))) (-15 -1330 (|#1| |#1| (-1061))) (-15 -3110 (|#1| (-553))) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2862 (((-1238 |#1|) $ (-757)) 238)) (-3506 (((-630 (-1061)) $) 110)) (-3376 (($ (-1151 |#1|)) 236)) (-3322 (((-1151 $) $ (-1061)) 125) (((-1151 |#1|) $) 124)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 87 (|has| |#1| (-545)))) (-1968 (($ $) 88 (|has| |#1| (-545)))) (-2028 (((-111) $) 90 (|has| |#1| (-545)))) (-2085 (((-757) $) 112) (((-757) $ (-630 (-1061))) 111)) (-2910 (((-3 $ "failed") $ $) 19)) (-1690 (($ $ $) 223 (|has| |#1| (-545)))) (-1393 (((-412 (-1151 $)) (-1151 $)) 100 (|has| |#1| (-891)))) (-1536 (($ $) 98 (|has| |#1| (-445)))) (-2708 (((-412 $) $) 97 (|has| |#1| (-445)))) (-3013 (((-3 (-630 (-1151 $)) "failed") (-630 (-1151 $)) (-1151 $)) 103 (|has| |#1| (-891)))) (-4349 (((-111) $ $) 208 (|has| |#1| (-357)))) (-2998 (($ $ (-757)) 231)) (-1300 (($ $ (-757)) 230)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-445)))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 164) (((-3 (-401 (-553)) "failed") $) 161 (|has| |#1| (-1020 (-401 (-553))))) (((-3 (-553) "failed") $) 159 (|has| |#1| (-1020 (-553)))) (((-3 (-1061) "failed") $) 136)) (-2707 ((|#1| $) 163) (((-401 (-553)) $) 162 (|has| |#1| (-1020 (-401 (-553))))) (((-553) $) 160 (|has| |#1| (-1020 (-553)))) (((-1061) $) 137)) (-2134 (($ $ $ (-1061)) 108 (|has| |#1| (-169))) ((|#1| $ $) 226 (|has| |#1| (-169)))) (-3973 (($ $ $) 212 (|has| |#1| (-357)))) (-3678 (($ $) 154)) (-2077 (((-674 (-553)) (-674 $)) 134 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 (-553))) (|:| |vec| (-1238 (-553)))) (-674 $) (-1238 $)) 133 (|has| |#1| (-626 (-553)))) (((-2 (|:| -3344 (-674 |#1|)) (|:| |vec| (-1238 |#1|))) (-674 $) (-1238 $)) 132) (((-674 |#1|) (-674 $)) 131)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 211 (|has| |#1| (-357)))) (-2539 (($ $ $) 229)) (-3301 (($ $ $) 220 (|has| |#1| (-545)))) (-3464 (((-2 (|:| -4120 |#1|) (|:| -2666 $) (|:| -1571 $)) $ $) 219 (|has| |#1| (-545)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 206 (|has| |#1| (-357)))) (-1655 (($ $) 176 (|has| |#1| (-445))) (($ $ (-1061)) 105 (|has| |#1| (-445)))) (-3667 (((-630 $) $) 109)) (-3119 (((-111) $) 96 (|has| |#1| (-891)))) (-2686 (($ $ |#1| (-757) $) 172)) (-2059 (((-871 (-373) $) $ (-874 (-373)) (-871 (-373) $)) 84 (-12 (|has| (-1061) (-868 (-373))) (|has| |#1| (-868 (-373))))) (((-871 (-553) $) $ (-874 (-553)) (-871 (-553) $)) 83 (-12 (|has| (-1061) (-868 (-553))) (|has| |#1| (-868 (-553)))))) (-2968 (((-757) $ $) 224 (|has| |#1| (-545)))) (-1848 (((-111) $) 31)) (-1984 (((-757) $) 169)) (-2502 (((-3 $ "failed") $) 204 (|has| |#1| (-1130)))) (-3493 (($ (-1151 |#1|) (-1061)) 117) (($ (-1151 $) (-1061)) 116)) (-2166 (($ $ (-757)) 235)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 215 (|has| |#1| (-357)))) (-2096 (((-630 $) $) 126)) (-1298 (((-111) $) 152)) (-3481 (($ |#1| (-757)) 153) (($ $ (-1061) (-757)) 119) (($ $ (-630 (-1061)) (-630 (-757))) 118)) (-3201 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $ (-1061)) 120) (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 233)) (-2423 (((-757) $) 170) (((-757) $ (-1061)) 122) (((-630 (-757)) $ (-630 (-1061))) 121)) (-1824 (($ $ $) 79 (|has| |#1| (-833)))) (-1975 (($ $ $) 78 (|has| |#1| (-833)))) (-2241 (($ (-1 (-757) (-757)) $) 171)) (-1482 (($ (-1 |#1| |#1|) $) 151)) (-1504 (((-1151 |#1|) $) 237)) (-1332 (((-3 (-1061) "failed") $) 123)) (-3644 (($ $) 149)) (-3655 ((|#1| $) 148)) (-2471 (($ (-630 $)) 94 (|has| |#1| (-445))) (($ $ $) 93 (|has| |#1| (-445)))) (-1735 (((-1137) $) 9)) (-3395 (((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757)) 232)) (-2411 (((-3 (-630 $) "failed") $) 114)) (-2201 (((-3 (-630 $) "failed") $) 115)) (-3107 (((-3 (-2 (|:| |var| (-1061)) (|:| -2692 (-757))) "failed") $) 113)) (-3406 (($ $) 216 (|has| |#1| (-38 (-401 (-553)))))) (-1945 (($) 203 (|has| |#1| (-1130)) CONST)) (-2786 (((-1099) $) 10)) (-3623 (((-111) $) 166)) (-3633 ((|#1| $) 167)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 95 (|has| |#1| (-445)))) (-2508 (($ (-630 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-2979 (((-412 (-1151 $)) (-1151 $)) 102 (|has| |#1| (-891)))) (-1834 (((-412 (-1151 $)) (-1151 $)) 101 (|has| |#1| (-891)))) (-3355 (((-412 $) $) 99 (|has| |#1| (-891)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 213 (|has| |#1| (-357)))) (-3929 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 207 (|has| |#1| (-357)))) (-2356 (($ $ (-630 (-288 $))) 145) (($ $ (-288 $)) 144) (($ $ $ $) 143) (($ $ (-630 $) (-630 $)) 142) (($ $ (-1061) |#1|) 141) (($ $ (-630 (-1061)) (-630 |#1|)) 140) (($ $ (-1061) $) 139) (($ $ (-630 (-1061)) (-630 $)) 138)) (-3384 (((-757) $) 209 (|has| |#1| (-357)))) (-2046 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-401 $) (-401 $) (-401 $)) 225 (|has| |#1| (-545))) ((|#1| (-401 $) |#1|) 217 (|has| |#1| (-357))) (((-401 $) $ (-401 $)) 205 (|has| |#1| (-545)))) (-2580 (((-3 $ "failed") $ (-757)) 234)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 210 (|has| |#1| (-357)))) (-3000 (($ $ (-1061)) 107 (|has| |#1| (-169))) ((|#1| $) 227 (|has| |#1| (-169)))) (-1330 (($ $ (-1061)) 42) (($ $ (-630 (-1061))) 41) (($ $ (-1061) (-757)) 40) (($ $ (-630 (-1061)) (-630 (-757))) 39) (($ $ (-757)) 253) (($ $) 251) (($ $ (-1155)) 250 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 249 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 248 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 247 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3872 (((-757) $) 150) (((-757) $ (-1061)) 130) (((-630 (-757)) $ (-630 (-1061))) 129)) (-1524 (((-874 (-373)) $) 82 (-12 (|has| (-1061) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373)))))) (((-874 (-553)) $) 81 (-12 (|has| (-1061) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553)))))) (((-529) $) 80 (-12 (|has| (-1061) (-601 (-529))) (|has| |#1| (-601 (-529)))))) (-4198 ((|#1| $) 175 (|has| |#1| (-445))) (($ $ (-1061)) 106 (|has| |#1| (-445)))) (-2119 (((-3 (-1238 $) "failed") (-674 $)) 104 (-3726 (|has| $ (-142)) (|has| |#1| (-891))))) (-2255 (((-3 $ "failed") $ $) 222 (|has| |#1| (-545))) (((-3 (-401 $) "failed") (-401 $) $) 221 (|has| |#1| (-545)))) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 165) (($ (-1061)) 135) (($ (-401 (-553))) 72 (-3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553)))))) (($ $) 85 (|has| |#1| (-545)))) (-3987 (((-630 |#1|) $) 168)) (-1624 ((|#1| $ (-757)) 155) (($ $ (-1061) (-757)) 128) (($ $ (-630 (-1061)) (-630 (-757))) 127)) (-2941 (((-3 $ "failed") $) 73 (-3988 (-3726 (|has| $ (-142)) (|has| |#1| (-891))) (|has| |#1| (-142))))) (-1999 (((-757)) 28)) (-2599 (($ $ $ (-757)) 173 (|has| |#1| (-169)))) (-1639 (((-111) $ $) 89 (|has| |#1| (-545)))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-1061)) 38) (($ $ (-630 (-1061))) 37) (($ $ (-1061) (-757)) 36) (($ $ (-630 (-1061)) (-630 (-757))) 35) (($ $ (-757)) 254) (($ $) 252) (($ $ (-1155)) 246 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155))) 245 (|has| |#1| (-882 (-1155)))) (($ $ (-1155) (-757)) 244 (|has| |#1| (-882 (-1155)))) (($ $ (-630 (-1155)) (-630 (-757))) 243 (|has| |#1| (-882 (-1155)))) (($ $ (-1 |#1| |#1|) (-757)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1669 (((-111) $ $) 76 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 75 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 6)) (-1659 (((-111) $ $) 77 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 74 (|has| |#1| (-833)))) (-1723 (($ $ |#1|) 156 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 158 (|has| |#1| (-38 (-401 (-553))))) (($ (-401 (-553)) $) 157 (|has| |#1| (-38 (-401 (-553))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1214 |#1|) (-137) (-1031)) (T -1214)) -((-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-1214 *4)) (-4 *4 (-1031)) (-5 *2 (-1238 *4)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1214 *3)) (-4 *3 (-1031)) (-5 *2 (-1151 *3)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1151 *3)) (-4 *3 (-1031)) (-4 *1 (-1214 *3)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) (-2580 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) (-3201 (*1 *2 *1 *1) (-12 (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1214 *3)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *4 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1214 *4)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)))) (-1330 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-169)))) (-2134 (*1 *2 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-169)))) (-2046 (*1 *2 *2 *2) (-12 (-5 *2 (-401 *1)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)) (-4 *3 (-545)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-1214 *3)) (-4 *3 (-1031)) (-4 *3 (-545)) (-5 *2 (-757)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-545)))) (-2255 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-545)))) (-2255 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)) (-4 *3 (-545)))) (-3301 (*1 *1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-545)))) (-3464 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| -4120 *3) (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1214 *3)))) (-2436 (*1 *2 *1 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1031)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1214 *3)))) (-2046 (*1 *2 *3 *2) (-12 (-5 *3 (-401 *1)) (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553))))))) -(-13 (-931 |t#1| (-757) (-1061)) (-280 |t#1| |t#1|) (-280 $ $) (-228) (-226 |t#1|) (-10 -8 (-15 -2862 ((-1238 |t#1|) $ (-757))) (-15 -1504 ((-1151 |t#1|) $)) (-15 -3376 ($ (-1151 |t#1|))) (-15 -2166 ($ $ (-757))) (-15 -2580 ((-3 $ "failed") $ (-757))) (-15 -3201 ((-2 (|:| -2666 $) (|:| -1571 $)) $ $)) (-15 -3395 ((-2 (|:| -2666 $) (|:| -1571 $)) $ (-757))) (-15 -2998 ($ $ (-757))) (-15 -1300 ($ $ (-757))) (-15 -2539 ($ $ $)) (-15 -1330 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -3000 (|t#1| $)) (-15 -2134 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-280 (-401 $) (-401 $))) (-15 -2046 ((-401 $) (-401 $) (-401 $))) (-15 -2968 ((-757) $ $)) (-15 -1690 ($ $ $)) (-15 -2255 ((-3 $ "failed") $ $)) (-15 -2255 ((-3 (-401 $) "failed") (-401 $) $)) (-15 -3301 ($ $ $)) (-15 -3464 ((-2 (|:| -4120 |t#1|) (|:| -2666 $) (|:| -1571 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (-15 -2436 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-301)) (-6 -4365) (-15 -2046 (|t#1| (-401 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-553)))) (-15 -3406 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-757)) . T) ((-25) . T) ((-38 #1=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #1#) -3988 (|has| |#1| (-1020 (-401 (-553)))) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 #2=(-1061)) . T) ((-603 |#1|) . T) ((-603 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-601 (-529)) -12 (|has| (-1061) (-601 (-529))) (|has| |#1| (-601 (-529)))) ((-601 (-874 (-373))) -12 (|has| (-1061) (-601 (-874 (-373)))) (|has| |#1| (-601 (-874 (-373))))) ((-601 (-874 (-553))) -12 (|has| (-1061) (-601 (-874 (-553)))) (|has| |#1| (-601 (-874 (-553))))) ((-226 |#1|) . T) ((-228) . T) ((-280 (-401 $) (-401 $)) |has| |#1| (-545)) ((-280 |#1| |#1|) . T) ((-280 $ $) . T) ((-284) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 $) . T) ((-320 |#1| #0#) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -3988 (|has| |#1| (-891)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-507 #2# |#1|) . T) ((-507 #2# $) . T) ((-507 $ $) . T) ((-545) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-633 #1#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-626 (-553)) |has| |#1| (-626 (-553))) ((-626 |#1|) . T) ((-703 #1#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-712) . T) ((-833) |has| |#1| (-833)) ((-882 #2#) . T) ((-882 (-1155)) |has| |#1| (-882 (-1155))) ((-868 (-373)) -12 (|has| (-1061) (-868 (-373))) (|has| |#1| (-868 (-373)))) ((-868 (-553)) -12 (|has| (-1061) (-868 (-553))) (|has| |#1| (-868 (-553)))) ((-931 |#1| #0# #2#) . T) ((-891) |has| |#1| (-891)) ((-902) |has| |#1| (-357)) ((-1020 (-401 (-553))) |has| |#1| (-1020 (-401 (-553)))) ((-1020 (-553)) |has| |#1| (-1020 (-553))) ((-1020 #2#) . T) ((-1020 |#1|) . T) ((-1037 #1#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-891)) (|has| |#1| (-545)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1130) |has| |#1| (-1130)) ((-1196) |has| |#1| (-891))) -((-3506 (((-630 (-1061)) $) 28)) (-3678 (($ $) 25)) (-3481 (($ |#2| |#3|) NIL) (($ $ (-1061) |#3|) 22) (($ $ (-630 (-1061)) (-630 |#3|)) 21)) (-3644 (($ $) 14)) (-3655 ((|#2| $) 12)) (-3872 ((|#3| $) 10))) -(((-1215 |#1| |#2| |#3|) (-10 -8 (-15 -3506 ((-630 (-1061)) |#1|)) (-15 -3481 (|#1| |#1| (-630 (-1061)) (-630 |#3|))) (-15 -3481 (|#1| |#1| (-1061) |#3|)) (-15 -3678 (|#1| |#1|)) (-15 -3481 (|#1| |#2| |#3|)) (-15 -3872 (|#3| |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -3655 (|#2| |#1|))) (-1216 |#2| |#3|) (-1031) (-778)) (T -1215)) -NIL -(-10 -8 (-15 -3506 ((-630 (-1061)) |#1|)) (-15 -3481 (|#1| |#1| (-630 (-1061)) (-630 |#3|))) (-15 -3481 (|#1| |#1| (-1061) |#3|)) (-15 -3678 (|#1| |#1|)) (-15 -3481 (|#1| |#2| |#3|)) (-15 -3872 (|#3| |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -3655 (|#2| |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 (-1061)) $) 77)) (-1509 (((-1155) $) 106)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-1728 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-2140 (((-1135 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-4008 (((-111) $) 76)) (-2968 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-1848 (((-111) $) 31)) (-2166 (($ $ (-903)) 104)) (-1298 (((-111) $) 65)) (-3481 (($ |#1| |#2|) 64) (($ $ (-1061) |#2|) 79) (($ $ (-630 (-1061)) (-630 |#2|)) 78)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3089 (($ $ |#2|) 98)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-2356 (((-1135 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2046 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1091)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) 92 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1155) (-757)) 91 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-630 (-1155))) 90 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1155)) 89 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-757)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3872 ((|#2| $) 67)) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545))) (($ |#1|) 50 (|has| |#1| (-169)))) (-1624 ((|#1| $ |#2|) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-4010 ((|#1| $) 105)) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-4327 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) 96 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1155) (-757)) 95 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-630 (-1155))) 94 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1155)) 93 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-757)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-1216 |#1| |#2|) (-137) (-1031) (-778)) (T -1216)) -((-2140 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-5 *2 (-1135 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2046 (*1 *2 *1 *3) (-12 (-4 *1 (-1216 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (-5 *2 (-1155)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-2968 (*1 *2 *1 *2) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-1728 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-1728 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-4327 (*1 *2 *1 *3) (-12 (-4 *1 (-1216 *2 *3)) (-4 *3 (-778)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3110 (*2 (-1155)))) (-4 *2 (-1031)))) (-3089 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) (-2356 (*1 *2 *1 *3) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1135 *3))))) -(-13 (-955 |t#1| |t#2| (-1061)) (-10 -8 (-15 -2140 ((-1135 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2046 (|t#1| $ |t#2|)) (-15 -1509 ((-1155) $)) (-15 -4010 (|t#1| $)) (-15 -2166 ($ $ (-903))) (-15 -2968 (|t#2| $)) (-15 -2968 (|t#2| $ |t#2|)) (-15 -1728 ($ $ |t#2|)) (-15 -1728 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3110 (|t#1| (-1155)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4327 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3089 ($ $ |t#2|)) (IF (|has| |t#2| (-1091)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-228)) (IF (|has| |t#1| (-882 (-1155))) (-6 (-882 (-1155))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2356 ((-1135 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #0#) |has| |#1| (-38 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-280 $ $) |has| |#2| (-1091)) ((-284) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-633 #0#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #0#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) . T) ((-882 (-1155)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-882 (-1155)))) ((-955 |#1| |#2| (-1061)) . T) ((-1037 #0#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-1536 ((|#2| |#2|) 12)) (-2708 (((-412 |#2|) |#2|) 14)) (-1544 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-553))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-553)))) 30))) -(((-1217 |#1| |#2|) (-10 -7 (-15 -2708 ((-412 |#2|) |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1544 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-553))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-553)))))) (-545) (-13 (-1214 |#1|) (-545) (-10 -8 (-15 -2508 ($ $ $))))) (T -1217)) -((-1544 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-553)))) (-4 *4 (-13 (-1214 *3) (-545) (-10 -8 (-15 -2508 ($ $ $))))) (-4 *3 (-545)) (-5 *1 (-1217 *3 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-1214 *3) (-545) (-10 -8 (-15 -2508 ($ $ $))))))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-412 *3)) (-5 *1 (-1217 *4 *3)) (-4 *3 (-13 (-1214 *4) (-545) (-10 -8 (-15 -2508 ($ $ $)))))))) -(-10 -7 (-15 -2708 ((-412 |#2|) |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1544 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-553))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-553)))))) -((-1482 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 24))) -(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1482 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1031) (-1031) (-1155) (-1155) |#1| |#2|) (T -1218)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-14 *7 (-1155)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1155))))) -(-10 -7 (-15 -1482 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 (-1061)) $) 77)) (-1509 (((-1155) $) 106)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) 101) (($ $ (-401 (-553)) (-401 (-553))) 100)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) 108)) (-2380 (($ $) 138 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 165 (|has| |#1| (-357)))) (-2708 (((-412 $) $) 166 (|has| |#1| (-357)))) (-3365 (($ $) 120 (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) 156 (|has| |#1| (-357)))) (-2357 (($ $) 137 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 122 (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) 174)) (-2403 (($ $) 136 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) 17 T CONST)) (-3973 (($ $ $) 160 (|has| |#1| (-357)))) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 159 (|has| |#1| (-357)))) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 154 (|has| |#1| (-357)))) (-3119 (((-111) $) 167 (|has| |#1| (-357)))) (-4008 (((-111) $) 76)) (-3996 (($) 148 (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) 103) (((-401 (-553)) $ (-401 (-553))) 102)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) 104) (($ $ (-401 (-553))) 173)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 163 (|has| |#1| (-357)))) (-1298 (((-111) $) 65)) (-3481 (($ |#1| (-401 (-553))) 64) (($ $ (-1061) (-401 (-553))) 79) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) 78)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-2366 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-2471 (($ (-630 $)) 152 (|has| |#1| (-357))) (($ $ $) 151 (|has| |#1| (-357)))) (-1735 (((-1137) $) 9)) (-3610 (($ $) 168 (|has| |#1| (-357)))) (-3406 (($ $) 172 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 171 (-3988 (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-941)) (|has| |#1| (-1177)) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-38 (-401 (-553)))))))) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 153 (|has| |#1| (-357)))) (-2508 (($ (-630 $)) 150 (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357)))) (-3355 (((-412 $) $) 164 (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 161 (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) 98)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 155 (|has| |#1| (-357)))) (-2743 (($ $) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) 157 (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) 107) (($ $ $) 84 (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 158 (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) 92 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155) (-757)) 91 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-630 (-1155))) 90 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155)) 89 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-757)) 87 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-3872 (((-401 (-553)) $) 67)) (-2414 (($ $) 135 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 124 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 134 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 126 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 50 (|has| |#1| (-169))) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-4010 ((|#1| $) 105)) (-2447 (($ $) 144 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 132 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-2425 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 142 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 130 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 129 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 140 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 128 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 139 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 127 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) 96 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155) (-757)) 95 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-630 (-1155))) 94 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155)) 93 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-757)) 88 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357))) (($ $ $) 170 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 169 (|has| |#1| (-357))) (($ $ $) 147 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 118 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-1219 |#1|) (-137) (-1031)) (T -1219)) -((-1779 (*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *3 (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| *4)))) (-4 *4 (-1031)) (-4 *1 (-1219 *4)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-4 *1 (-1219 *3)) (-4 *3 (-1031)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) (-3406 (*1 *1 *1 *2) (-3988 (-12 (-5 *2 (-1155)) (-4 *1 (-1219 *3)) (-4 *3 (-1031)) (-12 (-4 *3 (-29 (-553))) (-4 *3 (-941)) (-4 *3 (-1177)) (-4 *3 (-38 (-401 (-553)))))) (-12 (-5 *2 (-1155)) (-4 *1 (-1219 *3)) (-4 *3 (-1031)) (-12 (|has| *3 (-15 -3506 ((-630 *2) *3))) (|has| *3 (-15 -3406 (*3 *3 *2))) (-4 *3 (-38 (-401 (-553))))))))) -(-13 (-1216 |t#1| (-401 (-553))) (-10 -8 (-15 -1779 ($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |t#1|))))) (-15 -2166 ($ $ (-401 (-553)))) (IF (|has| |t#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $)) (IF (|has| |t#1| (-15 -3406 (|t#1| |t#1| (-1155)))) (IF (|has| |t#1| (-15 -3506 ((-630 (-1155)) |t#1|))) (-15 -3406 ($ $ (-1155))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1177)) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-29 (-553))) (-15 -3406 ($ $ (-1155))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-984)) (-6 (-1177))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-553))) . T) ((-25) . T) ((-38 #1=(-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-553)))) ((-94) |has| |#1| (-38 (-401 (-553)))) ((-101) . T) ((-110 #1# #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-553)))) ((-280 $ $) |has| (-401 (-553)) (-1091)) ((-284) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-486) |has| |#1| (-38 (-401 (-553)))) ((-545) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-633 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-712) . T) ((-882 (-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155)))) ((-955 |#1| #0# (-1061)) . T) ((-902) |has| |#1| (-357)) ((-984) |has| |#1| (-38 (-401 (-553)))) ((-1037 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1177) |has| |#1| (-38 (-401 (-553)))) ((-1180) |has| |#1| (-38 (-401 (-553)))) ((-1196) |has| |#1| (-357)) ((-1216 |#1| #0#) . T)) -((-3769 (((-111) $) 12)) (-1399 (((-3 |#3| "failed") $) 17)) (-2707 ((|#3| $) 14))) -(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -3769 ((-111) |#1|))) (-1221 |#2| |#3|) (-1031) (-1198 |#2|)) (T -1220)) -NIL -(-10 -8 (-15 -1399 ((-3 |#3| "failed") |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -3769 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 (-1061)) $) 77)) (-1509 (((-1155) $) 106)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) 101) (($ $ (-401 (-553)) (-401 (-553))) 100)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) 108)) (-2380 (($ $) 138 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 165 (|has| |#1| (-357)))) (-2708 (((-412 $) $) 166 (|has| |#1| (-357)))) (-3365 (($ $) 120 (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) 156 (|has| |#1| (-357)))) (-2357 (($ $) 137 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 122 (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) 174)) (-2403 (($ $) 136 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#2| "failed") $) 185)) (-2707 ((|#2| $) 186)) (-3973 (($ $ $) 160 (|has| |#1| (-357)))) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-1611 (((-401 (-553)) $) 182)) (-3952 (($ $ $) 159 (|has| |#1| (-357)))) (-3587 (($ (-401 (-553)) |#2|) 183)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 154 (|has| |#1| (-357)))) (-3119 (((-111) $) 167 (|has| |#1| (-357)))) (-4008 (((-111) $) 76)) (-3996 (($) 148 (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) 103) (((-401 (-553)) $ (-401 (-553))) 102)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) 104) (($ $ (-401 (-553))) 173)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 163 (|has| |#1| (-357)))) (-1298 (((-111) $) 65)) (-3481 (($ |#1| (-401 (-553))) 64) (($ $ (-1061) (-401 (-553))) 79) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) 78)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-2366 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-2471 (($ (-630 $)) 152 (|has| |#1| (-357))) (($ $ $) 151 (|has| |#1| (-357)))) (-1656 ((|#2| $) 181)) (-1733 (((-3 |#2| "failed") $) 179)) (-3575 ((|#2| $) 180)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 168 (|has| |#1| (-357)))) (-3406 (($ $) 172 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 171 (-3988 (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-941)) (|has| |#1| (-1177)) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-38 (-401 (-553)))))))) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 153 (|has| |#1| (-357)))) (-2508 (($ (-630 $)) 150 (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357)))) (-3355 (((-412 $) $) 164 (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 161 (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) 98)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 155 (|has| |#1| (-357)))) (-2743 (($ $) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) 157 (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) 107) (($ $ $) 84 (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 158 (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) 92 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155) (-757)) 91 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-630 (-1155))) 90 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155)) 89 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-757)) 87 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-3872 (((-401 (-553)) $) 67)) (-2414 (($ $) 135 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 124 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 134 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 126 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 50 (|has| |#1| (-169))) (($ |#2|) 184) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-4010 ((|#1| $) 105)) (-2447 (($ $) 144 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 132 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-2425 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 142 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 130 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 129 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 140 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 128 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 139 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 127 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) 96 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155) (-757)) 95 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-630 (-1155))) 94 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-1155)) 93 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (($ $ (-757)) 88 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357))) (($ $ $) 170 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 169 (|has| |#1| (-357))) (($ $ $) 147 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 118 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-1221 |#1| |#2|) (-137) (-1031) (-1198 |t#1|)) (T -1221)) -((-3872 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1198 *3)) (-5 *2 (-401 (-553))))) (-3587 (*1 *1 *2 *3) (-12 (-5 *2 (-401 (-553))) (-4 *4 (-1031)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1198 *4)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1198 *3)) (-5 *2 (-401 (-553))))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1198 *3)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1198 *3)))) (-1733 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1198 *3))))) -(-13 (-1219 |t#1|) (-1020 |t#2|) (-603 |t#2|) (-10 -8 (-15 -3587 ($ (-401 (-553)) |t#2|)) (-15 -1611 ((-401 (-553)) $)) (-15 -1656 (|t#2| $)) (-15 -3872 ((-401 (-553)) $)) (-15 -3575 (|t#2| $)) (-15 -1733 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-553))) . T) ((-25) . T) ((-38 #1=(-401 (-553))) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-553)))) ((-94) |has| |#1| (-38 (-401 (-553)))) ((-101) . T) ((-110 #1# #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 |#2|) . T) ((-603 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-553)))) ((-280 $ $) |has| (-401 (-553)) (-1091)) ((-284) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-486) |has| |#1| (-38 (-401 (-553)))) ((-545) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-633 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357))) ((-712) . T) ((-882 (-1155)) -12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155)))) ((-955 |#1| #0# (-1061)) . T) ((-902) |has| |#1| (-357)) ((-984) |has| |#1| (-38 (-401 (-553)))) ((-1020 |#2|) . T) ((-1037 #1#) -3988 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-553))))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1177) |has| |#1| (-38 (-401 (-553)))) ((-1180) |has| |#1| (-38 (-401 (-553)))) ((-1196) |has| |#1| (-357)) ((-1216 |#1| #0#) . T) ((-1219 |#1|) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 96)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) 106) (($ $ (-401 (-553)) (-401 (-553))) 108)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) 51)) (-2380 (($ $) 180 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 156 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) 176 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 152 (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) 61)) (-2403 (($ $) 184 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 160 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL)) (-2707 ((|#2| $) NIL)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) 79)) (-1611 (((-401 (-553)) $) 13)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-3587 (($ (-401 (-553)) |#2|) 11)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4008 (((-111) $) 68)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) 103) (((-401 (-553)) $ (-401 (-553))) 104)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) 120) (($ $ (-401 (-553))) 118)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-401 (-553))) 31) (($ $ (-1061) (-401 (-553))) NIL) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) 115)) (-2366 (($ $) 150 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1656 ((|#2| $) 12)) (-1733 (((-3 |#2| "failed") $) 41)) (-3575 ((|#2| $) 42)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) 93 (|has| |#1| (-357)))) (-3406 (($ $) 135 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 140 (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177)))))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) 112)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) 148 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) 100) (($ $ $) 86 (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) 127 (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-3872 (((-401 (-553)) $) 16)) (-2414 (($ $) 186 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 162 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 182 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 158 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 178 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 154 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 110)) (-3110 (((-845) $) NIL) (($ (-553)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-401 (-553))) 128 (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) 99)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) 117)) (-4010 ((|#1| $) 98)) (-2447 (($ $) 192 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 168 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) 188 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 164 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 196 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 172 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 198 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 174 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 194 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 170 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 190 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 166 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 21 T CONST)) (-1997 (($) 17 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1617 (((-111) $ $) 66)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 92 (|has| |#1| (-357)))) (-1711 (($ $) 131) (($ $ $) 72)) (-1700 (($ $ $) 70)) (** (($ $ (-903)) NIL) (($ $ (-757)) 76) (($ $ (-553)) 145 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 146 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1222 |#1| |#2|) (-1221 |#1| |#2|) (-1031) (-1198 |#1|)) (T -1222)) -NIL -(-1221 |#1| |#2|) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 11)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) NIL (|has| |#1| (-545)))) (-1728 (($ $ (-401 (-553))) NIL) (($ $ (-401 (-553)) (-401 (-553))) NIL)) (-2140 (((-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|))) $) NIL)) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-1536 (($ $) NIL (|has| |#1| (-357)))) (-2708 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4349 (((-111) $ $) NIL (|has| |#1| (-357)))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-757) (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#1|)))) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-1202 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1230 |#1| |#2| |#3|) "failed") $) 22)) (-2707 (((-1202 |#1| |#2| |#3|) $) NIL) (((-1230 |#1| |#2| |#3|) $) NIL)) (-3973 (($ $ $) NIL (|has| |#1| (-357)))) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1611 (((-401 (-553)) $) 57)) (-3952 (($ $ $) NIL (|has| |#1| (-357)))) (-3587 (($ (-401 (-553)) (-1202 |#1| |#2| |#3|)) NIL)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) NIL (|has| |#1| (-357)))) (-3119 (((-111) $) NIL (|has| |#1| (-357)))) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-401 (-553)) $) NIL) (((-401 (-553)) $ (-401 (-553))) NIL)) (-1848 (((-111) $) NIL)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) NIL) (($ $ (-401 (-553))) NIL)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-401 (-553))) 30) (($ $ (-1061) (-401 (-553))) NIL) (($ $ (-630 (-1061)) (-630 (-401 (-553)))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-2471 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1656 (((-1202 |#1| |#2| |#3|) $) 60)) (-1733 (((-3 (-1202 |#1| |#2| |#3|) "failed") $) NIL)) (-3575 (((-1202 |#1| |#2| |#3|) $) NIL)) (-1735 (((-1137) $) NIL)) (-3610 (($ $) NIL (|has| |#1| (-357)))) (-3406 (($ $) 39 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) NIL (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 40 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) NIL (|has| |#1| (-357)))) (-2508 (($ (-630 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3355 (((-412 $) $) NIL (|has| |#1| (-357)))) (-2936 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) NIL (|has| |#1| (-357)))) (-3089 (($ $ (-401 (-553))) NIL)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-1572 (((-3 (-630 $) "failed") (-630 $) $) NIL (|has| |#1| (-357)))) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))))) (-3384 (((-757) $) NIL (|has| |#1| (-357)))) (-2046 ((|#1| $ (-401 (-553))) NIL) (($ $ $) NIL (|has| (-401 (-553)) (-1091)))) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) NIL (|has| |#1| (-357)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $ (-1234 |#2|)) 38)) (-3872 (((-401 (-553)) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) NIL)) (-3110 (((-845) $) 89) (($ (-553)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1202 |#1| |#2| |#3|)) 16) (($ (-1230 |#1| |#2| |#3|)) 17) (($ (-1234 |#2|)) 36) (($ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545)))) (-1624 ((|#1| $ (-401 (-553))) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 12)) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-401 (-553))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-553))))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 32 T CONST)) (-1997 (($) 26 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-553)) |#1|))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 34)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ (-553)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1202 |#1| |#2| |#3|)) (-1020 (-1230 |#1| |#2| |#3|)) (-603 (-1234 |#2|)) (-10 -8 (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -1223)) -((-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1221 |#1| (-1202 |#1| |#2| |#3|)) (-1020 (-1230 |#1| |#2| |#3|)) (-603 (-1234 |#2|)) (-10 -8 (-15 -1330 ($ $ (-1234 |#2|))) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 34)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL)) (-1968 (($ $) NIL)) (-2028 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 (-553) "failed") $) NIL (|has| (-1223 |#2| |#3| |#4|) (-1020 (-553)))) (((-3 (-401 (-553)) "failed") $) NIL (|has| (-1223 |#2| |#3| |#4|) (-1020 (-401 (-553))))) (((-3 (-1223 |#2| |#3| |#4|) "failed") $) 20)) (-2707 (((-553) $) NIL (|has| (-1223 |#2| |#3| |#4|) (-1020 (-553)))) (((-401 (-553)) $) NIL (|has| (-1223 |#2| |#3| |#4|) (-1020 (-401 (-553))))) (((-1223 |#2| |#3| |#4|) $) NIL)) (-3678 (($ $) 35)) (-2982 (((-3 $ "failed") $) 25)) (-1655 (($ $) NIL (|has| (-1223 |#2| |#3| |#4|) (-445)))) (-2686 (($ $ (-1223 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|) $) NIL)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) 11)) (-1298 (((-111) $) NIL)) (-3481 (($ (-1223 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) 23)) (-2423 (((-313 |#2| |#3| |#4|) $) NIL)) (-2241 (($ (-1 (-313 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) $) NIL)) (-1482 (($ (-1 (-1223 |#2| |#3| |#4|) (-1223 |#2| |#3| |#4|)) $) NIL)) (-2561 (((-3 (-826 |#2|) "failed") $) 75)) (-3644 (($ $) NIL)) (-3655 (((-1223 |#2| |#3| |#4|) $) 18)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3623 (((-111) $) NIL)) (-3633 (((-1223 |#2| |#3| |#4|) $) NIL)) (-3929 (((-3 $ "failed") $ (-1223 |#2| |#3| |#4|)) NIL (|has| (-1223 |#2| |#3| |#4|) (-545))) (((-3 $ "failed") $ $) NIL)) (-1667 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1223 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-630 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#2|)))))) (|:| |%type| (-1137))) "failed") $) 58)) (-3872 (((-313 |#2| |#3| |#4|) $) 14)) (-4198 (((-1223 |#2| |#3| |#4|) $) NIL (|has| (-1223 |#2| |#3| |#4|) (-445)))) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ (-1223 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-401 (-553))) NIL (-3988 (|has| (-1223 |#2| |#3| |#4|) (-38 (-401 (-553)))) (|has| (-1223 |#2| |#3| |#4|) (-1020 (-401 (-553))))))) (-3987 (((-630 (-1223 |#2| |#3| |#4|)) $) NIL)) (-1624 (((-1223 |#2| |#3| |#4|) $ (-313 |#2| |#3| |#4|)) NIL)) (-2941 (((-3 $ "failed") $) NIL (|has| (-1223 |#2| |#3| |#4|) (-142)))) (-1999 (((-757)) NIL)) (-2599 (($ $ $ (-757)) NIL (|has| (-1223 |#2| |#3| |#4|) (-169)))) (-1639 (((-111) $ $) NIL)) (-1988 (($) 63 T CONST)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ (-1223 |#2| |#3| |#4|)) NIL (|has| (-1223 |#2| |#3| |#4|) (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ (-1223 |#2| |#3| |#4|)) NIL) (($ (-1223 |#2| |#3| |#4|) $) NIL) (($ (-401 (-553)) $) NIL (|has| (-1223 |#2| |#3| |#4|) (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| (-1223 |#2| |#3| |#4|) (-38 (-401 (-553))))))) -(((-1224 |#1| |#2| |#3| |#4|) (-13 (-320 (-1223 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-545) (-10 -8 (-15 -2561 ((-3 (-826 |#2|) "failed") $)) (-15 -1667 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1223 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-630 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#2|)))))) (|:| |%type| (-1137))) "failed") $)))) (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445)) (-13 (-27) (-1177) (-424 |#1|)) (-1155) |#2|) (T -1224)) -((-2561 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) (-5 *2 (-826 *4)) (-5 *1 (-1224 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1177) (-424 *3))) (-14 *5 (-1155)) (-14 *6 *4))) (-1667 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1223 *4 *5 *6)) (|:| |%expon| (-313 *4 *5 *6)) (|:| |%expTerms| (-630 (-2 (|:| |k| (-401 (-553))) (|:| |c| *4)))))) (|:| |%type| (-1137)))) (-5 *1 (-1224 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1177) (-424 *3))) (-14 *5 (-1155)) (-14 *6 *4)))) -(-13 (-320 (-1223 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-545) (-10 -8 (-15 -2561 ((-3 (-826 |#2|) "failed") $)) (-15 -1667 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1223 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-630 (-2 (|:| |k| (-401 (-553))) (|:| |c| |#2|)))))) (|:| |%type| (-1137))) "failed") $)))) -((-2821 ((|#2| $) 29)) (-2135 ((|#2| $) 18)) (-1787 (($ $) 36)) (-3945 (($ $ (-553)) 64)) (-1511 (((-111) $ (-757)) 33)) (-2884 ((|#2| $ |#2|) 61)) (-3357 ((|#2| $ |#2|) 59)) (-1490 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2909 (($ $ (-630 $)) 60)) (-2123 ((|#2| $) 17)) (-2616 (($ $) NIL) (($ $ (-757)) 42)) (-3167 (((-630 $) $) 26)) (-2284 (((-111) $ $) 50)) (-3703 (((-111) $ (-757)) 32)) (-3786 (((-111) $ (-757)) 31)) (-3862 (((-111) $) 28)) (-2594 ((|#2| $) 24) (($ $ (-757)) 46)) (-2046 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1510 (((-111) $) 22)) (-2383 (($ $) 39)) (-1566 (($ $) 65)) (-2586 (((-757) $) 41)) (-4321 (($ $) 40)) (-4325 (($ $ $) 58) (($ |#2| $) NIL)) (-2860 (((-630 $) $) 27)) (-1617 (((-111) $ $) 48)) (-2563 (((-757) $) 35))) -(((-1225 |#1| |#2|) (-10 -8 (-15 -3945 (|#1| |#1| (-553))) (-15 -1490 (|#2| |#1| "last" |#2|)) (-15 -3357 (|#2| |#1| |#2|)) (-15 -1490 (|#1| |#1| "rest" |#1|)) (-15 -1490 (|#2| |#1| "first" |#2|)) (-15 -1566 (|#1| |#1|)) (-15 -2383 (|#1| |#1|)) (-15 -2586 ((-757) |#1|)) (-15 -4321 (|#1| |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2123 (|#2| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2594 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "last")) (-15 -2594 (|#2| |#1|)) (-15 -2616 (|#1| |#1| (-757))) (-15 -2046 (|#1| |#1| "rest")) (-15 -2616 (|#1| |#1|)) (-15 -2046 (|#2| |#1| "first")) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#1|)) (-15 -2884 (|#2| |#1| |#2|)) (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -2909 (|#1| |#1| (-630 |#1|))) (-15 -2284 ((-111) |#1| |#1|)) (-15 -1510 ((-111) |#1|)) (-15 -2046 (|#2| |#1| "value")) (-15 -2821 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -3167 ((-630 |#1|) |#1|)) (-15 -2860 ((-630 |#1|) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757)))) (-1226 |#2|) (-1192)) (T -1225)) -NIL -(-10 -8 (-15 -3945 (|#1| |#1| (-553))) (-15 -1490 (|#2| |#1| "last" |#2|)) (-15 -3357 (|#2| |#1| |#2|)) (-15 -1490 (|#1| |#1| "rest" |#1|)) (-15 -1490 (|#2| |#1| "first" |#2|)) (-15 -1566 (|#1| |#1|)) (-15 -2383 (|#1| |#1|)) (-15 -2586 ((-757) |#1|)) (-15 -4321 (|#1| |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2123 (|#2| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2594 (|#1| |#1| (-757))) (-15 -2046 (|#2| |#1| "last")) (-15 -2594 (|#2| |#1|)) (-15 -2616 (|#1| |#1| (-757))) (-15 -2046 (|#1| |#1| "rest")) (-15 -2616 (|#1| |#1|)) (-15 -2046 (|#2| |#1| "first")) (-15 -4325 (|#1| |#2| |#1|)) (-15 -4325 (|#1| |#1| |#1|)) (-15 -2884 (|#2| |#1| |#2|)) (-15 -1490 (|#2| |#1| "value" |#2|)) (-15 -2909 (|#1| |#1| (-630 |#1|))) (-15 -2284 ((-111) |#1| |#1|)) (-15 -1510 ((-111) |#1|)) (-15 -2046 (|#2| |#1| "value")) (-15 -2821 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -3167 ((-630 |#1|) |#1|)) (-15 -2860 ((-630 |#1|) |#1|)) (-15 -1617 ((-111) |#1| |#1|)) (-15 -2563 ((-757) |#1|)) (-15 -1511 ((-111) |#1| (-757))) (-15 -3703 ((-111) |#1| (-757))) (-15 -3786 ((-111) |#1| (-757)))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2821 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-1787 (($ $) 67)) (-3945 (($ $ (-553)) 52 (|has| $ (-6 -4370)))) (-1511 (((-111) $ (-757)) 8)) (-2884 ((|#1| $ |#1|) 39 (|has| $ (-6 -4370)))) (-2314 (($ $ $) 56 (|has| $ (-6 -4370)))) (-3357 ((|#1| $ |#1|) 54 (|has| $ (-6 -4370)))) (-3850 ((|#1| $ |#1|) 58 (|has| $ (-6 -4370)))) (-1490 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4370))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4370))) (($ $ "rest" $) 55 (|has| $ (-6 -4370))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4370)))) (-2909 (($ $ (-630 $)) 41 (|has| $ (-6 -4370)))) (-2123 ((|#1| $) 66)) (-3820 (($) 7 T CONST)) (-2616 (($ $) 73) (($ $ (-757)) 71)) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-3167 (((-630 $) $) 50)) (-2284 (((-111) $ $) 42 (|has| |#1| (-1079)))) (-3703 (((-111) $ (-757)) 9)) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35)) (-3786 (((-111) $ (-757)) 10)) (-3698 (((-630 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-2594 ((|#1| $) 70) (($ $ (-757)) 68)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 76) (($ $ (-757)) 74)) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3558 (((-553) $ $) 44)) (-1510 (((-111) $) 46)) (-2383 (($ $) 62)) (-1566 (($ $) 59 (|has| $ (-6 -4370)))) (-2586 (((-757) $) 63)) (-4321 (($ $) 64)) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-1508 (($ $) 13)) (-2269 (($ $ $) 61 (|has| $ (-6 -4370))) (($ $ |#1|) 60 (|has| $ (-6 -4370)))) (-4325 (($ $ $) 78) (($ |#1| $) 77)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-2860 (((-630 $) $) 51)) (-3743 (((-111) $ $) 43 (|has| |#1| (-1079)))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1226 |#1|) (-137) (-1192)) (T -1226)) -((-4325 (*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-4325 (*1 *1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2603 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2046 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) (-2616 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2046 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) (-1787 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-4321 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1192)) (-5 *2 (-757)))) (-2383 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2269 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2269 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-1566 (*1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-3850 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-1490 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-2314 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-1490 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4370)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) (-3357 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-1490 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-553)) (|has| *1 (-6 -4370)) (-4 *1 (-1226 *3)) (-4 *3 (-1192))))) -(-13 (-992 |t#1|) (-10 -8 (-15 -4325 ($ $ $)) (-15 -4325 ($ |t#1| $)) (-15 -2603 (|t#1| $)) (-15 -2046 (|t#1| $ "first")) (-15 -2603 ($ $ (-757))) (-15 -2616 ($ $)) (-15 -2046 ($ $ "rest")) (-15 -2616 ($ $ (-757))) (-15 -2594 (|t#1| $)) (-15 -2046 (|t#1| $ "last")) (-15 -2594 ($ $ (-757))) (-15 -1787 ($ $)) (-15 -2123 (|t#1| $)) (-15 -2135 (|t#1| $)) (-15 -4321 ($ $)) (-15 -2586 ((-757) $)) (-15 -2383 ($ $)) (IF (|has| $ (-6 -4370)) (PROGN (-15 -2269 ($ $ $)) (-15 -2269 ($ $ |t#1|)) (-15 -1566 ($ $)) (-15 -3850 (|t#1| $ |t#1|)) (-15 -1490 (|t#1| $ "first" |t#1|)) (-15 -2314 ($ $ $)) (-15 -1490 ($ $ "rest" $)) (-15 -3357 (|t#1| $ |t#1|)) (-15 -1490 (|t#1| $ "last" |t#1|)) (-15 -3945 ($ $ (-553)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1079)) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-600 (-845)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-482 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-992 |#1|) . T) ((-1079) |has| |#1| (-1079)) ((-1192) . T)) -((-1482 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 (|#4| (-1 |#2| |#1|) |#3|))) (-1031) (-1031) (-1229 |#1|) (-1229 |#2|)) (T -1227)) -((-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) (-4 *2 (-1229 *6)) (-5 *1 (-1227 *5 *6 *4 *2)) (-4 *4 (-1229 *5))))) -(-10 -7 (-15 -1482 (|#4| (-1 |#2| |#1|) |#3|))) -((-3769 (((-111) $) 15)) (-2380 (($ $) 92)) (-2246 (($ $) 68)) (-2357 (($ $) 88)) (-2224 (($ $) 64)) (-2403 (($ $) 96)) (-2268 (($ $) 72)) (-2366 (($ $) 62)) (-2743 (($ $) 60)) (-2414 (($ $) 98)) (-2279 (($ $) 74)) (-2392 (($ $) 94)) (-2257 (($ $) 70)) (-2368 (($ $) 90)) (-2234 (($ $) 66)) (-3110 (((-845) $) 48) (($ (-553)) NIL) (($ (-401 (-553))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2447 (($ $) 104)) (-2313 (($ $) 80)) (-2425 (($ $) 100)) (-2291 (($ $) 76)) (-3791 (($ $) 108)) (-2336 (($ $) 84)) (-2570 (($ $) 110)) (-2346 (($ $) 86)) (-3780 (($ $) 106)) (-2324 (($ $) 82)) (-2435 (($ $) 102)) (-2302 (($ $) 78)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-401 (-553))) 58))) -(((-1228 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-401 (-553)))) (-15 -2246 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -2336 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2392 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2743 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| (-553))) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903))) (-15 -3769 ((-111) |#1|)) (-15 -3110 ((-845) |#1|))) (-1229 |#2|) (-1031)) (T -1228)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-401 (-553)))) (-15 -2246 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -2336 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2392 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2357 (|#1| |#1|)) (-15 -2380 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -2425 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2743 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3110 (|#1| |#2|)) (-15 -3110 (|#1| |#1|)) (-15 -3110 (|#1| (-401 (-553)))) (-15 -3110 (|#1| (-553))) (-15 ** (|#1| |#1| (-757))) (-15 ** (|#1| |#1| (-903))) (-15 -3769 ((-111) |#1|)) (-15 -3110 ((-845) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-3506 (((-630 (-1061)) $) 77)) (-1509 (((-1155) $) 106)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 54 (|has| |#1| (-545)))) (-1968 (($ $) 55 (|has| |#1| (-545)))) (-2028 (((-111) $) 57 (|has| |#1| (-545)))) (-1728 (($ $ (-757)) 101) (($ $ (-757) (-757)) 100)) (-2140 (((-1135 (-2 (|:| |k| (-757)) (|:| |c| |#1|))) $) 108)) (-2380 (($ $) 138 (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) 121 (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 120 (|has| |#1| (-38 (-401 (-553)))))) (-2357 (($ $) 137 (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) 122 (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-1135 (-2 (|:| |k| (-757)) (|:| |c| |#1|)))) 158) (($ (-1135 |#1|)) 156)) (-2403 (($ $) 136 (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) 123 (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) 17 T CONST)) (-3678 (($ $) 63)) (-2982 (((-3 $ "failed") $) 33)) (-3262 (($ $) 155)) (-4219 (((-934 |#1|) $ (-757)) 153) (((-934 |#1|) $ (-757) (-757)) 152)) (-4008 (((-111) $) 76)) (-3996 (($) 148 (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-757) $) 103) (((-757) $ (-757)) 102)) (-1848 (((-111) $) 31)) (-2406 (($ $ (-553)) 119 (|has| |#1| (-38 (-401 (-553)))))) (-2166 (($ $ (-903)) 104)) (-2341 (($ (-1 |#1| (-553)) $) 154)) (-1298 (((-111) $) 65)) (-3481 (($ |#1| (-757)) 64) (($ $ (-1061) (-757)) 79) (($ $ (-630 (-1061)) (-630 (-757))) 78)) (-1482 (($ (-1 |#1| |#1|) $) 66)) (-2366 (($ $) 145 (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) 68)) (-3655 ((|#1| $) 69)) (-1735 (((-1137) $) 9)) (-3406 (($ $) 150 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 149 (-3988 (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-941)) (|has| |#1| (-1177)) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-38 (-401 (-553)))))))) (-2786 (((-1099) $) 10)) (-3089 (($ $ (-757)) 98)) (-3929 (((-3 $ "failed") $ $) 53 (|has| |#1| (-545)))) (-2743 (($ $) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2356 (((-1135 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-757)))))) (-2046 ((|#1| $ (-757)) 107) (($ $ $) 84 (|has| (-757) (-1091)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) 92 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-1155) (-757)) 91 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-630 (-1155))) 90 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-1155)) 89 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-757)) 87 (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (-3872 (((-757) $) 67)) (-2414 (($ $) 135 (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) 124 (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) 134 (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) 125 (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) 133 (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) 126 (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 75)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ (-401 (-553))) 60 (|has| |#1| (-38 (-401 (-553))))) (($ $) 52 (|has| |#1| (-545))) (($ |#1|) 50 (|has| |#1| (-169)))) (-3987 (((-1135 |#1|) $) 157)) (-1624 ((|#1| $ (-757)) 62)) (-2941 (((-3 $ "failed") $) 51 (|has| |#1| (-142)))) (-1999 (((-757)) 28)) (-4010 ((|#1| $) 105)) (-2447 (($ $) 144 (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) 132 (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) 56 (|has| |#1| (-545)))) (-2425 (($ $) 143 (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) 131 (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) 142 (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) 130 (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-757)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-757)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) 141 (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) 129 (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) 140 (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) 128 (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) 139 (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) 127 (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) 96 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-1155) (-757)) 95 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-630 (-1155))) 94 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-1155)) 93 (-12 (|has| |#1| (-882 (-1155))) (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (($ $ (-757)) 88 (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 61 (|has| |#1| (-357)))) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ |#1|) 151 (|has| |#1| (-357))) (($ $ $) 147 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 118 (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-401 (-553)) $) 59 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) 58 (|has| |#1| (-38 (-401 (-553))))))) -(((-1229 |#1|) (-137) (-1031)) (T -1229)) -((-1779 (*1 *1 *2) (-12 (-5 *2 (-1135 (-2 (|:| |k| (-757)) (|:| |c| *3)))) (-4 *3 (-1031)) (-4 *1 (-1229 *3)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1031)) (-5 *2 (-1135 *3)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-4 *1 (-1229 *3)))) (-3262 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1031)))) (-2341 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-553))) (-4 *1 (-1229 *3)) (-4 *3 (-1031)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-1229 *4)) (-4 *4 (-1031)) (-5 *2 (-934 *4)))) (-4219 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-757)) (-4 *1 (-1229 *4)) (-4 *4 (-1031)) (-5 *2 (-934 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) (-3406 (*1 *1 *1 *2) (-3988 (-12 (-5 *2 (-1155)) (-4 *1 (-1229 *3)) (-4 *3 (-1031)) (-12 (-4 *3 (-29 (-553))) (-4 *3 (-941)) (-4 *3 (-1177)) (-4 *3 (-38 (-401 (-553)))))) (-12 (-5 *2 (-1155)) (-4 *1 (-1229 *3)) (-4 *3 (-1031)) (-12 (|has| *3 (-15 -3506 ((-630 *2) *3))) (|has| *3 (-15 -3406 (*3 *3 *2))) (-4 *3 (-38 (-401 (-553))))))))) -(-13 (-1216 |t#1| (-757)) (-10 -8 (-15 -1779 ($ (-1135 (-2 (|:| |k| (-757)) (|:| |c| |t#1|))))) (-15 -3987 ((-1135 |t#1|) $)) (-15 -1779 ($ (-1135 |t#1|))) (-15 -3262 ($ $)) (-15 -2341 ($ (-1 |t#1| (-553)) $)) (-15 -4219 ((-934 |t#1|) $ (-757))) (-15 -4219 ((-934 |t#1|) $ (-757) (-757))) (IF (|has| |t#1| (-357)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-553)))) (PROGN (-15 -3406 ($ $)) (IF (|has| |t#1| (-15 -3406 (|t#1| |t#1| (-1155)))) (IF (|has| |t#1| (-15 -3506 ((-630 (-1155)) |t#1|))) (-15 -3406 ($ $ (-1155))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1177)) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-29 (-553))) (-15 -3406 ($ $ (-1155))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-984)) (-6 (-1177))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-757)) . T) ((-25) . T) ((-38 #1=(-401 (-553))) |has| |#1| (-38 (-401 (-553)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-545)) ((-35) |has| |#1| (-38 (-401 (-553)))) ((-94) |has| |#1| (-38 (-401 (-553)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-553)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-603 #1#) |has| |#1| (-38 (-401 (-553)))) ((-603 (-553)) . T) ((-603 |#1|) |has| |#1| (-169)) ((-603 $) |has| |#1| (-545)) ((-600 (-845)) . T) ((-169) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-757) |#1|))) ((-278) |has| |#1| (-38 (-401 (-553)))) ((-280 $ $) |has| (-757) (-1091)) ((-284) |has| |#1| (-545)) ((-486) |has| |#1| (-38 (-401 (-553)))) ((-545) |has| |#1| (-545)) ((-633 #1#) |has| |#1| (-38 (-401 (-553)))) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #1#) |has| |#1| (-38 (-401 (-553)))) ((-703 |#1|) |has| |#1| (-169)) ((-703 $) |has| |#1| (-545)) ((-712) . T) ((-882 (-1155)) -12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155)))) ((-955 |#1| #0# (-1061)) . T) ((-984) |has| |#1| (-38 (-401 (-553)))) ((-1037 #1#) |has| |#1| (-38 (-401 (-553)))) ((-1037 |#1|) . T) ((-1037 $) -3988 (|has| |#1| (-545)) (|has| |#1| (-169))) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1177) |has| |#1| (-38 (-401 (-553)))) ((-1180) |has| |#1| (-38 (-401 (-553)))) ((-1216 |#1| #0#) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-3506 (((-630 (-1061)) $) NIL)) (-1509 (((-1155) $) 87)) (-2704 (((-1211 |#2| |#1|) $ (-757)) 73)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-1968 (($ $) NIL (|has| |#1| (-545)))) (-2028 (((-111) $) 137 (|has| |#1| (-545)))) (-1728 (($ $ (-757)) 122) (($ $ (-757) (-757)) 124)) (-2140 (((-1135 (-2 (|:| |k| (-757)) (|:| |c| |#1|))) $) 42)) (-2380 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2910 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2357 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1779 (($ (-1135 (-2 (|:| |k| (-757)) (|:| |c| |#1|)))) 53) (($ (-1135 |#1|)) NIL)) (-2403 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2268 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3820 (($) NIL T CONST)) (-3591 (($ $) 128)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3262 (($ $) 135)) (-4219 (((-934 |#1|) $ (-757)) 63) (((-934 |#1|) $ (-757) (-757)) 65)) (-4008 (((-111) $) NIL)) (-3996 (($) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2968 (((-757) $) NIL) (((-757) $ (-757)) NIL)) (-1848 (((-111) $) NIL)) (-2535 (($ $) 112)) (-2406 (($ $ (-553)) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1762 (($ (-553) (-553) $) 130)) (-2166 (($ $ (-903)) 134)) (-2341 (($ (-1 |#1| (-553)) $) 106)) (-1298 (((-111) $) NIL)) (-3481 (($ |#1| (-757)) 15) (($ $ (-1061) (-757)) NIL) (($ $ (-630 (-1061)) (-630 (-757))) NIL)) (-1482 (($ (-1 |#1| |#1|) $) 94)) (-2366 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3644 (($ $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-3620 (($ $) 110)) (-2677 (($ $) 108)) (-3942 (($ (-553) (-553) $) 132)) (-3406 (($ $) 145 (|has| |#1| (-38 (-401 (-553))))) (($ $ (-1155)) 151 (-3988 (-12 (|has| |#1| (-15 -3406 (|#1| |#1| (-1155)))) (|has| |#1| (-15 -3506 ((-630 (-1155)) |#1|))) (|has| |#1| (-38 (-401 (-553))))) (-12 (|has| |#1| (-29 (-553))) (|has| |#1| (-38 (-401 (-553)))) (|has| |#1| (-941)) (|has| |#1| (-1177))))) (($ $ (-1234 |#2|)) 146 (|has| |#1| (-38 (-401 (-553)))))) (-2786 (((-1099) $) NIL)) (-2438 (($ $ (-553) (-553)) 116)) (-3089 (($ $ (-757)) 118)) (-3929 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-2743 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1377 (($ $) 114)) (-2356 (((-1135 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-757)))))) (-2046 ((|#1| $ (-757)) 91) (($ $ $) 126 (|has| (-757) (-1091)))) (-1330 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) 103 (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $ (-1234 |#2|)) 99)) (-3872 (((-757) $) NIL)) (-2414 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2279 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2392 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2257 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2234 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2980 (($ $) 120)) (-3110 (((-845) $) NIL) (($ (-553)) 24) (($ (-401 (-553))) 143 (|has| |#1| (-38 (-401 (-553))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1211 |#2| |#1|)) 80) (($ (-1234 |#2|)) 20)) (-3987 (((-1135 |#1|) $) NIL)) (-1624 ((|#1| $ (-757)) 90)) (-2941 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-1999 (((-757)) NIL)) (-4010 ((|#1| $) 88)) (-2447 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2313 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1639 (((-111) $ $) NIL (|has| |#1| (-545)))) (-2425 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2336 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-4327 ((|#1| $ (-757)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-757)))) (|has| |#1| (-15 -3110 (|#1| (-1155))))))) (-2570 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2346 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2435 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-2302 (($ $) NIL (|has| |#1| (-38 (-401 (-553)))))) (-1988 (($) 17 T CONST)) (-1997 (($) 13 T CONST)) (-1780 (($ $ (-630 (-1155)) (-630 (-757))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155) (-757)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-630 (-1155))) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-1155)) NIL (-12 (|has| |#1| (-15 * (|#1| (-757) |#1|))) (|has| |#1| (-882 (-1155))))) (($ $ (-757)) NIL (|has| |#1| (-15 * (|#1| (-757) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-757) |#1|))))) (-1617 (((-111) $ $) NIL)) (-1723 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) 102)) (-1700 (($ $ $) 18)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL) (($ $ |#1|) 140 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553)))))) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-401 (-553)) $) NIL (|has| |#1| (-38 (-401 (-553))))) (($ $ (-401 (-553))) NIL (|has| |#1| (-38 (-401 (-553))))))) -(((-1230 |#1| |#2| |#3|) (-13 (-1229 |#1|) (-10 -8 (-15 -3110 ($ (-1211 |#2| |#1|))) (-15 -2704 ((-1211 |#2| |#1|) $ (-757))) (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (-15 -2677 ($ $)) (-15 -3620 ($ $)) (-15 -2535 ($ $)) (-15 -1377 ($ $)) (-15 -2438 ($ $ (-553) (-553))) (-15 -3591 ($ $)) (-15 -1762 ($ (-553) (-553) $)) (-15 -3942 ($ (-553) (-553) $)) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) (-1031) (-1155) |#1|) (T -1230)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-1211 *4 *3)) (-4 *3 (-1031)) (-14 *4 (-1155)) (-14 *5 *3) (-5 *1 (-1230 *3 *4 *5)))) (-2704 (*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1211 *5 *4)) (-5 *1 (-1230 *4 *5 *6)) (-4 *4 (-1031)) (-14 *5 (-1155)) (-14 *6 *4))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) (-14 *5 *3))) (-2677 (*1 *1 *1) (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) (-14 *4 *2))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) (-14 *4 *2))) (-2535 (*1 *1 *1) (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) (-14 *4 *2))) (-1377 (*1 *1 *1) (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) (-14 *4 *2))) (-2438 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) (-14 *4 (-1155)) (-14 *5 *3))) (-3591 (*1 *1 *1) (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) (-14 *4 *2))) (-1762 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) (-14 *4 (-1155)) (-14 *5 *3))) (-3942 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) (-14 *4 (-1155)) (-14 *5 *3))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(-13 (-1229 |#1|) (-10 -8 (-15 -3110 ($ (-1211 |#2| |#1|))) (-15 -2704 ((-1211 |#2| |#1|) $ (-757))) (-15 -3110 ($ (-1234 |#2|))) (-15 -1330 ($ $ (-1234 |#2|))) (-15 -2677 ($ $)) (-15 -3620 ($ $)) (-15 -2535 ($ $)) (-15 -1377 ($ $)) (-15 -2438 ($ $ (-553) (-553))) (-15 -3591 ($ $)) (-15 -1762 ($ (-553) (-553) $)) (-15 -3942 ($ (-553) (-553) $)) (IF (|has| |#1| (-38 (-401 (-553)))) (-15 -3406 ($ $ (-1234 |#2|))) |%noBranch|))) -((-4121 (((-1 (-1135 |#1|) (-630 (-1135 |#1|))) (-1 |#2| (-630 |#2|))) 24)) (-3599 (((-1 (-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4115 (((-1 (-1135 |#1|) (-1135 |#1|)) (-1 |#2| |#2|)) 13)) (-3581 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1979 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4156 ((|#2| (-1 |#2| (-630 |#2|)) (-630 |#1|)) 54)) (-1746 (((-630 |#2|) (-630 |#1|) (-630 (-1 |#2| (-630 |#2|)))) 61)) (-4025 ((|#2| |#2| |#2|) 43))) -(((-1231 |#1| |#2|) (-10 -7 (-15 -4115 ((-1 (-1135 |#1|) (-1135 |#1|)) (-1 |#2| |#2|))) (-15 -3599 ((-1 (-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4121 ((-1 (-1135 |#1|) (-630 (-1135 |#1|))) (-1 |#2| (-630 |#2|)))) (-15 -4025 (|#2| |#2| |#2|)) (-15 -1979 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3581 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#2| (-1 |#2| (-630 |#2|)) (-630 |#1|))) (-15 -1746 ((-630 |#2|) (-630 |#1|) (-630 (-1 |#2| (-630 |#2|)))))) (-38 (-401 (-553))) (-1229 |#1|)) (T -1231)) -((-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 (-1 *6 (-630 *6)))) (-4 *5 (-38 (-401 (-553)))) (-4 *6 (-1229 *5)) (-5 *2 (-630 *6)) (-5 *1 (-1231 *5 *6)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-630 *2))) (-5 *4 (-630 *5)) (-4 *5 (-38 (-401 (-553)))) (-4 *2 (-1229 *5)) (-5 *1 (-1231 *5 *2)))) (-3581 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-1231 *4 *2)) (-4 *4 (-38 (-401 (-553)))))) (-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-1231 *4 *2)) (-4 *4 (-38 (-401 (-553)))))) (-4025 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1229 *3)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-630 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-38 (-401 (-553)))) (-5 *2 (-1 (-1135 *4) (-630 (-1135 *4)))) (-5 *1 (-1231 *4 *5)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-38 (-401 (-553)))) (-5 *2 (-1 (-1135 *4) (-1135 *4) (-1135 *4))) (-5 *1 (-1231 *4 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-38 (-401 (-553)))) (-5 *2 (-1 (-1135 *4) (-1135 *4))) (-5 *1 (-1231 *4 *5))))) -(-10 -7 (-15 -4115 ((-1 (-1135 |#1|) (-1135 |#1|)) (-1 |#2| |#2|))) (-15 -3599 ((-1 (-1135 |#1|) (-1135 |#1|) (-1135 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4121 ((-1 (-1135 |#1|) (-630 (-1135 |#1|))) (-1 |#2| (-630 |#2|)))) (-15 -4025 (|#2| |#2| |#2|)) (-15 -1979 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3581 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#2| (-1 |#2| (-630 |#2|)) (-630 |#1|))) (-15 -1746 ((-630 |#2|) (-630 |#1|) (-630 (-1 |#2| (-630 |#2|)))))) -((-2558 ((|#2| |#4| (-757)) 30)) (-3346 ((|#4| |#2|) 25)) (-3577 ((|#4| (-401 |#2|)) 52 (|has| |#1| (-545)))) (-2230 (((-1 |#4| (-630 |#4|)) |#3|) 46))) -(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3346 (|#4| |#2|)) (-15 -2558 (|#2| |#4| (-757))) (-15 -2230 ((-1 |#4| (-630 |#4|)) |#3|)) (IF (|has| |#1| (-545)) (-15 -3577 (|#4| (-401 |#2|))) |%noBranch|)) (-1031) (-1214 |#1|) (-641 |#2|) (-1229 |#1|)) (T -1232)) -((-3577 (*1 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-545)) (-4 *4 (-1031)) (-4 *2 (-1229 *4)) (-5 *1 (-1232 *4 *5 *6 *2)) (-4 *6 (-641 *5)))) (-2230 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *5 (-1214 *4)) (-5 *2 (-1 *6 (-630 *6))) (-5 *1 (-1232 *4 *5 *3 *6)) (-4 *3 (-641 *5)) (-4 *6 (-1229 *4)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *4 (-757)) (-4 *5 (-1031)) (-4 *2 (-1214 *5)) (-5 *1 (-1232 *5 *2 *6 *3)) (-4 *6 (-641 *2)) (-4 *3 (-1229 *5)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-1031)) (-4 *3 (-1214 *4)) (-4 *2 (-1229 *4)) (-5 *1 (-1232 *4 *3 *5 *2)) (-4 *5 (-641 *3))))) -(-10 -7 (-15 -3346 (|#4| |#2|)) (-15 -2558 (|#2| |#4| (-757))) (-15 -2230 ((-1 |#4| (-630 |#4|)) |#3|)) (IF (|has| |#1| (-545)) (-15 -3577 (|#4| (-401 |#2|))) |%noBranch|)) -NIL -(((-1233) (-137)) (T -1233)) -NIL -(-13 (-10 -7 (-6 -4289))) -((-3096 (((-111) $ $) NIL)) (-1509 (((-1155)) 12)) (-1735 (((-1137) $) 17)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 11) (((-1155) $) 8)) (-1617 (((-111) $ $) 14))) -(((-1234 |#1|) (-13 (-1079) (-600 (-1155)) (-10 -8 (-15 -3110 ((-1155) $)) (-15 -1509 ((-1155))))) (-1155)) (T -1234)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1234 *3)) (-14 *3 *2))) (-1509 (*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1234 *3)) (-14 *3 *2)))) -(-13 (-1079) (-600 (-1155)) (-10 -8 (-15 -3110 ((-1155) $)) (-15 -1509 ((-1155))))) -((-2247 (($ (-757)) 18)) (-1903 (((-674 |#2|) $ $) 40)) (-3312 ((|#2| $) 48)) (-1899 ((|#2| $) 47)) (-1449 ((|#2| $ $) 35)) (-2533 (($ $ $) 44)) (-1711 (($ $) 22) (($ $ $) 28)) (-1700 (($ $ $) 15)) (* (($ (-553) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1235 |#1| |#2|) (-10 -8 (-15 -3312 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -1903 ((-674 |#2|) |#1| |#1|)) (-15 -1449 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2247 (|#1| (-757))) (-15 -1700 (|#1| |#1| |#1|))) (-1236 |#2|) (-1192)) (T -1235)) -NIL -(-10 -8 (-15 -3312 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -1903 ((-674 |#2|) |#1| |#1|)) (-15 -1449 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-553) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2247 (|#1| (-757))) (-15 -1700 (|#1| |#1| |#1|))) -((-3096 (((-111) $ $) 19 (|has| |#1| (-1079)))) (-2247 (($ (-757)) 112 (|has| |#1| (-23)))) (-1683 (((-1243) $ (-553) (-553)) 40 (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4370))) (($ $) 88 (-12 (|has| |#1| (-833)) (|has| $ (-6 -4370))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) 8)) (-1490 ((|#1| $ (-553) |#1|) 52 (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) 58 (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4369)))) (-3820 (($) 7 T CONST)) (-1467 (($ $) 90 (|has| $ (-6 -4370)))) (-3239 (($ $) 100)) (-2638 (($ $) 78 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2575 (($ |#1| $) 77 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) 53 (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) 51)) (-1478 (((-553) (-1 (-111) |#1|) $) 97) (((-553) |#1| $) 96 (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) 95 (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) 30 (|has| $ (-6 -4369)))) (-1903 (((-674 |#1|) $ $) 105 (|has| |#1| (-1031)))) (-3202 (($ (-757) |#1|) 69)) (-3703 (((-111) $ (-757)) 9)) (-2800 (((-553) $) 43 (|has| (-553) (-833)))) (-1824 (($ $ $) 87 (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2958 (((-553) $) 44 (|has| (-553) (-833)))) (-1975 (($ $ $) 86 (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3312 ((|#1| $) 102 (-12 (|has| |#1| (-1031)) (|has| |#1| (-984))))) (-3786 (((-111) $ (-757)) 10)) (-1899 ((|#1| $) 103 (-12 (|has| |#1| (-1031)) (|has| |#1| (-984))))) (-1735 (((-1137) $) 22 (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) 60) (($ $ $ (-553)) 59)) (-1901 (((-630 (-553)) $) 46)) (-3594 (((-111) (-553) $) 47)) (-2786 (((-1099) $) 21 (|has| |#1| (-1079)))) (-2603 ((|#1| $) 42 (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-2858 (($ $ |#1|) 41 (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) 14)) (-2053 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) 48)) (-3586 (((-111) $) 11)) (-3222 (($) 12)) (-2046 ((|#1| $ (-553) |#1|) 50) ((|#1| $ (-553)) 49) (($ $ (-1205 (-553))) 63)) (-1449 ((|#1| $ $) 106 (|has| |#1| (-1031)))) (-2005 (($ $ (-553)) 62) (($ $ (-1205 (-553))) 61)) (-2533 (($ $ $) 104 (|has| |#1| (-1031)))) (-2796 (((-757) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4369))) (((-757) |#1| $) 28 (-12 (|has| |#1| (-1079)) (|has| $ (-6 -4369))))) (-2530 (($ $ $ (-553)) 91 (|has| $ (-6 -4370)))) (-1508 (($ $) 13)) (-1524 (((-529) $) 79 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 70)) (-4325 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-630 $)) 65)) (-3110 (((-845) $) 18 (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) 84 (|has| |#1| (-833)))) (-1648 (((-111) $ $) 83 (|has| |#1| (-833)))) (-1617 (((-111) $ $) 20 (|has| |#1| (-1079)))) (-1659 (((-111) $ $) 85 (|has| |#1| (-833)))) (-1636 (((-111) $ $) 82 (|has| |#1| (-833)))) (-1711 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1700 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-553) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-712))) (($ $ |#1|) 107 (|has| |#1| (-712)))) (-2563 (((-757) $) 6 (|has| $ (-6 -4369))))) -(((-1236 |#1|) (-137) (-1192)) (T -1236)) -((-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-25)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1236 *3)) (-4 *3 (-23)) (-4 *3 (-1192)))) (-1711 (*1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-21)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-4 *1 (-1236 *3)) (-4 *3 (-1192)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) (-1449 (*1 *2 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-1031)))) (-1903 (*1 *2 *1 *1) (-12 (-4 *1 (-1236 *3)) (-4 *3 (-1192)) (-4 *3 (-1031)) (-5 *2 (-674 *3)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-1031)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-984)) (-4 *2 (-1031)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-984)) (-4 *2 (-1031))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1700 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2247 ($ (-757))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1711 ($ $)) (-15 -1711 ($ $ $)) (-15 * ($ (-553) $))) |%noBranch|) (IF (|has| |t#1| (-712)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1031)) (PROGN (-15 -1449 (|t#1| $ $)) (-15 -1903 ((-674 |t#1|) $ $)) (-15 -2533 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-984)) (IF (|has| |t#1| (-1031)) (PROGN (-15 -1899 (|t#1| $)) (-15 -3312 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-600 (-845)) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833)) (|has| |#1| (-600 (-845)))) ((-148 |#1|) . T) ((-601 (-529)) |has| |#1| (-601 (-529))) ((-280 #0=(-553) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-591 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))) ((-636 |#1|) . T) ((-19 |#1|) . T) ((-833) |has| |#1| (-833)) ((-1079) -3988 (|has| |#1| (-1079)) (|has| |#1| (-833))) ((-1192) . T)) -((-3215 (((-1238 |#2|) (-1 |#2| |#1| |#2|) (-1238 |#1|) |#2|) 13)) (-2654 ((|#2| (-1 |#2| |#1| |#2|) (-1238 |#1|) |#2|) 15)) (-1482 (((-3 (-1238 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1238 |#1|)) 28) (((-1238 |#2|) (-1 |#2| |#1|) (-1238 |#1|)) 18))) -(((-1237 |#1| |#2|) (-10 -7 (-15 -3215 ((-1238 |#2|) (-1 |#2| |#1| |#2|) (-1238 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-1238 |#1|) |#2|)) (-15 -1482 ((-1238 |#2|) (-1 |#2| |#1|) (-1238 |#1|))) (-15 -1482 ((-3 (-1238 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1238 |#1|)))) (-1192) (-1192)) (T -1237)) -((-1482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1238 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1238 *6)) (-5 *1 (-1237 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1238 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1238 *6)) (-5 *1 (-1237 *5 *6)))) (-2654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1238 *5)) (-4 *5 (-1192)) (-4 *2 (-1192)) (-5 *1 (-1237 *5 *2)))) (-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1238 *6)) (-4 *6 (-1192)) (-4 *5 (-1192)) (-5 *2 (-1238 *5)) (-5 *1 (-1237 *6 *5))))) -(-10 -7 (-15 -3215 ((-1238 |#2|) (-1 |#2| |#1| |#2|) (-1238 |#1|) |#2|)) (-15 -2654 (|#2| (-1 |#2| |#1| |#2|) (-1238 |#1|) |#2|)) (-15 -1482 ((-1238 |#2|) (-1 |#2| |#1|) (-1238 |#1|))) (-15 -1482 ((-3 (-1238 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1238 |#1|)))) -((-3096 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-2247 (($ (-757)) NIL (|has| |#1| (-23)))) (-1307 (($ (-630 |#1|)) 9)) (-1683 (((-1243) $ (-553) (-553)) NIL (|has| $ (-6 -4370)))) (-2768 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-833)))) (-1587 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4370))) (($ $) NIL (-12 (|has| $ (-6 -4370)) (|has| |#1| (-833))))) (-2990 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-833)))) (-1511 (((-111) $ (-757)) NIL)) (-1490 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370))) ((|#1| $ (-1205 (-553)) |#1|) NIL (|has| $ (-6 -4370)))) (-3905 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-3820 (($) NIL T CONST)) (-1467 (($ $) NIL (|has| $ (-6 -4370)))) (-3239 (($ $) NIL)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2575 (($ |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4369))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4369)))) (-2515 ((|#1| $ (-553) |#1|) NIL (|has| $ (-6 -4370)))) (-2441 ((|#1| $ (-553)) NIL)) (-1478 (((-553) (-1 (-111) |#1|) $) NIL) (((-553) |#1| $) NIL (|has| |#1| (-1079))) (((-553) |#1| $ (-553)) NIL (|has| |#1| (-1079)))) (-1408 (((-630 |#1|) $) 15 (|has| $ (-6 -4369)))) (-1903 (((-674 |#1|) $ $) NIL (|has| |#1| (-1031)))) (-3202 (($ (-757) |#1|) NIL)) (-3703 (((-111) $ (-757)) NIL)) (-2800 (((-553) $) NIL (|has| (-553) (-833)))) (-1824 (($ $ $) NIL (|has| |#1| (-833)))) (-3160 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-833)))) (-2195 (((-630 |#1|) $) NIL (|has| $ (-6 -4369)))) (-1832 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2958 (((-553) $) NIL (|has| (-553) (-833)))) (-1975 (($ $ $) NIL (|has| |#1| (-833)))) (-2503 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3312 ((|#1| $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1031))))) (-3786 (((-111) $ (-757)) NIL)) (-1899 ((|#1| $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1031))))) (-1735 (((-1137) $) NIL (|has| |#1| (-1079)))) (-1774 (($ |#1| $ (-553)) NIL) (($ $ $ (-553)) NIL)) (-1901 (((-630 (-553)) $) NIL)) (-3594 (((-111) (-553) $) NIL)) (-2786 (((-1099) $) NIL (|has| |#1| (-1079)))) (-2603 ((|#1| $) NIL (|has| (-553) (-833)))) (-3016 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2858 (($ $ |#1|) NIL (|has| $ (-6 -4370)))) (-3341 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079)))) (($ $ (-630 |#1|) (-630 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1079))))) (-2551 (((-111) $ $) NIL)) (-2053 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-1912 (((-630 |#1|) $) NIL)) (-3586 (((-111) $) NIL)) (-3222 (($) NIL)) (-2046 ((|#1| $ (-553) |#1|) NIL) ((|#1| $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-1449 ((|#1| $ $) NIL (|has| |#1| (-1031)))) (-2005 (($ $ (-553)) NIL) (($ $ (-1205 (-553))) NIL)) (-2533 (($ $ $) NIL (|has| |#1| (-1031)))) (-2796 (((-757) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369))) (((-757) |#1| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#1| (-1079))))) (-2530 (($ $ $ (-553)) NIL (|has| $ (-6 -4370)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) 19 (|has| |#1| (-601 (-529))))) (-3121 (($ (-630 |#1|)) 8)) (-4325 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-630 $)) NIL)) (-3110 (((-845) $) NIL (|has| |#1| (-600 (-845))))) (-3296 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4369)))) (-1669 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1648 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1617 (((-111) $ $) NIL (|has| |#1| (-1079)))) (-1659 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1636 (((-111) $ $) NIL (|has| |#1| (-833)))) (-1711 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1700 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-553) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-712))) (($ $ |#1|) NIL (|has| |#1| (-712)))) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1238 |#1|) (-13 (-1236 |#1|) (-10 -8 (-15 -1307 ($ (-630 |#1|))))) (-1192)) (T -1238)) -((-1307 (*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-1238 *3))))) -(-13 (-1236 |#1|) (-10 -8 (-15 -1307 ($ (-630 |#1|))))) -((-3096 (((-111) $ $) NIL)) (-3136 (((-1137) $ (-1137)) 90) (((-1137) $ (-1137) (-1137)) 88) (((-1137) $ (-1137) (-630 (-1137))) 87)) (-3130 (($) 59)) (-1431 (((-1243) $ (-461) (-903)) 45)) (-2064 (((-1243) $ (-903) (-1137)) 73) (((-1243) $ (-903) (-856)) 74)) (-1310 (((-1243) $ (-903) (-373) (-373)) 48)) (-3990 (((-1243) $ (-1137)) 69)) (-1559 (((-1243) $ (-903) (-1137)) 78)) (-1731 (((-1243) $ (-903) (-373) (-373)) 49)) (-2223 (((-1243) $ (-903) (-903)) 46)) (-3114 (((-1243) $) 70)) (-3815 (((-1243) $ (-903) (-1137)) 77)) (-1546 (((-1243) $ (-461) (-903)) 31)) (-2723 (((-1243) $ (-903) (-1137)) 76)) (-3919 (((-630 (-257)) $) 23) (($ $ (-630 (-257))) 24)) (-2898 (((-1243) $ (-757) (-757)) 43)) (-2878 (($ $) 60) (($ (-461) (-630 (-257))) 61)) (-1735 (((-1137) $) NIL)) (-2578 (((-553) $) 38)) (-2786 (((-1099) $) NIL)) (-4111 (((-1238 (-3 (-461) "undefined")) $) 37)) (-2116 (((-1238 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -2723 (-553)) (|:| -1481 (-553)) (|:| |spline| (-553)) (|:| -3549 (-553)) (|:| |axesColor| (-856)) (|:| -2064 (-553)) (|:| |unitsColor| (-856)) (|:| |showing| (-553)))) $) 36)) (-2327 (((-1243) $ (-903) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-856) (-553) (-856) (-553)) 68)) (-3911 (((-630 (-925 (-220))) $) NIL)) (-1435 (((-461) $ (-903)) 33)) (-4081 (((-1243) $ (-757) (-757) (-903) (-903)) 40)) (-3571 (((-1243) $ (-1137)) 79)) (-1481 (((-1243) $ (-903) (-1137)) 75)) (-3110 (((-845) $) 85)) (-2498 (((-1243) $) 80)) (-3549 (((-1243) $ (-903) (-1137)) 71) (((-1243) $ (-903) (-856)) 72)) (-1617 (((-111) $ $) NIL))) -(((-1239) (-13 (-1079) (-10 -8 (-15 -3911 ((-630 (-925 (-220))) $)) (-15 -3130 ($)) (-15 -2878 ($ $)) (-15 -3919 ((-630 (-257)) $)) (-15 -3919 ($ $ (-630 (-257)))) (-15 -2878 ($ (-461) (-630 (-257)))) (-15 -2327 ((-1243) $ (-903) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-856) (-553) (-856) (-553))) (-15 -2116 ((-1238 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -2723 (-553)) (|:| -1481 (-553)) (|:| |spline| (-553)) (|:| -3549 (-553)) (|:| |axesColor| (-856)) (|:| -2064 (-553)) (|:| |unitsColor| (-856)) (|:| |showing| (-553)))) $)) (-15 -4111 ((-1238 (-3 (-461) "undefined")) $)) (-15 -3990 ((-1243) $ (-1137))) (-15 -1546 ((-1243) $ (-461) (-903))) (-15 -1435 ((-461) $ (-903))) (-15 -3549 ((-1243) $ (-903) (-1137))) (-15 -3549 ((-1243) $ (-903) (-856))) (-15 -2064 ((-1243) $ (-903) (-1137))) (-15 -2064 ((-1243) $ (-903) (-856))) (-15 -2723 ((-1243) $ (-903) (-1137))) (-15 -3815 ((-1243) $ (-903) (-1137))) (-15 -1481 ((-1243) $ (-903) (-1137))) (-15 -3571 ((-1243) $ (-1137))) (-15 -2498 ((-1243) $)) (-15 -4081 ((-1243) $ (-757) (-757) (-903) (-903))) (-15 -1731 ((-1243) $ (-903) (-373) (-373))) (-15 -1310 ((-1243) $ (-903) (-373) (-373))) (-15 -1559 ((-1243) $ (-903) (-1137))) (-15 -2898 ((-1243) $ (-757) (-757))) (-15 -1431 ((-1243) $ (-461) (-903))) (-15 -2223 ((-1243) $ (-903) (-903))) (-15 -3136 ((-1137) $ (-1137))) (-15 -3136 ((-1137) $ (-1137) (-1137))) (-15 -3136 ((-1137) $ (-1137) (-630 (-1137)))) (-15 -3114 ((-1243) $)) (-15 -2578 ((-553) $)) (-15 -3110 ((-845) $))))) (T -1239)) -((-3110 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-1239)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-630 (-925 (-220)))) (-5 *1 (-1239)))) (-3130 (*1 *1) (-5 *1 (-1239))) (-2878 (*1 *1 *1) (-5 *1 (-1239))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1239)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1239)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *2 (-461)) (-5 *3 (-630 (-257))) (-5 *1 (-1239)))) (-2327 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-903)) (-5 *4 (-220)) (-5 *5 (-553)) (-5 *6 (-856)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-1238 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -2723 (-553)) (|:| -1481 (-553)) (|:| |spline| (-553)) (|:| -3549 (-553)) (|:| |axesColor| (-856)) (|:| -2064 (-553)) (|:| |unitsColor| (-856)) (|:| |showing| (-553))))) (-5 *1 (-1239)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-1238 (-3 (-461) "undefined"))) (-5 *1 (-1239)))) (-3990 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1546 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1435 (*1 *2 *1 *3) (-12 (-5 *3 (-903)) (-5 *2 (-461)) (-5 *1 (-1239)))) (-3549 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-3549 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-856)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2064 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2064 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-856)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2723 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-3815 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1481 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1239)))) (-4081 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-757)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1731 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-903)) (-5 *4 (-373)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1310 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-903)) (-5 *4 (-373)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1559 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2898 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-1431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239)))) (-3136 (*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1239)))) (-3136 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1239)))) (-3136 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1137)) (-5 *1 (-1239)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1239)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1239))))) -(-13 (-1079) (-10 -8 (-15 -3911 ((-630 (-925 (-220))) $)) (-15 -3130 ($)) (-15 -2878 ($ $)) (-15 -3919 ((-630 (-257)) $)) (-15 -3919 ($ $ (-630 (-257)))) (-15 -2878 ($ (-461) (-630 (-257)))) (-15 -2327 ((-1243) $ (-903) (-220) (-220) (-220) (-220) (-553) (-553) (-553) (-553) (-856) (-553) (-856) (-553))) (-15 -2116 ((-1238 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -2723 (-553)) (|:| -1481 (-553)) (|:| |spline| (-553)) (|:| -3549 (-553)) (|:| |axesColor| (-856)) (|:| -2064 (-553)) (|:| |unitsColor| (-856)) (|:| |showing| (-553)))) $)) (-15 -4111 ((-1238 (-3 (-461) "undefined")) $)) (-15 -3990 ((-1243) $ (-1137))) (-15 -1546 ((-1243) $ (-461) (-903))) (-15 -1435 ((-461) $ (-903))) (-15 -3549 ((-1243) $ (-903) (-1137))) (-15 -3549 ((-1243) $ (-903) (-856))) (-15 -2064 ((-1243) $ (-903) (-1137))) (-15 -2064 ((-1243) $ (-903) (-856))) (-15 -2723 ((-1243) $ (-903) (-1137))) (-15 -3815 ((-1243) $ (-903) (-1137))) (-15 -1481 ((-1243) $ (-903) (-1137))) (-15 -3571 ((-1243) $ (-1137))) (-15 -2498 ((-1243) $)) (-15 -4081 ((-1243) $ (-757) (-757) (-903) (-903))) (-15 -1731 ((-1243) $ (-903) (-373) (-373))) (-15 -1310 ((-1243) $ (-903) (-373) (-373))) (-15 -1559 ((-1243) $ (-903) (-1137))) (-15 -2898 ((-1243) $ (-757) (-757))) (-15 -1431 ((-1243) $ (-461) (-903))) (-15 -2223 ((-1243) $ (-903) (-903))) (-15 -3136 ((-1137) $ (-1137))) (-15 -3136 ((-1137) $ (-1137) (-1137))) (-15 -3136 ((-1137) $ (-1137) (-630 (-1137)))) (-15 -3114 ((-1243) $)) (-15 -2578 ((-553) $)) (-15 -3110 ((-845) $)))) -((-3096 (((-111) $ $) NIL)) (-4342 (((-1243) $ (-373)) 140) (((-1243) $ (-373) (-373) (-373)) 141)) (-3136 (((-1137) $ (-1137)) 148) (((-1137) $ (-1137) (-1137)) 146) (((-1137) $ (-1137) (-630 (-1137))) 145)) (-4278 (($) 50)) (-2385 (((-1243) $ (-373) (-373) (-373) (-373) (-373)) 116) (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $) 114) (((-1243) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 115) (((-1243) $ (-553) (-553) (-373) (-373) (-373)) 117) (((-1243) $ (-373) (-373)) 118) (((-1243) $ (-373) (-373) (-373)) 125)) (-3649 (((-373)) 97) (((-373) (-373)) 98)) (-3399 (((-373)) 92) (((-373) (-373)) 94)) (-1668 (((-373)) 95) (((-373) (-373)) 96)) (-3225 (((-373)) 101) (((-373) (-373)) 102)) (-1771 (((-373)) 99) (((-373) (-373)) 100)) (-1310 (((-1243) $ (-373) (-373)) 142)) (-3990 (((-1243) $ (-1137)) 126)) (-3139 (((-1112 (-220)) $) 51) (($ $ (-1112 (-220))) 52)) (-2591 (((-1243) $ (-1137)) 154)) (-2634 (((-1243) $ (-1137)) 155)) (-1802 (((-1243) $ (-373) (-373)) 124) (((-1243) $ (-553) (-553)) 139)) (-2223 (((-1243) $ (-903) (-903)) 132)) (-3114 (((-1243) $) 112)) (-2175 (((-1243) $ (-1137)) 153)) (-1311 (((-1243) $ (-1137)) 109)) (-3919 (((-630 (-257)) $) 53) (($ $ (-630 (-257))) 54)) (-2898 (((-1243) $ (-757) (-757)) 131)) (-3611 (((-1243) $ (-757) (-925 (-220))) 160)) (-3255 (($ $) 56) (($ (-1112 (-220)) (-1137)) 57) (($ (-1112 (-220)) (-630 (-257))) 58)) (-3731 (((-1243) $ (-373) (-373) (-373)) 106)) (-1735 (((-1137) $) NIL)) (-2578 (((-553) $) 103)) (-3211 (((-1243) $ (-373)) 143)) (-2886 (((-1243) $ (-373)) 158)) (-2786 (((-1099) $) NIL)) (-2248 (((-1243) $ (-373)) 157)) (-2330 (((-1243) $ (-1137)) 111)) (-4081 (((-1243) $ (-757) (-757) (-903) (-903)) 130)) (-2741 (((-1243) $ (-1137)) 108)) (-3571 (((-1243) $ (-1137)) 110)) (-2763 (((-1243) $ (-154) (-154)) 129)) (-3110 (((-845) $) 137)) (-2498 (((-1243) $) 113)) (-2938 (((-1243) $ (-1137)) 156)) (-3549 (((-1243) $ (-1137)) 107)) (-1617 (((-111) $ $) NIL))) -(((-1240) (-13 (-1079) (-10 -8 (-15 -3399 ((-373))) (-15 -3399 ((-373) (-373))) (-15 -1668 ((-373))) (-15 -1668 ((-373) (-373))) (-15 -3649 ((-373))) (-15 -3649 ((-373) (-373))) (-15 -1771 ((-373))) (-15 -1771 ((-373) (-373))) (-15 -3225 ((-373))) (-15 -3225 ((-373) (-373))) (-15 -4278 ($)) (-15 -3255 ($ $)) (-15 -3255 ($ (-1112 (-220)) (-1137))) (-15 -3255 ($ (-1112 (-220)) (-630 (-257)))) (-15 -3139 ((-1112 (-220)) $)) (-15 -3139 ($ $ (-1112 (-220)))) (-15 -3611 ((-1243) $ (-757) (-925 (-220)))) (-15 -3919 ((-630 (-257)) $)) (-15 -3919 ($ $ (-630 (-257)))) (-15 -2898 ((-1243) $ (-757) (-757))) (-15 -2223 ((-1243) $ (-903) (-903))) (-15 -3990 ((-1243) $ (-1137))) (-15 -4081 ((-1243) $ (-757) (-757) (-903) (-903))) (-15 -2385 ((-1243) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2385 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2385 ((-1243) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2385 ((-1243) $ (-553) (-553) (-373) (-373) (-373))) (-15 -2385 ((-1243) $ (-373) (-373))) (-15 -2385 ((-1243) $ (-373) (-373) (-373))) (-15 -3571 ((-1243) $ (-1137))) (-15 -3549 ((-1243) $ (-1137))) (-15 -2741 ((-1243) $ (-1137))) (-15 -1311 ((-1243) $ (-1137))) (-15 -2330 ((-1243) $ (-1137))) (-15 -1802 ((-1243) $ (-373) (-373))) (-15 -1802 ((-1243) $ (-553) (-553))) (-15 -4342 ((-1243) $ (-373))) (-15 -4342 ((-1243) $ (-373) (-373) (-373))) (-15 -1310 ((-1243) $ (-373) (-373))) (-15 -2175 ((-1243) $ (-1137))) (-15 -2248 ((-1243) $ (-373))) (-15 -2886 ((-1243) $ (-373))) (-15 -2591 ((-1243) $ (-1137))) (-15 -2634 ((-1243) $ (-1137))) (-15 -2938 ((-1243) $ (-1137))) (-15 -3731 ((-1243) $ (-373) (-373) (-373))) (-15 -3211 ((-1243) $ (-373))) (-15 -3114 ((-1243) $)) (-15 -2763 ((-1243) $ (-154) (-154))) (-15 -3136 ((-1137) $ (-1137))) (-15 -3136 ((-1137) $ (-1137) (-1137))) (-15 -3136 ((-1137) $ (-1137) (-630 (-1137)))) (-15 -2498 ((-1243) $)) (-15 -2578 ((-553) $))))) (T -1240)) -((-3399 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-1668 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-1668 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-3649 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-1771 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-3225 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-3225 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) (-4278 (*1 *1) (-5 *1 (-1240))) (-3255 (*1 *1 *1) (-5 *1 (-1240))) (-3255 (*1 *1 *2 *3) (-12 (-5 *2 (-1112 (-220))) (-5 *3 (-1137)) (-5 *1 (-1240)))) (-3255 (*1 *1 *2 *3) (-12 (-5 *2 (-1112 (-220))) (-5 *3 (-630 (-257))) (-5 *1 (-1240)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-1240)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-1240)))) (-3611 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-925 (-220))) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1240)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1240)))) (-2898 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3990 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-4081 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-757)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2385 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-1240)))) (-2385 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2385 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-553)) (-5 *4 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2385 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2385 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2741 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-1311 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2330 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-1802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-1802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-4342 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-4342 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-1310 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2175 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2248 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2886 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3731 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3211 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2763 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1243)) (-5 *1 (-1240)))) (-3136 (*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1240)))) (-3136 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1240)))) (-3136 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1137)) (-5 *1 (-1240)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1240)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1240))))) -(-13 (-1079) (-10 -8 (-15 -3399 ((-373))) (-15 -3399 ((-373) (-373))) (-15 -1668 ((-373))) (-15 -1668 ((-373) (-373))) (-15 -3649 ((-373))) (-15 -3649 ((-373) (-373))) (-15 -1771 ((-373))) (-15 -1771 ((-373) (-373))) (-15 -3225 ((-373))) (-15 -3225 ((-373) (-373))) (-15 -4278 ($)) (-15 -3255 ($ $)) (-15 -3255 ($ (-1112 (-220)) (-1137))) (-15 -3255 ($ (-1112 (-220)) (-630 (-257)))) (-15 -3139 ((-1112 (-220)) $)) (-15 -3139 ($ $ (-1112 (-220)))) (-15 -3611 ((-1243) $ (-757) (-925 (-220)))) (-15 -3919 ((-630 (-257)) $)) (-15 -3919 ($ $ (-630 (-257)))) (-15 -2898 ((-1243) $ (-757) (-757))) (-15 -2223 ((-1243) $ (-903) (-903))) (-15 -3990 ((-1243) $ (-1137))) (-15 -4081 ((-1243) $ (-757) (-757) (-903) (-903))) (-15 -2385 ((-1243) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2385 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2385 ((-1243) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2385 ((-1243) $ (-553) (-553) (-373) (-373) (-373))) (-15 -2385 ((-1243) $ (-373) (-373))) (-15 -2385 ((-1243) $ (-373) (-373) (-373))) (-15 -3571 ((-1243) $ (-1137))) (-15 -3549 ((-1243) $ (-1137))) (-15 -2741 ((-1243) $ (-1137))) (-15 -1311 ((-1243) $ (-1137))) (-15 -2330 ((-1243) $ (-1137))) (-15 -1802 ((-1243) $ (-373) (-373))) (-15 -1802 ((-1243) $ (-553) (-553))) (-15 -4342 ((-1243) $ (-373))) (-15 -4342 ((-1243) $ (-373) (-373) (-373))) (-15 -1310 ((-1243) $ (-373) (-373))) (-15 -2175 ((-1243) $ (-1137))) (-15 -2248 ((-1243) $ (-373))) (-15 -2886 ((-1243) $ (-373))) (-15 -2591 ((-1243) $ (-1137))) (-15 -2634 ((-1243) $ (-1137))) (-15 -2938 ((-1243) $ (-1137))) (-15 -3731 ((-1243) $ (-373) (-373) (-373))) (-15 -3211 ((-1243) $ (-373))) (-15 -3114 ((-1243) $)) (-15 -2763 ((-1243) $ (-154) (-154))) (-15 -3136 ((-1137) $ (-1137))) (-15 -3136 ((-1137) $ (-1137) (-1137))) (-15 -3136 ((-1137) $ (-1137) (-630 (-1137)))) (-15 -2498 ((-1243) $)) (-15 -2578 ((-553) $)))) -((-2499 (((-630 (-1137)) (-630 (-1137))) 94) (((-630 (-1137))) 90)) (-2500 (((-630 (-1137))) 88)) (-3073 (((-630 (-903)) (-630 (-903))) 63) (((-630 (-903))) 60)) (-2590 (((-630 (-757)) (-630 (-757))) 57) (((-630 (-757))) 53)) (-1505 (((-1243)) 65)) (-1961 (((-903) (-903)) 81) (((-903)) 80)) (-2444 (((-903) (-903)) 79) (((-903)) 78)) (-1621 (((-856) (-856)) 75) (((-856)) 74)) (-4126 (((-220)) 85) (((-220) (-373)) 87)) (-2793 (((-903)) 82) (((-903) (-903)) 83)) (-2213 (((-903) (-903)) 77) (((-903)) 76)) (-2710 (((-856) (-856)) 69) (((-856)) 67)) (-3692 (((-856) (-856)) 71) (((-856)) 70)) (-3271 (((-856) (-856)) 73) (((-856)) 72))) -(((-1241) (-10 -7 (-15 -2710 ((-856))) (-15 -2710 ((-856) (-856))) (-15 -3692 ((-856))) (-15 -3692 ((-856) (-856))) (-15 -3271 ((-856))) (-15 -3271 ((-856) (-856))) (-15 -1621 ((-856))) (-15 -1621 ((-856) (-856))) (-15 -2213 ((-903))) (-15 -2213 ((-903) (-903))) (-15 -2590 ((-630 (-757)))) (-15 -2590 ((-630 (-757)) (-630 (-757)))) (-15 -3073 ((-630 (-903)))) (-15 -3073 ((-630 (-903)) (-630 (-903)))) (-15 -1505 ((-1243))) (-15 -2499 ((-630 (-1137)))) (-15 -2499 ((-630 (-1137)) (-630 (-1137)))) (-15 -2500 ((-630 (-1137)))) (-15 -2444 ((-903))) (-15 -1961 ((-903))) (-15 -2444 ((-903) (-903))) (-15 -1961 ((-903) (-903))) (-15 -2793 ((-903) (-903))) (-15 -2793 ((-903))) (-15 -4126 ((-220) (-373))) (-15 -4126 ((-220))))) (T -1241)) -((-4126 (*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1241)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1241)))) (-2793 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-1961 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-2444 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-2500 (*1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1241)))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1241)))) (-2499 (*1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1241)))) (-1505 (*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1241)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1241)))) (-3073 (*1 *2) (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1241)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-630 (-757))) (-5 *1 (-1241)))) (-2590 (*1 *2) (-12 (-5 *2 (-630 (-757))) (-5 *1 (-1241)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-2213 (*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) (-1621 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-1621 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-3271 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-3692 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) (-2710 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241))))) -(-10 -7 (-15 -2710 ((-856))) (-15 -2710 ((-856) (-856))) (-15 -3692 ((-856))) (-15 -3692 ((-856) (-856))) (-15 -3271 ((-856))) (-15 -3271 ((-856) (-856))) (-15 -1621 ((-856))) (-15 -1621 ((-856) (-856))) (-15 -2213 ((-903))) (-15 -2213 ((-903) (-903))) (-15 -2590 ((-630 (-757)))) (-15 -2590 ((-630 (-757)) (-630 (-757)))) (-15 -3073 ((-630 (-903)))) (-15 -3073 ((-630 (-903)) (-630 (-903)))) (-15 -1505 ((-1243))) (-15 -2499 ((-630 (-1137)))) (-15 -2499 ((-630 (-1137)) (-630 (-1137)))) (-15 -2500 ((-630 (-1137)))) (-15 -2444 ((-903))) (-15 -1961 ((-903))) (-15 -2444 ((-903) (-903))) (-15 -1961 ((-903) (-903))) (-15 -2793 ((-903) (-903))) (-15 -2793 ((-903))) (-15 -4126 ((-220) (-373))) (-15 -4126 ((-220)))) -((-1476 (((-461) (-630 (-630 (-925 (-220)))) (-630 (-257))) 21) (((-461) (-630 (-630 (-925 (-220))))) 20) (((-461) (-630 (-630 (-925 (-220)))) (-856) (-856) (-903) (-630 (-257))) 19)) (-3606 (((-1239) (-630 (-630 (-925 (-220)))) (-630 (-257))) 27) (((-1239) (-630 (-630 (-925 (-220)))) (-856) (-856) (-903) (-630 (-257))) 26)) (-3110 (((-1239) (-461)) 38))) -(((-1242) (-10 -7 (-15 -1476 ((-461) (-630 (-630 (-925 (-220)))) (-856) (-856) (-903) (-630 (-257)))) (-15 -1476 ((-461) (-630 (-630 (-925 (-220)))))) (-15 -1476 ((-461) (-630 (-630 (-925 (-220)))) (-630 (-257)))) (-15 -3606 ((-1239) (-630 (-630 (-925 (-220)))) (-856) (-856) (-903) (-630 (-257)))) (-15 -3606 ((-1239) (-630 (-630 (-925 (-220)))) (-630 (-257)))) (-15 -3110 ((-1239) (-461))))) (T -1242)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1239)) (-5 *1 (-1242)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-1242)))) (-3606 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-856)) (-5 *5 (-903)) (-5 *6 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-1242)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-630 (-257))) (-5 *2 (-461)) (-5 *1 (-1242)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *2 (-461)) (-5 *1 (-1242)))) (-1476 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-856)) (-5 *5 (-903)) (-5 *6 (-630 (-257))) (-5 *2 (-461)) (-5 *1 (-1242))))) -(-10 -7 (-15 -1476 ((-461) (-630 (-630 (-925 (-220)))) (-856) (-856) (-903) (-630 (-257)))) (-15 -1476 ((-461) (-630 (-630 (-925 (-220)))))) (-15 -1476 ((-461) (-630 (-630 (-925 (-220)))) (-630 (-257)))) (-15 -3606 ((-1239) (-630 (-630 (-925 (-220)))) (-856) (-856) (-903) (-630 (-257)))) (-15 -3606 ((-1239) (-630 (-630 (-925 (-220)))) (-630 (-257)))) (-15 -3110 ((-1239) (-461)))) -((-1875 (($) 7)) (-3110 (((-845) $) 10))) -(((-1243) (-13 (-600 (-845)) (-10 -8 (-15 -1875 ($))))) (T -1243)) -((-1875 (*1 *1) (-5 *1 (-1243)))) -(-13 (-600 (-845)) (-10 -8 (-15 -1875 ($)))) -((-1723 (($ $ |#2|) 10))) -(((-1244 |#1| |#2|) (-10 -8 (-15 -1723 (|#1| |#1| |#2|))) (-1245 |#2|) (-357)) (T -1244)) -NIL -(-10 -8 (-15 -1723 (|#1| |#1| |#2|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-1337 (((-132)) 28)) (-3110 (((-845) $) 11)) (-1988 (($) 18 T CONST)) (-1617 (((-111) $ $) 6)) (-1723 (($ $ |#1|) 29)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1245 |#1|) (-137) (-357)) (T -1245)) -((-1723 (*1 *1 *1 *2) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-357)))) (-1337 (*1 *2) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) -(-13 (-703 |t#1|) (-10 -8 (-15 -1723 ($ $ |t#1|)) (-15 -1337 ((-132))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-703 |#1|) . T) ((-1037 |#1|) . T) ((-1079) . T)) -((-1715 (((-630 (-1186 |#1|)) (-1155) (-1186 |#1|)) 74)) (-1752 (((-1135 (-1135 (-934 |#1|))) (-1155) (-1135 (-934 |#1|))) 53)) (-1821 (((-1 (-1135 (-1186 |#1|)) (-1135 (-1186 |#1|))) (-757) (-1186 |#1|) (-1135 (-1186 |#1|))) 64)) (-2430 (((-1 (-1135 (-934 |#1|)) (-1135 (-934 |#1|))) (-757)) 55)) (-3801 (((-1 (-1151 (-934 |#1|)) (-934 |#1|)) (-1155)) 29)) (-4003 (((-1 (-1135 (-934 |#1|)) (-1135 (-934 |#1|))) (-757)) 54))) -(((-1246 |#1|) (-10 -7 (-15 -2430 ((-1 (-1135 (-934 |#1|)) (-1135 (-934 |#1|))) (-757))) (-15 -4003 ((-1 (-1135 (-934 |#1|)) (-1135 (-934 |#1|))) (-757))) (-15 -1752 ((-1135 (-1135 (-934 |#1|))) (-1155) (-1135 (-934 |#1|)))) (-15 -3801 ((-1 (-1151 (-934 |#1|)) (-934 |#1|)) (-1155))) (-15 -1715 ((-630 (-1186 |#1|)) (-1155) (-1186 |#1|))) (-15 -1821 ((-1 (-1135 (-1186 |#1|)) (-1135 (-1186 |#1|))) (-757) (-1186 |#1|) (-1135 (-1186 |#1|))))) (-357)) (T -1246)) -((-1821 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-757)) (-4 *6 (-357)) (-5 *4 (-1186 *6)) (-5 *2 (-1 (-1135 *4) (-1135 *4))) (-5 *1 (-1246 *6)) (-5 *5 (-1135 *4)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-4 *5 (-357)) (-5 *2 (-630 (-1186 *5))) (-5 *1 (-1246 *5)) (-5 *4 (-1186 *5)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1 (-1151 (-934 *4)) (-934 *4))) (-5 *1 (-1246 *4)) (-4 *4 (-357)))) (-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-1155)) (-4 *5 (-357)) (-5 *2 (-1135 (-1135 (-934 *5)))) (-5 *1 (-1246 *5)) (-5 *4 (-1135 (-934 *5))))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-1135 (-934 *4)) (-1135 (-934 *4)))) (-5 *1 (-1246 *4)) (-4 *4 (-357)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-1135 (-934 *4)) (-1135 (-934 *4)))) (-5 *1 (-1246 *4)) (-4 *4 (-357))))) -(-10 -7 (-15 -2430 ((-1 (-1135 (-934 |#1|)) (-1135 (-934 |#1|))) (-757))) (-15 -4003 ((-1 (-1135 (-934 |#1|)) (-1135 (-934 |#1|))) (-757))) (-15 -1752 ((-1135 (-1135 (-934 |#1|))) (-1155) (-1135 (-934 |#1|)))) (-15 -3801 ((-1 (-1151 (-934 |#1|)) (-934 |#1|)) (-1155))) (-15 -1715 ((-630 (-1186 |#1|)) (-1155) (-1186 |#1|))) (-15 -1821 ((-1 (-1135 (-1186 |#1|)) (-1135 (-1186 |#1|))) (-757) (-1186 |#1|) (-1135 (-1186 |#1|))))) -((-4009 (((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) |#2|) 75)) (-2827 (((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|)))) 74))) -(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2827 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))))) (-15 -4009 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) |#2|))) (-343) (-1214 |#1|) (-1214 |#2|) (-403 |#2| |#3|)) (T -1247)) -((-4009 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 *3)) (-5 *2 (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-674 *3)))) (-5 *1 (-1247 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-2827 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 *4)) (-5 *2 (-2 (|:| -4124 (-674 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-674 *4)))) (-5 *1 (-1247 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(-10 -7 (-15 -2827 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))))) (-15 -4009 ((-2 (|:| -4124 (-674 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-674 |#2|))) |#2|))) -((-3096 (((-111) $ $) NIL)) (-2013 (((-1114) $) 11)) (-3299 (((-1114) $) 9)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 19) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1248) (-13 (-1062) (-10 -8 (-15 -3299 ((-1114) $)) (-15 -2013 ((-1114) $))))) (T -1248)) -((-3299 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1248)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1248))))) -(-13 (-1062) (-10 -8 (-15 -3299 ((-1114) $)) (-15 -2013 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3870 (((-1114) $) 9)) (-3110 (((-845) $) 17) (($ (-1160)) NIL) (((-1160) $) NIL)) (-1617 (((-111) $ $) NIL))) -(((-1249) (-13 (-1062) (-10 -8 (-15 -3870 ((-1114) $))))) (T -1249)) -((-3870 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1249))))) -(-13 (-1062) (-10 -8 (-15 -3870 ((-1114) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 43)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-1848 (((-111) $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3110 (((-845) $) 64) (($ (-553)) NIL) (($ |#4|) 49) ((|#4| $) 54) (($ |#1|) NIL (|has| |#1| (-169)))) (-1999 (((-757)) NIL)) (-4082 (((-1243) (-757)) 16)) (-1988 (($) 27 T CONST)) (-1997 (($) 67 T CONST)) (-1617 (((-111) $ $) 69)) (-1723 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1711 (($ $) 71) (($ $ $) NIL)) (-1700 (($ $ $) 47)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-1250 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1031) (-483 |#4|) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1723 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4082 ((-1243) (-757))))) (-1031) (-833) (-779) (-931 |#1| |#3| |#2|) (-630 |#2|) (-630 (-757)) (-757)) (T -1250)) -((-1723 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1031)) (-4 *3 (-833)) (-4 *4 (-779)) (-14 *6 (-630 *3)) (-5 *1 (-1250 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-931 *2 *4 *3)) (-14 *7 (-630 (-757))) (-14 *8 (-757)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-1031)) (-4 *5 (-833)) (-4 *6 (-779)) (-14 *8 (-630 *5)) (-5 *2 (-1243)) (-5 *1 (-1250 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-931 *4 *6 *5)) (-14 *9 (-630 *3)) (-14 *10 *3)))) -(-13 (-1031) (-483 |#4|) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -1723 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4082 ((-1243) (-757))))) -((-3096 (((-111) $ $) NIL)) (-3508 (((-630 (-2 (|:| -2498 $) (|:| -2984 (-630 |#4|)))) (-630 |#4|)) NIL)) (-3247 (((-630 $) (-630 |#4|)) 88)) (-3506 (((-630 |#3|) $) NIL)) (-1742 (((-111) $) NIL)) (-3538 (((-111) $) NIL (|has| |#1| (-545)))) (-1592 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1484 ((|#4| |#4| $) NIL)) (-2990 (((-2 (|:| |under| $) (|:| -2334 $) (|:| |upper| $)) $ |#3|) NIL)) (-1511 (((-111) $ (-757)) NIL)) (-3905 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3820 (($) NIL T CONST)) (-2623 (((-111) $) NIL (|has| |#1| (-545)))) (-2032 (((-111) $ $) NIL (|has| |#1| (-545)))) (-3559 (((-111) $ $) NIL (|has| |#1| (-545)))) (-1921 (((-111) $) NIL (|has| |#1| (-545)))) (-4345 (((-630 |#4|) (-630 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-4063 (((-630 |#4|) (-630 |#4|) $) 25 (|has| |#1| (-545)))) (-4162 (((-630 |#4|) (-630 |#4|) $) NIL (|has| |#1| (-545)))) (-1399 (((-3 $ "failed") (-630 |#4|)) NIL)) (-2707 (($ (-630 |#4|)) NIL)) (-2616 (((-3 $ "failed") $) 70)) (-4290 ((|#4| |#4| $) 75)) (-2638 (($ $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-2575 (($ |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1571 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3342 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-1345 ((|#4| |#4| $) NIL)) (-2654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4369))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4369))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2282 (((-2 (|:| -2498 (-630 |#4|)) (|:| -2984 (-630 |#4|))) $) NIL)) (-1408 (((-630 |#4|) $) NIL (|has| $ (-6 -4369)))) (-1685 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1470 ((|#3| $) 76)) (-3703 (((-111) $ (-757)) NIL)) (-2195 (((-630 |#4|) $) 29 (|has| $ (-6 -4369)))) (-1832 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079))))) (-4221 (((-3 $ "failed") (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-630 |#4|)) 35)) (-2503 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4370)))) (-1482 (($ (-1 |#4| |#4|) $) NIL)) (-3935 (((-630 |#3|) $) NIL)) (-2351 (((-111) |#3| $) NIL)) (-3786 (((-111) $ (-757)) NIL)) (-1735 (((-1137) $) NIL)) (-2594 (((-3 |#4| "failed") $) NIL)) (-2564 (((-630 |#4|) $) 50)) (-4299 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4080 ((|#4| |#4| $) 74)) (-1990 (((-111) $ $) 85)) (-3280 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3276 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3138 ((|#4| |#4| $) NIL)) (-2786 (((-1099) $) NIL)) (-2603 (((-3 |#4| "failed") $) 69)) (-3016 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-2761 (((-3 $ "failed") $ |#4|) NIL)) (-3089 (($ $ |#4|) NIL)) (-3341 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-2356 (($ $ (-630 |#4|) (-630 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079)))) (($ $ (-630 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1079))))) (-2551 (((-111) $ $) NIL)) (-3586 (((-111) $) 67)) (-3222 (($) 42)) (-3872 (((-757) $) NIL)) (-2796 (((-757) |#4| $) NIL (-12 (|has| $ (-6 -4369)) (|has| |#4| (-1079)))) (((-757) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-1508 (($ $) NIL)) (-1524 (((-529) $) NIL (|has| |#4| (-601 (-529))))) (-3121 (($ (-630 |#4|)) NIL)) (-2867 (($ $ |#3|) NIL)) (-3721 (($ $ |#3|) NIL)) (-2316 (($ $) NIL)) (-1665 (($ $ |#3|) NIL)) (-3110 (((-845) $) NIL) (((-630 |#4|) $) 57)) (-2668 (((-757) $) NIL (|has| |#3| (-362)))) (-2814 (((-3 $ "failed") (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-630 |#4|)) 41)) (-2804 (((-630 $) (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-630 $) (-630 |#4|)) 66)) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3343 (-630 |#4|))) "failed") (-630 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3283 (((-111) $ (-1 (-111) |#4| (-630 |#4|))) NIL)) (-3296 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4369)))) (-3838 (((-630 |#3|) $) NIL)) (-4223 (((-111) |#3| $) NIL)) (-1617 (((-111) $ $) NIL)) (-2563 (((-757) $) NIL (|has| $ (-6 -4369))))) -(((-1251 |#1| |#2| |#3| |#4|) (-13 (-1185 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4221 ((-3 $ "failed") (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4221 ((-3 $ "failed") (-630 |#4|))) (-15 -2814 ((-3 $ "failed") (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2814 ((-3 $ "failed") (-630 |#4|))) (-15 -2804 ((-630 $) (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2804 ((-630 $) (-630 |#4|))))) (-545) (-779) (-833) (-1045 |#1| |#2| |#3|)) (T -1251)) -((-4221 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-630 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1251 *5 *6 *7 *8)))) (-4221 (*1 *1 *2) (|partial| -12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-1251 *3 *4 *5 *6)))) (-2814 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-630 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1251 *5 *6 *7 *8)))) (-2814 (*1 *1 *2) (|partial| -12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-1251 *3 *4 *5 *6)))) (-2804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1045 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-779)) (-4 *8 (-833)) (-5 *2 (-630 (-1251 *6 *7 *8 *9))) (-5 *1 (-1251 *6 *7 *8 *9)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 (-1251 *4 *5 *6 *7))) (-5 *1 (-1251 *4 *5 *6 *7))))) -(-13 (-1185 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4221 ((-3 $ "failed") (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4221 ((-3 $ "failed") (-630 |#4|))) (-15 -2814 ((-3 $ "failed") (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2814 ((-3 $ "failed") (-630 |#4|))) (-15 -2804 ((-630 $) (-630 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2804 ((-630 $) (-630 |#4|))))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2910 (((-3 $ "failed") $ $) 19)) (-3820 (($) 17 T CONST)) (-2982 (((-3 $ "failed") $) 33)) (-1848 (((-111) $) 31)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#1|) 39)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) -(((-1252 |#1|) (-137) (-1031)) (T -1252)) -NIL -(-13 (-1031) (-110 |t#1| |t#1|) (-603 |t#1|) (-10 -7 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-600 (-845)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 |#1|) |has| |#1| (-169)) ((-712) . T) ((-1037 |#1|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T)) -((-3096 (((-111) $ $) 60)) (-3769 (((-111) $) NIL)) (-2694 (((-630 |#1|) $) 45)) (-3245 (($ $ (-757)) 39)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ (-757)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-3820 (($) NIL T CONST)) (-1429 (($ $ $) 63) (($ $ (-805 |#1|)) 49) (($ $ |#1|) 53)) (-1399 (((-3 (-805 |#1|) "failed") $) NIL)) (-2707 (((-805 |#1|) $) NIL)) (-3678 (($ $) 32)) (-2982 (((-3 $ "failed") $) NIL)) (-3716 (((-111) $) NIL)) (-4143 (($ $) NIL)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-1718 (($ (-805 |#1|) |#2|) 31)) (-3189 (($ $) 33)) (-4297 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) 12)) (-3227 (((-805 |#1|) $) NIL)) (-1932 (((-805 |#1|) $) 34)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1754 (($ $ $) 62) (($ $ (-805 |#1|)) 51) (($ $ |#1|) 55)) (-1890 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3644 (((-805 |#1|) $) 28)) (-3655 ((|#2| $) 30)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3872 (((-757) $) 36)) (-3641 (((-111) $) 40)) (-3879 ((|#2| $) NIL)) (-3110 (((-845) $) NIL) (($ (-805 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-553)) NIL)) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-805 |#1|)) NIL)) (-4120 ((|#2| $ $) 65) ((|#2| $ (-805 |#1|)) NIL)) (-1999 (((-757)) NIL)) (-1988 (($) 13 T CONST)) (-1997 (($) 15 T CONST)) (-1569 (((-630 (-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1617 (((-111) $ $) 38)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 22)) (** (($ $ (-757)) NIL) (($ $ (-903)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-805 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1253 |#1| |#2|) (-13 (-376 |#2| (-805 |#1|)) (-1259 |#1| |#2|)) (-833) (-1031)) (T -1253)) -NIL -(-13 (-376 |#2| (-805 |#1|)) (-1259 |#1| |#2|)) -((-2366 ((|#3| |#3| (-757)) 23)) (-2743 ((|#3| |#3| (-757)) 27)) (-1941 ((|#3| |#3| |#3| (-757)) 28))) -(((-1254 |#1| |#2| |#3|) (-10 -7 (-15 -2743 (|#3| |#3| (-757))) (-15 -2366 (|#3| |#3| (-757))) (-15 -1941 (|#3| |#3| |#3| (-757)))) (-13 (-1031) (-703 (-401 (-553)))) (-833) (-1259 |#2| |#1|)) (T -1254)) -((-1941 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-13 (-1031) (-703 (-401 (-553))))) (-4 *5 (-833)) (-5 *1 (-1254 *4 *5 *2)) (-4 *2 (-1259 *5 *4)))) (-2366 (*1 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-13 (-1031) (-703 (-401 (-553))))) (-4 *5 (-833)) (-5 *1 (-1254 *4 *5 *2)) (-4 *2 (-1259 *5 *4)))) (-2743 (*1 *2 *2 *3) (-12 (-5 *3 (-757)) (-4 *4 (-13 (-1031) (-703 (-401 (-553))))) (-4 *5 (-833)) (-5 *1 (-1254 *4 *5 *2)) (-4 *2 (-1259 *5 *4))))) -(-10 -7 (-15 -2743 (|#3| |#3| (-757))) (-15 -2366 (|#3| |#3| (-757))) (-15 -1941 (|#3| |#3| |#3| (-757)))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2694 (((-630 |#1|) $) 41)) (-2910 (((-3 $ "failed") $ $) 19)) (-2717 (($ $ $) 44 (|has| |#2| (-169))) (($ $ (-757)) 43 (|has| |#2| (-169)))) (-3820 (($) 17 T CONST)) (-1429 (($ $ |#1|) 55) (($ $ (-805 |#1|)) 54) (($ $ $) 53)) (-1399 (((-3 (-805 |#1|) "failed") $) 65)) (-2707 (((-805 |#1|) $) 66)) (-2982 (((-3 $ "failed") $) 33)) (-3716 (((-111) $) 46)) (-4143 (($ $) 45)) (-1848 (((-111) $) 31)) (-1298 (((-111) $) 51)) (-1718 (($ (-805 |#1|) |#2|) 52)) (-3189 (($ $) 50)) (-4297 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) 61)) (-3227 (((-805 |#1|) $) 62)) (-1482 (($ (-1 |#2| |#2|) $) 42)) (-1754 (($ $ |#1|) 58) (($ $ (-805 |#1|)) 57) (($ $ $) 56)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3641 (((-111) $) 48)) (-3879 ((|#2| $) 47)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#2|) 69) (($ (-805 |#1|)) 64) (($ |#1|) 49)) (-4120 ((|#2| $ (-805 |#1|)) 60) ((|#2| $ $) 59)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1255 |#1| |#2|) (-137) (-833) (-1031)) (T -1255)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-833)) (-4 *2 (-1031)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-805 *3)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-2 (|:| |k| (-805 *3)) (|:| |c| *4))))) (-4120 (*1 *2 *1 *3) (-12 (-5 *3 (-805 *4)) (-4 *1 (-1255 *4 *2)) (-4 *4 (-833)) (-4 *2 (-1031)))) (-4120 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-833)) (-4 *2 (-1031)))) (-1754 (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-805 *3)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)))) (-1754 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-1429 (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-1429 (*1 *1 *1 *2) (-12 (-5 *2 (-805 *3)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)))) (-1429 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-1718 (*1 *1 *2 *3) (-12 (-5 *2 (-805 *4)) (-4 *4 (-833)) (-4 *1 (-1255 *4 *3)) (-4 *3 (-1031)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-111)))) (-3189 (*1 *1 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-3110 (*1 *1 *2) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-111)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-833)) (-4 *2 (-1031)))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-111)))) (-4143 (*1 *1 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) (-2717 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)) (-4 *3 (-169)))) (-2717 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-4 *4 (-169)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-630 *3))))) -(-13 (-1031) (-1252 |t#2|) (-1020 (-805 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3227 ((-805 |t#1|) $)) (-15 -4297 ((-2 (|:| |k| (-805 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4120 (|t#2| $ (-805 |t#1|))) (-15 -4120 (|t#2| $ $)) (-15 -1754 ($ $ |t#1|)) (-15 -1754 ($ $ (-805 |t#1|))) (-15 -1754 ($ $ $)) (-15 -1429 ($ $ |t#1|)) (-15 -1429 ($ $ (-805 |t#1|))) (-15 -1429 ($ $ $)) (-15 -1718 ($ (-805 |t#1|) |t#2|)) (-15 -1298 ((-111) $)) (-15 -3189 ($ $)) (-15 -3110 ($ |t#1|)) (-15 -3641 ((-111) $)) (-15 -3879 (|t#2| $)) (-15 -3716 ((-111) $)) (-15 -4143 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -2717 ($ $ $)) (-15 -2717 ($ $ (-757)))) |%noBranch|) (-15 -1482 ($ (-1 |t#2| |t#2|) $)) (-15 -2694 ((-630 |t#1|) $)) (IF (|has| |t#2| (-6 -4362)) (-6 -4362) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 #0=(-805 |#1|)) . T) ((-603 |#2|) . T) ((-600 (-845)) . T) ((-633 |#2|) . T) ((-633 $) . T) ((-703 |#2|) |has| |#2| (-169)) ((-712) . T) ((-1020 #0#) . T) ((-1037 |#2|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1252 |#2|) . T)) -((-1446 (((-111) $) 15)) (-4223 (((-111) $) 14)) (-1950 (($ $) 19) (($ $ (-757)) 20))) -(((-1256 |#1| |#2|) (-10 -8 (-15 -1950 (|#1| |#1| (-757))) (-15 -1950 (|#1| |#1|)) (-15 -1446 ((-111) |#1|)) (-15 -4223 ((-111) |#1|))) (-1257 |#2|) (-357)) (T -1256)) -NIL -(-10 -8 (-15 -1950 (|#1| |#1| (-757))) (-15 -1950 (|#1| |#1|)) (-15 -1446 ((-111) |#1|)) (-15 -4223 ((-111) |#1|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2020 (((-2 (|:| -3908 $) (|:| -4356 $) (|:| |associate| $)) $) 42)) (-1968 (($ $) 41)) (-2028 (((-111) $) 39)) (-1446 (((-111) $) 95)) (-2276 (((-757)) 91)) (-2910 (((-3 $ "failed") $ $) 19)) (-1536 (($ $) 74)) (-2708 (((-412 $) $) 73)) (-4349 (((-111) $ $) 60)) (-3820 (($) 17 T CONST)) (-1399 (((-3 |#1| "failed") $) 102)) (-2707 ((|#1| $) 103)) (-3973 (($ $ $) 56)) (-2982 (((-3 $ "failed") $) 33)) (-3952 (($ $ $) 57)) (-1320 (((-2 (|:| -4120 (-630 $)) (|:| -4093 $)) (-630 $)) 52)) (-1808 (($ $ (-757)) 88 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 87 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3119 (((-111) $) 72)) (-2968 (((-819 (-903)) $) 85 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1848 (((-111) $) 31)) (-3046 (((-3 (-630 $) "failed") (-630 $) $) 53)) (-2471 (($ $ $) 47) (($ (-630 $)) 46)) (-1735 (((-1137) $) 9)) (-3610 (($ $) 71)) (-1657 (((-111) $) 94)) (-2786 (((-1099) $) 10)) (-3237 (((-1151 $) (-1151 $) (-1151 $)) 45)) (-2508 (($ $ $) 49) (($ (-630 $)) 48)) (-3355 (((-412 $) $) 75)) (-4043 (((-819 (-903))) 92)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4093 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3929 (((-3 $ "failed") $ $) 43)) (-1572 (((-3 (-630 $) "failed") (-630 $) $) 51)) (-3384 (((-757) $) 59)) (-4032 (((-2 (|:| -2666 $) (|:| -1571 $)) $ $) 58)) (-3122 (((-3 (-757) "failed") $ $) 86 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1337 (((-132)) 100)) (-3872 (((-819 (-903)) $) 93)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ $) 44) (($ (-401 (-553))) 67) (($ |#1|) 101)) (-2941 (((-3 $ "failed") $) 84 (-3988 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1999 (((-757)) 28)) (-1639 (((-111) $ $) 40)) (-4223 (((-111) $) 96)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1950 (($ $) 90 (|has| |#1| (-362))) (($ $ (-757)) 89 (|has| |#1| (-362)))) (-1617 (((-111) $ $) 6)) (-1723 (($ $ $) 66) (($ $ |#1|) 99)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32) (($ $ (-553)) 70)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ $ (-401 (-553))) 69) (($ (-401 (-553)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-1257 |#1|) (-137) (-357)) (T -1257)) -((-4223 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-819 (-903))))) (-4043 (*1 *2) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-819 (-903))))) (-2276 (*1 *2) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-757)))) (-1950 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-357)) (-4 *2 (-362)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-4 *3 (-362))))) -(-13 (-357) (-1020 |t#1|) (-1245 |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-396)) |%noBranch|) (-15 -4223 ((-111) $)) (-15 -1446 ((-111) $)) (-15 -1657 ((-111) $)) (-15 -3872 ((-819 (-903)) $)) (-15 -4043 ((-819 (-903)))) (-15 -2276 ((-757))) (IF (|has| |t#1| (-362)) (PROGN (-6 (-396)) (-15 -1950 ($ $)) (-15 -1950 ($ $ (-757)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-553))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -3988 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-603 #0#) . T) ((-603 (-553)) . T) ((-603 |#1|) . T) ((-603 $) . T) ((-600 (-845)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) -3988 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-445) . T) ((-545) . T) ((-633 #0#) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-703 #0#) . T) ((-703 |#1|) . T) ((-703 $) . T) ((-712) . T) ((-902) . T) ((-1020 |#1|) . T) ((-1037 #0#) . T) ((-1037 |#1|) . T) ((-1037 $) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1196) . T) ((-1245 |#1|) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2694 (((-630 |#1|) $) 86)) (-3245 (($ $ (-757)) 89)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-757)) NIL (|has| |#2| (-169)))) (-3820 (($) NIL T CONST)) (-1429 (($ $ |#1|) NIL) (($ $ (-805 |#1|)) NIL) (($ $ $) NIL)) (-1399 (((-3 (-805 |#1|) "failed") $) NIL) (((-3 (-875 |#1|) "failed") $) NIL)) (-2707 (((-805 |#1|) $) NIL) (((-875 |#1|) $) NIL)) (-3678 (($ $) 88)) (-2982 (((-3 $ "failed") $) NIL)) (-3716 (((-111) $) 77)) (-4143 (($ $) 81)) (-3087 (($ $ $ (-757)) 90)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-1718 (($ (-805 |#1|) |#2|) NIL) (($ (-875 |#1|) |#2|) 26)) (-3189 (($ $) 103)) (-4297 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-805 |#1|) $) NIL)) (-1932 (((-805 |#1|) $) NIL)) (-1482 (($ (-1 |#2| |#2|) $) NIL)) (-1754 (($ $ |#1|) NIL) (($ $ (-805 |#1|)) NIL) (($ $ $) NIL)) (-2366 (($ $ (-757)) 97 (|has| |#2| (-703 (-401 (-553)))))) (-1890 (((-2 (|:| |k| (-875 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3644 (((-875 |#1|) $) 70)) (-3655 ((|#2| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-2743 (($ $ (-757)) 94 (|has| |#2| (-703 (-401 (-553)))))) (-3872 (((-757) $) 87)) (-3641 (((-111) $) 71)) (-3879 ((|#2| $) 75)) (-3110 (((-845) $) 57) (($ (-553)) NIL) (($ |#2|) 51) (($ (-805 |#1|)) NIL) (($ |#1|) 59) (($ (-875 |#1|)) NIL) (($ (-649 |#1| |#2|)) 43) (((-1253 |#1| |#2|) $) 64) (((-1262 |#1| |#2|) $) 69)) (-3987 (((-630 |#2|) $) NIL)) (-1624 ((|#2| $ (-875 |#1|)) NIL)) (-4120 ((|#2| $ (-805 |#1|)) NIL) ((|#2| $ $) NIL)) (-1999 (((-757)) NIL)) (-1988 (($) 21 T CONST)) (-1997 (($) 25 T CONST)) (-1569 (((-630 (-2 (|:| |k| (-875 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3010 (((-3 (-649 |#1| |#2|) "failed") $) 102)) (-1617 (((-111) $ $) 65)) (-1711 (($ $) 96) (($ $ $) 95)) (-1700 (($ $ $) 20)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-875 |#1|)) NIL))) -(((-1258 |#1| |#2|) (-13 (-1259 |#1| |#2|) (-376 |#2| (-875 |#1|)) (-10 -8 (-15 -3110 ($ (-649 |#1| |#2|))) (-15 -3110 ((-1253 |#1| |#2|) $)) (-15 -3110 ((-1262 |#1| |#2|) $)) (-15 -3010 ((-3 (-649 |#1| |#2|) "failed") $)) (-15 -3087 ($ $ $ (-757))) (IF (|has| |#2| (-703 (-401 (-553)))) (PROGN (-15 -2743 ($ $ (-757))) (-15 -2366 ($ $ (-757)))) |%noBranch|))) (-833) (-169)) (T -1258)) -((-3110 (*1 *1 *2) (-12 (-5 *2 (-649 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) (-5 *1 (-1258 *3 *4)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1253 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1262 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-3010 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-3087 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)))) (-2743 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-1258 *3 *4)) (-4 *4 (-703 (-401 (-553)))) (-4 *3 (-833)) (-4 *4 (-169)))) (-2366 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-1258 *3 *4)) (-4 *4 (-703 (-401 (-553)))) (-4 *3 (-833)) (-4 *4 (-169))))) -(-13 (-1259 |#1| |#2|) (-376 |#2| (-875 |#1|)) (-10 -8 (-15 -3110 ($ (-649 |#1| |#2|))) (-15 -3110 ((-1253 |#1| |#2|) $)) (-15 -3110 ((-1262 |#1| |#2|) $)) (-15 -3010 ((-3 (-649 |#1| |#2|) "failed") $)) (-15 -3087 ($ $ $ (-757))) (IF (|has| |#2| (-703 (-401 (-553)))) (PROGN (-15 -2743 ($ $ (-757))) (-15 -2366 ($ $ (-757)))) |%noBranch|))) -((-3096 (((-111) $ $) 7)) (-3769 (((-111) $) 16)) (-2694 (((-630 |#1|) $) 41)) (-3245 (($ $ (-757)) 74)) (-2910 (((-3 $ "failed") $ $) 19)) (-2717 (($ $ $) 44 (|has| |#2| (-169))) (($ $ (-757)) 43 (|has| |#2| (-169)))) (-3820 (($) 17 T CONST)) (-1429 (($ $ |#1|) 55) (($ $ (-805 |#1|)) 54) (($ $ $) 53)) (-1399 (((-3 (-805 |#1|) "failed") $) 65)) (-2707 (((-805 |#1|) $) 66)) (-2982 (((-3 $ "failed") $) 33)) (-3716 (((-111) $) 46)) (-4143 (($ $) 45)) (-1848 (((-111) $) 31)) (-1298 (((-111) $) 51)) (-1718 (($ (-805 |#1|) |#2|) 52)) (-3189 (($ $) 50)) (-4297 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) 61)) (-3227 (((-805 |#1|) $) 62)) (-1932 (((-805 |#1|) $) 76)) (-1482 (($ (-1 |#2| |#2|) $) 42)) (-1754 (($ $ |#1|) 58) (($ $ (-805 |#1|)) 57) (($ $ $) 56)) (-1735 (((-1137) $) 9)) (-2786 (((-1099) $) 10)) (-3872 (((-757) $) 75)) (-3641 (((-111) $) 48)) (-3879 ((|#2| $) 47)) (-3110 (((-845) $) 11) (($ (-553)) 29) (($ |#2|) 69) (($ (-805 |#1|)) 64) (($ |#1|) 49)) (-4120 ((|#2| $ (-805 |#1|)) 60) ((|#2| $ $) 59)) (-1999 (((-757)) 28)) (-1988 (($) 18 T CONST)) (-1997 (($) 30 T CONST)) (-1617 (((-111) $ $) 6)) (-1711 (($ $) 22) (($ $ $) 21)) (-1700 (($ $ $) 14)) (** (($ $ (-903)) 25) (($ $ (-757)) 32)) (* (($ (-903) $) 13) (($ (-757) $) 15) (($ (-553) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1259 |#1| |#2|) (-137) (-833) (-1031)) (T -1259)) -((-1932 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-805 *3)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *2 (-757)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031))))) -(-13 (-1255 |t#1| |t#2|) (-10 -8 (-15 -1932 ((-805 |t#1|) $)) (-15 -3872 ((-757) $)) (-15 -3245 ($ $ (-757))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-603 (-553)) . T) ((-603 #0=(-805 |#1|)) . T) ((-603 |#2|) . T) ((-600 (-845)) . T) ((-633 |#2|) . T) ((-633 $) . T) ((-703 |#2|) |has| |#2| (-169)) ((-712) . T) ((-1020 #0#) . T) ((-1037 |#2|) . T) ((-1031) . T) ((-1038) . T) ((-1091) . T) ((-1079) . T) ((-1252 |#2|) . T) ((-1255 |#1| |#2|) . T)) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2694 (((-630 (-1155)) $) NIL)) (-2040 (($ (-1253 (-1155) |#1|)) NIL)) (-3245 (($ $ (-757)) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-757)) NIL (|has| |#1| (-169)))) (-3820 (($) NIL T CONST)) (-1429 (($ $ (-1155)) NIL) (($ $ (-805 (-1155))) NIL) (($ $ $) NIL)) (-1399 (((-3 (-805 (-1155)) "failed") $) NIL)) (-2707 (((-805 (-1155)) $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3716 (((-111) $) NIL)) (-4143 (($ $) NIL)) (-1848 (((-111) $) NIL)) (-1298 (((-111) $) NIL)) (-1718 (($ (-805 (-1155)) |#1|) NIL)) (-3189 (($ $) NIL)) (-4297 (((-2 (|:| |k| (-805 (-1155))) (|:| |c| |#1|)) $) NIL)) (-3227 (((-805 (-1155)) $) NIL)) (-1932 (((-805 (-1155)) $) NIL)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1754 (($ $ (-1155)) NIL) (($ $ (-805 (-1155))) NIL) (($ $ $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3873 (((-1253 (-1155) |#1|) $) NIL)) (-3872 (((-757) $) NIL)) (-3641 (((-111) $) NIL)) (-3879 ((|#1| $) NIL)) (-3110 (((-845) $) NIL) (($ (-553)) NIL) (($ |#1|) NIL) (($ (-805 (-1155))) NIL) (($ (-1155)) NIL)) (-4120 ((|#1| $ (-805 (-1155))) NIL) ((|#1| $ $) NIL)) (-1999 (((-757)) NIL)) (-1988 (($) NIL T CONST)) (-3671 (((-630 (-2 (|:| |k| (-1155)) (|:| |c| $))) $) NIL)) (-1997 (($) NIL T CONST)) (-1617 (((-111) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) NIL)) (** (($ $ (-903)) NIL) (($ $ (-757)) NIL)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1155) $) NIL))) -(((-1260 |#1|) (-13 (-1259 (-1155) |#1|) (-10 -8 (-15 -3873 ((-1253 (-1155) |#1|) $)) (-15 -2040 ($ (-1253 (-1155) |#1|))) (-15 -3671 ((-630 (-2 (|:| |k| (-1155)) (|:| |c| $))) $)))) (-1031)) (T -1260)) -((-3873 (*1 *2 *1) (-12 (-5 *2 (-1253 (-1155) *3)) (-5 *1 (-1260 *3)) (-4 *3 (-1031)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-1253 (-1155) *3)) (-4 *3 (-1031)) (-5 *1 (-1260 *3)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |k| (-1155)) (|:| |c| (-1260 *3))))) (-5 *1 (-1260 *3)) (-4 *3 (-1031))))) -(-13 (-1259 (-1155) |#1|) (-10 -8 (-15 -3873 ((-1253 (-1155) |#1|) $)) (-15 -2040 ($ (-1253 (-1155) |#1|))) (-15 -3671 ((-630 (-2 (|:| |k| (-1155)) (|:| |c| $))) $)))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) NIL)) (-2910 (((-3 $ "failed") $ $) NIL)) (-3820 (($) NIL T CONST)) (-1399 (((-3 |#2| "failed") $) NIL)) (-2707 ((|#2| $) NIL)) (-3678 (($ $) NIL)) (-2982 (((-3 $ "failed") $) 36)) (-3716 (((-111) $) 30)) (-4143 (($ $) 32)) (-1848 (((-111) $) NIL)) (-1984 (((-757) $) NIL)) (-2096 (((-630 $) $) NIL)) (-1298 (((-111) $) NIL)) (-1718 (($ |#2| |#1|) NIL)) (-3227 ((|#2| $) 19)) (-1932 ((|#2| $) 16)) (-1482 (($ (-1 |#1| |#1|) $) NIL)) (-1890 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3644 ((|#2| $) NIL)) (-3655 ((|#1| $) NIL)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3641 (((-111) $) 27)) (-3879 ((|#1| $) 28)) (-3110 (((-845) $) 55) (($ (-553)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3987 (((-630 |#1|) $) NIL)) (-1624 ((|#1| $ |#2|) NIL)) (-4120 ((|#1| $ |#2|) 24)) (-1999 (((-757)) 14)) (-1988 (($) 25 T CONST)) (-1997 (($) 11 T CONST)) (-1569 (((-630 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1617 (((-111) $ $) 26)) (-1723 (($ $ |#1|) 57 (|has| |#1| (-357)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-1700 (($ $ $) 44)) (** (($ $ (-903)) NIL) (($ $ (-757)) 46)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2563 (((-757) $) 15))) -(((-1261 |#1| |#2|) (-13 (-1031) (-1252 |#1|) (-376 |#1| |#2|) (-603 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2563 ((-757) $)) (-15 -1932 (|#2| $)) (-15 -3227 (|#2| $)) (-15 -3678 ($ $)) (-15 -4120 (|#1| $ |#2|)) (-15 -3641 ((-111) $)) (-15 -3879 (|#1| $)) (-15 -3716 ((-111) $)) (-15 -4143 ($ $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -1723 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4362)) (-6 -4362) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |#1| (-6 -4367)) (-6 -4367) |%noBranch|))) (-1031) (-829)) (T -1261)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-829)))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-829)))) (-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-1261 *3 *4)) (-4 *4 (-829)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-829)))) (-1932 (*1 *2 *1) (-12 (-4 *2 (-829)) (-5 *1 (-1261 *3 *2)) (-4 *3 (-1031)))) (-3227 (*1 *2 *1) (-12 (-4 *2 (-829)) (-5 *1 (-1261 *3 *2)) (-4 *3 (-1031)))) (-4120 (*1 *2 *1 *3) (-12 (-4 *2 (-1031)) (-5 *1 (-1261 *2 *3)) (-4 *3 (-829)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-829)))) (-3879 (*1 *2 *1) (-12 (-4 *2 (-1031)) (-5 *1 (-1261 *2 *3)) (-4 *3 (-829)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-829)))) (-4143 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-829)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1031)) (-4 *3 (-829))))) -(-13 (-1031) (-1252 |#1|) (-376 |#1| |#2|) (-603 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2563 ((-757) $)) (-15 -1932 (|#2| $)) (-15 -3227 (|#2| $)) (-15 -3678 ($ $)) (-15 -4120 (|#1| $ |#2|)) (-15 -3641 ((-111) $)) (-15 -3879 (|#1| $)) (-15 -3716 ((-111) $)) (-15 -4143 ($ $)) (-15 -1482 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -1723 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4362)) (-6 -4362) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |#1| (-6 -4367)) (-6 -4367) |%noBranch|))) -((-3096 (((-111) $ $) 26)) (-3769 (((-111) $) NIL)) (-2694 (((-630 |#1|) $) 120)) (-2040 (($ (-1253 |#1| |#2|)) 44)) (-3245 (($ $ (-757)) 32)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-757)) 46 (|has| |#2| (-169)))) (-3820 (($) NIL T CONST)) (-1429 (($ $ |#1|) 102) (($ $ (-805 |#1|)) 103) (($ $ $) 25)) (-1399 (((-3 (-805 |#1|) "failed") $) NIL)) (-2707 (((-805 |#1|) $) NIL)) (-2982 (((-3 $ "failed") $) 110)) (-3716 (((-111) $) 105)) (-4143 (($ $) 106)) (-1848 (((-111) $) NIL)) (-1298 (((-111) $) NIL)) (-1718 (($ (-805 |#1|) |#2|) 19)) (-3189 (($ $) NIL)) (-4297 (((-2 (|:| |k| (-805 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-805 |#1|) $) 111)) (-1932 (((-805 |#1|) $) 114)) (-1482 (($ (-1 |#2| |#2|) $) 119)) (-1754 (($ $ |#1|) 100) (($ $ (-805 |#1|)) 101) (($ $ $) 56)) (-1735 (((-1137) $) NIL)) (-2786 (((-1099) $) NIL)) (-3873 (((-1253 |#1| |#2|) $) 84)) (-3872 (((-757) $) 117)) (-3641 (((-111) $) 70)) (-3879 ((|#2| $) 28)) (-3110 (((-845) $) 63) (($ (-553)) 77) (($ |#2|) 74) (($ (-805 |#1|)) 17) (($ |#1|) 73)) (-4120 ((|#2| $ (-805 |#1|)) 104) ((|#2| $ $) 27)) (-1999 (((-757)) 108)) (-1988 (($) 14 T CONST)) (-3671 (((-630 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-1997 (($) 29 T CONST)) (-1617 (((-111) $ $) 13)) (-1711 (($ $) 88) (($ $ $) 91)) (-1700 (($ $ $) 55)) (** (($ $ (-903)) NIL) (($ $ (-757)) 49)) (* (($ (-903) $) NIL) (($ (-757) $) 47) (($ (-553) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1262 |#1| |#2|) (-13 (-1259 |#1| |#2|) (-10 -8 (-15 -3873 ((-1253 |#1| |#2|) $)) (-15 -2040 ($ (-1253 |#1| |#2|))) (-15 -3671 ((-630 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-833) (-1031)) (T -1262)) -((-3873 (*1 *2 *1) (-12 (-5 *2 (-1253 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-1253 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) (-5 *1 (-1262 *3 *4)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-630 (-2 (|:| |k| *3) (|:| |c| (-1262 *3 *4))))) (-5 *1 (-1262 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031))))) -(-13 (-1259 |#1| |#2|) (-10 -8 (-15 -3873 ((-1253 |#1| |#2|) $)) (-15 -2040 ($ (-1253 |#1| |#2|))) (-15 -3671 ((-630 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1276 (((-630 (-1135 |#1|)) (-1 (-630 (-1135 |#1|)) (-630 (-1135 |#1|))) (-553)) 15) (((-1135 |#1|) (-1 (-1135 |#1|) (-1135 |#1|))) 11))) -(((-1263 |#1|) (-10 -7 (-15 -1276 ((-1135 |#1|) (-1 (-1135 |#1|) (-1135 |#1|)))) (-15 -1276 ((-630 (-1135 |#1|)) (-1 (-630 (-1135 |#1|)) (-630 (-1135 |#1|))) (-553)))) (-1192)) (T -1263)) -((-1276 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-630 (-1135 *5)) (-630 (-1135 *5)))) (-5 *4 (-553)) (-5 *2 (-630 (-1135 *5))) (-5 *1 (-1263 *5)) (-4 *5 (-1192)))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1 (-1135 *4) (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1263 *4)) (-4 *4 (-1192))))) -(-10 -7 (-15 -1276 ((-1135 |#1|) (-1 (-1135 |#1|) (-1135 |#1|)))) (-15 -1276 ((-630 (-1135 |#1|)) (-1 (-630 (-1135 |#1|)) (-630 (-1135 |#1|))) (-553)))) -((-3066 (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|))) 148) (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111)) 147) (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111)) 146) (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111) (-111)) 145) (((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-1028 |#1| |#2|)) 130)) (-1519 (((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|))) 72) (((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)) (-111)) 71) (((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)) (-111) (-111)) 70)) (-2708 (((-630 (-1125 |#1| (-524 (-847 |#3|)) (-847 |#3|) (-766 |#1| (-847 |#3|)))) (-1028 |#1| |#2|)) 61)) (-4217 (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|))) 115) (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111)) 114) (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111)) 113) (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111) (-111)) 112) (((-630 (-630 (-1006 (-401 |#1|)))) (-1028 |#1| |#2|)) 107)) (-1607 (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|))) 120) (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111)) 119) (((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111)) 118) (((-630 (-630 (-1006 (-401 |#1|)))) (-1028 |#1| |#2|)) 117)) (-1524 (((-630 (-766 |#1| (-847 |#3|))) (-1125 |#1| (-524 (-847 |#3|)) (-847 |#3|) (-766 |#1| (-847 |#3|)))) 98) (((-1151 (-1006 (-401 |#1|))) (-1151 |#1|)) 89) (((-934 (-1006 (-401 |#1|))) (-766 |#1| (-847 |#3|))) 96) (((-934 (-1006 (-401 |#1|))) (-934 |#1|)) 94) (((-766 |#1| (-847 |#3|)) (-766 |#1| (-847 |#2|))) 33))) -(((-1264 |#1| |#2| |#3|) (-10 -7 (-15 -1519 ((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)) (-111) (-111))) (-15 -1519 ((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)) (-111))) (-15 -1519 ((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-1028 |#1| |#2|))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111) (-111))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-1028 |#1| |#2|))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111) (-111))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-1028 |#1| |#2|))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)))) (-15 -2708 ((-630 (-1125 |#1| (-524 (-847 |#3|)) (-847 |#3|) (-766 |#1| (-847 |#3|)))) (-1028 |#1| |#2|))) (-15 -1524 ((-766 |#1| (-847 |#3|)) (-766 |#1| (-847 |#2|)))) (-15 -1524 ((-934 (-1006 (-401 |#1|))) (-934 |#1|))) (-15 -1524 ((-934 (-1006 (-401 |#1|))) (-766 |#1| (-847 |#3|)))) (-15 -1524 ((-1151 (-1006 (-401 |#1|))) (-1151 |#1|))) (-15 -1524 ((-630 (-766 |#1| (-847 |#3|))) (-1125 |#1| (-524 (-847 |#3|)) (-847 |#3|) (-766 |#1| (-847 |#3|)))))) (-13 (-831) (-301) (-144) (-1004)) (-630 (-1155)) (-630 (-1155))) (T -1264)) -((-1524 (*1 *2 *3) (-12 (-5 *3 (-1125 *4 (-524 (-847 *6)) (-847 *6) (-766 *4 (-847 *6)))) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-766 *4 (-847 *6)))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1151 *4)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-1151 (-1006 (-401 *4)))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-766 *4 (-847 *6))) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *6 (-630 (-1155))) (-5 *2 (-934 (-1006 (-401 *4)))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-934 *4)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-934 (-1006 (-401 *4)))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-766 *4 (-847 *5))) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *5 (-630 (-1155))) (-5 *2 (-766 *4 (-847 *6))) (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *5 (-630 (-1155))) (-5 *2 (-630 (-1125 *4 (-524 (-847 *6)) (-847 *6) (-766 *4 (-847 *6))))) (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *4))))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *5 (-630 (-1155))) (-5 *2 (-630 (-630 (-1006 (-401 *4))))) (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *4))))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) (-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-4217 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-4217 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *5 (-630 (-1155))) (-5 *2 (-630 (-630 (-1006 (-401 *4))))) (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *4)) (|:| -2855 (-630 (-934 *4)))))) (-5 *1 (-1264 *4 *5 *6)) (-5 *3 (-630 (-934 *4))) (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) (-5 *1 (-1264 *5 *6 *7)) (-5 *3 (-630 (-934 *5))) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-3066 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) (-5 *1 (-1264 *5 *6 *7)) (-5 *3 (-630 (-934 *5))) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-3066 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) (-5 *1 (-1264 *5 *6 *7)) (-5 *3 (-630 (-934 *5))) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *5 (-630 (-1155))) (-5 *2 (-630 (-2 (|:| -3803 (-1151 *4)) (|:| -2855 (-630 (-934 *4)))))) (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-1028 *4 *5))) (-5 *1 (-1264 *4 *5 *6)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) (-1519 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) (-1519 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-1264 *5 *6 *7)) (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155)))))) -(-10 -7 (-15 -1519 ((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)) (-111) (-111))) (-15 -1519 ((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)) (-111))) (-15 -1519 ((-630 (-1028 |#1| |#2|)) (-630 (-934 |#1|)))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-1028 |#1| |#2|))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111) (-111))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111) (-111))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)) (-111))) (-15 -3066 ((-630 (-2 (|:| -3803 (-1151 |#1|)) (|:| -2855 (-630 (-934 |#1|))))) (-630 (-934 |#1|)))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-1028 |#1| |#2|))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111) (-111))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111))) (-15 -4217 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-1028 |#1| |#2|))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111) (-111))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)) (-111))) (-15 -1607 ((-630 (-630 (-1006 (-401 |#1|)))) (-630 (-934 |#1|)))) (-15 -2708 ((-630 (-1125 |#1| (-524 (-847 |#3|)) (-847 |#3|) (-766 |#1| (-847 |#3|)))) (-1028 |#1| |#2|))) (-15 -1524 ((-766 |#1| (-847 |#3|)) (-766 |#1| (-847 |#2|)))) (-15 -1524 ((-934 (-1006 (-401 |#1|))) (-934 |#1|))) (-15 -1524 ((-934 (-1006 (-401 |#1|))) (-766 |#1| (-847 |#3|)))) (-15 -1524 ((-1151 (-1006 (-401 |#1|))) (-1151 |#1|))) (-15 -1524 ((-630 (-766 |#1| (-847 |#3|))) (-1125 |#1| (-524 (-847 |#3|)) (-847 |#3|) (-766 |#1| (-847 |#3|)))))) -((-3340 (((-3 (-1238 (-401 (-553))) "failed") (-1238 |#1|) |#1|) 21)) (-3351 (((-111) (-1238 |#1|)) 12)) (-3452 (((-3 (-1238 (-553)) "failed") (-1238 |#1|)) 16))) -(((-1265 |#1|) (-10 -7 (-15 -3351 ((-111) (-1238 |#1|))) (-15 -3452 ((-3 (-1238 (-553)) "failed") (-1238 |#1|))) (-15 -3340 ((-3 (-1238 (-401 (-553))) "failed") (-1238 |#1|) |#1|))) (-626 (-553))) (T -1265)) -((-3340 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 (-553))) (-5 *2 (-1238 (-401 (-553)))) (-5 *1 (-1265 *4)))) (-3452 (*1 *2 *3) (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 (-553))) (-5 *2 (-1238 (-553))) (-5 *1 (-1265 *4)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1238 *4)) (-4 *4 (-626 (-553))) (-5 *2 (-111)) (-5 *1 (-1265 *4))))) -(-10 -7 (-15 -3351 ((-111) (-1238 |#1|))) (-15 -3452 ((-3 (-1238 (-553)) "failed") (-1238 |#1|))) (-15 -3340 ((-3 (-1238 (-401 (-553))) "failed") (-1238 |#1|) |#1|))) -((-3096 (((-111) $ $) NIL)) (-3769 (((-111) $) 11)) (-2910 (((-3 $ "failed") $ $) NIL)) (-2571 (((-757)) 8)) (-3820 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 43)) (-3031 (($) 36)) (-1848 (((-111) $) NIL)) (-2502 (((-3 $ "failed") $) 29)) (-3796 (((-903) $) 15)) (-1735 (((-1137) $) NIL)) (-1945 (($) 25 T CONST)) (-2735 (($ (-903)) 37)) (-2786 (((-1099) $) NIL)) (-1524 (((-553) $) 13)) (-3110 (((-845) $) 22) (($ (-553)) 19)) (-1999 (((-757)) 9)) (-1988 (($) 23 T CONST)) (-1997 (($) 24 T CONST)) (-1617 (((-111) $ $) 27)) (-1711 (($ $) 38) (($ $ $) 35)) (-1700 (($ $ $) 26)) (** (($ $ (-903)) NIL) (($ $ (-757)) 40)) (* (($ (-903) $) NIL) (($ (-757) $) NIL) (($ (-553) $) 32) (($ $ $) 31))) -(((-1266 |#1|) (-13 (-169) (-362) (-601 (-553)) (-1130)) (-903)) (T -1266)) -NIL -(-13 (-169) (-362) (-601 (-553)) (-1130)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3180784 3180789 3180794 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3180769 3180774 3180779 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3180754 3180759 3180764 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3180739 3180744 3180749 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1266 3179915 3180614 3180691 "ZMOD" 3180696 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1265 3179025 3179189 3179398 "ZLINDEP" 3179747 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1264 3168329 3170093 3172065 "ZDSOLVE" 3177155 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1263 3167575 3167716 3167905 "YSTREAM" 3168175 NIL YSTREAM (NIL T) -7 NIL NIL) (-1262 3165386 3166876 3167080 "XRPOLY" 3167418 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1261 3161974 3163257 3163832 "XPR" 3164858 NIL XPR (NIL T T) -8 NIL NIL) (-1260 3159730 3161305 3161509 "XPOLY" 3161805 NIL XPOLY (NIL T) -8 NIL NIL) (-1259 3157521 3158855 3158910 "XPOLYC" 3159198 NIL XPOLYC (NIL T T) -9 NIL 3159311) (-1258 3153939 3156038 3156426 "XPBWPOLY" 3157179 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1257 3149850 3152102 3152144 "XF" 3152765 NIL XF (NIL T) -9 NIL 3153165) (-1256 3149471 3149559 3149728 "XF-" 3149733 NIL XF- (NIL T T) -8 NIL NIL) (-1255 3144805 3146060 3146115 "XFALG" 3148287 NIL XFALG (NIL T T) -9 NIL 3149076) (-1254 3143938 3144042 3144247 "XEXPPKG" 3144697 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1253 3142082 3143788 3143884 "XDPOLY" 3143889 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1252 3141027 3141593 3141636 "XALG" 3141641 NIL XALG (NIL T) -9 NIL 3141752) (-1251 3134496 3139004 3139498 "WUTSET" 3140619 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1250 3132787 3133548 3133871 "WP" 3134307 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1249 3132416 3132609 3132679 "WHILEAST" 3132739 T WHILEAST (NIL) -8 NIL NIL) (-1248 3131915 3132133 3132227 "WHEREAST" 3132344 T WHEREAST (NIL) -8 NIL NIL) (-1247 3130801 3130999 3131294 "WFFINTBS" 3131712 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1246 3128705 3129132 3129594 "WEIER" 3130373 NIL WEIER (NIL T) -7 NIL NIL) (-1245 3127852 3128276 3128318 "VSPACE" 3128454 NIL VSPACE (NIL T) -9 NIL 3128528) (-1244 3127690 3127717 3127808 "VSPACE-" 3127813 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1243 3127498 3127541 3127609 "VOID" 3127644 T VOID (NIL) -8 NIL NIL) (-1242 3125634 3125993 3126399 "VIEW" 3127114 T VIEW (NIL) -7 NIL NIL) (-1241 3122059 3122697 3123434 "VIEWDEF" 3124919 T VIEWDEF (NIL) -7 NIL NIL) (-1240 3111397 3113607 3115780 "VIEW3D" 3119908 T VIEW3D (NIL) -8 NIL NIL) (-1239 3103679 3105308 3106887 "VIEW2D" 3109840 T VIEW2D (NIL) -8 NIL NIL) (-1238 3099083 3103449 3103541 "VECTOR" 3103622 NIL VECTOR (NIL T) -8 NIL NIL) (-1237 3097660 3097919 3098237 "VECTOR2" 3098813 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1236 3091187 3095444 3095487 "VECTCAT" 3096480 NIL VECTCAT (NIL T) -9 NIL 3097066) (-1235 3090201 3090455 3090845 "VECTCAT-" 3090850 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1234 3089682 3089852 3089972 "VARIABLE" 3090116 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1233 3089615 3089620 3089650 "UTYPE" 3089655 T UTYPE (NIL) -9 NIL NIL) (-1232 3088445 3088599 3088861 "UTSODETL" 3089441 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1231 3085885 3086345 3086869 "UTSODE" 3087986 NIL UTSODE (NIL T T) -7 NIL NIL) (-1230 3077761 3083511 3084000 "UTS" 3085454 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1229 3069004 3074328 3074371 "UTSCAT" 3075483 NIL UTSCAT (NIL T) -9 NIL 3076240) (-1228 3066358 3067074 3068063 "UTSCAT-" 3068068 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1227 3065985 3066028 3066161 "UTS2" 3066309 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1226 3060260 3062825 3062868 "URAGG" 3064938 NIL URAGG (NIL T) -9 NIL 3065660) (-1225 3057199 3058062 3059185 "URAGG-" 3059190 NIL URAGG- (NIL T T) -8 NIL NIL) (-1224 3052923 3055813 3056285 "UPXSSING" 3056863 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1223 3045025 3052170 3052443 "UPXS" 3052708 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1222 3038138 3044929 3045001 "UPXSCONS" 3045006 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1221 3028383 3035133 3035195 "UPXSCCA" 3035769 NIL UPXSCCA (NIL T T) -9 NIL 3036002) (-1220 3028021 3028106 3028280 "UPXSCCA-" 3028285 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1219 3018119 3024642 3024685 "UPXSCAT" 3025333 NIL UPXSCAT (NIL T) -9 NIL 3025941) (-1218 3017549 3017628 3017807 "UPXS2" 3018034 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1217 3016203 3016456 3016807 "UPSQFREE" 3017292 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1216 3009991 3013005 3013060 "UPSCAT" 3014221 NIL UPSCAT (NIL T T) -9 NIL 3014995) (-1215 3009195 3009402 3009729 "UPSCAT-" 3009734 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1214 2995045 3003043 3003086 "UPOLYC" 3005187 NIL UPOLYC (NIL T) -9 NIL 3006408) (-1213 2986374 2988799 2991946 "UPOLYC-" 2991951 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1212 2986001 2986044 2986177 "UPOLYC2" 2986325 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1211 2977575 2985684 2985813 "UP" 2985920 NIL UP (NIL NIL T) -8 NIL NIL) (-1210 2976914 2977021 2977185 "UPMP" 2977464 NIL UPMP (NIL T T) -7 NIL NIL) (-1209 2976467 2976548 2976687 "UPDIVP" 2976827 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1208 2975035 2975284 2975600 "UPDECOMP" 2976216 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1207 2974270 2974382 2974567 "UPCDEN" 2974919 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1206 2973789 2973858 2974007 "UP2" 2974195 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1205 2972306 2972993 2973270 "UNISEG" 2973547 NIL UNISEG (NIL T) -8 NIL NIL) (-1204 2971521 2971648 2971853 "UNISEG2" 2972149 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1203 2970581 2970761 2970987 "UNIFACT" 2971337 NIL UNIFACT (NIL T) -7 NIL NIL) (-1202 2954548 2969758 2970009 "ULS" 2970388 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1201 2942588 2954452 2954524 "ULSCONS" 2954529 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1200 2925204 2937146 2937208 "ULSCCAT" 2937846 NIL ULSCCAT (NIL T T) -9 NIL 2938134) (-1199 2924254 2924499 2924887 "ULSCCAT-" 2924892 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1198 2914129 2920566 2920609 "ULSCAT" 2921472 NIL ULSCAT (NIL T) -9 NIL 2922202) (-1197 2913559 2913638 2913817 "ULS2" 2914044 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1196 2911962 2912885 2912915 "UFD" 2913127 T UFD (NIL) -9 NIL 2913241) (-1195 2911756 2911802 2911897 "UFD-" 2911902 NIL UFD- (NIL T) -8 NIL NIL) (-1194 2910838 2911021 2911237 "UDVO" 2911562 T UDVO (NIL) -7 NIL NIL) (-1193 2908654 2909063 2909534 "UDPO" 2910402 NIL UDPO (NIL T) -7 NIL NIL) (-1192 2908587 2908592 2908622 "TYPE" 2908627 T TYPE (NIL) -9 NIL NIL) (-1191 2908374 2908542 2908573 "TYPEAST" 2908578 T TYPEAST (NIL) -8 NIL NIL) (-1190 2907345 2907547 2907787 "TWOFACT" 2908168 NIL TWOFACT (NIL T) -7 NIL NIL) (-1189 2906417 2906754 2906989 "TUPLE" 2907145 NIL TUPLE (NIL T) -8 NIL NIL) (-1188 2904108 2904627 2905166 "TUBETOOL" 2905900 T TUBETOOL (NIL) -7 NIL NIL) (-1187 2902957 2903162 2903403 "TUBE" 2903901 NIL TUBE (NIL T) -8 NIL NIL) (-1186 2897721 2901929 2902212 "TS" 2902709 NIL TS (NIL T) -8 NIL NIL) (-1185 2886388 2890480 2890577 "TSETCAT" 2895846 NIL TSETCAT (NIL T T T T) -9 NIL 2897377) (-1184 2881122 2882720 2884611 "TSETCAT-" 2884616 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1183 2875385 2876231 2877173 "TRMANIP" 2880258 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1182 2874826 2874889 2875052 "TRIMAT" 2875317 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1181 2872622 2872859 2873223 "TRIGMNIP" 2874575 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1180 2872142 2872255 2872285 "TRIGCAT" 2872498 T TRIGCAT (NIL) -9 NIL NIL) (-1179 2871811 2871890 2872031 "TRIGCAT-" 2872036 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1178 2868710 2870671 2870951 "TREE" 2871566 NIL TREE (NIL T) -8 NIL NIL) (-1177 2867984 2868512 2868542 "TRANFUN" 2868577 T TRANFUN (NIL) -9 NIL 2868643) (-1176 2867263 2867454 2867734 "TRANFUN-" 2867739 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1175 2867067 2867099 2867160 "TOPSP" 2867224 T TOPSP (NIL) -7 NIL NIL) (-1174 2866415 2866530 2866684 "TOOLSIGN" 2866948 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1173 2865076 2865592 2865831 "TEXTFILE" 2866198 T TEXTFILE (NIL) -8 NIL NIL) (-1172 2863015 2863529 2863958 "TEX" 2864669 T TEX (NIL) -8 NIL NIL) (-1171 2862796 2862827 2862899 "TEX1" 2862978 NIL TEX1 (NIL T) -7 NIL NIL) (-1170 2862444 2862507 2862597 "TEMUTL" 2862728 T TEMUTL (NIL) -7 NIL NIL) (-1169 2860598 2860878 2861203 "TBCMPPK" 2862167 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1168 2852486 2858758 2858814 "TBAGG" 2859214 NIL TBAGG (NIL T T) -9 NIL 2859425) (-1167 2847556 2849044 2850798 "TBAGG-" 2850803 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1166 2846940 2847047 2847192 "TANEXP" 2847445 NIL TANEXP (NIL T) -7 NIL NIL) (-1165 2840441 2846797 2846890 "TABLE" 2846895 NIL TABLE (NIL T T) -8 NIL NIL) (-1164 2839853 2839952 2840090 "TABLEAU" 2840338 NIL TABLEAU (NIL T) -8 NIL NIL) (-1163 2834461 2835681 2836929 "TABLBUMP" 2838639 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1162 2833889 2833989 2834117 "SYSTEM" 2834355 T SYSTEM (NIL) -7 NIL NIL) (-1161 2830352 2831047 2831830 "SYSSOLP" 2833140 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1160 2826730 2827641 2828343 "SYNTAX" 2829672 T SYNTAX (NIL) -8 NIL NIL) (-1159 2823888 2824490 2825122 "SYMTAB" 2826120 T SYMTAB (NIL) -8 NIL NIL) (-1158 2819137 2820039 2821022 "SYMS" 2822927 T SYMS (NIL) -8 NIL NIL) (-1157 2816409 2818595 2818825 "SYMPOLY" 2818942 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1156 2815926 2816001 2816124 "SYMFUNC" 2816321 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1155 2811978 2813238 2814051 "SYMBOL" 2815135 T SYMBOL (NIL) -8 NIL NIL) (-1154 2805517 2807206 2808926 "SWITCH" 2810280 T SWITCH (NIL) -8 NIL NIL) (-1153 2798787 2804338 2804641 "SUTS" 2805272 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1152 2790888 2798034 2798307 "SUPXS" 2798572 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1151 2782417 2790506 2790632 "SUP" 2790797 NIL SUP (NIL T) -8 NIL NIL) (-1150 2781576 2781703 2781920 "SUPFRACF" 2782285 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1149 2781197 2781256 2781369 "SUP2" 2781511 NIL SUP2 (NIL T T) -7 NIL NIL) (-1148 2779610 2779884 2780247 "SUMRF" 2780896 NIL SUMRF (NIL T) -7 NIL NIL) (-1147 2778924 2778990 2779189 "SUMFS" 2779531 NIL SUMFS (NIL T T) -7 NIL NIL) (-1146 2762931 2778101 2778352 "SULS" 2778731 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1145 2762560 2762753 2762823 "SUCHTAST" 2762883 T SUCHTAST (NIL) -8 NIL NIL) (-1144 2761882 2762085 2762225 "SUCH" 2762468 NIL SUCH (NIL T T) -8 NIL NIL) (-1143 2755776 2756788 2757747 "SUBSPACE" 2760970 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1142 2755206 2755296 2755460 "SUBRESP" 2755664 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1141 2748575 2749871 2751182 "STTF" 2753942 NIL STTF (NIL T) -7 NIL NIL) (-1140 2742748 2743868 2745015 "STTFNC" 2747475 NIL STTFNC (NIL T) -7 NIL NIL) (-1139 2734063 2735930 2737724 "STTAYLOR" 2740989 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1138 2727307 2733927 2734010 "STRTBL" 2734015 NIL STRTBL (NIL T) -8 NIL NIL) (-1137 2722698 2727262 2727293 "STRING" 2727298 T STRING (NIL) -8 NIL NIL) (-1136 2717586 2722071 2722101 "STRICAT" 2722160 T STRICAT (NIL) -9 NIL 2722222) (-1135 2710395 2715205 2715816 "STREAM" 2717010 NIL STREAM (NIL T) -8 NIL NIL) (-1134 2709905 2709982 2710126 "STREAM3" 2710312 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1133 2708887 2709070 2709305 "STREAM2" 2709718 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1132 2708575 2708627 2708720 "STREAM1" 2708829 NIL STREAM1 (NIL T) -7 NIL NIL) (-1131 2707591 2707772 2708003 "STINPROD" 2708391 NIL STINPROD (NIL T) -7 NIL NIL) (-1130 2707169 2707353 2707383 "STEP" 2707463 T STEP (NIL) -9 NIL 2707541) (-1129 2700712 2707068 2707145 "STBL" 2707150 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1128 2695887 2699934 2699977 "STAGG" 2700130 NIL STAGG (NIL T) -9 NIL 2700219) (-1127 2693589 2694191 2695063 "STAGG-" 2695068 NIL STAGG- (NIL T T) -8 NIL NIL) (-1126 2691784 2693359 2693451 "STACK" 2693532 NIL STACK (NIL T) -8 NIL NIL) (-1125 2684509 2689925 2690381 "SREGSET" 2691414 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1124 2676935 2678303 2679816 "SRDCMPK" 2683115 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1123 2669902 2674375 2674405 "SRAGG" 2675708 T SRAGG (NIL) -9 NIL 2676316) (-1122 2668919 2669174 2669553 "SRAGG-" 2669558 NIL SRAGG- (NIL T) -8 NIL NIL) (-1121 2663414 2667866 2668287 "SQMATRIX" 2668545 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1120 2657166 2660134 2660860 "SPLTREE" 2662760 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1119 2653156 2653822 2654468 "SPLNODE" 2656592 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1118 2652203 2652436 2652466 "SPFCAT" 2652910 T SPFCAT (NIL) -9 NIL NIL) (-1117 2650940 2651150 2651414 "SPECOUT" 2651961 T SPECOUT (NIL) -7 NIL NIL) (-1116 2642592 2644336 2644366 "SPADXPT" 2648758 T SPADXPT (NIL) -9 NIL 2650792) (-1115 2642353 2642393 2642462 "SPADPRSR" 2642545 T SPADPRSR (NIL) -7 NIL NIL) (-1114 2640536 2642308 2642339 "SPADAST" 2642344 T SPADAST (NIL) -8 NIL NIL) (-1113 2632507 2634254 2634297 "SPACEC" 2638670 NIL SPACEC (NIL T) -9 NIL 2640486) (-1112 2630678 2632439 2632488 "SPACE3" 2632493 NIL SPACE3 (NIL T) -8 NIL NIL) (-1111 2629430 2629601 2629892 "SORTPAK" 2630483 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1110 2627480 2627783 2628202 "SOLVETRA" 2629094 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1109 2626491 2626713 2626987 "SOLVESER" 2627253 NIL SOLVESER (NIL T) -7 NIL NIL) (-1108 2621711 2622592 2623594 "SOLVERAD" 2625543 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1107 2617526 2618135 2618864 "SOLVEFOR" 2621078 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1106 2611823 2616875 2616972 "SNTSCAT" 2616977 NIL SNTSCAT (NIL T T T T) -9 NIL 2617047) (-1105 2605966 2610146 2610537 "SMTS" 2611513 NIL SMTS (NIL T T T) -8 NIL NIL) (-1104 2600416 2605854 2605931 "SMP" 2605936 NIL SMP (NIL T T) -8 NIL NIL) (-1103 2598575 2598876 2599274 "SMITH" 2600113 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1102 2591470 2595626 2595729 "SMATCAT" 2597080 NIL SMATCAT (NIL NIL T T T) -9 NIL 2597630) (-1101 2588410 2589233 2590411 "SMATCAT-" 2590416 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1100 2586123 2587646 2587689 "SKAGG" 2587950 NIL SKAGG (NIL T) -9 NIL 2588085) (-1099 2582239 2585227 2585505 "SINT" 2585867 T SINT (NIL) -8 NIL NIL) (-1098 2582011 2582049 2582115 "SIMPAN" 2582195 T SIMPAN (NIL) -7 NIL NIL) (-1097 2581318 2581546 2581686 "SIG" 2581893 T SIG (NIL) -8 NIL NIL) (-1096 2580156 2580377 2580652 "SIGNRF" 2581077 NIL SIGNRF (NIL T) -7 NIL NIL) (-1095 2578961 2579112 2579403 "SIGNEF" 2579985 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1094 2578294 2578544 2578668 "SIGAST" 2578859 T SIGAST (NIL) -8 NIL NIL) (-1093 2575984 2576438 2576944 "SHP" 2577835 NIL SHP (NIL T NIL) -7 NIL NIL) (-1092 2569890 2575885 2575961 "SHDP" 2575966 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1091 2569489 2569655 2569685 "SGROUP" 2569778 T SGROUP (NIL) -9 NIL 2569840) (-1090 2569347 2569373 2569446 "SGROUP-" 2569451 NIL SGROUP- (NIL T) -8 NIL NIL) (-1089 2566183 2566880 2567603 "SGCF" 2568646 T SGCF (NIL) -7 NIL NIL) (-1088 2560578 2565630 2565727 "SFRTCAT" 2565732 NIL SFRTCAT (NIL T T T T) -9 NIL 2565771) (-1087 2554002 2555017 2556153 "SFRGCD" 2559561 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1086 2547130 2548201 2549387 "SFQCMPK" 2552935 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1085 2546752 2546841 2546951 "SFORT" 2547071 NIL SFORT (NIL T T) -8 NIL NIL) (-1084 2545897 2546592 2546713 "SEXOF" 2546718 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1083 2545031 2545778 2545846 "SEX" 2545851 T SEX (NIL) -8 NIL NIL) (-1082 2540570 2541259 2541354 "SEXCAT" 2544291 NIL SEXCAT (NIL T T T T T) -9 NIL 2544869) (-1081 2537750 2540504 2540552 "SET" 2540557 NIL SET (NIL T) -8 NIL NIL) (-1080 2536001 2536463 2536768 "SETMN" 2537491 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1079 2535607 2535733 2535763 "SETCAT" 2535880 T SETCAT (NIL) -9 NIL 2535965) (-1078 2535387 2535439 2535538 "SETCAT-" 2535543 NIL SETCAT- (NIL T) -8 NIL NIL) (-1077 2531774 2533848 2533891 "SETAGG" 2534761 NIL SETAGG (NIL T) -9 NIL 2535101) (-1076 2531232 2531348 2531585 "SETAGG-" 2531590 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1075 2530702 2530928 2531029 "SEQAST" 2531153 T SEQAST (NIL) -8 NIL NIL) (-1074 2529901 2530195 2530256 "SEGXCAT" 2530542 NIL SEGXCAT (NIL T T) -9 NIL 2530662) (-1073 2528957 2529567 2529749 "SEG" 2529754 NIL SEG (NIL T) -8 NIL NIL) (-1072 2527936 2528150 2528193 "SEGCAT" 2528715 NIL SEGCAT (NIL T) -9 NIL 2528936) (-1071 2526985 2527315 2527515 "SEGBIND" 2527771 NIL SEGBIND (NIL T) -8 NIL NIL) (-1070 2526606 2526665 2526778 "SEGBIND2" 2526920 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1069 2526207 2526407 2526484 "SEGAST" 2526551 T SEGAST (NIL) -8 NIL NIL) (-1068 2525426 2525552 2525756 "SEG2" 2526051 NIL SEG2 (NIL T T) -7 NIL NIL) (-1067 2524863 2525361 2525408 "SDVAR" 2525413 NIL SDVAR (NIL T) -8 NIL NIL) (-1066 2517153 2524633 2524763 "SDPOL" 2524768 NIL SDPOL (NIL T) -8 NIL NIL) (-1065 2515746 2516012 2516331 "SCPKG" 2516868 NIL SCPKG (NIL T) -7 NIL NIL) (-1064 2514882 2515062 2515262 "SCOPE" 2515568 T SCOPE (NIL) -8 NIL NIL) (-1063 2514103 2514236 2514415 "SCACHE" 2514737 NIL SCACHE (NIL T) -7 NIL NIL) (-1062 2513775 2513935 2513965 "SASTCAT" 2513970 T SASTCAT (NIL) -9 NIL 2513983) (-1061 2513289 2513610 2513686 "SAOS" 2513721 T SAOS (NIL) -8 NIL NIL) (-1060 2512854 2512889 2513062 "SAERFFC" 2513248 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1059 2506828 2512751 2512831 "SAE" 2512836 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1058 2506421 2506456 2506615 "SAEFACT" 2506787 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1057 2504742 2505056 2505457 "RURPK" 2506087 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1056 2503378 2503657 2503969 "RULESET" 2504576 NIL RULESET (NIL T T T) -8 NIL NIL) (-1055 2500565 2501068 2501533 "RULE" 2503059 NIL RULE (NIL T T T) -8 NIL NIL) (-1054 2500204 2500359 2500442 "RULECOLD" 2500517 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1053 2499702 2499921 2500015 "RSTRCAST" 2500132 T RSTRCAST (NIL) -8 NIL NIL) (-1052 2494551 2495345 2496265 "RSETGCD" 2498901 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1051 2483808 2488860 2488957 "RSETCAT" 2493076 NIL RSETCAT (NIL T T T T) -9 NIL 2494173) (-1050 2481735 2482274 2483098 "RSETCAT-" 2483103 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1049 2474122 2475497 2477017 "RSDCMPK" 2480334 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1048 2472127 2472568 2472642 "RRCC" 2473728 NIL RRCC (NIL T T) -9 NIL 2474072) (-1047 2471478 2471652 2471931 "RRCC-" 2471936 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1046 2470948 2471174 2471275 "RPTAST" 2471399 T RPTAST (NIL) -8 NIL NIL) (-1045 2444954 2454541 2454608 "RPOLCAT" 2465272 NIL RPOLCAT (NIL T T T) -9 NIL 2468431) (-1044 2436454 2438792 2441914 "RPOLCAT-" 2441919 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1043 2427501 2434665 2435147 "ROUTINE" 2435994 T ROUTINE (NIL) -8 NIL NIL) (-1042 2424334 2427127 2427267 "ROMAN" 2427383 T ROMAN (NIL) -8 NIL NIL) (-1041 2422609 2423194 2423454 "ROIRC" 2424139 NIL ROIRC (NIL T T) -8 NIL NIL) (-1040 2419002 2421245 2421275 "RNS" 2421579 T RNS (NIL) -9 NIL 2421852) (-1039 2417511 2417894 2418428 "RNS-" 2418503 NIL RNS- (NIL T) -8 NIL NIL) (-1038 2416960 2417342 2417372 "RNG" 2417377 T RNG (NIL) -9 NIL 2417398) (-1037 2416352 2416714 2416757 "RMODULE" 2416819 NIL RMODULE (NIL T) -9 NIL 2416861) (-1036 2415188 2415282 2415618 "RMCAT2" 2416253 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1035 2412065 2414534 2414831 "RMATRIX" 2414950 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1034 2405007 2407241 2407356 "RMATCAT" 2410715 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2411697) (-1033 2404382 2404529 2404836 "RMATCAT-" 2404841 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1032 2403949 2404024 2404152 "RINTERP" 2404301 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1031 2403082 2403602 2403632 "RING" 2403688 T RING (NIL) -9 NIL 2403774) (-1030 2402874 2402918 2403015 "RING-" 2403020 NIL RING- (NIL T) -8 NIL NIL) (-1029 2401715 2401952 2402210 "RIDIST" 2402638 T RIDIST (NIL) -7 NIL NIL) (-1028 2393031 2401183 2401389 "RGCHAIN" 2401563 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1027 2392407 2392787 2392828 "RGBCSPC" 2392886 NIL RGBCSPC (NIL T) -9 NIL 2392938) (-1026 2391591 2391946 2391987 "RGBCMDL" 2392219 NIL RGBCMDL (NIL T) -9 NIL 2392333) (-1025 2388585 2389199 2389869 "RF" 2390955 NIL RF (NIL T) -7 NIL NIL) (-1024 2388231 2388294 2388397 "RFFACTOR" 2388516 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1023 2387956 2387991 2388088 "RFFACT" 2388190 NIL RFFACT (NIL T) -7 NIL NIL) (-1022 2386073 2386437 2386819 "RFDIST" 2387596 T RFDIST (NIL) -7 NIL NIL) (-1021 2385526 2385618 2385781 "RETSOL" 2385975 NIL RETSOL (NIL T T) -7 NIL NIL) (-1020 2385162 2385242 2385285 "RETRACT" 2385418 NIL RETRACT (NIL T) -9 NIL 2385505) (-1019 2385011 2385036 2385123 "RETRACT-" 2385128 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1018 2384640 2384833 2384903 "RETAST" 2384963 T RETAST (NIL) -8 NIL NIL) (-1017 2377494 2384293 2384420 "RESULT" 2384535 T RESULT (NIL) -8 NIL NIL) (-1016 2376120 2376763 2376962 "RESRING" 2377397 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1015 2375756 2375805 2375903 "RESLATC" 2376057 NIL RESLATC (NIL T) -7 NIL NIL) (-1014 2375462 2375496 2375603 "REPSQ" 2375715 NIL REPSQ (NIL T) -7 NIL NIL) (-1013 2372884 2373464 2374066 "REP" 2374882 T REP (NIL) -7 NIL NIL) (-1012 2372582 2372616 2372727 "REPDB" 2372843 NIL REPDB (NIL T) -7 NIL NIL) (-1011 2366492 2367871 2369094 "REP2" 2371394 NIL REP2 (NIL T) -7 NIL NIL) (-1010 2362869 2363550 2364358 "REP1" 2365719 NIL REP1 (NIL T) -7 NIL NIL) (-1009 2355595 2361010 2361466 "REGSET" 2362499 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1008 2354408 2354743 2354993 "REF" 2355380 NIL REF (NIL T) -8 NIL NIL) (-1007 2353785 2353888 2354055 "REDORDER" 2354292 NIL REDORDER (NIL T T) -7 NIL NIL) (-1006 2349792 2353000 2353226 "RECLOS" 2353614 NIL RECLOS (NIL T) -8 NIL NIL) (-1005 2348844 2349025 2349240 "REALSOLV" 2349599 T REALSOLV (NIL) -7 NIL NIL) (-1004 2348690 2348731 2348761 "REAL" 2348766 T REAL (NIL) -9 NIL 2348801) (-1003 2345173 2345975 2346859 "REAL0Q" 2347855 NIL REAL0Q (NIL T) -7 NIL NIL) (-1002 2340774 2341762 2342823 "REAL0" 2344154 NIL REAL0 (NIL T) -7 NIL NIL) (-1001 2340272 2340491 2340585 "RDUCEAST" 2340702 T RDUCEAST (NIL) -8 NIL NIL) (-1000 2339677 2339749 2339956 "RDIV" 2340194 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-999 2338750 2338924 2339135 "RDIST" 2339499 NIL RDIST (NIL T) -7 NIL NIL) (-998 2337351 2337638 2338008 "RDETRS" 2338458 NIL RDETRS (NIL T T) -7 NIL NIL) (-997 2335168 2335622 2336158 "RDETR" 2336893 NIL RDETR (NIL T T) -7 NIL NIL) (-996 2333782 2334060 2334462 "RDEEFS" 2334884 NIL RDEEFS (NIL T T) -7 NIL NIL) (-995 2332280 2332586 2333016 "RDEEF" 2333470 NIL RDEEF (NIL T T) -7 NIL NIL) (-994 2326561 2329436 2329464 "RCFIELD" 2330741 T RCFIELD (NIL) -9 NIL 2331471) (-993 2324630 2325134 2325827 "RCFIELD-" 2325900 NIL RCFIELD- (NIL T) -8 NIL NIL) (-992 2320961 2322746 2322787 "RCAGG" 2323858 NIL RCAGG (NIL T) -9 NIL 2324323) (-991 2320592 2320686 2320846 "RCAGG-" 2320851 NIL RCAGG- (NIL T T) -8 NIL NIL) (-990 2319932 2320044 2320207 "RATRET" 2320476 NIL RATRET (NIL T) -7 NIL NIL) (-989 2319489 2319556 2319675 "RATFACT" 2319860 NIL RATFACT (NIL T) -7 NIL NIL) (-988 2318804 2318924 2319074 "RANDSRC" 2319359 T RANDSRC (NIL) -7 NIL NIL) (-987 2318541 2318585 2318656 "RADUTIL" 2318753 T RADUTIL (NIL) -7 NIL NIL) (-986 2311703 2317383 2317691 "RADIX" 2318265 NIL RADIX (NIL NIL) -8 NIL NIL) (-985 2303360 2311547 2311675 "RADFF" 2311680 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-984 2303012 2303087 2303115 "RADCAT" 2303272 T RADCAT (NIL) -9 NIL NIL) (-983 2302797 2302845 2302942 "RADCAT-" 2302947 NIL RADCAT- (NIL T) -8 NIL NIL) (-982 2300948 2302572 2302661 "QUEUE" 2302741 NIL QUEUE (NIL T) -8 NIL NIL) (-981 2297524 2300885 2300930 "QUAT" 2300935 NIL QUAT (NIL T) -8 NIL NIL) (-980 2297162 2297205 2297332 "QUATCT2" 2297475 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-979 2290909 2294211 2294251 "QUATCAT" 2295031 NIL QUATCAT (NIL T) -9 NIL 2295797) (-978 2287053 2288090 2289477 "QUATCAT-" 2289571 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-977 2284573 2286137 2286178 "QUAGG" 2286553 NIL QUAGG (NIL T) -9 NIL 2286728) (-976 2284205 2284398 2284466 "QQUTAST" 2284525 T QQUTAST (NIL) -8 NIL NIL) (-975 2283130 2283603 2283775 "QFORM" 2284077 NIL QFORM (NIL NIL T) -8 NIL NIL) (-974 2274342 2279547 2279587 "QFCAT" 2280245 NIL QFCAT (NIL T) -9 NIL 2281246) (-973 2269914 2271115 2272706 "QFCAT-" 2272800 NIL QFCAT- (NIL T T) -8 NIL NIL) (-972 2269552 2269595 2269722 "QFCAT2" 2269865 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-971 2269012 2269122 2269252 "QEQUAT" 2269442 T QEQUAT (NIL) -8 NIL NIL) (-970 2262160 2263231 2264415 "QCMPACK" 2267945 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-969 2259736 2260157 2260585 "QALGSET" 2261815 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-968 2258981 2259155 2259387 "QALGSET2" 2259556 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-967 2257672 2257895 2258212 "PWFFINTB" 2258754 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-966 2255854 2256022 2256376 "PUSHVAR" 2257486 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-965 2251772 2252826 2252867 "PTRANFN" 2254751 NIL PTRANFN (NIL T) -9 NIL NIL) (-964 2250174 2250465 2250787 "PTPACK" 2251483 NIL PTPACK (NIL T) -7 NIL NIL) (-963 2249806 2249863 2249972 "PTFUNC2" 2250111 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-962 2244333 2248678 2248719 "PTCAT" 2249015 NIL PTCAT (NIL T) -9 NIL 2249168) (-961 2243991 2244026 2244150 "PSQFR" 2244292 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-960 2242586 2242884 2243218 "PSEUDLIN" 2243689 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-959 2229355 2231720 2234044 "PSETPK" 2240346 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-958 2222399 2225113 2225209 "PSETCAT" 2228230 NIL PSETCAT (NIL T T T T) -9 NIL 2229044) (-957 2220235 2220869 2221690 "PSETCAT-" 2221695 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-956 2219584 2219749 2219777 "PSCURVE" 2220045 T PSCURVE (NIL) -9 NIL 2220212) (-955 2215940 2217422 2217487 "PSCAT" 2218331 NIL PSCAT (NIL T T T) -9 NIL 2218571) (-954 2215003 2215219 2215619 "PSCAT-" 2215624 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-953 2213735 2214368 2214573 "PRTITION" 2214818 T PRTITION (NIL) -8 NIL NIL) (-952 2213237 2213456 2213548 "PRTDAST" 2213663 T PRTDAST (NIL) -8 NIL NIL) (-951 2202335 2204541 2206729 "PRS" 2211099 NIL PRS (NIL T T) -7 NIL NIL) (-950 2200193 2201685 2201725 "PRQAGG" 2201908 NIL PRQAGG (NIL T) -9 NIL 2202010) (-949 2199579 2199808 2199836 "PROPLOG" 2200021 T PROPLOG (NIL) -9 NIL 2200143) (-948 2196749 2197393 2197857 "PROPFRML" 2199147 NIL PROPFRML (NIL T) -8 NIL NIL) (-947 2196209 2196319 2196449 "PROPERTY" 2196639 T PROPERTY (NIL) -8 NIL NIL) (-946 2190294 2194375 2195195 "PRODUCT" 2195435 NIL PRODUCT (NIL T T) -8 NIL NIL) (-945 2187607 2189752 2189986 "PR" 2190105 NIL PR (NIL T T) -8 NIL NIL) (-944 2187403 2187435 2187494 "PRINT" 2187568 T PRINT (NIL) -7 NIL NIL) (-943 2186743 2186860 2187012 "PRIMES" 2187283 NIL PRIMES (NIL T) -7 NIL NIL) (-942 2184808 2185209 2185675 "PRIMELT" 2186322 NIL PRIMELT (NIL T) -7 NIL NIL) (-941 2184537 2184586 2184614 "PRIMCAT" 2184738 T PRIMCAT (NIL) -9 NIL NIL) (-940 2180698 2184475 2184520 "PRIMARR" 2184525 NIL PRIMARR (NIL T) -8 NIL NIL) (-939 2179705 2179883 2180111 "PRIMARR2" 2180516 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-938 2179348 2179404 2179515 "PREASSOC" 2179643 NIL PREASSOC (NIL T T) -7 NIL NIL) (-937 2178823 2178956 2178984 "PPCURVE" 2179189 T PPCURVE (NIL) -9 NIL 2179325) (-936 2178445 2178618 2178701 "PORTNUM" 2178760 T PORTNUM (NIL) -8 NIL NIL) (-935 2175804 2176203 2176795 "POLYROOT" 2178026 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-934 2169749 2175408 2175568 "POLY" 2175677 NIL POLY (NIL T) -8 NIL NIL) (-933 2169132 2169190 2169424 "POLYLIFT" 2169685 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-932 2165407 2165856 2166485 "POLYCATQ" 2168677 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-931 2152224 2157582 2157647 "POLYCAT" 2161161 NIL POLYCAT (NIL T T T) -9 NIL 2163089) (-930 2145674 2147535 2149919 "POLYCAT-" 2149924 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-929 2145261 2145329 2145449 "POLY2UP" 2145600 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-928 2144893 2144950 2145059 "POLY2" 2145198 NIL POLY2 (NIL T T) -7 NIL NIL) (-927 2143578 2143817 2144093 "POLUTIL" 2144667 NIL POLUTIL (NIL T T) -7 NIL NIL) (-926 2141933 2142210 2142541 "POLTOPOL" 2143300 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-925 2137451 2141869 2141915 "POINT" 2141920 NIL POINT (NIL T) -8 NIL NIL) (-924 2135638 2135995 2136370 "PNTHEORY" 2137096 T PNTHEORY (NIL) -7 NIL NIL) (-923 2134057 2134354 2134766 "PMTOOLS" 2135336 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-922 2133650 2133728 2133845 "PMSYM" 2133973 NIL PMSYM (NIL T) -7 NIL NIL) (-921 2133160 2133229 2133403 "PMQFCAT" 2133575 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-920 2132515 2132625 2132781 "PMPRED" 2133037 NIL PMPRED (NIL T) -7 NIL NIL) (-919 2131911 2131997 2132158 "PMPREDFS" 2132416 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-918 2130554 2130762 2131147 "PMPLCAT" 2131673 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-917 2130086 2130165 2130317 "PMLSAGG" 2130469 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-916 2129561 2129637 2129818 "PMKERNEL" 2130004 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-915 2129178 2129253 2129366 "PMINS" 2129480 NIL PMINS (NIL T) -7 NIL NIL) (-914 2128606 2128675 2128891 "PMFS" 2129103 NIL PMFS (NIL T T T) -7 NIL NIL) (-913 2127834 2127952 2128157 "PMDOWN" 2128483 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-912 2126997 2127156 2127338 "PMASS" 2127672 T PMASS (NIL) -7 NIL NIL) (-911 2126271 2126382 2126545 "PMASSFS" 2126883 NIL PMASSFS (NIL T T) -7 NIL NIL) (-910 2125926 2125994 2126088 "PLOTTOOL" 2126197 T PLOTTOOL (NIL) -7 NIL NIL) (-909 2120548 2121737 2122885 "PLOT" 2124798 T PLOT (NIL) -8 NIL NIL) (-908 2116362 2117396 2118317 "PLOT3D" 2119647 T PLOT3D (NIL) -8 NIL NIL) (-907 2115274 2115451 2115686 "PLOT1" 2116166 NIL PLOT1 (NIL T) -7 NIL NIL) (-906 2090668 2095340 2100191 "PLEQN" 2110540 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-905 2089986 2090108 2090288 "PINTERP" 2090533 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-904 2089679 2089726 2089829 "PINTERPA" 2089933 NIL PINTERPA (NIL T T) -7 NIL NIL) (-903 2088964 2089485 2089572 "PI" 2089612 T PI (NIL) -8 NIL NIL) (-902 2087361 2088302 2088330 "PID" 2088512 T PID (NIL) -9 NIL 2088646) (-901 2087086 2087123 2087211 "PICOERCE" 2087318 NIL PICOERCE (NIL T) -7 NIL NIL) (-900 2086406 2086545 2086721 "PGROEB" 2086942 NIL PGROEB (NIL T) -7 NIL NIL) (-899 2081993 2082807 2083712 "PGE" 2085521 T PGE (NIL) -7 NIL NIL) (-898 2080117 2080363 2080729 "PGCD" 2081710 NIL PGCD (NIL T T T T) -7 NIL NIL) (-897 2079455 2079558 2079719 "PFRPAC" 2080001 NIL PFRPAC (NIL T) -7 NIL NIL) (-896 2076135 2078003 2078356 "PFR" 2079134 NIL PFR (NIL T) -8 NIL NIL) (-895 2074524 2074768 2075093 "PFOTOOLS" 2075882 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-894 2073057 2073296 2073647 "PFOQ" 2074281 NIL PFOQ (NIL T T T) -7 NIL NIL) (-893 2071530 2071742 2072105 "PFO" 2072841 NIL PFO (NIL T T T T T) -7 NIL NIL) (-892 2068118 2071419 2071488 "PF" 2071493 NIL PF (NIL NIL) -8 NIL NIL) (-891 2065552 2066789 2066817 "PFECAT" 2067402 T PFECAT (NIL) -9 NIL 2067786) (-890 2064997 2065151 2065365 "PFECAT-" 2065370 NIL PFECAT- (NIL T) -8 NIL NIL) (-889 2063601 2063852 2064153 "PFBRU" 2064746 NIL PFBRU (NIL T T) -7 NIL NIL) (-888 2061468 2061819 2062251 "PFBR" 2063252 NIL PFBR (NIL T T T T) -7 NIL NIL) (-887 2057384 2058844 2059520 "PERM" 2060825 NIL PERM (NIL T) -8 NIL NIL) (-886 2052650 2053591 2054461 "PERMGRP" 2056547 NIL PERMGRP (NIL T) -8 NIL NIL) (-885 2050782 2051713 2051754 "PERMCAT" 2052200 NIL PERMCAT (NIL T) -9 NIL 2052505) (-884 2050435 2050476 2050600 "PERMAN" 2050735 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-883 2047971 2050100 2050222 "PENDTREE" 2050346 NIL PENDTREE (NIL T) -8 NIL NIL) (-882 2046064 2046798 2046839 "PDRING" 2047496 NIL PDRING (NIL T) -9 NIL 2047782) (-881 2045167 2045385 2045747 "PDRING-" 2045752 NIL PDRING- (NIL T T) -8 NIL NIL) (-880 2042409 2043160 2043828 "PDEPROB" 2044519 T PDEPROB (NIL) -8 NIL NIL) (-879 2039956 2040458 2041013 "PDEPACK" 2041874 T PDEPACK (NIL) -7 NIL NIL) (-878 2038868 2039058 2039309 "PDECOMP" 2039755 NIL PDECOMP (NIL T T) -7 NIL NIL) (-877 2036473 2037290 2037318 "PDECAT" 2038105 T PDECAT (NIL) -9 NIL 2038818) (-876 2036224 2036257 2036347 "PCOMP" 2036434 NIL PCOMP (NIL T T) -7 NIL NIL) (-875 2034429 2035025 2035322 "PBWLB" 2035953 NIL PBWLB (NIL T) -8 NIL NIL) (-874 2026933 2028502 2029840 "PATTERN" 2033112 NIL PATTERN (NIL T) -8 NIL NIL) (-873 2026565 2026622 2026731 "PATTERN2" 2026870 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-872 2024322 2024710 2025167 "PATTERN1" 2026154 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-871 2021717 2022271 2022752 "PATRES" 2023887 NIL PATRES (NIL T T) -8 NIL NIL) (-870 2021281 2021348 2021480 "PATRES2" 2021644 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-869 2019164 2019569 2019976 "PATMATCH" 2020948 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-868 2018700 2018883 2018924 "PATMAB" 2019031 NIL PATMAB (NIL T) -9 NIL 2019114) (-867 2017245 2017554 2017812 "PATLRES" 2018505 NIL PATLRES (NIL T T T) -8 NIL NIL) (-866 2016791 2016914 2016955 "PATAB" 2016960 NIL PATAB (NIL T) -9 NIL 2017132) (-865 2014272 2014804 2015377 "PARTPERM" 2016238 T PARTPERM (NIL) -7 NIL NIL) (-864 2013893 2013956 2014058 "PARSURF" 2014203 NIL PARSURF (NIL T) -8 NIL NIL) (-863 2013525 2013582 2013691 "PARSU2" 2013830 NIL PARSU2 (NIL T T) -7 NIL NIL) (-862 2013289 2013329 2013396 "PARSER" 2013478 T PARSER (NIL) -7 NIL NIL) (-861 2012910 2012973 2013075 "PARSCURV" 2013220 NIL PARSCURV (NIL T) -8 NIL NIL) (-860 2012542 2012599 2012708 "PARSC2" 2012847 NIL PARSC2 (NIL T T) -7 NIL NIL) (-859 2012181 2012239 2012336 "PARPCURV" 2012478 NIL PARPCURV (NIL T) -8 NIL NIL) (-858 2011813 2011870 2011979 "PARPC2" 2012118 NIL PARPC2 (NIL T T) -7 NIL NIL) (-857 2011333 2011419 2011538 "PAN2EXPR" 2011714 T PAN2EXPR (NIL) -7 NIL NIL) (-856 2010139 2010454 2010682 "PALETTE" 2011125 T PALETTE (NIL) -8 NIL NIL) (-855 2008607 2009144 2009504 "PAIR" 2009825 NIL PAIR (NIL T T) -8 NIL NIL) (-854 2002513 2007866 2008060 "PADICRC" 2008462 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-853 1995777 2001859 2002043 "PADICRAT" 2002361 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-852 1994127 1995714 1995759 "PADIC" 1995764 NIL PADIC (NIL NIL) -8 NIL NIL) (-851 1991337 1992867 1992907 "PADICCT" 1993488 NIL PADICCT (NIL NIL) -9 NIL 1993770) (-850 1990294 1990494 1990762 "PADEPAC" 1991124 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-849 1989506 1989639 1989845 "PADE" 1990156 NIL PADE (NIL T T T) -7 NIL NIL) (-848 1987928 1988714 1988994 "OWP" 1989310 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-847 1987037 1987533 1987705 "OVAR" 1987796 NIL OVAR (NIL NIL) -8 NIL NIL) (-846 1986301 1986422 1986583 "OUT" 1986896 T OUT (NIL) -7 NIL NIL) (-845 1975208 1977410 1979610 "OUTFORM" 1984121 T OUTFORM (NIL) -8 NIL NIL) (-844 1974629 1974805 1974932 "OUTBFILE" 1975101 T OUTBFILE (NIL) -8 NIL NIL) (-843 1974266 1974349 1974377 "OUTBCON" 1974528 T OUTBCON (NIL) -9 NIL 1974613) (-842 1974106 1974141 1974217 "OUTBCON-" 1974222 NIL OUTBCON- (NIL T) -8 NIL NIL) (-841 1973514 1973835 1973924 "OSI" 1974037 T OSI (NIL) -8 NIL NIL) (-840 1973070 1973382 1973410 "OSGROUP" 1973415 T OSGROUP (NIL) -9 NIL 1973437) (-839 1971815 1972042 1972327 "ORTHPOL" 1972817 NIL ORTHPOL (NIL T) -7 NIL NIL) (-838 1969401 1971650 1971771 "OREUP" 1971776 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-837 1966839 1969092 1969219 "ORESUP" 1969343 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-836 1964367 1964867 1965428 "OREPCTO" 1966328 NIL OREPCTO (NIL T T) -7 NIL NIL) (-835 1958191 1960358 1960399 "OREPCAT" 1962747 NIL OREPCAT (NIL T) -9 NIL 1963851) (-834 1955338 1956120 1957178 "OREPCAT-" 1957183 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-833 1954515 1954787 1954815 "ORDSET" 1955124 T ORDSET (NIL) -9 NIL 1955288) (-832 1954034 1954156 1954349 "ORDSET-" 1954354 NIL ORDSET- (NIL T) -8 NIL NIL) (-831 1952668 1953425 1953453 "ORDRING" 1953655 T ORDRING (NIL) -9 NIL 1953780) (-830 1952313 1952407 1952551 "ORDRING-" 1952556 NIL ORDRING- (NIL T) -8 NIL NIL) (-829 1951719 1952156 1952184 "ORDMON" 1952189 T ORDMON (NIL) -9 NIL 1952210) (-828 1950881 1951028 1951223 "ORDFUNS" 1951568 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-827 1950392 1950751 1950779 "ORDFIN" 1950784 T ORDFIN (NIL) -9 NIL 1950805) (-826 1946984 1948978 1949387 "ORDCOMP" 1950016 NIL ORDCOMP (NIL T) -8 NIL NIL) (-825 1946250 1946377 1946563 "ORDCOMP2" 1946844 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-824 1942858 1943741 1944555 "OPTPROB" 1945456 T OPTPROB (NIL) -8 NIL NIL) (-823 1939660 1940299 1941003 "OPTPACK" 1942174 T OPTPACK (NIL) -7 NIL NIL) (-822 1937373 1938113 1938141 "OPTCAT" 1938960 T OPTCAT (NIL) -9 NIL 1939610) (-821 1937141 1937180 1937246 "OPQUERY" 1937327 T OPQUERY (NIL) -7 NIL NIL) (-820 1934307 1935452 1935956 "OP" 1936670 NIL OP (NIL T) -8 NIL NIL) (-819 1931152 1933104 1933473 "ONECOMP" 1933971 NIL ONECOMP (NIL T) -8 NIL NIL) (-818 1930457 1930572 1930746 "ONECOMP2" 1931024 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-817 1929876 1929982 1930112 "OMSERVER" 1930347 T OMSERVER (NIL) -7 NIL NIL) (-816 1926764 1929316 1929356 "OMSAGG" 1929417 NIL OMSAGG (NIL T) -9 NIL 1929481) (-815 1925387 1925650 1925932 "OMPKG" 1926502 T OMPKG (NIL) -7 NIL NIL) (-814 1924817 1924920 1924948 "OM" 1925247 T OM (NIL) -9 NIL NIL) (-813 1923399 1924366 1924535 "OMLO" 1924698 NIL OMLO (NIL T T) -8 NIL NIL) (-812 1922324 1922471 1922698 "OMEXPR" 1923225 NIL OMEXPR (NIL T) -7 NIL NIL) (-811 1921642 1921870 1922006 "OMERR" 1922208 T OMERR (NIL) -8 NIL NIL) (-810 1920820 1921063 1921223 "OMERRK" 1921502 T OMERRK (NIL) -8 NIL NIL) (-809 1920298 1920497 1920605 "OMENC" 1920732 T OMENC (NIL) -8 NIL NIL) (-808 1914193 1915378 1916549 "OMDEV" 1919147 T OMDEV (NIL) -8 NIL NIL) (-807 1913262 1913433 1913627 "OMCONN" 1914019 T OMCONN (NIL) -8 NIL NIL) (-806 1911883 1912825 1912853 "OINTDOM" 1912858 T OINTDOM (NIL) -9 NIL 1912879) (-805 1907689 1908873 1909589 "OFMONOID" 1911199 NIL OFMONOID (NIL T) -8 NIL NIL) (-804 1907127 1907626 1907671 "ODVAR" 1907676 NIL ODVAR (NIL T) -8 NIL NIL) (-803 1904585 1906872 1907027 "ODR" 1907032 NIL ODR (NIL T T NIL) -8 NIL NIL) (-802 1896929 1904361 1904487 "ODPOL" 1904492 NIL ODPOL (NIL T) -8 NIL NIL) (-801 1890805 1896801 1896906 "ODP" 1896911 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-800 1889571 1889786 1890061 "ODETOOLS" 1890579 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-799 1886540 1887196 1887912 "ODESYS" 1888904 NIL ODESYS (NIL T T) -7 NIL NIL) (-798 1881422 1882330 1883355 "ODERTRIC" 1885615 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-797 1880848 1880930 1881124 "ODERED" 1881334 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-796 1877736 1878284 1878961 "ODERAT" 1880271 NIL ODERAT (NIL T T) -7 NIL NIL) (-795 1874696 1875160 1875757 "ODEPRRIC" 1877265 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-794 1872666 1873235 1873721 "ODEPROB" 1874230 T ODEPROB (NIL) -8 NIL NIL) (-793 1869188 1869671 1870318 "ODEPRIM" 1872145 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-792 1868437 1868539 1868799 "ODEPAL" 1869080 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-791 1864599 1865390 1866254 "ODEPACK" 1867593 T ODEPACK (NIL) -7 NIL NIL) (-790 1863632 1863739 1863968 "ODEINT" 1864488 NIL ODEINT (NIL T T) -7 NIL NIL) (-789 1857733 1859158 1860605 "ODEIFTBL" 1862205 T ODEIFTBL (NIL) -8 NIL NIL) (-788 1853068 1853854 1854813 "ODEEF" 1856892 NIL ODEEF (NIL T T) -7 NIL NIL) (-787 1852403 1852492 1852722 "ODECONST" 1852973 NIL ODECONST (NIL T T T) -7 NIL NIL) (-786 1850554 1851189 1851217 "ODECAT" 1851822 T ODECAT (NIL) -9 NIL 1852353) (-785 1847461 1850266 1850385 "OCT" 1850467 NIL OCT (NIL T) -8 NIL NIL) (-784 1847099 1847142 1847269 "OCTCT2" 1847412 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-783 1841873 1844273 1844313 "OC" 1845410 NIL OC (NIL T) -9 NIL 1846268) (-782 1839100 1839848 1840838 "OC-" 1840932 NIL OC- (NIL T T) -8 NIL NIL) (-781 1838478 1838920 1838948 "OCAMON" 1838953 T OCAMON (NIL) -9 NIL 1838974) (-780 1838035 1838350 1838378 "OASGP" 1838383 T OASGP (NIL) -9 NIL 1838403) (-779 1837322 1837785 1837813 "OAMONS" 1837853 T OAMONS (NIL) -9 NIL 1837896) (-778 1836762 1837169 1837197 "OAMON" 1837202 T OAMON (NIL) -9 NIL 1837222) (-777 1836066 1836558 1836586 "OAGROUP" 1836591 T OAGROUP (NIL) -9 NIL 1836611) (-776 1835756 1835806 1835894 "NUMTUBE" 1836010 NIL NUMTUBE (NIL T) -7 NIL NIL) (-775 1829329 1830847 1832383 "NUMQUAD" 1834240 T NUMQUAD (NIL) -7 NIL NIL) (-774 1825085 1826073 1827098 "NUMODE" 1828324 T NUMODE (NIL) -7 NIL NIL) (-773 1822466 1823320 1823348 "NUMINT" 1824271 T NUMINT (NIL) -9 NIL 1825035) (-772 1821414 1821611 1821829 "NUMFMT" 1822268 T NUMFMT (NIL) -7 NIL NIL) (-771 1807773 1810718 1813250 "NUMERIC" 1818921 NIL NUMERIC (NIL T) -7 NIL NIL) (-770 1802170 1807222 1807317 "NTSCAT" 1807322 NIL NTSCAT (NIL T T T T) -9 NIL 1807361) (-769 1801364 1801529 1801722 "NTPOLFN" 1802009 NIL NTPOLFN (NIL T) -7 NIL NIL) (-768 1789204 1798189 1799001 "NSUP" 1800585 NIL NSUP (NIL T) -8 NIL NIL) (-767 1788836 1788893 1789002 "NSUP2" 1789141 NIL NSUP2 (NIL T T) -7 NIL NIL) (-766 1778833 1788610 1788743 "NSMP" 1788748 NIL NSMP (NIL T T) -8 NIL NIL) (-765 1777265 1777566 1777923 "NREP" 1778521 NIL NREP (NIL T) -7 NIL NIL) (-764 1775856 1776108 1776466 "NPCOEF" 1777008 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-763 1774922 1775037 1775253 "NORMRETR" 1775737 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-762 1772963 1773253 1773662 "NORMPK" 1774630 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-761 1772648 1772676 1772800 "NORMMA" 1772929 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-760 1772475 1772605 1772634 "NONE" 1772639 T NONE (NIL) -8 NIL NIL) (-759 1772264 1772293 1772362 "NONE1" 1772439 NIL NONE1 (NIL T) -7 NIL NIL) (-758 1771747 1771809 1771995 "NODE1" 1772196 NIL NODE1 (NIL T T) -7 NIL NIL) (-757 1770087 1770910 1771165 "NNI" 1771512 T NNI (NIL) -8 NIL NIL) (-756 1768507 1768820 1769184 "NLINSOL" 1769755 NIL NLINSOL (NIL T) -7 NIL NIL) (-755 1764775 1765743 1766642 "NIPROB" 1767628 T NIPROB (NIL) -8 NIL NIL) (-754 1763532 1763766 1764068 "NFINTBAS" 1764537 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-753 1762976 1763183 1763224 "NETCLT" 1763388 NIL NETCLT (NIL T) -9 NIL 1763477) (-752 1761684 1761915 1762196 "NCODIV" 1762744 NIL NCODIV (NIL T T) -7 NIL NIL) (-751 1761446 1761483 1761558 "NCNTFRAC" 1761641 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-750 1759626 1759990 1760410 "NCEP" 1761071 NIL NCEP (NIL T) -7 NIL NIL) (-749 1758537 1759276 1759304 "NASRING" 1759414 T NASRING (NIL) -9 NIL 1759488) (-748 1758332 1758376 1758470 "NASRING-" 1758475 NIL NASRING- (NIL T) -8 NIL NIL) (-747 1757485 1757984 1758012 "NARNG" 1758129 T NARNG (NIL) -9 NIL 1758220) (-746 1757177 1757244 1757378 "NARNG-" 1757383 NIL NARNG- (NIL T) -8 NIL NIL) (-745 1756056 1756263 1756498 "NAGSP" 1756962 T NAGSP (NIL) -7 NIL NIL) (-744 1747328 1749012 1750685 "NAGS" 1754403 T NAGS (NIL) -7 NIL NIL) (-743 1745876 1746184 1746515 "NAGF07" 1747017 T NAGF07 (NIL) -7 NIL NIL) (-742 1740414 1741705 1743012 "NAGF04" 1744589 T NAGF04 (NIL) -7 NIL NIL) (-741 1733382 1734996 1736629 "NAGF02" 1738801 T NAGF02 (NIL) -7 NIL NIL) (-740 1728606 1729706 1730823 "NAGF01" 1732285 T NAGF01 (NIL) -7 NIL NIL) (-739 1722234 1723800 1725385 "NAGE04" 1727041 T NAGE04 (NIL) -7 NIL NIL) (-738 1713403 1715524 1717654 "NAGE02" 1720124 T NAGE02 (NIL) -7 NIL NIL) (-737 1709356 1710303 1711267 "NAGE01" 1712459 T NAGE01 (NIL) -7 NIL NIL) (-736 1707151 1707685 1708243 "NAGD03" 1708818 T NAGD03 (NIL) -7 NIL NIL) (-735 1698901 1700829 1702783 "NAGD02" 1705217 T NAGD02 (NIL) -7 NIL NIL) (-734 1692712 1694137 1695577 "NAGD01" 1697481 T NAGD01 (NIL) -7 NIL NIL) (-733 1688921 1689743 1690580 "NAGC06" 1691895 T NAGC06 (NIL) -7 NIL NIL) (-732 1687386 1687718 1688074 "NAGC05" 1688585 T NAGC05 (NIL) -7 NIL NIL) (-731 1686762 1686881 1687025 "NAGC02" 1687262 T NAGC02 (NIL) -7 NIL NIL) (-730 1685822 1686379 1686419 "NAALG" 1686498 NIL NAALG (NIL T) -9 NIL 1686559) (-729 1685657 1685686 1685776 "NAALG-" 1685781 NIL NAALG- (NIL T T) -8 NIL NIL) (-728 1679607 1680715 1681902 "MULTSQFR" 1684553 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-727 1678926 1679001 1679185 "MULTFACT" 1679519 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-726 1672019 1675889 1675942 "MTSCAT" 1677012 NIL MTSCAT (NIL T T) -9 NIL 1677526) (-725 1671731 1671785 1671877 "MTHING" 1671959 NIL MTHING (NIL T) -7 NIL NIL) (-724 1671523 1671556 1671616 "MSYSCMD" 1671691 T MSYSCMD (NIL) -7 NIL NIL) (-723 1667635 1670278 1670598 "MSET" 1671236 NIL MSET (NIL T) -8 NIL NIL) (-722 1664730 1667196 1667237 "MSETAGG" 1667242 NIL MSETAGG (NIL T) -9 NIL 1667276) (-721 1660613 1662109 1662854 "MRING" 1664030 NIL MRING (NIL T T) -8 NIL NIL) (-720 1660179 1660246 1660377 "MRF2" 1660540 NIL MRF2 (NIL T T T) -7 NIL NIL) (-719 1659797 1659832 1659976 "MRATFAC" 1660138 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-718 1657409 1657704 1658135 "MPRFF" 1659502 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-717 1651469 1657263 1657360 "MPOLY" 1657365 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-716 1650959 1650994 1651202 "MPCPF" 1651428 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-715 1650473 1650516 1650700 "MPC3" 1650910 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-714 1649668 1649749 1649970 "MPC2" 1650388 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-713 1647969 1648306 1648696 "MONOTOOL" 1649328 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-712 1647220 1647511 1647539 "MONOID" 1647758 T MONOID (NIL) -9 NIL 1647905) (-711 1646766 1646885 1647066 "MONOID-" 1647071 NIL MONOID- (NIL T) -8 NIL NIL) (-710 1637625 1643533 1643592 "MONOGEN" 1644266 NIL MONOGEN (NIL T T) -9 NIL 1644722) (-709 1634843 1635578 1636578 "MONOGEN-" 1636697 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-708 1633702 1634122 1634150 "MONADWU" 1634542 T MONADWU (NIL) -9 NIL 1634780) (-707 1633074 1633233 1633481 "MONADWU-" 1633486 NIL MONADWU- (NIL T) -8 NIL NIL) (-706 1632459 1632677 1632705 "MONAD" 1632912 T MONAD (NIL) -9 NIL 1633024) (-705 1632144 1632222 1632354 "MONAD-" 1632359 NIL MONAD- (NIL T) -8 NIL NIL) (-704 1630460 1631057 1631336 "MOEBIUS" 1631897 NIL MOEBIUS (NIL T) -8 NIL NIL) (-703 1629852 1630230 1630270 "MODULE" 1630275 NIL MODULE (NIL T) -9 NIL 1630301) (-702 1629420 1629516 1629706 "MODULE-" 1629711 NIL MODULE- (NIL T T) -8 NIL NIL) (-701 1627135 1627784 1628111 "MODRING" 1629244 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-700 1624121 1625240 1625761 "MODOP" 1626664 NIL MODOP (NIL T T) -8 NIL NIL) (-699 1622736 1623188 1623465 "MODMONOM" 1623984 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-698 1612543 1621027 1621441 "MODMON" 1622373 NIL MODMON (NIL T T) -8 NIL NIL) (-697 1609734 1611387 1611663 "MODFIELD" 1612418 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-696 1608738 1609015 1609205 "MMLFORM" 1609564 T MMLFORM (NIL) -8 NIL NIL) (-695 1608264 1608307 1608486 "MMAP" 1608689 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-694 1606481 1607214 1607255 "MLO" 1607678 NIL MLO (NIL T) -9 NIL 1607920) (-693 1603848 1604363 1604965 "MLIFT" 1605962 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-692 1603239 1603323 1603477 "MKUCFUNC" 1603759 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-691 1602838 1602908 1603031 "MKRECORD" 1603162 NIL MKRECORD (NIL T T) -7 NIL NIL) (-690 1601886 1602047 1602275 "MKFUNC" 1602649 NIL MKFUNC (NIL T) -7 NIL NIL) (-689 1601274 1601378 1601534 "MKFLCFN" 1601769 NIL MKFLCFN (NIL T) -7 NIL NIL) (-688 1600817 1601184 1601243 "MKCHSET" 1601248 NIL MKCHSET (NIL T) -8 NIL NIL) (-687 1600094 1600196 1600381 "MKBCFUNC" 1600710 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-686 1596836 1599648 1599784 "MINT" 1599978 T MINT (NIL) -8 NIL NIL) (-685 1595648 1595891 1596168 "MHROWRED" 1596591 NIL MHROWRED (NIL T) -7 NIL NIL) (-684 1591074 1594183 1594588 "MFLOAT" 1595263 T MFLOAT (NIL) -8 NIL NIL) (-683 1590431 1590507 1590678 "MFINFACT" 1590986 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-682 1586746 1587594 1588478 "MESH" 1589567 T MESH (NIL) -7 NIL NIL) (-681 1585136 1585448 1585801 "MDDFACT" 1586433 NIL MDDFACT (NIL T) -7 NIL NIL) (-680 1581978 1584295 1584336 "MDAGG" 1584591 NIL MDAGG (NIL T) -9 NIL 1584734) (-679 1571756 1581271 1581478 "MCMPLX" 1581791 T MCMPLX (NIL) -8 NIL NIL) (-678 1570897 1571043 1571243 "MCDEN" 1571605 NIL MCDEN (NIL T T) -7 NIL NIL) (-677 1568787 1569057 1569437 "MCALCFN" 1570627 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-676 1567698 1567871 1568112 "MAYBE" 1568585 NIL MAYBE (NIL T) -8 NIL NIL) (-675 1565310 1565833 1566395 "MATSTOR" 1567169 NIL MATSTOR (NIL T) -7 NIL NIL) (-674 1561316 1564682 1564930 "MATRIX" 1565095 NIL MATRIX (NIL T) -8 NIL NIL) (-673 1557085 1557789 1558525 "MATLIN" 1560673 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-672 1547239 1550377 1550454 "MATCAT" 1555334 NIL MATCAT (NIL T T T) -9 NIL 1556751) (-671 1543603 1544616 1545972 "MATCAT-" 1545977 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-670 1542197 1542350 1542683 "MATCAT2" 1543438 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-669 1540309 1540633 1541017 "MAPPKG3" 1541872 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-668 1539290 1539463 1539685 "MAPPKG2" 1540133 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-667 1537789 1538073 1538400 "MAPPKG1" 1538996 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-666 1536895 1537195 1537372 "MAPPAST" 1537632 T MAPPAST (NIL) -8 NIL NIL) (-665 1536506 1536564 1536687 "MAPHACK3" 1536831 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-664 1536098 1536159 1536273 "MAPHACK2" 1536438 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-663 1535536 1535639 1535781 "MAPHACK1" 1535989 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-662 1533642 1534236 1534540 "MAGMA" 1535264 NIL MAGMA (NIL T) -8 NIL NIL) (-661 1533148 1533366 1533457 "MACROAST" 1533571 T MACROAST (NIL) -8 NIL NIL) (-660 1529615 1531387 1531848 "M3D" 1532720 NIL M3D (NIL T) -8 NIL NIL) (-659 1523770 1527985 1528026 "LZSTAGG" 1528808 NIL LZSTAGG (NIL T) -9 NIL 1529103) (-658 1519743 1520901 1522358 "LZSTAGG-" 1522363 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-657 1516857 1517634 1518121 "LWORD" 1519288 NIL LWORD (NIL T) -8 NIL NIL) (-656 1516460 1516661 1516736 "LSTAST" 1516802 T LSTAST (NIL) -8 NIL NIL) (-655 1509661 1516231 1516365 "LSQM" 1516370 NIL LSQM (NIL NIL T) -8 NIL NIL) (-654 1508885 1509024 1509252 "LSPP" 1509516 NIL LSPP (NIL T T T T) -7 NIL NIL) (-653 1506697 1506998 1507454 "LSMP" 1508574 NIL LSMP (NIL T T T T) -7 NIL NIL) (-652 1503476 1504150 1504880 "LSMP1" 1505999 NIL LSMP1 (NIL T) -7 NIL NIL) (-651 1497402 1502644 1502685 "LSAGG" 1502747 NIL LSAGG (NIL T) -9 NIL 1502825) (-650 1494097 1495021 1496234 "LSAGG-" 1496239 NIL LSAGG- (NIL T T) -8 NIL NIL) (-649 1491723 1493241 1493490 "LPOLY" 1493892 NIL LPOLY (NIL T T) -8 NIL NIL) (-648 1491305 1491390 1491513 "LPEFRAC" 1491632 NIL LPEFRAC (NIL T) -7 NIL NIL) (-647 1489652 1490399 1490652 "LO" 1491137 NIL LO (NIL T T T) -8 NIL NIL) (-646 1489304 1489416 1489444 "LOGIC" 1489555 T LOGIC (NIL) -9 NIL 1489636) (-645 1489166 1489189 1489260 "LOGIC-" 1489265 NIL LOGIC- (NIL T) -8 NIL NIL) (-644 1488359 1488499 1488692 "LODOOPS" 1489022 NIL LODOOPS (NIL T T) -7 NIL NIL) (-643 1485817 1488275 1488341 "LODO" 1488346 NIL LODO (NIL T NIL) -8 NIL NIL) (-642 1484355 1484590 1484943 "LODOF" 1485564 NIL LODOF (NIL T T) -7 NIL NIL) (-641 1480711 1483108 1483149 "LODOCAT" 1483587 NIL LODOCAT (NIL T) -9 NIL 1483798) (-640 1480444 1480502 1480629 "LODOCAT-" 1480634 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-639 1477799 1480285 1480403 "LODO2" 1480408 NIL LODO2 (NIL T T) -8 NIL NIL) (-638 1475269 1477736 1477781 "LODO1" 1477786 NIL LODO1 (NIL T) -8 NIL NIL) (-637 1474129 1474294 1474606 "LODEEF" 1475092 NIL LODEEF (NIL T T T) -7 NIL NIL) (-636 1469415 1472259 1472300 "LNAGG" 1473247 NIL LNAGG (NIL T) -9 NIL 1473691) (-635 1468562 1468776 1469118 "LNAGG-" 1469123 NIL LNAGG- (NIL T T) -8 NIL NIL) (-634 1464725 1465487 1466126 "LMOPS" 1467977 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-633 1464120 1464482 1464523 "LMODULE" 1464584 NIL LMODULE (NIL T) -9 NIL 1464626) (-632 1461366 1463765 1463888 "LMDICT" 1464030 NIL LMDICT (NIL T) -8 NIL NIL) (-631 1461092 1461274 1461334 "LITERAL" 1461339 NIL LITERAL (NIL T) -8 NIL NIL) (-630 1454319 1460038 1460336 "LIST" 1460827 NIL LIST (NIL T) -8 NIL NIL) (-629 1453844 1453918 1454057 "LIST3" 1454239 NIL LIST3 (NIL T T T) -7 NIL NIL) (-628 1452851 1453029 1453257 "LIST2" 1453662 NIL LIST2 (NIL T T) -7 NIL NIL) (-627 1450985 1451297 1451696 "LIST2MAP" 1452498 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-626 1449715 1450351 1450392 "LINEXP" 1450647 NIL LINEXP (NIL T) -9 NIL 1450796) (-625 1448362 1448622 1448919 "LINDEP" 1449467 NIL LINDEP (NIL T T) -7 NIL NIL) (-624 1445129 1445848 1446625 "LIMITRF" 1447617 NIL LIMITRF (NIL T) -7 NIL NIL) (-623 1443405 1443700 1444116 "LIMITPS" 1444824 NIL LIMITPS (NIL T T) -7 NIL NIL) (-622 1437860 1442916 1443144 "LIE" 1443226 NIL LIE (NIL T T) -8 NIL NIL) (-621 1436909 1437352 1437392 "LIECAT" 1437532 NIL LIECAT (NIL T) -9 NIL 1437683) (-620 1436750 1436777 1436865 "LIECAT-" 1436870 NIL LIECAT- (NIL T T) -8 NIL NIL) (-619 1429362 1436199 1436364 "LIB" 1436605 T LIB (NIL) -8 NIL NIL) (-618 1424999 1425880 1426815 "LGROBP" 1428479 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-617 1422865 1423139 1423501 "LF" 1424720 NIL LF (NIL T T) -7 NIL NIL) (-616 1421705 1422397 1422425 "LFCAT" 1422632 T LFCAT (NIL) -9 NIL 1422771) (-615 1418609 1419237 1419925 "LEXTRIPK" 1421069 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-614 1415380 1416179 1416682 "LEXP" 1418189 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-613 1414883 1415101 1415193 "LETAST" 1415308 T LETAST (NIL) -8 NIL NIL) (-612 1413281 1413594 1413995 "LEADCDET" 1414565 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-611 1412471 1412545 1412774 "LAZM3PK" 1413202 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-610 1407427 1410548 1411086 "LAUPOL" 1411983 NIL LAUPOL (NIL T T) -8 NIL NIL) (-609 1406992 1407036 1407204 "LAPLACE" 1407377 NIL LAPLACE (NIL T T) -7 NIL NIL) (-608 1404966 1406093 1406344 "LA" 1406825 NIL LA (NIL T T T) -8 NIL NIL) (-607 1404047 1404597 1404638 "LALG" 1404700 NIL LALG (NIL T) -9 NIL 1404759) (-606 1403761 1403820 1403956 "LALG-" 1403961 NIL LALG- (NIL T T) -8 NIL NIL) (-605 1403596 1403620 1403661 "KVTFROM" 1403723 NIL KVTFROM (NIL T) -9 NIL NIL) (-604 1402396 1402813 1403042 "KTVLOGIC" 1403387 T KTVLOGIC (NIL) -8 NIL NIL) (-603 1402231 1402255 1402296 "KRCFROM" 1402358 NIL KRCFROM (NIL T) -9 NIL NIL) (-602 1401135 1401322 1401621 "KOVACIC" 1402031 NIL KOVACIC (NIL T T) -7 NIL NIL) (-601 1400970 1400994 1401035 "KONVERT" 1401097 NIL KONVERT (NIL T) -9 NIL NIL) (-600 1400805 1400829 1400870 "KOERCE" 1400932 NIL KOERCE (NIL T) -9 NIL NIL) (-599 1398539 1399299 1399692 "KERNEL" 1400444 NIL KERNEL (NIL T) -8 NIL NIL) (-598 1398041 1398122 1398252 "KERNEL2" 1398453 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-597 1391892 1396580 1396634 "KDAGG" 1397011 NIL KDAGG (NIL T T) -9 NIL 1397217) (-596 1391421 1391545 1391750 "KDAGG-" 1391755 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-595 1384596 1391082 1391237 "KAFILE" 1391299 NIL KAFILE (NIL T) -8 NIL NIL) (-594 1379051 1384107 1384335 "JORDAN" 1384417 NIL JORDAN (NIL T T) -8 NIL NIL) (-593 1378457 1378700 1378821 "JOINAST" 1378950 T JOINAST (NIL) -8 NIL NIL) (-592 1378303 1378362 1378417 "JAVACODE" 1378422 T JAVACODE (NIL) -8 NIL NIL) (-591 1374602 1376508 1376562 "IXAGG" 1377491 NIL IXAGG (NIL T T) -9 NIL 1377950) (-590 1373521 1373827 1374246 "IXAGG-" 1374251 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-589 1369101 1373443 1373502 "IVECTOR" 1373507 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-588 1367867 1368104 1368370 "ITUPLE" 1368868 NIL ITUPLE (NIL T) -8 NIL NIL) (-587 1366303 1366480 1366786 "ITRIGMNP" 1367689 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-586 1365048 1365252 1365535 "ITFUN3" 1366079 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-585 1364680 1364737 1364846 "ITFUN2" 1364985 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-584 1362517 1363542 1363841 "ITAYLOR" 1364414 NIL ITAYLOR (NIL T) -8 NIL NIL) (-583 1351499 1356654 1357817 "ISUPS" 1361387 NIL ISUPS (NIL T) -8 NIL NIL) (-582 1350603 1350743 1350979 "ISUMP" 1351346 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-581 1345867 1350404 1350483 "ISTRING" 1350556 NIL ISTRING (NIL NIL) -8 NIL NIL) (-580 1345370 1345588 1345680 "ISAST" 1345795 T ISAST (NIL) -8 NIL NIL) (-579 1344580 1344661 1344877 "IRURPK" 1345284 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-578 1343516 1343717 1343957 "IRSN" 1344360 T IRSN (NIL) -7 NIL NIL) (-577 1341545 1341900 1342336 "IRRF2F" 1343154 NIL IRRF2F (NIL T) -7 NIL NIL) (-576 1341292 1341330 1341406 "IRREDFFX" 1341501 NIL IRREDFFX (NIL T) -7 NIL NIL) (-575 1339907 1340166 1340465 "IROOT" 1341025 NIL IROOT (NIL T) -7 NIL NIL) (-574 1336539 1337591 1338283 "IR" 1339247 NIL IR (NIL T) -8 NIL NIL) (-573 1334152 1334647 1335213 "IR2" 1336017 NIL IR2 (NIL T T) -7 NIL NIL) (-572 1333224 1333337 1333558 "IR2F" 1334035 NIL IR2F (NIL T T) -7 NIL NIL) (-571 1333015 1333049 1333109 "IPRNTPK" 1333184 T IPRNTPK (NIL) -7 NIL NIL) (-570 1329634 1332904 1332973 "IPF" 1332978 NIL IPF (NIL NIL) -8 NIL NIL) (-569 1327997 1329559 1329616 "IPADIC" 1329621 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-568 1327328 1327555 1327692 "IP4ADDR" 1327880 T IP4ADDR (NIL) -8 NIL NIL) (-567 1326828 1327032 1327142 "IOMODE" 1327238 T IOMODE (NIL) -8 NIL NIL) (-566 1326186 1326425 1326552 "IOBFILE" 1326721 T IOBFILE (NIL) -8 NIL NIL) (-565 1325950 1326090 1326118 "IOBCON" 1326123 T IOBCON (NIL) -9 NIL 1326144) (-564 1325447 1325505 1325695 "INVLAPLA" 1325886 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-563 1315096 1317449 1319835 "INTTR" 1323111 NIL INTTR (NIL T T) -7 NIL NIL) (-562 1311440 1312182 1313046 "INTTOOLS" 1314281 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-561 1311026 1311117 1311234 "INTSLPE" 1311343 T INTSLPE (NIL) -7 NIL NIL) (-560 1309021 1310949 1311008 "INTRVL" 1311013 NIL INTRVL (NIL T) -8 NIL NIL) (-559 1306623 1307135 1307710 "INTRF" 1308506 NIL INTRF (NIL T) -7 NIL NIL) (-558 1306034 1306131 1306273 "INTRET" 1306521 NIL INTRET (NIL T) -7 NIL NIL) (-557 1304031 1304420 1304890 "INTRAT" 1305642 NIL INTRAT (NIL T T) -7 NIL NIL) (-556 1301259 1301842 1302468 "INTPM" 1303516 NIL INTPM (NIL T T) -7 NIL NIL) (-555 1297962 1298561 1299306 "INTPAF" 1300645 NIL INTPAF (NIL T T T) -7 NIL NIL) (-554 1293141 1294103 1295154 "INTPACK" 1296931 T INTPACK (NIL) -7 NIL NIL) (-553 1290053 1292870 1292997 "INT" 1293034 T INT (NIL) -8 NIL NIL) (-552 1289305 1289457 1289665 "INTHERTR" 1289895 NIL INTHERTR (NIL T T) -7 NIL NIL) (-551 1288744 1288824 1289012 "INTHERAL" 1289219 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-550 1286590 1287033 1287490 "INTHEORY" 1288307 T INTHEORY (NIL) -7 NIL NIL) (-549 1277898 1279519 1281298 "INTG0" 1284942 NIL INTG0 (NIL T T T) -7 NIL NIL) (-548 1258471 1263261 1268071 "INTFTBL" 1273108 T INTFTBL (NIL) -8 NIL NIL) (-547 1257720 1257858 1258031 "INTFACT" 1258330 NIL INTFACT (NIL T) -7 NIL NIL) (-546 1255105 1255551 1256115 "INTEF" 1257274 NIL INTEF (NIL T T) -7 NIL NIL) (-545 1253572 1254277 1254305 "INTDOM" 1254606 T INTDOM (NIL) -9 NIL 1254813) (-544 1252941 1253115 1253357 "INTDOM-" 1253362 NIL INTDOM- (NIL T) -8 NIL NIL) (-543 1249436 1251325 1251379 "INTCAT" 1252178 NIL INTCAT (NIL T) -9 NIL 1252498) (-542 1248909 1249011 1249139 "INTBIT" 1249328 T INTBIT (NIL) -7 NIL NIL) (-541 1247580 1247734 1248048 "INTALG" 1248754 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-540 1247037 1247127 1247297 "INTAF" 1247484 NIL INTAF (NIL T T) -7 NIL NIL) (-539 1240491 1246847 1246987 "INTABL" 1246992 NIL INTABL (NIL T T T) -8 NIL NIL) (-538 1235506 1238180 1238208 "INS" 1239142 T INS (NIL) -9 NIL 1239807) (-537 1232746 1233517 1234491 "INS-" 1234564 NIL INS- (NIL T) -8 NIL NIL) (-536 1231521 1231748 1232046 "INPSIGN" 1232499 NIL INPSIGN (NIL T T) -7 NIL NIL) (-535 1230639 1230756 1230953 "INPRODPF" 1231401 NIL INPRODPF (NIL T T) -7 NIL NIL) (-534 1229533 1229650 1229887 "INPRODFF" 1230519 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-533 1228533 1228685 1228945 "INNMFACT" 1229369 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-532 1227730 1227827 1228015 "INMODGCD" 1228432 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-531 1226239 1226483 1226807 "INFSP" 1227475 NIL INFSP (NIL T T T) -7 NIL NIL) (-530 1225423 1225540 1225723 "INFPROD0" 1226119 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-529 1222305 1223488 1224003 "INFORM" 1224916 T INFORM (NIL) -8 NIL NIL) (-528 1221915 1221975 1222073 "INFORM1" 1222240 NIL INFORM1 (NIL T) -7 NIL NIL) (-527 1221438 1221527 1221641 "INFINITY" 1221821 T INFINITY (NIL) -7 NIL NIL) (-526 1220883 1221156 1221264 "INETCLTS" 1221350 T INETCLTS (NIL) -8 NIL NIL) (-525 1219500 1219749 1220070 "INEP" 1220631 NIL INEP (NIL T T T) -7 NIL NIL) (-524 1218776 1219397 1219462 "INDE" 1219467 NIL INDE (NIL T) -8 NIL NIL) (-523 1218340 1218408 1218525 "INCRMAPS" 1218703 NIL INCRMAPS (NIL T) -7 NIL NIL) (-522 1217358 1217609 1217815 "INBFILE" 1218154 T INBFILE (NIL) -8 NIL NIL) (-521 1212669 1213594 1214538 "INBFF" 1216446 NIL INBFF (NIL T) -7 NIL NIL) (-520 1212338 1212414 1212442 "INBCON" 1212575 T INBCON (NIL) -9 NIL 1212653) (-519 1212178 1212213 1212289 "INBCON-" 1212294 NIL INBCON- (NIL T) -8 NIL NIL) (-518 1211680 1211899 1211991 "INAST" 1212106 T INAST (NIL) -8 NIL NIL) (-517 1211134 1211359 1211465 "IMPTAST" 1211594 T IMPTAST (NIL) -8 NIL NIL) (-516 1207628 1210978 1211082 "IMATRIX" 1211087 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-515 1206340 1206463 1206778 "IMATQF" 1207484 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-514 1204560 1204787 1205124 "IMATLIN" 1206096 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-513 1199186 1204484 1204542 "ILIST" 1204547 NIL ILIST (NIL T NIL) -8 NIL NIL) (-512 1197139 1199046 1199159 "IIARRAY2" 1199164 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-511 1192572 1197050 1197114 "IFF" 1197119 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-510 1191946 1192189 1192305 "IFAST" 1192476 T IFAST (NIL) -8 NIL NIL) (-509 1186989 1191238 1191426 "IFARRAY" 1191803 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-508 1186196 1186893 1186966 "IFAMON" 1186971 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-507 1185780 1185845 1185899 "IEVALAB" 1186106 NIL IEVALAB (NIL T T) -9 NIL NIL) (-506 1185455 1185523 1185683 "IEVALAB-" 1185688 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-505 1185113 1185369 1185432 "IDPO" 1185437 NIL IDPO (NIL T T) -8 NIL NIL) (-504 1184390 1185002 1185077 "IDPOAMS" 1185082 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-503 1183724 1184279 1184354 "IDPOAM" 1184359 NIL IDPOAM (NIL T T) -8 NIL NIL) (-502 1182809 1183059 1183112 "IDPC" 1183525 NIL IDPC (NIL T T) -9 NIL 1183674) (-501 1182305 1182701 1182774 "IDPAM" 1182779 NIL IDPAM (NIL T T) -8 NIL NIL) (-500 1181708 1182197 1182270 "IDPAG" 1182275 NIL IDPAG (NIL T T) -8 NIL NIL) (-499 1181438 1181623 1181673 "IDENT" 1181678 T IDENT (NIL) -8 NIL NIL) (-498 1177693 1178541 1179436 "IDECOMP" 1180595 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-497 1170566 1171616 1172663 "IDEAL" 1176729 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-496 1169730 1169842 1170041 "ICDEN" 1170450 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-495 1168829 1169210 1169357 "ICARD" 1169603 T ICARD (NIL) -8 NIL NIL) (-494 1166889 1167202 1167607 "IBPTOOLS" 1168506 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-493 1162523 1166509 1166622 "IBITS" 1166808 NIL IBITS (NIL NIL) -8 NIL NIL) (-492 1159246 1159822 1160517 "IBATOOL" 1161940 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-491 1157026 1157487 1158020 "IBACHIN" 1158781 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-490 1154903 1156872 1156975 "IARRAY2" 1156980 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-489 1151056 1154829 1154886 "IARRAY1" 1154891 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-488 1145049 1149468 1149949 "IAN" 1150595 T IAN (NIL) -8 NIL NIL) (-487 1144560 1144617 1144790 "IALGFACT" 1144986 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-486 1144088 1144201 1144229 "HYPCAT" 1144436 T HYPCAT (NIL) -9 NIL NIL) (-485 1143626 1143743 1143929 "HYPCAT-" 1143934 NIL HYPCAT- (NIL T) -8 NIL NIL) (-484 1143248 1143421 1143504 "HOSTNAME" 1143563 T HOSTNAME (NIL) -8 NIL NIL) (-483 1143093 1143130 1143171 "HOMOTOP" 1143176 NIL HOMOTOP (NIL T) -9 NIL 1143209) (-482 1139772 1141103 1141144 "HOAGG" 1142125 NIL HOAGG (NIL T) -9 NIL 1142804) (-481 1138366 1138765 1139291 "HOAGG-" 1139296 NIL HOAGG- (NIL T T) -8 NIL NIL) (-480 1132408 1137963 1138111 "HEXADEC" 1138238 T HEXADEC (NIL) -8 NIL NIL) (-479 1131156 1131378 1131641 "HEUGCD" 1132185 NIL HEUGCD (NIL T) -7 NIL NIL) (-478 1130259 1130993 1131123 "HELLFDIV" 1131128 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-477 1128487 1130036 1130124 "HEAP" 1130203 NIL HEAP (NIL T) -8 NIL NIL) (-476 1127778 1128039 1128173 "HEADAST" 1128373 T HEADAST (NIL) -8 NIL NIL) (-475 1121698 1127693 1127755 "HDP" 1127760 NIL HDP (NIL NIL T) -8 NIL NIL) (-474 1115449 1121333 1121485 "HDMP" 1121599 NIL HDMP (NIL NIL T) -8 NIL NIL) (-473 1114774 1114913 1115077 "HB" 1115305 T HB (NIL) -7 NIL NIL) (-472 1108271 1114620 1114724 "HASHTBL" 1114729 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-471 1107774 1107992 1108084 "HASAST" 1108199 T HASAST (NIL) -8 NIL NIL) (-470 1105586 1107396 1107578 "HACKPI" 1107612 T HACKPI (NIL) -8 NIL NIL) (-469 1101281 1105439 1105552 "GTSET" 1105557 NIL GTSET (NIL T T T T) -8 NIL NIL) (-468 1094807 1101159 1101257 "GSTBL" 1101262 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-467 1087120 1093838 1094103 "GSERIES" 1094598 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-466 1086287 1086678 1086706 "GROUP" 1086909 T GROUP (NIL) -9 NIL 1087043) (-465 1085653 1085812 1086063 "GROUP-" 1086068 NIL GROUP- (NIL T) -8 NIL NIL) (-464 1084022 1084341 1084728 "GROEBSOL" 1085330 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-463 1082962 1083224 1083275 "GRMOD" 1083804 NIL GRMOD (NIL T T) -9 NIL 1083972) (-462 1082730 1082766 1082894 "GRMOD-" 1082899 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-461 1078056 1079084 1080084 "GRIMAGE" 1081750 T GRIMAGE (NIL) -8 NIL NIL) (-460 1076523 1076783 1077107 "GRDEF" 1077752 T GRDEF (NIL) -7 NIL NIL) (-459 1075967 1076083 1076224 "GRAY" 1076402 T GRAY (NIL) -7 NIL NIL) (-458 1075180 1075560 1075611 "GRALG" 1075764 NIL GRALG (NIL T T) -9 NIL 1075857) (-457 1074841 1074914 1075077 "GRALG-" 1075082 NIL GRALG- (NIL T T T) -8 NIL NIL) (-456 1071645 1074426 1074604 "GPOLSET" 1074748 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-455 1070999 1071056 1071314 "GOSPER" 1071582 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-454 1066758 1067437 1067963 "GMODPOL" 1070698 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-453 1065763 1065947 1066185 "GHENSEL" 1066570 NIL GHENSEL (NIL T T) -7 NIL NIL) (-452 1059814 1060657 1061684 "GENUPS" 1064847 NIL GENUPS (NIL T T) -7 NIL NIL) (-451 1059511 1059562 1059651 "GENUFACT" 1059757 NIL GENUFACT (NIL T) -7 NIL NIL) (-450 1058923 1059000 1059165 "GENPGCD" 1059429 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-449 1058397 1058432 1058645 "GENMFACT" 1058882 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-448 1056965 1057220 1057527 "GENEEZ" 1058140 NIL GENEEZ (NIL T T) -7 NIL NIL) (-447 1050878 1056576 1056738 "GDMP" 1056888 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-446 1040255 1044649 1045755 "GCNAALG" 1049861 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-445 1038682 1039510 1039538 "GCDDOM" 1039793 T GCDDOM (NIL) -9 NIL 1039950) (-444 1038152 1038279 1038494 "GCDDOM-" 1038499 NIL GCDDOM- (NIL T) -8 NIL NIL) (-443 1036824 1037009 1037313 "GB" 1037931 NIL GB (NIL T T T T) -7 NIL NIL) (-442 1025444 1027770 1030162 "GBINTERN" 1034515 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1023281 1023573 1023994 "GBF" 1025119 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1022062 1022227 1022494 "GBEUCLID" 1023097 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1021411 1021536 1021685 "GAUSSFAC" 1021933 T GAUSSFAC (NIL) -7 NIL NIL) (-438 1019778 1020080 1020394 "GALUTIL" 1021130 NIL GALUTIL (NIL T) -7 NIL NIL) (-437 1018086 1018360 1018684 "GALPOLYU" 1019505 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-436 1015451 1015741 1016148 "GALFACTU" 1017783 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-435 1007257 1008756 1010364 "GALFACT" 1013883 NIL GALFACT (NIL T) -7 NIL NIL) (-434 1004645 1005303 1005331 "FVFUN" 1006487 T FVFUN (NIL) -9 NIL 1007207) (-433 1003911 1004093 1004121 "FVC" 1004412 T FVC (NIL) -9 NIL 1004595) (-432 1003553 1003708 1003789 "FUNCTION" 1003863 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-431 1001324 1001875 1002341 "FT" 1003107 T FT (NIL) -8 NIL NIL) (-430 1000142 1000625 1000828 "FTEM" 1001141 T FTEM (NIL) -8 NIL NIL) (-429 998398 998687 999091 "FSUPFACT" 999833 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-428 996795 997084 997416 "FST" 998086 T FST (NIL) -8 NIL NIL) (-427 995966 996072 996267 "FSRED" 996677 NIL FSRED (NIL T T) -7 NIL NIL) (-426 994645 994900 995254 "FSPRMELT" 995681 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-425 991730 992168 992667 "FSPECF" 994208 NIL FSPECF (NIL T T) -7 NIL NIL) (-424 973790 982233 982273 "FS" 986121 NIL FS (NIL T) -9 NIL 988410) (-423 962440 965430 969486 "FS-" 969783 NIL FS- (NIL T T) -8 NIL NIL) (-422 961954 962008 962185 "FSINT" 962381 NIL FSINT (NIL T T) -7 NIL NIL) (-421 960281 960947 961250 "FSERIES" 961733 NIL FSERIES (NIL T T) -8 NIL NIL) (-420 959295 959411 959642 "FSCINT" 960161 NIL FSCINT (NIL T T) -7 NIL NIL) (-419 955529 958239 958280 "FSAGG" 958650 NIL FSAGG (NIL T) -9 NIL 958909) (-418 953291 953892 954688 "FSAGG-" 954783 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 952333 952476 952703 "FSAGG2" 953144 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-416 949988 950267 950821 "FS2UPS" 952051 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-415 949570 949613 949768 "FS2" 949939 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 948427 948598 948907 "FS2EXPXP" 949395 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-413 947853 947968 948120 "FRUTIL" 948307 NIL FRUTIL (NIL T) -7 NIL NIL) (-412 939308 943348 944706 "FR" 946527 NIL FR (NIL T) -8 NIL NIL) (-411 934383 937026 937066 "FRNAALG" 938462 NIL FRNAALG (NIL T) -9 NIL 939069) (-410 930061 931132 932407 "FRNAALG-" 933157 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 929699 929742 929869 "FRNAAF2" 930012 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 928106 928553 928848 "FRMOD" 929511 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 925885 926489 926806 "FRIDEAL" 927897 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-406 925080 925167 925456 "FRIDEAL2" 925792 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-405 924213 924627 924668 "FRETRCT" 924673 NIL FRETRCT (NIL T) -9 NIL 924849) (-404 923325 923556 923907 "FRETRCT-" 923912 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 920537 921713 921772 "FRAMALG" 922654 NIL FRAMALG (NIL T T) -9 NIL 922946) (-402 918671 919126 919756 "FRAMALG-" 919979 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 912629 918146 918422 "FRAC" 918427 NIL FRAC (NIL T) -8 NIL NIL) (-400 912265 912322 912429 "FRAC2" 912566 NIL FRAC2 (NIL T T) -7 NIL NIL) (-399 911901 911958 912065 "FR2" 912202 NIL FR2 (NIL T T) -7 NIL NIL) (-398 906574 909426 909454 "FPS" 910573 T FPS (NIL) -9 NIL 911130) (-397 906023 906132 906296 "FPS-" 906442 NIL FPS- (NIL T) -8 NIL NIL) (-396 903477 905112 905140 "FPC" 905365 T FPC (NIL) -9 NIL 905507) (-395 903270 903310 903407 "FPC-" 903412 NIL FPC- (NIL T) -8 NIL NIL) (-394 902148 902758 902799 "FPATMAB" 902804 NIL FPATMAB (NIL T) -9 NIL 902956) (-393 899848 900324 900750 "FPARFRAC" 901785 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-392 895241 895740 896422 "FORTRAN" 899280 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-391 892957 893457 893996 "FORT" 894722 T FORT (NIL) -7 NIL NIL) (-390 890633 891195 891223 "FORTFN" 892283 T FORTFN (NIL) -9 NIL 892907) (-389 890397 890447 890475 "FORTCAT" 890534 T FORTCAT (NIL) -9 NIL 890596) (-388 888530 889013 889403 "FORMULA" 890027 T FORMULA (NIL) -8 NIL NIL) (-387 888318 888348 888417 "FORMULA1" 888494 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 887841 887893 888066 "FORDER" 888260 NIL FORDER (NIL T T T T) -7 NIL NIL) (-385 886937 887101 887294 "FOP" 887668 T FOP (NIL) -7 NIL NIL) (-384 885545 886217 886391 "FNLA" 886819 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-383 884300 884689 884717 "FNCAT" 885177 T FNCAT (NIL) -9 NIL 885437) (-382 883866 884259 884287 "FNAME" 884292 T FNAME (NIL) -8 NIL NIL) (-381 882529 883458 883486 "FMTC" 883491 T FMTC (NIL) -9 NIL 883527) (-380 878891 880052 880681 "FMONOID" 881933 NIL FMONOID (NIL T) -8 NIL NIL) (-379 878110 878633 878782 "FM" 878787 NIL FM (NIL T T) -8 NIL NIL) (-378 875534 876180 876208 "FMFUN" 877352 T FMFUN (NIL) -9 NIL 878060) (-377 874803 874984 875012 "FMC" 875302 T FMC (NIL) -9 NIL 875484) (-376 871997 872831 872885 "FMCAT" 874080 NIL FMCAT (NIL T T) -9 NIL 874575) (-375 870890 871763 871863 "FM1" 871942 NIL FM1 (NIL T T) -8 NIL NIL) (-374 868664 869080 869574 "FLOATRP" 870441 NIL FLOATRP (NIL T) -7 NIL NIL) (-373 862288 866393 867014 "FLOAT" 868063 T FLOAT (NIL) -8 NIL NIL) (-372 859726 860226 860804 "FLOATCP" 861755 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 858535 859339 859380 "FLINEXP" 859385 NIL FLINEXP (NIL T) -9 NIL 859478) (-370 857689 857924 858252 "FLINEXP-" 858257 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-369 856765 856909 857133 "FLASORT" 857541 NIL FLASORT (NIL T T) -7 NIL NIL) (-368 853982 854824 854876 "FLALG" 856103 NIL FLALG (NIL T T) -9 NIL 856570) (-367 847766 851468 851509 "FLAGG" 852771 NIL FLAGG (NIL T) -9 NIL 853423) (-366 846492 846831 847321 "FLAGG-" 847326 NIL FLAGG- (NIL T T) -8 NIL NIL) (-365 845534 845677 845904 "FLAGG2" 846345 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-364 842509 843483 843542 "FINRALG" 844670 NIL FINRALG (NIL T T) -9 NIL 845178) (-363 841669 841898 842237 "FINRALG-" 842242 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-362 841075 841288 841316 "FINITE" 841512 T FINITE (NIL) -9 NIL 841619) (-361 833533 835694 835734 "FINAALG" 839401 NIL FINAALG (NIL T) -9 NIL 840854) (-360 828874 829915 831059 "FINAALG-" 832438 NIL FINAALG- (NIL T T) -8 NIL NIL) (-359 828269 828629 828732 "FILE" 828804 NIL FILE (NIL T) -8 NIL NIL) (-358 826953 827265 827319 "FILECAT" 828003 NIL FILECAT (NIL T T) -9 NIL 828219) (-357 824821 826315 826343 "FIELD" 826383 T FIELD (NIL) -9 NIL 826463) (-356 823441 823826 824337 "FIELD-" 824342 NIL FIELD- (NIL T) -8 NIL NIL) (-355 821319 822076 822423 "FGROUP" 823127 NIL FGROUP (NIL T) -8 NIL NIL) (-354 820409 820573 820793 "FGLMICPK" 821151 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-353 816276 820334 820391 "FFX" 820396 NIL FFX (NIL T NIL) -8 NIL NIL) (-352 815877 815938 816073 "FFSLPE" 816209 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-351 811870 812649 813445 "FFPOLY" 815113 NIL FFPOLY (NIL T) -7 NIL NIL) (-350 811374 811410 811619 "FFPOLY2" 811828 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 807260 811293 811356 "FFP" 811361 NIL FFP (NIL T NIL) -8 NIL NIL) (-348 802693 807171 807235 "FF" 807240 NIL FF (NIL NIL NIL) -8 NIL NIL) (-347 797854 802036 802226 "FFNBX" 802547 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 792828 796989 797247 "FFNBP" 797708 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 787496 792112 792323 "FFNB" 792661 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 786328 786526 786841 "FFINTBAS" 787293 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 782556 784735 784763 "FFIELDC" 785383 T FFIELDC (NIL) -9 NIL 785759) (-342 781219 781589 782086 "FFIELDC-" 782091 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 780789 780834 780958 "FFHOM" 781161 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 778487 778971 779488 "FFF" 780304 NIL FFF (NIL T) -7 NIL NIL) (-339 774140 778229 778330 "FFCGX" 778430 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 769807 773872 773979 "FFCGP" 774083 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 765025 769534 769642 "FFCG" 769743 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 746858 755896 755982 "FFCAT" 761147 NIL FFCAT (NIL T T T) -9 NIL 762598) (-335 742056 743103 744417 "FFCAT-" 745647 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-334 741467 741510 741745 "FFCAT2" 742007 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-333 730679 734439 735659 "FEXPR" 740319 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-332 729679 730114 730155 "FEVALAB" 730239 NIL FEVALAB (NIL T) -9 NIL 730500) (-331 728838 729048 729386 "FEVALAB-" 729391 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-330 727431 728221 728424 "FDIV" 728737 NIL FDIV (NIL T T T T) -8 NIL NIL) (-329 724497 725212 725327 "FDIVCAT" 726895 NIL FDIVCAT (NIL T T T T) -9 NIL 727332) (-328 724259 724286 724456 "FDIVCAT-" 724461 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 723479 723566 723843 "FDIV2" 724166 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 722165 722424 722713 "FCPAK1" 723210 T FCPAK1 (NIL) -7 NIL NIL) (-325 721293 721665 721806 "FCOMP" 722056 NIL FCOMP (NIL T) -8 NIL NIL) (-324 705029 708443 711981 "FC" 717775 T FC (NIL) -8 NIL NIL) (-323 697608 701593 701633 "FAXF" 703435 NIL FAXF (NIL T) -9 NIL 704127) (-322 694887 695542 696367 "FAXF-" 696832 NIL FAXF- (NIL T T) -8 NIL NIL) (-321 689987 694263 694439 "FARRAY" 694744 NIL FARRAY (NIL T) -8 NIL NIL) (-320 685240 687272 687325 "FAMR" 688348 NIL FAMR (NIL T T) -9 NIL 688808) (-319 684130 684432 684867 "FAMR-" 684872 NIL FAMR- (NIL T T T) -8 NIL NIL) (-318 683326 684052 684105 "FAMONOID" 684110 NIL FAMONOID (NIL T) -8 NIL NIL) (-317 681138 681822 681875 "FAMONC" 682816 NIL FAMONC (NIL T T) -9 NIL 683202) (-316 679830 680892 681029 "FAGROUP" 681034 NIL FAGROUP (NIL T) -8 NIL NIL) (-315 677625 677944 678347 "FACUTIL" 679511 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-314 676724 676909 677131 "FACTFUNC" 677435 NIL FACTFUNC (NIL T) -7 NIL NIL) (-313 669129 675975 676187 "EXPUPXS" 676580 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-312 666612 667152 667738 "EXPRTUBE" 668563 T EXPRTUBE (NIL) -7 NIL NIL) (-311 662806 663398 664135 "EXPRODE" 665951 NIL EXPRODE (NIL T T) -7 NIL NIL) (-310 648180 661461 661889 "EXPR" 662410 NIL EXPR (NIL T) -8 NIL NIL) (-309 642587 643174 643987 "EXPR2UPS" 647478 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 642223 642280 642387 "EXPR2" 642524 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 633628 641355 641652 "EXPEXPAN" 642060 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-306 633455 633585 633614 "EXIT" 633619 T EXIT (NIL) -8 NIL NIL) (-305 632962 633179 633270 "EXITAST" 633384 T EXITAST (NIL) -8 NIL NIL) (-304 632589 632651 632764 "EVALCYC" 632894 NIL EVALCYC (NIL T) -7 NIL NIL) (-303 632130 632248 632289 "EVALAB" 632459 NIL EVALAB (NIL T) -9 NIL 632563) (-302 631611 631733 631954 "EVALAB-" 631959 NIL EVALAB- (NIL T T) -8 NIL NIL) (-301 629079 630347 630375 "EUCDOM" 630930 T EUCDOM (NIL) -9 NIL 631280) (-300 627484 627926 628516 "EUCDOM-" 628521 NIL EUCDOM- (NIL T) -8 NIL NIL) (-299 615024 617782 620532 "ESTOOLS" 624754 T ESTOOLS (NIL) -7 NIL NIL) (-298 614656 614713 614822 "ESTOOLS2" 614961 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 614407 614449 614529 "ESTOOLS1" 614608 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 608312 610040 610068 "ES" 612836 T ES (NIL) -9 NIL 614245) (-295 603259 604546 606363 "ES-" 606527 NIL ES- (NIL T) -8 NIL NIL) (-294 599634 600394 601174 "ESCONT" 602499 T ESCONT (NIL) -7 NIL NIL) (-293 599379 599411 599493 "ESCONT1" 599596 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-292 599054 599104 599204 "ES2" 599323 NIL ES2 (NIL T T) -7 NIL NIL) (-291 598684 598742 598851 "ES1" 598990 NIL ES1 (NIL T T) -7 NIL NIL) (-290 597900 598029 598205 "ERROR" 598528 T ERROR (NIL) -7 NIL NIL) (-289 591403 597759 597850 "EQTBL" 597855 NIL EQTBL (NIL T T) -8 NIL NIL) (-288 583960 586717 588166 "EQ" 589987 NIL -3244 (NIL T) -8 NIL NIL) (-287 583592 583649 583758 "EQ2" 583897 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 578884 579930 581023 "EP" 582531 NIL EP (NIL T) -7 NIL NIL) (-285 577466 577767 578084 "ENV" 578587 T ENV (NIL) -8 NIL NIL) (-284 576645 577165 577193 "ENTIRER" 577198 T ENTIRER (NIL) -9 NIL 577244) (-283 573147 574600 574970 "EMR" 576444 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-282 572291 572476 572530 "ELTAGG" 572910 NIL ELTAGG (NIL T T) -9 NIL 573121) (-281 572010 572072 572213 "ELTAGG-" 572218 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-280 571799 571828 571882 "ELTAB" 571966 NIL ELTAB (NIL T T) -9 NIL NIL) (-279 570925 571071 571270 "ELFUTS" 571650 NIL ELFUTS (NIL T T) -7 NIL NIL) (-278 570667 570723 570751 "ELEMFUN" 570856 T ELEMFUN (NIL) -9 NIL NIL) (-277 570537 570558 570626 "ELEMFUN-" 570631 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-276 565428 568637 568678 "ELAGG" 569618 NIL ELAGG (NIL T) -9 NIL 570081) (-275 563713 564147 564810 "ELAGG-" 564815 NIL ELAGG- (NIL T T) -8 NIL NIL) (-274 562370 562650 562945 "ELABEXPR" 563438 T ELABEXPR (NIL) -8 NIL NIL) (-273 555236 557037 557864 "EFUPXS" 561646 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-272 548686 550487 551297 "EFULS" 554512 NIL EFULS (NIL T T T) -8 NIL NIL) (-271 546108 546466 546945 "EFSTRUC" 548318 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-270 535180 536745 538305 "EF" 544623 NIL EF (NIL T T) -7 NIL NIL) (-269 534281 534665 534814 "EAB" 535051 T EAB (NIL) -8 NIL NIL) (-268 533490 534240 534268 "E04UCFA" 534273 T E04UCFA (NIL) -8 NIL NIL) (-267 532699 533449 533477 "E04NAFA" 533482 T E04NAFA (NIL) -8 NIL NIL) (-266 531908 532658 532686 "E04MBFA" 532691 T E04MBFA (NIL) -8 NIL NIL) (-265 531117 531867 531895 "E04JAFA" 531900 T E04JAFA (NIL) -8 NIL NIL) (-264 530328 531076 531104 "E04GCFA" 531109 T E04GCFA (NIL) -8 NIL NIL) (-263 529539 530287 530315 "E04FDFA" 530320 T E04FDFA (NIL) -8 NIL NIL) (-262 528748 529498 529526 "E04DGFA" 529531 T E04DGFA (NIL) -8 NIL NIL) (-261 522926 524273 525637 "E04AGNT" 527404 T E04AGNT (NIL) -7 NIL NIL) (-260 521632 522112 522152 "DVARCAT" 522627 NIL DVARCAT (NIL T) -9 NIL 522826) (-259 520836 521048 521362 "DVARCAT-" 521367 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-258 513736 520635 520764 "DSMP" 520769 NIL DSMP (NIL T T T) -8 NIL NIL) (-257 508546 509681 510749 "DROPT" 512688 T DROPT (NIL) -8 NIL NIL) (-256 508211 508270 508368 "DROPT1" 508481 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 503326 504452 505589 "DROPT0" 507094 T DROPT0 (NIL) -7 NIL NIL) (-254 501671 501996 502382 "DRAWPT" 502960 T DRAWPT (NIL) -7 NIL NIL) (-253 496258 497181 498260 "DRAW" 500645 NIL DRAW (NIL T) -7 NIL NIL) (-252 495891 495944 496062 "DRAWHACK" 496199 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 494622 494891 495182 "DRAWCX" 495620 T DRAWCX (NIL) -7 NIL NIL) (-250 494138 494206 494357 "DRAWCURV" 494548 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 484609 486568 488683 "DRAWCFUN" 492043 T DRAWCFUN (NIL) -7 NIL NIL) (-248 481422 483304 483345 "DQAGG" 483974 NIL DQAGG (NIL T) -9 NIL 484247) (-247 469701 476400 476483 "DPOLCAT" 478335 NIL DPOLCAT (NIL T T T T) -9 NIL 478880) (-246 464540 465886 467844 "DPOLCAT-" 467849 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-245 457695 464401 464499 "DPMO" 464504 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-244 450753 457475 457642 "DPMM" 457647 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-243 450173 450376 450490 "DOMAIN" 450659 T DOMAIN (NIL) -8 NIL NIL) (-242 443924 449808 449960 "DMP" 450074 NIL DMP (NIL NIL T) -8 NIL NIL) (-241 443524 443580 443724 "DLP" 443862 NIL DLP (NIL T) -7 NIL NIL) (-240 437394 442851 443041 "DLIST" 443366 NIL DLIST (NIL T) -8 NIL NIL) (-239 434240 436249 436290 "DLAGG" 436840 NIL DLAGG (NIL T) -9 NIL 437069) (-238 433053 433683 433711 "DIVRING" 433803 T DIVRING (NIL) -9 NIL 433886) (-237 432290 432480 432780 "DIVRING-" 432785 NIL DIVRING- (NIL T) -8 NIL NIL) (-236 430392 430749 431155 "DISPLAY" 431904 T DISPLAY (NIL) -7 NIL NIL) (-235 424334 430306 430369 "DIRPROD" 430374 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-234 423182 423385 423650 "DIRPROD2" 424127 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 412445 418397 418450 "DIRPCAT" 418860 NIL DIRPCAT (NIL NIL T) -9 NIL 419700) (-232 409771 410413 411294 "DIRPCAT-" 411631 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-231 409058 409218 409404 "DIOSP" 409605 T DIOSP (NIL) -7 NIL NIL) (-230 405760 407970 408011 "DIOPS" 408445 NIL DIOPS (NIL T) -9 NIL 408674) (-229 405309 405423 405614 "DIOPS-" 405619 NIL DIOPS- (NIL T T) -8 NIL NIL) (-228 404201 404795 404823 "DIFRING" 405010 T DIFRING (NIL) -9 NIL 405120) (-227 403847 403924 404076 "DIFRING-" 404081 NIL DIFRING- (NIL T) -8 NIL NIL) (-226 401652 402890 402931 "DIFEXT" 403294 NIL DIFEXT (NIL T) -9 NIL 403588) (-225 399937 400365 401031 "DIFEXT-" 401036 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-224 397259 399469 399510 "DIAGG" 399515 NIL DIAGG (NIL T) -9 NIL 399535) (-223 396643 396800 397052 "DIAGG-" 397057 NIL DIAGG- (NIL T T) -8 NIL NIL) (-222 392108 395602 395879 "DHMATRIX" 396412 NIL DHMATRIX (NIL T) -8 NIL NIL) (-221 387720 388629 389639 "DFSFUN" 391118 T DFSFUN (NIL) -7 NIL NIL) (-220 382836 386651 386963 "DFLOAT" 387428 T DFLOAT (NIL) -8 NIL NIL) (-219 381064 381345 381741 "DFINTTLS" 382544 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-218 378129 379085 379485 "DERHAM" 380730 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-217 375978 377904 377993 "DEQUEUE" 378073 NIL DEQUEUE (NIL T) -8 NIL NIL) (-216 375193 375326 375522 "DEGRED" 375840 NIL DEGRED (NIL T T) -7 NIL NIL) (-215 371588 372333 373186 "DEFINTRF" 374421 NIL DEFINTRF (NIL T) -7 NIL NIL) (-214 369115 369584 370183 "DEFINTEF" 371107 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-213 368492 368735 368850 "DEFAST" 369020 T DEFAST (NIL) -8 NIL NIL) (-212 362534 368089 368237 "DECIMAL" 368364 T DECIMAL (NIL) -8 NIL NIL) (-211 360046 360504 361010 "DDFACT" 362078 NIL DDFACT (NIL T T) -7 NIL NIL) (-210 359642 359685 359836 "DBLRESP" 359997 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-209 357541 357875 358235 "DBASE" 359409 NIL DBASE (NIL T) -8 NIL NIL) (-208 356810 357021 357167 "DATAARY" 357440 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-207 355943 356769 356797 "D03FAFA" 356802 T D03FAFA (NIL) -8 NIL NIL) (-206 355077 355902 355930 "D03EEFA" 355935 T D03EEFA (NIL) -8 NIL NIL) (-205 353027 353493 353982 "D03AGNT" 354608 T D03AGNT (NIL) -7 NIL NIL) (-204 352343 352986 353014 "D02EJFA" 353019 T D02EJFA (NIL) -8 NIL NIL) (-203 351659 352302 352330 "D02CJFA" 352335 T D02CJFA (NIL) -8 NIL NIL) (-202 350975 351618 351646 "D02BHFA" 351651 T D02BHFA (NIL) -8 NIL NIL) (-201 350291 350934 350962 "D02BBFA" 350967 T D02BBFA (NIL) -8 NIL NIL) (-200 343489 345077 346683 "D02AGNT" 348705 T D02AGNT (NIL) -7 NIL NIL) (-199 341258 341780 342326 "D01WGTS" 342963 T D01WGTS (NIL) -7 NIL NIL) (-198 340353 341217 341245 "D01TRNS" 341250 T D01TRNS (NIL) -8 NIL NIL) (-197 339448 340312 340340 "D01GBFA" 340345 T D01GBFA (NIL) -8 NIL NIL) (-196 338543 339407 339435 "D01FCFA" 339440 T D01FCFA (NIL) -8 NIL NIL) (-195 337638 338502 338530 "D01ASFA" 338535 T D01ASFA (NIL) -8 NIL NIL) (-194 336733 337597 337625 "D01AQFA" 337630 T D01AQFA (NIL) -8 NIL NIL) (-193 335828 336692 336720 "D01APFA" 336725 T D01APFA (NIL) -8 NIL NIL) (-192 334923 335787 335815 "D01ANFA" 335820 T D01ANFA (NIL) -8 NIL NIL) (-191 334018 334882 334910 "D01AMFA" 334915 T D01AMFA (NIL) -8 NIL NIL) (-190 333113 333977 334005 "D01ALFA" 334010 T D01ALFA (NIL) -8 NIL NIL) (-189 332208 333072 333100 "D01AKFA" 333105 T D01AKFA (NIL) -8 NIL NIL) (-188 331303 332167 332195 "D01AJFA" 332200 T D01AJFA (NIL) -8 NIL NIL) (-187 324600 326151 327712 "D01AGNT" 329762 T D01AGNT (NIL) -7 NIL NIL) (-186 323937 324065 324217 "CYCLOTOM" 324468 T CYCLOTOM (NIL) -7 NIL NIL) (-185 320672 321385 322112 "CYCLES" 323230 T CYCLES (NIL) -7 NIL NIL) (-184 319984 320118 320289 "CVMP" 320533 NIL CVMP (NIL T) -7 NIL NIL) (-183 317755 318013 318389 "CTRIGMNP" 319712 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-182 317172 317378 317492 "CTOR" 317661 T CTOR (NIL) -8 NIL NIL) (-181 316708 316903 317004 "CTORKIND" 317091 T CTORKIND (NIL) -8 NIL NIL) (-180 316219 316408 316507 "CTORCALL" 316629 T CTORCALL (NIL) -8 NIL NIL) (-179 315593 315692 315845 "CSTTOOLS" 316116 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 311392 312049 312807 "CRFP" 314905 NIL CRFP (NIL T T) -7 NIL NIL) (-177 310894 311113 311205 "CRCEAST" 311320 T CRCEAST (NIL) -8 NIL NIL) (-176 309941 310126 310354 "CRAPACK" 310698 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 309325 309426 309630 "CPMATCH" 309817 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 309050 309078 309184 "CPIMA" 309291 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 305414 306086 306804 "COORDSYS" 308385 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304798 304927 305077 "CONTOUR" 305284 T CONTOUR (NIL) -8 NIL NIL) (-171 300724 302801 303293 "CONTFRAC" 304338 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 300604 300625 300653 "CONDUIT" 300690 T CONDUIT (NIL) -9 NIL NIL) (-169 299777 300297 300325 "COMRING" 300330 T COMRING (NIL) -9 NIL 300382) (-168 298858 299135 299319 "COMPPROP" 299613 T COMPPROP (NIL) -8 NIL NIL) (-167 298519 298554 298682 "COMPLPAT" 298817 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 288576 298328 298437 "COMPLEX" 298442 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 288212 288269 288376 "COMPLEX2" 288513 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287930 287965 288063 "COMPFACT" 288171 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 272103 282323 282363 "COMPCAT" 283367 NIL COMPCAT (NIL T) -9 NIL 284752) (-162 261618 264542 268169 "COMPCAT-" 268525 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 261347 261375 261478 "COMMUPC" 261584 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 261142 261175 261234 "COMMONOP" 261308 T COMMONOP (NIL) -7 NIL NIL) (-159 260725 260893 260980 "COMM" 261075 T COMM (NIL) -8 NIL NIL) (-158 260329 260529 260604 "COMMAAST" 260670 T COMMAAST (NIL) -8 NIL NIL) (-157 259578 259772 259800 "COMBOPC" 260138 T COMBOPC (NIL) -9 NIL 260313) (-156 258474 258684 258926 "COMBINAT" 259368 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254672 255245 255885 "COMBF" 257896 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253458 253788 254023 "COLOR" 254457 T COLOR (NIL) -8 NIL NIL) (-153 252961 253179 253271 "COLONAST" 253386 T COLONAST (NIL) -8 NIL NIL) (-152 252601 252648 252773 "CMPLXRT" 252908 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 252076 252301 252400 "CLLCTAST" 252522 T CLLCTAST (NIL) -8 NIL NIL) (-150 247578 248606 249686 "CLIP" 251016 T CLIP (NIL) -7 NIL NIL) (-149 245960 246684 246923 "CLIF" 247405 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-148 242182 244106 244147 "CLAGG" 245076 NIL CLAGG (NIL T) -9 NIL 245612) (-147 240604 241061 241644 "CLAGG-" 241649 NIL CLAGG- (NIL T T) -8 NIL NIL) (-146 240148 240233 240373 "CINTSLPE" 240513 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-145 237649 238120 238668 "CHVAR" 239676 NIL CHVAR (NIL T T T) -7 NIL NIL) (-144 236892 237412 237440 "CHARZ" 237445 T CHARZ (NIL) -9 NIL 237460) (-143 236646 236686 236764 "CHARPOL" 236846 NIL CHARPOL (NIL T) -7 NIL NIL) (-142 235773 236326 236354 "CHARNZ" 236401 T CHARNZ (NIL) -9 NIL 236457) (-141 233798 234463 234798 "CHAR" 235458 T CHAR (NIL) -8 NIL NIL) (-140 233524 233585 233613 "CFCAT" 233724 T CFCAT (NIL) -9 NIL NIL) (-139 232769 232880 233062 "CDEN" 233408 NIL CDEN (NIL T T T) -7 NIL NIL) (-138 228761 231922 232202 "CCLASS" 232509 T CCLASS (NIL) -8 NIL NIL) (-137 228680 228706 228741 "CATEGORY" 228746 T -10 (NIL) -8 NIL NIL) (-136 228154 228380 228479 "CATAST" 228601 T CATAST (NIL) -8 NIL NIL) (-135 227657 227875 227967 "CASEAST" 228082 T CASEAST (NIL) -8 NIL NIL) (-134 222709 223686 224439 "CARTEN" 226960 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 221817 221965 222186 "CARTEN2" 222556 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-132 220159 220967 221224 "CARD" 221580 T CARD (NIL) -8 NIL NIL) (-131 219762 219963 220038 "CAPSLAST" 220104 T CAPSLAST (NIL) -8 NIL NIL) (-130 219134 219462 219490 "CACHSET" 219622 T CACHSET (NIL) -9 NIL 219699) (-129 218630 218926 218954 "CABMON" 219004 T CABMON (NIL) -9 NIL 219060) (-128 217658 218086 218259 "BYTE" 218477 T BYTE (NIL) -8 NIL NIL) (-127 213067 217126 217289 "BYTEBUF" 217515 T BYTEBUF (NIL) -8 NIL NIL) (-126 210624 212759 212866 "BTREE" 212993 NIL BTREE (NIL T) -8 NIL NIL) (-125 208122 210272 210394 "BTOURN" 210534 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205540 207593 207634 "BTCAT" 207702 NIL BTCAT (NIL T) -9 NIL 207779) (-123 205207 205287 205436 "BTCAT-" 205441 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200499 204350 204378 "BTAGG" 204600 T BTAGG (NIL) -9 NIL 204761) (-121 199989 200114 200320 "BTAGG-" 200325 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 197033 199267 199482 "BSTREE" 199806 NIL BSTREE (NIL T) -8 NIL NIL) (-119 196171 196297 196481 "BRILL" 196889 NIL BRILL (NIL T) -7 NIL NIL) (-118 192872 194899 194940 "BRAGG" 195589 NIL BRAGG (NIL T) -9 NIL 195846) (-117 191401 191807 192362 "BRAGG-" 192367 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184665 190747 190931 "BPADICRT" 191249 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 183015 184602 184647 "BPADIC" 184652 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182713 182743 182857 "BOUNDZRO" 182979 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 178228 179319 180186 "BOP" 181866 T BOP (NIL) -8 NIL NIL) (-112 175849 176293 176813 "BOP1" 177741 NIL BOP1 (NIL T) -7 NIL NIL) (-111 174587 175273 175466 "BOOLEAN" 175676 T BOOLEAN (NIL) -8 NIL NIL) (-110 173949 174327 174381 "BMODULE" 174386 NIL BMODULE (NIL T T) -9 NIL 174451) (-109 169779 173747 173820 "BITS" 173896 T BITS (NIL) -8 NIL NIL) (-108 169191 169313 169455 "BINDING" 169657 T BINDING (NIL) -8 NIL NIL) (-107 163236 168790 168937 "BINARY" 169064 T BINARY (NIL) -8 NIL NIL) (-106 161063 162491 162532 "BGAGG" 162792 NIL BGAGG (NIL T) -9 NIL 162929) (-105 160894 160926 161017 "BGAGG-" 161022 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159992 160278 160483 "BFUNCT" 160709 T BFUNCT (NIL) -8 NIL NIL) (-103 158682 158860 159148 "BEZOUT" 159816 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155199 157534 157864 "BBTREE" 158385 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154933 154986 155014 "BASTYPE" 155133 T BASTYPE (NIL) -9 NIL NIL) (-100 154785 154814 154887 "BASTYPE-" 154892 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154223 154299 154449 "BALFACT" 154696 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153106 153638 153824 "AUTOMOR" 154068 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152832 152837 152863 "ATTREG" 152868 T ATTREG (NIL) -9 NIL NIL) (-96 151111 151529 151881 "ATTRBUT" 152498 T ATTRBUT (NIL) -8 NIL NIL) (-95 150746 150939 151005 "ATTRAST" 151063 T ATTRAST (NIL) -8 NIL NIL) (-94 150282 150395 150421 "ATRIG" 150622 T ATRIG (NIL) -9 NIL NIL) (-93 150091 150132 150219 "ATRIG-" 150224 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149762 149922 149948 "ASTCAT" 149953 T ASTCAT (NIL) -9 NIL 149983) (-91 149489 149548 149667 "ASTCAT-" 149672 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147686 149265 149353 "ASTACK" 149432 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146191 146488 146853 "ASSOCEQ" 147368 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145223 145850 145974 "ASP9" 146098 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144987 145171 145210 "ASP8" 145215 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143856 144592 144734 "ASP80" 144876 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142755 143491 143623 "ASP7" 143755 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141709 142432 142550 "ASP78" 142668 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140678 141389 141506 "ASP77" 141623 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139590 140316 140447 "ASP74" 140578 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138490 139225 139357 "ASP73" 139489 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137594 138316 138416 "ASP6" 138421 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136542 137271 137389 "ASP55" 137507 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135492 136216 136335 "ASP50" 136454 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134580 135193 135303 "ASP4" 135413 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133668 134281 134391 "ASP49" 134501 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132453 133207 133375 "ASP42" 133557 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131230 131986 132156 "ASP41" 132340 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130180 130907 131025 "ASP35" 131143 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129945 130128 130167 "ASP34" 130172 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129682 129749 129825 "ASP33" 129900 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128577 129317 129449 "ASP31" 129581 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128342 128525 128564 "ASP30" 128569 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 128077 128146 128222 "ASP29" 128297 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127842 128025 128064 "ASP28" 128069 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127607 127790 127829 "ASP27" 127834 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126691 127305 127416 "ASP24" 127527 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125768 126493 126605 "ASP20" 126610 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124856 125469 125579 "ASP1" 125689 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123800 124530 124649 "ASP19" 124768 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123537 123604 123680 "ASP12" 123755 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122389 123136 123280 "ASP10" 123424 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 120288 122233 122324 "ARRAY2" 122329 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 116104 119936 120050 "ARRAY1" 120205 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 115136 115309 115530 "ARRAY12" 115927 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109495 111366 111441 "ARR2CAT" 114071 NIL ARR2CAT (NIL T T T) -9 NIL 114829) (-55 106929 107673 108627 "ARR2CAT-" 108632 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105677 105829 106135 "APPRULE" 106765 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105328 105376 105495 "APPLYORE" 105623 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104302 104593 104788 "ANY" 105151 T ANY (NIL) -8 NIL NIL) (-51 103580 103703 103860 "ANY1" 104176 NIL ANY1 (NIL T) -7 NIL NIL) (-50 101145 102017 102344 "ANTISYM" 103304 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100660 100849 100946 "ANON" 101066 T ANON (NIL) -8 NIL NIL) (-48 94792 99199 99653 "AN" 100224 T AN (NIL) -8 NIL NIL) (-47 91048 92402 92453 "AMR" 93201 NIL AMR (NIL T T) -9 NIL 93801) (-46 90160 90381 90744 "AMR-" 90749 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74710 90077 90138 "ALIST" 90143 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71547 74304 74473 "ALGSC" 74628 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 68103 68657 69264 "ALGPKG" 70987 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67380 67481 67665 "ALGMFACT" 67989 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 63119 63804 64459 "ALGMANIP" 66903 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54525 62745 62895 "ALGFF" 63052 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53721 53852 54031 "ALGFACT" 54383 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52786 53352 53390 "ALGEBRA" 53395 NIL ALGEBRA (NIL T) -9 NIL 53436) (-37 52504 52563 52695 "ALGEBRA-" 52700 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-1041) (-138)) (T -1041)) +NIL +(-13 (-21) (-1094)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-601 (-848)) . T) ((-1094) . T) ((-1082) . T)) +((-1557 (($ $) 16)) (-2087 (($ $) 22)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 49)) (-3274 (($ $) 24)) (-3722 (($ $) 11)) (-4339 (($ $) 38)) (-2927 (((-374) $) NIL) (((-221) $) NIL) (((-877 (-374)) $) 33)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL) (($ (-402 (-554))) 28) (($ (-554)) NIL) (($ (-402 (-554))) 28)) (-2261 (((-758)) 8)) (-2755 (($ $) 39))) +(((-1042 |#1|) (-10 -8 (-15 -2087 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -3274 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1043)) (T -1042)) +((-2261 (*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1042 *3)) (-4 *3 (-1043))))) +(-10 -8 (-15 -2087 (|#1| |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -3722 (|#1| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -3274 (|#1| |#1|)) (-15 -1655 ((-874 (-374) |#1|) |#1| (-877 (-374)) (-874 (-374) |#1|))) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 -2927 ((-221) |#1|)) (-15 -2927 ((-374) |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| |#1|)) (-15 -2261 ((-758))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 (((-554) $) 90)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-1557 (($ $) 88)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2282 (($ $) 98)) (-2286 (((-112) $ $) 60)) (-4219 (((-554) $) 115)) (-4087 (($) 17 T CONST)) (-2087 (($ $) 87)) (-2784 (((-3 (-554) "failed") $) 103) (((-3 (-402 (-554)) "failed") $) 100)) (-1668 (((-554) $) 104) (((-402 (-554)) $) 101)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-3289 (((-112) $) 72)) (-2745 (((-112) $) 113)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 94)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 97)) (-3274 (($ $) 93)) (-4304 (((-112) $) 114)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-4223 (($ $ $) 112)) (-2706 (($ $ $) 111)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-3722 (($ $) 89)) (-4339 (($ $) 91)) (-2270 (((-413 $) $) 75)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-2927 (((-374) $) 106) (((-221) $) 105) (((-877 (-374)) $) 95)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ (-554)) 102) (($ (-402 (-554))) 99)) (-2261 (((-758)) 28)) (-2755 (($ $) 92)) (-1909 (((-112) $ $) 40)) (-1700 (($ $) 116)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1708 (((-112) $ $) 109)) (-1686 (((-112) $ $) 108)) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 110)) (-1676 (((-112) $ $) 107)) (-1752 (($ $ $) 66)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70) (($ $ (-402 (-554))) 96)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68))) +(((-1043) (-138)) (T -1043)) +((-1700 (*1 *1 *1) (-4 *1 (-1043))) (-3274 (*1 *1 *1) (-4 *1 (-1043))) (-2755 (*1 *1 *1) (-4 *1 (-1043))) (-4339 (*1 *1 *1) (-4 *1 (-1043))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-554)))) (-3722 (*1 *1 *1) (-4 *1 (-1043))) (-1557 (*1 *1 *1) (-4 *1 (-1043))) (-2087 (*1 *1 *1) (-4 *1 (-1043)))) +(-13 (-358) (-834) (-1007) (-1023 (-554)) (-1023 (-402 (-554))) (-987) (-602 (-877 (-374))) (-871 (-374)) (-145) (-10 -8 (-15 -3274 ($ $)) (-15 -2755 ($ $)) (-15 -4339 ($ $)) (-15 -3831 ((-554) $)) (-15 -3722 ($ $)) (-15 -1557 ($ $)) (-15 -2087 ($ $)) (-15 -1700 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-602 (-221)) . T) ((-602 (-374)) . T) ((-602 (-877 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 $) . T) ((-713) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-836) . T) ((-871 (-374)) . T) ((-905) . T) ((-987) . T) ((-1007) . T) ((-1023 (-402 (-554))) . T) ((-1023 (-554)) . T) ((-1040 #0#) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) |#2| $) 23)) (-1508 ((|#1| $) 10)) (-4219 (((-554) |#2| $) 88)) (-3625 (((-3 $ "failed") |#2| (-906)) 57)) (-3324 ((|#1| $) 28)) (-2513 ((|#1| |#2| $ |#1|) 37)) (-3792 (($ $) 25)) (-1320 (((-3 |#2| "failed") |#2| $) 87)) (-2745 (((-112) |#2| $) NIL)) (-4304 (((-112) |#2| $) NIL)) (-3857 (((-112) |#2| $) 24)) (-2647 ((|#1| $) 89)) (-3311 ((|#1| $) 27)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4318 ((|#2| $) 79)) (-3075 (((-848) $) 70)) (-4333 ((|#1| |#2| $ |#1|) 38)) (-2299 (((-631 $) |#2|) 59)) (-1658 (((-112) $ $) 74))) +(((-1044 |#1| |#2|) (-13 (-1051 |#1| |#2|) (-10 -8 (-15 -3311 (|#1| $)) (-15 -3324 (|#1| $)) (-15 -1508 (|#1| $)) (-15 -2647 (|#1| $)) (-15 -3792 ($ $)) (-15 -3857 ((-112) |#2| $)) (-15 -2513 (|#1| |#2| $ |#1|)))) (-13 (-834) (-358)) (-1217 |#1|)) (T -1044)) +((-2513 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3311 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3324 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-1508 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-2647 (*1 *2 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3792 (*1 *1 *1) (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-1217 *2)))) (-3857 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-834) (-358))) (-5 *2 (-112)) (-5 *1 (-1044 *4 *3)) (-4 *3 (-1217 *4))))) +(-13 (-1051 |#1| |#2|) (-10 -8 (-15 -3311 (|#1| $)) (-15 -3324 (|#1| $)) (-15 -1508 (|#1| $)) (-15 -2647 (|#1| $)) (-15 -3792 ($ $)) (-15 -3857 ((-112) |#2| $)) (-15 -2513 (|#1| |#2| $ |#1|)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) NIL)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) NIL)) (-4087 (($) NIL T CONST)) (-4237 (($ (-1158)) 10) (($ (-554)) 7)) (-2784 (((-3 (-554) "failed") $) NIL)) (-1668 (((-554) $) NIL)) (-3964 (($ $ $) NIL)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-675 (-554)) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($) NIL) (($ $) NIL)) (-3943 (($ $ $) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) NIL)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) NIL)) (-3273 (((-112) $) NIL)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) NIL)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3882 (($ $) NIL)) (-2577 (($ $) NIL)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3690 (($ $) NIL)) (-1521 (($ $) NIL)) (-2927 (((-554) $) 16) (((-530) $) NIL) (((-877 (-554)) $) NIL) (((-374) $) NIL) (((-221) $) NIL) (($ (-1158)) 9)) (-3075 (((-848) $) 20) (($ (-554)) 6) (($ $) NIL) (($ (-554)) 6)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) NIL)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) NIL)) (-1700 (($ $) NIL)) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) NIL)) (-1744 (($ $) 19) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL))) +(((-1045) (-13 (-539) (-606 (-1158)) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -4237 ($ (-1158))) (-15 -4237 ($ (-554)))))) (T -1045)) +((-4237 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1045)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1045))))) +(-13 (-539) (-606 (-1158)) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -4237 ($ (-1158))) (-15 -4237 ($ (-554))))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-4233 (((-1246) $ (-1158) (-1158)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1873 (($) 9)) (-1501 (((-52) $ (-1158) (-52)) NIL)) (-1308 (($ $) 30)) (-2067 (($ $) 28)) (-3307 (($ $) 27)) (-2869 (($ $) 29)) (-2509 (($ $) 32)) (-2716 (($ $) 33)) (-1702 (($ $) 26)) (-4083 (($ $) 31)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) 25 (|has| $ (-6 -4373)))) (-2937 (((-3 (-52) "failed") (-1158) $) 40)) (-4087 (($) NIL T CONST)) (-3275 (($) 7)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) 50 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-3 (-52) "failed") (-1158) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373)))) (-2624 (((-3 (-1140) "failed") $ (-1140) (-554)) 59)) (-2862 (((-52) $ (-1158) (-52)) NIL (|has| $ (-6 -4374)))) (-2796 (((-52) $ (-1158)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) 35 (|has| $ (-6 -4373))) (((-631 (-52)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2256 (((-1158) $) NIL (|has| (-1158) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4374))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2944 (((-631 (-1158)) $) NIL)) (-2415 (((-112) (-1158) $) NIL)) (-4150 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) 43)) (-2529 (((-631 (-1158)) $) NIL)) (-3618 (((-112) (-1158) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-3644 (((-374) $ (-1158)) 49)) (-3468 (((-631 (-1140)) $ (-1140)) 60)) (-1539 (((-52) $) NIL (|has| (-1158) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) "failed") (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL)) (-2441 (($ $ (-52)) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL (-12 (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-304 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (($ $ (-631 (-52)) (-631 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082)))) (($ $ (-631 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082))))) (-2625 (((-631 (-52)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-52) $ (-1158)) NIL) (((-52) $ (-1158) (-52)) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-3146 (($ $ (-1158)) 51)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082)))) (((-758) (-52) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-52) (-1082)))) (((-758) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) 37)) (-4323 (($ $ $) 38)) (-3075 (((-848) $) NIL (-3994 (|has| (-52) (-601 (-848))) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-601 (-848)))))) (-3861 (($ $ (-1158) (-374)) 47)) (-3714 (($ $ (-1158) (-374)) 48)) (-1591 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1158)) (|:| -2701 (-52)))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-52) (-1082)) (|has| (-2 (|:| -2564 (-1158)) (|:| -2701 (-52))) (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1046) (-13 (-1171 (-1158) (-52)) (-10 -8 (-15 -4323 ($ $ $)) (-15 -3275 ($)) (-15 -1702 ($ $)) (-15 -3307 ($ $)) (-15 -2067 ($ $)) (-15 -2869 ($ $)) (-15 -4083 ($ $)) (-15 -1308 ($ $)) (-15 -2509 ($ $)) (-15 -2716 ($ $)) (-15 -3861 ($ $ (-1158) (-374))) (-15 -3714 ($ $ (-1158) (-374))) (-15 -3644 ((-374) $ (-1158))) (-15 -3468 ((-631 (-1140)) $ (-1140))) (-15 -3146 ($ $ (-1158))) (-15 -1873 ($)) (-15 -2624 ((-3 (-1140) "failed") $ (-1140) (-554))) (-6 -4373)))) (T -1046)) +((-4323 (*1 *1 *1 *1) (-5 *1 (-1046))) (-3275 (*1 *1) (-5 *1 (-1046))) (-1702 (*1 *1 *1) (-5 *1 (-1046))) (-3307 (*1 *1 *1) (-5 *1 (-1046))) (-2067 (*1 *1 *1) (-5 *1 (-1046))) (-2869 (*1 *1 *1) (-5 *1 (-1046))) (-4083 (*1 *1 *1) (-5 *1 (-1046))) (-1308 (*1 *1 *1) (-5 *1 (-1046))) (-2509 (*1 *1 *1) (-5 *1 (-1046))) (-2716 (*1 *1 *1) (-5 *1 (-1046))) (-3861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046)))) (-3714 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-374)) (-5 *1 (-1046)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1046)) (-5 *3 (-1140)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1046)))) (-1873 (*1 *1) (-5 *1 (-1046))) (-2624 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-1046))))) +(-13 (-1171 (-1158) (-52)) (-10 -8 (-15 -4323 ($ $ $)) (-15 -3275 ($)) (-15 -1702 ($ $)) (-15 -3307 ($ $)) (-15 -2067 ($ $)) (-15 -2869 ($ $)) (-15 -4083 ($ $)) (-15 -1308 ($ $)) (-15 -2509 ($ $)) (-15 -2716 ($ $)) (-15 -3861 ($ $ (-1158) (-374))) (-15 -3714 ($ $ (-1158) (-374))) (-15 -3644 ((-374) $ (-1158))) (-15 -3468 ((-631 (-1140)) $ (-1140))) (-15 -3146 ($ $ (-1158))) (-15 -1873 ($)) (-15 -2624 ((-3 (-1140) "failed") $ (-1140) (-554))) (-6 -4373))) +((-3387 (($ $) 45)) (-3079 (((-112) $ $) 74)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-937 (-402 (-554)))) 227) (((-3 $ "failed") (-937 (-554))) 226) (((-3 $ "failed") (-937 |#2|)) 229)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL) (((-554) $) NIL) ((|#4| $) NIL) (($ (-937 (-402 (-554)))) 215) (($ (-937 (-554))) 211) (($ (-937 |#2|)) 231)) (-2550 (($ $) NIL) (($ $ |#4|) 43)) (-2857 (((-112) $ $) 112) (((-112) $ (-631 $)) 113)) (-2661 (((-112) $) 56)) (-1680 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 107)) (-4003 (($ $) 138)) (-2016 (($ $) 134)) (-3605 (($ $) 133)) (-4202 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3039 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4253 (((-112) $ $) 121) (((-112) $ (-631 $)) 122)) (-3954 ((|#4| $) 33)) (-1761 (($ $ $) 110)) (-2682 (((-112) $) 55)) (-1299 (((-758) $) 35)) (-2750 (($ $) 152)) (-2385 (($ $) 149)) (-2023 (((-631 $) $) 68)) (-1785 (($ $) 57)) (-2278 (($ $) 145)) (-1596 (((-631 $) $) 65)) (-3737 (($ $) 59)) (-2530 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $) 111)) (-2694 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 108) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |#4|) 109)) (-3386 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $) 104) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |#4|) 105)) (-3752 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2711 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1839 (((-631 $) $) 51)) (-3007 (((-112) $ $) 118) (((-112) $ (-631 $)) 119)) (-1536 (($ $ $) 103)) (-3834 (($ $) 37)) (-2178 (((-112) $ $) 72)) (-3518 (((-112) $ $) 114) (((-112) $ (-631 $)) 116)) (-3492 (($ $ $) 101)) (-4133 (($ $) 40)) (-2510 ((|#2| |#2| $) 142) (($ (-631 $)) NIL) (($ $ $) NIL)) (-4343 (($ $ |#2|) NIL) (($ $ $) 131)) (-3767 (($ $ |#2|) 126) (($ $ $) 129)) (-1559 (($ $) 48)) (-2013 (($ $) 52)) (-2927 (((-877 (-374)) $) NIL) (((-877 (-554)) $) NIL) (((-530) $) NIL) (($ (-937 (-402 (-554)))) 217) (($ (-937 (-554))) 213) (($ (-937 |#2|)) 228) (((-1140) $) 250) (((-937 |#2|) $) 162)) (-3075 (((-848) $) 30) (($ (-554)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-937 |#2|) $) 163) (($ (-402 (-554))) NIL) (($ $) NIL)) (-2222 (((-3 (-112) "failed") $ $) 71))) +(((-1047 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -2510 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 ((-937 |#2|) |#1|)) (-15 -2927 ((-937 |#2|) |#1|)) (-15 -2927 ((-1140) |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -2385 (|#1| |#1|)) (-15 -2278 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -2510 (|#2| |#2| |#1|)) (-15 -4343 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| |#1|)) (-15 -4343 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| |#2|)) (-15 -2016 (|#1| |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -2927 (|#1| (-937 |#2|))) (-15 -1668 (|#1| (-937 |#2|))) (-15 -2784 ((-3 |#1| "failed") (-937 |#2|))) (-15 -2927 (|#1| (-937 (-554)))) (-15 -1668 (|#1| (-937 (-554)))) (-15 -2784 ((-3 |#1| "failed") (-937 (-554)))) (-15 -2927 (|#1| (-937 (-402 (-554))))) (-15 -1668 (|#1| (-937 (-402 (-554))))) (-15 -2784 ((-3 |#1| "failed") (-937 (-402 (-554))))) (-15 -1536 (|#1| |#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 -1715 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2776 (-758))) |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -1680 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| |#1| |#4|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1| |#4|)) (-15 -4202 (|#1| |#1| |#1| |#4|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -4253 ((-112) |#1| (-631 |#1|))) (-15 -4253 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1| (-631 |#1|))) (-15 -3007 ((-112) |#1| |#1|)) (-15 -3518 ((-112) |#1| (-631 |#1|))) (-15 -3518 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| (-631 |#1|))) (-15 -2857 ((-112) |#1| |#1|)) (-15 -3079 ((-112) |#1| |#1|)) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2023 ((-631 |#1|) |#1|)) (-15 -1596 ((-631 |#1|) |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2661 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -2550 (|#1| |#1| |#4|)) (-15 -2530 (|#1| |#1| |#4|)) (-15 -2013 (|#1| |#1|)) (-15 -1839 ((-631 |#1|) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -1299 ((-758) |#1|)) (-15 -3954 (|#4| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2530 (|#2| |#1|)) (-15 -2550 (|#1| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1048 |#2| |#3| |#4|) (-1034) (-780) (-836)) (T -1047)) +NIL +(-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -2510 (|#1| |#1| |#1|)) (-15 -2510 (|#1| (-631 |#1|))) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 ((-937 |#2|) |#1|)) (-15 -2927 ((-937 |#2|) |#1|)) (-15 -2927 ((-1140) |#1|)) (-15 -2750 (|#1| |#1|)) (-15 -2385 (|#1| |#1|)) (-15 -2278 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -2510 (|#2| |#2| |#1|)) (-15 -4343 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| |#1|)) (-15 -4343 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| |#2|)) (-15 -2016 (|#1| |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -2927 (|#1| (-937 |#2|))) (-15 -1668 (|#1| (-937 |#2|))) (-15 -2784 ((-3 |#1| "failed") (-937 |#2|))) (-15 -2927 (|#1| (-937 (-554)))) (-15 -1668 (|#1| (-937 (-554)))) (-15 -2784 ((-3 |#1| "failed") (-937 (-554)))) (-15 -2927 (|#1| (-937 (-402 (-554))))) (-15 -1668 (|#1| (-937 (-402 (-554))))) (-15 -2784 ((-3 |#1| "failed") (-937 (-402 (-554))))) (-15 -1536 (|#1| |#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 -1715 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2776 (-758))) |#1| |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -1680 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -2694 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -3386 ((-2 (|:| -1490 |#1|) (|:| |gap| (-758)) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| |#1| |#4|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1| |#4|)) (-15 -4202 (|#1| |#1| |#1| |#4|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -4202 (|#1| |#1| |#1|)) (-15 -4253 ((-112) |#1| (-631 |#1|))) (-15 -4253 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1| (-631 |#1|))) (-15 -3007 ((-112) |#1| |#1|)) (-15 -3518 ((-112) |#1| (-631 |#1|))) (-15 -3518 ((-112) |#1| |#1|)) (-15 -2857 ((-112) |#1| (-631 |#1|))) (-15 -2857 ((-112) |#1| |#1|)) (-15 -3079 ((-112) |#1| |#1|)) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2222 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2023 ((-631 |#1|) |#1|)) (-15 -1596 ((-631 |#1|) |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2661 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -2550 (|#1| |#1| |#4|)) (-15 -2530 (|#1| |#1| |#4|)) (-15 -2013 (|#1| |#1|)) (-15 -1839 ((-631 |#1|) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -1299 ((-758) |#1|)) (-15 -3954 (|#4| |#1|)) (-15 -2927 ((-530) |#1|)) (-15 -2927 ((-877 (-554)) |#1|)) (-15 -2927 ((-877 (-374)) |#1|)) (-15 -3075 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -1668 (|#4| |#1|)) (-15 -2530 (|#2| |#1|)) (-15 -2550 (|#1| |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 |#3|) $) 110)) (-2237 (((-1154 $) $ |#3|) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 |#3|)) 111)) (-3387 (($ $) 271)) (-3079 (((-112) $ $) 257)) (-2934 (((-3 $ "failed") $ $) 19)) (-4286 (($ $ $) 216 (|has| |#1| (-546)))) (-1580 (((-631 $) $ $) 211 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-937 (-402 (-554)))) 231 (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))) (((-3 $ "failed") (-937 (-554))) 228 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158)))))) (((-3 $ "failed") (-937 |#1|)) 225 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554)))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-539))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-977 (-554)))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))))) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) ((|#3| $) 137) (($ (-937 (-402 (-554)))) 230 (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))) (($ (-937 (-554))) 227 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158)))))) (($ (-937 |#1|)) 224 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (-4081 (|has| |#1| (-38 (-554)))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-539))) (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (-4081 (|has| |#1| (-977 (-554)))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))))) (-2999 (($ $ $ |#3|) 108 (|has| |#1| (-170))) (($ $ $) 212 (|has| |#1| (-546)))) (-2550 (($ $) 154) (($ $ |#3|) 266)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-2857 (((-112) $ $) 256) (((-112) $ (-631 $)) 255)) (-1320 (((-3 $ "failed") $) 33)) (-2661 (((-112) $) 264)) (-1680 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 236)) (-4003 (($ $) 205 (|has| |#1| (-446)))) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ |#3|) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-2016 (($ $) 221 (|has| |#1| (-546)))) (-3605 (($ $) 222 (|has| |#1| (-546)))) (-4202 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3039 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1344 (($ $ |#1| |#2| $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| |#3| (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| |#3| (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-4253 (((-112) $ $) 250) (((-112) $ (-631 $)) 249)) (-3376 (($ $ $ $ $) 207 (|has| |#1| (-546)))) (-3954 ((|#3| $) 275)) (-2393 (($ (-1154 |#1|) |#3|) 117) (($ (-1154 $) |#3|) 116)) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| |#2|) 153) (($ $ |#3| (-758)) 119) (($ $ (-631 |#3|) (-631 (-758))) 118)) (-1761 (($ $ $) 235)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 120)) (-2682 (((-112) $) 265)) (-3893 ((|#2| $) 170) (((-758) $ |#3|) 122) (((-631 (-758)) $ (-631 |#3|)) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-1299 (((-758) $) 274)) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 |#2| |#2|) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-3277 (((-3 |#3| "failed") $) 123)) (-2750 (($ $) 202 (|has| |#1| (-446)))) (-2385 (($ $) 203 (|has| |#1| (-446)))) (-2023 (((-631 $) $) 260)) (-1785 (($ $) 263)) (-2278 (($ $) 204 (|has| |#1| (-446)))) (-1596 (((-631 $) $) 261)) (-3737 (($ $) 262)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148) (($ $ |#3|) 267)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1715 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $) 234)) (-2694 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $) 238) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |#3|) 237)) (-3386 (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $) 240) (((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |#3|) 239)) (-3752 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2711 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1613 (((-1140) $) 9)) (-2543 (($ $ $) 210 (|has| |#1| (-546)))) (-1839 (((-631 $) $) 269)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| |#3|) (|:| -1407 (-758))) "failed") $) 113)) (-3007 (((-112) $ $) 252) (((-112) $ (-631 $)) 251)) (-1536 (($ $ $) 232)) (-3834 (($ $) 273)) (-2178 (((-112) $ $) 258)) (-3518 (((-112) $ $) 254) (((-112) $ (-631 $)) 253)) (-3492 (($ $ $) 233)) (-4133 (($ $) 272)) (-2768 (((-1102) $) 10)) (-2695 (((-2 (|:| -2510 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-546)))) (-3446 (((-2 (|:| -2510 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-546)))) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 ((|#1| |#1| $) 206 (|has| |#1| (-446))) (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-2396 (((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-546)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-4343 (($ $ |#1|) 219 (|has| |#1| (-546))) (($ $ $) 217 (|has| |#1| (-546)))) (-3767 (($ $ |#1|) 220 (|has| |#1| (-546))) (($ $ $) 218 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-631 |#3|) (-631 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-631 |#3|) (-631 $)) 138)) (-1495 (($ $ |#3|) 107 (|has| |#1| (-170)))) (-1553 (($ $ |#3|) 42) (($ $ (-631 |#3|)) 41) (($ $ |#3| (-758)) 40) (($ $ (-631 |#3|) (-631 (-758))) 39)) (-3308 ((|#2| $) 150) (((-758) $ |#3|) 130) (((-631 (-758)) $ (-631 |#3|)) 129)) (-1559 (($ $) 270)) (-2013 (($ $) 268)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| |#3| (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| |#3| (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| |#3| (-602 (-530))) (|has| |#1| (-602 (-530))))) (($ (-937 (-402 (-554)))) 229 (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158))))) (($ (-937 (-554))) 226 (-3994 (-12 (-4081 (|has| |#1| (-38 (-402 (-554))))) (|has| |#1| (-38 (-554))) (|has| |#3| (-602 (-1158)))) (-12 (|has| |#1| (-38 (-402 (-554)))) (|has| |#3| (-602 (-1158)))))) (($ (-937 |#1|)) 223 (|has| |#3| (-602 (-1158)))) (((-1140) $) 201 (-12 (|has| |#1| (-1023 (-554))) (|has| |#3| (-602 (-1158))))) (((-937 |#1|) $) 200 (|has| |#3| (-602 (-1158))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ |#3|) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-937 |#1|) $) 199 (|has| |#3| (-602 (-1158)))) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554)))))) (($ $) 85 (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ |#2|) 155) (($ $ |#3| (-758)) 128) (($ $ (-631 |#3|) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2222 (((-3 (-112) "failed") $ $) 259)) (-2014 (($) 30 T CONST)) (-2982 (($ $ $ $ (-758)) 208 (|has| |#1| (-546)))) (-3100 (($ $ $ (-758)) 209 (|has| |#1| (-546)))) (-1787 (($ $ |#3|) 38) (($ $ (-631 |#3|)) 37) (($ $ |#3| (-758)) 36) (($ $ (-631 |#3|) (-631 (-758))) 35)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1048 |#1| |#2| |#3|) (-138) (-1034) (-780) (-836)) (T -1048)) +((-3954 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-758)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-4133 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1839 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-2530 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-2550 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-1785 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3737 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1596 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2023 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2222 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2178 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-3079 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-3518 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-3007 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-3007 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-4253 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)))) (-4253 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3039 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-4202 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3039 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-2711 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-3752 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-2711 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *2 (-836)))) (-3386 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) (-3386 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1))) (-4 *1 (-1048 *4 *5 *3)))) (-2694 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) (-2694 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *4 *5 *3)))) (-1680 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1715 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2776 (-758)))) (-4 *1 (-1048 *3 *4 *5)))) (-3492 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-1536 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)))) (-2784 (*1 *1 *2) (|partial| -3994 (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) (-1668 (*1 *1 *2) (-3994 (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) (-2927 (*1 *1 *2) (-3994 (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) (-2784 (*1 *1 *2) (|partial| -3994 (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))))) (-1668 (*1 *1 *2) (-3994 (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))) (-12 (-5 *2 (-937 *3)) (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-836))))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *5 (-602 (-1158))) (-4 *4 (-780)) (-4 *5 (-836)))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-2016 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-4343 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-4343 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-2396 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1048 *3 *4 *5)))) (-3446 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1))) (-4 *1 (-1048 *3 *4 *5)))) (-2695 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-2 (|:| -2510 *1) (|:| |coef2| *1))) (-4 *1 (-1048 *3 *4 *5)))) (-2999 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-1580 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-3100 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546)))) (-2982 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546)))) (-3376 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-546)))) (-2510 (*1 *2 *2 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-2278 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-2385 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446)))) (-2750 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-446))))) +(-13 (-934 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3954 (|t#3| $)) (-15 -1299 ((-758) $)) (-15 -3834 ($ $)) (-15 -4133 ($ $)) (-15 -3387 ($ $)) (-15 -1559 ($ $)) (-15 -1839 ((-631 $) $)) (-15 -2013 ($ $)) (-15 -2530 ($ $ |t#3|)) (-15 -2550 ($ $ |t#3|)) (-15 -2682 ((-112) $)) (-15 -2661 ((-112) $)) (-15 -1785 ($ $)) (-15 -3737 ($ $)) (-15 -1596 ((-631 $) $)) (-15 -2023 ((-631 $) $)) (-15 -2222 ((-3 (-112) "failed") $ $)) (-15 -2178 ((-112) $ $)) (-15 -3079 ((-112) $ $)) (-15 -2857 ((-112) $ $)) (-15 -2857 ((-112) $ (-631 $))) (-15 -3518 ((-112) $ $)) (-15 -3518 ((-112) $ (-631 $))) (-15 -3007 ((-112) $ $)) (-15 -3007 ((-112) $ (-631 $))) (-15 -4253 ((-112) $ $)) (-15 -4253 ((-112) $ (-631 $))) (-15 -4202 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -4202 ($ $ $ |t#3|)) (-15 -3039 ($ $ $ |t#3|)) (-15 -3752 ($ $ $)) (-15 -2711 ($ $ $)) (-15 -3752 ($ $ $ |t#3|)) (-15 -2711 ($ $ $ |t#3|)) (-15 -3386 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $)) (-15 -3386 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2423 $)) $ $ |t#3|)) (-15 -2694 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -2694 ((-2 (|:| -1490 $) (|:| |gap| (-758)) (|:| -2325 $) (|:| -2423 $)) $ $ |t#3|)) (-15 -1680 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -1761 ($ $ $)) (-15 -1715 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2776 (-758))) $ $)) (-15 -3492 ($ $ $)) (-15 -1536 ($ $ $)) (IF (|has| |t#3| (-602 (-1158))) (PROGN (-6 (-601 (-937 |t#1|))) (-6 (-602 (-937 |t#1|))) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2784 ((-3 $ "failed") (-937 (-402 (-554))))) (-15 -1668 ($ (-937 (-402 (-554))))) (-15 -2927 ($ (-937 (-402 (-554))))) (-15 -2784 ((-3 $ "failed") (-937 (-554)))) (-15 -1668 ($ (-937 (-554)))) (-15 -2927 ($ (-937 (-554)))) (IF (|has| |t#1| (-977 (-554))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 |t#1|))) (-15 -1668 ($ (-937 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-554))) (IF (|has| |t#1| (-38 (-402 (-554)))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 (-554)))) (-15 -1668 ($ (-937 (-554)))) (-15 -2927 ($ (-937 (-554)))) (IF (|has| |t#1| (-539)) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 |t#1|))) (-15 -1668 ($ (-937 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-554))) |%noBranch| (IF (|has| |t#1| (-38 (-402 (-554)))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-937 |t#1|))) (-15 -1668 ($ (-937 |t#1|)))))) (-15 -2927 ($ (-937 |t#1|))) (IF (|has| |t#1| (-1023 (-554))) (-6 (-602 (-1140))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-15 -3605 ($ $)) (-15 -2016 ($ $)) (-15 -3767 ($ $ |t#1|)) (-15 -4343 ($ $ |t#1|)) (-15 -3767 ($ $ $)) (-15 -4343 ($ $ $)) (-15 -4286 ($ $ $)) (-15 -2396 ((-2 (|:| -2510 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3446 ((-2 (|:| -2510 $) (|:| |coef1| $)) $ $)) (-15 -2695 ((-2 (|:| -2510 $) (|:| |coef2| $)) $ $)) (-15 -2999 ($ $ $)) (-15 -1580 ((-631 $) $ $)) (-15 -2543 ($ $ $)) (-15 -3100 ($ $ $ (-758))) (-15 -2982 ($ $ $ $ (-758))) (-15 -3376 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -2510 (|t#1| |t#1| $)) (-15 -4003 ($ $)) (-15 -2278 ($ $)) (-15 -2385 ($ $)) (-15 -2750 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 |#3|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-601 (-848)) . T) ((-601 (-937 |#1|)) |has| |#3| (-602 (-1158))) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| |#1| (-602 (-530))) (|has| |#3| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#3| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#3| (-602 (-877 (-554))))) ((-602 (-937 |#1|)) |has| |#3| (-602 (-1158))) ((-602 (-1140)) -12 (|has| |#1| (-1023 (-554))) (|has| |#3| (-602 (-1158)))) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446))) ((-508 |#3| |#1|) . T) ((-508 |#3| $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 |#3|) . T) ((-871 (-374)) -12 (|has| |#1| (-871 (-374))) (|has| |#3| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-871 (-554))) (|has| |#3| (-871 (-554)))) ((-934 |#1| |#2| |#3|) . T) ((-894) |has| |#1| (-894)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 |#1|) . T) ((-1023 |#3|) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) |has| |#1| (-894))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-1584 (((-631 (-1117)) $) 13)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 24) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-1117) $) 15)) (-1658 (((-112) $ $) NIL))) +(((-1049) (-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $))))) (T -1049)) +((-1584 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1049)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1049))))) +(-13 (-1065) (-10 -8 (-15 -1584 ((-631 (-1117)) $)) (-15 -4319 ((-1117) $)))) +((-1695 (((-112) |#3| $) 13)) (-3625 (((-3 $ "failed") |#3| (-906)) 23)) (-1320 (((-3 |#3| "failed") |#3| $) 38)) (-2745 (((-112) |#3| $) 16)) (-4304 (((-112) |#3| $) 14))) +(((-1050 |#1| |#2| |#3|) (-10 -8 (-15 -3625 ((-3 |#1| "failed") |#3| (-906))) (-15 -1320 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2745 ((-112) |#3| |#1|)) (-15 -4304 ((-112) |#3| |#1|)) (-15 -1695 ((-112) |#3| |#1|))) (-1051 |#2| |#3|) (-13 (-834) (-358)) (-1217 |#2|)) (T -1050)) +NIL +(-10 -8 (-15 -3625 ((-3 |#1| "failed") |#3| (-906))) (-15 -1320 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2745 ((-112) |#3| |#1|)) (-15 -4304 ((-112) |#3| |#1|)) (-15 -1695 ((-112) |#3| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) |#2| $) 21)) (-4219 (((-554) |#2| $) 22)) (-3625 (((-3 $ "failed") |#2| (-906)) 15)) (-2513 ((|#1| |#2| $ |#1|) 13)) (-1320 (((-3 |#2| "failed") |#2| $) 18)) (-2745 (((-112) |#2| $) 19)) (-4304 (((-112) |#2| $) 20)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4318 ((|#2| $) 17)) (-3075 (((-848) $) 11)) (-4333 ((|#1| |#2| $ |#1|) 14)) (-2299 (((-631 $) |#2|) 16)) (-1658 (((-112) $ $) 6))) +(((-1051 |#1| |#2|) (-138) (-13 (-834) (-358)) (-1217 |t#1|)) (T -1051)) +((-4219 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-554)))) (-1695 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-112)))) (-4304 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-112)))) (-2745 (*1 *2 *3 *1) (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-112)))) (-1320 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358))) (-4 *2 (-1217 *3)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358))) (-4 *2 (-1217 *3)))) (-2299 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-631 *1)) (-4 *1 (-1051 *4 *3)))) (-3625 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-906)) (-4 *4 (-13 (-834) (-358))) (-4 *1 (-1051 *4 *2)) (-4 *2 (-1217 *4)))) (-4333 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358))) (-4 *3 (-1217 *2)))) (-2513 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358))) (-4 *3 (-1217 *2))))) +(-13 (-1082) (-10 -8 (-15 -4219 ((-554) |t#2| $)) (-15 -1695 ((-112) |t#2| $)) (-15 -4304 ((-112) |t#2| $)) (-15 -2745 ((-112) |t#2| $)) (-15 -1320 ((-3 |t#2| "failed") |t#2| $)) (-15 -4318 (|t#2| $)) (-15 -2299 ((-631 $) |t#2|)) (-15 -3625 ((-3 $ "failed") |t#2| (-906))) (-15 -4333 (|t#1| |t#2| $ |t#1|)) (-15 -2513 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3202 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758)) 96)) (-1540 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 56)) (-2446 (((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)) 87)) (-2877 (((-758) (-631 |#4|) (-631 |#5|)) 27)) (-1645 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 58) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112)) 60)) (-3678 (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112)) 79)) (-2927 (((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 82)) (-3511 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-112)) 55)) (-4198 (((-758) (-631 |#4|) (-631 |#5|)) 19))) +(((-1052 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-112))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1052)) +((-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140)) (-5 *1 (-1052 *4 *5 *6 *7 *8)))) (-3202 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-631 *11)) (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11)))))) (-5 *6 (-758)) (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11)))) (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9)) (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-5 *1 (-1052 *7 *8 *9 *10 *11)))) (-3678 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-3678 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) (-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-112))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)))) +((-4183 (((-112) |#5| $) 21)) (-4155 (((-112) |#5| $) 24)) (-2892 (((-112) |#5| $) 16) (((-112) $) 45)) (-3977 (((-631 $) |#5| $) NIL) (((-631 $) (-631 |#5|) $) 77) (((-631 $) (-631 |#5|) (-631 $)) 75) (((-631 $) |#5| (-631 $)) 78)) (-4282 (($ $ |#5|) NIL) (((-631 $) |#5| $) NIL) (((-631 $) |#5| (-631 $)) 60) (((-631 $) (-631 |#5|) $) 62) (((-631 $) (-631 |#5|) (-631 $)) 64)) (-3850 (((-631 $) |#5| $) NIL) (((-631 $) |#5| (-631 $)) 54) (((-631 $) (-631 |#5|) $) 56) (((-631 $) (-631 |#5|) (-631 $)) 58)) (-4351 (((-112) |#5| $) 27))) +(((-1053 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4282 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -4282 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -4282 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -4282 ((-631 |#1|) |#5| |#1|)) (-15 -3850 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3850 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3850 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3850 ((-631 |#1|) |#5| |#1|)) (-15 -3977 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3977 ((-631 |#1|) |#5| |#1|)) (-15 -4155 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#1|)) (-15 -4351 ((-112) |#5| |#1|)) (-15 -4183 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#5| |#1|)) (-15 -4282 (|#1| |#1| |#5|))) (-1054 |#2| |#3| |#4| |#5|) (-446) (-780) (-836) (-1048 |#2| |#3| |#4|)) (T -1053)) +NIL +(-10 -8 (-15 -4282 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -4282 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -4282 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -4282 ((-631 |#1|) |#5| |#1|)) (-15 -3850 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3850 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3850 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3850 ((-631 |#1|) |#5| |#1|)) (-15 -3977 ((-631 |#1|) |#5| (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) (-631 |#1|))) (-15 -3977 ((-631 |#1|) (-631 |#5|) |#1|)) (-15 -3977 ((-631 |#1|) |#5| |#1|)) (-15 -4155 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#1|)) (-15 -4351 ((-112) |#5| |#1|)) (-15 -4183 ((-112) |#5| |#1|)) (-15 -2892 ((-112) |#5| |#1|)) (-15 -4282 (|#1| |#1| |#5|))) +((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373))))) +(((-1054 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1054)) +((-2892 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-4183 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-4351 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-4155 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3841 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 (-112) (-631 *1))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3874 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *1)))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3874 (*1 *2 *3 *1) (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-2953 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-1343 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 *3 (-631 *1))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-2543 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1)))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3278 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1)))) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3977 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *7)))) (-3977 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)))) (-3977 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) (-3850 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) (-3850 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *7)))) (-3850 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)))) (-3479 (*1 *1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-3479 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *6)) (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)))) (-4282 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)))) (-4282 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) (-4282 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *7)))) (-4282 (*1 *2 *3 *2) (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1054 *5 *6 *7 *8))))) +(-13 (-1188 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2892 ((-112) |t#4| $)) (-15 -4183 ((-112) |t#4| $)) (-15 -4351 ((-112) |t#4| $)) (-15 -2892 ((-112) $)) (-15 -4155 ((-112) |t#4| $)) (-15 -3841 ((-3 (-112) (-631 $)) |t#4| $)) (-15 -3874 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |t#4| $)) (-15 -3874 ((-112) |t#4| $)) (-15 -2953 ((-631 $) |t#4| $)) (-15 -1343 ((-3 |t#4| (-631 $)) |t#4| |t#4| $)) (-15 -2543 ((-631 (-2 (|:| |val| |t#4|) (|:| -2143 $))) |t#4| |t#4| $)) (-15 -3278 ((-631 (-2 (|:| |val| |t#4|) (|:| -2143 $))) |t#4| $)) (-15 -3977 ((-631 $) |t#4| $)) (-15 -3977 ((-631 $) (-631 |t#4|) $)) (-15 -3977 ((-631 $) (-631 |t#4|) (-631 $))) (-15 -3977 ((-631 $) |t#4| (-631 $))) (-15 -3850 ((-631 $) |t#4| $)) (-15 -3850 ((-631 $) |t#4| (-631 $))) (-15 -3850 ((-631 $) (-631 |t#4|) $)) (-15 -3850 ((-631 $) (-631 |t#4|) (-631 $))) (-15 -3479 ($ |t#4| $)) (-15 -3479 ($ (-631 |t#4|) $)) (-15 -4282 ((-631 $) |t#4| $)) (-15 -4282 ((-631 $) |t#4| (-631 $))) (-15 -4282 ((-631 $) (-631 |t#4|) $)) (-15 -4282 ((-631 $) (-631 |t#4|) (-631 $))) (-15 -3176 ((-631 $) (-631 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-1474 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|) 81)) (-1911 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 113)) (-2578 (((-631 |#5|) |#4| |#5|) 70)) (-3030 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2924 (((-1246)) 37)) (-3888 (((-1246)) 26)) (-3959 (((-1246) (-1140) (-1140) (-1140)) 33)) (-4239 (((-1246) (-1140) (-1140) (-1140)) 22)) (-1435 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|) 96)) (-3210 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112)) 107) (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3908 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 102))) +(((-1055 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1435 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -3908 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -1911 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3030 ((-112) |#4| |#5|)) (-15 -3030 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2578 ((-631 |#5|) |#4| |#5|)) (-15 -1474 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1055)) +((-1474 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2578 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3030 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3030 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1911 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3908 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836)) (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9)))) (-5 *1 (-1055 *6 *7 *4 *8 *9)))) (-3210 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-1435 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2924 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3959 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3888 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-4239 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1435 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3210 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -3908 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -1911 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3030 ((-112) |#4| |#5|)) (-15 -3030 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2578 ((-631 |#5|) |#4| |#5|)) (-15 -1474 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|))) +((-3062 (((-112) $ $) NIL)) (-1362 (((-1194) $) 13)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3463 (((-1117) $) 10)) (-3075 (((-848) $) 22) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1056) (-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $))))) (T -1056)) +((-3463 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1056)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1056))))) +(-13 (-1065) (-10 -8 (-15 -3463 ((-1117) $)) (-15 -1362 ((-1194) $)))) +((-3062 (((-112) $ $) NIL)) (-4309 (((-1158) $) 8)) (-1613 (((-1140) $) 16)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 13))) +(((-1057 |#1|) (-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $)))) (-1158)) (T -1057)) +((-4309 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1057 *3)) (-14 *3 *2)))) +(-13 (-1082) (-10 -8 (-15 -4309 ((-1158) $)))) +((-3062 (((-112) $ $) NIL)) (-3234 (($ $ (-631 (-1158)) (-1 (-112) (-631 |#3|))) 33)) (-2747 (($ |#3| |#3|) 22) (($ |#3| |#3| (-631 (-1158))) 20)) (-3848 ((|#3| $) 13)) (-2784 (((-3 (-289 |#3|) "failed") $) 58)) (-1668 (((-289 |#3|) $) NIL)) (-3932 (((-631 (-1158)) $) 16)) (-2317 (((-877 |#1|) $) 11)) (-3836 ((|#3| $) 12)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2064 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-906)) 39)) (-3075 (((-848) $) 86) (($ (-289 |#3|)) 21)) (-1658 (((-112) $ $) 36))) +(((-1058 |#1| |#2| |#3|) (-13 (-1082) (-281 |#3| |#3|) (-1023 (-289 |#3|)) (-10 -8 (-15 -2747 ($ |#3| |#3|)) (-15 -2747 ($ |#3| |#3| (-631 (-1158)))) (-15 -3234 ($ $ (-631 (-1158)) (-1 (-112) (-631 |#3|)))) (-15 -2317 ((-877 |#1|) $)) (-15 -3836 (|#3| $)) (-15 -3848 (|#3| $)) (-15 -2064 (|#3| $ |#3| (-906))) (-15 -3932 ((-631 (-1158)) $)))) (-1082) (-13 (-1034) (-871 |#1|) (-836) (-602 (-877 |#1|))) (-13 (-425 |#2|) (-871 |#1|) (-602 (-877 |#1|)))) (T -1058)) +((-2747 (*1 *1 *2 *2) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-5 *1 (-1058 *3 *4 *2)) (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))) (-2747 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1058 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) (-3234 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1 (-112) (-631 *6))) (-4 *6 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1058 *4 *5 *6)))) (-2317 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 *2))) (-5 *2 (-877 *3)) (-5 *1 (-1058 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 *2))))) (-3836 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) (-5 *1 (-1058 *3 *4 *2)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) (-5 *1 (-1058 *3 *4 *2)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))))) (-2064 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-906)) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1058 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) (-3932 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-5 *2 (-631 (-1158))) (-5 *1 (-1058 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))))) +(-13 (-1082) (-281 |#3| |#3|) (-1023 (-289 |#3|)) (-10 -8 (-15 -2747 ($ |#3| |#3|)) (-15 -2747 ($ |#3| |#3| (-631 (-1158)))) (-15 -3234 ($ $ (-631 (-1158)) (-1 (-112) (-631 |#3|)))) (-15 -2317 ((-877 |#1|) $)) (-15 -3836 (|#3| $)) (-15 -3848 (|#3| $)) (-15 -2064 (|#3| $ |#3| (-906))) (-15 -3932 ((-631 (-1158)) $)))) +((-3062 (((-112) $ $) NIL)) (-3194 (($ (-631 (-1058 |#1| |#2| |#3|))) 13)) (-1644 (((-631 (-1058 |#1| |#2| |#3|)) $) 20)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2064 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-906)) 26)) (-3075 (((-848) $) 16)) (-1658 (((-112) $ $) 19))) +(((-1059 |#1| |#2| |#3|) (-13 (-1082) (-281 |#3| |#3|) (-10 -8 (-15 -3194 ($ (-631 (-1058 |#1| |#2| |#3|)))) (-15 -1644 ((-631 (-1058 |#1| |#2| |#3|)) $)) (-15 -2064 (|#3| $ |#3| (-906))))) (-1082) (-13 (-1034) (-871 |#1|) (-836) (-602 (-877 |#1|))) (-13 (-425 |#2|) (-871 |#1|) (-602 (-877 |#1|)))) (T -1059)) +((-3194 (*1 *1 *2) (-12 (-5 *2 (-631 (-1058 *3 *4 *5))) (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) (-5 *1 (-1059 *3 *4 *5)))) (-1644 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) (-5 *2 (-631 (-1058 *3 *4 *5))) (-5 *1 (-1059 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))))) (-2064 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-906)) (-4 *4 (-1082)) (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) (-5 *1 (-1059 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4))))))) +(-13 (-1082) (-281 |#3| |#3|) (-10 -8 (-15 -3194 ($ (-631 (-1058 |#1| |#2| |#3|)))) (-15 -1644 ((-631 (-1058 |#1| |#2| |#3|)) $)) (-15 -2064 (|#3| $ |#3| (-906))))) +((-3032 (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)) 75) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|))) 77) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112)) 76))) +(((-1060 |#1| |#2|) (-10 -7 (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)))) (-13 (-302) (-145)) (-631 (-1158))) (T -1060)) +((-3032 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) (-5 *1 (-1060 *4 *5)) (-5 *3 (-631 (-937 *4))) (-14 *5 (-631 (-1158))))) (-3032 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158)))))) +(-10 -7 (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3032 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)))) +((-2270 (((-413 |#3|) |#3|) 18))) +(((-1061 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-413 |#3|) |#3|))) (-1217 (-402 (-554))) (-13 (-358) (-145) (-711 (-402 (-554)) |#1|)) (-1217 |#2|)) (T -1061)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-13 (-358) (-145) (-711 (-402 (-554)) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1061 *4 *5 *3)) (-4 *3 (-1217 *5))))) +(-10 -7 (-15 -2270 ((-413 |#3|) |#3|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 126)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-358)))) (-1976 (($ $) NIL (|has| |#1| (-358)))) (-1363 (((-112) $) NIL (|has| |#1| (-358)))) (-1903 (((-675 |#1|) (-1241 $)) NIL) (((-675 |#1|)) 115)) (-1612 ((|#1| $) 119)) (-3205 (((-1168 (-906) (-758)) (-554)) NIL (|has| |#1| (-344)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1508 (((-758)) 40 (|has| |#1| (-363)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-1651 (($ (-1241 |#1|) (-1241 $)) NIL) (($ (-1241 |#1|)) 43)) (-2723 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-3629 (((-675 |#1|) $ (-1241 $)) NIL) (((-675 |#1|) $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 106) (((-675 |#1|) (-675 $)) 101)) (-3676 (($ |#2|) 61) (((-3 $ "failed") (-402 |#2|)) NIL (|has| |#1| (-358)))) (-1320 (((-3 $ "failed") $) NIL)) (-4186 (((-906)) 77)) (-3353 (($) 44 (|has| |#1| (-363)))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3157 (($) NIL (|has| |#1| (-344)))) (-2754 (((-112) $) NIL (|has| |#1| (-344)))) (-4122 (($ $ (-758)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2342 (((-906) $) NIL (|has| |#1| (-344))) (((-820 (-906)) $) NIL (|has| |#1| (-344)))) (-3248 (((-112) $) NIL)) (-3274 ((|#1| $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3361 ((|#2| $) 84 (|has| |#1| (-358)))) (-3830 (((-906) $) 131 (|has| |#1| (-363)))) (-3662 ((|#2| $) 58)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-3834 (($) NIL (|has| |#1| (-344)) CONST)) (-2717 (($ (-906)) 125 (|has| |#1| (-363)))) (-2768 (((-1102) $) NIL)) (-4137 (($) 121)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3725 (((-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554))))) NIL (|has| |#1| (-344)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1495 ((|#1| (-1241 $)) NIL) ((|#1|) 109)) (-3316 (((-758) $) NIL (|has| |#1| (-344))) (((-3 (-758) "failed") $ $) NIL (|has| |#1| (-344)))) (-1553 (($ $) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1 |#1| |#1|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-2092 (((-675 |#1|) (-1241 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-4318 ((|#2|) 73)) (-3944 (($) NIL (|has| |#1| (-344)))) (-3656 (((-1241 |#1|) $ (-1241 $)) 89) (((-675 |#1|) (-1241 $) (-1241 $)) NIL) (((-1241 |#1|) $) 71) (((-675 |#1|) (-1241 $)) 85)) (-2927 (((-1241 |#1|) $) NIL) (($ (-1241 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (|has| |#1| (-344)))) (-3075 (((-848) $) 57) (($ (-554)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-358))) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-358)) (|has| |#1| (-1023 (-402 (-554))))))) (-2084 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3109 ((|#2| $) 82)) (-2261 (((-758)) 75)) (-3782 (((-1241 $)) 81)) (-1909 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2004 (($) 30 T CONST)) (-2014 (($) 19 T CONST)) (-1787 (($ $) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-885 (-1158))))) (($ $ (-1 |#1| |#1|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-1658 (((-112) $ $) 63)) (-1752 (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) 67) (($ $ $) NIL)) (-1735 (($ $ $) 65)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-402 (-554)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-554))) NIL (|has| |#1| (-358))))) +(((-1062 |#1| |#2| |#3|) (-711 |#1| |#2|) (-170) (-1217 |#1|) |#2|) (T -1062)) +NIL +(-711 |#1| |#2|) +((-2270 (((-413 |#3|) |#3|) 19))) +(((-1063 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-413 |#3|) |#3|))) (-1217 (-402 (-937 (-554)))) (-13 (-358) (-145) (-711 (-402 (-937 (-554))) |#1|)) (-1217 |#2|)) (T -1063)) +((-2270 (*1 *2 *3) (-12 (-4 *4 (-1217 (-402 (-937 (-554))))) (-4 *5 (-13 (-358) (-145) (-711 (-402 (-937 (-554))) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1063 *4 *5 *3)) (-4 *3 (-1217 *5))))) +(-10 -7 (-15 -2270 ((-413 |#3|) |#3|))) +((-3062 (((-112) $ $) NIL)) (-4223 (($ $ $) 14)) (-2706 (($ $ $) 15)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3655 (($) 6)) (-2927 (((-1158) $) 18)) (-3075 (((-848) $) 12)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 13)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 8))) +(((-1064) (-13 (-836) (-602 (-1158)) (-10 -8 (-15 -3655 ($))))) (T -1064)) +((-3655 (*1 *1) (-5 *1 (-1064)))) +(-13 (-836) (-602 (-1158)) (-10 -8 (-15 -3655 ($)))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-1163)) 16) (((-1163) $) 15)) (-1658 (((-112) $ $) 6))) +(((-1065) (-138)) (T -1065)) +NIL +(-13 (-93)) +(((-93) . T) ((-102) . T) ((-604 #0=(-1163)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T)) +((-2151 ((|#1| |#1| (-1 (-554) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-1731 (((-1246)) 15)) (-3609 (((-631 |#1|)) 9))) +(((-1066 |#1|) (-10 -7 (-15 -1731 ((-1246))) (-15 -3609 ((-631 |#1|))) (-15 -2151 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2151 (|#1| |#1| (-1 (-554) |#1| |#1|)))) (-131)) (T -1066)) +((-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-554) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2)))) (-2151 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2)))) (-3609 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-131)))) (-1731 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1066 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -1731 ((-1246))) (-15 -3609 ((-631 |#1|))) (-15 -2151 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2151 (|#1| |#1| (-1 (-554) |#1| |#1|)))) +((-4018 (($ (-109) $) 16)) (-2559 (((-3 (-109) "failed") (-1158) $) 15)) (-4240 (($) 7)) (-3230 (($) 17)) (-3140 (($) 18)) (-2147 (((-631 (-173)) $) 10)) (-3075 (((-848) $) 21))) +(((-1067) (-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2147 ((-631 (-173)) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $)) (-15 -4018 ($ (-109) $)) (-15 -3230 ($)) (-15 -3140 ($))))) (T -1067)) +((-4240 (*1 *1) (-5 *1 (-1067))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-631 (-173))) (-5 *1 (-1067)))) (-2559 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-1067)))) (-4018 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1067)))) (-3230 (*1 *1) (-5 *1 (-1067))) (-3140 (*1 *1) (-5 *1 (-1067)))) +(-13 (-601 (-848)) (-10 -8 (-15 -4240 ($)) (-15 -2147 ((-631 (-173)) $)) (-15 -2559 ((-3 (-109) "failed") (-1158) $)) (-15 -4018 ($ (-109) $)) (-15 -3230 ($)) (-15 -3140 ($)))) +((-4251 (((-1241 (-675 |#1|)) (-631 (-675 |#1|))) 42) (((-1241 (-675 (-937 |#1|))) (-631 (-1158)) (-675 (-937 |#1|))) 63) (((-1241 (-675 (-402 (-937 |#1|)))) (-631 (-1158)) (-675 (-402 (-937 |#1|)))) 79)) (-3656 (((-1241 |#1|) (-675 |#1|) (-631 (-675 |#1|))) 36))) +(((-1068 |#1|) (-10 -7 (-15 -4251 ((-1241 (-675 (-402 (-937 |#1|)))) (-631 (-1158)) (-675 (-402 (-937 |#1|))))) (-15 -4251 ((-1241 (-675 (-937 |#1|))) (-631 (-1158)) (-675 (-937 |#1|)))) (-15 -4251 ((-1241 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3656 ((-1241 |#1|) (-675 |#1|) (-631 (-675 |#1|))))) (-358)) (T -1068)) +((-3656 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-675 *5))) (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 (-1241 *5)) (-5 *1 (-1068 *5)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-1068 *4)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358)) (-5 *2 (-1241 (-675 (-937 *5)))) (-5 *1 (-1068 *5)) (-5 *4 (-675 (-937 *5))))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358)) (-5 *2 (-1241 (-675 (-402 (-937 *5))))) (-5 *1 (-1068 *5)) (-5 *4 (-675 (-402 (-937 *5))))))) +(-10 -7 (-15 -4251 ((-1241 (-675 (-402 (-937 |#1|)))) (-631 (-1158)) (-675 (-402 (-937 |#1|))))) (-15 -4251 ((-1241 (-675 (-937 |#1|))) (-631 (-1158)) (-675 (-937 |#1|)))) (-15 -4251 ((-1241 (-675 |#1|)) (-631 (-675 |#1|)))) (-15 -3656 ((-1241 |#1|) (-675 |#1|) (-631 (-675 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1386 (((-631 (-758)) $) NIL) (((-631 (-758)) $ (-1158)) NIL)) (-1316 (((-758) $) NIL) (((-758) $ (-1158)) NIL)) (-2405 (((-631 (-1070 (-1158))) $) NIL)) (-2237 (((-1154 $) $ (-1070 (-1158))) NIL) (((-1154 |#1|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1070 (-1158)))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-1698 (($ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1070 (-1158)) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL) (((-3 (-1107 |#1| (-1158)) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1070 (-1158)) $) NIL) (((-1158) $) NIL) (((-1107 |#1| (-1158)) $) NIL)) (-2999 (($ $ $ (-1070 (-1158))) NIL (|has| |#1| (-170)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1070 (-1158))) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 (-1070 (-1158))) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1070 (-1158)) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1070 (-1158)) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ (-1158)) NIL) (((-758) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-2393 (($ (-1154 |#1|) (-1070 (-1158))) NIL) (($ (-1154 $) (-1070 (-1158))) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-525 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1070 (-1158))) NIL)) (-3893 (((-525 (-1070 (-1158))) $) NIL) (((-758) $ (-1070 (-1158))) NIL) (((-631 (-758)) $ (-631 (-1070 (-1158)))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 (-1070 (-1158))) (-525 (-1070 (-1158)))) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3179 (((-1 $ (-758)) (-1158)) NIL) (((-1 $ (-758)) $) NIL (|has| |#1| (-229)))) (-3277 (((-3 (-1070 (-1158)) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1897 (((-1070 (-1158)) $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2081 (((-112) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1070 (-1158))) (|:| -1407 (-758))) "failed") $) NIL)) (-1502 (($ $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1070 (-1158)) |#1|) NIL) (($ $ (-631 (-1070 (-1158))) (-631 |#1|)) NIL) (($ $ (-1070 (-1158)) $) NIL) (($ $ (-631 (-1070 (-1158))) (-631 $)) NIL) (($ $ (-1158) $) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 $)) NIL (|has| |#1| (-229))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-229))) (($ $ (-631 (-1158)) (-631 |#1|)) NIL (|has| |#1| (-229)))) (-1495 (($ $ (-1070 (-1158))) NIL (|has| |#1| (-170)))) (-1553 (($ $ (-1070 (-1158))) NIL) (($ $ (-631 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3922 (((-631 (-1158)) $) NIL)) (-3308 (((-525 (-1070 (-1158))) $) NIL) (((-758) $ (-1070 (-1158))) NIL) (((-631 (-758)) $ (-631 (-1070 (-1158)))) NIL) (((-758) $ (-1158)) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1070 (-1158)) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1070 (-1158)) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1070 (-1158)) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1070 (-1158))) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-1070 (-1158))) NIL) (($ (-1158)) NIL) (($ (-1107 |#1| (-1158))) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-525 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1070 (-1158))) NIL) (($ $ (-631 (-1070 (-1158)))) NIL) (($ $ (-1070 (-1158)) (-758)) NIL) (($ $ (-631 (-1070 (-1158))) (-631 (-758))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-758)) NIL (|has| |#1| (-229))) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1069 |#1|) (-13 (-248 |#1| (-1158) (-1070 (-1158)) (-525 (-1070 (-1158)))) (-1023 (-1107 |#1| (-1158)))) (-1034)) (T -1069)) +NIL +(-13 (-248 |#1| (-1158) (-1070 (-1158)) (-525 (-1070 (-1158)))) (-1023 (-1107 |#1| (-1158)))) +((-3062 (((-112) $ $) NIL)) (-1316 (((-758) $) NIL)) (-1576 ((|#1| $) 10)) (-2784 (((-3 |#1| "failed") $) NIL)) (-1668 ((|#1| $) NIL)) (-2342 (((-758) $) 11)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-3179 (($ |#1| (-758)) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1553 (($ $) NIL) (($ $ (-758)) NIL)) (-3075 (((-848) $) NIL) (($ |#1|) NIL)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 15))) +(((-1070 |#1|) (-261 |#1|) (-836)) (T -1070)) +NIL +(-261 |#1|) +((-2879 (((-631 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 24 (|has| |#1| (-834))) (((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 14))) +(((-1071 |#1| |#2|) (-10 -7 (-15 -2879 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) |%noBranch|)) (-1195) (-1195)) (T -1071)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-834)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-631 *6)) (-5 *1 (-1071 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1076 *6)) (-5 *1 (-1071 *5 *6))))) +(-10 -7 (-15 -2879 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-631 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-2453 (((-631 (-1117)) $) 9)) (-1658 (((-112) $ $) NIL))) +(((-1072) (-13 (-1065) (-10 -8 (-15 -2453 ((-631 (-1117)) $))))) (T -1072)) +((-2453 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1072))))) +(-13 (-1065) (-10 -8 (-15 -2453 ((-631 (-1117)) $)))) +((-2879 (((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)) 19))) +(((-1073 |#1| |#2|) (-10 -7 (-15 -2879 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)))) (-1195) (-1195)) (T -1073)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1074 *6)) (-5 *1 (-1073 *5 *6))))) +(-10 -7 (-15 -2879 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1576 (((-1158) $) 11)) (-2063 (((-1076 |#1|) $) 12)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1401 (($ (-1158) (-1076 |#1|)) 10)) (-3075 (((-848) $) 20 (|has| |#1| (-1082)))) (-1658 (((-112) $ $) 15 (|has| |#1| (-1082))))) +(((-1074 |#1|) (-13 (-1195) (-10 -8 (-15 -1401 ($ (-1158) (-1076 |#1|))) (-15 -1576 ((-1158) $)) (-15 -2063 ((-1076 |#1|) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) (-1195)) (T -1074)) +((-1401 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1076 *4)) (-4 *4 (-1195)) (-5 *1 (-1074 *4)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1074 *3)) (-4 *3 (-1195)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1195))))) +(-13 (-1195) (-10 -8 (-15 -1401 ($ (-1158) (-1076 |#1|))) (-15 -1576 ((-1158) $)) (-15 -2063 ((-1076 |#1|) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) +((-2063 (($ |#1| |#1|) 8)) (-3633 ((|#1| $) 11)) (-4173 ((|#1| $) 13)) (-4196 (((-554) $) 9)) (-2786 ((|#1| $) 10)) (-4209 ((|#1| $) 12)) (-2927 (($ |#1|) 6)) (-4268 (($ |#1| |#1|) 15)) (-1447 (($ $ (-554)) 14))) +(((-1075 |#1|) (-138) (-1195)) (T -1075)) +((-4268 (*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1075 *3)) (-4 *3 (-1195)))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-1075 *3)) (-4 *3 (-1195)) (-5 *2 (-554)))) (-2063 (*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))) +(-13 (-606 |t#1|) (-10 -8 (-15 -4268 ($ |t#1| |t#1|)) (-15 -1447 ($ $ (-554))) (-15 -4173 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -3633 (|t#1| $)) (-15 -2786 (|t#1| $)) (-15 -4196 ((-554) $)) (-15 -2063 ($ |t#1| |t#1|)))) +(((-606 |#1|) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2063 (($ |#1| |#1|) 15)) (-2879 (((-631 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-834)))) (-3633 ((|#1| $) 10)) (-4173 ((|#1| $) 9)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4196 (((-554) $) 14)) (-2786 ((|#1| $) 12)) (-4209 ((|#1| $) 11)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1845 (((-631 |#1|) $) 36 (|has| |#1| (-834))) (((-631 |#1|) (-631 $)) 35 (|has| |#1| (-834)))) (-2927 (($ |#1|) 26)) (-3075 (((-848) $) 25 (|has| |#1| (-1082)))) (-4268 (($ |#1| |#1|) 8)) (-1447 (($ $ (-554)) 16)) (-1658 (((-112) $ $) 19 (|has| |#1| (-1082))))) +(((-1076 |#1|) (-13 (-1075 |#1|) (-10 -7 (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-631 |#1|))) |%noBranch|))) (-1195)) (T -1076)) +NIL +(-13 (-1075 |#1|) (-10 -7 (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-631 |#1|))) |%noBranch|))) +((-2063 (($ |#1| |#1|) 8)) (-2879 ((|#2| (-1 |#1| |#1|) $) 16)) (-3633 ((|#1| $) 11)) (-4173 ((|#1| $) 13)) (-4196 (((-554) $) 9)) (-2786 ((|#1| $) 10)) (-4209 ((|#1| $) 12)) (-1845 ((|#2| (-631 $)) 18) ((|#2| $) 17)) (-2927 (($ |#1|) 6)) (-4268 (($ |#1| |#1|) 15)) (-1447 (($ $ (-554)) 14))) +(((-1077 |#1| |#2|) (-138) (-834) (-1131 |t#1|)) (T -1077)) +((-1845 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834)) (-4 *2 (-1131 *4)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1131 *3)))) (-2879 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834)) (-4 *2 (-1131 *4))))) +(-13 (-1075 |t#1|) (-10 -8 (-15 -1845 (|t#2| (-631 $))) (-15 -1845 (|t#2| $)) (-15 -2879 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-606 |#1|) . T) ((-1075 |#1|) . T)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2597 (((-1117) $) 12)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20) (($ (-1163)) NIL) (((-1163) $) NIL)) (-4319 (((-631 (-1117)) $) 10)) (-1658 (((-112) $ $) NIL))) +(((-1078) (-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $)) (-15 -2597 ((-1117) $))))) (T -1078)) +((-4319 (*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1078)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1078))))) +(-13 (-1065) (-10 -8 (-15 -4319 ((-631 (-1117)) $)) (-15 -2597 ((-1117) $)))) +((-3382 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3775 (($ $ $) 10)) (-3372 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1079 |#1| |#2|) (-10 -8 (-15 -3382 (|#1| |#2| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#1| |#1|))) (-1080 |#2|) (-1082)) (T -1079)) +NIL +(-10 -8 (-15 -3382 (|#1| |#2| |#1|)) (-15 -3382 (|#1| |#1| |#2|)) (-15 -3382 (|#1| |#1| |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#2|)) (-15 -3372 (|#1| |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-3382 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3775 (($ $ $) 20)) (-2411 (((-112) $ $) 19)) (-3019 (((-112) $ (-758)) 35)) (-1489 (($) 25) (($ (-631 |#1|)) 24)) (-1871 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4373)))) (-4087 (($) 36 T CONST)) (-1571 (($ $) 59 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4373)))) (-2466 (((-631 |#1|) $) 43 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) 28)) (-2230 (((-112) $ (-758)) 34)) (-2379 (((-631 |#1|) $) 44 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 38)) (-3731 (((-112) $ (-758)) 33)) (-1613 (((-1140) $) 9)) (-3977 (($ $ $) 23)) (-2768 (((-1102) $) 10)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2845 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#1|) (-631 |#1|)) 50 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 48 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 (-289 |#1|))) 47 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 29)) (-3543 (((-112) $) 32)) (-4240 (($) 31)) (-3372 (($ $ $) 22) (($ $ |#1|) 21)) (-2777 (((-758) |#1| $) 45 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4373)))) (-1521 (($ $) 30)) (-2927 (((-530) $) 60 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 51)) (-3075 (((-848) $) 11)) (-2332 (($) 27) (($ (-631 |#1|)) 26)) (-2438 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 37 (|has| $ (-6 -4373))))) +(((-1080 |#1|) (-138) (-1082)) (T -1080)) +((-1334 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-2332 (*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3)))) (-1489 (*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-1489 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3)))) (-3977 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3372 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3372 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3775 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-2411 (*1 *2 *1 *1) (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))) (-3382 (*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3382 (*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) (-3382 (*1 *1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) +(-13 (-1082) (-149 |t#1|) (-10 -8 (-6 -4363) (-15 -1334 ((-112) $ $)) (-15 -2332 ($)) (-15 -2332 ($ (-631 |t#1|))) (-15 -1489 ($)) (-15 -1489 ($ (-631 |t#1|))) (-15 -3977 ($ $ $)) (-15 -3372 ($ $ $)) (-15 -3372 ($ $ |t#1|)) (-15 -3775 ($ $ $)) (-15 -2411 ((-112) $ $)) (-15 -3382 ($ $ $)) (-15 -3382 ($ $ |t#1|)) (-15 -3382 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) . T) ((-1195) . T)) +((-1613 (((-1140) $) 10)) (-2768 (((-1102) $) 8))) +(((-1081 |#1|) (-10 -8 (-15 -1613 ((-1140) |#1|)) (-15 -2768 ((-1102) |#1|))) (-1082)) (T -1081)) +NIL +(-10 -8 (-15 -1613 ((-1140) |#1|)) (-15 -2768 ((-1102) |#1|))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-1082) (-138)) (T -1082)) +((-2768 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1102)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1140))))) +(-13 (-102) (-601 (-848)) (-10 -8 (-15 -2768 ((-1102) $)) (-15 -1613 ((-1140) $)))) +(((-102) . T) ((-601 (-848)) . T)) +((-3062 (((-112) $ $) NIL)) (-1508 (((-758)) 30)) (-2017 (($ (-631 (-906))) 52)) (-1345 (((-3 $ "failed") $ (-906) (-906)) 58)) (-3353 (($) 32)) (-3068 (((-112) (-906) $) 35)) (-3830 (((-906) $) 50)) (-1613 (((-1140) $) NIL)) (-2717 (($ (-906)) 31)) (-1572 (((-3 $ "failed") $ (-906)) 55)) (-2768 (((-1102) $) NIL)) (-1604 (((-1241 $)) 40)) (-1820 (((-631 (-906)) $) 24)) (-1538 (((-758) $ (-906) (-906)) 56)) (-3075 (((-848) $) 29)) (-1658 (((-112) $ $) 21))) +(((-1083 |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1572 ((-3 $ "failed") $ (-906))) (-15 -1345 ((-3 $ "failed") $ (-906) (-906))) (-15 -1820 ((-631 (-906)) $)) (-15 -2017 ($ (-631 (-906)))) (-15 -1604 ((-1241 $))) (-15 -3068 ((-112) (-906) $)) (-15 -1538 ((-758) $ (-906) (-906))))) (-906) (-906)) (T -1083)) +((-1572 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1345 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-1604 (*1 *2) (-12 (-5 *2 (-1241 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) (-3068 (*1 *2 *3 *1) (-12 (-5 *3 (-906)) (-5 *2 (-112)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1538 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-758)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-363) (-10 -8 (-15 -1572 ((-3 $ "failed") $ (-906))) (-15 -1345 ((-3 $ "failed") $ (-906) (-906))) (-15 -1820 ((-631 (-906)) $)) (-15 -2017 ($ (-631 (-906)))) (-15 -1604 ((-1241 $))) (-15 -3068 ((-112) (-906) $)) (-15 -1538 ((-758) $ (-906) (-906))))) +((-3062 (((-112) $ $) NIL)) (-3509 (($) NIL (|has| |#1| (-363)))) (-3382 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3775 (($ $ $) 72)) (-2411 (((-112) $ $) 73)) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#1| (-363)))) (-1489 (($ (-631 |#1|)) NIL) (($) 13)) (-2220 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1884 (($ |#1| $) 67 (|has| $ (-6 -4373))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4373)))) (-3353 (($) NIL (|has| |#1| (-363)))) (-2466 (((-631 |#1|) $) 19 (|has| $ (-6 -4373)))) (-1334 (((-112) $ $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-4223 ((|#1| $) 57 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2706 ((|#1| $) 55 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 34)) (-3830 (((-906) $) NIL (|has| |#1| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-3977 (($ $ $) 70)) (-4150 ((|#1| $) 25)) (-2045 (($ |#1| $) 65)) (-2717 (($ (-906)) NIL (|has| |#1| (-363)))) (-2768 (((-1102) $) NIL)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2152 ((|#1| $) 27)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 21)) (-4240 (($) 11)) (-3372 (($ $ |#1|) NIL) (($ $ $) 71)) (-4310 (($) NIL) (($ (-631 |#1|)) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 16)) (-2927 (((-530) $) 52 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 61)) (-3043 (($ $) NIL (|has| |#1| (-363)))) (-3075 (((-848) $) NIL)) (-3813 (((-758) $) NIL)) (-2332 (($ (-631 |#1|)) NIL) (($) 12)) (-1591 (($ (-631 |#1|)) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 54)) (-2563 (((-758) $) 10 (|has| $ (-6 -4373))))) +(((-1084 |#1|) (-420 |#1|) (-1082)) (T -1084)) +NIL +(-420 |#1|) +((-3062 (((-112) $ $) 7)) (-3237 (((-112) $) 32)) (-3450 ((|#2| $) 27)) (-3117 (((-112) $) 33)) (-3942 ((|#1| $) 28)) (-3072 (((-112) $) 35)) (-1703 (((-112) $) 37)) (-3207 (((-112) $) 34)) (-1613 (((-1140) $) 9)) (-1289 (((-112) $) 31)) (-3476 ((|#3| $) 26)) (-2768 (((-1102) $) 10)) (-2947 (((-112) $) 30)) (-3302 ((|#4| $) 25)) (-1533 ((|#5| $) 24)) (-4329 (((-112) $ $) 38)) (-2064 (($ $ (-554)) 20) (($ $ (-631 (-554))) 19)) (-2344 (((-631 $) $) 29)) (-2927 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-631 $)) 39)) (-3075 (((-848) $) 11)) (-1438 (($ $) 22)) (-1427 (($ $) 23)) (-3967 (((-112) $) 36)) (-1658 (((-112) $ $) 6)) (-2563 (((-554) $) 21))) +(((-1085 |#1| |#2| |#3| |#4| |#5|) (-138) (-1082) (-1082) (-1082) (-1082) (-1082)) (T -1085)) +((-4329 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-1289 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112)))) (-2344 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-631 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-1427 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-1438 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-554)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082))))) +(-13 (-1082) (-606 |t#1|) (-606 |t#2|) (-606 |t#3|) (-606 |t#4|) (-606 |t#4|) (-606 |t#5|) (-606 (-631 $)) (-10 -8 (-15 -4329 ((-112) $ $)) (-15 -1703 ((-112) $)) (-15 -3967 ((-112) $)) (-15 -3072 ((-112) $)) (-15 -3207 ((-112) $)) (-15 -3117 ((-112) $)) (-15 -3237 ((-112) $)) (-15 -1289 ((-112) $)) (-15 -2947 ((-112) $)) (-15 -2344 ((-631 $) $)) (-15 -3942 (|t#1| $)) (-15 -3450 (|t#2| $)) (-15 -3476 (|t#3| $)) (-15 -3302 (|t#4| $)) (-15 -1533 (|t#5| $)) (-15 -1427 ($ $)) (-15 -1438 ($ $)) (-15 -2563 ((-554) $)) (-15 -2064 ($ $ (-554))) (-15 -2064 ($ $ (-631 (-554)))))) +(((-102) . T) ((-601 (-848)) . T) ((-606 (-631 $)) . T) ((-606 |#1|) . T) ((-606 |#2|) . T) ((-606 |#3|) . T) ((-606 |#4|) . T) ((-606 |#5|) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-3237 (((-112) $) NIL)) (-3450 (((-1158) $) NIL)) (-3117 (((-112) $) NIL)) (-3942 (((-1140) $) NIL)) (-3072 (((-112) $) NIL)) (-1703 (((-112) $) NIL)) (-3207 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-1289 (((-112) $) NIL)) (-3476 (((-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-2947 (((-112) $) NIL)) (-3302 (((-221) $) NIL)) (-1533 (((-848) $) NIL)) (-4329 (((-112) $ $) NIL)) (-2064 (($ $ (-554)) NIL) (($ $ (-631 (-554))) NIL)) (-2344 (((-631 $) $) NIL)) (-2927 (($ (-1140)) NIL) (($ (-1158)) NIL) (($ (-554)) NIL) (($ (-221)) NIL) (($ (-848)) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL)) (-1438 (($ $) NIL)) (-1427 (($ $) NIL)) (-3967 (((-112) $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-554) $) NIL))) +(((-1086) (-1085 (-1140) (-1158) (-554) (-221) (-848))) (T -1086)) +NIL +(-1085 (-1140) (-1158) (-554) (-221) (-848)) +((-3062 (((-112) $ $) NIL)) (-3237 (((-112) $) 40)) (-3450 ((|#2| $) 43)) (-3117 (((-112) $) 18)) (-3942 ((|#1| $) 19)) (-3072 (((-112) $) 38)) (-1703 (((-112) $) 14)) (-3207 (((-112) $) 39)) (-1613 (((-1140) $) NIL)) (-1289 (((-112) $) 41)) (-3476 ((|#3| $) 45)) (-2768 (((-1102) $) NIL)) (-2947 (((-112) $) 42)) (-3302 ((|#4| $) 44)) (-1533 ((|#5| $) 46)) (-4329 (((-112) $ $) 37)) (-2064 (($ $ (-554)) 57) (($ $ (-631 (-554))) 59)) (-2344 (((-631 $) $) 25)) (-2927 (($ |#1|) 48) (($ |#2|) 49) (($ |#3|) 50) (($ |#4|) 51) (($ |#5|) 52) (($ (-631 $)) 47)) (-3075 (((-848) $) 26)) (-1438 (($ $) 24)) (-1427 (($ $) 53)) (-3967 (((-112) $) 21)) (-1658 (((-112) $ $) 36)) (-2563 (((-554) $) 55))) +(((-1087 |#1| |#2| |#3| |#4| |#5|) (-1085 |#1| |#2| |#3| |#4| |#5|) (-1082) (-1082) (-1082) (-1082) (-1082)) (T -1087)) +NIL +(-1085 |#1| |#2| |#3| |#4| |#5|) +((-1405 (((-1246) $) 23)) (-2094 (($ (-1158) (-429) |#2|) 11)) (-3075 (((-848) $) 16))) +(((-1088 |#1| |#2|) (-13 (-390) (-10 -8 (-15 -2094 ($ (-1158) (-429) |#2|)))) (-836) (-425 |#1|)) (T -1088)) +((-2094 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *3 (-429)) (-4 *5 (-836)) (-5 *1 (-1088 *5 *4)) (-4 *4 (-425 *5))))) +(-13 (-390) (-10 -8 (-15 -2094 ($ (-1158) (-429) |#2|)))) +((-3621 (((-112) |#5| |#5|) 38)) (-3000 (((-112) |#5| |#5|) 52)) (-1459 (((-112) |#5| (-631 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3170 (((-112) (-631 |#4|) (-631 |#4|)) 58)) (-3406 (((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 63)) (-1351 (((-1246)) 33)) (-3059 (((-1246) (-1140) (-1140) (-1140)) 29)) (-1481 (((-631 |#5|) (-631 |#5|)) 82)) (-3350 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) 80)) (-2704 (((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112)) 102)) (-3723 (((-112) |#5| |#5|) 47)) (-1840 (((-3 (-112) "failed") |#5| |#5|) 71)) (-1453 (((-112) (-631 |#4|) (-631 |#4|)) 57)) (-3050 (((-112) (-631 |#4|) (-631 |#4|)) 59)) (-2178 (((-112) (-631 |#4|) (-631 |#4|)) 60)) (-1370 (((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3549 (((-631 |#5|) (-631 |#5|)) 43))) +(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1089)) +((-1370 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9)))) (-5 *1 (-1089 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9)) (-4 *4 (-1054 *6 *7 *8 *9)))) (-2704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9))))) (-5 *1 (-1089 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7)))) (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1089 *5 *6 *7 *8 *3)))) (-1459 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1840 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3170 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3723 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) (-1351 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3059 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(-10 -7 (-15 -3059 ((-1246) (-1140) (-1140) (-1140))) (-15 -1351 ((-1246))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3549 ((-631 |#5|) (-631 |#5|))) (-15 -3723 ((-112) |#5| |#5|)) (-15 -3000 ((-112) |#5| |#5|)) (-15 -3170 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1453 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -3050 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -2178 ((-112) (-631 |#4|) (-631 |#4|))) (-15 -1840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1459 ((-112) |#5| |#5|)) (-15 -1459 ((-112) |#5| (-631 |#5|))) (-15 -1481 ((-631 |#5|) (-631 |#5|))) (-15 -3406 ((-112) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -3350 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-15 -2704 ((-631 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|)))) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -1370 ((-3 (-2 (|:| -4329 (-631 |#4|)) (|:| -2143 |#5|) (|:| |ineq| (-631 |#4|))) "failed") (-631 |#4|) |#5| (-631 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2480 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|) 96)) (-1422 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|) 72)) (-3520 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 90)) (-2619 (((-631 |#5|) |#4| |#5|) 110)) (-1284 (((-631 |#5|) |#4| |#5|) 117)) (-1694 (((-631 |#5|) |#4| |#5|) 118)) (-1941 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 97)) (-2692 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 116)) (-4049 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3658 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112)) 84) (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2929 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|) 79)) (-2924 (((-1246)) 37)) (-3888 (((-1246)) 26)) (-3959 (((-1246) (-1140) (-1140) (-1140)) 33)) (-4239 (((-1246) (-1140) (-1140) (-1140)) 22))) +(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1422 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -2929 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3520 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -4049 ((-112) |#4| |#5|)) (-15 -1941 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2619 ((-631 |#5|) |#4| |#5|)) (-15 -2692 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1284 ((-631 |#5|) |#4| |#5|)) (-15 -4049 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1694 ((-631 |#5|) |#4| |#5|)) (-15 -2480 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1090)) +((-2480 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1284 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2692 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1941 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3520 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2929 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836)) (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9)))) (-5 *1 (-1090 *6 *7 *4 *8 *9)))) (-3658 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-1422 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2924 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-3959 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) (-3888 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) (-4239 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(-10 -7 (-15 -4239 ((-1246) (-1140) (-1140) (-1140))) (-15 -3888 ((-1246))) (-15 -3959 ((-1246) (-1140) (-1140) (-1140))) (-15 -2924 ((-1246))) (-15 -1422 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3658 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) |#3| (-112))) (-15 -2929 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -3520 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#4| |#5|)) (-15 -4049 ((-112) |#4| |#5|)) (-15 -1941 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -2619 ((-631 |#5|) |#4| |#5|)) (-15 -2692 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1284 ((-631 |#5|) |#4| |#5|)) (-15 -4049 ((-631 (-2 (|:| |val| (-112)) (|:| -2143 |#5|))) |#4| |#5|)) (-15 -1694 ((-631 |#5|) |#4| |#5|)) (-15 -2480 ((-631 (-2 (|:| |val| |#4|) (|:| -2143 |#5|))) |#4| |#5|))) +((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373))))) +(((-1091 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1091)) +NIL +(-13 (-1054 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-2009 (((-631 (-554)) (-554) (-554) (-554)) 22)) (-2851 (((-631 (-554)) (-554) (-554) (-554)) 12)) (-3397 (((-631 (-554)) (-554) (-554) (-554)) 18)) (-2762 (((-554) (-554) (-554)) 9)) (-2721 (((-1241 (-554)) (-631 (-554)) (-1241 (-554)) (-554)) 46) (((-1241 (-554)) (-1241 (-554)) (-1241 (-554)) (-554)) 41)) (-2166 (((-631 (-554)) (-631 (-554)) (-631 (-554)) (-112)) 28)) (-4138 (((-675 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554))) 45)) (-3329 (((-675 (-554)) (-631 (-554)) (-631 (-554))) 33)) (-2897 (((-631 (-675 (-554))) (-631 (-554))) 35)) (-2506 (((-631 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554))) 49)) (-3477 (((-675 (-554)) (-631 (-554)) (-631 (-554)) (-631 (-554))) 57))) +(((-1092) (-10 -7 (-15 -3477 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -2506 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2897 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -3329 ((-675 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -4138 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2166 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-112))) (-15 -2721 ((-1241 (-554)) (-1241 (-554)) (-1241 (-554)) (-554))) (-15 -2721 ((-1241 (-554)) (-631 (-554)) (-1241 (-554)) (-554))) (-15 -2762 ((-554) (-554) (-554))) (-15 -3397 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2851 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2009 ((-631 (-554)) (-554) (-554) (-554))))) (T -1092)) +((-2009 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))) (-2851 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))) (-3397 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554)))) (-2762 (*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1092)))) (-2721 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-631 (-554))) (-5 *4 (-554)) (-5 *1 (-1092)))) (-2721 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-554)) (-5 *1 (-1092)))) (-2166 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *3 (-112)) (-5 *1 (-1092)))) (-4138 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-675 (-554))) (-5 *3 (-631 (-554))) (-5 *1 (-1092)))) (-3329 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-1092)))) (-2506 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *3 (-675 (-554))) (-5 *1 (-1092)))) (-3477 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092))))) +(-10 -7 (-15 -3477 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -2506 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2897 ((-631 (-675 (-554))) (-631 (-554)))) (-15 -3329 ((-675 (-554)) (-631 (-554)) (-631 (-554)))) (-15 -4138 ((-675 (-554)) (-631 (-554)) (-631 (-554)) (-675 (-554)))) (-15 -2166 ((-631 (-554)) (-631 (-554)) (-631 (-554)) (-112))) (-15 -2721 ((-1241 (-554)) (-1241 (-554)) (-1241 (-554)) (-554))) (-15 -2721 ((-1241 (-554)) (-631 (-554)) (-1241 (-554)) (-554))) (-15 -2762 ((-554) (-554) (-554))) (-15 -3397 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2851 ((-631 (-554)) (-554) (-554) (-554))) (-15 -2009 ((-631 (-554)) (-554) (-554) (-554)))) +((** (($ $ (-906)) 10))) +(((-1093 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-906)))) (-1094)) (T -1093)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-906)))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6)) (** (($ $ (-906)) 13)) (* (($ $ $) 14))) +(((-1094) (-138)) (T -1094)) +((* (*1 *1 *1 *1) (-4 *1 (-1094))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-906))))) +(-13 (-1082) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-906))))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL (|has| |#3| (-1082)))) (-1695 (((-112) $) NIL (|has| |#3| (-130)))) (-2327 (($ (-906)) NIL (|has| |#3| (-1034)))) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-1349 (($ $ $) NIL (|has| |#3| (-780)))) (-2934 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3019 (((-112) $ (-758)) NIL)) (-1508 (((-758)) NIL (|has| |#3| (-363)))) (-4219 (((-554) $) NIL (|has| |#3| (-834)))) (-1501 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1082)))) (-1668 (((-554) $) NIL (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082)))) (((-402 (-554)) $) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) ((|#3| $) NIL (|has| |#3| (-1082)))) (-3699 (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#3| (-627 (-554))) (|has| |#3| (-1034)))) (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) NIL (|has| |#3| (-1034))) (((-675 |#3|) (-675 $)) NIL (|has| |#3| (-1034)))) (-1320 (((-3 $ "failed") $) NIL (|has| |#3| (-713)))) (-3353 (($) NIL (|has| |#3| (-363)))) (-2862 ((|#3| $ (-554) |#3|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#3| $ (-554)) 12)) (-2745 (((-112) $) NIL (|has| |#3| (-834)))) (-2466 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL (|has| |#3| (-713)))) (-4304 (((-112) $) NIL (|has| |#3| (-834)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2379 (((-631 |#3|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-2849 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#3| |#3|) $) NIL)) (-3830 (((-906) $) NIL (|has| |#3| (-363)))) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#3| (-1082)))) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2717 (($ (-906)) NIL (|has| |#3| (-363)))) (-2768 (((-1102) $) NIL (|has| |#3| (-1082)))) (-1539 ((|#3| $) NIL (|has| (-554) (-836)))) (-2441 (($ $ |#3|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082)))) (($ $ (-631 |#3|) (-631 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-2625 (((-631 |#3|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#3| $ (-554) |#3|) NIL) ((|#3| $ (-554)) NIL)) (-3748 ((|#3| $ $) NIL (|has| |#3| (-1034)))) (-2313 (($ (-1241 |#3|)) NIL)) (-3330 (((-133)) NIL (|has| |#3| (-358)))) (-1553 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034)))) (-2777 (((-758) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373))) (((-758) |#3| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#3| (-1082))))) (-1521 (($ $) NIL)) (-3075 (((-1241 |#3|) $) NIL) (($ (-554)) NIL (-3994 (-12 (|has| |#3| (-1023 (-554))) (|has| |#3| (-1082))) (|has| |#3| (-1034)))) (($ (-402 (-554))) NIL (-12 (|has| |#3| (-1023 (-402 (-554)))) (|has| |#3| (-1082)))) (($ |#3|) NIL (|has| |#3| (-1082))) (((-848) $) NIL (|has| |#3| (-601 (-848))))) (-2261 (((-758)) NIL (|has| |#3| (-1034)))) (-2438 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4373)))) (-1700 (($ $) NIL (|has| |#3| (-834)))) (-2004 (($) NIL (|has| |#3| (-130)) CONST)) (-2014 (($) NIL (|has| |#3| (-713)) CONST)) (-1787 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-758)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1034)))) (($ $ (-1158)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#3| (-885 (-1158))) (|has| |#3| (-1034)))) (($ $ (-1 |#3| |#3|) (-758)) NIL (|has| |#3| (-1034))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1034)))) (-1708 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1686 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1658 (((-112) $ $) NIL (|has| |#3| (-1082)))) (-1697 (((-112) $ $) NIL (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1676 (((-112) $ $) 17 (-3994 (|has| |#3| (-780)) (|has| |#3| (-834))))) (-1752 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-1744 (($ $ $) NIL (|has| |#3| (-1034))) (($ $) NIL (|has| |#3| (-1034)))) (-1735 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-758)) NIL (|has| |#3| (-713))) (($ $ (-906)) NIL (|has| |#3| (-713)))) (* (($ (-554) $) NIL (|has| |#3| (-1034))) (($ $ $) NIL (|has| |#3| (-713))) (($ $ |#3|) NIL (|has| |#3| (-713))) (($ |#3| $) NIL (|has| |#3| (-713))) (($ (-758) $) NIL (|has| |#3| (-130))) (($ (-906) $) NIL (|has| |#3| (-25)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1095 |#1| |#2| |#3|) (-234 |#1| |#3|) (-758) (-758) (-780)) (T -1095)) +NIL +(-234 |#1| |#3|) +((-3053 (((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 37)) (-1808 (((-554) (-1214 |#2| |#1|)) 69 (|has| |#1| (-446)))) (-3668 (((-554) (-1214 |#2| |#1|)) 54)) (-2954 (((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 45)) (-2950 (((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 68 (|has| |#1| (-446)))) (-3384 (((-631 |#1|) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 48)) (-3441 (((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|)) 53))) +(((-1096 |#1| |#2|) (-10 -7 (-15 -3053 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -2954 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3384 ((-631 |#1|) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3441 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3668 ((-554) (-1214 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2950 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -1808 ((-554) (-1214 |#2| |#1|)))) |%noBranch|)) (-807) (-1158)) (T -1096)) +((-1808 (*1 *2 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-3441 (*1 *2 *3 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5)))) (-3384 (*1 *2 *3 *3) (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 *4)) (-5 *1 (-1096 *4 *5)))) (-2954 (*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4)))) (-3053 (*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4))))) +(-10 -7 (-15 -3053 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -2954 ((-631 (-1214 |#2| |#1|)) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3384 ((-631 |#1|) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3441 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -3668 ((-554) (-1214 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2950 ((-554) (-1214 |#2| |#1|) (-1214 |#2| |#1|))) (-15 -1808 ((-554) (-1214 |#2| |#1|)))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-4050 (($ (-500) (-1100)) 14)) (-3885 (((-1100) $) 20)) (-4309 (((-500) $) 17)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 28) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1097) (-13 (-1065) (-10 -8 (-15 -4050 ($ (-500) (-1100))) (-15 -4309 ((-500) $)) (-15 -3885 ((-1100) $))))) (T -1097)) +((-4050 (*1 *1 *2 *3) (-12 (-5 *2 (-500)) (-5 *3 (-1100)) (-5 *1 (-1097)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-1097)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1097))))) +(-13 (-1065) (-10 -8 (-15 -4050 ($ (-500) (-1100))) (-15 -4309 ((-500) $)) (-15 -3885 ((-1100) $)))) +((-4219 (((-3 (-554) "failed") |#2| (-1158) |#2| (-1140)) 17) (((-3 (-554) "failed") |#2| (-1158) (-829 |#2|)) 15) (((-3 (-554) "failed") |#2|) 54))) +(((-1098 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 (-554) "failed") |#2|)) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) (-829 |#2|))) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) |#2| (-1140)))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)) (-446)) (-13 (-27) (-1180) (-425 |#1|))) (T -1098)) +((-4219 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-1140)) (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) (-5 *2 (-554)) (-5 *1 (-1098 *6 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))))) (-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) (-5 *2 (-554)) (-5 *1 (-1098 *6 *3)))) (-4219 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) (-5 *2 (-554)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4)))))) +(-10 -7 (-15 -4219 ((-3 (-554) "failed") |#2|)) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) (-829 |#2|))) (-15 -4219 ((-3 (-554) "failed") |#2| (-1158) |#2| (-1140)))) +((-4219 (((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)) (-1140)) 35) (((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-829 (-402 (-937 |#1|)))) 30) (((-3 (-554) "failed") (-402 (-937 |#1|))) 13))) +(((-1099 |#1|) (-10 -7 (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-829 (-402 (-937 |#1|))))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)) (-1140)))) (-446)) (T -1099)) +((-4219 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1158)) (-5 *5 (-1140)) (-4 *6 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *6)))) (-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 (-402 (-937 *6)))) (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *6)))) (-4219 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *4))))) +(-10 -7 (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-829 (-402 (-937 |#1|))))) (-15 -4219 ((-3 (-554) "failed") (-402 (-937 |#1|)) (-1158) (-402 (-937 |#1|)) (-1140)))) +((-3062 (((-112) $ $) NIL)) (-1362 (((-1163) $) 10)) (-2452 (((-631 (-1163)) $) 11)) (-3885 (($ (-631 (-1163)) (-1163)) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 20)) (-1658 (((-112) $ $) 14))) +(((-1100) (-13 (-1082) (-10 -8 (-15 -3885 ($ (-631 (-1163)) (-1163))) (-15 -1362 ((-1163) $)) (-15 -2452 ((-631 (-1163)) $))))) (T -1100)) +((-3885 (*1 *1 *2 *3) (-12 (-5 *2 (-631 (-1163))) (-5 *3 (-1163)) (-5 *1 (-1100)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1100)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1100))))) +(-13 (-1082) (-10 -8 (-15 -3885 ($ (-631 (-1163)) (-1163))) (-15 -1362 ((-1163) $)) (-15 -2452 ((-631 (-1163)) $)))) +((-1336 (((-311 (-554)) (-48)) 12))) +(((-1101) (-10 -7 (-15 -1336 ((-311 (-554)) (-48))))) (T -1101)) +((-1336 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-554))) (-5 *1 (-1101))))) +(-10 -7 (-15 -1336 ((-311 (-554)) (-48)))) +((-3062 (((-112) $ $) NIL)) (-1285 (($ $) 41)) (-1695 (((-112) $) 65)) (-4066 (($ $ $) 48)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 86)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-3575 (($ $ $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4278 (($ $ $ $) 75)) (-3278 (($ $) NIL)) (-1565 (((-413 $) $) NIL)) (-2286 (((-112) $ $) NIL)) (-4219 (((-554) $) NIL)) (-1648 (($ $ $) 72)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL)) (-1668 (((-554) $) NIL)) (-3964 (($ $ $) 59)) (-3699 (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 80) (((-675 (-554)) (-675 $)) 28)) (-1320 (((-3 $ "failed") $) NIL)) (-1623 (((-3 (-402 (-554)) "failed") $) NIL)) (-2069 (((-112) $) NIL)) (-2197 (((-402 (-554)) $) NIL)) (-3353 (($) 83) (($ $) 84)) (-3943 (($ $ $) 58)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL)) (-3289 (((-112) $) NIL)) (-2267 (($ $ $ $) NIL)) (-3773 (($ $ $) 81)) (-2745 (((-112) $) NIL)) (-1295 (($ $ $) NIL)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL)) (-3248 (((-112) $) 66)) (-3273 (((-112) $) 64)) (-4081 (($ $) 42)) (-3339 (((-3 $ "failed") $) NIL)) (-4304 (((-112) $) 76)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-2057 (($ $ $ $) 73)) (-4223 (($ $ $) 68) (($) 39)) (-2706 (($ $ $) 67) (($) 38)) (-3882 (($ $) NIL)) (-2577 (($ $) 71)) (-2475 (($ $ $) NIL) (($ (-631 $)) NIL)) (-1613 (((-1140) $) NIL)) (-3297 (($ $ $) NIL)) (-3834 (($) NIL T CONST)) (-1786 (($ $) 50)) (-2768 (((-1102) $) 70)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL)) (-2510 (($ $ $) 62) (($ (-631 $)) NIL)) (-1582 (($ $) NIL)) (-2270 (((-413 $) $) NIL)) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL)) (-3919 (((-3 $ "failed") $ $) NIL)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL)) (-1795 (((-112) $) NIL)) (-2072 (((-758) $) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 61)) (-1553 (($ $ (-758)) NIL) (($ $) NIL)) (-3690 (($ $) 51)) (-1521 (($ $) NIL)) (-2927 (((-554) $) 32) (((-530) $) NIL) (((-877 (-554)) $) NIL) (((-374) $) NIL) (((-221) $) NIL)) (-3075 (((-848) $) 31) (($ (-554)) 82) (($ $) NIL) (($ (-554)) 82)) (-2261 (((-758)) NIL)) (-2134 (((-112) $ $) NIL)) (-1629 (($ $ $) NIL)) (-3462 (($) 37)) (-1909 (((-112) $ $) NIL)) (-2225 (($ $ $ $) 74)) (-1700 (($ $) 63)) (-2140 (($ $ $) 44)) (-2004 (($) 35 T CONST)) (-2307 (($ $ $) 47)) (-2014 (($) 36 T CONST)) (-4048 (((-1140) $) 21) (((-1140) $ (-112)) 23) (((-1246) (-809) $) 24) (((-1246) (-809) $ (-112)) 25)) (-2318 (($ $) 45)) (-1787 (($ $ (-758)) NIL) (($ $) NIL)) (-2297 (($ $ $) 46)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 40)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 49)) (-2130 (($ $ $) 43)) (-1744 (($ $) 52) (($ $ $) 54)) (-1735 (($ $ $) 53)) (** (($ $ (-906)) NIL) (($ $ (-758)) 57)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 34) (($ $ $) 55))) +(((-1102) (-13 (-539) (-647) (-815) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -2706 ($)) (-15 -4223 ($)) (-15 -4081 ($ $)) (-15 -1285 ($ $)) (-15 -2130 ($ $ $)) (-15 -2140 ($ $ $)) (-15 -4066 ($ $ $)) (-15 -2318 ($ $)) (-15 -2297 ($ $ $)) (-15 -2307 ($ $ $))))) (T -1102)) +((-2140 (*1 *1 *1 *1) (-5 *1 (-1102))) (-2130 (*1 *1 *1 *1) (-5 *1 (-1102))) (-1285 (*1 *1 *1) (-5 *1 (-1102))) (-2706 (*1 *1) (-5 *1 (-1102))) (-4223 (*1 *1) (-5 *1 (-1102))) (-4081 (*1 *1 *1) (-5 *1 (-1102))) (-4066 (*1 *1 *1 *1) (-5 *1 (-1102))) (-2318 (*1 *1 *1) (-5 *1 (-1102))) (-2297 (*1 *1 *1 *1) (-5 *1 (-1102))) (-2307 (*1 *1 *1 *1) (-5 *1 (-1102)))) +(-13 (-539) (-647) (-815) (-10 -8 (-6 -4360) (-6 -4365) (-6 -4361) (-15 -2706 ($)) (-15 -4223 ($)) (-15 -4081 ($ $)) (-15 -1285 ($ $)) (-15 -2130 ($ $ $)) (-15 -2140 ($ $ $)) (-15 -4066 ($ $ $)) (-15 -2318 ($ $)) (-15 -2297 ($ $ $)) (-15 -2307 ($ $ $)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2292 ((|#1| $) 44)) (-3019 (((-112) $ (-758)) 8)) (-4087 (($) 7 T CONST)) (-1790 ((|#1| |#1| $) 46)) (-3956 ((|#1| $) 45)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-4150 ((|#1| $) 39)) (-2045 (($ |#1| $) 40)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-2152 ((|#1| $) 41)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2763 (((-758) $) 43)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) 42)) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1103 |#1|) (-138) (-1195)) (T -1103)) +((-1790 (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1195)) (-5 *2 (-758))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4373) (-15 -1790 (|t#1| |t#1| $)) (-15 -3956 (|t#1| $)) (-15 -2292 (|t#1| $)) (-15 -2763 ((-758) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-1612 ((|#3| $) 76)) (-2784 (((-3 (-554) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1668 (((-554) $) NIL) (((-402 (-554)) $) NIL) ((|#3| $) 37)) (-3699 (((-675 (-554)) (-675 $)) NIL) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL) (((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 $) (-1241 $)) 73) (((-675 |#3|) (-675 $)) 65)) (-1553 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158)) NIL) (($ $ (-758)) NIL) (($ $) NIL)) (-3238 ((|#3| $) 78)) (-3871 ((|#4| $) 32)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ |#3|) 16)) (** (($ $ (-906)) NIL) (($ $ (-758)) 15) (($ $ (-554)) 82))) +(((-1104 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 -3238 (|#3| |#1|)) (-15 -1612 (|#3| |#1|)) (-15 -3871 (|#4| |#1|)) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -3075 ((-848) |#1|))) (-1105 |#2| |#3| |#4| |#5|) (-758) (-1034) (-234 |#2| |#3|) (-234 |#2| |#3|)) (T -1104)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-554))) (-15 -3238 (|#3| |#1|)) (-15 -1612 (|#3| |#1|)) (-15 -3871 (|#4| |#1|)) (-15 -3699 ((-675 |#3|) (-675 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 |#3|)) (|:| |vec| (-1241 |#3|))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 |#1|) (-1241 |#1|))) (-15 -3699 ((-675 (-554)) (-675 |#1|))) (-15 -3075 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|) (-758))) (-15 -1553 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1612 ((|#2| $) 71)) (-1350 (((-112) $) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-3795 (((-112) $) 109)) (-3019 (((-112) $ (-758)) 101)) (-1475 (($ |#2|) 74)) (-4087 (($) 17 T CONST)) (-2775 (($ $) 128 (|has| |#2| (-302)))) (-3519 ((|#3| $ (-554)) 123)) (-2784 (((-3 (-554) "failed") $) 86 (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) 83 (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) 80)) (-1668 (((-554) $) 85 (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) 82 (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) 81)) (-3699 (((-675 (-554)) (-675 $)) 78 (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 77 (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 76) (((-675 |#2|) (-675 $)) 75)) (-1320 (((-3 $ "failed") $) 33)) (-4186 (((-758) $) 129 (|has| |#2| (-546)))) (-2796 ((|#2| $ (-554) (-554)) 121)) (-2466 (((-631 |#2|) $) 94 (|has| $ (-6 -4373)))) (-3248 (((-112) $) 31)) (-4332 (((-758) $) 130 (|has| |#2| (-546)))) (-2412 (((-631 |#4|) $) 131 (|has| |#2| (-546)))) (-4130 (((-758) $) 117)) (-4143 (((-758) $) 118)) (-2230 (((-112) $ (-758)) 102)) (-2326 ((|#2| $) 66 (|has| |#2| (-6 (-4375 "*"))))) (-3985 (((-554) $) 113)) (-1817 (((-554) $) 115)) (-2379 (((-631 |#2|) $) 93 (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2787 (((-554) $) 114)) (-4249 (((-554) $) 116)) (-1899 (($ (-631 (-631 |#2|))) 108)) (-2849 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-1679 (((-631 (-631 |#2|)) $) 119)) (-3731 (((-112) $ (-758)) 103)) (-1613 (((-1140) $) 9)) (-2843 (((-3 $ "failed") $) 65 (|has| |#2| (-358)))) (-2768 (((-1102) $) 10)) (-3919 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-546)))) (-2845 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) 90 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 89 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 87 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 107)) (-3543 (((-112) $) 104)) (-4240 (($) 105)) (-2064 ((|#2| $ (-554) (-554) |#2|) 122) ((|#2| $ (-554) (-554)) 120)) (-1553 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-758)) 51) (($ $ (-631 (-1158)) (-631 (-758))) 44 (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) 43 (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) 42 (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) 41 (|has| |#2| (-885 (-1158)))) (($ $ (-758)) 39 (|has| |#2| (-229))) (($ $) 37 (|has| |#2| (-229)))) (-3238 ((|#2| $) 70)) (-3198 (($ (-631 |#2|)) 73)) (-2361 (((-112) $) 110)) (-3871 ((|#3| $) 72)) (-2870 ((|#2| $) 67 (|has| |#2| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4373))) (((-758) |#2| $) 92 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 106)) (-3259 ((|#4| $ (-554)) 124)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 84 (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) 79)) (-2261 (((-758)) 28)) (-2438 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4373)))) (-4299 (((-112) $) 112)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-758)) 49) (($ $ (-631 (-1158)) (-631 (-758))) 48 (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) 47 (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) 46 (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) 45 (|has| |#2| (-885 (-1158)))) (($ $ (-758)) 40 (|has| |#2| (-229))) (($ $) 38 (|has| |#2| (-229)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#2|) 127 (|has| |#2| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 64 (|has| |#2| (-358)))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2563 (((-758) $) 100 (|has| $ (-6 -4373))))) +(((-1105 |#1| |#2| |#3| |#4|) (-138) (-758) (-1034) (-234 |t#1| |t#2|) (-234 |t#1| |t#2|)) (T -1105)) +((-1475 (*1 *1 *2) (-12 (-4 *2 (-1034)) (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-1034)) (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1034)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1034)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *2 (-234 *3 *4)) (-4 *5 (-234 *3 *4)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) (-2843 (*1 *1 *1) (|partial| -12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358))))) +(-13 (-227 |t#2|) (-111 |t#2| |t#2|) (-1037 |t#1| |t#1| |t#2| |t#3| |t#4|) (-406 |t#2|) (-372 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-704 |t#2|)) |%noBranch|) (-15 -1475 ($ |t#2|)) (-15 -3198 ($ (-631 |t#2|))) (-15 -3871 (|t#3| $)) (-15 -1612 (|t#2| $)) (-15 -3238 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4375 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2870 (|t#2| $)) (-15 -2326 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-358)) (PROGN (-15 -2843 ((-3 $ "failed") $)) (-15 ** ($ $ (-554)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4375 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-604 #0=(-402 (-554))) |has| |#2| (-1023 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-227 |#2|) . T) ((-229) |has| |#2| (-229)) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-372 |#2|) . T) ((-406 |#2|) . T) ((-483 |#2|) . T) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-634 |#2|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#2| (-627 (-554))) ((-627 |#2|) . T) ((-704 |#2|) -3994 (|has| |#2| (-170)) (|has| |#2| (-6 (-4375 "*")))) ((-713) . T) ((-885 (-1158)) |has| |#2| (-885 (-1158))) ((-1037 |#1| |#1| |#2| |#3| |#4|) . T) ((-1023 #0#) |has| |#2| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#2| (-1023 (-554))) ((-1023 |#2|) . T) ((-1040 |#2|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1195) . T)) +((-3569 ((|#4| |#4|) 70)) (-4131 ((|#4| |#4|) 65)) (-4135 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|) 78)) (-3048 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1827 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1106 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4131 (|#4| |#4|)) (-15 -1827 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3569 (|#4| |#4|)) (-15 -3048 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4135 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|))) (-302) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -1106)) +((-4135 (*1 *2 *3 *4) (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) (-5 *1 (-1106 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-3569 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(-10 -7 (-15 -4131 (|#4| |#4|)) (-15 -1827 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3569 (|#4| |#4|)) (-15 -3048 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4135 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3782 (-631 |#3|))) |#4| |#3|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 17)) (-2405 (((-631 |#2|) $) 159)) (-2237 (((-1154 $) $ |#2|) 54) (((-1154 |#1|) $) 43)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 108 (|has| |#1| (-546)))) (-1976 (($ $) 110 (|has| |#1| (-546)))) (-1363 (((-112) $) 112 (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 |#2|)) 192)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 156) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 |#2| "failed") $) NIL)) (-1668 ((|#1| $) 154) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) ((|#2| $) NIL)) (-2999 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-2550 (($ $) 196)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 82)) (-2048 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-525 |#2|) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#1| (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#1| (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-3248 (((-112) $) 19)) (-2122 (((-758) $) 26)) (-2393 (($ (-1154 |#1|) |#2|) 48) (($ (-1154 $) |#2|) 64)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) 32)) (-2383 (($ |#1| (-525 |#2|)) 71) (($ $ |#2| (-758)) 52) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-3893 (((-525 |#2|) $) 186) (((-758) $ |#2|) 187) (((-631 (-758)) $ (-631 |#2|)) 188)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-525 |#2|) (-525 |#2|)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 120)) (-3277 (((-3 |#2| "failed") $) 161)) (-2518 (($ $) 195)) (-2530 ((|#1| $) 37)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| |#2|) (|:| -1407 (-758))) "failed") $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 33)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 138 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 143 (|has| |#1| (-446))) (($ $ $) 130 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#1| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-894)))) (-3919 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-546)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-631 |#2|) (-631 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-631 |#2|) (-631 $)) 176)) (-1495 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-1553 (($ $ |#2|) 194) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-3308 (((-525 |#2|) $) 182) (((-758) $ |#2|) 178) (((-631 (-758)) $ (-631 |#2|)) 180)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| |#1| (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| |#1| (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| |#1| (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#1| $) 126 (|has| |#1| (-446))) (($ $ |#2|) 129 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-3075 (((-848) $) 149) (($ (-554)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-546))) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1893 (((-631 |#1|) $) 152)) (-1779 ((|#1| $ (-525 |#2|)) 73) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 79)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) 115 (|has| |#1| (-546)))) (-2004 (($) 12 T CONST)) (-2014 (($) 14 T CONST)) (-1787 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 97)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 124 (|has| |#1| (-358)))) (-1744 (($ $) 85) (($ $ $) 95)) (-1735 (($ $ $) 49)) (** (($ $ (-906)) 102) (($ $ (-758)) 100)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 88) (($ $ $) 65) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1107 |#1| |#2|) (-934 |#1| (-525 |#2|) |#2|) (-1034) (-836)) (T -1107)) +NIL +(-934 |#1| (-525 |#2|) |#2|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3023 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 117 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 113 (|has| |#1| (-38 (-402 (-554)))))) (-3046 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3497 (((-937 |#1|) $ (-758)) NIL) (((-937 |#1|) $ (-758) (-758)) NIL)) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $ |#2|) NIL) (((-758) $ |#2| (-758)) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3580 (((-112) $) NIL)) (-2383 (($ $ (-631 |#2|) (-631 (-525 |#2|))) NIL) (($ $ |#2| (-525 |#2|)) NIL) (($ |#1| (-525 |#2|)) NIL) (($ $ |#2| (-758)) 56) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) 111 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $ |#2|) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-2199 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-402 (-554)))))) (-4282 (($ $ (-758)) 13)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-1333 (($ $) 109 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (($ $ |#2| $) 95) (($ $ (-631 |#2|) (-631 $)) 88) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL)) (-1553 (($ $ |#2|) 98) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-3308 (((-525 |#2|) $) NIL)) (-2813 (((-1 (-1138 |#3|) |#3|) (-631 |#2|) (-631 (-1138 |#3|))) 77)) (-3057 (($ $) 147 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 115 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 15)) (-3075 (((-848) $) 180) (($ (-554)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-546))) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#2|) 63) (($ |#3|) 61)) (-1779 ((|#1| $ (-525 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL) ((|#3| $ (-758)) 38)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-3096 (($ $) 153 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 149 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 157 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-2908 (($ $) 159 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 155 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 151 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 47 T CONST)) (-2014 (($) 55 T CONST)) (-1787 (($ $ |#2|) NIL) (($ $ (-631 |#2|)) NIL) (($ $ |#2| (-758)) NIL) (($ $ (-631 |#2|) (-631 (-758))) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) 182 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 59)) (** (($ $ (-906)) NIL) (($ $ (-758)) 68) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 101 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 58) (($ $ (-402 (-554))) 106 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 104 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1108 |#1| |#2| |#3|) (-13 (-727 |#1| |#2|) (-10 -8 (-15 -1779 (|#3| $ (-758))) (-15 -3075 ($ |#2|)) (-15 -3075 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2813 ((-1 (-1138 |#3|) |#3|) (-631 |#2|) (-631 (-1138 |#3|)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ |#2| |#1|)) (-15 -2199 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1034) (-836) (-934 |#1| (-525 |#2|) |#2|)) (T -1108)) +((-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *2 (-934 *4 (-525 *5) *5)) (-5 *1 (-1108 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-836)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *2 (-836)) (-5 *1 (-1108 *3 *2 *4)) (-4 *4 (-934 *3 (-525 *2) *2)))) (-3075 (*1 *1 *2) (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2)) (-4 *2 (-934 *3 (-525 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2)) (-4 *2 (-934 *3 (-525 *4) *4)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1138 *7))) (-4 *6 (-836)) (-4 *7 (-934 *5 (-525 *6) *6)) (-4 *5 (-1034)) (-5 *2 (-1 (-1138 *7) *7)) (-5 *1 (-1108 *5 *6 *7)))) (-2279 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-4 *2 (-836)) (-5 *1 (-1108 *3 *2 *4)) (-4 *4 (-934 *3 (-525 *2) *2)))) (-2199 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1108 *4 *3 *5))) (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)) (-4 *3 (-836)) (-5 *1 (-1108 *4 *3 *5)) (-4 *5 (-934 *4 (-525 *3) *3))))) +(-13 (-727 |#1| |#2|) (-10 -8 (-15 -1779 (|#3| $ (-758))) (-15 -3075 ($ |#2|)) (-15 -3075 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2813 ((-1 (-1138 |#3|) |#3|) (-631 |#2|) (-631 (-1138 |#3|)))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ |#2| |#1|)) (-15 -2199 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86) (((-631 $) (-631 |#4|) (-112)) 111)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 126)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-4183 (((-112) |#4| $) 136)) (-4155 (((-112) |#4| $) 133)) (-2892 (((-112) |#4| $) 137) (((-112) $) 134)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) 128)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 127)) (-2597 (((-3 |#4| "failed") $) 83)) (-2953 (((-631 $) |#4| $) 129)) (-3841 (((-3 (-112) (-631 $)) |#4| $) 132)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3977 (((-631 $) |#4| $) 125) (((-631 $) (-631 |#4|) $) 124) (((-631 $) (-631 |#4|) (-631 $)) 123) (((-631 $) |#4| (-631 $)) 122)) (-3479 (($ |#4| $) 117) (($ (-631 |#4|) $) 116)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77) (((-631 $) |#4| $) 115) (((-631 $) |#4| (-631 $)) 114) (((-631 $) (-631 |#4|) $) 113) (((-631 $) (-631 |#4|) (-631 $)) 112)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-3850 (((-631 $) |#4| $) 121) (((-631 $) |#4| (-631 $)) 120) (((-631 $) (-631 |#4|) $) 119) (((-631 $) (-631 |#4|) (-631 $)) 118)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-4351 (((-112) |#4| $) 135)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373))))) +(((-1109 |#1| |#2| |#3| |#4|) (-138) (-446) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1109)) +NIL +(-13 (-1091 |t#1| |t#2| |t#3| |t#4|) (-771 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-771 |#1| |#2| |#3| |#4|) . T) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1188 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-1900 (((-631 |#2|) |#1|) 12)) (-1330 (((-631 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-631 |#2|) |#1|) 49)) (-1601 (((-631 |#2|) |#2| |#2| |#2|) 36) (((-631 |#2|) |#1|) 47)) (-1865 ((|#2| |#1|) 43)) (-2168 (((-2 (|:| |solns| (-631 |#2|)) (|:| |maps| (-631 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3473 (((-631 |#2|) |#2| |#2|) 35) (((-631 |#2|) |#1|) 46)) (-1732 (((-631 |#2|) |#2| |#2| |#2| |#2|) 37) (((-631 |#2|) |#1|) 48)) (-4199 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3557 ((|#2| |#2| |#2| |#2|) 40)) (-3322 ((|#2| |#2| |#2|) 39)) (-2961 ((|#2| |#2| |#2| |#2| |#2|) 41))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -1900 ((-631 |#2|) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -2168 ((-2 (|:| |solns| (-631 |#2|)) (|:| |maps| (-631 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3473 ((-631 |#2|) |#1|)) (-15 -1601 ((-631 |#2|) |#1|)) (-15 -1732 ((-631 |#2|) |#1|)) (-15 -1330 ((-631 |#2|) |#1|)) (-15 -3473 ((-631 |#2|) |#2| |#2|)) (-15 -1601 ((-631 |#2|) |#2| |#2| |#2|)) (-15 -1732 ((-631 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1330 ((-631 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3322 (|#2| |#2| |#2|)) (-15 -3557 (|#2| |#2| |#2| |#2|)) (-15 -2961 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1217 |#2|) (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (T -1110)) +((-4199 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-2961 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-3557 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-3322 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-1330 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-1732 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-1601 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-3473 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-1732 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-3473 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-2 (|:| |solns| (-631 *5)) (|:| |maps| (-631 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1110 *3 *5)) (-4 *3 (-1217 *5)))) (-1865 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -1900 ((-631 |#2|) |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -2168 ((-2 (|:| |solns| (-631 |#2|)) (|:| |maps| (-631 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3473 ((-631 |#2|) |#1|)) (-15 -1601 ((-631 |#2|) |#1|)) (-15 -1732 ((-631 |#2|) |#1|)) (-15 -1330 ((-631 |#2|) |#1|)) (-15 -3473 ((-631 |#2|) |#2| |#2|)) (-15 -1601 ((-631 |#2|) |#2| |#2| |#2|)) (-15 -1732 ((-631 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1330 ((-631 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3322 (|#2| |#2| |#2|)) (-15 -3557 (|#2| |#2| |#2| |#2|)) (-15 -2961 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1534 (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|))))) 95) (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158))) 94) (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|)))) 92) (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 90) (((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|)))) 75) (((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))) (-1158)) 76) (((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|))) 70) (((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)) (-1158)) 59)) (-1577 (((-631 (-631 (-311 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 88) (((-631 (-311 |#1|)) (-402 (-937 |#1|)) (-1158)) 43)) (-2343 (((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-402 (-937 |#1|)) (-1158)) 98) (((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158)) 97))) +(((-1111 |#1|) (-10 -7 (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1577 ((-631 (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1577 ((-631 (-631 (-311 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-402 (-937 |#1|)) (-1158)))) (-13 (-302) (-836) (-145))) (T -1111)) +((-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-311 *5)))) (-5 *1 (-1111 *5)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-311 *5))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-289 (-402 (-937 *5))))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-631 (-402 (-937 *4)))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-289 (-402 (-937 *4)))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1111 *5)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1111 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1111 *5))))) +(-10 -7 (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-402 (-937 |#1|)))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1534 ((-631 (-289 (-311 |#1|))) (-289 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-402 (-937 |#1|))))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1534 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1577 ((-631 (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1577 ((-631 (-631 (-311 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -2343 ((-1147 (-631 (-311 |#1|)) (-631 (-289 (-311 |#1|)))) (-402 (-937 |#1|)) (-1158)))) +((-3364 (((-402 (-1154 (-311 |#1|))) (-1241 (-311 |#1|)) (-402 (-1154 (-311 |#1|))) (-554)) 29)) (-3021 (((-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|)))) 40))) +(((-1112 |#1|) (-10 -7 (-15 -3021 ((-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))))) (-15 -3364 ((-402 (-1154 (-311 |#1|))) (-1241 (-311 |#1|)) (-402 (-1154 (-311 |#1|))) (-554)))) (-13 (-546) (-836))) (T -1112)) +((-3364 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-402 (-1154 (-311 *5)))) (-5 *3 (-1241 (-311 *5))) (-5 *4 (-554)) (-4 *5 (-13 (-546) (-836))) (-5 *1 (-1112 *5)))) (-3021 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-402 (-1154 (-311 *3)))) (-4 *3 (-13 (-546) (-836))) (-5 *1 (-1112 *3))))) +(-10 -7 (-15 -3021 ((-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))) (-402 (-1154 (-311 |#1|))))) (-15 -3364 ((-402 (-1154 (-311 |#1|))) (-1241 (-311 |#1|)) (-402 (-1154 (-311 |#1|))) (-554)))) +((-1900 (((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-311 |#1|))) (-631 (-1158))) 222) (((-631 (-289 (-311 |#1|))) (-311 |#1|) (-1158)) 20) (((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1158)) 26) (((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|))) 25) (((-631 (-289 (-311 |#1|))) (-311 |#1|)) 21))) +(((-1113 |#1|) (-10 -7 (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|) (-1158))) (-15 -1900 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-311 |#1|))) (-631 (-1158))))) (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (T -1113)) +((-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1158))) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1113 *5)) (-5 *3 (-631 (-289 (-311 *5)))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5)) (-5 *3 (-311 *5)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5)) (-5 *3 (-289 (-311 *5))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4)) (-5 *3 (-289 (-311 *4))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4)) (-5 *3 (-311 *4))))) +(-10 -7 (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-311 |#1|))) (-311 |#1|) (-1158))) (-15 -1900 ((-631 (-631 (-289 (-311 |#1|)))) (-631 (-289 (-311 |#1|))) (-631 (-1158))))) +((-1439 ((|#2| |#2|) 20 (|has| |#1| (-836))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-1780 ((|#2| |#2|) 19 (|has| |#1| (-836))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1114 |#1| |#2|) (-10 -7 (-15 -1780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1439 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-836)) (PROGN (-15 -1780 (|#2| |#2|)) (-15 -1439 (|#2| |#2|))) |%noBranch|)) (-1195) (-13 (-592 (-554) |#1|) (-10 -7 (-6 -4373) (-6 -4374)))) (T -1114)) +((-1439 (*1 *2 *2) (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374)))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2)) (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374)))))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2)) (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374)))))) (-1780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2)) (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374))))))) +(-10 -7 (-15 -1780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1439 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-836)) (PROGN (-15 -1780 (|#2| |#2|)) (-15 -1439 (|#2| |#2|))) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-3504 (((-1146 3 |#1|) $) 107)) (-3352 (((-112) $) 72)) (-3561 (($ $ (-631 (-928 |#1|))) 20) (($ $ (-631 (-631 |#1|))) 75) (($ (-631 (-928 |#1|))) 74) (((-631 (-928 |#1|)) $) 73)) (-2680 (((-112) $) 41)) (-4136 (($ $ (-928 |#1|)) 46) (($ $ (-631 |#1|)) 51) (($ $ (-758)) 53) (($ (-928 |#1|)) 47) (((-928 |#1|) $) 45)) (-3449 (((-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758))) $) 105)) (-1317 (((-758) $) 26)) (-4324 (((-758) $) 25)) (-2532 (($ $ (-758) (-928 |#1|)) 39)) (-3808 (((-112) $) 82)) (-3896 (($ $ (-631 (-631 (-928 |#1|))) (-631 (-169)) (-169)) 89) (($ $ (-631 (-631 (-631 |#1|))) (-631 (-169)) (-169)) 91) (($ $ (-631 (-631 (-928 |#1|))) (-112) (-112)) 85) (($ $ (-631 (-631 (-631 |#1|))) (-112) (-112)) 93) (($ (-631 (-631 (-928 |#1|)))) 86) (($ (-631 (-631 (-928 |#1|))) (-112) (-112)) 87) (((-631 (-631 (-928 |#1|))) $) 84)) (-3717 (($ (-631 $)) 28) (($ $ $) 29)) (-2425 (((-631 (-169)) $) 102)) (-1705 (((-631 (-928 |#1|)) $) 96)) (-2830 (((-631 (-631 (-169))) $) 101)) (-2252 (((-631 (-631 (-631 (-928 |#1|)))) $) NIL)) (-3123 (((-631 (-631 (-631 (-758)))) $) 99)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2456 (((-758) $ (-631 (-928 |#1|))) 37)) (-3659 (((-112) $) 54)) (-3365 (($ $ (-631 (-928 |#1|))) 56) (($ $ (-631 (-631 |#1|))) 62) (($ (-631 (-928 |#1|))) 57) (((-631 (-928 |#1|)) $) 55)) (-1923 (($) 23) (($ (-1146 3 |#1|)) 24)) (-1521 (($ $) 35)) (-3171 (((-631 $) $) 34)) (-2903 (($ (-631 $)) 31)) (-2308 (((-631 $) $) 33)) (-3075 (((-848) $) 111)) (-2271 (((-112) $) 64)) (-4296 (($ $ (-631 (-928 |#1|))) 66) (($ $ (-631 (-631 |#1|))) 69) (($ (-631 (-928 |#1|))) 67) (((-631 (-928 |#1|)) $) 65)) (-2989 (($ $) 106)) (-1658 (((-112) $ $) NIL))) +(((-1115 |#1|) (-1116 |#1|) (-1034)) (T -1115)) +NIL +(-1116 |#1|) +((-3062 (((-112) $ $) 7)) (-3504 (((-1146 3 |#1|) $) 13)) (-3352 (((-112) $) 29)) (-3561 (($ $ (-631 (-928 |#1|))) 33) (($ $ (-631 (-631 |#1|))) 32) (($ (-631 (-928 |#1|))) 31) (((-631 (-928 |#1|)) $) 30)) (-2680 (((-112) $) 44)) (-4136 (($ $ (-928 |#1|)) 49) (($ $ (-631 |#1|)) 48) (($ $ (-758)) 47) (($ (-928 |#1|)) 46) (((-928 |#1|) $) 45)) (-3449 (((-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758))) $) 15)) (-1317 (((-758) $) 58)) (-4324 (((-758) $) 59)) (-2532 (($ $ (-758) (-928 |#1|)) 50)) (-3808 (((-112) $) 21)) (-3896 (($ $ (-631 (-631 (-928 |#1|))) (-631 (-169)) (-169)) 28) (($ $ (-631 (-631 (-631 |#1|))) (-631 (-169)) (-169)) 27) (($ $ (-631 (-631 (-928 |#1|))) (-112) (-112)) 26) (($ $ (-631 (-631 (-631 |#1|))) (-112) (-112)) 25) (($ (-631 (-631 (-928 |#1|)))) 24) (($ (-631 (-631 (-928 |#1|))) (-112) (-112)) 23) (((-631 (-631 (-928 |#1|))) $) 22)) (-3717 (($ (-631 $)) 57) (($ $ $) 56)) (-2425 (((-631 (-169)) $) 16)) (-1705 (((-631 (-928 |#1|)) $) 20)) (-2830 (((-631 (-631 (-169))) $) 17)) (-2252 (((-631 (-631 (-631 (-928 |#1|)))) $) 18)) (-3123 (((-631 (-631 (-631 (-758)))) $) 19)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2456 (((-758) $ (-631 (-928 |#1|))) 51)) (-3659 (((-112) $) 39)) (-3365 (($ $ (-631 (-928 |#1|))) 43) (($ $ (-631 (-631 |#1|))) 42) (($ (-631 (-928 |#1|))) 41) (((-631 (-928 |#1|)) $) 40)) (-1923 (($) 61) (($ (-1146 3 |#1|)) 60)) (-1521 (($ $) 52)) (-3171 (((-631 $) $) 53)) (-2903 (($ (-631 $)) 55)) (-2308 (((-631 $) $) 54)) (-3075 (((-848) $) 11)) (-2271 (((-112) $) 34)) (-4296 (($ $ (-631 (-928 |#1|))) 38) (($ $ (-631 (-631 |#1|))) 37) (($ (-631 (-928 |#1|))) 36) (((-631 (-928 |#1|)) $) 35)) (-2989 (($ $) 14)) (-1658 (((-112) $ $) 6))) +(((-1116 |#1|) (-138) (-1034)) (T -1116)) +((-3075 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-848)))) (-1923 (*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-1146 3 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3717 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-2308 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-2456 (*1 *2 *1 *3) (-12 (-5 *3 (-631 (-928 *4))) (-4 *1 (-1116 *4)) (-4 *4 (-1034)) (-5 *2 (-758)))) (-2532 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-928 *4)) (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-928 *3)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-3896 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-631 (-928 *5)))) (-5 *3 (-631 (-169))) (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034)))) (-3896 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-631 (-169))) (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034)))) (-3896 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) (-3896 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-112)) (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) (-3896 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 *3)))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) (-3896 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) (-4 *4 (-1034)) (-4 *1 (-1116 *4)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-928 *3)))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-631 (-758))))))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-631 (-928 *3))))))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-169)))))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-169))))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758)))))) (-2989 (*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-1146 3 *3))))) +(-13 (-1082) (-10 -8 (-15 -1923 ($)) (-15 -1923 ($ (-1146 3 |t#1|))) (-15 -4324 ((-758) $)) (-15 -1317 ((-758) $)) (-15 -3717 ($ (-631 $))) (-15 -3717 ($ $ $)) (-15 -2903 ($ (-631 $))) (-15 -2308 ((-631 $) $)) (-15 -3171 ((-631 $) $)) (-15 -1521 ($ $)) (-15 -2456 ((-758) $ (-631 (-928 |t#1|)))) (-15 -2532 ($ $ (-758) (-928 |t#1|))) (-15 -4136 ($ $ (-928 |t#1|))) (-15 -4136 ($ $ (-631 |t#1|))) (-15 -4136 ($ $ (-758))) (-15 -4136 ($ (-928 |t#1|))) (-15 -4136 ((-928 |t#1|) $)) (-15 -2680 ((-112) $)) (-15 -3365 ($ $ (-631 (-928 |t#1|)))) (-15 -3365 ($ $ (-631 (-631 |t#1|)))) (-15 -3365 ($ (-631 (-928 |t#1|)))) (-15 -3365 ((-631 (-928 |t#1|)) $)) (-15 -3659 ((-112) $)) (-15 -4296 ($ $ (-631 (-928 |t#1|)))) (-15 -4296 ($ $ (-631 (-631 |t#1|)))) (-15 -4296 ($ (-631 (-928 |t#1|)))) (-15 -4296 ((-631 (-928 |t#1|)) $)) (-15 -2271 ((-112) $)) (-15 -3561 ($ $ (-631 (-928 |t#1|)))) (-15 -3561 ($ $ (-631 (-631 |t#1|)))) (-15 -3561 ($ (-631 (-928 |t#1|)))) (-15 -3561 ((-631 (-928 |t#1|)) $)) (-15 -3352 ((-112) $)) (-15 -3896 ($ $ (-631 (-631 (-928 |t#1|))) (-631 (-169)) (-169))) (-15 -3896 ($ $ (-631 (-631 (-631 |t#1|))) (-631 (-169)) (-169))) (-15 -3896 ($ $ (-631 (-631 (-928 |t#1|))) (-112) (-112))) (-15 -3896 ($ $ (-631 (-631 (-631 |t#1|))) (-112) (-112))) (-15 -3896 ($ (-631 (-631 (-928 |t#1|))))) (-15 -3896 ($ (-631 (-631 (-928 |t#1|))) (-112) (-112))) (-15 -3896 ((-631 (-631 (-928 |t#1|))) $)) (-15 -3808 ((-112) $)) (-15 -1705 ((-631 (-928 |t#1|)) $)) (-15 -3123 ((-631 (-631 (-631 (-758)))) $)) (-15 -2252 ((-631 (-631 (-631 (-928 |t#1|)))) $)) (-15 -2830 ((-631 (-631 (-169))) $)) (-15 -2425 ((-631 (-169)) $)) (-15 -3449 ((-2 (|:| -1707 (-758)) (|:| |curves| (-758)) (|:| |polygons| (-758)) (|:| |constructs| (-758))) $)) (-15 -2989 ($ $)) (-15 -3504 ((-1146 3 |t#1|) $)) (-15 -3075 ((-848) $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 176) (($ (-1163)) NIL) (((-1163) $) 7)) (-3182 (((-112) $ (|[\|\|]| (-518))) 17) (((-112) $ (|[\|\|]| (-214))) 21) (((-112) $ (|[\|\|]| (-662))) 25) (((-112) $ (|[\|\|]| (-1251))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1097))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-667))) 49) (((-112) $ (|[\|\|]| (-511))) 53) (((-112) $ (|[\|\|]| (-1049))) 57) (((-112) $ (|[\|\|]| (-1252))) 61) (((-112) $ (|[\|\|]| (-519))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-657))) 73) (((-112) $ (|[\|\|]| (-306))) 77) (((-112) $ (|[\|\|]| (-1021))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-955))) 89) (((-112) $ (|[\|\|]| (-1056))) 93) (((-112) $ (|[\|\|]| (-1072))) 97) (((-112) $ (|[\|\|]| (-1078))) 101) (((-112) $ (|[\|\|]| (-614))) 105) (((-112) $ (|[\|\|]| (-1148))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-472))) 121) (((-112) $ (|[\|\|]| (-581))) 125) (((-112) $ (|[\|\|]| (-500))) 131) (((-112) $ (|[\|\|]| (-1140))) 135) (((-112) $ (|[\|\|]| (-554))) 139)) (-1556 (((-518) $) 18) (((-214) $) 22) (((-662) $) 26) (((-1251) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1097) $) 42) (((-96) $) 46) (((-667) $) 50) (((-511) $) 54) (((-1049) $) 58) (((-1252) $) 62) (((-519) $) 66) (((-152) $) 70) (((-657) $) 74) (((-306) $) 78) (((-1021) $) 82) (((-178) $) 86) (((-955) $) 90) (((-1056) $) 94) (((-1072) $) 98) (((-1078) $) 102) (((-614) $) 106) (((-1148) $) 110) (((-154) $) 114) (((-136) $) 118) (((-472) $) 122) (((-581) $) 126) (((-500) $) 132) (((-1140) $) 136) (((-554) $) 140)) (-1658 (((-112) $ $) NIL))) +(((-1117) (-1119)) (T -1117)) +NIL +(-1119) +((-2610 (((-631 (-1163)) (-1140)) 9))) +(((-1118) (-10 -7 (-15 -2610 ((-631 (-1163)) (-1140))))) (T -1118)) +((-2610 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-1118))))) +(-10 -7 (-15 -2610 ((-631 (-1163)) (-1140)))) +((-3062 (((-112) $ $) 7)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-1163)) 16) (((-1163) $) 15)) (-3182 (((-112) $ (|[\|\|]| (-518))) 80) (((-112) $ (|[\|\|]| (-214))) 78) (((-112) $ (|[\|\|]| (-662))) 76) (((-112) $ (|[\|\|]| (-1251))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1097))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-667))) 64) (((-112) $ (|[\|\|]| (-511))) 62) (((-112) $ (|[\|\|]| (-1049))) 60) (((-112) $ (|[\|\|]| (-1252))) 58) (((-112) $ (|[\|\|]| (-519))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-657))) 52) (((-112) $ (|[\|\|]| (-306))) 50) (((-112) $ (|[\|\|]| (-1021))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-955))) 44) (((-112) $ (|[\|\|]| (-1056))) 42) (((-112) $ (|[\|\|]| (-1072))) 40) (((-112) $ (|[\|\|]| (-1078))) 38) (((-112) $ (|[\|\|]| (-614))) 36) (((-112) $ (|[\|\|]| (-1148))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-472))) 28) (((-112) $ (|[\|\|]| (-581))) 26) (((-112) $ (|[\|\|]| (-500))) 24) (((-112) $ (|[\|\|]| (-1140))) 22) (((-112) $ (|[\|\|]| (-554))) 20)) (-1556 (((-518) $) 79) (((-214) $) 77) (((-662) $) 75) (((-1251) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1097) $) 67) (((-96) $) 65) (((-667) $) 63) (((-511) $) 61) (((-1049) $) 59) (((-1252) $) 57) (((-519) $) 55) (((-152) $) 53) (((-657) $) 51) (((-306) $) 49) (((-1021) $) 47) (((-178) $) 45) (((-955) $) 43) (((-1056) $) 41) (((-1072) $) 39) (((-1078) $) 37) (((-614) $) 35) (((-1148) $) 33) (((-154) $) 31) (((-136) $) 29) (((-472) $) 27) (((-581) $) 25) (((-500) $) 23) (((-1140) $) 21) (((-554) $) 19)) (-1658 (((-112) $ $) 6))) +(((-1119) (-138)) (T -1119)) +((-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-518)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-214)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-662))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-662)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1251))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1251)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-137)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-132)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1097)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-96)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-667)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-511)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1049)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1252))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1252)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-519)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-152)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-657)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-306)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1021))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1021)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-178)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-955))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-955)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1056)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1072)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1078)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-614)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1148)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-154)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-136)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-472)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-581)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-500))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-500)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1140)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-554))))) +(-13 (-1065) (-1236) (-10 -8 (-15 -3182 ((-112) $ (|[\|\|]| (-518)))) (-15 -1556 ((-518) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-214)))) (-15 -1556 ((-214) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-662)))) (-15 -1556 ((-662) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1251)))) (-15 -1556 ((-1251) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-137)))) (-15 -1556 ((-137) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-132)))) (-15 -1556 ((-132) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1097)))) (-15 -1556 ((-1097) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-96)))) (-15 -1556 ((-96) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-667)))) (-15 -1556 ((-667) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-511)))) (-15 -1556 ((-511) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1049)))) (-15 -1556 ((-1049) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1252)))) (-15 -1556 ((-1252) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-519)))) (-15 -1556 ((-519) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-152)))) (-15 -1556 ((-152) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-657)))) (-15 -1556 ((-657) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-306)))) (-15 -1556 ((-306) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1021)))) (-15 -1556 ((-1021) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-178)))) (-15 -1556 ((-178) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-955)))) (-15 -1556 ((-955) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1056)))) (-15 -1556 ((-1056) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1072)))) (-15 -1556 ((-1072) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1078)))) (-15 -1556 ((-1078) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-614)))) (-15 -1556 ((-614) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1148)))) (-15 -1556 ((-1148) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-154)))) (-15 -1556 ((-154) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-136)))) (-15 -1556 ((-136) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-472)))) (-15 -1556 ((-472) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-581)))) (-15 -1556 ((-581) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-500)))) (-15 -1556 ((-500) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-1140)))) (-15 -1556 ((-1140) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-554)))) (-15 -1556 ((-554) $)))) +(((-93) . T) ((-102) . T) ((-604 #0=(-1163)) . T) ((-601 (-848)) . T) ((-601 #0#) . T) ((-484 #0#) . T) ((-1082) . T) ((-1065) . T) ((-1236) . T)) +((-3040 (((-1246) (-631 (-848))) 23) (((-1246) (-848)) 22)) (-3235 (((-1246) (-631 (-848))) 21) (((-1246) (-848)) 20)) (-1405 (((-1246) (-631 (-848))) 19) (((-1246) (-848)) 11) (((-1246) (-1140) (-848)) 17))) +(((-1120) (-10 -7 (-15 -1405 ((-1246) (-1140) (-848))) (-15 -1405 ((-1246) (-848))) (-15 -3235 ((-1246) (-848))) (-15 -3040 ((-1246) (-848))) (-15 -1405 ((-1246) (-631 (-848)))) (-15 -3235 ((-1246) (-631 (-848)))) (-15 -3040 ((-1246) (-631 (-848)))))) (T -1120)) +((-3040 (*1 *2 *3) (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120))))) +(-10 -7 (-15 -1405 ((-1246) (-1140) (-848))) (-15 -1405 ((-1246) (-848))) (-15 -3235 ((-1246) (-848))) (-15 -3040 ((-1246) (-848))) (-15 -1405 ((-1246) (-631 (-848)))) (-15 -3235 ((-1246) (-631 (-848)))) (-15 -3040 ((-1246) (-631 (-848))))) +((-1738 (($ $ $) 10)) (-2696 (($ $) 9)) (-1943 (($ $ $) 13)) (-1952 (($ $ $) 15)) (-3586 (($ $ $) 12)) (-3746 (($ $ $) 14)) (-2973 (($ $) 17)) (-1959 (($ $) 16)) (-1700 (($ $) 6)) (-3628 (($ $ $) 11) (($ $) 7)) (-4280 (($ $ $) 8))) +(((-1121) (-138)) (T -1121)) +((-2973 (*1 *1 *1) (-4 *1 (-1121))) (-1959 (*1 *1 *1) (-4 *1 (-1121))) (-1952 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3746 (*1 *1 *1 *1) (-4 *1 (-1121))) (-1943 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3586 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3628 (*1 *1 *1 *1) (-4 *1 (-1121))) (-1738 (*1 *1 *1 *1) (-4 *1 (-1121))) (-2696 (*1 *1 *1) (-4 *1 (-1121))) (-4280 (*1 *1 *1 *1) (-4 *1 (-1121))) (-3628 (*1 *1 *1) (-4 *1 (-1121))) (-1700 (*1 *1 *1) (-4 *1 (-1121)))) +(-13 (-10 -8 (-15 -1700 ($ $)) (-15 -3628 ($ $)) (-15 -4280 ($ $ $)) (-15 -2696 ($ $)) (-15 -1738 ($ $ $)) (-15 -3628 ($ $ $)) (-15 -3586 ($ $ $)) (-15 -1943 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -1952 ($ $ $)) (-15 -1959 ($ $)) (-15 -2973 ($ $)))) +((-3062 (((-112) $ $) 41)) (-2794 ((|#1| $) 15)) (-4042 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3422 (((-112) $) 17)) (-2050 (($ $ |#1|) 28)) (-4195 (($ $ (-112)) 30)) (-3866 (($ $) 31)) (-1649 (($ $ |#2|) 29)) (-1613 (((-1140) $) NIL)) (-4197 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-2768 (((-1102) $) NIL)) (-3543 (((-112) $) 14)) (-4240 (($) 10)) (-1521 (($ $) 27)) (-3089 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) 21) (((-631 $) (-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|)))) 24) (((-631 $) |#1| (-631 |#2|)) 26)) (-4294 ((|#2| $) 16)) (-3075 (((-848) $) 50)) (-1658 (((-112) $ $) 39))) +(((-1122 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -4240 ($)) (-15 -3543 ((-112) $)) (-15 -2794 (|#1| $)) (-15 -4294 (|#2| $)) (-15 -3422 ((-112) $)) (-15 -3089 ($ |#1| |#2| (-112))) (-15 -3089 ($ |#1| |#2|)) (-15 -3089 ($ (-2 (|:| |val| |#1|) (|:| -2143 |#2|)))) (-15 -3089 ((-631 $) (-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))))) (-15 -3089 ((-631 $) |#1| (-631 |#2|))) (-15 -1521 ($ $)) (-15 -2050 ($ $ |#1|)) (-15 -1649 ($ $ |#2|)) (-15 -4195 ($ $ (-112))) (-15 -3866 ($ $)) (-15 -4197 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4042 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1082) (-34)) (-13 (-1082) (-34))) (T -1122)) +((-4240 (*1 *1) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-2794 (*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *2 *3)) (-4 *3 (-13 (-1082) (-34))))) (-4294 (*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-13 (-1082) (-34))))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2143 *4))) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1122 *3 *4)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-631 (-2 (|:| |val| *4) (|:| -2143 *5)))) (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-631 (-1122 *4 *5))) (-5 *1 (-1122 *4 *5)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *5)) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-631 (-1122 *3 *5))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-13 (-1082) (-34))))) (-1521 (*1 *1 *1) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-2050 (*1 *1 *1 *2) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-1649 (*1 *1 *1 *2) (-12 (-5 *1 (-1122 *3 *2)) (-4 *3 (-13 (-1082) (-34))) (-4 *2 (-13 (-1082) (-34))))) (-4195 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-4197 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1122 *5 *6)))) (-4042 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34)))))) +(-13 (-1082) (-10 -8 (-15 -4240 ($)) (-15 -3543 ((-112) $)) (-15 -2794 (|#1| $)) (-15 -4294 (|#2| $)) (-15 -3422 ((-112) $)) (-15 -3089 ($ |#1| |#2| (-112))) (-15 -3089 ($ |#1| |#2|)) (-15 -3089 ($ (-2 (|:| |val| |#1|) (|:| -2143 |#2|)))) (-15 -3089 ((-631 $) (-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))))) (-15 -3089 ((-631 $) |#1| (-631 |#2|))) (-15 -1521 ($ $)) (-15 -2050 ($ $ |#1|)) (-15 -1649 ($ $ |#2|)) (-15 -4195 ($ $ (-112))) (-15 -3866 ($ $)) (-15 -4197 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4042 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3062 (((-112) $ $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2794 (((-1122 |#1| |#2|) $) 25)) (-3939 (($ $) 76)) (-3377 (((-112) (-1122 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2802 (($ $ $ (-631 (-1122 |#1| |#2|))) 90) (($ $ $ (-631 (-1122 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3019 (((-112) $ (-758)) NIL)) (-2690 (((-1122 |#1| |#2|) $ (-1122 |#1| |#2|)) 43 (|has| $ (-6 -4374)))) (-1501 (((-1122 |#1| |#2|) $ "value" (-1122 |#1| |#2|)) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-1677 (((-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) $) 80)) (-1884 (($ (-1122 |#1| |#2|) $) 39)) (-2574 (($ (-1122 |#1| |#2|) $) 31)) (-2466 (((-631 (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 51)) (-4217 (((-112) (-1122 |#1| |#2|) $) 82)) (-1990 (((-112) $ $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 (-1122 |#1| |#2|)) $) 55 (|has| $ (-6 -4373)))) (-3068 (((-112) (-1122 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-1122 |#1| |#2|) (-1082))))) (-2849 (($ (-1 (-1122 |#1| |#2|) (-1122 |#1| |#2|)) $) 47 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-1122 |#1| |#2|) (-1122 |#1| |#2|)) $) 46)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 (-1122 |#1| |#2|)) $) 53)) (-3216 (((-112) $) 42)) (-1613 (((-1140) $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2768 (((-1102) $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2729 (((-3 $ "failed") $) 75)) (-2845 (((-112) (-1 (-112) (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-1122 |#1| |#2|)))) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082)))) (($ $ (-289 (-1122 |#1| |#2|))) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082)))) (($ $ (-1122 |#1| |#2|) (-1122 |#1| |#2|)) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082)))) (($ $ (-631 (-1122 |#1| |#2|)) (-631 (-1122 |#1| |#2|))) NIL (-12 (|has| (-1122 |#1| |#2|) (-304 (-1122 |#1| |#2|))) (|has| (-1122 |#1| |#2|) (-1082))))) (-2494 (((-112) $ $) 50)) (-3543 (((-112) $) 22)) (-4240 (($) 24)) (-2064 (((-1122 |#1| |#2|) $ "value") NIL)) (-3250 (((-554) $ $) NIL)) (-3008 (((-112) $) 44)) (-2777 (((-758) (-1 (-112) (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373))) (((-758) (-1122 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-1122 |#1| |#2|) (-1082))))) (-1521 (($ $) 49)) (-3089 (($ (-1122 |#1| |#2|)) 9) (($ |#1| |#2| (-631 $)) 12) (($ |#1| |#2| (-631 (-1122 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-631 |#2|)) 17)) (-3803 (((-631 |#2|) $) 81)) (-3075 (((-848) $) 73 (|has| (-1122 |#1| |#2|) (-601 (-848))))) (-2461 (((-631 $) $) 28)) (-1441 (((-112) $ $) NIL (|has| (-1122 |#1| |#2|) (-1082)))) (-2438 (((-112) (-1 (-112) (-1122 |#1| |#2|)) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 64 (|has| (-1122 |#1| |#2|) (-1082)))) (-2563 (((-758) $) 58 (|has| $ (-6 -4373))))) +(((-1123 |#1| |#2|) (-13 (-995 (-1122 |#1| |#2|)) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2729 ((-3 $ "failed") $)) (-15 -3939 ($ $)) (-15 -3089 ($ (-1122 |#1| |#2|))) (-15 -3089 ($ |#1| |#2| (-631 $))) (-15 -3089 ($ |#1| |#2| (-631 (-1122 |#1| |#2|)))) (-15 -3089 ($ |#1| |#2| |#1| (-631 |#2|))) (-15 -3803 ((-631 |#2|) $)) (-15 -1677 ((-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) $)) (-15 -4217 ((-112) (-1122 |#1| |#2|) $)) (-15 -3377 ((-112) (-1122 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2574 ($ (-1122 |#1| |#2|) $)) (-15 -1884 ($ (-1122 |#1| |#2|) $)) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)))) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1082) (-34)) (-13 (-1082) (-34))) (T -1123)) +((-2729 (*1 *1 *1) (|partial| -12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-631 (-1123 *2 *3))) (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) (-3089 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-631 (-1122 *2 *3))) (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))) (-5 *1 (-1123 *2 *3)))) (-3089 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-1082) (-34))) (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-631 *4)) (-5 *1 (-1123 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) (-5 *1 (-1123 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))))) (-4217 (*1 *2 *3 *1) (-12 (-5 *3 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)))) (-3377 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1122 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1123 *5 *6)))) (-2574 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-2802 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-631 (-1122 *3 *4))) (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) (-2802 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-1122 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) (-5 *1 (-1123 *4 *5))))) +(-13 (-995 (-1122 |#1| |#2|)) (-10 -8 (-6 -4374) (-6 -4373) (-15 -2729 ((-3 $ "failed") $)) (-15 -3939 ($ $)) (-15 -3089 ($ (-1122 |#1| |#2|))) (-15 -3089 ($ |#1| |#2| (-631 $))) (-15 -3089 ($ |#1| |#2| (-631 (-1122 |#1| |#2|)))) (-15 -3089 ($ |#1| |#2| |#1| (-631 |#2|))) (-15 -3803 ((-631 |#2|) $)) (-15 -1677 ((-631 (-2 (|:| |val| |#1|) (|:| -2143 |#2|))) $)) (-15 -4217 ((-112) (-1122 |#1| |#2|) $)) (-15 -3377 ((-112) (-1122 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2574 ($ (-1122 |#1| |#2|) $)) (-15 -1884 ($ (-1122 |#1| |#2|) $)) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)))) (-15 -2802 ($ $ $ (-631 (-1122 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2757 (($ $) NIL)) (-1612 ((|#2| $) NIL)) (-1350 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-2321 (($ (-675 |#2|)) 50)) (-3795 (((-112) $) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1475 (($ |#2|) 10)) (-4087 (($) NIL T CONST)) (-2775 (($ $) 63 (|has| |#2| (-302)))) (-3519 (((-236 |#1| |#2|) $ (-554)) 36)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 |#2| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) ((|#2| $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) 77)) (-4186 (((-758) $) 65 (|has| |#2| (-546)))) (-2796 ((|#2| $ (-554) (-554)) NIL)) (-2466 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3248 (((-112) $) NIL)) (-4332 (((-758) $) 67 (|has| |#2| (-546)))) (-2412 (((-631 (-236 |#1| |#2|)) $) 71 (|has| |#2| (-546)))) (-4130 (((-758) $) NIL)) (-3180 (($ |#2|) 20)) (-4143 (((-758) $) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-2326 ((|#2| $) 61 (|has| |#2| (-6 (-4375 "*"))))) (-3985 (((-554) $) NIL)) (-1817 (((-554) $) NIL)) (-2379 (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2787 (((-554) $) NIL)) (-4249 (((-554) $) NIL)) (-1899 (($ (-631 (-631 |#2|))) 31)) (-2849 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1679 (((-631 (-631 |#2|)) $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2843 (((-3 $ "failed") $) 74 (|has| |#2| (-358)))) (-2768 (((-1102) $) NIL)) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546)))) (-2845 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ (-554) (-554) |#2|) NIL) ((|#2| $ (-554) (-554)) NIL)) (-1553 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3238 ((|#2| $) NIL)) (-3198 (($ (-631 |#2|)) 44)) (-2361 (((-112) $) NIL)) (-3871 (((-236 |#1| |#2|) $) NIL)) (-2870 ((|#2| $) 59 (|has| |#2| (-6 (-4375 "*"))))) (-2777 (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 86 (|has| |#2| (-602 (-530))))) (-3259 (((-236 |#1| |#2|) $ (-554)) 38)) (-3075 (((-848) $) 41) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#2| (-1023 (-402 (-554))))) (($ |#2|) NIL) (((-675 |#2|) $) 46)) (-2261 (((-758)) 18)) (-2438 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-4299 (((-112) $) NIL)) (-2004 (($) 12 T CONST)) (-2014 (($) 15 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-758)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) 57) (($ $ (-554)) 76 (|has| |#2| (-358)))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) 53) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) 55)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1124 |#1| |#2|) (-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-10 -8 (-15 -3180 ($ |#2|)) (-15 -2757 ($ $)) (-15 -2321 ($ (-675 |#2|))) (IF (|has| |#2| (-6 (-4375 "*"))) (-6 -4362) |%noBranch|) (IF (|has| |#2| (-6 (-4375 "*"))) (IF (|has| |#2| (-6 -4370)) (-6 -4370) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) (-758) (-1034)) (T -1124)) +((-3180 (*1 *1 *2) (-12 (-5 *1 (-1124 *3 *2)) (-14 *3 (-758)) (-4 *2 (-1034)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-758)) (-4 *3 (-1034)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-675 *4)) (-4 *4 (-1034)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-758))))) +(-13 (-1105 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-601 (-675 |#2|)) (-10 -8 (-15 -3180 ($ |#2|)) (-15 -2757 ($ $)) (-15 -2321 ($ (-675 |#2|))) (IF (|has| |#2| (-6 (-4375 "*"))) (-6 -4362) |%noBranch|) (IF (|has| |#2| (-6 (-4375 "*"))) (IF (|has| |#2| (-6 -4370)) (-6 -4370) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-602 (-530))) (-6 (-602 (-530))) |%noBranch|))) +((-2451 (($ $) 19)) (-4274 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3802 (((-112) $ $) 24)) (-1913 (($ $) 17)) (-2064 (((-142) $ (-554) (-142)) NIL) (((-142) $ (-554)) NIL) (($ $ (-1208 (-554))) NIL) (($ $ $) 29)) (-3075 (($ (-142)) 27) (((-848) $) NIL))) +(((-1125 |#1|) (-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2064 (|#1| |#1| |#1|)) (-15 -4274 (|#1| |#1| (-139))) (-15 -4274 (|#1| |#1| (-142))) (-15 -3075 (|#1| (-142))) (-15 -3802 ((-112) |#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2064 ((-142) |#1| (-554))) (-15 -2064 ((-142) |#1| (-554) (-142)))) (-1126)) (T -1125)) +NIL +(-10 -8 (-15 -3075 ((-848) |#1|)) (-15 -2064 (|#1| |#1| |#1|)) (-15 -4274 (|#1| |#1| (-139))) (-15 -4274 (|#1| |#1| (-142))) (-15 -3075 (|#1| (-142))) (-15 -3802 ((-112) |#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -1913 (|#1| |#1|)) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -2064 ((-142) |#1| (-554))) (-15 -2064 ((-142) |#1| (-554) (-142)))) +((-3062 (((-112) $ $) 19 (|has| (-142) (-1082)))) (-2905 (($ $) 120)) (-2451 (($ $) 121)) (-4274 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) 118)) (-3756 (((-112) $ $ (-554)) 117)) (-1515 (((-631 $) $ (-142)) 110) (((-631 $) $ (-139)) 109)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| (-142) (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 (((-142) $ (-554) (-142)) 52 (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2190 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1395 (($ $ (-1208 (-554)) $) 114)) (-1571 (($ $) 78 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-142) $) 77 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) 53 (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) 51)) (-3802 (((-112) $ $) 119)) (-1484 (((-554) (-1 (-112) (-142)) $) 97) (((-554) (-142) $) 96 (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) 95 (|has| (-142) (-1082))) (((-554) $ $ (-554)) 113) (((-554) (-139) $ (-554)) 112)) (-2466 (((-631 (-142)) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) 115)) (-3814 (((-758) $ $ (-142)) 116)) (-2849 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3110 (($ $) 122)) (-1913 (($ $) 123)) (-3731 (((-112) $ (-758)) 10)) (-2203 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1613 (((-1140) $) 22 (|has| (-142) (-1082)))) (-1782 (($ (-142) $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| (-142) (-1082)))) (-1539 (((-142) $) 42 (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2441 (($ $ (-142)) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 (((-142) $ (-554) (-142)) 50) (((-142) $ (-554)) 49) (($ $ (-1208 (-554))) 63) (($ $ $) 102)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4373))) (((-758) (-142) $) 28 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) 70)) (-4323 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (($ (-142)) 111) (((-848) $) 18 (|has| (-142) (-601 (-848))))) (-2438 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| (-142) (-836)))) (-1686 (((-112) $ $) 83 (|has| (-142) (-836)))) (-1658 (((-112) $ $) 20 (|has| (-142) (-1082)))) (-1697 (((-112) $ $) 85 (|has| (-142) (-836)))) (-1676 (((-112) $ $) 82 (|has| (-142) (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1126) (-138)) (T -1126)) +((-1913 (*1 *1 *1) (-4 *1 (-1126))) (-3110 (*1 *1 *1) (-4 *1 (-1126))) (-2451 (*1 *1 *1) (-4 *1 (-1126))) (-2905 (*1 *1 *1) (-4 *1 (-1126))) (-3802 (*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112)))) (-3779 (*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112)))) (-3756 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-554)) (-5 *2 (-112)))) (-3814 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-758)))) (-1550 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-112)))) (-1395 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-1208 (-554))))) (-1484 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)))) (-1484 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)) (-5 *3 (-139)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1126)))) (-1515 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-631 *1)) (-4 *1 (-1126)))) (-1515 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-631 *1)) (-4 *1 (-1126)))) (-4274 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))) (-4274 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) (-2203 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))) (-2203 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) (-2190 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142)))) (-2190 (*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) (-2064 (*1 *1 *1 *1) (-4 *1 (-1126)))) +(-13 (-19 (-142)) (-10 -8 (-15 -1913 ($ $)) (-15 -3110 ($ $)) (-15 -2451 ($ $)) (-15 -2905 ($ $)) (-15 -3802 ((-112) $ $)) (-15 -3779 ((-112) $ $)) (-15 -3756 ((-112) $ $ (-554))) (-15 -3814 ((-758) $ $ (-142))) (-15 -1550 ((-112) $ $ (-142))) (-15 -1395 ($ $ (-1208 (-554)) $)) (-15 -1484 ((-554) $ $ (-554))) (-15 -1484 ((-554) (-139) $ (-554))) (-15 -3075 ($ (-142))) (-15 -1515 ((-631 $) $ (-142))) (-15 -1515 ((-631 $) $ (-139))) (-15 -4274 ($ $ (-142))) (-15 -4274 ($ $ (-139))) (-15 -2203 ($ $ (-142))) (-15 -2203 ($ $ (-139))) (-15 -2190 ($ $ (-142))) (-15 -2190 ($ $ (-139))) (-15 -2064 ($ $ $)))) +(((-34) . T) ((-102) -3994 (|has| (-142) (-1082)) (|has| (-142) (-836))) ((-601 (-848)) -3994 (|has| (-142) (-1082)) (|has| (-142) (-836)) (|has| (-142) (-601 (-848)))) ((-149 #0=(-142)) . T) ((-602 (-530)) |has| (-142) (-602 (-530))) ((-281 #1=(-554) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-368 #0#) . T) ((-483 #0#) . T) ((-592 #1# #0#) . T) ((-508 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-637 #0#) . T) ((-19 #0#) . T) ((-836) |has| (-142) (-836)) ((-1082) -3994 (|has| (-142) (-1082)) (|has| (-142) (-836))) ((-1195) . T)) +((-3202 (((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758)) 94)) (-1540 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 54)) (-2446 (((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)) 85)) (-2877 (((-758) (-631 |#4|) (-631 |#5|)) 27)) (-1645 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758)) 56) (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112)) 58)) (-3678 (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112)) 77)) (-2927 (((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) 80)) (-3511 (((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|) 53)) (-4198 (((-758) (-631 |#4|) (-631 |#5|)) 19))) +(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1127)) +((-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140)) (-5 *1 (-1127 *4 *5 *6 *7 *8)))) (-3202 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-631 *11)) (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11)))))) (-5 *6 (-758)) (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11)))) (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9)) (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-5 *1 (-1127 *7 *8 *9 *10 *11)))) (-3678 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-3678 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780)) (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) (-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *3 (-1048 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3511 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-631 *4)) (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4198 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -2877 ((-758) (-631 |#4|) (-631 |#5|))) (-15 -3511 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1540 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758) (-112))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5| (-758))) (-15 -1645 ((-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) |#4| |#5|)) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112))) (-15 -3678 ((-631 |#5|) (-631 |#4|) (-631 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3202 ((-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-631 |#4|) (-631 |#5|) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-2 (|:| |done| (-631 |#5|)) (|:| |todo| (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))))) (-758))) (-15 -2927 ((-1140) (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|)))) (-15 -2446 ((-1246) (-631 (-2 (|:| |val| (-631 |#4|)) (|:| -2143 |#5|))) (-758)))) +((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) 110) (((-631 $) (-631 |#4|) (-112)) 111) (((-631 $) (-631 |#4|) (-112) (-112)) 109) (((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3278 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| $) 84)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 62)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) 26 (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1380 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 39)) (-2930 ((|#4| |#4| $) 65)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-4183 (((-112) |#4| $) NIL)) (-4155 (((-112) |#4| $) NIL)) (-2892 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112)) 124)) (-2466 (((-631 |#4|) $) 16 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 33)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 17 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2849 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 21)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-1343 (((-3 |#4| (-631 $)) |#4| |#4| $) NIL)) (-2543 (((-631 (-2 (|:| |val| |#4|) (|:| -2143 $))) |#4| |#4| $) 103)) (-2597 (((-3 |#4| "failed") $) 37)) (-2953 (((-631 $) |#4| $) 88)) (-3841 (((-3 (-112) (-631 $)) |#4| $) NIL)) (-3874 (((-631 (-2 (|:| |val| (-112)) (|:| -2143 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3977 (((-631 $) |#4| $) 107) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 108) (((-631 $) |#4| (-631 $)) NIL)) (-2031 (((-631 $) (-631 |#4|) (-112) (-112) (-112)) 119)) (-3479 (($ |#4| $) 75) (($ (-631 |#4|) $) 76) (((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2627 (((-631 |#4|) $) NIL)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) NIL)) (-2178 (((-112) $ $) NIL)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 35)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) 48)) (-4282 (($ $ |#4|) NIL) (((-631 $) |#4| $) 90) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) 86)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 13)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) 12)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 20)) (-2538 (($ $ |#3|) 42)) (-2384 (($ $ |#3|) 44)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) 31) (((-631 |#4|) $) 40)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-3850 (((-631 $) |#4| $) 54) (((-631 $) |#4| (-631 $)) NIL) (((-631 $) (-631 |#4|) $) NIL) (((-631 $) (-631 |#4|) (-631 $)) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-4351 (((-112) |#4| $) NIL)) (-3536 (((-112) |#3| $) 61)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1128 |#1| |#2| |#3| |#4|) (-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112))))) (-446) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -1128)) +((-3479 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *3))) (-5 *1 (-1128 *5 *6 *7 *3)) (-4 *3 (-1048 *5 *6 *7)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) (-3176 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) (-2031 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-631 *8)) (|:| |towers| (-631 (-1128 *5 *6 *7 *8))))) (-5 *1 (-1128 *5 *6 *7 *8)) (-5 *3 (-631 *8))))) +(-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3479 ((-631 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112))) (-15 -3176 ((-631 $) (-631 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-631 $) (-631 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-631 |#4|)) (|:| |towers| (-631 $))) (-631 |#4|) (-112) (-112))))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2292 ((|#1| $) 34)) (-3670 (($ (-631 |#1|)) 39)) (-3019 (((-112) $ (-758)) NIL)) (-4087 (($) NIL T CONST)) (-1790 ((|#1| |#1| $) 36)) (-3956 ((|#1| $) 32)) (-2466 (((-631 |#1|) $) 18 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 22)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4150 ((|#1| $) 35)) (-2045 (($ |#1| $) 37)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2152 ((|#1| $) 33)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 31)) (-4240 (($) 38)) (-2763 (((-758) $) 29)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 27)) (-3075 (((-848) $) 14 (|has| |#1| (-601 (-848))))) (-1591 (($ (-631 |#1|)) NIL)) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 17 (|has| |#1| (-1082)))) (-2563 (((-758) $) 30 (|has| $ (-6 -4373))))) +(((-1129 |#1|) (-13 (-1103 |#1|) (-10 -8 (-15 -3670 ($ (-631 |#1|))))) (-1195)) (T -1129)) +((-3670 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1129 *3))))) +(-13 (-1103 |#1|) (-10 -8 (-15 -3670 ($ (-631 |#1|))))) +((-1501 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1208 (-554)) |#2|) 44) ((|#2| $ (-554) |#2|) 41)) (-3556 (((-112) $) 12)) (-2849 (($ (-1 |#2| |#2|) $) 39)) (-1539 ((|#2| $) NIL) (($ $ (-758)) 17)) (-2441 (($ $ |#2|) 40)) (-1381 (((-112) $) 11)) (-2064 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1208 (-554))) 31) ((|#2| $ (-554)) 23) ((|#2| $ (-554) |#2|) NIL)) (-1853 (($ $ $) 47) (($ $ |#2|) NIL)) (-4323 (($ $ $) 33) (($ |#2| $) NIL) (($ (-631 $)) 36) (($ $ |#2|) NIL))) +(((-1130 |#1| |#2|) (-10 -8 (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| "last")) (-15 -2064 (|#1| |#1| "rest")) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|))) (-1131 |#2|) (-1195)) (T -1130)) +NIL +(-10 -8 (-15 -3556 ((-112) |#1|)) (-15 -1381 ((-112) |#1|)) (-15 -1501 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554) |#2|)) (-15 -2064 (|#2| |#1| (-554))) (-15 -2441 (|#1| |#1| |#2|)) (-15 -4323 (|#1| |#1| |#2|)) (-15 -4323 (|#1| (-631 |#1|))) (-15 -2064 (|#1| |#1| (-1208 (-554)))) (-15 -1501 (|#2| |#1| (-1208 (-554)) |#2|)) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -1853 (|#1| |#1| |#2|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| "last")) (-15 -2064 (|#1| |#1| "rest")) (-15 -1539 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "first")) (-15 -1539 (|#2| |#1|)) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2849 (|#1| (-1 |#2| |#2|) |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-4233 (((-1246) $ (-554) (-554)) 97 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 117 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 86 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4373)))) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-1571 (($ $) 99 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4373))) (($ |#1| $) 100 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2862 ((|#1| $ (-554) |#1|) 85 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 87)) (-3556 (((-112) $) 83)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) 108)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 95 (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 94 (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-1782 (($ $ $ (-554)) 116) (($ |#1| $ (-554)) 115)) (-2529 (((-631 (-554)) $) 92)) (-3618 (((-112) (-554) $) 91)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2441 (($ $ |#1|) 96 (|has| $ (-6 -4374)))) (-1381 (((-112) $) 84)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 90)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1208 (-554))) 112) ((|#1| $ (-554)) 89) ((|#1| $ (-554) |#1|) 88)) (-3250 (((-554) $ $) 44)) (-2021 (($ $ (-1208 (-554))) 114) (($ $ (-554)) 113)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-2927 (((-530) $) 98 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 107)) (-1853 (($ $ $) 61 (|has| $ (-6 -4374))) (($ $ |#1|) 60 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 78) (($ |#1| $) 77) (($ (-631 $)) 110) (($ $ |#1|) 109)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1131 |#1|) (-138) (-1195)) (T -1131)) +((-1381 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))) +(-13 (-1229 |t#1|) (-637 |t#1|) (-10 -8 (-15 -1381 ((-112) $)) (-15 -3556 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T) ((-1229 |#1|) . T)) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1132 |#1| |#2| |#3|) (-1171 |#1| |#2|) (-1082) (-1082) |#2|) (T -1132)) +NIL +(-1171 |#1| |#2|) +((-3062 (((-112) $ $) 7)) (-3339 (((-3 $ "failed") $) 13)) (-1613 (((-1140) $) 9)) (-3834 (($) 14 T CONST)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11)) (-1658 (((-112) $ $) 6))) +(((-1133) (-138)) (T -1133)) +((-3834 (*1 *1) (-4 *1 (-1133))) (-3339 (*1 *1 *1) (|partial| -4 *1 (-1133)))) +(-13 (-1082) (-10 -8 (-15 -3834 ($) -2397) (-15 -3339 ((-3 $ "failed") $)))) +(((-102) . T) ((-601 (-848)) . T) ((-1082) . T)) +((-3292 (((-1138 |#1|) (-1138 |#1|)) 17)) (-4260 (((-1138 |#1|) (-1138 |#1|)) 13)) (-4263 (((-1138 |#1|) (-1138 |#1|) (-554) (-554)) 20)) (-2539 (((-1138 |#1|) (-1138 |#1|)) 15))) +(((-1134 |#1|) (-10 -7 (-15 -4260 ((-1138 |#1|) (-1138 |#1|))) (-15 -2539 ((-1138 |#1|) (-1138 |#1|))) (-15 -3292 ((-1138 |#1|) (-1138 |#1|))) (-15 -4263 ((-1138 |#1|) (-1138 |#1|) (-554) (-554)))) (-13 (-546) (-145))) (T -1134)) +((-4263 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-1134 *4)))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1134 *3)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1134 *3)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1134 *3))))) +(-10 -7 (-15 -4260 ((-1138 |#1|) (-1138 |#1|))) (-15 -2539 ((-1138 |#1|) (-1138 |#1|))) (-15 -3292 ((-1138 |#1|) (-1138 |#1|))) (-15 -4263 ((-1138 |#1|) (-1138 |#1|) (-554) (-554)))) +((-4323 (((-1138 |#1|) (-1138 (-1138 |#1|))) 15))) +(((-1135 |#1|) (-10 -7 (-15 -4323 ((-1138 |#1|) (-1138 (-1138 |#1|))))) (-1195)) (T -1135)) +((-4323 (*1 *2 *3) (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1135 *4)) (-4 *4 (-1195))))) +(-10 -7 (-15 -4323 ((-1138 |#1|) (-1138 (-1138 |#1|))))) +((-4159 (((-1138 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)) 25)) (-3676 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)) 26)) (-2879 (((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|)) 16))) +(((-1136 |#1| |#2|) (-10 -7 (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) (-15 -4159 ((-1138 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|))) (-15 -3676 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)))) (-1195) (-1195)) (T -1136)) +((-3676 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1138 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1136 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1138 *6)) (-4 *6 (-1195)) (-4 *3 (-1195)) (-5 *2 (-1138 *3)) (-5 *1 (-1136 *6 *3)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1138 *6)) (-5 *1 (-1136 *5 *6))))) +(-10 -7 (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) (-15 -4159 ((-1138 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|))) (-15 -3676 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1138 |#1|)))) +((-2879 (((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-1138 |#2|)) 21))) +(((-1137 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-1138 |#2|)))) (-1195) (-1195) (-1195)) (T -1137)) +((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-1138 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) (-5 *1 (-1137 *6 *7 *8))))) +(-10 -7 (-15 -2879 ((-1138 |#3|) (-1 |#3| |#1| |#2|) (-1138 |#1|) (-1138 |#2|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) NIL)) (-2350 ((|#1| $) NIL)) (-3387 (($ $) 52)) (-4233 (((-1246) $ (-554) (-554)) 77 (|has| $ (-6 -4374)))) (-2722 (($ $ (-554)) 111 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1718 (((-848) $) 41 (|has| |#1| (-1082)))) (-3517 (((-112)) 40 (|has| |#1| (-1082)))) (-2690 ((|#1| $ |#1|) NIL (|has| $ (-6 -4374)))) (-2234 (($ $ $) 99 (|has| $ (-6 -4374))) (($ $ (-554) $) 123)) (-1825 ((|#1| $ |#1|) 108 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 103 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4374))) (($ $ "rest" $) 107 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 90 (|has| $ (-6 -4374))) ((|#1| $ (-554) |#1|) 56 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 59)) (-2337 ((|#1| $) NIL)) (-4087 (($) NIL T CONST)) (-2486 (($ $) 14)) (-1551 (($ $) 29) (($ $ (-758)) 89)) (-3348 (((-112) (-631 |#1|) $) 117 (|has| |#1| (-1082)))) (-3306 (($ (-631 |#1|)) 113)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) 58)) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-3556 (((-112) $) NIL)) (-2466 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2182 (((-1246) (-554) $) 122 (|has| |#1| (-1082)))) (-2911 (((-758) $) 119)) (-3677 (((-631 $) $) NIL)) (-1990 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-3731 (((-112) $ (-758)) NIL)) (-2306 (((-631 |#1|) $) NIL)) (-3216 (((-112) $) NIL)) (-4104 (($ $) 91)) (-3150 (((-112) $) 13)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2597 ((|#1| $) NIL) (($ $ (-758)) NIL)) (-1782 (($ $ $ (-554)) NIL) (($ |#1| $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) 75)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1814 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-1491 ((|#1| $) 10)) (-1539 ((|#1| $) 28) (($ $ (-758)) 50)) (-3790 (((-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))) (-758) $) 25)) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1852 (($ (-1 (-112) |#1|) $) 127)) (-1862 (($ (-1 (-112) |#1|) $) 128)) (-2441 (($ $ |#1|) 69 (|has| $ (-6 -4374)))) (-4282 (($ $ (-554)) 32)) (-1381 (((-112) $) 73)) (-2322 (((-112) $) 12)) (-1826 (((-112) $) 118)) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 20)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) 15)) (-4240 (($) 45)) (-2064 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1208 (-554))) NIL) ((|#1| $ (-554)) 55) ((|#1| $ (-554) |#1|) NIL)) (-3250 (((-554) $ $) 49)) (-2021 (($ $ (-1208 (-554))) NIL) (($ $ (-554)) NIL)) (-2653 (($ (-1 $)) 48)) (-3008 (((-112) $) 70)) (-1670 (($ $) 71)) (-2377 (($ $) 100 (|has| $ (-6 -4374)))) (-2797 (((-758) $) NIL)) (-2046 (($ $) NIL)) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 44)) (-2927 (((-530) $) NIL (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 54)) (-2403 (($ |#1| $) 98)) (-1853 (($ $ $) 101 (|has| $ (-6 -4374))) (($ $ |#1|) 102 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 79) (($ |#1| $) 46) (($ (-631 $)) 84) (($ $ |#1|) 78)) (-1300 (($ $) 51)) (-3075 (($ (-631 |#1|)) 112) (((-848) $) 42 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) NIL)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 115 (|has| |#1| (-1082)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1138 |#1|) (-13 (-660 |#1|) (-604 (-631 |#1|)) (-10 -8 (-6 -4374) (-15 -3306 ($ (-631 |#1|))) (IF (|has| |#1| (-1082)) (-15 -3348 ((-112) (-631 |#1|) $)) |%noBranch|) (-15 -3790 ((-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))) (-758) $)) (-15 -2653 ($ (-1 $))) (-15 -2403 ($ |#1| $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2182 ((-1246) (-554) $)) (-15 -1718 ((-848) $)) (-15 -3517 ((-112)))) |%noBranch|) (-15 -2234 ($ $ (-554) $)) (-15 -1814 ($ (-1 |#1|))) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)))) (-1195)) (T -1138)) +((-3306 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-3348 (*1 *2 *3 *1) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-4 *4 (-1195)) (-5 *2 (-112)) (-5 *1 (-1138 *4)))) (-3790 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758)))) (-5 *1 (-1138 *4)) (-4 *4 (-1195)) (-5 *3 (-758)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-1 (-1138 *3))) (-5 *1 (-1138 *3)) (-4 *3 (-1195)))) (-2403 (*1 *1 *2 *1) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1195)))) (-2182 (*1 *2 *3 *1) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1138 *4)) (-4 *4 (-1082)) (-4 *4 (-1195)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1138 *3)) (-4 *3 (-1082)) (-4 *3 (-1195)))) (-3517 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1138 *3)) (-4 *3 (-1082)) (-4 *3 (-1195)))) (-2234 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1138 *3)) (-4 *3 (-1195)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-1814 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-1852 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) (-1862 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3))))) +(-13 (-660 |#1|) (-604 (-631 |#1|)) (-10 -8 (-6 -4374) (-15 -3306 ($ (-631 |#1|))) (IF (|has| |#1| (-1082)) (-15 -3348 ((-112) (-631 |#1|) $)) |%noBranch|) (-15 -3790 ((-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758))) (-758) $)) (-15 -2653 ($ (-1 $))) (-15 -2403 ($ |#1| $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2182 ((-1246) (-554) $)) (-15 -1718 ((-848) $)) (-15 -3517 ((-112)))) |%noBranch|) (-15 -2234 ($ $ (-554) $)) (-15 -1814 ($ (-1 |#1|))) (-15 -1814 ($ (-1 |#1| |#1|) |#1|)) (-15 -1852 ($ (-1 (-112) |#1|) $)) (-15 -1862 ($ (-1 (-112) |#1|) $)))) +((-3062 (((-112) $ $) 19)) (-2905 (($ $) 120)) (-2451 (($ $) 121)) (-4274 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) 118)) (-3756 (((-112) $ $ (-554)) 117)) (-3942 (($ (-554)) 127)) (-1515 (((-631 $) $ (-142)) 110) (((-631 $) $ (-139)) 109)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| (-142) (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 (((-142) $ (-554) (-142)) 52 (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-2190 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1395 (($ $ (-1208 (-554)) $) 114)) (-1571 (($ $) 78 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ (-142) $) 77 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) 53 (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) 51)) (-3802 (((-112) $ $) 119)) (-1484 (((-554) (-1 (-112) (-142)) $) 97) (((-554) (-142) $) 96 (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) 95 (|has| (-142) (-1082))) (((-554) $ $ (-554)) 113) (((-554) (-139) $ (-554)) 112)) (-2466 (((-631 (-142)) $) 30 (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) 115)) (-3814 (((-758) $ $ (-142)) 116)) (-2849 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3110 (($ $) 122)) (-1913 (($ $) 123)) (-3731 (((-112) $ (-758)) 10)) (-2203 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1613 (((-1140) $) 22)) (-1782 (($ (-142) $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21)) (-1539 (((-142) $) 42 (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2441 (($ $ (-142)) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 (((-142) $ (-554) (-142)) 50) (((-142) $ (-554)) 49) (($ $ (-1208 (-554))) 63) (($ $ $) 102)) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-2777 (((-758) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4373))) (((-758) (-142) $) 28 (-12 (|has| (-142) (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) 70)) (-4323 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (($ (-142)) 111) (((-848) $) 18)) (-2438 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4373)))) (-4048 (((-1140) $) 131) (((-1140) $ (-112)) 130) (((-1246) (-809) $) 129) (((-1246) (-809) $ (-112)) 128)) (-1708 (((-112) $ $) 84 (|has| (-142) (-836)))) (-1686 (((-112) $ $) 83 (|has| (-142) (-836)))) (-1658 (((-112) $ $) 20)) (-1697 (((-112) $ $) 85 (|has| (-142) (-836)))) (-1676 (((-112) $ $) 82 (|has| (-142) (-836)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1139) (-138)) (T -1139)) +((-3942 (*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1139))))) +(-13 (-1126) (-1082) (-815) (-10 -8 (-15 -3942 ($ (-554))))) +(((-34) . T) ((-102) . T) ((-601 (-848)) . T) ((-149 #0=(-142)) . T) ((-602 (-530)) |has| (-142) (-602 (-530))) ((-281 #1=(-554) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-368 #0#) . T) ((-483 #0#) . T) ((-592 #1# #0#) . T) ((-508 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))) ((-637 #0#) . T) ((-19 #0#) . T) ((-815) . T) ((-836) |has| (-142) (-836)) ((-1082) . T) ((-1126) . T) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-2905 (($ $) NIL)) (-2451 (($ $) NIL)) (-4274 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-3779 (((-112) $ $) NIL)) (-3756 (((-112) $ $ (-554)) NIL)) (-3942 (($ (-554)) 7)) (-1515 (((-631 $) $ (-142)) NIL) (((-631 $) $ (-139)) NIL)) (-4015 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-836)))) (-2576 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| (-142) (-836))))) (-3303 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 (((-142) $ (-554) (-142)) NIL (|has| $ (-6 -4374))) (((-142) $ (-1208 (-554)) (-142)) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-2190 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1395 (($ $ (-1208 (-554)) $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2574 (($ (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4373))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2862 (((-142) $ (-554) (-142)) NIL (|has| $ (-6 -4374)))) (-2796 (((-142) $ (-554)) NIL)) (-3802 (((-112) $ $) NIL)) (-1484 (((-554) (-1 (-112) (-142)) $) NIL) (((-554) (-142) $) NIL (|has| (-142) (-1082))) (((-554) (-142) $ (-554)) NIL (|has| (-142) (-1082))) (((-554) $ $ (-554)) NIL) (((-554) (-139) $ (-554)) NIL)) (-2466 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3180 (($ (-758) (-142)) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| (-142) (-836)))) (-3717 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-836)))) (-2379 (((-631 (-142)) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| (-142) (-836)))) (-1550 (((-112) $ $ (-142)) NIL)) (-3814 (((-758) $ $ (-142)) NIL)) (-2849 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3110 (($ $) NIL)) (-1913 (($ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-2203 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1613 (((-1140) $) NIL)) (-1782 (($ (-142) $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-142) $) NIL (|has| (-554) (-836)))) (-1652 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2441 (($ $ (-142)) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082)))) (($ $ (-631 (-142)) (-631 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-2625 (((-631 (-142)) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 (((-142) $ (-554) (-142)) NIL) (((-142) $ (-554)) NIL) (($ $ (-1208 (-554))) NIL) (($ $ $) NIL)) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-2777 (((-758) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373))) (((-758) (-142) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-142) (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-142) (-602 (-530))))) (-3089 (($ (-631 (-142))) NIL)) (-4323 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (($ (-142)) NIL) (((-848) $) NIL)) (-2438 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4373)))) (-4048 (((-1140) $) 18) (((-1140) $ (-112)) 20) (((-1246) (-809) $) 21) (((-1246) (-809) $ (-112)) 22)) (-1708 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1686 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| (-142) (-836)))) (-1676 (((-112) $ $) NIL (|has| (-142) (-836)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1140) (-1139)) (T -1140)) +NIL +(-1139) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-4233 (((-1246) $ (-1140) (-1140)) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-1140) |#1|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#1| "failed") (-1140) $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#1| "failed") (-1140) $) NIL)) (-2574 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-1140) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-1140)) NIL)) (-2466 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2379 (((-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-1140) $) NIL (|has| (-1140) (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-2944 (((-631 (-1140)) $) NIL)) (-2415 (((-112) (-1140) $) NIL)) (-4150 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2529 (((-631 (-1140)) $) NIL)) (-3618 (((-112) (-1140) $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-1539 ((|#1| $) NIL (|has| (-1140) (-836)))) (-1652 (((-3 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) "failed") (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL (-12 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-304 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-1140)) NIL) ((|#1| $ (-1140) |#1|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-601 (-848))) (|has| |#1| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 (-1140)) (|:| -2701 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1141 |#1|) (-13 (-1171 (-1140) |#1|) (-10 -7 (-6 -4373))) (-1082)) (T -1141)) +NIL +(-13 (-1171 (-1140) |#1|) (-10 -7 (-6 -4373))) +((-3587 (((-1138 |#1|) (-1138 |#1|)) 77)) (-1320 (((-3 (-1138 |#1|) "failed") (-1138 |#1|)) 37)) (-1488 (((-1138 |#1|) (-402 (-554)) (-1138 |#1|)) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2776 (((-1138 |#1|) |#1| (-1138 |#1|)) 127 (|has| |#1| (-358)))) (-3598 (((-1138 |#1|) (-1138 |#1|)) 90)) (-3124 (((-1138 (-554)) (-554)) 57)) (-2043 (((-1138 |#1|) (-1138 (-1138 |#1|))) 109 (|has| |#1| (-38 (-402 (-554)))))) (-3712 (((-1138 |#1|) (-554) (-554) (-1138 |#1|)) 95)) (-3738 (((-1138 |#1|) |#1| (-554)) 45)) (-3631 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 60)) (-4108 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 124 (|has| |#1| (-358)))) (-3185 (((-1138 |#1|) |#1| (-1 (-1138 |#1|))) 108 (|has| |#1| (-38 (-402 (-554)))))) (-3819 (((-1138 |#1|) (-1 |#1| (-554)) |#1| (-1 (-1138 |#1|))) 125 (|has| |#1| (-358)))) (-2618 (((-1138 |#1|) (-1138 |#1|)) 89)) (-4335 (((-1138 |#1|) (-1138 |#1|)) 76)) (-2691 (((-1138 |#1|) (-554) (-554) (-1138 |#1|)) 96)) (-2279 (((-1138 |#1|) |#1| (-1138 |#1|)) 105 (|has| |#1| (-38 (-402 (-554)))))) (-2571 (((-1138 (-554)) (-554)) 56)) (-1664 (((-1138 |#1|) |#1|) 59)) (-4043 (((-1138 |#1|) (-1138 |#1|) (-554) (-554)) 92)) (-3012 (((-1138 |#1|) (-1 |#1| (-554)) (-1138 |#1|)) 66)) (-3919 (((-3 (-1138 |#1|) "failed") (-1138 |#1|) (-1138 |#1|)) 35)) (-4162 (((-1138 |#1|) (-1138 |#1|)) 91)) (-2386 (((-1138 |#1|) (-1138 |#1|) |#1|) 71)) (-2329 (((-1138 |#1|) (-1138 |#1|)) 62)) (-2748 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 72)) (-3075 (((-1138 |#1|) |#1|) 67)) (-1535 (((-1138 |#1|) (-1138 (-1138 |#1|))) 82)) (-1752 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 36)) (-1744 (((-1138 |#1|) (-1138 |#1|)) 21) (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 23)) (-1735 (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 17)) (* (((-1138 |#1|) (-1138 |#1|) |#1|) 29) (((-1138 |#1|) |#1| (-1138 |#1|)) 26) (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 27))) +(((-1142 |#1|) (-10 -7 (-15 -1735 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -3919 ((-3 (-1138 |#1|) "failed") (-1138 |#1|) (-1138 |#1|))) (-15 -1752 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1320 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3738 ((-1138 |#1|) |#1| (-554))) (-15 -2571 ((-1138 (-554)) (-554))) (-15 -3124 ((-1138 (-554)) (-554))) (-15 -1664 ((-1138 |#1|) |#1|)) (-15 -3631 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -2329 ((-1138 |#1|) (-1138 |#1|))) (-15 -3012 ((-1138 |#1|) (-1 |#1| (-554)) (-1138 |#1|))) (-15 -3075 ((-1138 |#1|) |#1|)) (-15 -2386 ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -2748 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4335 ((-1138 |#1|) (-1138 |#1|))) (-15 -3587 ((-1138 |#1|) (-1138 |#1|))) (-15 -1535 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -2618 ((-1138 |#1|) (-1138 |#1|))) (-15 -3598 ((-1138 |#1|) (-1138 |#1|))) (-15 -4162 ((-1138 |#1|) (-1138 |#1|))) (-15 -4043 ((-1138 |#1|) (-1138 |#1|) (-554) (-554))) (-15 -3712 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (-15 -2691 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 -3185 ((-1138 |#1|) |#1| (-1 (-1138 |#1|)))) (-15 -2043 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -1488 ((-1138 |#1|) (-402 (-554)) (-1138 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4108 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3819 ((-1138 |#1|) (-1 |#1| (-554)) |#1| (-1 (-1138 |#1|)))) (-15 -2776 ((-1138 |#1|) |#1| (-1138 |#1|)))) |%noBranch|)) (-1034)) (T -1142)) +((-2776 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-554))) (-5 *5 (-1 (-1138 *4))) (-4 *4 (-358)) (-4 *4 (-1034)) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)))) (-4108 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1488 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1034)) (-5 *3 (-402 (-554))) (-5 *1 (-1142 *4)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)) (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1138 *3))) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)))) (-2279 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2691 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-3712 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-4043 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)) (-4 *4 (-1034)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2748 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) (-3012 (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *4)) (-5 *3 (-1 *4 (-554))) (-4 *4 (-1034)) (-5 *1 (-1142 *4)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3631 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1664 (*1 *2 *3) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) (-3124 (*1 *2 *3) (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034)) (-5 *3 (-554)))) (-2571 (*1 *2 *3) (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034)) (-5 *3 (-554)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) (-1320 (*1 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1752 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-3919 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) (-1735 (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))) +(-10 -7 (-15 -1735 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1744 ((-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 * ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 * ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -3919 ((-3 (-1138 |#1|) "failed") (-1138 |#1|) (-1138 |#1|))) (-15 -1752 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1320 ((-3 (-1138 |#1|) "failed") (-1138 |#1|))) (-15 -3738 ((-1138 |#1|) |#1| (-554))) (-15 -2571 ((-1138 (-554)) (-554))) (-15 -3124 ((-1138 (-554)) (-554))) (-15 -1664 ((-1138 |#1|) |#1|)) (-15 -3631 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -2329 ((-1138 |#1|) (-1138 |#1|))) (-15 -3012 ((-1138 |#1|) (-1 |#1| (-554)) (-1138 |#1|))) (-15 -3075 ((-1138 |#1|) |#1|)) (-15 -2386 ((-1138 |#1|) (-1138 |#1|) |#1|)) (-15 -2748 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4335 ((-1138 |#1|) (-1138 |#1|))) (-15 -3587 ((-1138 |#1|) (-1138 |#1|))) (-15 -1535 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -2618 ((-1138 |#1|) (-1138 |#1|))) (-15 -3598 ((-1138 |#1|) (-1138 |#1|))) (-15 -4162 ((-1138 |#1|) (-1138 |#1|))) (-15 -4043 ((-1138 |#1|) (-1138 |#1|) (-554) (-554))) (-15 -3712 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (-15 -2691 ((-1138 |#1|) (-554) (-554) (-1138 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ((-1138 |#1|) |#1| (-1138 |#1|))) (-15 -3185 ((-1138 |#1|) |#1| (-1 (-1138 |#1|)))) (-15 -2043 ((-1138 |#1|) (-1138 (-1138 |#1|)))) (-15 -1488 ((-1138 |#1|) (-402 (-554)) (-1138 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4108 ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -3819 ((-1138 |#1|) (-1 |#1| (-554)) |#1| (-1 (-1138 |#1|)))) (-15 -2776 ((-1138 |#1|) |#1| (-1138 |#1|)))) |%noBranch|)) +((-3023 (((-1138 |#1|) (-1138 |#1|)) 57)) (-4200 (((-1138 |#1|) (-1138 |#1|)) 39)) (-3003 (((-1138 |#1|) (-1138 |#1|)) 53)) (-4177 (((-1138 |#1|) (-1138 |#1|)) 35)) (-3046 (((-1138 |#1|) (-1138 |#1|)) 60)) (-2916 (((-1138 |#1|) (-1138 |#1|)) 42)) (-2395 (((-1138 |#1|) (-1138 |#1|)) 31)) (-1333 (((-1138 |#1|) (-1138 |#1|)) 27)) (-3057 (((-1138 |#1|) (-1138 |#1|)) 61)) (-2926 (((-1138 |#1|) (-1138 |#1|)) 43)) (-3034 (((-1138 |#1|) (-1138 |#1|)) 58)) (-4213 (((-1138 |#1|) (-1138 |#1|)) 40)) (-3014 (((-1138 |#1|) (-1138 |#1|)) 55)) (-4188 (((-1138 |#1|) (-1138 |#1|)) 37)) (-3096 (((-1138 |#1|) (-1138 |#1|)) 65)) (-2959 (((-1138 |#1|) (-1138 |#1|)) 47)) (-3069 (((-1138 |#1|) (-1138 |#1|)) 63)) (-2938 (((-1138 |#1|) (-1138 |#1|)) 45)) (-3120 (((-1138 |#1|) (-1138 |#1|)) 68)) (-2981 (((-1138 |#1|) (-1138 |#1|)) 50)) (-2908 (((-1138 |#1|) (-1138 |#1|)) 69)) (-2991 (((-1138 |#1|) (-1138 |#1|)) 51)) (-3108 (((-1138 |#1|) (-1138 |#1|)) 67)) (-2969 (((-1138 |#1|) (-1138 |#1|)) 49)) (-3083 (((-1138 |#1|) (-1138 |#1|)) 66)) (-2948 (((-1138 |#1|) (-1138 |#1|)) 48)) (** (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 33))) +(((-1143 |#1|) (-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|)))) (-38 (-402 (-554)))) (T -1143)) +((-2908 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2948 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1143 *3))))) +(-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|)))) +((-3023 (((-1138 |#1|) (-1138 |#1|)) 100)) (-4200 (((-1138 |#1|) (-1138 |#1|)) 64)) (-3435 (((-2 (|:| -3003 (-1138 |#1|)) (|:| -3014 (-1138 |#1|))) (-1138 |#1|)) 96)) (-3003 (((-1138 |#1|) (-1138 |#1|)) 97)) (-1696 (((-2 (|:| -4177 (-1138 |#1|)) (|:| -4188 (-1138 |#1|))) (-1138 |#1|)) 53)) (-4177 (((-1138 |#1|) (-1138 |#1|)) 54)) (-3046 (((-1138 |#1|) (-1138 |#1|)) 102)) (-2916 (((-1138 |#1|) (-1138 |#1|)) 71)) (-2395 (((-1138 |#1|) (-1138 |#1|)) 39)) (-1333 (((-1138 |#1|) (-1138 |#1|)) 36)) (-3057 (((-1138 |#1|) (-1138 |#1|)) 103)) (-2926 (((-1138 |#1|) (-1138 |#1|)) 72)) (-3034 (((-1138 |#1|) (-1138 |#1|)) 101)) (-4213 (((-1138 |#1|) (-1138 |#1|)) 67)) (-3014 (((-1138 |#1|) (-1138 |#1|)) 98)) (-4188 (((-1138 |#1|) (-1138 |#1|)) 55)) (-3096 (((-1138 |#1|) (-1138 |#1|)) 111)) (-2959 (((-1138 |#1|) (-1138 |#1|)) 86)) (-3069 (((-1138 |#1|) (-1138 |#1|)) 105)) (-2938 (((-1138 |#1|) (-1138 |#1|)) 82)) (-3120 (((-1138 |#1|) (-1138 |#1|)) 115)) (-2981 (((-1138 |#1|) (-1138 |#1|)) 90)) (-2908 (((-1138 |#1|) (-1138 |#1|)) 117)) (-2991 (((-1138 |#1|) (-1138 |#1|)) 92)) (-3108 (((-1138 |#1|) (-1138 |#1|)) 113)) (-2969 (((-1138 |#1|) (-1138 |#1|)) 88)) (-3083 (((-1138 |#1|) (-1138 |#1|)) 107)) (-2948 (((-1138 |#1|) (-1138 |#1|)) 84)) (** (((-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) 40))) +(((-1144 |#1|) (-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1696 ((-2 (|:| -4177 (-1138 |#1|)) (|:| -4188 (-1138 |#1|))) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3435 ((-2 (|:| -3003 (-1138 |#1|)) (|:| -3014 (-1138 |#1|))) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|)))) (-38 (-402 (-554)))) (T -1144)) +((-2908 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-2 (|:| -3003 (-1138 *4)) (|:| -3014 (-1138 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2948 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-2 (|:| -4177 (-1138 *4)) (|:| -4188 (-1138 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1144 *3))))) +(-10 -7 (-15 -1333 ((-1138 |#1|) (-1138 |#1|))) (-15 -2395 ((-1138 |#1|) (-1138 |#1|))) (-15 ** ((-1138 |#1|) (-1138 |#1|) (-1138 |#1|))) (-15 -1696 ((-2 (|:| -4177 (-1138 |#1|)) (|:| -4188 (-1138 |#1|))) (-1138 |#1|))) (-15 -4177 ((-1138 |#1|) (-1138 |#1|))) (-15 -4188 ((-1138 |#1|) (-1138 |#1|))) (-15 -4200 ((-1138 |#1|) (-1138 |#1|))) (-15 -4213 ((-1138 |#1|) (-1138 |#1|))) (-15 -2916 ((-1138 |#1|) (-1138 |#1|))) (-15 -2926 ((-1138 |#1|) (-1138 |#1|))) (-15 -2938 ((-1138 |#1|) (-1138 |#1|))) (-15 -2948 ((-1138 |#1|) (-1138 |#1|))) (-15 -2959 ((-1138 |#1|) (-1138 |#1|))) (-15 -2969 ((-1138 |#1|) (-1138 |#1|))) (-15 -2981 ((-1138 |#1|) (-1138 |#1|))) (-15 -2991 ((-1138 |#1|) (-1138 |#1|))) (-15 -3435 ((-2 (|:| -3003 (-1138 |#1|)) (|:| -3014 (-1138 |#1|))) (-1138 |#1|))) (-15 -3003 ((-1138 |#1|) (-1138 |#1|))) (-15 -3014 ((-1138 |#1|) (-1138 |#1|))) (-15 -3023 ((-1138 |#1|) (-1138 |#1|))) (-15 -3034 ((-1138 |#1|) (-1138 |#1|))) (-15 -3046 ((-1138 |#1|) (-1138 |#1|))) (-15 -3057 ((-1138 |#1|) (-1138 |#1|))) (-15 -3069 ((-1138 |#1|) (-1138 |#1|))) (-15 -3083 ((-1138 |#1|) (-1138 |#1|))) (-15 -3096 ((-1138 |#1|) (-1138 |#1|))) (-15 -3108 ((-1138 |#1|) (-1138 |#1|))) (-15 -3120 ((-1138 |#1|) (-1138 |#1|))) (-15 -2908 ((-1138 |#1|) (-1138 |#1|)))) +((-3544 (((-943 |#2|) |#2| |#2|) 35)) (-2048 ((|#2| |#2| |#1|) 19 (|has| |#1| (-302))))) +(((-1145 |#1| |#2|) (-10 -7 (-15 -3544 ((-943 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -2048 (|#2| |#2| |#1|)) |%noBranch|)) (-546) (-1217 |#1|)) (T -1145)) +((-2048 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-4 *3 (-546)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-1217 *3)))) (-3544 (*1 *2 *3 *3) (-12 (-4 *4 (-546)) (-5 *2 (-943 *3)) (-5 *1 (-1145 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -3544 ((-943 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -2048 (|#2| |#2| |#1|)) |%noBranch|)) +((-3062 (((-112) $ $) NIL)) (-2998 (($ $ (-631 (-758))) 67)) (-3504 (($) 26)) (-3986 (($ $) 42)) (-4022 (((-631 $) $) 51)) (-3663 (((-112) $) 16)) (-3196 (((-631 (-928 |#2|)) $) 74)) (-3687 (($ $) 68)) (-3006 (((-758) $) 37)) (-3180 (($) 25)) (-2040 (($ $ (-631 (-758)) (-928 |#2|)) 60) (($ $ (-631 (-758)) (-758)) 61) (($ $ (-758) (-928 |#2|)) 63)) (-3717 (($ $ $) 48) (($ (-631 $)) 50)) (-2848 (((-758) $) 75)) (-3216 (((-112) $) 15)) (-1613 (((-1140) $) NIL)) (-4068 (((-112) $) 18)) (-2768 (((-1102) $) NIL)) (-1672 (((-169) $) 73)) (-3968 (((-928 |#2|) $) 69)) (-1626 (((-758) $) 70)) (-2194 (((-112) $) 72)) (-2800 (($ $ (-631 (-758)) (-169)) 66)) (-1528 (($ $) 43)) (-3075 (((-848) $) 86)) (-3661 (($ $ (-631 (-758)) (-112)) 65)) (-2461 (((-631 $) $) 11)) (-4059 (($ $ (-758)) 36)) (-1331 (($ $) 32)) (-1505 (($ $ $ (-928 |#2|) (-758)) 56)) (-2187 (($ $ (-928 |#2|)) 55)) (-4221 (($ $ (-631 (-758)) (-928 |#2|)) 54) (($ $ (-631 (-758)) (-758)) 58) (((-758) $ (-928 |#2|)) 59)) (-1658 (((-112) $ $) 80))) +(((-1146 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3216 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -4068 ((-112) $)) (-15 -3180 ($)) (-15 -3504 ($)) (-15 -1331 ($ $)) (-15 -4059 ($ $ (-758))) (-15 -2461 ((-631 $) $)) (-15 -3006 ((-758) $)) (-15 -3986 ($ $)) (-15 -1528 ($ $)) (-15 -3717 ($ $ $)) (-15 -3717 ($ (-631 $))) (-15 -4022 ((-631 $) $)) (-15 -4221 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -2187 ($ $ (-928 |#2|))) (-15 -1505 ($ $ $ (-928 |#2|) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -4221 ($ $ (-631 (-758)) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-758))) (-15 -4221 ((-758) $ (-928 |#2|))) (-15 -2040 ($ $ (-758) (-928 |#2|))) (-15 -3661 ($ $ (-631 (-758)) (-112))) (-15 -2800 ($ $ (-631 (-758)) (-169))) (-15 -2998 ($ $ (-631 (-758)))) (-15 -3968 ((-928 |#2|) $)) (-15 -1626 ((-758) $)) (-15 -2194 ((-112) $)) (-15 -1672 ((-169) $)) (-15 -2848 ((-758) $)) (-15 -3687 ($ $)) (-15 -3196 ((-631 (-928 |#2|)) $)))) (-906) (-1034)) (T -1146)) +((-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3180 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3504 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-1331 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-4059 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3986 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-1528 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3717 (*1 *1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-4221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-928 *4)) (-4 *4 (-1034)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)))) (-1505 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-928 *5)) (-5 *3 (-758)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-4221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *2 (-758)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) (-3661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-112)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-2800 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-631 (-758))) (-5 *3 (-169)) (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)) (-4 *5 (-1034)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-928 *4)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034)))) (-3687 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-631 (-928 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) (-4 *4 (-1034))))) +(-13 (-1082) (-10 -8 (-15 -3216 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -4068 ((-112) $)) (-15 -3180 ($)) (-15 -3504 ($)) (-15 -1331 ($ $)) (-15 -4059 ($ $ (-758))) (-15 -2461 ((-631 $) $)) (-15 -3006 ((-758) $)) (-15 -3986 ($ $)) (-15 -1528 ($ $)) (-15 -3717 ($ $ $)) (-15 -3717 ($ (-631 $))) (-15 -4022 ((-631 $) $)) (-15 -4221 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -2187 ($ $ (-928 |#2|))) (-15 -1505 ($ $ $ (-928 |#2|) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-928 |#2|))) (-15 -4221 ($ $ (-631 (-758)) (-758))) (-15 -2040 ($ $ (-631 (-758)) (-758))) (-15 -4221 ((-758) $ (-928 |#2|))) (-15 -2040 ($ $ (-758) (-928 |#2|))) (-15 -3661 ($ $ (-631 (-758)) (-112))) (-15 -2800 ($ $ (-631 (-758)) (-169))) (-15 -2998 ($ $ (-631 (-758)))) (-15 -3968 ((-928 |#2|) $)) (-15 -1626 ((-758) $)) (-15 -2194 ((-112) $)) (-15 -1672 ((-169) $)) (-15 -2848 ((-758) $)) (-15 -3687 ($ $)) (-15 -3196 ((-631 (-928 |#2|)) $)))) +((-3062 (((-112) $ $) NIL)) (-3848 ((|#2| $) 11)) (-3836 ((|#1| $) 10)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3089 (($ |#1| |#2|) 9)) (-3075 (((-848) $) 16)) (-1658 (((-112) $ $) NIL))) +(((-1147 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3089 ($ |#1| |#2|)) (-15 -3836 (|#1| $)) (-15 -3848 (|#2| $)))) (-1082) (-1082)) (T -1147)) +((-3089 (*1 *1 *2 *3) (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3836 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *2 *3)) (-4 *3 (-1082)))) (-3848 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1082))))) +(-13 (-1082) (-10 -8 (-15 -3089 ($ |#1| |#2|)) (-15 -3836 (|#1| $)) (-15 -3848 (|#2| $)))) +((-3062 (((-112) $ $) NIL)) (-4322 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1148) (-13 (-1065) (-10 -8 (-15 -4322 ((-1117) $))))) (T -1148)) +((-4322 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1148))))) +(-13 (-1065) (-10 -8 (-15 -4322 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1976 (($ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1363 (((-112) $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1557 (($ $ (-554)) NIL) (($ $ (-554) (-554)) 66)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) NIL)) (-2216 (((-1156 |#1| |#2| |#3|) $) 36)) (-1949 (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 29)) (-2444 (((-1156 |#1| |#2| |#3|) $) 30)) (-3023 (($ $) 107 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 83 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) 103 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 79 (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) 111 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 87 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1158) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-554) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1668 (((-1156 |#1| |#2| |#3|) $) 131) (((-1158) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-402 (-554)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-554) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1749 (($ $) 34) (($ (-554) $) 35)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-1156 |#1| |#2| |#3|)) (-675 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-1156 |#1| |#2| |#3|))) (|:| |vec| (-1241 (-1156 |#1| |#2| |#3|)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) 48)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 65 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 67 (|has| |#1| (-546)))) (-3353 (($) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2745 (((-112) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) 25)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) NIL) (((-554) $ (-554)) 24)) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL (|has| |#1| (-358)))) (-2810 (((-1156 |#1| |#2| |#3|) $) 38 (|has| |#1| (-358)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) NIL)) (-1310 (($ (-1 |#1| (-554)) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-554)) 18) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-4223 (($ $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2706 (($ $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2395 (($ $) 72 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2454 (($ (-554) (-1156 |#1| |#2| |#3|)) 33)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 70 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 71 (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3722 (($ $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4339 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 145)) (-3919 (((-3 $ "failed") $ $) 49 (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) 73 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-508 (-1158) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-508 (-1158) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-289 (-1156 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1156 |#1| |#2| |#3|)) (-631 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-304 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) NIL) (($ $ $) 54 (|has| (-554) (-1094))) (($ $ (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-281 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1237 |#2|)) 51) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 50 (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-3623 (($ $) NIL (|has| |#1| (-358)))) (-2822 (((-1156 |#1| |#2| |#3|) $) 41 (|has| |#1| (-358)))) (-3308 (((-554) $) 37)) (-3057 (($ $) 113 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 89 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 109 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 85 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 105 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 81 (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-530) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-602 (-530))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-877 (-374)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 149) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1156 |#1| |#2| |#3|)) 27) (($ (-1237 |#2|)) 23) (($ (-1158)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (($ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546)))) (($ (-402 (-554))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-554))))))) (-1779 ((|#1| $ (-554)) 68)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 12)) (-2755 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3096 (($ $) 119 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 95 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-3069 (($ $) 115 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 91 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 99 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 101 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 97 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 117 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 93 (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2004 (($) 20 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-1708 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1686 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1676 (((-112) $ $) NIL (-3994 (-12 (|has| (-1156 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 44 (|has| |#1| (-358))) (($ (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) 45 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 21)) (** (($ $ (-906)) NIL) (($ $ (-758)) 53) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) 74 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 128 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1156 |#1| |#2| |#3|)) 43 (|has| |#1| (-358))) (($ (-1156 |#1| |#2| |#3|) $) 42 (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1149 |#1| |#2| |#3|) (-13 (-1203 |#1| (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1149)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1203 |#1| (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-1688 ((|#2| |#2| (-1074 |#2|)) 26) ((|#2| |#2| (-1158)) 28))) +(((-1150 |#1| |#2|) (-10 -7 (-15 -1688 (|#2| |#2| (-1158))) (-15 -1688 (|#2| |#2| (-1074 |#2|)))) (-13 (-546) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-425 |#1|) (-158) (-27) (-1180))) (T -1150)) +((-1688 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180))) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1150 *4 *2)))) (-1688 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180)))))) +(-10 -7 (-15 -1688 (|#2| |#2| (-1158))) (-15 -1688 (|#2| |#2| (-1074 |#2|)))) +((-1688 (((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1074 (-402 (-937 |#1|)))) 31) (((-402 (-937 |#1|)) (-937 |#1|) (-1074 (-937 |#1|))) 44) (((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1158)) 33) (((-402 (-937 |#1|)) (-937 |#1|) (-1158)) 36))) +(((-1151 |#1|) (-10 -7 (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1158))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1074 (-937 |#1|)))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1074 (-402 (-937 |#1|)))))) (-13 (-546) (-836) (-1023 (-554)))) (T -1151)) +((-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-3 *3 (-311 *5))) (-5 *1 (-1151 *5)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-937 *5))) (-5 *3 (-937 *5)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-402 *3)) (-5 *1 (-1151 *5)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-3 (-402 (-937 *5)) (-311 *5))) (-5 *1 (-1151 *5)) (-5 *3 (-402 (-937 *5))))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-402 (-937 *5))) (-5 *1 (-1151 *5)) (-5 *3 (-937 *5))))) +(-10 -7 (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1158))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1158))) (-15 -1688 ((-402 (-937 |#1|)) (-937 |#1|) (-1074 (-937 |#1|)))) (-15 -1688 ((-3 (-402 (-937 |#1|)) (-311 |#1|)) (-402 (-937 |#1|)) (-1074 (-402 (-937 |#1|)))))) +((-2879 (((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)) 13))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -2879 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)))) (-1034) (-1034)) (T -1152)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-5 *2 (-1154 *6)) (-5 *1 (-1152 *5 *6))))) +(-10 -7 (-15 -2879 ((-1154 |#2|) (-1 |#2| |#1|) (-1154 |#1|)))) +((-1565 (((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))) 51)) (-2270 (((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))) 52))) +(((-1153 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|)))) (-15 -1565 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))))) (-780) (-836) (-446) (-934 |#3| |#1| |#2|)) (T -1153)) +((-1565 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7)))) (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7))))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446)) (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7)))) (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7)))))) +(-10 -7 (-15 -2270 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|)))) (-15 -1565 ((-413 (-1154 (-402 |#4|))) (-1154 (-402 |#4|))))) +((-3062 (((-112) $ $) 137)) (-1695 (((-112) $) 27)) (-2481 (((-1241 |#1|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#1|)) NIL)) (-2237 (((-1154 $) $ (-1064)) 58) (((-1154 |#1|) $) 47)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) 132 (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) 126 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) 71 (|has| |#1| (-894)))) (-3278 (($ $) NIL (|has| |#1| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 91 (|has| |#1| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-1470 (($ $ (-758)) 39)) (-3867 (($ $ (-758)) 40)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#1| $) NIL) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-1064) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) 56)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) NIL) (((-675 |#1|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3639 (($ $ $) 104)) (-2489 (($ $ $) NIL (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-2048 (($ $) 133 (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-758) $) 45)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-3701 (((-848) $ (-848)) 117)) (-2342 (((-758) $ $) NIL (|has| |#1| (-546)))) (-3248 (((-112) $) 30)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) 49) (($ (-1154 $) (-1064)) 65)) (-3333 (($ $ (-758)) 32)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 63) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 121)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2964 (((-1154 |#1|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) 52)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-1613 (((-1140) $) NIL)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) 38)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) 31)) (-2505 ((|#1| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 79 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-446))) (($ $ $) 135 (|has| |#1| (-446)))) (-2034 (($ $ (-758) |#1| $) 99)) (-1290 (((-413 (-1154 $)) (-1154 $)) 77 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 76 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 84 (|has| |#1| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#1|) NIL) (($ $ (-631 (-1064)) (-631 |#1|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) 35)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 138 (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3308 (((-758) $) 54) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 130 (|has| |#1| (-446))) (($ $ (-1064)) NIL (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-894))))) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-546)))) (-3075 (((-848) $) 118) (($ (-554)) NIL) (($ |#1|) 53) (($ (-1064)) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) 25 (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 15 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) 96)) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 139 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 66)) (** (($ $ (-906)) 14) (($ $ (-758)) 12)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 24) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1154 |#1|) (-13 (-1217 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))) (-15 -2034 ($ $ (-758) |#1| $)))) (-1034)) (T -1154)) +((-3701 (*1 *2 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1154 *3)) (-4 *3 (-1034)))) (-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1154 *3)) (-4 *3 (-1034))))) +(-13 (-1217 |#1|) (-10 -8 (-15 -3701 ((-848) $ (-848))) (-15 -2034 ($ $ (-758) |#1| $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1149 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 36)) (-1668 (((-1149 |#1| |#2| |#3|) $) NIL) (((-1156 |#1| |#2| |#3|) $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2811 (((-402 (-554)) $) 55)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) (-1149 |#1| |#2| |#3|)) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) 20) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2058 (((-1149 |#1| |#2| |#3|) $) 41)) (-1602 (((-3 (-1149 |#1| |#2| |#3|) "failed") $) NIL)) (-2454 (((-1149 |#1| |#2| |#3|) $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 39 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 40 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $ (-1237 |#2|)) 38)) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 58) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1149 |#1| |#2| |#3|)) 30) (($ (-1156 |#1| |#2| |#3|)) 31) (($ (-1237 |#2|)) 26) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 12)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 22 T CONST)) (-2014 (($) 16 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 24)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1155 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1149 |#1| |#2| |#3|)) (-1023 (-1156 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1155)) +((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1224 |#1| (-1149 |#1| |#2| |#3|)) (-1023 (-1156 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 125)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 116)) (-1530 (((-1214 |#2| |#1|) $ (-758)) 63)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-758)) 79) (($ $ (-758) (-758)) 76)) (-3042 (((-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|))) $) 102)) (-3023 (($ $) 169 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 165 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|)))) 115) (($ (-1138 |#1|)) 110)) (-3046 (($ $) 173 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 149 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) 23)) (-3356 (($ $) 26)) (-3497 (((-937 |#1|) $ (-758)) 75) (((-937 |#1|) $ (-758) (-758)) 77)) (-2051 (((-112) $) 120)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $) 122) (((-758) $ (-758)) 124)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL)) (-1310 (($ (-1 |#1| (-554)) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 13) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $) 129 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 130 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-4282 (($ $ (-758)) 15)) (-3919 (((-3 $ "failed") $ $) 24 (|has| |#1| (-546)))) (-1333 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-758)))))) (-2064 ((|#1| $ (-758)) 119) (($ $ $) 128 (|has| (-758) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $ (-1237 |#2|)) 29)) (-3308 (((-758) $) NIL)) (-3057 (($ $) 175 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 151 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 171 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 147 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 167 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 201) (($ (-554)) NIL) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1214 |#2| |#1|)) 51) (($ (-1237 |#2|)) 32)) (-1893 (((-1138 |#1|) $) 98)) (-1779 ((|#1| $ (-758)) 118)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 54)) (-3096 (($ $) 181 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 157 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 177 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 153 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 185 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 161 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-758)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-758)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 187 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 163 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 183 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 159 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 179 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 155 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 17 T CONST)) (-2014 (($) 19 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 194)) (-1735 (($ $ $) 31)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ |#1|) 198 (|has| |#1| (-358))) (($ $ $) 134 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 137 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1156 |#1| |#2| |#3|) (-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1156)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-1156 *3 *4 *5)))) (-1530 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1156 *4 *5 *6)) (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-3075 (((-848) $) 27) (($ (-1158)) 29)) (-3994 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 40)) (-3981 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 33) (($ $) 34)) (-2207 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 35)) (-2193 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 37)) (-2180 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 36)) (-2167 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 38)) (-3245 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 39))) +(((-1157) (-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2207 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2180 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2193 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2167 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3994 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3245 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ $))))) (T -1157)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1157)))) (-2207 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-2180 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-2193 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-2167 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3994 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3245 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3981 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) (-5 *1 (-1157)))) (-3981 (*1 *1 *1) (-5 *1 (-1157)))) +(-13 (-601 (-848)) (-10 -8 (-15 -3075 ($ (-1158))) (-15 -2207 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2180 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2193 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2167 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3994 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3245 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3981 ($ $)))) +((-3062 (((-112) $ $) NIL)) (-2224 (($ $ (-631 (-848))) 59)) (-2853 (($ $ (-631 (-848))) 57)) (-3942 (((-1140) $) 84)) (-2591 (((-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))) $) 87)) (-3001 (((-112) $) 22)) (-2226 (($ $ (-631 (-631 (-848)))) 56) (($ $ (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848))))) 82)) (-4087 (($) 124 T CONST)) (-3538 (((-1246)) 106)) (-1655 (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 66) (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 73)) (-3180 (($) 95) (($ $) 101)) (-4309 (($ $) 83)) (-4223 (($ $ $) NIL)) (-2706 (($ $ $) NIL)) (-1416 (((-631 $) $) 107)) (-1613 (((-1140) $) 90)) (-2768 (((-1102) $) NIL)) (-2064 (($ $ (-631 (-848))) 58)) (-2927 (((-530) $) 46) (((-1158) $) 47) (((-877 (-554)) $) 77) (((-877 (-374)) $) 75)) (-3075 (((-848) $) 53) (($ (-1140)) 48)) (-2213 (($ $ (-631 (-848))) 60)) (-4048 (((-1140) $) 33) (((-1140) $ (-112)) 34) (((-1246) (-809) $) 35) (((-1246) (-809) $ (-112)) 36)) (-1708 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1658 (((-112) $ $) 49)) (-1697 (((-112) $ $) NIL)) (-1676 (((-112) $ $) 50))) +(((-1158) (-13 (-836) (-602 (-530)) (-815) (-602 (-1158)) (-604 (-1140)) (-602 (-877 (-554))) (-602 (-877 (-374))) (-871 (-554)) (-871 (-374)) (-10 -8 (-15 -3180 ($)) (-15 -3180 ($ $)) (-15 -3538 ((-1246))) (-15 -4309 ($ $)) (-15 -3001 ((-112) $)) (-15 -2591 ((-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))) $)) (-15 -2226 ($ $ (-631 (-631 (-848))))) (-15 -2226 ($ $ (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))))) (-15 -2853 ($ $ (-631 (-848)))) (-15 -2224 ($ $ (-631 (-848)))) (-15 -2213 ($ $ (-631 (-848)))) (-15 -2064 ($ $ (-631 (-848)))) (-15 -3942 ((-1140) $)) (-15 -1416 ((-631 $) $)) (-15 -4087 ($) -2397)))) (T -1158)) +((-3180 (*1 *1) (-5 *1 (-1158))) (-3180 (*1 *1 *1) (-5 *1 (-1158))) (-3538 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1158)))) (-4309 (*1 *1 *1) (-5 *1 (-1158))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848))))) (-5 *1 (-1158)))) (-2226 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-1158)))) (-2226 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848))))) (-5 *1 (-1158)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-2224 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1158)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1158)))) (-4087 (*1 *1) (-5 *1 (-1158)))) +(-13 (-836) (-602 (-530)) (-815) (-602 (-1158)) (-604 (-1140)) (-602 (-877 (-554))) (-602 (-877 (-374))) (-871 (-554)) (-871 (-374)) (-10 -8 (-15 -3180 ($)) (-15 -3180 ($ $)) (-15 -3538 ((-1246))) (-15 -4309 ($ $)) (-15 -3001 ((-112) $)) (-15 -2591 ((-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))) $)) (-15 -2226 ($ $ (-631 (-631 (-848))))) (-15 -2226 ($ $ (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) (|:| |args| (-631 (-848)))))) (-15 -2853 ($ $ (-631 (-848)))) (-15 -2224 ($ $ (-631 (-848)))) (-15 -2213 ($ $ (-631 (-848)))) (-15 -2064 ($ $ (-631 (-848)))) (-15 -3942 ((-1140) $)) (-15 -1416 ((-631 $) $)) (-15 -4087 ($) -2397))) +((-4007 (((-1241 |#1|) |#1| (-906)) 16) (((-1241 |#1|) (-631 |#1|)) 20))) +(((-1159 |#1|) (-10 -7 (-15 -4007 ((-1241 |#1|) (-631 |#1|))) (-15 -4007 ((-1241 |#1|) |#1| (-906)))) (-1034)) (T -1159)) +((-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-1241 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1034)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1034)) (-5 *2 (-1241 *4)) (-5 *1 (-1159 *4))))) +(-10 -7 (-15 -4007 ((-1241 |#1|) (-631 |#1|))) (-15 -4007 ((-1241 |#1|) |#1| (-906)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| |#1| (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#1| (-1023 (-402 (-554))))) (((-3 |#1| "failed") $) NIL)) (-1668 (((-554) $) NIL (|has| |#1| (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| |#1| (-1023 (-402 (-554))))) ((|#1| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2048 (($ $) NIL (|has| |#1| (-446)))) (-1344 (($ $ |#1| (-956) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-956)) NIL)) (-3893 (((-956) $) NIL)) (-2789 (($ (-1 (-956) (-956)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#1| $) NIL)) (-2034 (($ $ (-956) |#1| $) NIL (-12 (|has| (-956) (-130)) (|has| |#1| (-546))))) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-546)))) (-3308 (((-956) $) NIL)) (-3276 ((|#1| $) NIL (|has| |#1| (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) NIL) (($ (-402 (-554))) NIL (-3994 (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-1023 (-402 (-554))))))) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ (-956)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#1| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2004 (($) 9 T CONST)) (-2014 (($) 14 T CONST)) (-1658 (((-112) $ $) 16)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 19)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1160 |#1|) (-13 (-321 |#1| (-956)) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| (-956) (-130)) (-15 -2034 ($ $ (-956) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) (-1034)) (T -1160)) +((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-956)) (-4 *2 (-130)) (-5 *1 (-1160 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))) +(-13 (-321 |#1| (-956)) (-10 -8 (IF (|has| |#1| (-546)) (IF (|has| (-956) (-130)) (-15 -2034 ($ $ (-956) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) +((-1434 (((-1162) (-1158) $) 25)) (-2759 (($) 29)) (-3493 (((-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-1158) $) 22)) (-3432 (((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) $) 41) (((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) 42) (((-1246) (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) 43)) (-3904 (((-1246) (-1158)) 58)) (-2673 (((-1246) (-1158) $) 55) (((-1246) (-1158)) 56) (((-1246)) 57)) (-1283 (((-1246) (-1158)) 37)) (-4230 (((-1158)) 36)) (-4240 (($) 34)) (-1994 (((-432) (-1158) (-432) (-1158) $) 45) (((-432) (-631 (-1158)) (-432) (-1158) $) 49) (((-432) (-1158) (-432)) 46) (((-432) (-1158) (-432) (-1158)) 50)) (-1965 (((-1158)) 35)) (-3075 (((-848) $) 28)) (-2042 (((-1246)) 30) (((-1246) (-1158)) 33)) (-3924 (((-631 (-1158)) (-1158) $) 24)) (-2727 (((-1246) (-1158) (-631 (-1158)) $) 38) (((-1246) (-1158) (-631 (-1158))) 39) (((-1246) (-631 (-1158))) 40))) +(((-1161) (-13 (-601 (-848)) (-10 -8 (-15 -2759 ($)) (-15 -2042 ((-1246))) (-15 -2042 ((-1246) (-1158))) (-15 -1994 ((-432) (-1158) (-432) (-1158) $)) (-15 -1994 ((-432) (-631 (-1158)) (-432) (-1158) $)) (-15 -1994 ((-432) (-1158) (-432))) (-15 -1994 ((-432) (-1158) (-432) (-1158))) (-15 -1283 ((-1246) (-1158))) (-15 -1965 ((-1158))) (-15 -4230 ((-1158))) (-15 -2727 ((-1246) (-1158) (-631 (-1158)) $)) (-15 -2727 ((-1246) (-1158) (-631 (-1158)))) (-15 -2727 ((-1246) (-631 (-1158)))) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -3432 ((-1246) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -2673 ((-1246) (-1158) $)) (-15 -2673 ((-1246) (-1158))) (-15 -2673 ((-1246))) (-15 -3904 ((-1246) (-1158))) (-15 -4240 ($)) (-15 -3493 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-1158) $)) (-15 -3924 ((-631 (-1158)) (-1158) $)) (-15 -1434 ((-1162) (-1158) $))))) (T -1161)) +((-2759 (*1 *1) (-5 *1 (-1161))) (-2042 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *4 (-1158)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) (-1994 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-1965 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161)))) (-4230 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161)))) (-2727 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3432 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1158)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2673 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-2673 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) (-4240 (*1 *1) (-5 *1 (-1161))) (-3493 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *1 (-1161)))) (-3924 (*1 *2 *3 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1161)) (-5 *3 (-1158)))) (-1434 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1162)) (-5 *1 (-1161))))) +(-13 (-601 (-848)) (-10 -8 (-15 -2759 ($)) (-15 -2042 ((-1246))) (-15 -2042 ((-1246) (-1158))) (-15 -1994 ((-432) (-1158) (-432) (-1158) $)) (-15 -1994 ((-432) (-631 (-1158)) (-432) (-1158) $)) (-15 -1994 ((-432) (-1158) (-432))) (-15 -1994 ((-432) (-1158) (-432) (-1158))) (-15 -1283 ((-1246) (-1158))) (-15 -1965 ((-1158))) (-15 -4230 ((-1158))) (-15 -2727 ((-1246) (-1158) (-631 (-1158)) $)) (-15 -2727 ((-1246) (-1158) (-631 (-1158)))) (-15 -2727 ((-1246) (-631 (-1158)))) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")) $)) (-15 -3432 ((-1246) (-1158) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -3432 ((-1246) (-3 (|:| |fst| (-429)) (|:| -2053 "void")))) (-15 -2673 ((-1246) (-1158) $)) (-15 -2673 ((-1246) (-1158))) (-15 -2673 ((-1246))) (-15 -3904 ((-1246) (-1158))) (-15 -4240 ($)) (-15 -3493 ((-3 (|:| |fst| (-429)) (|:| -2053 "void")) (-1158) $)) (-15 -3924 ((-631 (-1158)) (-1158) $)) (-15 -1434 ((-1162) (-1158) $)))) +((-2517 (((-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) $) 59)) (-1412 (((-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))) (-429) $) 43)) (-1364 (($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))) 17)) (-3904 (((-1246) $) 67)) (-2381 (((-631 (-1158)) $) 22)) (-4273 (((-1086) $) 55)) (-2240 (((-432) (-1158) $) 27)) (-1997 (((-631 (-1158)) $) 30)) (-4240 (($) 19)) (-1994 (((-432) (-631 (-1158)) (-432) $) 25) (((-432) (-1158) (-432) $) 24)) (-3075 (((-848) $) 9) (((-1168 (-1158) (-432)) $) 13))) +(((-1162) (-13 (-601 (-848)) (-10 -8 (-15 -3075 ((-1168 (-1158) (-432)) $)) (-15 -4240 ($)) (-15 -1994 ((-432) (-631 (-1158)) (-432) $)) (-15 -1994 ((-432) (-1158) (-432) $)) (-15 -2240 ((-432) (-1158) $)) (-15 -2381 ((-631 (-1158)) $)) (-15 -1412 ((-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))) (-429) $)) (-15 -1997 ((-631 (-1158)) $)) (-15 -2517 ((-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) $)) (-15 -4273 ((-1086) $)) (-15 -3904 ((-1246) $)) (-15 -1364 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))))))) (T -1162)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-1168 (-1158) (-432))) (-5 *1 (-1162)))) (-4240 (*1 *1) (-5 *1 (-1162))) (-1994 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *1 (-1162)))) (-1994 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1162)))) (-2240 (*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-432)) (-5 *1 (-1162)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162)))) (-1412 (*1 *2 *3 *1) (-12 (-5 *3 (-429)) (-5 *2 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) (-5 *1 (-1162)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))))) (-5 *1 (-1162)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1162)))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1162)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))) (-5 *1 (-1162))))) +(-13 (-601 (-848)) (-10 -8 (-15 -3075 ((-1168 (-1158) (-432)) $)) (-15 -4240 ($)) (-15 -1994 ((-432) (-631 (-1158)) (-432) $)) (-15 -1994 ((-432) (-1158) (-432) $)) (-15 -2240 ((-432) (-1158) $)) (-15 -2381 ((-631 (-1158)) $)) (-15 -1412 ((-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))) (-429) $)) (-15 -1997 ((-631 (-1158)) $)) (-15 -2517 ((-631 (-631 (-3 (|:| -4309 (-1158)) (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) $)) (-15 -4273 ((-1086) $)) (-15 -3904 ((-1246) $)) (-15 -1364 ($ (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432)))))))) +((-3062 (((-112) $ $) NIL)) (-2784 (((-3 (-554) "failed") $) 29) (((-3 (-221) "failed") $) 35) (((-3 (-1158) "failed") $) 41) (((-3 (-1140) "failed") $) 47)) (-1668 (((-554) $) 30) (((-221) $) 36) (((-1158) $) 42) (((-1140) $) 48)) (-3313 (((-112) $) 53)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1499 (((-3 (-554) (-221) (-1158) (-1140) $) $) 55)) (-3894 (((-631 $) $) 57)) (-2927 (((-1086) $) 24) (($ (-1086)) 25)) (-2153 (((-112) $) 56)) (-3075 (((-848) $) 23) (($ (-554)) 26) (($ (-221)) 32) (($ (-1158)) 38) (($ (-1140)) 44) (((-554) $) 31) (((-221) $) 37) (((-1158) $) 43) (((-1140) $) 49)) (-3182 (((-112) $ (|[\|\|]| (-554))) 10) (((-112) $ (|[\|\|]| (-221))) 13) (((-112) $ (|[\|\|]| (-1158))) 19) (((-112) $ (|[\|\|]| (-1140))) 16)) (-1666 (($ (-1158) (-631 $)) 51) (($ $ (-631 $)) 52)) (-1556 (((-554) $) 27) (((-221) $) 33) (((-1158) $) 39) (((-1140) $) 45)) (-1658 (((-112) $ $) 7))) +(((-1163) (-13 (-1236) (-1082) (-1023 (-554)) (-1023 (-221)) (-1023 (-1158)) (-1023 (-1140)) (-10 -8 (-15 -2927 ((-1086) $)) (-15 -2927 ($ (-1086))) (-15 -3075 ((-554) $)) (-15 -1556 ((-554) $)) (-15 -3075 ((-221) $)) (-15 -1556 ((-221) $)) (-15 -3075 ((-1158) $)) (-15 -1556 ((-1158) $)) (-15 -3075 ((-1140) $)) (-15 -1556 ((-1140) $)) (-15 -1666 ($ (-1158) (-631 $))) (-15 -1666 ($ $ (-631 $))) (-15 -3313 ((-112) $)) (-15 -1499 ((-3 (-554) (-221) (-1158) (-1140) $) $)) (-15 -3894 ((-631 $) $)) (-15 -2153 ((-112) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-554)))) (-15 -3182 ((-112) $ (|[\|\|]| (-221)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1158)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1140))))))) (T -1163)) +((-2927 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1163)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163)))) (-1666 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-1163))) (-5 *1 (-1163)))) (-1666 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-3 (-554) (-221) (-1158) (-1140) (-1163))) (-5 *1 (-1163)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)) (-5 *1 (-1163)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)) (-5 *1 (-1163))))) +(-13 (-1236) (-1082) (-1023 (-554)) (-1023 (-221)) (-1023 (-1158)) (-1023 (-1140)) (-10 -8 (-15 -2927 ((-1086) $)) (-15 -2927 ($ (-1086))) (-15 -3075 ((-554) $)) (-15 -1556 ((-554) $)) (-15 -3075 ((-221) $)) (-15 -1556 ((-221) $)) (-15 -3075 ((-1158) $)) (-15 -1556 ((-1158) $)) (-15 -3075 ((-1140) $)) (-15 -1556 ((-1140) $)) (-15 -1666 ($ (-1158) (-631 $))) (-15 -1666 ($ $ (-631 $))) (-15 -3313 ((-112) $)) (-15 -1499 ((-3 (-554) (-221) (-1158) (-1140) $) $)) (-15 -3894 ((-631 $) $)) (-15 -2153 ((-112) $)) (-15 -3182 ((-112) $ (|[\|\|]| (-554)))) (-15 -3182 ((-112) $ (|[\|\|]| (-221)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1158)))) (-15 -3182 ((-112) $ (|[\|\|]| (-1140)))))) +((-3263 (((-631 (-631 (-937 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 57)) (-1900 (((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|)))) 69) (((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|))) 65) (((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158)) 70) (((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158)) 64) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|))))) 93) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|)))) 92) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158))) 94) (((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))) (-631 (-1158))) 91))) +(((-1164 |#1|) (-10 -7 (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))))) (-15 -3263 ((-631 (-631 (-937 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))))) (-546)) (T -1164)) +((-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-937 *5)))) (-5 *1 (-1164 *5)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4))))) (-5 *1 (-1164 *4)) (-5 *3 (-289 (-402 (-937 *4)))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4))))) (-5 *1 (-1164 *4)) (-5 *3 (-402 (-937 *4))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5)) (-5 *3 (-289 (-402 (-937 *5)))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-1158)) (-4 *5 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5)) (-5 *3 (-402 (-937 *5))))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-1164 *4)) (-5 *3 (-631 (-289 (-402 (-937 *4))))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-631 (-402 (-937 *4)))) (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-1164 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-1164 *5)) (-5 *3 (-631 (-289 (-402 (-937 *5))))))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-1164 *5))))) +(-10 -7 (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))) (-631 (-1158)))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-402 (-937 |#1|))))) (-15 -1900 ((-631 (-631 (-289 (-402 (-937 |#1|))))) (-631 (-289 (-402 (-937 |#1|)))))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))) (-1158))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-402 (-937 |#1|)))) (-15 -1900 ((-631 (-289 (-402 (-937 |#1|)))) (-289 (-402 (-937 |#1|))))) (-15 -3263 ((-631 (-631 (-937 |#1|))) (-631 (-402 (-937 |#1|))) (-631 (-1158))))) +((-1611 (((-1140)) 7)) (-1527 (((-1140)) 9)) (-2339 (((-1246) (-1140)) 11)) (-3390 (((-1140)) 8))) +(((-1165) (-10 -7 (-15 -1611 ((-1140))) (-15 -3390 ((-1140))) (-15 -1527 ((-1140))) (-15 -2339 ((-1246) (-1140))))) (T -1165)) +((-2339 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1165)))) (-1527 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))) (-3390 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165)))) (-1611 (*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165))))) +(-10 -7 (-15 -1611 ((-1140))) (-15 -3390 ((-1140))) (-15 -1527 ((-1140))) (-15 -2339 ((-1246) (-1140)))) +((-3144 (((-631 (-631 |#1|)) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|)))) 38)) (-2263 (((-631 (-631 (-631 |#1|))) (-631 (-631 |#1|))) 24)) (-4192 (((-1167 (-631 |#1|)) (-631 |#1|)) 34)) (-1838 (((-631 (-631 |#1|)) (-631 |#1|)) 30)) (-1821 (((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 (-631 (-631 |#1|)))) 37)) (-3638 (((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 |#1|) (-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|)))) 36)) (-3211 (((-631 (-631 |#1|)) (-631 (-631 |#1|))) 28)) (-2843 (((-631 |#1|) (-631 |#1|)) 31)) (-1340 (((-631 (-631 (-631 |#1|))) (-631 |#1|) (-631 (-631 (-631 |#1|)))) 18)) (-2054 (((-631 (-631 (-631 |#1|))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 (-631 |#1|)))) 16)) (-2146 (((-2 (|:| |fs| (-112)) (|:| |sd| (-631 |#1|)) (|:| |td| (-631 (-631 |#1|)))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 |#1|))) 14)) (-2939 (((-631 (-631 |#1|)) (-631 (-631 (-631 |#1|)))) 39)) (-2247 (((-631 (-631 |#1|)) (-1167 (-631 |#1|))) 41))) +(((-1166 |#1|) (-10 -7 (-15 -2146 ((-2 (|:| |fs| (-112)) (|:| |sd| (-631 |#1|)) (|:| |td| (-631 (-631 |#1|)))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 |#1|)))) (-15 -2054 ((-631 (-631 (-631 |#1|))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -1340 ((-631 (-631 (-631 |#1|))) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -3144 ((-631 (-631 |#1|)) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2939 ((-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2247 ((-631 (-631 |#1|)) (-1167 (-631 |#1|)))) (-15 -2263 ((-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)))) (-15 -4192 ((-1167 (-631 |#1|)) (-631 |#1|))) (-15 -3211 ((-631 (-631 |#1|)) (-631 (-631 |#1|)))) (-15 -1838 ((-631 (-631 |#1|)) (-631 |#1|))) (-15 -2843 ((-631 |#1|) (-631 |#1|))) (-15 -3638 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 |#1|) (-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))))) (-15 -1821 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 (-631 (-631 |#1|)))))) (-836)) (T -1166)) +((-1821 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-2 (|:| |f1| (-631 *4)) (|:| |f2| (-631 (-631 (-631 *4)))) (|:| |f3| (-631 (-631 *4))) (|:| |f4| (-631 (-631 (-631 *4)))))) (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 (-631 *4)))))) (-3638 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-836)) (-5 *3 (-631 *6)) (-5 *5 (-631 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-631 *5)) (|:| |f3| *5) (|:| |f4| (-631 *5)))) (-5 *1 (-1166 *6)) (-5 *4 (-631 *5)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-1166 *3)))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)) (-5 *3 (-631 *4)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-836)) (-5 *1 (-1166 *3)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-1167 (-631 *4))) (-5 *1 (-1166 *4)) (-5 *3 (-631 *4)))) (-2263 (*1 *2 *3) (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 (-631 *4)))) (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 *4))))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-1167 (-631 *4))) (-4 *4 (-836)) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)) (-4 *4 (-836)))) (-3144 (*1 *2 *2 *3) (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4))) (-4 *4 (-836)) (-5 *1 (-1166 *4)))) (-1340 (*1 *2 *3 *2) (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-631 *4)) (-4 *4 (-836)) (-5 *1 (-1166 *4)))) (-2054 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-631 *5)) (-4 *5 (-836)) (-5 *1 (-1166 *5)))) (-2146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-836)) (-5 *4 (-631 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-631 *4)))) (-5 *1 (-1166 *6)) (-5 *5 (-631 *4))))) +(-10 -7 (-15 -2146 ((-2 (|:| |fs| (-112)) (|:| |sd| (-631 |#1|)) (|:| |td| (-631 (-631 |#1|)))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 |#1|)))) (-15 -2054 ((-631 (-631 (-631 |#1|))) (-1 (-112) |#1| |#1|) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -1340 ((-631 (-631 (-631 |#1|))) (-631 |#1|) (-631 (-631 (-631 |#1|))))) (-15 -3144 ((-631 (-631 |#1|)) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2939 ((-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))))) (-15 -2247 ((-631 (-631 |#1|)) (-1167 (-631 |#1|)))) (-15 -2263 ((-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)))) (-15 -4192 ((-1167 (-631 |#1|)) (-631 |#1|))) (-15 -3211 ((-631 (-631 |#1|)) (-631 (-631 |#1|)))) (-15 -1838 ((-631 (-631 |#1|)) (-631 |#1|))) (-15 -2843 ((-631 |#1|) (-631 |#1|))) (-15 -3638 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 |#1|) (-631 (-631 (-631 |#1|))) (-631 (-631 |#1|)) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))) (-631 (-631 (-631 |#1|))))) (-15 -1821 ((-2 (|:| |f1| (-631 |#1|)) (|:| |f2| (-631 (-631 (-631 |#1|)))) (|:| |f3| (-631 (-631 |#1|))) (|:| |f4| (-631 (-631 (-631 |#1|))))) (-631 (-631 (-631 |#1|)))))) +((-1693 (($ (-631 (-631 |#1|))) 10)) (-1679 (((-631 (-631 |#1|)) $) 11)) (-3075 (((-848) $) 26))) +(((-1167 |#1|) (-10 -8 (-15 -1693 ($ (-631 (-631 |#1|)))) (-15 -1679 ((-631 (-631 |#1|)) $)) (-15 -3075 ((-848) $))) (-1082)) (T -1167)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-1167 *3))))) +(-10 -8 (-15 -1693 ($ (-631 (-631 |#1|)))) (-15 -1679 ((-631 (-631 |#1|)) $)) (-15 -3075 ((-848) $))) +((-3062 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-3167 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-4233 (((-1246) $ |#1| |#1|) NIL (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#2| $ |#1| |#2|) NIL)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) NIL)) (-4087 (($) NIL T CONST)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) NIL)) (-3044 ((|#1| $) NIL (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-631 |#2|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2256 ((|#1| $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2944 (((-631 |#1|) $) NIL)) (-2415 (((-112) |#1| $) NIL)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2529 (((-631 |#1|) $) NIL)) (-3618 (((-112) |#1| $) NIL)) (-2768 (((-1102) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1539 ((|#2| $) NIL (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL)) (-2441 (($ $ |#2|) NIL (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4310 (($) NIL) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) NIL (-12 (|has| $ (-6 -4373)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (((-758) |#2| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082)))) (((-758) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-3075 (((-848) $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848))) (|has| |#2| (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) NIL)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) NIL (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) NIL (-3994 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1168 |#1| |#2|) (-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) (-1082) (-1082)) (T -1168)) +NIL +(-13 (-1171 |#1| |#2|) (-10 -7 (-6 -4373))) +((-4174 ((|#1| (-631 |#1|)) 32)) (-1480 ((|#1| |#1| (-554)) 18)) (-2773 (((-1154 |#1|) |#1| (-906)) 15))) +(((-1169 |#1|) (-10 -7 (-15 -4174 (|#1| (-631 |#1|))) (-15 -2773 ((-1154 |#1|) |#1| (-906))) (-15 -1480 (|#1| |#1| (-554)))) (-358)) (T -1169)) +((-1480 (*1 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-1169 *2)) (-4 *2 (-358)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-906)) (-5 *2 (-1154 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-358)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-1169 *2)) (-4 *2 (-358))))) +(-10 -7 (-15 -4174 (|#1| (-631 |#1|))) (-15 -2773 ((-1154 |#1|) |#1| (-906))) (-15 -1480 (|#1| |#1| (-554)))) +((-3167 (($) 10) (($ (-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)))) 14)) (-1884 (($ (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2466 (((-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 39) (((-631 |#3|) $) 41)) (-2849 (($ (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2879 (($ (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4150 (((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 54)) (-2045 (($ (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 16)) (-2529 (((-631 |#2|) $) 19)) (-3618 (((-112) |#2| $) 59)) (-1652 (((-3 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) "failed") (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) 58)) (-2152 (((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) 63)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2625 (((-631 |#3|) $) 43)) (-2064 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-758) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) $) NIL) (((-758) |#3| $) NIL) (((-758) (-1 (-112) |#3|) $) 68)) (-3075 (((-848) $) 27)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1658 (((-112) $ $) 49))) +(((-1170 |#1| |#2| |#3|) (-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3167 (|#1| (-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))))) (-15 -3167 (|#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#3|) |#1|)) (-15 -2466 ((-631 |#3|) |#1|)) (-15 -2777 ((-758) |#3| |#1|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -3618 ((-112) |#2| |#1|)) (-15 -2529 ((-631 |#2|) |#1|)) (-15 -1884 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1884 (|#1| (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -1884 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -1652 ((-3 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) "failed") (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -4150 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2045 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2152 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2777 ((-758) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2466 ((-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2777 ((-758) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2845 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2438 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2849 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2879 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|))) (-1171 |#2| |#3|) (-1082) (-1082)) (T -1170)) +NIL +(-10 -8 (-15 -1658 ((-112) |#1| |#1|)) (-15 -3075 ((-848) |#1|)) (-15 -2879 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3167 (|#1| (-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))))) (-15 -3167 (|#1|)) (-15 -2879 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2849 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2438 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2845 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2777 ((-758) (-1 (-112) |#3|) |#1|)) (-15 -2466 ((-631 |#3|) |#1|)) (-15 -2777 ((-758) |#3| |#1|)) (-15 -2064 (|#3| |#1| |#2| |#3|)) (-15 -2064 (|#3| |#1| |#2|)) (-15 -2625 ((-631 |#3|) |#1|)) (-15 -3618 ((-112) |#2| |#1|)) (-15 -2529 ((-631 |#2|) |#1|)) (-15 -1884 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1884 (|#1| (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -1884 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -1652 ((-3 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) "failed") (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -4150 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2045 (|#1| (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2152 ((-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2777 ((-758) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) |#1|)) (-15 -2466 ((-631 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2777 ((-758) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2845 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2438 ((-112) (-1 (-112) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2849 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|)) (-15 -2879 (|#1| (-1 (-2 (|:| -2564 |#2|) (|:| -2701 |#3|)) (-2 (|:| -2564 |#2|) (|:| -2701 |#3|))) |#1|))) +((-3062 (((-112) $ $) 19 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-3167 (($) 72) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 71)) (-4233 (((-1246) $ |#1| |#1|) 99 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#2| $ |#1| |#2|) 73)) (-2220 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 45 (|has| $ (-6 -4373)))) (-1871 (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 55 (|has| $ (-6 -4373)))) (-2937 (((-3 |#2| "failed") |#1| $) 61)) (-4087 (($) 7 T CONST)) (-1571 (($ $) 58 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373))))) (-1884 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 47 (|has| $ (-6 -4373))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 46 (|has| $ (-6 -4373))) (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 54 (|has| $ (-6 -4373)))) (-3676 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 56 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 53 (|has| $ (-6 -4373))) (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 52 (|has| $ (-6 -4373)))) (-2862 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4374)))) (-2796 ((|#2| $ |#1|) 88)) (-2466 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 30 (|has| $ (-6 -4373))) (((-631 |#2|) $) 79 (|has| $ (-6 -4373)))) (-2230 (((-112) $ (-758)) 9)) (-3044 ((|#1| $) 96 (|has| |#1| (-836)))) (-2379 (((-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 29 (|has| $ (-6 -4373))) (((-631 |#2|) $) 80 (|has| $ (-6 -4373)))) (-3068 (((-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373))))) (-2256 ((|#1| $) 95 (|has| |#1| (-836)))) (-2849 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 34 (|has| $ (-6 -4374))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4374)))) (-2879 (($ (-1 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3731 (((-112) $ (-758)) 10)) (-1613 (((-1140) $) 22 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2944 (((-631 |#1|) $) 63)) (-2415 (((-112) |#1| $) 64)) (-4150 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 39)) (-2045 (($ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 40)) (-2529 (((-631 |#1|) $) 93)) (-3618 (((-112) |#1| $) 92)) (-2768 (((-1102) $) 21 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-1539 ((|#2| $) 97 (|has| |#1| (-836)))) (-1652 (((-3 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) "failed") (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 51)) (-2441 (($ $ |#2|) 98 (|has| $ (-6 -4374)))) (-2152 (((-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 41)) (-2845 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 32 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))))) 26 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-289 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 25 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) 24 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 23 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)))) (($ $ (-631 |#2|) (-631 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082)))) (($ $ (-631 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4373)) (|has| |#2| (-1082))))) (-2625 (((-631 |#2|) $) 91)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4310 (($) 49) (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 48)) (-2777 (((-758) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 31 (|has| $ (-6 -4373))) (((-758) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| $ (-6 -4373)))) (((-758) |#2| $) 81 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4373)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 59 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))))) (-3089 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 50)) (-3075 (((-848) $) 18 (-3994 (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))))) (-1591 (($ (-631 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) 42)) (-2438 (((-112) (-1 (-112) (-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) $) 33 (|has| $ (-6 -4373))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (-3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1171 |#1| |#2|) (-138) (-1082) (-1082)) (T -1171)) +((-1501 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3167 (*1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-631 (-2 (|:| -2564 *3) (|:| -2701 *4)))) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *1 (-1171 *3 *4)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) +(-13 (-598 |t#1| |t#2|) (-592 |t#1| |t#2|) (-10 -8 (-15 -1501 (|t#2| $ |t#1| |t#2|)) (-15 -3167 ($)) (-15 -3167 ($ (-631 (-2 (|:| -2564 |t#1|) (|:| -2701 |t#2|))))) (-15 -2879 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2564 |#1|) (|:| -2701 |#2|))) . T) ((-102) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-601 (-848)) -3994 (|has| |#2| (-1082)) (|has| |#2| (-601 (-848))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-601 (-848)))) ((-149 #0#) . T) ((-602 (-530)) |has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-602 (-530))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-483 #0#) . T) ((-483 |#2|) . T) ((-592 |#1| |#2|) . T) ((-508 #0# #0#) -12 (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-304 (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)))) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-508 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1082))) ((-598 |#1| |#2|) . T) ((-1082) -3994 (|has| |#2| (-1082)) (|has| (-2 (|:| -2564 |#1|) (|:| -2701 |#2|)) (-1082))) ((-1195) . T)) +((-2645 (((-112)) 24)) (-2400 (((-1246) (-1140)) 26)) (-2471 (((-112)) 36)) (-2414 (((-1246)) 34)) (-2596 (((-1246) (-1140) (-1140)) 25)) (-3178 (((-112)) 37)) (-2045 (((-1246) |#1| |#2|) 44)) (-1961 (((-1246)) 20)) (-3972 (((-3 |#2| "failed") |#1|) 42)) (-3702 (((-1246)) 35))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -1961 ((-1246))) (-15 -2596 ((-1246) (-1140) (-1140))) (-15 -2400 ((-1246) (-1140))) (-15 -2414 ((-1246))) (-15 -3702 ((-1246))) (-15 -2645 ((-112))) (-15 -2471 ((-112))) (-15 -3178 ((-112))) (-15 -3972 ((-3 |#2| "failed") |#1|)) (-15 -2045 ((-1246) |#1| |#2|))) (-1082) (-1082)) (T -1172)) +((-2045 (*1 *2 *3 *4) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3972 (*1 *2 *3) (|partial| -12 (-4 *2 (-1082)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1082)))) (-3178 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2471 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2645 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3702 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2414 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)))) (-2596 (*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)))) (-1961 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) +(-10 -7 (-15 -1961 ((-1246))) (-15 -2596 ((-1246) (-1140) (-1140))) (-15 -2400 ((-1246) (-1140))) (-15 -2414 ((-1246))) (-15 -3702 ((-1246))) (-15 -2645 ((-112))) (-15 -2471 ((-112))) (-15 -3178 ((-112))) (-15 -3972 ((-3 |#2| "failed") |#1|)) (-15 -2045 ((-1246) |#1| |#2|))) +((-3635 (((-1140) (-1140)) 18)) (-1506 (((-52) (-1140)) 21))) +(((-1173) (-10 -7 (-15 -1506 ((-52) (-1140))) (-15 -3635 ((-1140) (-1140))))) (T -1173)) +((-3635 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1173)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-1173))))) +(-10 -7 (-15 -1506 ((-52) (-1140))) (-15 -3635 ((-1140) (-1140)))) +((-3075 (((-1175) |#1|) 11))) +(((-1174 |#1|) (-10 -7 (-15 -3075 ((-1175) |#1|))) (-1082)) (T -1174)) +((-3075 (*1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))) +(-10 -7 (-15 -3075 ((-1175) |#1|))) +((-3062 (((-112) $ $) NIL)) (-2260 (((-631 (-1140)) $) 34)) (-1682 (((-631 (-1140)) $ (-631 (-1140))) 37)) (-3917 (((-631 (-1140)) $ (-631 (-1140))) 36)) (-3570 (((-631 (-1140)) $ (-631 (-1140))) 38)) (-3298 (((-631 (-1140)) $) 33)) (-3180 (($) 22)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1741 (((-631 (-1140)) $) 35)) (-2524 (((-1246) $ (-554)) 29) (((-1246) $) 30)) (-2927 (($ (-848) (-554)) 26) (($ (-848) (-554) (-848)) NIL)) (-3075 (((-848) $) 40) (($ (-848)) 24)) (-1658 (((-112) $ $) NIL))) +(((-1175) (-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2927 ($ (-848) (-554) (-848))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -2260 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -1682 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140))))))) (T -1175)) +((-2927 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175)))) (-2927 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1175)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1175)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-3180 (*1 *1) (-5 *1 (-1175))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-3570 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-1682 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175)))) (-3917 (*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(-13 (-1082) (-604 (-848)) (-10 -8 (-15 -2927 ($ (-848) (-554))) (-15 -2927 ($ (-848) (-554) (-848))) (-15 -2524 ((-1246) $ (-554))) (-15 -2524 ((-1246) $)) (-15 -1741 ((-631 (-1140)) $)) (-15 -2260 ((-631 (-1140)) $)) (-15 -3180 ($)) (-15 -3298 ((-631 (-1140)) $)) (-15 -3570 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -1682 ((-631 (-1140)) $ (-631 (-1140)))) (-15 -3917 ((-631 (-1140)) $ (-631 (-1140)))))) +((-3062 (((-112) $ $) NIL)) (-2548 (((-1140) $ (-1140)) 17) (((-1140) $) 16)) (-3719 (((-1140) $ (-1140)) 15)) (-1875 (($ $ (-1140)) NIL)) (-2354 (((-3 (-1140) "failed") $) 11)) (-3895 (((-1140) $) 8)) (-4266 (((-3 (-1140) "failed") $) 12)) (-3416 (((-1140) $) 9)) (-1303 (($ (-383)) NIL) (($ (-383) (-1140)) NIL)) (-4309 (((-383) $) NIL)) (-1613 (((-1140) $) NIL)) (-1597 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4093 (((-112) $) 18)) (-3075 (((-848) $) NIL)) (-3745 (($ $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1176) (-13 (-359 (-383) (-1140)) (-10 -8 (-15 -2548 ((-1140) $ (-1140))) (-15 -2548 ((-1140) $)) (-15 -3895 ((-1140) $)) (-15 -2354 ((-3 (-1140) "failed") $)) (-15 -4266 ((-3 (-1140) "failed") $)) (-15 -4093 ((-112) $))))) (T -1176)) +((-2548 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-2548 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-2354 (*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-4266 (*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176))))) +(-13 (-359 (-383) (-1140)) (-10 -8 (-15 -2548 ((-1140) $ (-1140))) (-15 -2548 ((-1140) $)) (-15 -3895 ((-1140) $)) (-15 -2354 ((-3 (-1140) "failed") $)) (-15 -4266 ((-3 (-1140) "failed") $)) (-15 -4093 ((-112) $)))) +((-4219 (((-3 (-554) "failed") |#1|) 19)) (-1410 (((-3 (-554) "failed") |#1|) 14)) (-1473 (((-554) (-1140)) 28))) +(((-1177 |#1|) (-10 -7 (-15 -4219 ((-3 (-554) "failed") |#1|)) (-15 -1410 ((-3 (-554) "failed") |#1|)) (-15 -1473 ((-554) (-1140)))) (-1034)) (T -1177)) +((-1473 (*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-1177 *4)) (-4 *4 (-1034)))) (-1410 (*1 *2 *3) (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034)))) (-4219 (*1 *2 *3) (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034))))) +(-10 -7 (-15 -4219 ((-3 (-554) "failed") |#1|)) (-15 -1410 ((-3 (-554) "failed") |#1|)) (-15 -1473 ((-554) (-1140)))) +((-3181 (((-1115 (-221))) 9))) +(((-1178) (-10 -7 (-15 -3181 ((-1115 (-221)))))) (T -1178)) +((-3181 (*1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1178))))) +(-10 -7 (-15 -3181 ((-1115 (-221))))) +((-2844 (($) 11)) (-3096 (($ $) 35)) (-3069 (($ $) 33)) (-2938 (($ $) 25)) (-3120 (($ $) 17)) (-2908 (($ $) 15)) (-3108 (($ $) 19)) (-2969 (($ $) 30)) (-3083 (($ $) 34)) (-2948 (($ $) 29))) +(((-1179 |#1|) (-10 -8 (-15 -2844 (|#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2948 (|#1| |#1|))) (-1180)) (T -1179)) +NIL +(-10 -8 (-15 -2844 (|#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2948 (|#1| |#1|))) +((-3023 (($ $) 26)) (-4200 (($ $) 11)) (-3003 (($ $) 27)) (-4177 (($ $) 10)) (-3046 (($ $) 28)) (-2916 (($ $) 9)) (-2844 (($) 16)) (-2395 (($ $) 19)) (-1333 (($ $) 18)) (-3057 (($ $) 29)) (-2926 (($ $) 8)) (-3034 (($ $) 30)) (-4213 (($ $) 7)) (-3014 (($ $) 31)) (-4188 (($ $) 6)) (-3096 (($ $) 20)) (-2959 (($ $) 32)) (-3069 (($ $) 21)) (-2938 (($ $) 33)) (-3120 (($ $) 22)) (-2981 (($ $) 34)) (-2908 (($ $) 23)) (-2991 (($ $) 35)) (-3108 (($ $) 24)) (-2969 (($ $) 36)) (-3083 (($ $) 25)) (-2948 (($ $) 37)) (** (($ $ $) 17))) +(((-1180) (-138)) (T -1180)) +((-2844 (*1 *1) (-4 *1 (-1180)))) +(-13 (-1183) (-95) (-487) (-35) (-279) (-10 -8 (-15 -2844 ($)))) +(((-35) . T) ((-95) . T) ((-279) . T) ((-487) . T) ((-1183) . T)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2794 ((|#1| $) 17)) (-1972 (($ |#1| (-631 $)) 23) (($ (-631 |#1|)) 27) (($ |#1|) 25)) (-3019 (((-112) $ (-758)) 48)) (-2690 ((|#1| $ |#1|) 14 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 13 (|has| $ (-6 -4374)))) (-4087 (($) NIL T CONST)) (-2466 (((-631 |#1|) $) 52 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 43)) (-1990 (((-112) $ $) 33 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 41)) (-2379 (((-631 |#1|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2849 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 22)) (-3731 (((-112) $ (-758)) 40)) (-2306 (((-631 |#1|) $) 37)) (-3216 (((-112) $) 36)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-2845 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 74)) (-3543 (((-112) $) 9)) (-4240 (($) 10)) (-2064 ((|#1| $ "value") NIL)) (-3250 (((-554) $ $) 32)) (-1864 (((-631 $) $) 59)) (-3417 (((-112) $ $) 77)) (-2283 (((-631 $) $) 72)) (-1740 (($ $) 73)) (-3008 (((-112) $) 56)) (-2777 (((-758) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4373))) (((-758) |#1| $) 16 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-1521 (($ $) 58)) (-3075 (((-848) $) 61 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 12)) (-1441 (((-112) $ $) 29 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 28 (|has| |#1| (-1082)))) (-2563 (((-758) $) 39 (|has| $ (-6 -4373))))) +(((-1181 |#1|) (-13 (-995 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -1972 ($ |#1| (-631 $))) (-15 -1972 ($ (-631 |#1|))) (-15 -1972 ($ |#1|)) (-15 -3008 ((-112) $)) (-15 -1740 ($ $)) (-15 -2283 ((-631 $) $)) (-15 -3417 ((-112) $ $)) (-15 -1864 ((-631 $) $)))) (-1082)) (T -1181)) +((-3008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))) (-1972 (*1 *1 *2 *3) (-12 (-5 *3 (-631 (-1181 *2))) (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-1181 *3)))) (-1972 (*1 *1 *2) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) (-1740 (*1 *1 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))) (-3417 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082))))) +(-13 (-995 |#1|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -1972 ($ |#1| (-631 $))) (-15 -1972 ($ (-631 |#1|))) (-15 -1972 ($ |#1|)) (-15 -3008 ((-112) $)) (-15 -1740 ($ $)) (-15 -2283 ((-631 $) $)) (-15 -3417 ((-112) $ $)) (-15 -1864 ((-631 $) $)))) +((-4200 (($ $) 15)) (-2916 (($ $) 12)) (-2926 (($ $) 10)) (-4213 (($ $) 17))) +(((-1182 |#1|) (-10 -8 (-15 -4213 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -4200 (|#1| |#1|))) (-1183)) (T -1182)) +NIL +(-10 -8 (-15 -4213 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -4200 (|#1| |#1|))) +((-4200 (($ $) 11)) (-4177 (($ $) 10)) (-2916 (($ $) 9)) (-2926 (($ $) 8)) (-4213 (($ $) 7)) (-4188 (($ $) 6))) +(((-1183) (-138)) (T -1183)) +((-4200 (*1 *1 *1) (-4 *1 (-1183))) (-4177 (*1 *1 *1) (-4 *1 (-1183))) (-2916 (*1 *1 *1) (-4 *1 (-1183))) (-2926 (*1 *1 *1) (-4 *1 (-1183))) (-4213 (*1 *1 *1) (-4 *1 (-1183))) (-4188 (*1 *1 *1) (-4 *1 (-1183)))) +(-13 (-10 -8 (-15 -4188 ($ $)) (-15 -4213 ($ $)) (-15 -2926 ($ $)) (-15 -2916 ($ $)) (-15 -4177 ($ $)) (-15 -4200 ($ $)))) +((-3400 ((|#2| |#2|) 88)) (-1809 (((-112) |#2|) 26)) (-2293 ((|#2| |#2|) 30)) (-2302 ((|#2| |#2|) 32)) (-2232 ((|#2| |#2| (-1158)) 83) ((|#2| |#2|) 84)) (-1436 (((-167 |#2|) |#2|) 28)) (-2110 ((|#2| |#2| (-1158)) 85) ((|#2| |#2|) 86))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -3400 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -1436 ((-167 |#2|) |#2|))) (-13 (-446) (-836) (-1023 (-554)) (-627 (-554))) (-13 (-27) (-1180) (-425 |#1|))) (T -1184)) +((-1436 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-167 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 (-112)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *4))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-3400 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))) +(-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1158))) (-15 -2110 (|#2| |#2|)) (-15 -2110 (|#2| |#2| (-1158))) (-15 -3400 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -1809 ((-112) |#2|)) (-15 -1436 ((-167 |#2|) |#2|))) +((-3806 ((|#4| |#4| |#1|) 27)) (-1745 ((|#4| |#4| |#1|) 28))) +(((-1185 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3806 (|#4| |#4| |#1|)) (-15 -1745 (|#4| |#4| |#1|))) (-546) (-368 |#1|) (-368 |#1|) (-673 |#1| |#2| |#3|)) (T -1185)) +((-1745 (*1 *2 *2 *3) (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) (-3806 (*1 *2 *2 *3) (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(-10 -7 (-15 -3806 (|#4| |#4| |#1|)) (-15 -1745 (|#4| |#4| |#1|))) +((-2161 ((|#2| |#2|) 133)) (-2683 ((|#2| |#2|) 130)) (-2060 ((|#2| |#2|) 121)) (-4232 ((|#2| |#2|) 118)) (-1589 ((|#2| |#2|) 126)) (-1313 ((|#2| |#2|) 114)) (-2799 ((|#2| |#2|) 43)) (-3448 ((|#2| |#2|) 94)) (-1336 ((|#2| |#2|) 74)) (-1385 ((|#2| |#2|) 128)) (-1985 ((|#2| |#2|) 116)) (-1793 ((|#2| |#2|) 138)) (-3304 ((|#2| |#2|) 136)) (-1939 ((|#2| |#2|) 137)) (-3173 ((|#2| |#2|) 135)) (-4348 ((|#2| |#2|) 148)) (-3392 ((|#2| |#2|) 30 (-12 (|has| |#2| (-602 (-877 |#1|))) (|has| |#2| (-871 |#1|)) (|has| |#1| (-602 (-877 |#1|))) (|has| |#1| (-871 |#1|))))) (-1507 ((|#2| |#2|) 75)) (-3630 ((|#2| |#2|) 139)) (-1845 ((|#2| |#2|) 140)) (-4259 ((|#2| |#2|) 127)) (-3357 ((|#2| |#2|) 115)) (-2725 ((|#2| |#2|) 134)) (-1361 ((|#2| |#2|) 132)) (-4061 ((|#2| |#2|) 122)) (-2124 ((|#2| |#2|) 120)) (-3239 ((|#2| |#2|) 124)) (-1669 ((|#2| |#2|) 112))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -1985 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1313 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (IF (|has| |#1| (-871 |#1|)) (IF (|has| |#1| (-602 (-877 |#1|))) (IF (|has| |#2| (-602 (-877 |#1|))) (IF (|has| |#2| (-871 |#1|)) (-15 -3392 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-836) (-446)) (-13 (-425 |#1|) (-1180))) (T -1186)) +((-3392 (*1 *2 *2) (-12 (-4 *3 (-602 (-877 *3))) (-4 *3 (-871 *3)) (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-602 (-877 *3))) (-4 *2 (-871 *3)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1793 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1939 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2683 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4232 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2060 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1313 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1985 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-4348 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) (-4 *2 (-13 (-425 *3) (-1180)))))) +(-10 -7 (-15 -1845 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -4348 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2725 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -1985 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1313 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2683 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)) (IF (|has| |#1| (-871 |#1|)) (IF (|has| |#1| (-602 (-877 |#1|))) (IF (|has| |#2| (-602 (-877 |#1|))) (IF (|has| |#2| (-871 |#1|)) (-15 -3392 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2630 (((-112) |#5| $) 60) (((-112) $) 102)) (-4057 ((|#5| |#5| $) 75)) (-1871 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2242 (((-631 |#5|) (-631 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2784 (((-3 $ "failed") (-631 |#5|)) 126)) (-1551 (((-3 $ "failed") $) 112)) (-2930 ((|#5| |#5| $) 94)) (-2857 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4210 ((|#5| |#5| $) 98)) (-3676 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-1971 (((-2 (|:| -2498 (-631 |#5|)) (|:| -1303 (-631 |#5|))) $) 55)) (-4253 (((-112) |#5| $) 58) (((-112) $) 103)) (-3954 ((|#4| $) 108)) (-2597 (((-3 |#5| "failed") $) 110)) (-2627 (((-631 |#5|) $) 49)) (-3007 (((-112) |#5| $) 67) (((-112) $) 107)) (-1536 ((|#5| |#5| $) 81)) (-2178 (((-112) $ $) 27)) (-3518 (((-112) |#5| $) 63) (((-112) $) 105)) (-3492 ((|#5| |#5| $) 78)) (-1539 (((-3 |#5| "failed") $) 109)) (-4282 (($ $ |#5|) 127)) (-3308 (((-758) $) 52)) (-3089 (($ (-631 |#5|)) 124)) (-2538 (($ $ |#4|) 122)) (-2384 (($ $ |#4|) 121)) (-2258 (($ $) 120)) (-3075 (((-848) $) NIL) (((-631 |#5|) $) 113)) (-2347 (((-758) $) 130)) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-3579 (((-112) $ (-1 (-112) |#5| (-631 |#5|))) 100)) (-4267 (((-631 |#4|) $) 115)) (-3536 (((-112) |#4| $) 118)) (-1658 (((-112) $ $) 19))) +(((-1187 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2347 ((-758) |#1|)) (-15 -4282 (|#1| |#1| |#5|)) (-15 -1871 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3536 ((-112) |#4| |#1|)) (-15 -4267 ((-631 |#4|) |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 -2597 ((-3 |#5| "failed") |#1|)) (-15 -1539 ((-3 |#5| "failed") |#1|)) (-15 -4210 (|#5| |#5| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -1536 (|#5| |#5| |#1|)) (-15 -3492 (|#5| |#5| |#1|)) (-15 -4057 (|#5| |#5| |#1|)) (-15 -2242 ((-631 |#5|) (-631 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3676 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3007 ((-112) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -2630 ((-112) |#1|)) (-15 -3579 ((-112) |#1| (-1 (-112) |#5| (-631 |#5|)))) (-15 -3007 ((-112) |#5| |#1|)) (-15 -3518 ((-112) |#5| |#1|)) (-15 -2630 ((-112) |#5| |#1|)) (-15 -2857 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4253 ((-112) |#1|)) (-15 -4253 ((-112) |#5| |#1|)) (-15 -1971 ((-2 (|:| -2498 (-631 |#5|)) (|:| -1303 (-631 |#5|))) |#1|)) (-15 -3308 ((-758) |#1|)) (-15 -2627 ((-631 |#5|) |#1|)) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -3954 (|#4| |#1|)) (-15 -2784 ((-3 |#1| "failed") (-631 |#5|))) (-15 -3075 ((-631 |#5|) |#1|)) (-15 -3089 (|#1| (-631 |#5|))) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1871 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) (-1188 |#2| |#3| |#4| |#5|) (-546) (-780) (-836) (-1048 |#2| |#3| |#4|)) (T -1187)) +NIL +(-10 -8 (-15 -2347 ((-758) |#1|)) (-15 -4282 (|#1| |#1| |#5|)) (-15 -1871 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3536 ((-112) |#4| |#1|)) (-15 -4267 ((-631 |#4|) |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 -2597 ((-3 |#5| "failed") |#1|)) (-15 -1539 ((-3 |#5| "failed") |#1|)) (-15 -4210 (|#5| |#5| |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -1536 (|#5| |#5| |#1|)) (-15 -3492 (|#5| |#5| |#1|)) (-15 -4057 (|#5| |#5| |#1|)) (-15 -2242 ((-631 |#5|) (-631 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3676 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3007 ((-112) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -2630 ((-112) |#1|)) (-15 -3579 ((-112) |#1| (-1 (-112) |#5| (-631 |#5|)))) (-15 -3007 ((-112) |#5| |#1|)) (-15 -3518 ((-112) |#5| |#1|)) (-15 -2630 ((-112) |#5| |#1|)) (-15 -2857 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4253 ((-112) |#1|)) (-15 -4253 ((-112) |#5| |#1|)) (-15 -1971 ((-2 (|:| -2498 (-631 |#5|)) (|:| -1303 (-631 |#5|))) |#1|)) (-15 -3308 ((-758) |#1|)) (-15 -2627 ((-631 |#5|) |#1|)) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2792 ((-3 (-2 (|:| |bas| |#1|) (|:| -2292 (-631 |#5|))) "failed") (-631 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2178 ((-112) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#4|)) (-15 -2384 (|#1| |#1| |#4|)) (-15 -3954 (|#4| |#1|)) (-15 -2784 ((-3 |#1| "failed") (-631 |#5|))) (-15 -3075 ((-631 |#5|) |#1|)) (-15 -3089 (|#1| (-631 |#5|))) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1871 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3075 ((-848) |#1|)) (-15 -1658 ((-112) |#1| |#1|))) +((-3062 (((-112) $ $) 7)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) 85)) (-3176 (((-631 $) (-631 |#4|)) 86)) (-2405 (((-631 |#3|) $) 33)) (-1678 (((-112) $) 26)) (-3005 (((-112) $) 17 (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) 101) (((-112) $) 97)) (-4057 ((|#4| |#4| $) 92)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) 27)) (-3019 (((-112) $ (-758)) 44)) (-1871 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) 79)) (-4087 (($) 45 T CONST)) (-1930 (((-112) $) 22 (|has| |#1| (-546)))) (-1404 (((-112) $ $) 24 (|has| |#1| (-546)))) (-3262 (((-112) $ $) 23 (|has| |#1| (-546)))) (-2713 (((-112) $) 25 (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1380 (((-631 |#4|) (-631 |#4|) $) 18 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) 19 (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) 36)) (-1668 (($ (-631 |#4|)) 35)) (-1551 (((-3 $ "failed") $) 82)) (-2930 ((|#4| |#4| $) 89)) (-1571 (($ $) 68 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#4| $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4210 ((|#4| |#4| $) 87)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) 105)) (-2466 (((-631 |#4|) $) 52 (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) 104) (((-112) $) 103)) (-3954 ((|#3| $) 34)) (-2230 (((-112) $ (-758)) 43)) (-2379 (((-631 |#4|) $) 53 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) 47)) (-2643 (((-631 |#3|) $) 32)) (-1400 (((-112) |#3| $) 31)) (-3731 (((-112) $ (-758)) 42)) (-1613 (((-1140) $) 9)) (-2597 (((-3 |#4| "failed") $) 83)) (-2627 (((-631 |#4|) $) 107)) (-3007 (((-112) |#4| $) 99) (((-112) $) 95)) (-1536 ((|#4| |#4| $) 90)) (-2178 (((-112) $ $) 110)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) 100) (((-112) $) 96)) (-3492 ((|#4| |#4| $) 91)) (-2768 (((-1102) $) 10)) (-1539 (((-3 |#4| "failed") $) 84)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3948 (((-3 $ "failed") $ |#4|) 78)) (-4282 (($ $ |#4|) 77)) (-2845 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) 38)) (-3543 (((-112) $) 41)) (-4240 (($) 40)) (-3308 (((-758) $) 106)) (-2777 (((-758) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4373)))) (((-758) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4373)))) (-1521 (($ $) 39)) (-2927 (((-530) $) 69 (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) 60)) (-2538 (($ $ |#3|) 28)) (-2384 (($ $ |#3|) 30)) (-2258 (($ $) 88)) (-2128 (($ $ |#3|) 29)) (-3075 (((-848) $) 11) (((-631 |#4|) $) 37)) (-2347 (((-758) $) 76 (|has| |#3| (-363)))) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) 98)) (-2438 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) 81)) (-3536 (((-112) |#3| $) 80)) (-1658 (((-112) $ $) 6)) (-2563 (((-758) $) 46 (|has| $ (-6 -4373))))) +(((-1188 |#1| |#2| |#3| |#4|) (-138) (-546) (-780) (-836) (-1048 |t#1| |t#2| |t#3|)) (T -1188)) +((-2178 (*1 *2 *1 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-2792 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *8)))) (-5 *3 (-631 *8)) (-4 *1 (-1188 *5 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *9)))) (-5 *3 (-631 *9)) (-4 *1 (-1188 *6 *7 *8 *9)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *6)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-758)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-2 (|:| -2498 (-631 *6)) (|:| -1303 (-631 *6)))))) (-4253 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-2857 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1188 *5 *6 *7 *3)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)))) (-2630 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3518 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3007 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-3579 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-631 *7))) (-4 *1 (-1188 *4 *5 *6 *7)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) (-3676 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1188 *5 *6 *7 *2)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *2 (-1048 *5 *6 *7)))) (-2242 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1188 *5 *6 *7 *8)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)))) (-4057 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-3492 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-1536 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2930 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2258 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4)))) (-4210 (*1 *2 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) (-4 *1 (-1188 *4 *5 *6 *7)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-631 (-2 (|:| -2498 *1) (|:| -1303 (-631 *7))))) (-5 *3 (-631 *7)) (-4 *1 (-1188 *4 *5 *6 *7)))) (-1539 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2597 (*1 *2 *1) (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-1551 (*1 *1 *1) (|partial| -12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) (-3536 (*1 *2 *3 *1) (-12 (-4 *1 (-1188 *4 *5 *3 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112)))) (-1871 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1188 *4 *5 *3 *2)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *3 (-836)) (-4 *2 (-1048 *4 *5 *3)))) (-3948 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-758))))) +(-13 (-961 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4373) (-6 -4374) (-15 -2178 ((-112) $ $)) (-15 -2792 ((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |t#4|))) "failed") (-631 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2792 ((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |t#4|))) "failed") (-631 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2627 ((-631 |t#4|) $)) (-15 -3308 ((-758) $)) (-15 -1971 ((-2 (|:| -2498 (-631 |t#4|)) (|:| -1303 (-631 |t#4|))) $)) (-15 -4253 ((-112) |t#4| $)) (-15 -4253 ((-112) $)) (-15 -2857 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2630 ((-112) |t#4| $)) (-15 -3518 ((-112) |t#4| $)) (-15 -3007 ((-112) |t#4| $)) (-15 -3579 ((-112) $ (-1 (-112) |t#4| (-631 |t#4|)))) (-15 -2630 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -3007 ((-112) $)) (-15 -3676 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2242 ((-631 |t#4|) (-631 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4057 (|t#4| |t#4| $)) (-15 -3492 (|t#4| |t#4| $)) (-15 -1536 (|t#4| |t#4| $)) (-15 -2930 (|t#4| |t#4| $)) (-15 -2258 ($ $)) (-15 -4210 (|t#4| |t#4| $)) (-15 -3176 ((-631 $) (-631 |t#4|))) (-15 -3960 ((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |t#4|)))) (-631 |t#4|))) (-15 -1539 ((-3 |t#4| "failed") $)) (-15 -2597 ((-3 |t#4| "failed") $)) (-15 -1551 ((-3 $ "failed") $)) (-15 -4267 ((-631 |t#3|) $)) (-15 -3536 ((-112) |t#3| $)) (-15 -1871 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3948 ((-3 $ "failed") $ |t#4|)) (-15 -4282 ($ $ |t#4|)) (IF (|has| |t#3| (-363)) (-15 -2347 ((-758) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-601 (-631 |#4|)) . T) ((-601 (-848)) . T) ((-149 |#4|) . T) ((-602 (-530)) |has| |#4| (-602 (-530))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-483 |#4|) . T) ((-508 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))) ((-961 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1195) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1158)) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3497 (((-937 |#1|) $ (-758)) 17) (((-937 |#1|) $ (-758) (-758)) NIL)) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $ (-1158)) NIL) (((-758) $ (-1158) (-758)) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3580 (((-112) $) NIL)) (-2383 (($ $ (-631 (-1158)) (-631 (-525 (-1158)))) NIL) (($ $ (-1158) (-525 (-1158))) NIL) (($ |#1| (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2279 (($ $ (-1158)) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158) |#1|) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-2199 (($ (-1 $) (-1158) |#1|) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4282 (($ $ (-758)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (($ $ (-1158) $) NIL) (($ $ (-631 (-1158)) (-631 $)) NIL) (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL)) (-1553 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-3308 (((-525 (-1158)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-546))) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-1158)) NIL) (($ (-937 |#1|)) NIL)) (-1779 ((|#1| $ (-525 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (((-937 |#1|) $ (-758)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) NIL T CONST)) (-2014 (($) NIL T CONST)) (-1787 (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1189 |#1|) (-13 (-727 |#1| (-1158)) (-10 -8 (-15 -1779 ((-937 |#1|) $ (-758))) (-15 -3075 ($ (-1158))) (-15 -3075 ($ (-937 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ (-1158) |#1|)) (-15 -2199 ($ (-1 $) (-1158) |#1|))) |%noBranch|))) (-1034)) (T -1189)) +((-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-937 *4)) (-5 *1 (-1189 *4)) (-4 *4 (-1034)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-1034)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-5 *1 (-1189 *3)))) (-2279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)))) (-2199 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1189 *4))) (-5 *3 (-1158)) (-5 *1 (-1189 *4)) (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034))))) +(-13 (-727 |#1| (-1158)) (-10 -8 (-15 -1779 ((-937 |#1|) $ (-758))) (-15 -3075 ($ (-1158))) (-15 -3075 ($ (-937 |#1|))) (IF (|has| |#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $ (-1158) |#1|)) (-15 -2199 ($ (-1 $) (-1158) |#1|))) |%noBranch|))) +((-2956 (($ |#1| (-631 (-631 (-928 (-221)))) (-112)) 19)) (-3573 (((-112) $ (-112)) 18)) (-1915 (((-112) $) 17)) (-2556 (((-631 (-631 (-928 (-221)))) $) 13)) (-2742 ((|#1| $) 8)) (-3088 (((-112) $) 15))) +(((-1190 |#1|) (-10 -8 (-15 -2742 (|#1| $)) (-15 -2556 ((-631 (-631 (-928 (-221)))) $)) (-15 -3088 ((-112) $)) (-15 -1915 ((-112) $)) (-15 -3573 ((-112) $ (-112))) (-15 -2956 ($ |#1| (-631 (-631 (-928 (-221)))) (-112)))) (-959)) (T -1190)) +((-2956 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-112)) (-5 *1 (-1190 *2)) (-4 *2 (-959)))) (-3573 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-1190 *3)) (-4 *3 (-959)))) (-2742 (*1 *2 *1) (-12 (-5 *1 (-1190 *2)) (-4 *2 (-959))))) +(-10 -8 (-15 -2742 (|#1| $)) (-15 -2556 ((-631 (-631 (-928 (-221)))) $)) (-15 -3088 ((-112) $)) (-15 -1915 ((-112) $)) (-15 -3573 ((-112) $ (-112))) (-15 -2956 ($ |#1| (-631 (-631 (-928 (-221)))) (-112)))) +((-2327 (((-928 (-221)) (-928 (-221))) 25)) (-4136 (((-928 (-221)) (-221) (-221) (-221) (-221)) 10)) (-1764 (((-631 (-928 (-221))) (-928 (-221)) (-928 (-221)) (-928 (-221)) (-221) (-631 (-631 (-221)))) 37)) (-3748 (((-221) (-928 (-221)) (-928 (-221))) 21)) (-3574 (((-928 (-221)) (-928 (-221)) (-928 (-221))) 22)) (-1895 (((-631 (-631 (-221))) (-554)) 31)) (-1744 (((-928 (-221)) (-928 (-221)) (-928 (-221))) 20)) (-1735 (((-928 (-221)) (-928 (-221)) (-928 (-221))) 19)) (* (((-928 (-221)) (-221) (-928 (-221))) 18))) +(((-1191) (-10 -7 (-15 -4136 ((-928 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-928 (-221)) (-221) (-928 (-221)))) (-15 -1735 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -1744 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -3748 ((-221) (-928 (-221)) (-928 (-221)))) (-15 -3574 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -2327 ((-928 (-221)) (-928 (-221)))) (-15 -1895 ((-631 (-631 (-221))) (-554))) (-15 -1764 ((-631 (-928 (-221))) (-928 (-221)) (-928 (-221)) (-928 (-221)) (-221) (-631 (-631 (-221))))))) (T -1191)) +((-1764 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-631 (-631 (-221)))) (-5 *4 (-221)) (-5 *2 (-631 (-928 *4))) (-5 *1 (-1191)) (-5 *3 (-928 *4)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-554)) (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-1191)))) (-2327 (*1 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (-3574 (*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (-3748 (*1 *2 *3 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-1191)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (-1735 (*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-928 (-221))) (-5 *3 (-221)) (-5 *1 (-1191)))) (-4136 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)) (-5 *3 (-221))))) +(-10 -7 (-15 -4136 ((-928 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-928 (-221)) (-221) (-928 (-221)))) (-15 -1735 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -1744 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -3748 ((-221) (-928 (-221)) (-928 (-221)))) (-15 -3574 ((-928 (-221)) (-928 (-221)) (-928 (-221)))) (-15 -2327 ((-928 (-221)) (-928 (-221)))) (-15 -1895 ((-631 (-631 (-221))) (-554))) (-15 -1764 ((-631 (-928 (-221))) (-928 (-221)) (-928 (-221)) (-928 (-221)) (-221) (-631 (-631 (-221)))))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1871 ((|#1| $ (-758)) 13)) (-2577 (((-758) $) 12)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-3075 (((-943 |#1|) $) 10) (($ (-943 |#1|)) 9) (((-848) $) 23 (|has| |#1| (-601 (-848))))) (-1658 (((-112) $ $) 16 (|has| |#1| (-1082))))) +(((-1192 |#1|) (-13 (-484 (-943 |#1|)) (-10 -8 (-15 -1871 (|#1| $ (-758))) (-15 -2577 ((-758) $)) (IF (|has| |#1| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) (-1195)) (T -1192)) +((-1871 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-1192 *2)) (-4 *2 (-1195)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1192 *3)) (-4 *3 (-1195))))) +(-13 (-484 (-943 |#1|)) (-10 -8 (-15 -1871 (|#1| $ (-758))) (-15 -2577 ((-758) $)) (IF (|has| |#1| (-601 (-848))) (-6 (-601 (-848))) |%noBranch|) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|))) +((-3424 (((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)) (-554)) 80)) (-1896 (((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|))) 74)) (-1922 (((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|))) 59))) +(((-1193 |#1|) (-10 -7 (-15 -1896 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -1922 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -3424 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)) (-554)))) (-344)) (T -1193)) +((-3424 (*1 *2 *3 *4) (-12 (-5 *4 (-554)) (-4 *5 (-344)) (-5 *2 (-413 (-1154 (-1154 *5)))) (-5 *1 (-1193 *5)) (-5 *3 (-1154 (-1154 *5))))) (-1922 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4)))) (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4))))) (-1896 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4)))) (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4)))))) +(-10 -7 (-15 -1896 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -1922 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)))) (-15 -3424 ((-413 (-1154 (-1154 |#1|))) (-1154 (-1154 |#1|)) (-554)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 9) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1194) (-1065)) (T -1194)) +NIL +(-1065) +NIL +(((-1195) (-138)) (T -1195)) +NIL +(-13 (-10 -7 (-6 -4301))) +((-1402 (((-112)) 15)) (-3730 (((-1246) (-631 |#1|) (-631 |#1|)) 19) (((-1246) (-631 |#1|)) 20)) (-2230 (((-112) |#1| |#1|) 32 (|has| |#1| (-836)))) (-3731 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-3979 ((|#1| (-631 |#1|)) 33 (|has| |#1| (-836))) ((|#1| (-631 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-1982 (((-2 (|:| -3633 (-631 |#1|)) (|:| -2786 (-631 |#1|)))) 17))) +(((-1196 |#1|) (-10 -7 (-15 -3730 ((-1246) (-631 |#1|))) (-15 -3730 ((-1246) (-631 |#1|) (-631 |#1|))) (-15 -1982 ((-2 (|:| -3633 (-631 |#1|)) (|:| -2786 (-631 |#1|))))) (-15 -3731 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3731 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3979 (|#1| (-631 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1402 ((-112))) (IF (|has| |#1| (-836)) (PROGN (-15 -3979 (|#1| (-631 |#1|))) (-15 -2230 ((-112) |#1| |#1|))) |%noBranch|)) (-1082)) (T -1196)) +((-2230 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-836)) (-4 *3 (-1082)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-836)) (-5 *1 (-1196 *2)))) (-1402 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1196 *2)) (-4 *2 (-1082)))) (-3731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-1196 *3)))) (-3731 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) (-1982 (*1 *2) (-12 (-5 *2 (-2 (|:| -3633 (-631 *3)) (|:| -2786 (-631 *3)))) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246)) (-5 *1 (-1196 *4)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246)) (-5 *1 (-1196 *4))))) +(-10 -7 (-15 -3730 ((-1246) (-631 |#1|))) (-15 -3730 ((-1246) (-631 |#1|) (-631 |#1|))) (-15 -1982 ((-2 (|:| -3633 (-631 |#1|)) (|:| -2786 (-631 |#1|))))) (-15 -3731 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3731 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3979 (|#1| (-631 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1402 ((-112))) (IF (|has| |#1| (-836)) (PROGN (-15 -3979 (|#1| (-631 |#1|))) (-15 -2230 ((-112) |#1| |#1|))) |%noBranch|)) +((-2459 (((-1246) (-631 (-1158)) (-631 (-1158))) 13) (((-1246) (-631 (-1158))) 11)) (-3582 (((-1246)) 14)) (-3165 (((-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158))))) 18))) +(((-1197) (-10 -7 (-15 -2459 ((-1246) (-631 (-1158)))) (-15 -2459 ((-1246) (-631 (-1158)) (-631 (-1158)))) (-15 -3165 ((-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158)))))) (-15 -3582 ((-1246))))) (T -1197)) +((-3582 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1197)))) (-3165 (*1 *2) (-12 (-5 *2 (-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158))))) (-5 *1 (-1197)))) (-2459 (*1 *2 *3 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197))))) +(-10 -7 (-15 -2459 ((-1246) (-631 (-1158)))) (-15 -2459 ((-1246) (-631 (-1158)) (-631 (-1158)))) (-15 -3165 ((-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158)))))) (-15 -3582 ((-1246)))) +((-3278 (($ $) 17)) (-3289 (((-112) $) 24))) +(((-1198 |#1|) (-10 -8 (-15 -3278 (|#1| |#1|)) (-15 -3289 ((-112) |#1|))) (-1199)) (T -1198)) +NIL +(-10 -8 (-15 -3278 (|#1| |#1|)) (-15 -3289 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 52)) (-1565 (((-413 $) $) 53)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3289 (((-112) $) 54)) (-3248 (((-112) $) 31)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 51)) (-3919 (((-3 $ "failed") $ $) 43)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44)) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24))) +(((-1199) (-138)) (T -1199)) +((-3289 (*1 *2 *1) (-12 (-4 *1 (-1199)) (-5 *2 (-112)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199)))) (-3278 (*1 *1 *1) (-4 *1 (-1199))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199))))) +(-13 (-446) (-10 -8 (-15 -3289 ((-112) $)) (-15 -1565 ((-413 $) $)) (-15 -3278 ($ $)) (-15 -2270 ((-413 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-546) . T) ((-634 $) . T) ((-704 $) . T) ((-713) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-2879 (((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)) 23))) +(((-1200 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2879 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)))) (-1034) (-1034) (-1158) (-1158) |#1| |#2|) (T -1200)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1200 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1158))))) +(-10 -7 (-15 -2879 ((-1205 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1205 |#1| |#3| |#5|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 101) (($ $ (-554) (-554)) 100)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 176)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 174 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 173 (|has| |#1| (-546)))) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-554) $) 103) (((-554) $ (-554)) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104)) (-1310 (($ (-1 |#1| (-554)) $) 175)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-554)) 64) (($ $ (-1064) (-554)) 79) (($ $ (-631 (-1064)) (-631 (-554))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-554)))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) 107) (($ $ $) 84 (|has| (-554) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-3308 (((-554) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-554)) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-554) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-1201 |#1|) (-138) (-1034)) (T -1201)) +((-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) (-4 *3 (-1034)) (-4 *1 (-1201 *3)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1201 *3)) (-4 *3 (-1034)))) (-3016 (*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546)) (-5 *2 (-402 (-937 *4))))) (-3016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546)) (-5 *2 (-402 (-937 *4))))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) (-2279 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034)) (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) (-4 *3 (-38 (-402 (-554)))))) (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034)) (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554))))))))) +(-13 (-1219 |t#1| (-554)) (-10 -8 (-15 -4175 ($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |t#1|))))) (-15 -1310 ($ (-1 |t#1| (-554)) $)) (IF (|has| |t#1| (-546)) (PROGN (-15 -3016 ((-402 (-937 |t#1|)) $ (-554))) (-15 -3016 ((-402 (-937 |t#1|)) $ (-554) (-554)))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (IF (|has| |t#1| (-15 -2279 (|t#1| |t#1| (-1158)))) (IF (|has| |t#1| (-15 -2405 ((-631 (-1158)) |t#1|))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1180)) (IF (|has| |t#1| (-944)) (IF (|has| |t#1| (-29 (-554))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-987)) (-6 (-1180))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-554)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-554) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-554) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1199) |has| |#1| (-358)) ((-1219 |#1| #0#) . T)) +((-1695 (((-112) $) 12)) (-2784 (((-3 |#3| "failed") $) 17) (((-3 (-1158) "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL)) (-1668 ((|#3| $) 14) (((-1158) $) NIL) (((-402 (-554)) $) NIL) (((-554) $) NIL))) +(((-1202 |#1| |#2| |#3|) (-10 -8 (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|))) (-1203 |#2| |#3|) (-1034) (-1232 |#2|)) (T -1202)) +NIL +(-10 -8 (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -2784 ((-3 (-1158) "failed") |#1|)) (-15 -1668 ((-1158) |#1|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-3831 ((|#2| $) 231 (-3726 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 101) (($ $ (-554) (-554)) 100)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 108)) (-2216 ((|#2| $) 267)) (-1949 (((-3 |#2| "failed") $) 263)) (-2444 ((|#2| $) 264)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-4308 (((-413 (-1154 $)) (-1154 $)) 240 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 237 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) 249 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 176)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#2| "failed") $) 270) (((-3 (-554) "failed") $) 260 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) 258 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-1158) "failed") $) 242 (-3726 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1668 ((|#2| $) 271) (((-554) $) 259 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-402 (-554)) $) 257 (-3726 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-1158) $) 241 (-3726 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1749 (($ $) 266) (($ (-554) $) 265)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-3699 (((-675 |#2|) (-675 $)) 221 (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) 220 (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 219 (-3726 (|has| |#2| (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) 218 (-3726 (|has| |#2| (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) 33)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 174 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 173 (|has| |#1| (-546)))) (-3353 (($) 233 (-3726 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2745 (((-112) $) 247 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 225 (-3726 (|has| |#2| (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 224 (-3726 (|has| |#2| (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) 103) (((-554) $ (-554)) 102)) (-3248 (((-112) $) 31)) (-3472 (($ $) 229 (|has| |#1| (-358)))) (-2810 ((|#2| $) 227 (|has| |#1| (-358)))) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) 261 (-3726 (|has| |#2| (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) 248 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) 104)) (-1310 (($ (-1 |#1| (-554)) $) 175)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-554)) 64) (($ $ (-1064) (-554)) 79) (($ $ (-631 (-1064)) (-631 (-554))) 78)) (-4223 (($ $ $) 251 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2706 (($ $ $) 252 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2879 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-358)))) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-2454 (($ (-554) |#2|) 268)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-3834 (($) 262 (-3726 (|has| |#2| (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-3722 (($ $) 232 (-3726 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4339 ((|#2| $) 235 (-3726 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) 238 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) 239 (-3726 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) |#2|) 212 (-3726 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 |#2|)) 211 (-3726 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-289 |#2|))) 210 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) 209 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) 208 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-631 |#2|) (-631 |#2|)) 207 (-3726 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) 107) (($ $ $) 84 (|has| (-554) (-1094))) (($ $ |#2|) 206 (-3726 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) 216 (|has| |#1| (-358))) (($ $ (-758)) 87 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 85 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) 92 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158) (-758)) 91 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-631 (-1158))) 90 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158)) 89 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))))) (-3623 (($ $) 230 (|has| |#1| (-358)))) (-2822 ((|#2| $) 228 (|has| |#1| (-358)))) (-3308 (((-554) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-221) $) 246 (-3726 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-374) $) 245 (-3726 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-530) $) 244 (-3726 (|has| |#2| (-602 (-530))) (|has| |#1| (-358)))) (((-877 (-374)) $) 223 (-3726 (|has| |#2| (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) 222 (-3726 (|has| |#2| (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 236 (-3726 (-3726 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#1| (-358))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ |#2|) 269) (($ (-1158)) 243 (-3726 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358)))) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-554)) 62)) (-2084 (((-3 $ "failed") $) 51 (-3994 (-3726 (-3994 (|has| |#2| (-143)) (-3726 (|has| $ (-143)) (|has| |#2| (-894)))) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-2755 ((|#2| $) 234 (-3726 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) 250 (-3726 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) 214 (|has| |#1| (-358))) (($ $ (-758)) 88 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 86 (-3994 (-3726 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) 96 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158) (-758)) 95 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-631 (-1158))) 94 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))))) (($ $ (-1158)) 93 (-3994 (-3726 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))))) (-1708 (((-112) $ $) 254 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1686 (((-112) $ $) 255 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 253 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1676 (((-112) $ $) 256 (-3726 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358))) (($ |#2| |#2|) 226 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-358))) (($ |#2| $) 204 (|has| |#1| (-358))) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-1203 |#1| |#2|) (-138) (-1034) (-1232 |t#1|)) (T -1203)) +((-3308 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1232 *3)) (-5 *2 (-554)))) (-2454 (*1 *1 *2 *3) (-12 (-5 *2 (-554)) (-4 *4 (-1034)) (-4 *1 (-1203 *4 *3)) (-4 *3 (-1232 *4)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1232 *2)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1232 *3)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3)))) (-1949 (*1 *2 *1) (|partial| -12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3))))) +(-13 (-1201 |t#1|) (-1023 |t#2|) (-604 |t#2|) (-10 -8 (-15 -2454 ($ (-554) |t#2|)) (-15 -3308 ((-554) $)) (-15 -2216 (|t#2| $)) (-15 -1749 ($ $)) (-15 -1749 ($ (-554) $)) (-15 -2444 (|t#2| $)) (-15 -1949 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-358)) (-6 (-977 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-554)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-358)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-358)) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 #2=(-1158)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) ((-604 |#1|) |has| |#1| (-170)) ((-604 |#2|) . T) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-602 (-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) ((-602 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) ((-602 (-530)) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-602 (-877 (-554))))) ((-227 |#2|) |has| |#1| (-358)) ((-229) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-554) |#1|)))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 |#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-554) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-358) |has| |#1| (-358)) ((-333 |#2|) |has| |#1| (-358)) ((-372 |#2|) |has| |#1| (-358)) ((-395 |#2|) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-508 (-1158) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-508 (-1158) |#2|))) ((-508 |#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 |#2|) |has| |#1| (-358)) ((-634 $) . T) ((-627 (-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-627 (-554)))) ((-627 |#2|) |has| |#1| (-358)) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 |#2|) |has| |#1| (-358)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-778) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-779) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-781) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-782) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-807) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-834) -12 (|has| |#1| (-358)) (|has| |#2| (-807))) ((-836) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-836))) (-12 (|has| |#1| (-358)) (|has| |#2| (-807)))) ((-885 (-1158)) -3994 (-12 (|has| |#1| (-358)) (|has| |#2| (-885 (-1158)))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))) ((-871 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-374)))) ((-871 (-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-871 (-554)))) ((-869 |#2|) |has| |#1| (-358)) ((-894) -12 (|has| |#1| (-358)) (|has| |#2| (-894))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-977 |#2|) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1007) -12 (|has| |#1| (-358)) (|has| |#2| (-1007))) ((-1023 (-402 (-554))) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))) ((-1023 (-554)) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-554)))) ((-1023 #2#) -12 (|has| |#1| (-358)) (|has| |#2| (-1023 (-1158)))) ((-1023 |#2|) . T) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 |#2|) |has| |#1| (-358)) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) -12 (|has| |#1| (-358)) (|has| |#2| (-1133))) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1195) |has| |#1| (-358)) ((-1199) |has| |#1| (-358)) ((-1201 |#1|) . T) ((-1219 |#1| #0#) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 70)) (-3831 ((|#2| $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 88)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-554)) 97) (($ $ (-554) (-554)) 99)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) 47)) (-2216 ((|#2| $) 11)) (-1949 (((-3 |#2| "failed") $) 30)) (-2444 ((|#2| $) 31)) (-3023 (($ $) 192 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 168 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) 188 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 164 (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) 57)) (-3046 (($ $) 196 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 172 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 144) (((-3 (-554) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-1158) "failed") $) NIL (-12 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1668 ((|#2| $) 143) (((-554) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-402 (-554)) $) NIL (-12 (|has| |#2| (-1023 (-554))) (|has| |#1| (-358)))) (((-1158) $) NIL (-12 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358))))) (-1749 (($ $) 61) (($ (-554) $) 24)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 |#2|) (-675 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| |#2| (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) 77)) (-3016 (((-402 (-937 |#1|)) $ (-554)) 112 (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) 114 (|has| |#1| (-546)))) (-3353 (($) NIL (-12 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2745 (((-112) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) 64)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| |#2| (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| |#2| (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) 93) (((-554) $ (-554)) 95)) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL (|has| |#1| (-358)))) (-2810 ((|#2| $) 151 (|has| |#1| (-358)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) 136)) (-1310 (($ (-1 |#1| (-554)) $) 132)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-554)) 19) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-4223 (($ $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2706 (($ $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-2879 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-358)))) (-2395 (($ $) 162 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2454 (($ (-554) |#2|) 10)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 145 (|has| |#1| (-358)))) (-2279 (($ $) 214 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 219 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180)))))) (-3834 (($) NIL (-12 (|has| |#2| (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3722 (($ $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4339 ((|#2| $) NIL (-12 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| |#2| (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-554)) 126)) (-3919 (((-3 $ "failed") $ $) 116 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) 160 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) |#2|) NIL (-12 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 |#2|)) NIL (-12 (|has| |#2| (-508 (-1158) |#2|)) (|has| |#1| (-358)))) (($ $ (-631 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-631 |#2|) (-631 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) 91) (($ $ $) 79 (|has| (-554) (-1094))) (($ $ |#2|) NIL (-12 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 137 (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) 140 (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-3623 (($ $) NIL (|has| |#1| (-358)))) (-2822 ((|#2| $) 152 (|has| |#1| (-358)))) (-3308 (((-554) $) 12)) (-3057 (($ $) 198 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 174 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 194 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 170 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 190 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 166 (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-221) $) NIL (-12 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| |#2| (-1007)) (|has| |#1| (-358)))) (((-530) $) NIL (-12 (|has| |#2| (-602 (-530))) (|has| |#1| (-358)))) (((-877 (-374)) $) NIL (-12 (|has| |#2| (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) NIL (-12 (|has| |#2| (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894)) (|has| |#1| (-358))))) (-1300 (($ $) 124)) (-3075 (((-848) $) 245) (($ (-554)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1158)) NIL (-12 (|has| |#2| (-1023 (-1158))) (|has| |#1| (-358)))) (($ (-402 (-554))) 155 (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-554)) 74)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894)) (|has| |#1| (-358))) (-12 (|has| |#2| (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) 142)) (-1608 ((|#1| $) 90)) (-2755 ((|#2| $) NIL (-12 (|has| |#2| (-539)) (|has| |#1| (-358))))) (-3096 (($ $) 204 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 180 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 200 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 176 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 208 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 184 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 210 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 186 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 206 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 182 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 202 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 178 (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-358))))) (-2004 (($) 13 T CONST)) (-2014 (($) 17 T CONST)) (-1787 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) NIL (-3994 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#2| (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-1708 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1686 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1658 (((-112) $ $) 63)) (-1697 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1676 (((-112) $ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-358))))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358))) (($ |#2| |#2|) 150 (|has| |#1| (-358)))) (-1744 (($ $) 213) (($ $ $) 68)) (-1735 (($ $ $) 66)) (** (($ $ (-906)) NIL) (($ $ (-758)) 73) (($ $ (-554)) 146 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-358))) (($ |#2| $) 147 (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1204 |#1| |#2|) (-1203 |#1| |#2|) (-1034) (-1232 |#1|)) (T -1204)) +NIL +(-1203 |#1| |#2|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-3831 (((-1233 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 10)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1976 (($ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1363 (((-112) $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-1557 (($ $ (-554)) NIL) (($ $ (-554) (-554)) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|))) $) NIL)) (-2216 (((-1233 |#1| |#2| |#3|) $) NIL)) (-1949 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) NIL)) (-2444 (((-1233 |#1| |#2| |#3|) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4219 (((-554) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-4175 (($ (-1138 (-2 (|:| |k| (-554)) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1158) "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-3 (-402 (-554)) "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-3 (-554) "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1668 (((-1233 |#1| |#2| |#3|) $) NIL) (((-1158) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (((-402 (-554)) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358)))) (((-554) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))))) (-1749 (($ $) NIL) (($ (-554) $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-1233 |#1| |#2| |#3|)) (-675 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-1233 |#1| |#2| |#3|))) (|:| |vec| (-1241 (-1233 |#1| |#2| |#3|)))) (-675 $) (-1241 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358)))) (((-675 (-554)) (-675 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-627 (-554))) (|has| |#1| (-358))))) (-1320 (((-3 $ "failed") $) NIL)) (-3016 (((-402 (-937 |#1|)) $ (-554)) NIL (|has| |#1| (-546))) (((-402 (-937 |#1|)) $ (-554) (-554)) NIL (|has| |#1| (-546)))) (-3353 (($) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2745 (((-112) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-871 (-374))) (|has| |#1| (-358)))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-871 (-554))) (|has| |#1| (-358))))) (-2342 (((-554) $) NIL) (((-554) $ (-554)) NIL)) (-3248 (((-112) $) NIL)) (-3472 (($ $) NIL (|has| |#1| (-358)))) (-2810 (((-1233 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3339 (((-3 $ "failed") $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))))) (-4304 (((-112) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-3333 (($ $ (-906)) NIL)) (-1310 (($ (-1 |#1| (-554)) $) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-554)) 17) (($ $ (-1064) (-554)) NIL) (($ $ (-631 (-1064)) (-631 (-554))) NIL)) (-4223 (($ $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2706 (($ $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2454 (($ (-554) (-1233 |#1| |#2| |#3|)) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 25 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 26 (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1133)) (|has| |#1| (-358))) CONST)) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3722 (($ $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4339 (((-1233 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-554)) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-554))))) (($ $ (-1158) (-1233 |#1| |#2| |#3|)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-508 (-1158) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1158)) (-631 (-1233 |#1| |#2| |#3|))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-508 (-1158) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-289 (-1233 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1233 |#1| |#2| |#3|))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-631 (-1233 |#1| |#2| |#3|)) (-631 (-1233 |#1| |#2| |#3|))) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-304 (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-554)) NIL) (($ $ $) NIL (|has| (-554) (-1094))) (($ $ (-1233 |#1| |#2| |#3|)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-281 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-1237 |#2|)) 24) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) 23 (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-3623 (($ $) NIL (|has| |#1| (-358)))) (-2822 (((-1233 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-3308 (((-554) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2927 (((-530) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-602 (-530))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1007)) (|has| |#1| (-358)))) (((-877 (-374)) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-602 (-877 (-374)))) (|has| |#1| (-358)))) (((-877 (-554)) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-602 (-877 (-554)))) (|has| |#1| (-358))))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1233 |#1| |#2| |#3|)) NIL) (($ (-1237 |#2|)) 22) (($ (-1158)) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-1158))) (|has| |#1| (-358)))) (($ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546)))) (($ (-402 (-554))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-1023 (-554))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-554))))))) (-1779 ((|#1| $ (-554)) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 11)) (-2755 (((-1233 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-539)) (|has| |#1| (-358))))) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-894)) (|has| |#1| (-358))) (|has| |#1| (-546))))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-554)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-554)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1700 (($ $) NIL (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))))) (-2004 (($) 19 T CONST)) (-2014 (($) 15 T CONST)) (-1787 (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) (-758)) NIL (|has| |#1| (-358))) (($ $ (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-554) |#1|))))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158) (-758)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-631 (-1158))) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158)))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-885 (-1158))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-554) |#1|))) (|has| |#1| (-885 (-1158))))))) (-1708 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1686 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1676 (((-112) $ $) NIL (-3994 (-12 (|has| (-1233 |#1| |#2| |#3|) (-807)) (|has| |#1| (-358))) (-12 (|has| (-1233 |#1| |#2| |#3|) (-836)) (|has| |#1| (-358)))))) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358))) (($ (-1233 |#1| |#2| |#3|) (-1233 |#1| |#2| |#3|)) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 20)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1233 |#1| |#2| |#3|)) NIL (|has| |#1| (-358))) (($ (-1233 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358))) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1205 |#1| |#2| |#3|) (-13 (-1203 |#1| (-1233 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1205)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1203 |#1| (-1233 |#1| |#2| |#3|)) (-10 -8 (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-3938 (((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)) 12)) (-4091 (((-413 |#1|) |#1|) 22)) (-2270 (((-413 |#1|) |#1|) 21))) +(((-1206 |#1|) (-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)))) (-1217 (-554))) (T -1206)) +((-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))) (-4091 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554))))) (-2270 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554)))))) +(-10 -7 (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4091 ((-413 |#1|) |#1|)) (-15 -3938 ((-2 (|:| |contp| (-554)) (|:| -2316 (-631 (-2 (|:| |irr| |#1|) (|:| -4218 (-554)))))) |#1| (-112)))) +((-2879 (((-1138 |#2|) (-1 |#2| |#1|) (-1208 |#1|)) 23 (|has| |#1| (-834))) (((-1208 |#2|) (-1 |#2| |#1|) (-1208 |#1|)) 17))) +(((-1207 |#1| |#2|) (-10 -7 (-15 -2879 ((-1208 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) |%noBranch|)) (-1195) (-1195)) (T -1207)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-834)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1138 *6)) (-5 *1 (-1207 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1208 *6)) (-5 *1 (-1207 *5 *6))))) +(-10 -7 (-15 -2879 ((-1208 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) (IF (|has| |#1| (-834)) (-15 -2879 ((-1138 |#2|) (-1 |#2| |#1|) (-1208 |#1|))) |%noBranch|)) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2063 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2879 (((-1138 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-834)))) (-3633 ((|#1| $) 14)) (-4173 ((|#1| $) 10)) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-4196 (((-554) $) 18)) (-2786 ((|#1| $) 17)) (-4209 ((|#1| $) 11)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-3780 (((-112) $) 16)) (-1845 (((-1138 |#1|) $) 38 (|has| |#1| (-834))) (((-1138 |#1|) (-631 $)) 37 (|has| |#1| (-834)))) (-2927 (($ |#1|) 25)) (-3075 (($ (-1076 |#1|)) 24) (((-848) $) 34 (|has| |#1| (-1082)))) (-4268 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1447 (($ $ (-554)) 13)) (-1658 (((-112) $ $) 27 (|has| |#1| (-1082))))) +(((-1208 |#1|) (-13 (-1075 |#1|) (-10 -8 (-15 -4268 ($ |#1|)) (-15 -2063 ($ |#1|)) (-15 -3075 ($ (-1076 |#1|))) (-15 -3780 ((-112) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-1138 |#1|))) |%noBranch|))) (-1195)) (T -1208)) +((-4268 (*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195)))) (-2063 (*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-1195)) (-5 *1 (-1208 *3)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1195))))) +(-13 (-1075 |#1|) (-10 -8 (-15 -4268 ($ |#1|)) (-15 -2063 ($ |#1|)) (-15 -3075 ($ (-1076 |#1|))) (-15 -3780 ((-112) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-1077 |#1| (-1138 |#1|))) |%noBranch|))) +((-2879 (((-1214 |#3| |#4|) (-1 |#4| |#2|) (-1214 |#1| |#2|)) 15))) +(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 ((-1214 |#3| |#4|) (-1 |#4| |#2|) (-1214 |#1| |#2|)))) (-1158) (-1034) (-1158) (-1034)) (T -1209)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1214 *5 *6)) (-14 *5 (-1158)) (-4 *6 (-1034)) (-4 *8 (-1034)) (-5 *2 (-1214 *7 *8)) (-5 *1 (-1209 *5 *6 *7 *8)) (-14 *7 (-1158))))) +(-10 -7 (-15 -2879 ((-1214 |#3| |#4|) (-1 |#4| |#2|) (-1214 |#1| |#2|)))) +((-2037 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2715 ((|#1| |#3|) 13)) (-1770 ((|#3| |#3|) 19))) +(((-1210 |#1| |#2| |#3|) (-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-546) (-977 |#1|) (-1217 |#2|)) (T -1210)) +((-2037 (*1 *2 *3) (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1210 *4 *5 *3)) (-4 *3 (-1217 *5)))) (-1770 (*1 *2 *2) (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-1210 *3 *4 *2)) (-4 *2 (-1217 *4)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-1210 *2 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -2715 (|#1| |#3|)) (-15 -1770 (|#3| |#3|)) (-15 -2037 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2634 (((-3 |#2| "failed") |#2| (-758) |#1|) 29)) (-1379 (((-3 |#2| "failed") |#2| (-758)) 30)) (-2651 (((-3 (-2 (|:| -3311 |#2|) (|:| -3324 |#2|)) "failed") |#2|) 43)) (-3436 (((-631 |#2|) |#2|) 45)) (-1517 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1211 |#1| |#2|) (-10 -7 (-15 -1379 ((-3 |#2| "failed") |#2| (-758))) (-15 -2634 ((-3 |#2| "failed") |#2| (-758) |#1|)) (-15 -1517 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2651 ((-3 (-2 (|:| -3311 |#2|) (|:| -3324 |#2|)) "failed") |#2|)) (-15 -3436 ((-631 |#2|) |#2|))) (-13 (-546) (-145)) (-1217 |#1|)) (T -1211)) +((-3436 (*1 *2 *3) (-12 (-4 *4 (-13 (-546) (-145))) (-5 *2 (-631 *3)) (-5 *1 (-1211 *4 *3)) (-4 *3 (-1217 *4)))) (-2651 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-546) (-145))) (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-1211 *4 *3)) (-4 *3 (-1217 *4)))) (-1517 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1211 *3 *2)) (-4 *2 (-1217 *3)))) (-2634 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4)))) (-1379 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4))))) +(-10 -7 (-15 -1379 ((-3 |#2| "failed") |#2| (-758))) (-15 -2634 ((-3 |#2| "failed") |#2| (-758) |#1|)) (-15 -1517 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2651 ((-3 (-2 (|:| -3311 |#2|) (|:| -3324 |#2|)) "failed") |#2|)) (-15 -3436 ((-631 |#2|) |#2|))) +((-2491 (((-3 (-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|) 32))) +(((-1212 |#1| |#2|) (-10 -7 (-15 -2491 ((-3 (-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|))) (-546) (-1217 |#1|)) (T -1212)) +((-2491 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-1212 *4 *3)) (-4 *3 (-1217 *4))))) +(-10 -7 (-15 -2491 ((-3 (-2 (|:| -2325 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|))) +((-3266 ((|#2| |#2| |#2|) 19)) (-3592 ((|#2| |#2| |#2|) 30)) (-2965 ((|#2| |#2| |#2| (-758) (-758)) 36))) +(((-1213 |#1| |#2|) (-10 -7 (-15 -3266 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -2965 (|#2| |#2| |#2| (-758) (-758)))) (-1034) (-1217 |#1|)) (T -1213)) +((-2965 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-1213 *4 *2)) (-4 *2 (-1217 *4)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3)))) (-3266 (*1 *2 *2 *2) (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3))))) +(-10 -7 (-15 -3266 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -2965 (|#2| |#2| |#2| (-758) (-758)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2481 (((-1241 |#2|) $ (-758)) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1991 (($ (-1154 |#2|)) NIL)) (-2237 (((-1154 $) $ (-1064)) NIL) (((-1154 |#2|) $) NIL)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#2| (-546)))) (-1976 (($ $) NIL (|has| |#2| (-546)))) (-1363 (((-112) $) NIL (|has| |#2| (-546)))) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4286 (($ $ $) NIL (|has| |#2| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3278 (($ $) NIL (|has| |#2| (-446)))) (-1565 (((-413 $) $) NIL (|has| |#2| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2286 (((-112) $ $) NIL (|has| |#2| (-358)))) (-1470 (($ $ (-758)) NIL)) (-3867 (($ $ (-758)) NIL)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-446)))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-554)) "failed") $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) NIL (|has| |#2| (-1023 (-554)))) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#2| $) NIL) (((-402 (-554)) $) NIL (|has| |#2| (-1023 (-402 (-554))))) (((-554) $) NIL (|has| |#2| (-1023 (-554)))) (((-1064) $) NIL)) (-2999 (($ $ $ (-1064)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-3964 (($ $ $) NIL (|has| |#2| (-358)))) (-2550 (($ $) NIL)) (-3699 (((-675 (-554)) (-675 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) NIL (|has| |#2| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#2|)) (|:| |vec| (-1241 |#2|))) (-675 $) (-1241 $)) NIL) (((-675 |#2|) (-675 $)) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3943 (($ $ $) NIL (|has| |#2| (-358)))) (-3639 (($ $ $) NIL)) (-2489 (($ $ $) NIL (|has| |#2| (-546)))) (-1680 (((-2 (|:| -1490 |#2|) (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#2| (-358)))) (-2048 (($ $) NIL (|has| |#2| (-446))) (($ $ (-1064)) NIL (|has| |#2| (-446)))) (-2540 (((-631 $) $) NIL)) (-3289 (((-112) $) NIL (|has| |#2| (-894)))) (-1344 (($ $ |#2| (-758) $) NIL)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) NIL (-12 (|has| (-1064) (-871 (-374))) (|has| |#2| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) NIL (-12 (|has| (-1064) (-871 (-554))) (|has| |#2| (-871 (-554)))))) (-2342 (((-758) $ $) NIL (|has| |#2| (-546)))) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3339 (((-3 $ "failed") $) NIL (|has| |#2| (-1133)))) (-2393 (($ (-1154 |#2|) (-1064)) NIL) (($ (-1154 $) (-1064)) NIL)) (-3333 (($ $ (-758)) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-2383 (($ |#2| (-758)) 17) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) NIL) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-4223 (($ $ $) NIL (|has| |#2| (-836)))) (-2706 (($ $ $) NIL (|has| |#2| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-2964 (((-1154 |#2|) $) NIL)) (-3277 (((-3 (-1064) "failed") $) NIL)) (-2518 (($ $) NIL)) (-2530 ((|#2| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-1613 (((-1140) $) NIL)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) NIL)) (-3778 (((-3 (-631 $) "failed") $) NIL)) (-2433 (((-3 (-631 $) "failed") $) NIL)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) NIL)) (-2279 (($ $) NIL (|has| |#2| (-38 (-402 (-554)))))) (-3834 (($) NIL (|has| |#2| (-1133)) CONST)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 ((|#2| $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#2| (-446)))) (-2510 (($ (-631 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2034 (($ $ (-758) |#2| $) NIL)) (-1290 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) NIL (|has| |#2| (-894)))) (-2270 (((-413 $) $) NIL (|has| |#2| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#2| (-358)))) (-3919 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-546))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#2| (-358)))) (-2386 (($ $ (-631 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#2|) NIL) (($ $ (-631 (-1064)) (-631 |#2|)) NIL) (($ $ (-1064) $) NIL) (($ $ (-631 (-1064)) (-631 $)) NIL)) (-2072 (((-758) $) NIL (|has| |#2| (-358)))) (-2064 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#2| (-546))) ((|#2| (-402 $) |#2|) NIL (|has| |#2| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#2| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) NIL)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-358)))) (-1495 (($ $ (-1064)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-1553 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3308 (((-758) $) NIL) (((-758) $ (-1064)) NIL) (((-631 (-758)) $ (-631 (-1064))) NIL)) (-2927 (((-877 (-374)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#2| (-602 (-877 (-374)))))) (((-877 (-554)) $) NIL (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#2| (-602 (-877 (-554)))))) (((-530) $) NIL (-12 (|has| (-1064) (-602 (-530))) (|has| |#2| (-602 (-530)))))) (-3276 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-1064)) NIL (|has| |#2| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-894))))) (-2903 (((-3 $ "failed") $ $) NIL (|has| |#2| (-546))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#2| (-546)))) (-3075 (((-848) $) 13) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-1064)) NIL) (($ (-1237 |#1|)) 19) (($ (-402 (-554))) NIL (-3994 (|has| |#2| (-38 (-402 (-554)))) (|has| |#2| (-1023 (-402 (-554)))))) (($ $) NIL (|has| |#2| (-546)))) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-758)) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2084 (((-3 $ "failed") $) NIL (-3994 (-12 (|has| $ (-143)) (|has| |#2| (-894))) (|has| |#2| (-143))))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| |#2| (-170)))) (-1909 (((-112) $ $) NIL (|has| |#2| (-546)))) (-2004 (($) NIL T CONST)) (-2014 (($) 14 T CONST)) (-1787 (($ $ (-1064)) NIL) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) NIL) (($ $ (-1158)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1158) (-758)) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) NIL (|has| |#2| (-885 (-1158)))) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1708 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1658 (((-112) $ $) NIL)) (-1697 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#2| (-836)))) (-1752 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-402 (-554))) NIL (|has| |#2| (-38 (-402 (-554))))) (($ (-402 (-554)) $) NIL (|has| |#2| (-38 (-402 (-554))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1214 |#1| |#2|) (-13 (-1217 |#2|) (-604 (-1237 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#2| $)))) (-1158) (-1034)) (T -1214)) +((-2034 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1214 *4 *3)) (-14 *4 (-1158)) (-4 *3 (-1034))))) +(-13 (-1217 |#2|) (-604 (-1237 |#1|)) (-10 -8 (-15 -2034 ($ $ (-758) |#2| $)))) +((-2879 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|))) (-1034) (-1217 |#1|) (-1034) (-1217 |#3|)) (T -1215)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *4 *6 *2)) (-4 *4 (-1217 *5))))) +(-10 -7 (-15 -2879 (|#4| (-1 |#3| |#1|) |#2|))) +((-2481 (((-1241 |#2|) $ (-758)) 114)) (-2405 (((-631 (-1064)) $) 15)) (-1991 (($ (-1154 |#2|)) 67)) (-3785 (((-758) $) NIL) (((-758) $ (-631 (-1064))) 18)) (-4308 (((-413 (-1154 $)) (-1154 $)) 185)) (-3278 (($ $) 175)) (-1565 (((-413 $) $) 173)) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 82)) (-1470 (($ $ (-758)) 71)) (-3867 (($ $ (-758)) 73)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2784 (((-3 |#2| "failed") $) 117) (((-3 (-402 (-554)) "failed") $) NIL) (((-3 (-554) "failed") $) NIL) (((-3 (-1064) "failed") $) NIL)) (-1668 ((|#2| $) 115) (((-402 (-554)) $) NIL) (((-554) $) NIL) (((-1064) $) NIL)) (-2489 (($ $ $) 151)) (-1680 (((-2 (|:| -1490 |#2|) (|:| -2325 $) (|:| -2423 $)) $ $) 153)) (-2342 (((-758) $ $) 170)) (-3339 (((-3 $ "failed") $) 123)) (-2383 (($ |#2| (-758)) NIL) (($ $ (-1064) (-758)) 47) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-3893 (((-758) $) NIL) (((-758) $ (-1064)) 42) (((-631 (-758)) $ (-631 (-1064))) 43)) (-2964 (((-1154 |#2|) $) 59)) (-3277 (((-3 (-1064) "failed") $) 40)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) 70)) (-2279 (($ $) 197)) (-3834 (($) 119)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 182)) (-1290 (((-413 (-1154 $)) (-1154 $)) 88)) (-3082 (((-413 (-1154 $)) (-1154 $)) 86)) (-2270 (((-413 $) $) 107)) (-2386 (($ $ (-631 (-289 $))) 39) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-631 $) (-631 $)) NIL) (($ $ (-1064) |#2|) 31) (($ $ (-631 (-1064)) (-631 |#2|)) 28) (($ $ (-1064) $) 25) (($ $ (-631 (-1064)) (-631 $)) 23)) (-2072 (((-758) $) 188)) (-2064 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) 147) ((|#2| (-402 $) |#2|) 187) (((-402 $) $ (-402 $)) 169)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 191)) (-1553 (($ $ (-1064)) 140) (($ $ (-631 (-1064))) NIL) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL) (($ $ (-758)) NIL) (($ $) 138) (($ $ (-1158)) NIL) (($ $ (-631 (-1158))) NIL) (($ $ (-1158) (-758)) NIL) (($ $ (-631 (-1158)) (-631 (-758))) NIL) (($ $ (-1 |#2| |#2|) (-758)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3308 (((-758) $) NIL) (((-758) $ (-1064)) 16) (((-631 (-758)) $ (-631 (-1064))) 20)) (-3276 ((|#2| $) NIL) (($ $ (-1064)) 125)) (-2903 (((-3 $ "failed") $ $) 161) (((-3 (-402 $) "failed") (-402 $) $) 157)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#2|) NIL) (($ (-1064)) 51) (($ (-402 (-554))) NIL) (($ $) NIL))) +(((-1216 |#1| |#2|) (-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2064 (|#2| (-402 |#1|) |#2|)) (-15 -4022 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1680 ((-2 (|:| -1490 |#2|) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -2903 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -2903 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2342 ((-758) |#1| |#1|)) (-15 -2064 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3867 (|#1| |#1| (-758))) (-15 -1470 (|#1| |#1| (-758))) (-15 -2162 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| (-758))) (-15 -1991 (|#1| (-1154 |#2|))) (-15 -2964 ((-1154 |#2|) |#1|)) (-15 -2481 ((-1241 |#2|) |#1| (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| |#2|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4308 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3276 (|#1| |#1| (-1064))) (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -3785 ((-758) |#1| (-631 (-1064)))) (-15 -3785 ((-758) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -2383 (|#1| |#1| (-1064) (-758))) (-15 -3893 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3893 ((-758) |#1| (-1064))) (-15 -3277 ((-3 (-1064) "failed") |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3308 ((-758) |#1| (-1064))) (-15 -3075 (|#1| (-1064))) (-15 -2784 ((-3 (-1064) "failed") |#1|)) (-15 -1668 ((-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1064) |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 ((-758) |#1|)) (-15 -2383 (|#1| |#2| (-758))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3893 ((-758) |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -1553 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1064) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1064)))) (-15 -1553 (|#1| |#1| (-1064))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) (-1217 |#2|) (-1034)) (T -1216)) +NIL +(-10 -8 (-15 -3075 (|#1| |#1|)) (-15 -3077 ((-1154 |#1|) (-1154 |#1|) (-1154 |#1|))) (-15 -1565 ((-413 |#1|) |#1|)) (-15 -3278 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3834 (|#1|)) (-15 -3339 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2072 ((-758) |#1|)) (-15 -2259 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2064 (|#2| (-402 |#1|) |#2|)) (-15 -4022 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1680 ((-2 (|:| -1490 |#2|) (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -2903 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -2903 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2342 ((-758) |#1| |#1|)) (-15 -2064 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3867 (|#1| |#1| (-758))) (-15 -1470 (|#1| |#1| (-758))) (-15 -2162 ((-2 (|:| -2325 |#1|) (|:| -2423 |#1|)) |#1| (-758))) (-15 -1991 (|#1| (-1154 |#2|))) (-15 -2964 ((-1154 |#2|) |#1|)) (-15 -2481 ((-1241 |#2|) |#1| (-758))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1553 (|#1| |#1| (-1 |#2| |#2|) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1158) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1158)))) (-15 -1553 (|#1| |#1| (-1158))) (-15 -1553 (|#1| |#1|)) (-15 -1553 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| |#1|)) (-15 -2064 (|#2| |#1| |#2|)) (-15 -2270 ((-413 |#1|) |#1|)) (-15 -4308 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -3082 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1290 ((-413 (-1154 |#1|)) (-1154 |#1|))) (-15 -1625 ((-3 (-631 (-1154 |#1|)) "failed") (-631 (-1154 |#1|)) (-1154 |#1|))) (-15 -3276 (|#1| |#1| (-1064))) (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -3785 ((-758) |#1| (-631 (-1064)))) (-15 -3785 ((-758) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -2383 (|#1| |#1| (-1064) (-758))) (-15 -3893 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3893 ((-758) |#1| (-1064))) (-15 -3277 ((-3 (-1064) "failed") |#1|)) (-15 -3308 ((-631 (-758)) |#1| (-631 (-1064)))) (-15 -3308 ((-758) |#1| (-1064))) (-15 -3075 (|#1| (-1064))) (-15 -2784 ((-3 (-1064) "failed") |#1|)) (-15 -1668 ((-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#1|))) (-15 -2386 (|#1| |#1| (-1064) |#1|)) (-15 -2386 (|#1| |#1| (-631 (-1064)) (-631 |#2|))) (-15 -2386 (|#1| |#1| (-1064) |#2|)) (-15 -2386 (|#1| |#1| (-631 |#1|) (-631 |#1|))) (-15 -2386 (|#1| |#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| (-289 |#1|))) (-15 -2386 (|#1| |#1| (-631 (-289 |#1|)))) (-15 -3308 ((-758) |#1|)) (-15 -2383 (|#1| |#2| (-758))) (-15 -2784 ((-3 (-554) "failed") |#1|)) (-15 -1668 ((-554) |#1|)) (-15 -2784 ((-3 (-402 (-554)) "failed") |#1|)) (-15 -1668 ((-402 (-554)) |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3075 (|#1| |#2|)) (-15 -3893 ((-758) |#1|)) (-15 -3276 (|#2| |#1|)) (-15 -1553 (|#1| |#1| (-631 (-1064)) (-631 (-758)))) (-15 -1553 (|#1| |#1| (-1064) (-758))) (-15 -1553 (|#1| |#1| (-631 (-1064)))) (-15 -1553 (|#1| |#1| (-1064))) (-15 -3075 (|#1| (-554))) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2481 (((-1241 |#1|) $ (-758)) 238)) (-2405 (((-631 (-1064)) $) 110)) (-1991 (($ (-1154 |#1|)) 236)) (-2237 (((-1154 $) $ (-1064)) 125) (((-1154 |#1|) $) 124)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 87 (|has| |#1| (-546)))) (-1976 (($ $) 88 (|has| |#1| (-546)))) (-1363 (((-112) $) 90 (|has| |#1| (-546)))) (-3785 (((-758) $) 112) (((-758) $ (-631 (-1064))) 111)) (-2934 (((-3 $ "failed") $ $) 19)) (-4286 (($ $ $) 223 (|has| |#1| (-546)))) (-4308 (((-413 (-1154 $)) (-1154 $)) 100 (|has| |#1| (-894)))) (-3278 (($ $) 98 (|has| |#1| (-446)))) (-1565 (((-413 $) $) 97 (|has| |#1| (-446)))) (-1625 (((-3 (-631 (-1154 $)) "failed") (-631 (-1154 $)) (-1154 $)) 103 (|has| |#1| (-894)))) (-2286 (((-112) $ $) 208 (|has| |#1| (-358)))) (-1470 (($ $ (-758)) 231)) (-3867 (($ $ (-758)) 230)) (-4022 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-446)))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 164) (((-3 (-402 (-554)) "failed") $) 161 (|has| |#1| (-1023 (-402 (-554))))) (((-3 (-554) "failed") $) 159 (|has| |#1| (-1023 (-554)))) (((-3 (-1064) "failed") $) 136)) (-1668 ((|#1| $) 163) (((-402 (-554)) $) 162 (|has| |#1| (-1023 (-402 (-554))))) (((-554) $) 160 (|has| |#1| (-1023 (-554)))) (((-1064) $) 137)) (-2999 (($ $ $ (-1064)) 108 (|has| |#1| (-170))) ((|#1| $ $) 226 (|has| |#1| (-170)))) (-3964 (($ $ $) 212 (|has| |#1| (-358)))) (-2550 (($ $) 154)) (-3699 (((-675 (-554)) (-675 $)) 134 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 (-554))) (|:| |vec| (-1241 (-554)))) (-675 $) (-1241 $)) 133 (|has| |#1| (-627 (-554)))) (((-2 (|:| -2866 (-675 |#1|)) (|:| |vec| (-1241 |#1|))) (-675 $) (-1241 $)) 132) (((-675 |#1|) (-675 $)) 131)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 211 (|has| |#1| (-358)))) (-3639 (($ $ $) 229)) (-2489 (($ $ $) 220 (|has| |#1| (-546)))) (-1680 (((-2 (|:| -1490 |#1|) (|:| -2325 $) (|:| -2423 $)) $ $) 219 (|has| |#1| (-546)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 206 (|has| |#1| (-358)))) (-2048 (($ $) 176 (|has| |#1| (-446))) (($ $ (-1064)) 105 (|has| |#1| (-446)))) (-2540 (((-631 $) $) 109)) (-3289 (((-112) $) 96 (|has| |#1| (-894)))) (-1344 (($ $ |#1| (-758) $) 172)) (-1655 (((-874 (-374) $) $ (-877 (-374)) (-874 (-374) $)) 84 (-12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374))))) (((-874 (-554) $) $ (-877 (-554)) (-874 (-554) $)) 83 (-12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))))) (-2342 (((-758) $ $) 224 (|has| |#1| (-546)))) (-3248 (((-112) $) 31)) (-2122 (((-758) $) 169)) (-3339 (((-3 $ "failed") $) 204 (|has| |#1| (-1133)))) (-2393 (($ (-1154 |#1|) (-1064)) 117) (($ (-1154 $) (-1064)) 116)) (-3333 (($ $ (-758)) 235)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 215 (|has| |#1| (-358)))) (-3910 (((-631 $) $) 126)) (-3580 (((-112) $) 152)) (-2383 (($ |#1| (-758)) 153) (($ $ (-1064) (-758)) 119) (($ $ (-631 (-1064)) (-631 (-758))) 118)) (-4014 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $ (-1064)) 120) (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 233)) (-3893 (((-758) $) 170) (((-758) $ (-1064)) 122) (((-631 (-758)) $ (-631 (-1064))) 121)) (-4223 (($ $ $) 79 (|has| |#1| (-836)))) (-2706 (($ $ $) 78 (|has| |#1| (-836)))) (-2789 (($ (-1 (-758) (-758)) $) 171)) (-2879 (($ (-1 |#1| |#1|) $) 151)) (-2964 (((-1154 |#1|) $) 237)) (-3277 (((-3 (-1064) "failed") $) 123)) (-2518 (($ $) 149)) (-2530 ((|#1| $) 148)) (-2475 (($ (-631 $)) 94 (|has| |#1| (-446))) (($ $ $) 93 (|has| |#1| (-446)))) (-1613 (((-1140) $) 9)) (-2162 (((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758)) 232)) (-3778 (((-3 (-631 $) "failed") $) 114)) (-2433 (((-3 (-631 $) "failed") $) 115)) (-3160 (((-3 (-2 (|:| |var| (-1064)) (|:| -1407 (-758))) "failed") $) 113)) (-2279 (($ $) 216 (|has| |#1| (-38 (-402 (-554)))))) (-3834 (($) 203 (|has| |#1| (-1133)) CONST)) (-2768 (((-1102) $) 10)) (-2492 (((-112) $) 166)) (-2505 ((|#1| $) 167)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 95 (|has| |#1| (-446)))) (-2510 (($ (-631 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-1290 (((-413 (-1154 $)) (-1154 $)) 102 (|has| |#1| (-894)))) (-3082 (((-413 (-1154 $)) (-1154 $)) 101 (|has| |#1| (-894)))) (-2270 (((-413 $) $) 99 (|has| |#1| (-894)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 213 (|has| |#1| (-358)))) (-3919 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-546))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 207 (|has| |#1| (-358)))) (-2386 (($ $ (-631 (-289 $))) 145) (($ $ (-289 $)) 144) (($ $ $ $) 143) (($ $ (-631 $) (-631 $)) 142) (($ $ (-1064) |#1|) 141) (($ $ (-631 (-1064)) (-631 |#1|)) 140) (($ $ (-1064) $) 139) (($ $ (-631 (-1064)) (-631 $)) 138)) (-2072 (((-758) $) 209 (|has| |#1| (-358)))) (-2064 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-402 $) (-402 $) (-402 $)) 225 (|has| |#1| (-546))) ((|#1| (-402 $) |#1|) 217 (|has| |#1| (-358))) (((-402 $) $ (-402 $)) 205 (|has| |#1| (-546)))) (-2734 (((-3 $ "failed") $ (-758)) 234)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 210 (|has| |#1| (-358)))) (-1495 (($ $ (-1064)) 107 (|has| |#1| (-170))) ((|#1| $) 227 (|has| |#1| (-170)))) (-1553 (($ $ (-1064)) 42) (($ $ (-631 (-1064))) 41) (($ $ (-1064) (-758)) 40) (($ $ (-631 (-1064)) (-631 (-758))) 39) (($ $ (-758)) 253) (($ $) 251) (($ $ (-1158)) 250 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 249 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 248 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 247 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3308 (((-758) $) 150) (((-758) $ (-1064)) 130) (((-631 (-758)) $ (-631 (-1064))) 129)) (-2927 (((-877 (-374)) $) 82 (-12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374)))))) (((-877 (-554)) $) 81 (-12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554)))))) (((-530) $) 80 (-12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))))) (-3276 ((|#1| $) 175 (|has| |#1| (-446))) (($ $ (-1064)) 106 (|has| |#1| (-446)))) (-4158 (((-3 (-1241 $) "failed") (-675 $)) 104 (-3726 (|has| $ (-143)) (|has| |#1| (-894))))) (-2903 (((-3 $ "failed") $ $) 222 (|has| |#1| (-546))) (((-3 (-402 $) "failed") (-402 $) $) 221 (|has| |#1| (-546)))) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 165) (($ (-1064)) 135) (($ (-402 (-554))) 72 (-3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554)))))) (($ $) 85 (|has| |#1| (-546)))) (-1893 (((-631 |#1|) $) 168)) (-1779 ((|#1| $ (-758)) 155) (($ $ (-1064) (-758)) 128) (($ $ (-631 (-1064)) (-631 (-758))) 127)) (-2084 (((-3 $ "failed") $) 73 (-3994 (-3726 (|has| $ (-143)) (|has| |#1| (-894))) (|has| |#1| (-143))))) (-2261 (((-758)) 28)) (-2907 (($ $ $ (-758)) 173 (|has| |#1| (-170)))) (-1909 (((-112) $ $) 89 (|has| |#1| (-546)))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-1064)) 38) (($ $ (-631 (-1064))) 37) (($ $ (-1064) (-758)) 36) (($ $ (-631 (-1064)) (-631 (-758))) 35) (($ $ (-758)) 254) (($ $) 252) (($ $ (-1158)) 246 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158))) 245 (|has| |#1| (-885 (-1158)))) (($ $ (-1158) (-758)) 244 (|has| |#1| (-885 (-1158)))) (($ $ (-631 (-1158)) (-631 (-758))) 243 (|has| |#1| (-885 (-1158)))) (($ $ (-1 |#1| |#1|) (-758)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1708 (((-112) $ $) 76 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 75 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 6)) (-1697 (((-112) $ $) 77 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 74 (|has| |#1| (-836)))) (-1752 (($ $ |#1|) 156 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 158 (|has| |#1| (-38 (-402 (-554))))) (($ (-402 (-554)) $) 157 (|has| |#1| (-38 (-402 (-554))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1217 |#1|) (-138) (-1034)) (T -1217)) +((-2481 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-1217 *4)) (-4 *4 (-1034)) (-5 *2 (-1241 *4)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-5 *2 (-1154 *3)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1034)) (-4 *1 (-1217 *3)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-2734 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-4014 (*1 *2 *1 *1) (-12 (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *3)))) (-2162 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *4)))) (-1470 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-3639 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)))) (-1553 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170)))) (-2999 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)))) (-2342 (*1 *2 *1 *1) (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)) (-5 *2 (-758)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-2903 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-2903 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) (-1680 (*1 *2 *1 *1) (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| -1490 *3) (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *3)))) (-4022 (*1 *2 *1 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1034)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1217 *3)))) (-2064 (*1 *2 *3 *2) (-12 (-5 *3 (-402 *1)) (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554))))))) +(-13 (-934 |t#1| (-758) (-1064)) (-281 |t#1| |t#1|) (-281 $ $) (-229) (-227 |t#1|) (-10 -8 (-15 -2481 ((-1241 |t#1|) $ (-758))) (-15 -2964 ((-1154 |t#1|) $)) (-15 -1991 ($ (-1154 |t#1|))) (-15 -3333 ($ $ (-758))) (-15 -2734 ((-3 $ "failed") $ (-758))) (-15 -4014 ((-2 (|:| -2325 $) (|:| -2423 $)) $ $)) (-15 -2162 ((-2 (|:| -2325 $) (|:| -2423 $)) $ (-758))) (-15 -1470 ($ $ (-758))) (-15 -3867 ($ $ (-758))) (-15 -3639 ($ $ $)) (-15 -1553 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -1495 (|t#1| $)) (-15 -2999 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-546)) (PROGN (-6 (-281 (-402 $) (-402 $))) (-15 -2064 ((-402 $) (-402 $) (-402 $))) (-15 -2342 ((-758) $ $)) (-15 -4286 ($ $ $)) (-15 -2903 ((-3 $ "failed") $ $)) (-15 -2903 ((-3 (-402 $) "failed") (-402 $) $)) (-15 -2489 ($ $ $)) (-15 -1680 ((-2 (|:| -1490 |t#1|) (|:| -2325 $) (|:| -2423 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-15 -4022 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-302)) (-6 -4369) (-15 -2064 (|t#1| (-402 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (-15 -2279 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-758)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-1023 (-402 (-554)))) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 #2=(-1064)) . T) ((-604 |#1|) . T) ((-604 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-602 (-530)) -12 (|has| (-1064) (-602 (-530))) (|has| |#1| (-602 (-530)))) ((-602 (-877 (-374))) -12 (|has| (-1064) (-602 (-877 (-374)))) (|has| |#1| (-602 (-877 (-374))))) ((-602 (-877 (-554))) -12 (|has| (-1064) (-602 (-877 (-554)))) (|has| |#1| (-602 (-877 (-554))))) ((-227 |#1|) . T) ((-229) . T) ((-281 (-402 $) (-402 $)) |has| |#1| (-546)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 $) . T) ((-321 |#1| #0#) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -3994 (|has| |#1| (-894)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-508 #2# |#1|) . T) ((-508 #2# $) . T) ((-508 $ $) . T) ((-546) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-634 #1#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-627 (-554)) |has| |#1| (-627 (-554))) ((-627 |#1|) . T) ((-704 #1#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-713) . T) ((-836) |has| |#1| (-836)) ((-885 #2#) . T) ((-885 (-1158)) |has| |#1| (-885 (-1158))) ((-871 (-374)) -12 (|has| (-1064) (-871 (-374))) (|has| |#1| (-871 (-374)))) ((-871 (-554)) -12 (|has| (-1064) (-871 (-554))) (|has| |#1| (-871 (-554)))) ((-934 |#1| #0# #2#) . T) ((-894) |has| |#1| (-894)) ((-905) |has| |#1| (-358)) ((-1023 (-402 (-554))) |has| |#1| (-1023 (-402 (-554)))) ((-1023 (-554)) |has| |#1| (-1023 (-554))) ((-1023 #2#) . T) ((-1023 |#1|) . T) ((-1040 #1#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-894)) (|has| |#1| (-546)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1133) |has| |#1| (-1133)) ((-1199) |has| |#1| (-894))) +((-2405 (((-631 (-1064)) $) 28)) (-2550 (($ $) 25)) (-2383 (($ |#2| |#3|) NIL) (($ $ (-1064) |#3|) 22) (($ $ (-631 (-1064)) (-631 |#3|)) 21)) (-2518 (($ $) 14)) (-2530 ((|#2| $) 12)) (-3308 ((|#3| $) 10))) +(((-1218 |#1| |#2| |#3|) (-10 -8 (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 |#3|))) (-15 -2383 (|#1| |#1| (-1064) |#3|)) (-15 -2550 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#3|)) (-15 -3308 (|#3| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2530 (|#2| |#1|))) (-1219 |#2| |#3|) (-1034) (-779)) (T -1218)) +NIL +(-10 -8 (-15 -2405 ((-631 (-1064)) |#1|)) (-15 -2383 (|#1| |#1| (-631 (-1064)) (-631 |#3|))) (-15 -2383 (|#1| |#1| (-1064) |#3|)) (-15 -2550 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#3|)) (-15 -3308 (|#3| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2530 (|#2| |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-3042 (((-1138 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2051 (((-112) $) 76)) (-2342 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3248 (((-112) $) 31)) (-3333 (($ $ (-906)) 104)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| |#2|) 64) (($ $ (-1064) |#2|) 79) (($ $ (-631 (-1064)) (-631 |#2|)) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-4282 (($ $ |#2|) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2064 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3308 ((|#2| $) 67)) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1779 ((|#1| $ |#2|) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-4333 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-1219 |#1| |#2|) (-138) (-1034) (-779)) (T -1219)) +((-3042 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-1138 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2064 (*1 *2 *1 *3) (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (-5 *2 (-1158)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2342 (*1 *2 *1 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-1557 (*1 *1 *1 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-1557 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-4333 (*1 *2 *1 *3) (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3075 (*2 (-1158)))) (-4 *2 (-1034)))) (-4282 (*1 *1 *1 *2) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) (-2386 (*1 *2 *1 *3) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1138 *3))))) +(-13 (-958 |t#1| |t#2| (-1064)) (-10 -8 (-15 -3042 ((-1138 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2064 (|t#1| $ |t#2|)) (-15 -1576 ((-1158) $)) (-15 -1608 (|t#1| $)) (-15 -3333 ($ $ (-906))) (-15 -2342 (|t#2| $)) (-15 -2342 (|t#2| $ |t#2|)) (-15 -1557 ($ $ |t#2|)) (-15 -1557 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3075 (|t#1| (-1158)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4333 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4282 ($ $ |t#2|)) (IF (|has| |t#2| (-1094)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-229)) (IF (|has| |t#1| (-885 (-1158))) (-6 (-885 (-1158))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2386 ((-1138 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #0#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1094)) ((-285) |has| |#1| (-546)) ((-546) |has| |#1| (-546)) ((-634 #0#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| |#2| (-1064)) . T) ((-1040 #0#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3278 ((|#2| |#2|) 12)) (-1565 (((-413 |#2|) |#2|) 14)) (-3375 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554)))) 30))) +(((-1220 |#1| |#2|) (-10 -7 (-15 -1565 ((-413 |#2|) |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -3375 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554)))))) (-546) (-13 (-1217 |#1|) (-546) (-10 -8 (-15 -2510 ($ $ $))))) (T -1220)) +((-3375 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-554)))) (-4 *4 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $))))) (-4 *3 (-546)) (-5 *1 (-1220 *3 *4)))) (-3278 (*1 *2 *2) (-12 (-4 *3 (-546)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $))))))) (-1565 (*1 *2 *3) (-12 (-4 *4 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-1217 *4) (-546) (-10 -8 (-15 -2510 ($ $ $)))))))) +(-10 -7 (-15 -1565 ((-413 |#2|) |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -3375 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-554)))))) +((-2879 (((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)) 24))) +(((-1221 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2879 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)))) (-1034) (-1034) (-1158) (-1158) |#1| |#2|) (T -1221)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1158))))) +(-10 -7 (-15 -2879 ((-1226 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1226 |#1| |#3| |#5|)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) 101) (($ $ (-402 (-554)) (-402 (-554))) 100)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) 174)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) 103) (((-402 (-554)) $ (-402 (-554))) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104) (($ $ (-402 (-554))) 173)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-402 (-554))) 64) (($ $ (-1064) (-402 (-554))) 79) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) 107) (($ $ $) 84 (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-1222 |#1|) (-138) (-1034)) (T -1222)) +((-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4)))) (-4 *4 (-1034)) (-4 *1 (-1222 *4)))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-1222 *3)) (-4 *3 (-1034)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) (-2279 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034)) (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) (-4 *3 (-38 (-402 (-554)))))) (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034)) (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554))))))))) +(-13 (-1219 |t#1| (-402 (-554))) (-10 -8 (-15 -4175 ($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |t#1|))))) (-15 -3333 ($ $ (-402 (-554)))) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (IF (|has| |t#1| (-15 -2279 (|t#1| |t#1| (-1158)))) (IF (|has| |t#1| (-15 -2405 ((-631 (-1158)) |t#1|))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1180)) (IF (|has| |t#1| (-944)) (IF (|has| |t#1| (-29 (-554))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-987)) (-6 (-1180))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-554))) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-402 (-554)) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1199) |has| |#1| (-358)) ((-1219 |#1| #0#) . T)) +((-1695 (((-112) $) 12)) (-2784 (((-3 |#3| "failed") $) 17)) (-1668 ((|#3| $) 14))) +(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|))) (-1224 |#2| |#3|) (-1034) (-1201 |#2|)) (T -1223)) +NIL +(-10 -8 (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -1668 (|#3| |#1|)) (-15 -1695 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) 101) (($ $ (-402 (-554)) (-402 (-554))) 100)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 165 (|has| |#1| (-358)))) (-1565 (((-413 $) $) 166 (|has| |#1| (-358)))) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) 156 (|has| |#1| (-358)))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) 174)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#2| "failed") $) 185)) (-1668 ((|#2| $) 186)) (-3964 (($ $ $) 160 (|has| |#1| (-358)))) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-2811 (((-402 (-554)) $) 182)) (-3943 (($ $ $) 159 (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) |#2|) 183)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 154 (|has| |#1| (-358)))) (-3289 (((-112) $) 167 (|has| |#1| (-358)))) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) 103) (((-402 (-554)) $ (-402 (-554))) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104) (($ $ (-402 (-554))) 173)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 163 (|has| |#1| (-358)))) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-402 (-554))) 64) (($ $ (-1064) (-402 (-554))) 79) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-2475 (($ (-631 $)) 152 (|has| |#1| (-358))) (($ $ $) 151 (|has| |#1| (-358)))) (-2058 ((|#2| $) 181)) (-1602 (((-3 |#2| "failed") $) 179)) (-2454 ((|#2| $) 180)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 168 (|has| |#1| (-358)))) (-2279 (($ $) 172 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 171 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 153 (|has| |#1| (-358)))) (-2510 (($ (-631 $)) 150 (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358)))) (-2270 (((-413 $) $) 164 (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 161 (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 155 (|has| |#1| (-358)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) 157 (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) 107) (($ $ $) 84 (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 158 (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 50 (|has| |#1| (-170))) (($ |#2|) 184) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358))) (($ $ $) 170 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 169 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-1224 |#1| |#2|) (-138) (-1034) (-1201 |t#1|)) (T -1224)) +((-3308 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3)) (-5 *2 (-402 (-554))))) (-2463 (*1 *1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-4 *4 (-1034)) (-4 *1 (-1224 *4 *3)) (-4 *3 (-1201 *4)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3)) (-5 *2 (-402 (-554))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3)))) (-1602 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3))))) +(-13 (-1222 |t#1|) (-1023 |t#2|) (-604 |t#2|) (-10 -8 (-15 -2463 ($ (-402 (-554)) |t#2|)) (-15 -2811 ((-402 (-554)) $)) (-15 -2058 (|t#2| $)) (-15 -3308 ((-402 (-554)) $)) (-15 -2454 (|t#2| $)) (-15 -1602 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-554))) . T) ((-25) . T) ((-38 #1=(-402 (-554))) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 |#2|) . T) ((-604 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-402 (-554)) (-1094)) ((-285) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-634 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358))) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-905) |has| |#1| (-358)) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1023 |#2|) . T) ((-1040 #1#) -3994 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-554))))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1199) |has| |#1| (-358)) ((-1219 |#1| #0#) . T) ((-1222 |#1|) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 96)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) 106) (($ $ (-402 (-554)) (-402 (-554))) 108)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) 51)) (-3023 (($ $) 180 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 156 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) 176 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 152 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) 61)) (-3046 (($ $) 184 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 160 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL)) (-1668 ((|#2| $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) 79)) (-2811 (((-402 (-554)) $) 13)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) |#2|) 11)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) 68)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) 103) (((-402 (-554)) $ (-402 (-554))) 104)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 120) (($ $ (-402 (-554))) 118)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) 31) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 115)) (-2395 (($ $) 150 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2058 ((|#2| $) 12)) (-1602 (((-3 |#2| "failed") $) 41)) (-2454 ((|#2| $) 42)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) 93 (|has| |#1| (-358)))) (-2279 (($ $) 135 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 140 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) 112)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) 100) (($ $ $) 86 (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) 127 (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-3308 (((-402 (-554)) $) 16)) (-3057 (($ $) 186 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 162 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 182 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 158 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 178 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 154 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 110)) (-3075 (((-848) $) NIL) (($ (-554)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-402 (-554))) 128 (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) 99)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) 117)) (-1608 ((|#1| $) 98)) (-3096 (($ $) 192 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 168 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) 188 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 164 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 196 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 172 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 198 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 174 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 194 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 170 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 190 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 166 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 21 T CONST)) (-2014 (($) 17 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) 66)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 92 (|has| |#1| (-358)))) (-1744 (($ $) 131) (($ $ $) 72)) (-1735 (($ $ $) 70)) (** (($ $ (-906)) NIL) (($ $ (-758)) 76) (($ $ (-554)) 145 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 146 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1225 |#1| |#2|) (-1224 |#1| |#2|) (-1034) (-1201 |#1|)) (T -1225)) +NIL +(-1224 |#1| |#2|) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 11)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) NIL (|has| |#1| (-546)))) (-1557 (($ $ (-402 (-554))) NIL) (($ $ (-402 (-554)) (-402 (-554))) NIL)) (-3042 (((-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|))) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-3278 (($ $) NIL (|has| |#1| (-358)))) (-1565 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2286 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-758) (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#1|)))) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1233 |#1| |#2| |#3|) "failed") $) 22)) (-1668 (((-1205 |#1| |#2| |#3|) $) NIL) (((-1233 |#1| |#2| |#3|) $) NIL)) (-3964 (($ $ $) NIL (|has| |#1| (-358)))) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2811 (((-402 (-554)) $) 57)) (-3943 (($ $ $) NIL (|has| |#1| (-358)))) (-2463 (($ (-402 (-554)) (-1205 |#1| |#2| |#3|)) NIL)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) NIL (|has| |#1| (-358)))) (-3289 (((-112) $) NIL (|has| |#1| (-358)))) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-402 (-554)) $) NIL) (((-402 (-554)) $ (-402 (-554))) NIL)) (-3248 (((-112) $) NIL)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) NIL) (($ $ (-402 (-554))) NIL)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-402 (-554))) 30) (($ $ (-1064) (-402 (-554))) NIL) (($ $ (-631 (-1064)) (-631 (-402 (-554)))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-2475 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2058 (((-1205 |#1| |#2| |#3|) $) 60)) (-1602 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) NIL)) (-2454 (((-1205 |#1| |#2| |#3|) $) NIL)) (-1613 (((-1140) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-358)))) (-2279 (($ $) 39 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) NIL (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 40 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) NIL (|has| |#1| (-358)))) (-2510 (($ (-631 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2270 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2032 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) NIL (|has| |#1| (-358)))) (-4282 (($ $ (-402 (-554))) NIL)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-2431 (((-3 (-631 $) "failed") (-631 $) $) NIL (|has| |#1| (-358)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))))) (-2072 (((-758) $) NIL (|has| |#1| (-358)))) (-2064 ((|#1| $ (-402 (-554))) NIL) (($ $ $) NIL (|has| (-402 (-554)) (-1094)))) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-358)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $ (-1237 |#2|)) 38)) (-3308 (((-402 (-554)) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) NIL)) (-3075 (((-848) $) 89) (($ (-554)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1205 |#1| |#2| |#3|)) 16) (($ (-1233 |#1| |#2| |#3|)) 17) (($ (-1237 |#2|)) 36) (($ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546)))) (-1779 ((|#1| $ (-402 (-554))) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 12)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-402 (-554))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-554))))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 32 T CONST)) (-2014 (($) 26 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-554)) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 34)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ (-554)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1226 |#1| |#2| |#3|) (-13 (-1224 |#1| (-1205 |#1| |#2| |#3|)) (-1023 (-1233 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1226)) +((-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1224 |#1| (-1205 |#1| |#2| |#3|)) (-1023 (-1233 |#1| |#2| |#3|)) (-604 (-1237 |#2|)) (-10 -8 (-15 -1553 ($ $ (-1237 |#2|))) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 34)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL)) (-1976 (($ $) NIL)) (-1363 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 (-554) "failed") $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-554)))) (((-3 (-402 (-554)) "failed") $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-402 (-554))))) (((-3 (-1226 |#2| |#3| |#4|) "failed") $) 20)) (-1668 (((-554) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-554)))) (((-402 (-554)) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-1023 (-402 (-554))))) (((-1226 |#2| |#3| |#4|) $) NIL)) (-2550 (($ $) 35)) (-1320 (((-3 $ "failed") $) 25)) (-2048 (($ $) NIL (|has| (-1226 |#2| |#3| |#4|) (-446)))) (-1344 (($ $ (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) 11)) (-3580 (((-112) $) NIL)) (-2383 (($ (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-3893 (((-314 |#2| |#3| |#4|) $) NIL)) (-2789 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-2879 (($ (-1 (-1226 |#2| |#3| |#4|) (-1226 |#2| |#3| |#4|)) $) NIL)) (-2608 (((-3 (-829 |#2|) "failed") $) 75)) (-2518 (($ $) NIL)) (-2530 (((-1226 |#2| |#3| |#4|) $) 18)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2492 (((-112) $) NIL)) (-2505 (((-1226 |#2| |#3| |#4|) $) NIL)) (-3919 (((-3 $ "failed") $ (-1226 |#2| |#3| |#4|)) NIL (|has| (-1226 |#2| |#3| |#4|) (-546))) (((-3 $ "failed") $ $) NIL)) (-2149 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#2|)))))) (|:| |%type| (-1140))) "failed") $) 58)) (-3308 (((-314 |#2| |#3| |#4|) $) 14)) (-3276 (((-1226 |#2| |#3| |#4|) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-446)))) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ (-1226 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-402 (-554))) NIL (-3994 (|has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554)))) (|has| (-1226 |#2| |#3| |#4|) (-1023 (-402 (-554))))))) (-1893 (((-631 (-1226 |#2| |#3| |#4|)) $) NIL)) (-1779 (((-1226 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-2084 (((-3 $ "failed") $) NIL (|has| (-1226 |#2| |#3| |#4|) (-143)))) (-2261 (((-758)) NIL)) (-2907 (($ $ $ (-758)) NIL (|has| (-1226 |#2| |#3| |#4|) (-170)))) (-1909 (((-112) $ $) NIL)) (-2004 (($) 63 T CONST)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ (-1226 |#2| |#3| |#4|)) NIL (|has| (-1226 |#2| |#3| |#4|) (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ (-1226 |#2| |#3| |#4|)) NIL) (($ (-1226 |#2| |#3| |#4|) $) NIL) (($ (-402 (-554)) $) NIL (|has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| (-1226 |#2| |#3| |#4|) (-38 (-402 (-554))))))) +(((-1227 |#1| |#2| |#3| |#4|) (-13 (-321 (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-546) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -2149 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#2|)))))) (|:| |%type| (-1140))) "failed") $)))) (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446)) (-13 (-27) (-1180) (-425 |#1|)) (-1158) |#2|) (T -1227)) +((-2608 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *2 (-829 *4)) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4))) (-2149 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4)))))) (|:| |%type| (-1140)))) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4)))) +(-13 (-321 (-1226 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-546) (-10 -8 (-15 -2608 ((-3 (-829 |#2|) "failed") $)) (-15 -2149 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1226 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| |#2|)))))) (|:| |%type| (-1140))) "failed") $)))) +((-2794 ((|#2| $) 29)) (-2350 ((|#2| $) 18)) (-3387 (($ $) 36)) (-2722 (($ $ (-554)) 64)) (-3019 (((-112) $ (-758)) 33)) (-2690 ((|#2| $ |#2|) 61)) (-1825 ((|#2| $ |#2|) 59)) (-1501 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2923 (($ $ (-631 $)) 60)) (-2337 ((|#2| $) 17)) (-1551 (($ $) NIL) (($ $ (-758)) 42)) (-3677 (((-631 $) $) 26)) (-1990 (((-112) $ $) 50)) (-2230 (((-112) $ (-758)) 32)) (-3731 (((-112) $ (-758)) 31)) (-3216 (((-112) $) 28)) (-2597 ((|#2| $) 24) (($ $ (-758)) 46)) (-2064 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3008 (((-112) $) 22)) (-1670 (($ $) 39)) (-2377 (($ $) 65)) (-2797 (((-758) $) 41)) (-2046 (($ $) 40)) (-4323 (($ $ $) 58) (($ |#2| $) NIL)) (-2461 (((-631 $) $) 27)) (-1658 (((-112) $ $) 48)) (-2563 (((-758) $) 35))) +(((-1228 |#1| |#2|) (-10 -8 (-15 -2722 (|#1| |#1| (-554))) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -2377 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2350 (|#2| |#1|)) (-15 -2337 (|#2| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -2064 (|#2| |#1| "first")) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -2690 (|#2| |#1| |#2|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2923 (|#1| |#1| (-631 |#1|))) (-15 -1990 ((-112) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758)))) (-1229 |#2|) (-1195)) (T -1228)) +NIL +(-10 -8 (-15 -2722 (|#1| |#1| (-554))) (-15 -1501 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -1501 (|#1| |#1| "rest" |#1|)) (-15 -1501 (|#2| |#1| "first" |#2|)) (-15 -2377 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -2797 ((-758) |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2350 (|#2| |#1|)) (-15 -2337 (|#2| |#1|)) (-15 -3387 (|#1| |#1|)) (-15 -2597 (|#1| |#1| (-758))) (-15 -2064 (|#2| |#1| "last")) (-15 -2597 (|#2| |#1|)) (-15 -1551 (|#1| |#1| (-758))) (-15 -2064 (|#1| |#1| "rest")) (-15 -1551 (|#1| |#1|)) (-15 -2064 (|#2| |#1| "first")) (-15 -4323 (|#1| |#2| |#1|)) (-15 -4323 (|#1| |#1| |#1|)) (-15 -2690 (|#2| |#1| |#2|)) (-15 -1501 (|#2| |#1| "value" |#2|)) (-15 -2923 (|#1| |#1| (-631 |#1|))) (-15 -1990 ((-112) |#1| |#1|)) (-15 -3008 ((-112) |#1|)) (-15 -2064 (|#2| |#1| "value")) (-15 -2794 (|#2| |#1|)) (-15 -3216 ((-112) |#1|)) (-15 -3677 ((-631 |#1|) |#1|)) (-15 -2461 ((-631 |#1|) |#1|)) (-15 -1658 ((-112) |#1| |#1|)) (-15 -2563 ((-758) |#1|)) (-15 -3019 ((-112) |#1| (-758))) (-15 -2230 ((-112) |#1| (-758))) (-15 -3731 ((-112) |#1| (-758)))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2794 ((|#1| $) 48)) (-2350 ((|#1| $) 65)) (-3387 (($ $) 67)) (-2722 (($ $ (-554)) 52 (|has| $ (-6 -4374)))) (-3019 (((-112) $ (-758)) 8)) (-2690 ((|#1| $ |#1|) 39 (|has| $ (-6 -4374)))) (-2234 (($ $ $) 56 (|has| $ (-6 -4374)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4374)))) (-3105 ((|#1| $ |#1|) 58 (|has| $ (-6 -4374)))) (-1501 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4374))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4374))) (($ $ "rest" $) 55 (|has| $ (-6 -4374))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4374)))) (-2923 (($ $ (-631 $)) 41 (|has| $ (-6 -4374)))) (-2337 ((|#1| $) 66)) (-4087 (($) 7 T CONST)) (-1551 (($ $) 73) (($ $ (-758)) 71)) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-3677 (((-631 $) $) 50)) (-1990 (((-112) $ $) 42 (|has| |#1| (-1082)))) (-2230 (((-112) $ (-758)) 9)) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35)) (-3731 (((-112) $ (-758)) 10)) (-2306 (((-631 |#1|) $) 45)) (-3216 (((-112) $) 49)) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-2597 ((|#1| $) 70) (($ $ (-758)) 68)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 76) (($ $ (-758)) 74)) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3250 (((-554) $ $) 44)) (-3008 (((-112) $) 46)) (-1670 (($ $) 62)) (-2377 (($ $) 59 (|has| $ (-6 -4374)))) (-2797 (((-758) $) 63)) (-2046 (($ $) 64)) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-1521 (($ $) 13)) (-1853 (($ $ $) 61 (|has| $ (-6 -4374))) (($ $ |#1|) 60 (|has| $ (-6 -4374)))) (-4323 (($ $ $) 78) (($ |#1| $) 77)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2461 (((-631 $) $) 51)) (-1441 (((-112) $ $) 43 (|has| |#1| (-1082)))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1229 |#1|) (-138) (-1195)) (T -1229)) +((-4323 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-4323 (*1 *1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-1551 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-3387 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2046 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) (-1670 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1853 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2377 (*1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-3105 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2234 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1501 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) (-1825 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-1501 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) (-2722 (*1 *1 *1 *2) (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3)) (-4 *3 (-1195))))) +(-13 (-995 |t#1|) (-10 -8 (-15 -4323 ($ $ $)) (-15 -4323 ($ |t#1| $)) (-15 -1539 (|t#1| $)) (-15 -2064 (|t#1| $ "first")) (-15 -1539 ($ $ (-758))) (-15 -1551 ($ $)) (-15 -2064 ($ $ "rest")) (-15 -1551 ($ $ (-758))) (-15 -2597 (|t#1| $)) (-15 -2064 (|t#1| $ "last")) (-15 -2597 ($ $ (-758))) (-15 -3387 ($ $)) (-15 -2337 (|t#1| $)) (-15 -2350 (|t#1| $)) (-15 -2046 ($ $)) (-15 -2797 ((-758) $)) (-15 -1670 ($ $)) (IF (|has| $ (-6 -4374)) (PROGN (-15 -1853 ($ $ $)) (-15 -1853 ($ $ |t#1|)) (-15 -2377 ($ $)) (-15 -3105 (|t#1| $ |t#1|)) (-15 -1501 (|t#1| $ "first" |t#1|)) (-15 -2234 ($ $ $)) (-15 -1501 ($ $ "rest" $)) (-15 -1825 (|t#1| $ |t#1|)) (-15 -1501 (|t#1| $ "last" |t#1|)) (-15 -2722 ($ $ (-554)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1082)) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-601 (-848)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-483 |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-995 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1195) . T)) +((-2879 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|))) (-1034) (-1034) (-1232 |#1|) (-1232 |#2|)) (T -1230)) +((-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *6 *4 *2)) (-4 *4 (-1232 *5))))) +(-10 -7 (-15 -2879 (|#4| (-1 |#2| |#1|) |#3|))) +((-1695 (((-112) $) 15)) (-3023 (($ $) 92)) (-4200 (($ $) 68)) (-3003 (($ $) 88)) (-4177 (($ $) 64)) (-3046 (($ $) 96)) (-2916 (($ $) 72)) (-2395 (($ $) 62)) (-1333 (($ $) 60)) (-3057 (($ $) 98)) (-2926 (($ $) 74)) (-3034 (($ $) 94)) (-4213 (($ $) 70)) (-3014 (($ $) 90)) (-4188 (($ $) 66)) (-3075 (((-848) $) 48) (($ (-554)) NIL) (($ (-402 (-554))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3096 (($ $) 104)) (-2959 (($ $) 80)) (-3069 (($ $) 100)) (-2938 (($ $) 76)) (-3120 (($ $) 108)) (-2981 (($ $) 84)) (-2908 (($ $) 110)) (-2991 (($ $) 86)) (-3108 (($ $) 106)) (-2969 (($ $) 82)) (-3083 (($ $) 102)) (-2948 (($ $) 78)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-402 (-554))) 58))) +(((-1231 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -1695 ((-112) |#1|)) (-15 -3075 ((-848) |#1|))) (-1232 |#2|) (-1034)) (T -1231)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-402 (-554)))) (-15 -4200 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -3003 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -3108 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -1333 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3075 (|#1| |#2|)) (-15 -3075 (|#1| |#1|)) (-15 -3075 (|#1| (-402 (-554)))) (-15 -3075 (|#1| (-554))) (-15 ** (|#1| |#1| (-758))) (-15 ** (|#1| |#1| (-906))) (-15 -1695 ((-112) |#1|)) (-15 -3075 ((-848) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2405 (((-631 (-1064)) $) 77)) (-1576 (((-1158) $) 106)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 54 (|has| |#1| (-546)))) (-1976 (($ $) 55 (|has| |#1| (-546)))) (-1363 (((-112) $) 57 (|has| |#1| (-546)))) (-1557 (($ $ (-758)) 101) (($ $ (-758) (-758)) 100)) (-3042 (((-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|))) $) 108)) (-3023 (($ $) 138 (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) 121 (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) 19)) (-2282 (($ $) 120 (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) 137 (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) 122 (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|)))) 158) (($ (-1138 |#1|)) 156)) (-3046 (($ $) 136 (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) 123 (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) 17 T CONST)) (-2550 (($ $) 63)) (-1320 (((-3 $ "failed") $) 33)) (-3356 (($ $) 155)) (-3497 (((-937 |#1|) $ (-758)) 153) (((-937 |#1|) $ (-758) (-758)) 152)) (-2051 (((-112) $) 76)) (-2844 (($) 148 (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $) 103) (((-758) $ (-758)) 102)) (-3248 (((-112) $) 31)) (-3734 (($ $ (-554)) 119 (|has| |#1| (-38 (-402 (-554)))))) (-3333 (($ $ (-906)) 104)) (-1310 (($ (-1 |#1| (-554)) $) 154)) (-3580 (((-112) $) 65)) (-2383 (($ |#1| (-758)) 64) (($ $ (-1064) (-758)) 79) (($ $ (-631 (-1064)) (-631 (-758))) 78)) (-2879 (($ (-1 |#1| |#1|) $) 66)) (-2395 (($ $) 145 (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) 68)) (-2530 ((|#1| $) 69)) (-1613 (((-1140) $) 9)) (-2279 (($ $) 150 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 149 (-3994 (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-944)) (|has| |#1| (-1180)) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-38 (-402 (-554)))))))) (-2768 (((-1102) $) 10)) (-4282 (($ $ (-758)) 98)) (-3919 (((-3 $ "failed") $ $) 53 (|has| |#1| (-546)))) (-1333 (($ $) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2386 (((-1138 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-758)))))) (-2064 ((|#1| $ (-758)) 107) (($ $ $) 84 (|has| (-758) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) 92 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158) (-758)) 91 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-631 (-1158))) 90 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158)) 89 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-758)) 87 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-3308 (((-758) $) 67)) (-3057 (($ $) 135 (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) 124 (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) 134 (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) 125 (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) 133 (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) 126 (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 75)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ (-402 (-554))) 60 (|has| |#1| (-38 (-402 (-554))))) (($ $) 52 (|has| |#1| (-546))) (($ |#1|) 50 (|has| |#1| (-170)))) (-1893 (((-1138 |#1|) $) 157)) (-1779 ((|#1| $ (-758)) 62)) (-2084 (((-3 $ "failed") $) 51 (|has| |#1| (-143)))) (-2261 (((-758)) 28)) (-1608 ((|#1| $) 105)) (-3096 (($ $) 144 (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) 132 (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) 56 (|has| |#1| (-546)))) (-3069 (($ $) 143 (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) 131 (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) 142 (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) 130 (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-758)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-758)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) 141 (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) 129 (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) 140 (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) 128 (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) 139 (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) 127 (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) 96 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158) (-758)) 95 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-631 (-1158))) 94 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-1158)) 93 (-12 (|has| |#1| (-885 (-1158))) (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (($ $ (-758)) 88 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 61 (|has| |#1| (-358)))) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ |#1|) 151 (|has| |#1| (-358))) (($ $ $) 147 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 118 (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-402 (-554)) $) 59 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) 58 (|has| |#1| (-38 (-402 (-554))))))) +(((-1232 |#1|) (-138) (-1034)) (T -1232)) +((-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 (-2 (|:| |k| (-758)) (|:| |c| *3)))) (-4 *3 (-1034)) (-4 *1 (-1232 *3)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-5 *2 (-1138 *3)))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-4 *1 (-1232 *3)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)))) (-1310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1232 *3)) (-4 *3 (-1034)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034)) (-5 *2 (-937 *4)))) (-3497 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034)) (-5 *2 (-937 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) (-2279 (*1 *1 *1 *2) (-3994 (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) (-4 *3 (-38 (-402 (-554)))))) (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554))))))))) +(-13 (-1219 |t#1| (-758)) (-10 -8 (-15 -4175 ($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |t#1|))))) (-15 -1893 ((-1138 |t#1|) $)) (-15 -4175 ($ (-1138 |t#1|))) (-15 -3356 ($ $)) (-15 -1310 ($ (-1 |t#1| (-554)) $)) (-15 -3497 ((-937 |t#1|) $ (-758))) (-15 -3497 ((-937 |t#1|) $ (-758) (-758))) (IF (|has| |t#1| (-358)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-554)))) (PROGN (-15 -2279 ($ $)) (IF (|has| |t#1| (-15 -2279 (|t#1| |t#1| (-1158)))) (IF (|has| |t#1| (-15 -2405 ((-631 (-1158)) |t#1|))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1180)) (IF (|has| |t#1| (-944)) (IF (|has| |t#1| (-29 (-554))) (-15 -2279 ($ $ (-1158))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-987)) (-6 (-1180))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-758)) . T) ((-25) . T) ((-38 #1=(-402 (-554))) |has| |#1| (-38 (-402 (-554)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-546)) ((-35) |has| |#1| (-38 (-402 (-554)))) ((-95) |has| |#1| (-38 (-402 (-554)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-554)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-604 #1#) |has| |#1| (-38 (-402 (-554)))) ((-604 (-554)) . T) ((-604 |#1|) |has| |#1| (-170)) ((-604 $) |has| |#1| (-546)) ((-601 (-848)) . T) ((-170) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-758) |#1|))) ((-279) |has| |#1| (-38 (-402 (-554)))) ((-281 $ $) |has| (-758) (-1094)) ((-285) |has| |#1| (-546)) ((-487) |has| |#1| (-38 (-402 (-554)))) ((-546) |has| |#1| (-546)) ((-634 #1#) |has| |#1| (-38 (-402 (-554)))) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #1#) |has| |#1| (-38 (-402 (-554)))) ((-704 |#1|) |has| |#1| (-170)) ((-704 $) |has| |#1| (-546)) ((-713) . T) ((-885 (-1158)) -12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158)))) ((-958 |#1| #0# (-1064)) . T) ((-987) |has| |#1| (-38 (-402 (-554)))) ((-1040 #1#) |has| |#1| (-38 (-402 (-554)))) ((-1040 |#1|) . T) ((-1040 $) -3994 (|has| |#1| (-546)) (|has| |#1| (-170))) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1180) |has| |#1| (-38 (-402 (-554)))) ((-1183) |has| |#1| (-38 (-402 (-554)))) ((-1219 |#1| #0#) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2405 (((-631 (-1064)) $) NIL)) (-1576 (((-1158) $) 87)) (-1530 (((-1214 |#2| |#1|) $ (-758)) 73)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) NIL (|has| |#1| (-546)))) (-1976 (($ $) NIL (|has| |#1| (-546)))) (-1363 (((-112) $) 137 (|has| |#1| (-546)))) (-1557 (($ $ (-758)) 122) (($ $ (-758) (-758)) 124)) (-3042 (((-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|))) $) 42)) (-3023 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4200 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2934 (((-3 $ "failed") $ $) NIL)) (-2282 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3003 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4177 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4175 (($ (-1138 (-2 (|:| |k| (-758)) (|:| |c| |#1|)))) 53) (($ (-1138 |#1|)) NIL)) (-3046 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2916 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4087 (($) NIL T CONST)) (-3587 (($ $) 128)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-3356 (($ $) 135)) (-3497 (((-937 |#1|) $ (-758)) 63) (((-937 |#1|) $ (-758) (-758)) 65)) (-2051 (((-112) $) NIL)) (-2844 (($) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2342 (((-758) $) NIL) (((-758) $ (-758)) NIL)) (-3248 (((-112) $) NIL)) (-3598 (($ $) 112)) (-3734 (($ $ (-554)) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3712 (($ (-554) (-554) $) 130)) (-3333 (($ $ (-906)) 134)) (-1310 (($ (-1 |#1| (-554)) $) 106)) (-3580 (((-112) $) NIL)) (-2383 (($ |#1| (-758)) 15) (($ $ (-1064) (-758)) NIL) (($ $ (-631 (-1064)) (-631 (-758))) NIL)) (-2879 (($ (-1 |#1| |#1|) $) 94)) (-2395 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2518 (($ $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2618 (($ $) 110)) (-4335 (($ $) 108)) (-2691 (($ (-554) (-554) $) 132)) (-2279 (($ $) 145 (|has| |#1| (-38 (-402 (-554))))) (($ $ (-1158)) 151 (-3994 (-12 (|has| |#1| (-15 -2279 (|#1| |#1| (-1158)))) (|has| |#1| (-15 -2405 ((-631 (-1158)) |#1|))) (|has| |#1| (-38 (-402 (-554))))) (-12 (|has| |#1| (-29 (-554))) (|has| |#1| (-38 (-402 (-554)))) (|has| |#1| (-944)) (|has| |#1| (-1180))))) (($ $ (-1237 |#2|)) 146 (|has| |#1| (-38 (-402 (-554)))))) (-2768 (((-1102) $) NIL)) (-4043 (($ $ (-554) (-554)) 116)) (-4282 (($ $ (-758)) 118)) (-3919 (((-3 $ "failed") $ $) NIL (|has| |#1| (-546)))) (-1333 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4162 (($ $) 114)) (-2386 (((-1138 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-758)))))) (-2064 ((|#1| $ (-758)) 91) (($ $ $) 126 (|has| (-758) (-1094)))) (-1553 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) 103 (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $ (-1237 |#2|)) 99)) (-3308 (((-758) $) NIL)) (-3057 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2926 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3034 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4213 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1300 (($ $) 120)) (-3075 (((-848) $) NIL) (($ (-554)) 24) (($ (-402 (-554))) 143 (|has| |#1| (-38 (-402 (-554))))) (($ $) NIL (|has| |#1| (-546))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1214 |#2| |#1|)) 80) (($ (-1237 |#2|)) 20)) (-1893 (((-1138 |#1|) $) NIL)) (-1779 ((|#1| $ (-758)) 90)) (-2084 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2261 (((-758)) NIL)) (-1608 ((|#1| $) 88)) (-3096 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2959 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-1909 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3069 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2938 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2981 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-4333 ((|#1| $ (-758)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-758)))) (|has| |#1| (-15 -3075 (|#1| (-1158))))))) (-2908 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2991 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3108 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2969 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-3083 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2948 (($ $) NIL (|has| |#1| (-38 (-402 (-554)))))) (-2004 (($) 17 T CONST)) (-2014 (($) 13 T CONST)) (-1787 (($ $ (-631 (-1158)) (-631 (-758))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158) (-758)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-631 (-1158))) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-1158)) NIL (-12 (|has| |#1| (-15 * (|#1| (-758) |#1|))) (|has| |#1| (-885 (-1158))))) (($ $ (-758)) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-758) |#1|))))) (-1658 (((-112) $ $) NIL)) (-1752 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) 102)) (-1735 (($ $ $) 18)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL) (($ $ |#1|) 140 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554)))))) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-402 (-554)) $) NIL (|has| |#1| (-38 (-402 (-554))))) (($ $ (-402 (-554))) NIL (|has| |#1| (-38 (-402 (-554))))))) +(((-1233 |#1| |#2| |#3|) (-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (-15 -4335 ($ $)) (-15 -2618 ($ $)) (-15 -3598 ($ $)) (-15 -4162 ($ $)) (-15 -4043 ($ $ (-554) (-554))) (-15 -3587 ($ $)) (-15 -3712 ($ (-554) (-554) $)) (-15 -2691 ($ (-554) (-554) $)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) (-1034) (-1158) |#1|) (T -1233)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-1233 *3 *4 *5)))) (-1530 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1233 *4 *5 *6)) (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *5 *3))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-2618 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-3598 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-4043 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3))) (-3587 (*1 *1 *1) (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2))) (-3712 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3))) (-2691 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) (-14 *5 *3))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(-13 (-1232 |#1|) (-10 -8 (-15 -3075 ($ (-1214 |#2| |#1|))) (-15 -1530 ((-1214 |#2| |#1|) $ (-758))) (-15 -3075 ($ (-1237 |#2|))) (-15 -1553 ($ $ (-1237 |#2|))) (-15 -4335 ($ $)) (-15 -2618 ($ $)) (-15 -3598 ($ $)) (-15 -4162 ($ $)) (-15 -4043 ($ $ (-554) (-554))) (-15 -3587 ($ $)) (-15 -3712 ($ (-554) (-554) $)) (-15 -2691 ($ (-554) (-554) $)) (IF (|has| |#1| (-38 (-402 (-554)))) (-15 -2279 ($ $ (-1237 |#2|))) |%noBranch|))) +((-3747 (((-1 (-1138 |#1|) (-631 (-1138 |#1|))) (-1 |#2| (-631 |#2|))) 24)) (-2422 (((-1 (-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1810 (((-1 (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2|)) 13)) (-3490 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2075 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4129 ((|#2| (-1 |#2| (-631 |#2|)) (-631 |#1|)) 54)) (-1710 (((-631 |#2|) (-631 |#1|) (-631 (-1 |#2| (-631 |#2|)))) 61)) (-2189 ((|#2| |#2| |#2|) 43))) +(((-1234 |#1| |#2|) (-10 -7 (-15 -1810 ((-1 (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2|))) (-15 -2422 ((-1 (-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3747 ((-1 (-1138 |#1|) (-631 (-1138 |#1|))) (-1 |#2| (-631 |#2|)))) (-15 -2189 (|#2| |#2| |#2|)) (-15 -2075 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4129 (|#2| (-1 |#2| (-631 |#2|)) (-631 |#1|))) (-15 -1710 ((-631 |#2|) (-631 |#1|) (-631 (-1 |#2| (-631 |#2|)))))) (-38 (-402 (-554))) (-1232 |#1|)) (T -1234)) +((-1710 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 (-1 *6 (-631 *6)))) (-4 *5 (-38 (-402 (-554)))) (-4 *6 (-1232 *5)) (-5 *2 (-631 *6)) (-5 *1 (-1234 *5 *6)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-631 *2))) (-5 *4 (-631 *5)) (-4 *5 (-38 (-402 (-554)))) (-4 *2 (-1232 *5)) (-5 *1 (-1234 *5 *2)))) (-3490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2)) (-4 *4 (-38 (-402 (-554)))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2)) (-4 *4 (-38 (-402 (-554)))))) (-2189 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1232 *3)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-631 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-631 (-1138 *4)))) (-5 *1 (-1234 *4 *5)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-1138 *4) (-1138 *4))) (-5 *1 (-1234 *4 *5)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-1138 *4))) (-5 *1 (-1234 *4 *5))))) +(-10 -7 (-15 -1810 ((-1 (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2|))) (-15 -2422 ((-1 (-1138 |#1|) (-1138 |#1|) (-1138 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3747 ((-1 (-1138 |#1|) (-631 (-1138 |#1|))) (-1 |#2| (-631 |#2|)))) (-15 -2189 (|#2| |#2| |#2|)) (-15 -2075 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4129 (|#2| (-1 |#2| (-631 |#2|)) (-631 |#1|))) (-15 -1710 ((-631 |#2|) (-631 |#1|) (-631 (-1 |#2| (-631 |#2|)))))) +((-2573 ((|#2| |#4| (-758)) 30)) (-2885 ((|#4| |#2|) 25)) (-3439 ((|#4| (-402 |#2|)) 52 (|has| |#1| (-546)))) (-2698 (((-1 |#4| (-631 |#4|)) |#3|) 46))) +(((-1235 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2885 (|#4| |#2|)) (-15 -2573 (|#2| |#4| (-758))) (-15 -2698 ((-1 |#4| (-631 |#4|)) |#3|)) (IF (|has| |#1| (-546)) (-15 -3439 (|#4| (-402 |#2|))) |%noBranch|)) (-1034) (-1217 |#1|) (-642 |#2|) (-1232 |#1|)) (T -1235)) +((-3439 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-546)) (-4 *4 (-1034)) (-4 *2 (-1232 *4)) (-5 *1 (-1235 *4 *5 *6 *2)) (-4 *6 (-642 *5)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *5 (-1217 *4)) (-5 *2 (-1 *6 (-631 *6))) (-5 *1 (-1235 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-1232 *4)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-1235 *5 *2 *6 *3)) (-4 *6 (-642 *2)) (-4 *3 (-1232 *5)))) (-2885 (*1 *2 *3) (-12 (-4 *4 (-1034)) (-4 *3 (-1217 *4)) (-4 *2 (-1232 *4)) (-5 *1 (-1235 *4 *3 *5 *2)) (-4 *5 (-642 *3))))) +(-10 -7 (-15 -2885 (|#4| |#2|)) (-15 -2573 (|#2| |#4| (-758))) (-15 -2698 ((-1 |#4| (-631 |#4|)) |#3|)) (IF (|has| |#1| (-546)) (-15 -3439 (|#4| (-402 |#2|))) |%noBranch|)) +NIL +(((-1236) (-138)) (T -1236)) +NIL +(-13 (-10 -7 (-6 -4301))) +((-3062 (((-112) $ $) NIL)) (-1576 (((-1158)) 12)) (-1613 (((-1140) $) 17)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 11) (((-1158) $) 8)) (-1658 (((-112) $ $) 14))) +(((-1237 |#1|) (-13 (-1082) (-601 (-1158)) (-10 -8 (-15 -3075 ((-1158) $)) (-15 -1576 ((-1158))))) (-1158)) (T -1237)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2))) (-1576 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2)))) +(-13 (-1082) (-601 (-1158)) (-10 -8 (-15 -3075 ((-1158) $)) (-15 -1576 ((-1158))))) +((-2275 (($ (-758)) 18)) (-2355 (((-675 |#2|) $ $) 40)) (-2579 ((|#2| $) 48)) (-2577 ((|#2| $) 47)) (-3748 ((|#2| $ $) 35)) (-3574 (($ $ $) 44)) (-1744 (($ $) 22) (($ $ $) 28)) (-1735 (($ $ $) 15)) (* (($ (-554) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1238 |#1| |#2|) (-10 -8 (-15 -2579 (|#2| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -2355 ((-675 |#2|) |#1| |#1|)) (-15 -3748 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2275 (|#1| (-758))) (-15 -1735 (|#1| |#1| |#1|))) (-1239 |#2|) (-1195)) (T -1238)) +NIL +(-10 -8 (-15 -2579 (|#2| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -2355 ((-675 |#2|) |#1| |#1|)) (-15 -3748 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-554) |#1|)) (-15 -1744 (|#1| |#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -2275 (|#1| (-758))) (-15 -1735 (|#1| |#1| |#1|))) +((-3062 (((-112) $ $) 19 (|has| |#1| (-1082)))) (-2275 (($ (-758)) 112 (|has| |#1| (-23)))) (-4233 (((-1246) $ (-554) (-554)) 40 (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4374))) (($ $) 88 (-12 (|has| |#1| (-836)) (|has| $ (-6 -4374))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) 8)) (-1501 ((|#1| $ (-554) |#1|) 52 (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) 58 (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4373)))) (-4087 (($) 7 T CONST)) (-3920 (($ $) 90 (|has| $ (-6 -4374)))) (-3799 (($ $) 100)) (-1571 (($ $) 78 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2574 (($ |#1| $) 77 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) 53 (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) 51)) (-1484 (((-554) (-1 (-112) |#1|) $) 97) (((-554) |#1| $) 96 (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) 95 (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 30 (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) 105 (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) 69)) (-2230 (((-112) $ (-758)) 9)) (-3044 (((-554) $) 43 (|has| (-554) (-836)))) (-4223 (($ $ $) 87 (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-2256 (((-554) $) 44 (|has| (-554) (-836)))) (-2706 (($ $ $) 86 (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2579 ((|#1| $) 102 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-3731 (((-112) $ (-758)) 10)) (-2577 ((|#1| $) 103 (-12 (|has| |#1| (-1034)) (|has| |#1| (-987))))) (-1613 (((-1140) $) 22 (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) 60) (($ $ $ (-554)) 59)) (-2529 (((-631 (-554)) $) 46)) (-3618 (((-112) (-554) $) 47)) (-2768 (((-1102) $) 21 (|has| |#1| (-1082)))) (-1539 ((|#1| $) 42 (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2441 (($ $ |#1|) 41 (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) 14)) (-1609 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) 48)) (-3543 (((-112) $) 11)) (-4240 (($) 12)) (-2064 ((|#1| $ (-554) |#1|) 50) ((|#1| $ (-554)) 49) (($ $ (-1208 (-554))) 63)) (-3748 ((|#1| $ $) 106 (|has| |#1| (-1034)))) (-2021 (($ $ (-554)) 62) (($ $ (-1208 (-554))) 61)) (-3574 (($ $ $) 104 (|has| |#1| (-1034)))) (-2777 (((-758) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4373))) (((-758) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4373))))) (-3553 (($ $ $ (-554)) 91 (|has| $ (-6 -4374)))) (-1521 (($ $) 13)) (-2927 (((-530) $) 79 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 70)) (-4323 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-631 $)) 65)) (-3075 (((-848) $) 18 (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) 84 (|has| |#1| (-836)))) (-1686 (((-112) $ $) 83 (|has| |#1| (-836)))) (-1658 (((-112) $ $) 20 (|has| |#1| (-1082)))) (-1697 (((-112) $ $) 85 (|has| |#1| (-836)))) (-1676 (((-112) $ $) 82 (|has| |#1| (-836)))) (-1744 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1735 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-554) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-713))) (($ $ |#1|) 107 (|has| |#1| (-713)))) (-2563 (((-758) $) 6 (|has| $ (-6 -4373))))) +(((-1239 |#1|) (-138) (-1195)) (T -1239)) +((-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-25)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1239 *3)) (-4 *3 (-23)) (-4 *3 (-1195)))) (-1744 (*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) (-1744 (*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) (-2355 (*1 *2 *1 *1) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-1034)) (-5 *2 (-675 *3)))) (-3574 (*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987)) (-4 *2 (-1034)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987)) (-4 *2 (-1034))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1735 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2275 ($ (-758))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1744 ($ $)) (-15 -1744 ($ $ $)) (-15 * ($ (-554) $))) |%noBranch|) (IF (|has| |t#1| (-713)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1034)) (PROGN (-15 -3748 (|t#1| $ $)) (-15 -2355 ((-675 |t#1|) $ $)) (-15 -3574 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-1034)) (PROGN (-15 -2577 (|t#1| $)) (-15 -2579 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-601 (-848)) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836)) (|has| |#1| (-601 (-848)))) ((-149 |#1|) . T) ((-602 (-530)) |has| |#1| (-602 (-530))) ((-281 #0=(-554) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-592 #0# |#1|) . T) ((-508 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))) ((-637 |#1|) . T) ((-19 |#1|) . T) ((-836) |has| |#1| (-836)) ((-1082) -3994 (|has| |#1| (-1082)) (|has| |#1| (-836))) ((-1195) . T)) +((-4159 (((-1241 |#2|) (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|) 13)) (-3676 ((|#2| (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|) 15)) (-2879 (((-3 (-1241 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1241 |#1|)) 28) (((-1241 |#2|) (-1 |#2| |#1|) (-1241 |#1|)) 18))) +(((-1240 |#1| |#2|) (-10 -7 (-15 -4159 ((-1241 |#2|) (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -2879 ((-1241 |#2|) (-1 |#2| |#1|) (-1241 |#1|))) (-15 -2879 ((-3 (-1241 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1241 |#1|)))) (-1195) (-1195)) (T -1240)) +((-2879 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1241 *6)) (-5 *1 (-1240 *5 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1241 *6)) (-5 *1 (-1240 *5 *6)))) (-3676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1240 *5 *2)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1241 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-1241 *5)) (-5 *1 (-1240 *6 *5))))) +(-10 -7 (-15 -4159 ((-1241 |#2|) (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -3676 (|#2| (-1 |#2| |#1| |#2|) (-1241 |#1|) |#2|)) (-15 -2879 ((-1241 |#2|) (-1 |#2| |#1|) (-1241 |#1|))) (-15 -2879 ((-3 (-1241 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1241 |#1|)))) +((-3062 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-2275 (($ (-758)) NIL (|has| |#1| (-23)))) (-1541 (($ (-631 |#1|)) 9)) (-4233 (((-1246) $ (-554) (-554)) NIL (|has| $ (-6 -4374)))) (-4015 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-836)))) (-2576 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4374))) (($ $) NIL (-12 (|has| $ (-6 -4374)) (|has| |#1| (-836))))) (-3303 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-836)))) (-3019 (((-112) $ (-758)) NIL)) (-1501 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374))) ((|#1| $ (-1208 (-554)) |#1|) NIL (|has| $ (-6 -4374)))) (-1871 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-4087 (($) NIL T CONST)) (-3920 (($ $) NIL (|has| $ (-6 -4374)))) (-3799 (($ $) NIL)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2574 (($ |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-3676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4373))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4373)))) (-2862 ((|#1| $ (-554) |#1|) NIL (|has| $ (-6 -4374)))) (-2796 ((|#1| $ (-554)) NIL)) (-1484 (((-554) (-1 (-112) |#1|) $) NIL) (((-554) |#1| $) NIL (|has| |#1| (-1082))) (((-554) |#1| $ (-554)) NIL (|has| |#1| (-1082)))) (-2466 (((-631 |#1|) $) 15 (|has| $ (-6 -4373)))) (-2355 (((-675 |#1|) $ $) NIL (|has| |#1| (-1034)))) (-3180 (($ (-758) |#1|) NIL)) (-2230 (((-112) $ (-758)) NIL)) (-3044 (((-554) $) NIL (|has| (-554) (-836)))) (-4223 (($ $ $) NIL (|has| |#1| (-836)))) (-3717 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-836)))) (-2379 (((-631 |#1|) $) NIL (|has| $ (-6 -4373)))) (-3068 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2256 (((-554) $) NIL (|has| (-554) (-836)))) (-2706 (($ $ $) NIL (|has| |#1| (-836)))) (-2849 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2579 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-3731 (((-112) $ (-758)) NIL)) (-2577 ((|#1| $) NIL (-12 (|has| |#1| (-987)) (|has| |#1| (-1034))))) (-1613 (((-1140) $) NIL (|has| |#1| (-1082)))) (-1782 (($ |#1| $ (-554)) NIL) (($ $ $ (-554)) NIL)) (-2529 (((-631 (-554)) $) NIL)) (-3618 (((-112) (-554) $) NIL)) (-2768 (((-1102) $) NIL (|has| |#1| (-1082)))) (-1539 ((|#1| $) NIL (|has| (-554) (-836)))) (-1652 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2441 (($ $ |#1|) NIL (|has| $ (-6 -4374)))) (-2845 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082)))) (($ $ (-631 |#1|) (-631 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1082))))) (-2494 (((-112) $ $) NIL)) (-1609 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-2625 (((-631 |#1|) $) NIL)) (-3543 (((-112) $) NIL)) (-4240 (($) NIL)) (-2064 ((|#1| $ (-554) |#1|) NIL) ((|#1| $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3748 ((|#1| $ $) NIL (|has| |#1| (-1034)))) (-2021 (($ $ (-554)) NIL) (($ $ (-1208 (-554))) NIL)) (-3574 (($ $ $) NIL (|has| |#1| (-1034)))) (-2777 (((-758) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373))) (((-758) |#1| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#1| (-1082))))) (-3553 (($ $ $ (-554)) NIL (|has| $ (-6 -4374)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) 19 (|has| |#1| (-602 (-530))))) (-3089 (($ (-631 |#1|)) 8)) (-4323 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-631 $)) NIL)) (-3075 (((-848) $) NIL (|has| |#1| (-601 (-848))))) (-2438 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4373)))) (-1708 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1658 (((-112) $ $) NIL (|has| |#1| (-1082)))) (-1697 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1676 (((-112) $ $) NIL (|has| |#1| (-836)))) (-1744 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1735 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-554) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-713))) (($ $ |#1|) NIL (|has| |#1| (-713)))) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1241 |#1|) (-13 (-1239 |#1|) (-10 -8 (-15 -1541 ($ (-631 |#1|))))) (-1195)) (T -1241)) +((-1541 (*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1241 *3))))) +(-13 (-1239 |#1|) (-10 -8 (-15 -1541 ($ (-631 |#1|))))) +((-3062 (((-112) $ $) NIL)) (-1711 (((-1140) $ (-1140)) 90) (((-1140) $ (-1140) (-1140)) 88) (((-1140) $ (-1140) (-631 (-1140))) 87)) (-3407 (($) 59)) (-2572 (((-1246) $ (-462) (-906)) 45)) (-2079 (((-1246) $ (-906) (-1140)) 73) (((-1246) $ (-906) (-859)) 74)) (-2183 (((-1246) $ (-906) (-374) (-374)) 48)) (-3982 (((-1246) $ (-1140)) 69)) (-1593 (((-1246) $ (-906) (-1140)) 78)) (-1585 (((-1246) $ (-906) (-374) (-374)) 49)) (-2642 (((-1246) $ (-906) (-906)) 46)) (-1689 (((-1246) $) 70)) (-4030 (((-1246) $ (-906) (-1140)) 77)) (-3398 (((-1246) $ (-462) (-906)) 31)) (-1707 (((-1246) $ (-906) (-1140)) 76)) (-3906 (((-631 (-258)) $) 23) (($ $ (-631 (-258))) 24)) (-2826 (((-1246) $ (-758) (-758)) 43)) (-2644 (($ $) 60) (($ (-462) (-631 (-258))) 61)) (-1613 (((-1140) $) NIL)) (-2564 (((-554) $) 38)) (-2768 (((-1102) $) NIL)) (-1781 (((-1241 (-3 (-462) "undefined")) $) 37)) (-4118 (((-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554)))) $) 36)) (-2353 (((-1246) $ (-906) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-859) (-554) (-859) (-554)) 68)) (-3681 (((-631 (-928 (-221))) $) NIL)) (-3612 (((-462) $ (-906)) 33)) (-1549 (((-1246) $ (-758) (-758) (-906) (-906)) 40)) (-3395 (((-1246) $ (-1140)) 79)) (-4036 (((-1246) $ (-906) (-1140)) 75)) (-3075 (((-848) $) 85)) (-2498 (((-1246) $) 80)) (-3133 (((-1246) $ (-906) (-1140)) 71) (((-1246) $ (-906) (-859)) 72)) (-1658 (((-112) $ $) NIL))) +(((-1242) (-13 (-1082) (-10 -8 (-15 -3681 ((-631 (-928 (-221))) $)) (-15 -3407 ($)) (-15 -2644 ($ $)) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2644 ($ (-462) (-631 (-258)))) (-15 -2353 ((-1246) $ (-906) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-859) (-554) (-859) (-554))) (-15 -4118 ((-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554)))) $)) (-15 -1781 ((-1241 (-3 (-462) "undefined")) $)) (-15 -3982 ((-1246) $ (-1140))) (-15 -3398 ((-1246) $ (-462) (-906))) (-15 -3612 ((-462) $ (-906))) (-15 -3133 ((-1246) $ (-906) (-1140))) (-15 -3133 ((-1246) $ (-906) (-859))) (-15 -2079 ((-1246) $ (-906) (-1140))) (-15 -2079 ((-1246) $ (-906) (-859))) (-15 -1707 ((-1246) $ (-906) (-1140))) (-15 -4030 ((-1246) $ (-906) (-1140))) (-15 -4036 ((-1246) $ (-906) (-1140))) (-15 -3395 ((-1246) $ (-1140))) (-15 -2498 ((-1246) $)) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1585 ((-1246) $ (-906) (-374) (-374))) (-15 -2183 ((-1246) $ (-906) (-374) (-374))) (-15 -1593 ((-1246) $ (-906) (-1140))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2572 ((-1246) $ (-462) (-906))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -1689 ((-1246) $)) (-15 -2564 ((-554) $)) (-15 -3075 ((-848) $))))) (T -1242)) +((-3075 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1242)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-631 (-928 (-221)))) (-5 *1 (-1242)))) (-3407 (*1 *1) (-5 *1 (-1242))) (-2644 (*1 *1 *1) (-5 *1 (-1242))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242)))) (-2644 (*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-631 (-258))) (-5 *1 (-1242)))) (-2353 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-906)) (-5 *4 (-221)) (-5 *5 (-554)) (-5 *6 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554))))) (-5 *1 (-1242)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1241 (-3 (-462) "undefined"))) (-5 *1 (-1242)))) (-3982 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3398 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-906)) (-5 *2 (-462)) (-5 *1 (-1242)))) (-3133 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3133 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2079 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2079 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-4030 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-4036 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1549 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1585 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2183 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1593 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2572 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) (-1711 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242)))) (-1711 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242)))) (-1711 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1242)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1242))))) +(-13 (-1082) (-10 -8 (-15 -3681 ((-631 (-928 (-221))) $)) (-15 -3407 ($)) (-15 -2644 ($ $)) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2644 ($ (-462) (-631 (-258)))) (-15 -2353 ((-1246) $ (-906) (-221) (-221) (-221) (-221) (-554) (-554) (-554) (-554) (-859) (-554) (-859) (-554))) (-15 -4118 ((-1241 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) (|:| |axesColor| (-859)) (|:| -2079 (-554)) (|:| |unitsColor| (-859)) (|:| |showing| (-554)))) $)) (-15 -1781 ((-1241 (-3 (-462) "undefined")) $)) (-15 -3982 ((-1246) $ (-1140))) (-15 -3398 ((-1246) $ (-462) (-906))) (-15 -3612 ((-462) $ (-906))) (-15 -3133 ((-1246) $ (-906) (-1140))) (-15 -3133 ((-1246) $ (-906) (-859))) (-15 -2079 ((-1246) $ (-906) (-1140))) (-15 -2079 ((-1246) $ (-906) (-859))) (-15 -1707 ((-1246) $ (-906) (-1140))) (-15 -4030 ((-1246) $ (-906) (-1140))) (-15 -4036 ((-1246) $ (-906) (-1140))) (-15 -3395 ((-1246) $ (-1140))) (-15 -2498 ((-1246) $)) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1585 ((-1246) $ (-906) (-374) (-374))) (-15 -2183 ((-1246) $ (-906) (-374) (-374))) (-15 -1593 ((-1246) $ (-906) (-1140))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2572 ((-1246) $ (-462) (-906))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -1689 ((-1246) $)) (-15 -2564 ((-554) $)) (-15 -3075 ((-848) $)))) +((-3062 (((-112) $ $) NIL)) (-2208 (((-1246) $ (-374)) 140) (((-1246) $ (-374) (-374) (-374)) 141)) (-1711 (((-1140) $ (-1140)) 148) (((-1140) $ (-1140) (-1140)) 146) (((-1140) $ (-1140) (-631 (-1140))) 145)) (-2820 (($) 50)) (-1691 (((-1246) $ (-374) (-374) (-374) (-374) (-374)) 116) (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $) 114) (((-1246) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 115) (((-1246) $ (-554) (-554) (-374) (-374) (-374)) 117) (((-1246) $ (-374) (-374)) 118) (((-1246) $ (-374) (-374) (-374)) 125)) (-2872 (((-374)) 97) (((-374) (-374)) 98)) (-2198 (((-374)) 92) (((-374) (-374)) 94)) (-2160 (((-374)) 95) (((-374) (-374)) 96)) (-2966 (((-374)) 101) (((-374) (-374)) 102)) (-3801 (((-374)) 99) (((-374) (-374)) 100)) (-2183 (((-1246) $ (-374) (-374)) 142)) (-3982 (((-1246) $ (-1140)) 126)) (-3504 (((-1115 (-221)) $) 51) (($ $ (-1115 (-221))) 52)) (-2852 (((-1246) $ (-1140)) 154)) (-2027 (((-1246) $ (-1140)) 155)) (-4064 (((-1246) $ (-374) (-374)) 124) (((-1246) $ (-554) (-554)) 139)) (-2642 (((-1246) $ (-906) (-906)) 132)) (-1689 (((-1246) $) 112)) (-3410 (((-1246) $ (-1140)) 153)) (-3049 (((-1246) $ (-1140)) 109)) (-3906 (((-631 (-258)) $) 53) (($ $ (-631 (-258))) 54)) (-2826 (((-1246) $ (-758) (-758)) 131)) (-2532 (((-1246) $ (-758) (-928 (-221))) 160)) (-3280 (($ $) 56) (($ (-1115 (-221)) (-1140)) 57) (($ (-1115 (-221)) (-631 (-258))) 58)) (-1315 (((-1246) $ (-374) (-374) (-374)) 106)) (-1613 (((-1140) $) NIL)) (-2564 (((-554) $) 103)) (-4119 (((-1246) $ (-374)) 143)) (-2700 (((-1246) $ (-374)) 158)) (-2768 (((-1102) $) NIL)) (-2833 (((-1246) $ (-374)) 157)) (-4307 (((-1246) $ (-1140)) 111)) (-1549 (((-1246) $ (-758) (-758) (-906) (-906)) 130)) (-3742 (((-1246) $ (-1140)) 108)) (-3395 (((-1246) $ (-1140)) 110)) (-3969 (((-1246) $ (-155) (-155)) 129)) (-3075 (((-848) $) 137)) (-2498 (((-1246) $) 113)) (-2052 (((-1246) $ (-1140)) 156)) (-3133 (((-1246) $ (-1140)) 107)) (-1658 (((-112) $ $) NIL))) +(((-1243) (-13 (-1082) (-10 -8 (-15 -2198 ((-374))) (-15 -2198 ((-374) (-374))) (-15 -2160 ((-374))) (-15 -2160 ((-374) (-374))) (-15 -2872 ((-374))) (-15 -2872 ((-374) (-374))) (-15 -3801 ((-374))) (-15 -3801 ((-374) (-374))) (-15 -2966 ((-374))) (-15 -2966 ((-374) (-374))) (-15 -2820 ($)) (-15 -3280 ($ $)) (-15 -3280 ($ (-1115 (-221)) (-1140))) (-15 -3280 ($ (-1115 (-221)) (-631 (-258)))) (-15 -3504 ((-1115 (-221)) $)) (-15 -3504 ($ $ (-1115 (-221)))) (-15 -2532 ((-1246) $ (-758) (-928 (-221)))) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -3982 ((-1246) $ (-1140))) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1691 ((-1246) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1691 ((-1246) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1691 ((-1246) $ (-554) (-554) (-374) (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374) (-374))) (-15 -3395 ((-1246) $ (-1140))) (-15 -3133 ((-1246) $ (-1140))) (-15 -3742 ((-1246) $ (-1140))) (-15 -3049 ((-1246) $ (-1140))) (-15 -4307 ((-1246) $ (-1140))) (-15 -4064 ((-1246) $ (-374) (-374))) (-15 -4064 ((-1246) $ (-554) (-554))) (-15 -2208 ((-1246) $ (-374))) (-15 -2208 ((-1246) $ (-374) (-374) (-374))) (-15 -2183 ((-1246) $ (-374) (-374))) (-15 -3410 ((-1246) $ (-1140))) (-15 -2833 ((-1246) $ (-374))) (-15 -2700 ((-1246) $ (-374))) (-15 -2852 ((-1246) $ (-1140))) (-15 -2027 ((-1246) $ (-1140))) (-15 -2052 ((-1246) $ (-1140))) (-15 -1315 ((-1246) $ (-374) (-374) (-374))) (-15 -4119 ((-1246) $ (-374))) (-15 -1689 ((-1246) $)) (-15 -3969 ((-1246) $ (-155) (-155))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -2498 ((-1246) $)) (-15 -2564 ((-554) $))))) (T -1243)) +((-2198 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2160 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2872 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-3801 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2966 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) (-2820 (*1 *1) (-5 *1 (-1243))) (-3280 (*1 *1 *1) (-5 *1 (-1243))) (-3280 (*1 *1 *2 *3) (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1140)) (-5 *1 (-1243)))) (-3280 (*1 *1 *2 *3) (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-631 (-258))) (-5 *1 (-1243)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243)))) (-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243)))) (-2532 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243)))) (-2826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3982 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1549 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-554)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1691 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3049 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2208 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2183 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2833 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2700 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2852 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2027 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2052 (*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1315 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243)))) (-3969 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1246)) (-5 *1 (-1243)))) (-1711 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243)))) (-1711 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243)))) (-1711 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1243)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1243))))) +(-13 (-1082) (-10 -8 (-15 -2198 ((-374))) (-15 -2198 ((-374) (-374))) (-15 -2160 ((-374))) (-15 -2160 ((-374) (-374))) (-15 -2872 ((-374))) (-15 -2872 ((-374) (-374))) (-15 -3801 ((-374))) (-15 -3801 ((-374) (-374))) (-15 -2966 ((-374))) (-15 -2966 ((-374) (-374))) (-15 -2820 ($)) (-15 -3280 ($ $)) (-15 -3280 ($ (-1115 (-221)) (-1140))) (-15 -3280 ($ (-1115 (-221)) (-631 (-258)))) (-15 -3504 ((-1115 (-221)) $)) (-15 -3504 ($ $ (-1115 (-221)))) (-15 -2532 ((-1246) $ (-758) (-928 (-221)))) (-15 -3906 ((-631 (-258)) $)) (-15 -3906 ($ $ (-631 (-258)))) (-15 -2826 ((-1246) $ (-758) (-758))) (-15 -2642 ((-1246) $ (-906) (-906))) (-15 -3982 ((-1246) $ (-1140))) (-15 -1549 ((-1246) $ (-758) (-758) (-906) (-906))) (-15 -1691 ((-1246) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1691 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1691 ((-1246) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1691 ((-1246) $ (-554) (-554) (-374) (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374))) (-15 -1691 ((-1246) $ (-374) (-374) (-374))) (-15 -3395 ((-1246) $ (-1140))) (-15 -3133 ((-1246) $ (-1140))) (-15 -3742 ((-1246) $ (-1140))) (-15 -3049 ((-1246) $ (-1140))) (-15 -4307 ((-1246) $ (-1140))) (-15 -4064 ((-1246) $ (-374) (-374))) (-15 -4064 ((-1246) $ (-554) (-554))) (-15 -2208 ((-1246) $ (-374))) (-15 -2208 ((-1246) $ (-374) (-374) (-374))) (-15 -2183 ((-1246) $ (-374) (-374))) (-15 -3410 ((-1246) $ (-1140))) (-15 -2833 ((-1246) $ (-374))) (-15 -2700 ((-1246) $ (-374))) (-15 -2852 ((-1246) $ (-1140))) (-15 -2027 ((-1246) $ (-1140))) (-15 -2052 ((-1246) $ (-1140))) (-15 -1315 ((-1246) $ (-374) (-374) (-374))) (-15 -4119 ((-1246) $ (-374))) (-15 -1689 ((-1246) $)) (-15 -3969 ((-1246) $ (-155) (-155))) (-15 -1711 ((-1140) $ (-1140))) (-15 -1711 ((-1140) $ (-1140) (-1140))) (-15 -1711 ((-1140) $ (-1140) (-631 (-1140)))) (-15 -2498 ((-1246) $)) (-15 -2564 ((-554) $)))) +((-3300 (((-631 (-1140)) (-631 (-1140))) 94) (((-631 (-1140))) 90)) (-3315 (((-631 (-1140))) 88)) (-4116 (((-631 (-906)) (-631 (-906))) 63) (((-631 (-906))) 60)) (-2840 (((-631 (-758)) (-631 (-758))) 57) (((-631 (-758))) 53)) (-2975 (((-1246)) 65)) (-1894 (((-906) (-906)) 81) (((-906)) 80)) (-4101 (((-906) (-906)) 79) (((-906)) 78)) (-1753 (((-859) (-859)) 75) (((-859)) 74)) (-3805 (((-221)) 85) (((-221) (-374)) 87)) (-4276 (((-906)) 82) (((-906) (-906)) 83)) (-2546 (((-906) (-906)) 77) (((-906)) 76)) (-1583 (((-859) (-859)) 69) (((-859)) 67)) (-2115 (((-859) (-859)) 71) (((-859)) 70)) (-3459 (((-859) (-859)) 73) (((-859)) 72))) +(((-1244) (-10 -7 (-15 -1583 ((-859))) (-15 -1583 ((-859) (-859))) (-15 -2115 ((-859))) (-15 -2115 ((-859) (-859))) (-15 -3459 ((-859))) (-15 -3459 ((-859) (-859))) (-15 -1753 ((-859))) (-15 -1753 ((-859) (-859))) (-15 -2546 ((-906))) (-15 -2546 ((-906) (-906))) (-15 -2840 ((-631 (-758)))) (-15 -2840 ((-631 (-758)) (-631 (-758)))) (-15 -4116 ((-631 (-906)))) (-15 -4116 ((-631 (-906)) (-631 (-906)))) (-15 -2975 ((-1246))) (-15 -3300 ((-631 (-1140)))) (-15 -3300 ((-631 (-1140)) (-631 (-1140)))) (-15 -3315 ((-631 (-1140)))) (-15 -4101 ((-906))) (-15 -1894 ((-906))) (-15 -4101 ((-906) (-906))) (-15 -1894 ((-906) (-906))) (-15 -4276 ((-906) (-906))) (-15 -4276 ((-906))) (-15 -3805 ((-221) (-374))) (-15 -3805 ((-221))))) (T -1244)) +((-3805 (*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1244)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1244)))) (-4276 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-1894 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-4101 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-3315 (*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) (-3300 (*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) (-2975 (*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1244)))) (-4116 (*1 *2 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244)))) (-4116 (*1 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244)))) (-2840 (*1 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-2546 (*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) (-1753 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-1753 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-3459 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-3459 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-2115 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-2115 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) (-1583 (*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))) +(-10 -7 (-15 -1583 ((-859))) (-15 -1583 ((-859) (-859))) (-15 -2115 ((-859))) (-15 -2115 ((-859) (-859))) (-15 -3459 ((-859))) (-15 -3459 ((-859) (-859))) (-15 -1753 ((-859))) (-15 -1753 ((-859) (-859))) (-15 -2546 ((-906))) (-15 -2546 ((-906) (-906))) (-15 -2840 ((-631 (-758)))) (-15 -2840 ((-631 (-758)) (-631 (-758)))) (-15 -4116 ((-631 (-906)))) (-15 -4116 ((-631 (-906)) (-631 (-906)))) (-15 -2975 ((-1246))) (-15 -3300 ((-631 (-1140)))) (-15 -3300 ((-631 (-1140)) (-631 (-1140)))) (-15 -3315 ((-631 (-1140)))) (-15 -4101 ((-906))) (-15 -1894 ((-906))) (-15 -4101 ((-906) (-906))) (-15 -1894 ((-906) (-906))) (-15 -4276 ((-906) (-906))) (-15 -4276 ((-906))) (-15 -3805 ((-221) (-374))) (-15 -3805 ((-221)))) +((-3990 (((-462) (-631 (-631 (-928 (-221)))) (-631 (-258))) 21) (((-462) (-631 (-631 (-928 (-221))))) 20) (((-462) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258))) 19)) (-2485 (((-1242) (-631 (-631 (-928 (-221)))) (-631 (-258))) 27) (((-1242) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258))) 26)) (-3075 (((-1242) (-462)) 38))) +(((-1245) (-10 -7 (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -3075 ((-1242) (-462))))) (T -1245)) +((-3075 (*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1242)) (-5 *1 (-1245)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-1245)))) (-2485 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-1245)))) (-3990 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258))) (-5 *2 (-462)) (-5 *1 (-1245)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-462)) (-5 *1 (-1245)))) (-3990 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859)) (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-462)) (-5 *1 (-1245))))) +(-10 -7 (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))))) (-15 -3990 ((-462) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-859) (-859) (-906) (-631 (-258)))) (-15 -2485 ((-1242) (-631 (-631 (-928 (-221)))) (-631 (-258)))) (-15 -3075 ((-1242) (-462)))) +((-2053 (($) 7)) (-3075 (((-848) $) 10))) +(((-1246) (-13 (-601 (-848)) (-10 -8 (-15 -2053 ($))))) (T -1246)) +((-2053 (*1 *1) (-5 *1 (-1246)))) +(-13 (-601 (-848)) (-10 -8 (-15 -2053 ($)))) +((-1752 (($ $ |#2|) 10))) +(((-1247 |#1| |#2|) (-10 -8 (-15 -1752 (|#1| |#1| |#2|))) (-1248 |#2|) (-358)) (T -1247)) +NIL +(-10 -8 (-15 -1752 (|#1| |#1| |#2|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3330 (((-133)) 28)) (-3075 (((-848) $) 11)) (-2004 (($) 18 T CONST)) (-1658 (((-112) $ $) 6)) (-1752 (($ $ |#1|) 29)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1248 |#1|) (-138) (-358)) (T -1248)) +((-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-358)))) (-3330 (*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-358)) (-5 *2 (-133))))) +(-13 (-704 |t#1|) (-10 -8 (-15 -1752 ($ $ |t#1|)) (-15 -3330 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-704 |#1|) . T) ((-1040 |#1|) . T) ((-1082) . T)) +((-1433 (((-631 (-1189 |#1|)) (-1158) (-1189 |#1|)) 74)) (-3616 (((-1138 (-1138 (-937 |#1|))) (-1158) (-1138 (-937 |#1|))) 53)) (-2970 (((-1 (-1138 (-1189 |#1|)) (-1138 (-1189 |#1|))) (-758) (-1189 |#1|) (-1138 (-1189 |#1|))) 64)) (-3961 (((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758)) 55)) (-3890 (((-1 (-1154 (-937 |#1|)) (-937 |#1|)) (-1158)) 29)) (-2024 (((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758)) 54))) +(((-1249 |#1|) (-10 -7 (-15 -3961 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -2024 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -3616 ((-1138 (-1138 (-937 |#1|))) (-1158) (-1138 (-937 |#1|)))) (-15 -3890 ((-1 (-1154 (-937 |#1|)) (-937 |#1|)) (-1158))) (-15 -1433 ((-631 (-1189 |#1|)) (-1158) (-1189 |#1|))) (-15 -2970 ((-1 (-1138 (-1189 |#1|)) (-1138 (-1189 |#1|))) (-758) (-1189 |#1|) (-1138 (-1189 |#1|))))) (-358)) (T -1249)) +((-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-758)) (-4 *6 (-358)) (-5 *4 (-1189 *6)) (-5 *2 (-1 (-1138 *4) (-1138 *4))) (-5 *1 (-1249 *6)) (-5 *5 (-1138 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-631 (-1189 *5))) (-5 *1 (-1249 *5)) (-5 *4 (-1189 *5)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1 (-1154 (-937 *4)) (-937 *4))) (-5 *1 (-1249 *4)) (-4 *4 (-358)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-1138 (-1138 (-937 *5)))) (-5 *1 (-1249 *5)) (-5 *4 (-1138 (-937 *5))))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4)))) (-5 *1 (-1249 *4)) (-4 *4 (-358)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4)))) (-5 *1 (-1249 *4)) (-4 *4 (-358))))) +(-10 -7 (-15 -3961 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -2024 ((-1 (-1138 (-937 |#1|)) (-1138 (-937 |#1|))) (-758))) (-15 -3616 ((-1138 (-1138 (-937 |#1|))) (-1158) (-1138 (-937 |#1|)))) (-15 -3890 ((-1 (-1154 (-937 |#1|)) (-937 |#1|)) (-1158))) (-15 -1433 ((-631 (-1189 |#1|)) (-1158) (-1189 |#1|))) (-15 -2970 ((-1 (-1138 (-1189 |#1|)) (-1138 (-1189 |#1|))) (-758) (-1189 |#1|) (-1138 (-1189 |#1|))))) +((-2062 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|) 75)) (-3358 (((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|)))) 74))) +(((-1250 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|))) (-344) (-1217 |#1|) (-1217 |#2|) (-404 |#2| |#3|)) (T -1250)) +((-2062 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3)) (-5 *2 (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-675 *3)))) (-5 *1 (-1250 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5)))) (-3358 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4)) (-5 *2 (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-675 *4)))) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5))))) +(-10 -7 (-15 -3358 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))))) (-15 -2062 ((-2 (|:| -3782 (-675 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-675 |#2|))) |#2|))) +((-3062 (((-112) $ $) NIL)) (-4302 (((-1117) $) 11)) (-2469 (((-1117) $) 9)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 19) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1251) (-13 (-1065) (-10 -8 (-15 -2469 ((-1117) $)) (-15 -4302 ((-1117) $))))) (T -1251)) +((-2469 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251))))) +(-13 (-1065) (-10 -8 (-15 -2469 ((-1117) $)) (-15 -4302 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-4294 (((-1117) $) 9)) (-3075 (((-848) $) 17) (($ (-1163)) NIL) (((-1163) $) NIL)) (-1658 (((-112) $ $) NIL))) +(((-1252) (-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $))))) (T -1252)) +((-4294 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1252))))) +(-13 (-1065) (-10 -8 (-15 -4294 ((-1117) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 43)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) NIL)) (-3248 (((-112) $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3075 (((-848) $) 64) (($ (-554)) NIL) (($ |#4|) 49) ((|#4| $) 54) (($ |#1|) NIL (|has| |#1| (-170)))) (-2261 (((-758)) NIL)) (-1561 (((-1246) (-758)) 16)) (-2004 (($) 27 T CONST)) (-2014 (($) 67 T CONST)) (-1658 (((-112) $ $) 69)) (-1752 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-1744 (($ $) 71) (($ $ $) NIL)) (-1735 (($ $ $) 47)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-1253 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1034) (-484 |#4|) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758))))) (-1034) (-836) (-780) (-934 |#1| |#3| |#2|) (-631 |#2|) (-631 (-758)) (-758)) (T -1253)) +((-1752 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1034)) (-4 *3 (-836)) (-4 *4 (-780)) (-14 *6 (-631 *3)) (-5 *1 (-1253 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-934 *2 *4 *3)) (-14 *7 (-631 (-758))) (-14 *8 (-758)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) (-14 *8 (-631 *5)) (-5 *2 (-1246)) (-5 *1 (-1253 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-934 *4 *6 *5)) (-14 *9 (-631 *3)) (-14 *10 *3)))) +(-13 (-1034) (-484 |#4|) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -1752 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1561 ((-1246) (-758))))) +((-3062 (((-112) $ $) NIL)) (-3960 (((-631 (-2 (|:| -2498 $) (|:| -1303 (-631 |#4|)))) (-631 |#4|)) NIL)) (-3176 (((-631 $) (-631 |#4|)) 88)) (-2405 (((-631 |#3|) $) NIL)) (-1678 (((-112) $) NIL)) (-3005 (((-112) $) NIL (|has| |#1| (-546)))) (-2630 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4057 ((|#4| |#4| $) NIL)) (-3303 (((-2 (|:| |under| $) (|:| -4339 $) (|:| |upper| $)) $ |#3|) NIL)) (-3019 (((-112) $ (-758)) NIL)) (-1871 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4087 (($) NIL T CONST)) (-1930 (((-112) $) NIL (|has| |#1| (-546)))) (-1404 (((-112) $ $) NIL (|has| |#1| (-546)))) (-3262 (((-112) $ $) NIL (|has| |#1| (-546)))) (-2713 (((-112) $) NIL (|has| |#1| (-546)))) (-2242 (((-631 |#4|) (-631 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-1380 (((-631 |#4|) (-631 |#4|) $) 25 (|has| |#1| (-546)))) (-4204 (((-631 |#4|) (-631 |#4|) $) NIL (|has| |#1| (-546)))) (-2784 (((-3 $ "failed") (-631 |#4|)) NIL)) (-1668 (($ (-631 |#4|)) NIL)) (-1551 (((-3 $ "failed") $) 70)) (-2930 ((|#4| |#4| $) 75)) (-1571 (($ $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-2574 (($ |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-2857 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4210 ((|#4| |#4| $) NIL)) (-3676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4373))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4373))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1971 (((-2 (|:| -2498 (-631 |#4|)) (|:| -1303 (-631 |#4|))) $) NIL)) (-2466 (((-631 |#4|) $) NIL (|has| $ (-6 -4373)))) (-4253 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3954 ((|#3| $) 76)) (-2230 (((-112) $ (-758)) NIL)) (-2379 (((-631 |#4|) $) 29 (|has| $ (-6 -4373)))) (-3068 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082))))) (-3515 (((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-631 |#4|)) 35)) (-2849 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4374)))) (-2879 (($ (-1 |#4| |#4|) $) NIL)) (-2643 (((-631 |#3|) $) NIL)) (-1400 (((-112) |#3| $) NIL)) (-3731 (((-112) $ (-758)) NIL)) (-1613 (((-1140) $) NIL)) (-2597 (((-3 |#4| "failed") $) NIL)) (-2627 (((-631 |#4|) $) 50)) (-3007 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1536 ((|#4| |#4| $) 74)) (-2178 (((-112) $ $) 85)) (-3548 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-546)))) (-3518 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3492 ((|#4| |#4| $) NIL)) (-2768 (((-1102) $) NIL)) (-1539 (((-3 |#4| "failed") $) 69)) (-1652 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3948 (((-3 $ "failed") $ |#4|) NIL)) (-4282 (($ $ |#4|) NIL)) (-2845 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-2386 (($ $ (-631 |#4|) (-631 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082)))) (($ $ (-631 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1082))))) (-2494 (((-112) $ $) NIL)) (-3543 (((-112) $) 67)) (-4240 (($) 42)) (-3308 (((-758) $) NIL)) (-2777 (((-758) |#4| $) NIL (-12 (|has| $ (-6 -4373)) (|has| |#4| (-1082)))) (((-758) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-1521 (($ $) NIL)) (-2927 (((-530) $) NIL (|has| |#4| (-602 (-530))))) (-3089 (($ (-631 |#4|)) NIL)) (-2538 (($ $ |#3|) NIL)) (-2384 (($ $ |#3|) NIL)) (-2258 (($ $) NIL)) (-2128 (($ $ |#3|) NIL)) (-3075 (((-848) $) NIL) (((-631 |#4|) $) 57)) (-2347 (((-758) $) NIL (|has| |#3| (-363)))) (-3217 (((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-631 |#4|)) 41)) (-3093 (((-631 $) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-631 $) (-631 |#4|)) 66)) (-2792 (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2292 (-631 |#4|))) "failed") (-631 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3579 (((-112) $ (-1 (-112) |#4| (-631 |#4|))) NIL)) (-2438 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4373)))) (-4267 (((-631 |#3|) $) NIL)) (-3536 (((-112) |#3| $) NIL)) (-1658 (((-112) $ $) NIL)) (-2563 (((-758) $) NIL (|has| $ (-6 -4373))))) +(((-1254 |#1| |#2| |#3| |#4|) (-13 (-1188 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3515 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3515 ((-3 $ "failed") (-631 |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|))) (-15 -3093 ((-631 $) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3093 ((-631 $) (-631 |#4|))))) (-546) (-780) (-836) (-1048 |#1| |#2| |#3|)) (T -1254)) +((-3515 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8)))) (-3515 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1254 *3 *4 *5 *6)))) (-3217 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8)))) (-3217 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1254 *3 *4 *5 *6)))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-631 (-1254 *6 *7 *8 *9))) (-5 *1 (-1254 *6 *7 *8 *9)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-1254 *4 *5 *6 *7))) (-5 *1 (-1254 *4 *5 *6 *7))))) +(-13 (-1188 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3515 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3515 ((-3 $ "failed") (-631 |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3217 ((-3 $ "failed") (-631 |#4|))) (-15 -3093 ((-631 $) (-631 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3093 ((-631 $) (-631 |#4|))))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-2934 (((-3 $ "failed") $ $) 19)) (-4087 (($) 17 T CONST)) (-1320 (((-3 $ "failed") $) 33)) (-3248 (((-112) $) 31)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#1|) 39)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) +(((-1255 |#1|) (-138) (-1034)) (T -1255)) +NIL +(-13 (-1034) (-111 |t#1| |t#1|) (-604 |t#1|) (-10 -7 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-601 (-848)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 |#1|) |has| |#1| (-170)) ((-713) . T) ((-1040 |#1|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T)) +((-3062 (((-112) $ $) 60)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 45)) (-3151 (($ $ (-758)) 39)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ (-758)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ $) 63) (($ $ (-806 |#1|)) 49) (($ $ |#1|) 53)) (-2784 (((-3 (-806 |#1|) "failed") $) NIL)) (-1668 (((-806 |#1|) $) NIL)) (-2550 (($ $) 32)) (-1320 (((-3 $ "failed") $) NIL)) (-2334 (((-112) $) NIL)) (-3987 (($ $) NIL)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 |#1|) |#2|) 31)) (-3898 (($ $) 33)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 12)) (-2986 (((-806 |#1|) $) NIL)) (-2817 (((-806 |#1|) $) 34)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3637 (($ $ $) 62) (($ $ (-806 |#1|)) 51) (($ $ |#1|) 55)) (-2428 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2518 (((-806 |#1|) $) 28)) (-2530 ((|#2| $) 30)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-3308 (((-758) $) 36)) (-2798 (((-112) $) 40)) (-2397 ((|#2| $) NIL)) (-3075 (((-848) $) NIL) (($ (-806 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-554)) NIL)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-806 |#1|)) NIL)) (-1490 ((|#2| $ $) 65) ((|#2| $ (-806 |#1|)) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) 13 T CONST)) (-2014 (($) 15 T CONST)) (-2407 (((-631 (-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1658 (((-112) $ $) 38)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 22)) (** (($ $ (-758)) NIL) (($ $ (-906)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-806 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1256 |#1| |#2|) (-13 (-377 |#2| (-806 |#1|)) (-1262 |#1| |#2|)) (-836) (-1034)) (T -1256)) +NIL +(-13 (-377 |#2| (-806 |#1|)) (-1262 |#1| |#2|)) +((-2395 ((|#3| |#3| (-758)) 23)) (-1333 ((|#3| |#3| (-758)) 27)) (-2888 ((|#3| |#3| |#3| (-758)) 28))) +(((-1257 |#1| |#2| |#3|) (-10 -7 (-15 -1333 (|#3| |#3| (-758))) (-15 -2395 (|#3| |#3| (-758))) (-15 -2888 (|#3| |#3| |#3| (-758)))) (-13 (-1034) (-704 (-402 (-554)))) (-836) (-1262 |#2| |#1|)) (T -1257)) +((-2888 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))) (-2395 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))) (-1333 (*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4))))) +(-10 -7 (-15 -1333 (|#3| |#3| (-758))) (-15 -2395 (|#3| |#3| (-758))) (-15 -2888 (|#3| |#3| |#3| (-758)))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1654 (((-631 |#1|) $) 41)) (-2934 (((-3 $ "failed") $ $) 19)) (-1647 (($ $ $) 44 (|has| |#2| (-170))) (($ $ (-758)) 43 (|has| |#2| (-170)))) (-4087 (($) 17 T CONST)) (-3567 (($ $ |#1|) 55) (($ $ (-806 |#1|)) 54) (($ $ $) 53)) (-2784 (((-3 (-806 |#1|) "failed") $) 65)) (-1668 (((-806 |#1|) $) 66)) (-1320 (((-3 $ "failed") $) 33)) (-2334 (((-112) $) 46)) (-3987 (($ $) 45)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 51)) (-3738 (($ (-806 |#1|) |#2|) 52)) (-3898 (($ $) 50)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 61)) (-2986 (((-806 |#1|) $) 62)) (-2879 (($ (-1 |#2| |#2|) $) 42)) (-3637 (($ $ |#1|) 58) (($ $ (-806 |#1|)) 57) (($ $ $) 56)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-2798 (((-112) $) 48)) (-2397 ((|#2| $) 47)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#2|) 69) (($ (-806 |#1|)) 64) (($ |#1|) 49)) (-1490 ((|#2| $ (-806 |#1|)) 60) ((|#2| $ $) 59)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1258 |#1| |#2|) (-138) (-836) (-1034)) (T -1258)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-806 *3)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-2 (|:| |k| (-806 *3)) (|:| |c| *4))))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-806 *4)) (-4 *1 (-1258 *4 *2)) (-4 *4 (-836)) (-4 *2 (-1034)))) (-1490 (*1 *2 *1 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) (-3637 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3637 (*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-3637 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3567 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-3567 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3738 (*1 *1 *2 *3) (-12 (-5 *2 (-806 *4)) (-4 *4 (-836)) (-4 *1 (-1258 *4 *3)) (-4 *3 (-1034)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-112)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-3075 (*1 *1 *2) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-112)))) (-3987 (*1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) (-1647 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)) (-4 *3 (-170)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-4 *4 (-170)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-631 *3))))) +(-13 (-1034) (-1255 |t#2|) (-1023 (-806 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2986 ((-806 |t#1|) $)) (-15 -2995 ((-2 (|:| |k| (-806 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1490 (|t#2| $ (-806 |t#1|))) (-15 -1490 (|t#2| $ $)) (-15 -3637 ($ $ |t#1|)) (-15 -3637 ($ $ (-806 |t#1|))) (-15 -3637 ($ $ $)) (-15 -3567 ($ $ |t#1|)) (-15 -3567 ($ $ (-806 |t#1|))) (-15 -3567 ($ $ $)) (-15 -3738 ($ (-806 |t#1|) |t#2|)) (-15 -3580 ((-112) $)) (-15 -3898 ($ $)) (-15 -3075 ($ |t#1|)) (-15 -2798 ((-112) $)) (-15 -2397 (|t#2| $)) (-15 -2334 ((-112) $)) (-15 -3987 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -1647 ($ $ $)) (-15 -1647 ($ $ (-758)))) |%noBranch|) (-15 -2879 ($ (-1 |t#2| |t#2|) $)) (-15 -1654 ((-631 |t#1|) $)) (IF (|has| |t#2| (-6 -4366)) (-6 -4366) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 #0=(-806 |#1|)) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-634 |#2|) . T) ((-634 $) . T) ((-704 |#2|) |has| |#2| (-170)) ((-713) . T) ((-1023 #0#) . T) ((-1040 |#2|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1255 |#2|) . T)) +((-3718 (((-112) $) 15)) (-3536 (((-112) $) 14)) (-1811 (($ $) 19) (($ $ (-758)) 20))) +(((-1259 |#1| |#2|) (-10 -8 (-15 -1811 (|#1| |#1| (-758))) (-15 -1811 (|#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|))) (-1260 |#2|) (-358)) (T -1259)) +NIL +(-10 -8 (-15 -1811 (|#1| |#1| (-758))) (-15 -1811 (|#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3536 ((-112) |#1|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1292 (((-2 (|:| -3646 $) (|:| -4360 $) (|:| |associate| $)) $) 42)) (-1976 (($ $) 41)) (-1363 (((-112) $) 39)) (-3718 (((-112) $) 95)) (-1924 (((-758)) 91)) (-2934 (((-3 $ "failed") $ $) 19)) (-3278 (($ $) 74)) (-1565 (((-413 $) $) 73)) (-2286 (((-112) $ $) 60)) (-4087 (($) 17 T CONST)) (-2784 (((-3 |#1| "failed") $) 102)) (-1668 ((|#1| $) 103)) (-3964 (($ $ $) 56)) (-1320 (((-3 $ "failed") $) 33)) (-3943 (($ $ $) 57)) (-3148 (((-2 (|:| -1490 (-631 $)) (|:| -4137 $)) (-631 $)) 52)) (-4122 (($ $ (-758)) 88 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 87 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3289 (((-112) $) 72)) (-2342 (((-820 (-906)) $) 85 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3248 (((-112) $) 31)) (-3816 (((-3 (-631 $) "failed") (-631 $) $) 53)) (-2475 (($ $ $) 47) (($ (-631 $)) 46)) (-1613 (((-1140) $) 9)) (-2483 (($ $) 71)) (-2070 (((-112) $) 94)) (-2768 (((-1102) $) 10)) (-3077 (((-1154 $) (-1154 $) (-1154 $)) 45)) (-2510 (($ $ $) 49) (($ (-631 $)) 48)) (-2270 (((-413 $) $) 75)) (-2365 (((-820 (-906))) 92)) (-2032 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4137 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3919 (((-3 $ "failed") $ $) 43)) (-2431 (((-3 (-631 $) "failed") (-631 $) $) 51)) (-2072 (((-758) $) 59)) (-2259 (((-2 (|:| -2325 $) (|:| -2423 $)) $ $) 58)) (-3316 (((-3 (-758) "failed") $ $) 86 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3330 (((-133)) 100)) (-3308 (((-820 (-906)) $) 93)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ $) 44) (($ (-402 (-554))) 67) (($ |#1|) 101)) (-2084 (((-3 $ "failed") $) 84 (-3994 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2261 (((-758)) 28)) (-1909 (((-112) $ $) 40)) (-3536 (((-112) $) 96)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1811 (($ $) 90 (|has| |#1| (-363))) (($ $ (-758)) 89 (|has| |#1| (-363)))) (-1658 (((-112) $ $) 6)) (-1752 (($ $ $) 66) (($ $ |#1|) 99)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32) (($ $ (-554)) 70)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ $ (-402 (-554))) 69) (($ (-402 (-554)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +(((-1260 |#1|) (-138) (-358)) (T -1260)) +((-3536 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906))))) (-2365 (*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906))))) (-1924 (*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-758)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-358)) (-4 *2 (-363)))) (-1811 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-4 *3 (-363))))) +(-13 (-358) (-1023 |t#1|) (-1248 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-397)) |%noBranch|) (-15 -3536 ((-112) $)) (-15 -3718 ((-112) $)) (-15 -2070 ((-112) $)) (-15 -3308 ((-820 (-906)) $)) (-15 -2365 ((-820 (-906)))) (-15 -1924 ((-758))) (IF (|has| |t#1| (-363)) (PROGN (-6 (-397)) (-15 -1811 ($ $)) (-15 -1811 ($ $ (-758)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-554))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-604 #0#) . T) ((-604 (-554)) . T) ((-604 |#1|) . T) ((-604 $) . T) ((-601 (-848)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) -3994 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-446) . T) ((-546) . T) ((-634 #0#) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-704 #0#) . T) ((-704 |#1|) . T) ((-704 $) . T) ((-713) . T) ((-905) . T) ((-1023 |#1|) . T) ((-1040 #0#) . T) ((-1040 |#1|) . T) ((-1040 $) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1199) . T) ((-1248 |#1|) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 86)) (-3151 (($ $ (-758)) 89)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-758)) NIL (|has| |#2| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ |#1|) NIL) (($ $ (-806 |#1|)) NIL) (($ $ $) NIL)) (-2784 (((-3 (-806 |#1|) "failed") $) NIL) (((-3 (-878 |#1|) "failed") $) NIL)) (-1668 (((-806 |#1|) $) NIL) (((-878 |#1|) $) NIL)) (-2550 (($ $) 88)) (-1320 (((-3 $ "failed") $) NIL)) (-2334 (((-112) $) 77)) (-3987 (($ $) 81)) (-4264 (($ $ $ (-758)) 90)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 |#1|) |#2|) NIL) (($ (-878 |#1|) |#2|) 26)) (-3898 (($ $) 103)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2986 (((-806 |#1|) $) NIL)) (-2817 (((-806 |#1|) $) NIL)) (-2879 (($ (-1 |#2| |#2|) $) NIL)) (-3637 (($ $ |#1|) NIL) (($ $ (-806 |#1|)) NIL) (($ $ $) NIL)) (-2395 (($ $ (-758)) 97 (|has| |#2| (-704 (-402 (-554)))))) (-2428 (((-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2518 (((-878 |#1|) $) 70)) (-2530 ((|#2| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1333 (($ $ (-758)) 94 (|has| |#2| (-704 (-402 (-554)))))) (-3308 (((-758) $) 87)) (-2798 (((-112) $) 71)) (-2397 ((|#2| $) 75)) (-3075 (((-848) $) 57) (($ (-554)) NIL) (($ |#2|) 51) (($ (-806 |#1|)) NIL) (($ |#1|) 59) (($ (-878 |#1|)) NIL) (($ (-650 |#1| |#2|)) 43) (((-1256 |#1| |#2|) $) 64) (((-1265 |#1| |#2|) $) 69)) (-1893 (((-631 |#2|) $) NIL)) (-1779 ((|#2| $ (-878 |#1|)) NIL)) (-1490 ((|#2| $ (-806 |#1|)) NIL) ((|#2| $ $) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) 21 T CONST)) (-2014 (($) 25 T CONST)) (-2407 (((-631 (-2 (|:| |k| (-878 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1598 (((-3 (-650 |#1| |#2|) "failed") $) 102)) (-1658 (((-112) $ $) 65)) (-1744 (($ $) 96) (($ $ $) 95)) (-1735 (($ $ $) 20)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-878 |#1|)) NIL))) +(((-1261 |#1| |#2|) (-13 (-1262 |#1| |#2|) (-377 |#2| (-878 |#1|)) (-10 -8 (-15 -3075 ($ (-650 |#1| |#2|))) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1265 |#1| |#2|) $)) (-15 -1598 ((-3 (-650 |#1| |#2|) "failed") $)) (-15 -4264 ($ $ $ (-758))) (IF (|has| |#2| (-704 (-402 (-554)))) (PROGN (-15 -1333 ($ $ (-758))) (-15 -2395 ($ $ (-758)))) |%noBranch|))) (-836) (-170)) (T -1261)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) (-5 *1 (-1261 *3 *4)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1265 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-1598 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-4264 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)))) (-1333 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170)))) (-2395 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170))))) +(-13 (-1262 |#1| |#2|) (-377 |#2| (-878 |#1|)) (-10 -8 (-15 -3075 ($ (-650 |#1| |#2|))) (-15 -3075 ((-1256 |#1| |#2|) $)) (-15 -3075 ((-1265 |#1| |#2|) $)) (-15 -1598 ((-3 (-650 |#1| |#2|) "failed") $)) (-15 -4264 ($ $ $ (-758))) (IF (|has| |#2| (-704 (-402 (-554)))) (PROGN (-15 -1333 ($ $ (-758))) (-15 -2395 ($ $ (-758)))) |%noBranch|))) +((-3062 (((-112) $ $) 7)) (-1695 (((-112) $) 16)) (-1654 (((-631 |#1|) $) 41)) (-3151 (($ $ (-758)) 74)) (-2934 (((-3 $ "failed") $ $) 19)) (-1647 (($ $ $) 44 (|has| |#2| (-170))) (($ $ (-758)) 43 (|has| |#2| (-170)))) (-4087 (($) 17 T CONST)) (-3567 (($ $ |#1|) 55) (($ $ (-806 |#1|)) 54) (($ $ $) 53)) (-2784 (((-3 (-806 |#1|) "failed") $) 65)) (-1668 (((-806 |#1|) $) 66)) (-1320 (((-3 $ "failed") $) 33)) (-2334 (((-112) $) 46)) (-3987 (($ $) 45)) (-3248 (((-112) $) 31)) (-3580 (((-112) $) 51)) (-3738 (($ (-806 |#1|) |#2|) 52)) (-3898 (($ $) 50)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 61)) (-2986 (((-806 |#1|) $) 62)) (-2817 (((-806 |#1|) $) 76)) (-2879 (($ (-1 |#2| |#2|) $) 42)) (-3637 (($ $ |#1|) 58) (($ $ (-806 |#1|)) 57) (($ $ $) 56)) (-1613 (((-1140) $) 9)) (-2768 (((-1102) $) 10)) (-3308 (((-758) $) 75)) (-2798 (((-112) $) 48)) (-2397 ((|#2| $) 47)) (-3075 (((-848) $) 11) (($ (-554)) 29) (($ |#2|) 69) (($ (-806 |#1|)) 64) (($ |#1|) 49)) (-1490 ((|#2| $ (-806 |#1|)) 60) ((|#2| $ $) 59)) (-2261 (((-758)) 28)) (-2004 (($) 18 T CONST)) (-2014 (($) 30 T CONST)) (-1658 (((-112) $ $) 6)) (-1744 (($ $) 22) (($ $ $) 21)) (-1735 (($ $ $) 14)) (** (($ $ (-906)) 25) (($ $ (-758)) 32)) (* (($ (-906) $) 13) (($ (-758) $) 15) (($ (-554) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1262 |#1| |#2|) (-138) (-836) (-1034)) (T -1262)) +((-2817 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-806 *3)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *2 (-758)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))))) +(-13 (-1258 |t#1| |t#2|) (-10 -8 (-15 -2817 ((-806 |t#1|) $)) (-15 -3308 ((-758) $)) (-15 -3151 ($ $ (-758))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-604 (-554)) . T) ((-604 #0=(-806 |#1|)) . T) ((-604 |#2|) . T) ((-601 (-848)) . T) ((-634 |#2|) . T) ((-634 $) . T) ((-704 |#2|) |has| |#2| (-170)) ((-713) . T) ((-1023 #0#) . T) ((-1040 |#2|) . T) ((-1034) . T) ((-1041) . T) ((-1094) . T) ((-1082) . T) ((-1255 |#2|) . T) ((-1258 |#1| |#2|) . T)) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-1654 (((-631 (-1158)) $) NIL)) (-1486 (($ (-1256 (-1158) |#1|)) NIL)) (-3151 (($ $ (-758)) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-758)) NIL (|has| |#1| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ (-1158)) NIL) (($ $ (-806 (-1158))) NIL) (($ $ $) NIL)) (-2784 (((-3 (-806 (-1158)) "failed") $) NIL)) (-1668 (((-806 (-1158)) $) NIL)) (-1320 (((-3 $ "failed") $) NIL)) (-2334 (((-112) $) NIL)) (-3987 (($ $) NIL)) (-3248 (((-112) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 (-1158)) |#1|) NIL)) (-3898 (($ $) NIL)) (-2995 (((-2 (|:| |k| (-806 (-1158))) (|:| |c| |#1|)) $) NIL)) (-2986 (((-806 (-1158)) $) NIL)) (-2817 (((-806 (-1158)) $) NIL)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-3637 (($ $ (-1158)) NIL) (($ $ (-806 (-1158))) NIL) (($ $ $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1845 (((-1256 (-1158) |#1|) $) NIL)) (-3308 (((-758) $) NIL)) (-2798 (((-112) $) NIL)) (-2397 ((|#1| $) NIL)) (-3075 (((-848) $) NIL) (($ (-554)) NIL) (($ |#1|) NIL) (($ (-806 (-1158))) NIL) (($ (-1158)) NIL)) (-1490 ((|#1| $ (-806 (-1158))) NIL) ((|#1| $ $) NIL)) (-2261 (((-758)) NIL)) (-2004 (($) NIL T CONST)) (-1907 (((-631 (-2 (|:| |k| (-1158)) (|:| |c| $))) $) NIL)) (-2014 (($) NIL T CONST)) (-1658 (((-112) $ $) NIL)) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) NIL)) (** (($ $ (-906)) NIL) (($ $ (-758)) NIL)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1158) $) NIL))) +(((-1263 |#1|) (-13 (-1262 (-1158) |#1|) (-10 -8 (-15 -1845 ((-1256 (-1158) |#1|) $)) (-15 -1486 ($ (-1256 (-1158) |#1|))) (-15 -1907 ((-631 (-2 (|:| |k| (-1158)) (|:| |c| $))) $)))) (-1034)) (T -1263)) +((-1845 (*1 *2 *1) (-12 (-5 *2 (-1256 (-1158) *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1034)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-1256 (-1158) *3)) (-4 *3 (-1034)) (-5 *1 (-1263 *3)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| (-1158)) (|:| |c| (-1263 *3))))) (-5 *1 (-1263 *3)) (-4 *3 (-1034))))) +(-13 (-1262 (-1158) |#1|) (-10 -8 (-15 -1845 ((-1256 (-1158) |#1|) $)) (-15 -1486 ($ (-1256 (-1158) |#1|))) (-15 -1907 ((-631 (-2 (|:| |k| (-1158)) (|:| |c| $))) $)))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) NIL)) (-2934 (((-3 $ "failed") $ $) NIL)) (-4087 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL)) (-1668 ((|#2| $) NIL)) (-2550 (($ $) NIL)) (-1320 (((-3 $ "failed") $) 36)) (-2334 (((-112) $) 30)) (-3987 (($ $) 32)) (-3248 (((-112) $) NIL)) (-2122 (((-758) $) NIL)) (-3910 (((-631 $) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ |#2| |#1|) NIL)) (-2986 ((|#2| $) 19)) (-2817 ((|#2| $) 16)) (-2879 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2518 ((|#2| $) NIL)) (-2530 ((|#1| $) NIL)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-2798 (((-112) $) 27)) (-2397 ((|#1| $) 28)) (-3075 (((-848) $) 55) (($ (-554)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1893 (((-631 |#1|) $) NIL)) (-1779 ((|#1| $ |#2|) NIL)) (-1490 ((|#1| $ |#2|) 24)) (-2261 (((-758)) 14)) (-2004 (($) 25 T CONST)) (-2014 (($) 11 T CONST)) (-2407 (((-631 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1658 (((-112) $ $) 26)) (-1752 (($ $ |#1|) 57 (|has| |#1| (-358)))) (-1744 (($ $) NIL) (($ $ $) NIL)) (-1735 (($ $ $) 44)) (** (($ $ (-906)) NIL) (($ $ (-758)) 46)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2563 (((-758) $) 15))) +(((-1264 |#1| |#2|) (-13 (-1034) (-1255 |#1|) (-377 |#1| |#2|) (-604 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2563 ((-758) $)) (-15 -2817 (|#2| $)) (-15 -2986 (|#2| $)) (-15 -2550 ($ $)) (-15 -1490 (|#1| $ |#2|)) (-15 -2798 ((-112) $)) (-15 -2397 (|#1| $)) (-15 -2334 ((-112) $)) (-15 -3987 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -1752 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |#1| (-6 -4370)) (-6 -4370) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) (-1034) (-832)) (T -1264)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))) (-2550 (*1 *1 *1) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-1264 *3 *4)) (-4 *4 (-832)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-832)))) (-2817 (*1 *2 *1) (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034)))) (-2986 (*1 *2 *1) (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034)))) (-1490 (*1 *2 *1 *3) (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-832)))) (-2397 (*1 *2 *1) (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-832)))) (-3987 (*1 *1 *1) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1034)) (-4 *3 (-832))))) +(-13 (-1034) (-1255 |#1|) (-377 |#1| |#2|) (-604 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2563 ((-758) $)) (-15 -2817 (|#2| $)) (-15 -2986 (|#2| $)) (-15 -2550 ($ $)) (-15 -1490 (|#1| $ |#2|)) (-15 -2798 ((-112) $)) (-15 -2397 (|#1| $)) (-15 -2334 ((-112) $)) (-15 -3987 ($ $)) (-15 -2879 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -1752 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4366)) (-6 -4366) |%noBranch|) (IF (|has| |#1| (-6 -4370)) (-6 -4370) |%noBranch|) (IF (|has| |#1| (-6 -4371)) (-6 -4371) |%noBranch|))) +((-3062 (((-112) $ $) 26)) (-1695 (((-112) $) NIL)) (-1654 (((-631 |#1|) $) 120)) (-1486 (($ (-1256 |#1| |#2|)) 44)) (-3151 (($ $ (-758)) 32)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1647 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-758)) 46 (|has| |#2| (-170)))) (-4087 (($) NIL T CONST)) (-3567 (($ $ |#1|) 102) (($ $ (-806 |#1|)) 103) (($ $ $) 25)) (-2784 (((-3 (-806 |#1|) "failed") $) NIL)) (-1668 (((-806 |#1|) $) NIL)) (-1320 (((-3 $ "failed") $) 110)) (-2334 (((-112) $) 105)) (-3987 (($ $) 106)) (-3248 (((-112) $) NIL)) (-3580 (((-112) $) NIL)) (-3738 (($ (-806 |#1|) |#2|) 19)) (-3898 (($ $) NIL)) (-2995 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2986 (((-806 |#1|) $) 111)) (-2817 (((-806 |#1|) $) 114)) (-2879 (($ (-1 |#2| |#2|) $) 119)) (-3637 (($ $ |#1|) 100) (($ $ (-806 |#1|)) 101) (($ $ $) 56)) (-1613 (((-1140) $) NIL)) (-2768 (((-1102) $) NIL)) (-1845 (((-1256 |#1| |#2|) $) 84)) (-3308 (((-758) $) 117)) (-2798 (((-112) $) 70)) (-2397 ((|#2| $) 28)) (-3075 (((-848) $) 63) (($ (-554)) 77) (($ |#2|) 74) (($ (-806 |#1|)) 17) (($ |#1|) 73)) (-1490 ((|#2| $ (-806 |#1|)) 104) ((|#2| $ $) 27)) (-2261 (((-758)) 108)) (-2004 (($) 14 T CONST)) (-1907 (((-631 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2014 (($) 29 T CONST)) (-1658 (((-112) $ $) 13)) (-1744 (($ $) 88) (($ $ $) 91)) (-1735 (($ $ $) 55)) (** (($ $ (-906)) NIL) (($ $ (-758)) 49)) (* (($ (-906) $) NIL) (($ (-758) $) 47) (($ (-554) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1265 |#1| |#2|) (-13 (-1262 |#1| |#2|) (-10 -8 (-15 -1845 ((-1256 |#1| |#2|) $)) (-15 -1486 ($ (-1256 |#1| |#2|))) (-15 -1907 ((-631 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-836) (-1034)) (T -1265)) +((-1845 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) (-5 *1 (-1265 *3 *4)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-631 (-2 (|:| |k| *3) (|:| |c| (-1265 *3 *4))))) (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))))) +(-13 (-1262 |#1| |#2|) (-10 -8 (-15 -1845 ((-1256 |#1| |#2|) $)) (-15 -1486 ($ (-1256 |#1| |#2|))) (-15 -1907 ((-631 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1277 (((-631 (-1138 |#1|)) (-1 (-631 (-1138 |#1|)) (-631 (-1138 |#1|))) (-554)) 15) (((-1138 |#1|) (-1 (-1138 |#1|) (-1138 |#1|))) 11))) +(((-1266 |#1|) (-10 -7 (-15 -1277 ((-1138 |#1|) (-1 (-1138 |#1|) (-1138 |#1|)))) (-15 -1277 ((-631 (-1138 |#1|)) (-1 (-631 (-1138 |#1|)) (-631 (-1138 |#1|))) (-554)))) (-1195)) (T -1266)) +((-1277 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-631 (-1138 *5)) (-631 (-1138 *5)))) (-5 *4 (-554)) (-5 *2 (-631 (-1138 *5))) (-5 *1 (-1266 *5)) (-4 *5 (-1195)))) (-1277 (*1 *2 *3) (-12 (-5 *3 (-1 (-1138 *4) (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1266 *4)) (-4 *4 (-1195))))) +(-10 -7 (-15 -1277 ((-1138 |#1|) (-1 (-1138 |#1|) (-1138 |#1|)))) (-15 -1277 ((-631 (-1138 |#1|)) (-1 (-631 (-1138 |#1|)) (-631 (-1138 |#1|))) (-554)))) +((-4035 (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|))) 148) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112)) 147) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112)) 146) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112) (-112)) 145) (((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-1031 |#1| |#2|)) 130)) (-3101 (((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|))) 72) (((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112)) 71) (((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112) (-112)) 70)) (-1565 (((-631 (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) (-1031 |#1| |#2|)) 61)) (-3481 (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|))) 115) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112)) 114) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112)) 113) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112) (-112)) 112) (((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|)) 107)) (-2778 (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|))) 120) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112)) 119) (((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112)) 118) (((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|)) 117)) (-2927 (((-631 (-767 |#1| (-850 |#3|))) (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) 98) (((-1154 (-1009 (-402 |#1|))) (-1154 |#1|)) 89) (((-937 (-1009 (-402 |#1|))) (-767 |#1| (-850 |#3|))) 96) (((-937 (-1009 (-402 |#1|))) (-937 |#1|)) 94) (((-767 |#1| (-850 |#3|)) (-767 |#1| (-850 |#2|))) 33))) +(((-1267 |#1| |#2| |#3|) (-10 -7 (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-1031 |#1| |#2|))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -1565 ((-631 (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) (-1031 |#1| |#2|))) (-15 -2927 ((-767 |#1| (-850 |#3|)) (-767 |#1| (-850 |#2|)))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-937 |#1|))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-767 |#1| (-850 |#3|)))) (-15 -2927 ((-1154 (-1009 (-402 |#1|))) (-1154 |#1|))) (-15 -2927 ((-631 (-767 |#1| (-850 |#3|))) (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))))) (-13 (-834) (-302) (-145) (-1007)) (-631 (-1158)) (-631 (-1158))) (T -1267)) +((-2927 (*1 *2 *3) (-12 (-5 *3 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6)))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-767 *4 (-850 *6)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-1154 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-1154 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-767 *4 (-850 *6))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158))) (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-767 *4 (-850 *5))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-767 *4 (-850 *6))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-2778 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3481 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3481 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) (-5 *1 (-1267 *4 *5 *6)) (-5 *3 (-631 (-937 *4))) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-4035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-4035 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-1031 *4 *5))) (-5 *1 (-1267 *4 *5 *6)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) (-3101 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7)) (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158)))))) +(-10 -7 (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)) (-112))) (-15 -3101 ((-631 (-1031 |#1| |#2|)) (-631 (-937 |#1|)))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-1031 |#1| |#2|))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)) (-112))) (-15 -4035 ((-631 (-2 (|:| -3900 (-1154 |#1|)) (|:| -3656 (-631 (-937 |#1|))))) (-631 (-937 |#1|)))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -3481 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-1031 |#1| |#2|))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)) (-112))) (-15 -2778 ((-631 (-631 (-1009 (-402 |#1|)))) (-631 (-937 |#1|)))) (-15 -1565 ((-631 (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))) (-1031 |#1| |#2|))) (-15 -2927 ((-767 |#1| (-850 |#3|)) (-767 |#1| (-850 |#2|)))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-937 |#1|))) (-15 -2927 ((-937 (-1009 (-402 |#1|))) (-767 |#1| (-850 |#3|)))) (-15 -2927 ((-1154 (-1009 (-402 |#1|))) (-1154 |#1|))) (-15 -2927 ((-631 (-767 |#1| (-850 |#3|))) (-1128 |#1| (-525 (-850 |#3|)) (-850 |#3|) (-767 |#1| (-850 |#3|)))))) +((-2834 (((-3 (-1241 (-402 (-554))) "failed") (-1241 |#1|) |#1|) 21)) (-2933 (((-112) (-1241 |#1|)) 12)) (-1578 (((-3 (-1241 (-554)) "failed") (-1241 |#1|)) 16))) +(((-1268 |#1|) (-10 -7 (-15 -2933 ((-112) (-1241 |#1|))) (-15 -1578 ((-3 (-1241 (-554)) "failed") (-1241 |#1|))) (-15 -2834 ((-3 (-1241 (-402 (-554))) "failed") (-1241 |#1|) |#1|))) (-627 (-554))) (T -1268)) +((-2834 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-1241 (-402 (-554)))) (-5 *1 (-1268 *4)))) (-1578 (*1 *2 *3) (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-1241 (-554))) (-5 *1 (-1268 *4)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-112)) (-5 *1 (-1268 *4))))) +(-10 -7 (-15 -2933 ((-112) (-1241 |#1|))) (-15 -1578 ((-3 (-1241 (-554)) "failed") (-1241 |#1|))) (-15 -2834 ((-3 (-1241 (-402 (-554))) "failed") (-1241 |#1|) |#1|))) +((-3062 (((-112) $ $) NIL)) (-1695 (((-112) $) 11)) (-2934 (((-3 $ "failed") $ $) NIL)) (-1508 (((-758)) 8)) (-4087 (($) NIL T CONST)) (-1320 (((-3 $ "failed") $) 43)) (-3353 (($) 36)) (-3248 (((-112) $) NIL)) (-3339 (((-3 $ "failed") $) 29)) (-3830 (((-906) $) 15)) (-1613 (((-1140) $) NIL)) (-3834 (($) 25 T CONST)) (-2717 (($ (-906)) 37)) (-2768 (((-1102) $) NIL)) (-2927 (((-554) $) 13)) (-3075 (((-848) $) 22) (($ (-554)) 19)) (-2261 (((-758)) 9)) (-2004 (($) 23 T CONST)) (-2014 (($) 24 T CONST)) (-1658 (((-112) $ $) 27)) (-1744 (($ $) 38) (($ $ $) 35)) (-1735 (($ $ $) 26)) (** (($ $ (-906)) NIL) (($ $ (-758)) 40)) (* (($ (-906) $) NIL) (($ (-758) $) NIL) (($ (-554) $) 32) (($ $ $) 31))) +(((-1269 |#1|) (-13 (-170) (-363) (-602 (-554)) (-1133)) (-906)) (T -1269)) +NIL +(-13 (-170) (-363) (-602 (-554)) (-1133)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3182051 3182056 3182061 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3182036 3182041 3182046 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3182021 3182026 3182031 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3182006 3182011 3182016 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1269 3181182 3181881 3181958 "ZMOD" 3181963 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1268 3180292 3180456 3180665 "ZLINDEP" 3181014 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1267 3169596 3171360 3173332 "ZDSOLVE" 3178422 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1266 3168842 3168983 3169172 "YSTREAM" 3169442 NIL YSTREAM (NIL T) -7 NIL NIL) (-1265 3166653 3168143 3168347 "XRPOLY" 3168685 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1264 3163241 3164524 3165099 "XPR" 3166125 NIL XPR (NIL T T) -8 NIL NIL) (-1263 3160997 3162572 3162776 "XPOLY" 3163072 NIL XPOLY (NIL T) -8 NIL NIL) (-1262 3158788 3160122 3160177 "XPOLYC" 3160465 NIL XPOLYC (NIL T T) -9 NIL 3160578) (-1261 3155206 3157305 3157693 "XPBWPOLY" 3158446 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1260 3151117 3153369 3153411 "XF" 3154032 NIL XF (NIL T) -9 NIL 3154432) (-1259 3150738 3150826 3150995 "XF-" 3151000 NIL XF- (NIL T T) -8 NIL NIL) (-1258 3146072 3147327 3147382 "XFALG" 3149554 NIL XFALG (NIL T T) -9 NIL 3150343) (-1257 3145205 3145309 3145514 "XEXPPKG" 3145964 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1256 3143349 3145055 3145151 "XDPOLY" 3145156 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1255 3142294 3142860 3142903 "XALG" 3142908 NIL XALG (NIL T) -9 NIL 3143019) (-1254 3135763 3140271 3140765 "WUTSET" 3141886 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1253 3134054 3134815 3135138 "WP" 3135574 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1252 3133683 3133876 3133946 "WHILEAST" 3134006 T WHILEAST (NIL) -8 NIL NIL) (-1251 3133182 3133400 3133494 "WHEREAST" 3133611 T WHEREAST (NIL) -8 NIL NIL) (-1250 3132068 3132266 3132561 "WFFINTBS" 3132979 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1249 3129972 3130399 3130861 "WEIER" 3131640 NIL WEIER (NIL T) -7 NIL NIL) (-1248 3129119 3129543 3129585 "VSPACE" 3129721 NIL VSPACE (NIL T) -9 NIL 3129795) (-1247 3128957 3128984 3129075 "VSPACE-" 3129080 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1246 3128765 3128808 3128876 "VOID" 3128911 T VOID (NIL) -8 NIL NIL) (-1245 3126901 3127260 3127666 "VIEW" 3128381 T VIEW (NIL) -7 NIL NIL) (-1244 3123326 3123964 3124701 "VIEWDEF" 3126186 T VIEWDEF (NIL) -7 NIL NIL) (-1243 3112664 3114874 3117047 "VIEW3D" 3121175 T VIEW3D (NIL) -8 NIL NIL) (-1242 3104946 3106575 3108154 "VIEW2D" 3111107 T VIEW2D (NIL) -8 NIL NIL) (-1241 3100350 3104716 3104808 "VECTOR" 3104889 NIL VECTOR (NIL T) -8 NIL NIL) (-1240 3098927 3099186 3099504 "VECTOR2" 3100080 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1239 3092454 3096711 3096754 "VECTCAT" 3097747 NIL VECTCAT (NIL T) -9 NIL 3098333) (-1238 3091468 3091722 3092112 "VECTCAT-" 3092117 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1237 3090949 3091119 3091239 "VARIABLE" 3091383 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1236 3090882 3090887 3090917 "UTYPE" 3090922 T UTYPE (NIL) -9 NIL NIL) (-1235 3089712 3089866 3090128 "UTSODETL" 3090708 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1234 3087152 3087612 3088136 "UTSODE" 3089253 NIL UTSODE (NIL T T) -7 NIL NIL) (-1233 3079028 3084778 3085267 "UTS" 3086721 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1232 3070271 3075595 3075638 "UTSCAT" 3076750 NIL UTSCAT (NIL T) -9 NIL 3077507) (-1231 3067625 3068341 3069330 "UTSCAT-" 3069335 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1230 3067252 3067295 3067428 "UTS2" 3067576 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1229 3061527 3064092 3064135 "URAGG" 3066205 NIL URAGG (NIL T) -9 NIL 3066927) (-1228 3058466 3059329 3060452 "URAGG-" 3060457 NIL URAGG- (NIL T T) -8 NIL NIL) (-1227 3054190 3057080 3057552 "UPXSSING" 3058130 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1226 3046292 3053437 3053710 "UPXS" 3053975 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1225 3039405 3046196 3046268 "UPXSCONS" 3046273 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1224 3029650 3036400 3036462 "UPXSCCA" 3037036 NIL UPXSCCA (NIL T T) -9 NIL 3037269) (-1223 3029288 3029373 3029547 "UPXSCCA-" 3029552 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1222 3019386 3025909 3025952 "UPXSCAT" 3026600 NIL UPXSCAT (NIL T) -9 NIL 3027208) (-1221 3018816 3018895 3019074 "UPXS2" 3019301 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1220 3017470 3017723 3018074 "UPSQFREE" 3018559 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1219 3011258 3014272 3014327 "UPSCAT" 3015488 NIL UPSCAT (NIL T T) -9 NIL 3016262) (-1218 3010462 3010669 3010996 "UPSCAT-" 3011001 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1217 2996312 3004310 3004353 "UPOLYC" 3006454 NIL UPOLYC (NIL T) -9 NIL 3007675) (-1216 2987641 2990066 2993213 "UPOLYC-" 2993218 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1215 2987268 2987311 2987444 "UPOLYC2" 2987592 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1214 2978842 2986951 2987080 "UP" 2987187 NIL UP (NIL NIL T) -8 NIL NIL) (-1213 2978181 2978288 2978452 "UPMP" 2978731 NIL UPMP (NIL T T) -7 NIL NIL) (-1212 2977734 2977815 2977954 "UPDIVP" 2978094 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1211 2976302 2976551 2976867 "UPDECOMP" 2977483 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1210 2975537 2975649 2975834 "UPCDEN" 2976186 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1209 2975056 2975125 2975274 "UP2" 2975462 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1208 2973573 2974260 2974537 "UNISEG" 2974814 NIL UNISEG (NIL T) -8 NIL NIL) (-1207 2972788 2972915 2973120 "UNISEG2" 2973416 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1206 2971848 2972028 2972254 "UNIFACT" 2972604 NIL UNIFACT (NIL T) -7 NIL NIL) (-1205 2955815 2971025 2971276 "ULS" 2971655 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1204 2943855 2955719 2955791 "ULSCONS" 2955796 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1203 2926471 2938413 2938475 "ULSCCAT" 2939113 NIL ULSCCAT (NIL T T) -9 NIL 2939401) (-1202 2925521 2925766 2926154 "ULSCCAT-" 2926159 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1201 2915396 2921833 2921876 "ULSCAT" 2922739 NIL ULSCAT (NIL T) -9 NIL 2923469) (-1200 2914826 2914905 2915084 "ULS2" 2915311 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1199 2913229 2914152 2914182 "UFD" 2914394 T UFD (NIL) -9 NIL 2914508) (-1198 2913023 2913069 2913164 "UFD-" 2913169 NIL UFD- (NIL T) -8 NIL NIL) (-1197 2912105 2912288 2912504 "UDVO" 2912829 T UDVO (NIL) -7 NIL NIL) (-1196 2909921 2910330 2910801 "UDPO" 2911669 NIL UDPO (NIL T) -7 NIL NIL) (-1195 2909854 2909859 2909889 "TYPE" 2909894 T TYPE (NIL) -9 NIL NIL) (-1194 2909641 2909809 2909840 "TYPEAST" 2909845 T TYPEAST (NIL) -8 NIL NIL) (-1193 2908612 2908814 2909054 "TWOFACT" 2909435 NIL TWOFACT (NIL T) -7 NIL NIL) (-1192 2907684 2908021 2908256 "TUPLE" 2908412 NIL TUPLE (NIL T) -8 NIL NIL) (-1191 2905375 2905894 2906433 "TUBETOOL" 2907167 T TUBETOOL (NIL) -7 NIL NIL) (-1190 2904224 2904429 2904670 "TUBE" 2905168 NIL TUBE (NIL T) -8 NIL NIL) (-1189 2898988 2903196 2903479 "TS" 2903976 NIL TS (NIL T) -8 NIL NIL) (-1188 2887655 2891747 2891844 "TSETCAT" 2897113 NIL TSETCAT (NIL T T T T) -9 NIL 2898644) (-1187 2882389 2883987 2885878 "TSETCAT-" 2885883 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1186 2876652 2877498 2878440 "TRMANIP" 2881525 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1185 2876093 2876156 2876319 "TRIMAT" 2876584 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1184 2873889 2874126 2874490 "TRIGMNIP" 2875842 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1183 2873409 2873522 2873552 "TRIGCAT" 2873765 T TRIGCAT (NIL) -9 NIL NIL) (-1182 2873078 2873157 2873298 "TRIGCAT-" 2873303 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1181 2869977 2871938 2872218 "TREE" 2872833 NIL TREE (NIL T) -8 NIL NIL) (-1180 2869251 2869779 2869809 "TRANFUN" 2869844 T TRANFUN (NIL) -9 NIL 2869910) (-1179 2868530 2868721 2869001 "TRANFUN-" 2869006 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1178 2868334 2868366 2868427 "TOPSP" 2868491 T TOPSP (NIL) -7 NIL NIL) (-1177 2867682 2867797 2867951 "TOOLSIGN" 2868215 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1176 2866343 2866859 2867098 "TEXTFILE" 2867465 T TEXTFILE (NIL) -8 NIL NIL) (-1175 2864282 2864796 2865225 "TEX" 2865936 T TEX (NIL) -8 NIL NIL) (-1174 2864063 2864094 2864166 "TEX1" 2864245 NIL TEX1 (NIL T) -7 NIL NIL) (-1173 2863711 2863774 2863864 "TEMUTL" 2863995 T TEMUTL (NIL) -7 NIL NIL) (-1172 2861865 2862145 2862470 "TBCMPPK" 2863434 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1171 2853753 2860025 2860081 "TBAGG" 2860481 NIL TBAGG (NIL T T) -9 NIL 2860692) (-1170 2848823 2850311 2852065 "TBAGG-" 2852070 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1169 2848207 2848314 2848459 "TANEXP" 2848712 NIL TANEXP (NIL T) -7 NIL NIL) (-1168 2841708 2848064 2848157 "TABLE" 2848162 NIL TABLE (NIL T T) -8 NIL NIL) (-1167 2841120 2841219 2841357 "TABLEAU" 2841605 NIL TABLEAU (NIL T) -8 NIL NIL) (-1166 2835728 2836948 2838196 "TABLBUMP" 2839906 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1165 2835156 2835256 2835384 "SYSTEM" 2835622 T SYSTEM (NIL) -7 NIL NIL) (-1164 2831619 2832314 2833097 "SYSSOLP" 2834407 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1163 2827997 2828908 2829610 "SYNTAX" 2830939 T SYNTAX (NIL) -8 NIL NIL) (-1162 2825155 2825757 2826389 "SYMTAB" 2827387 T SYMTAB (NIL) -8 NIL NIL) (-1161 2820404 2821306 2822289 "SYMS" 2824194 T SYMS (NIL) -8 NIL NIL) (-1160 2817676 2819862 2820092 "SYMPOLY" 2820209 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1159 2817193 2817268 2817391 "SYMFUNC" 2817588 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1158 2813245 2814505 2815318 "SYMBOL" 2816402 T SYMBOL (NIL) -8 NIL NIL) (-1157 2806784 2808473 2810193 "SWITCH" 2811547 T SWITCH (NIL) -8 NIL NIL) (-1156 2800054 2805605 2805908 "SUTS" 2806539 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1155 2792155 2799301 2799574 "SUPXS" 2799839 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1154 2783684 2791773 2791899 "SUP" 2792064 NIL SUP (NIL T) -8 NIL NIL) (-1153 2782843 2782970 2783187 "SUPFRACF" 2783552 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1152 2782464 2782523 2782636 "SUP2" 2782778 NIL SUP2 (NIL T T) -7 NIL NIL) (-1151 2780877 2781151 2781514 "SUMRF" 2782163 NIL SUMRF (NIL T) -7 NIL NIL) (-1150 2780191 2780257 2780456 "SUMFS" 2780798 NIL SUMFS (NIL T T) -7 NIL NIL) (-1149 2764198 2779368 2779619 "SULS" 2779998 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1148 2763827 2764020 2764090 "SUCHTAST" 2764150 T SUCHTAST (NIL) -8 NIL NIL) (-1147 2763149 2763352 2763492 "SUCH" 2763735 NIL SUCH (NIL T T) -8 NIL NIL) (-1146 2757043 2758055 2759014 "SUBSPACE" 2762237 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1145 2756473 2756563 2756727 "SUBRESP" 2756931 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1144 2749842 2751138 2752449 "STTF" 2755209 NIL STTF (NIL T) -7 NIL NIL) (-1143 2744015 2745135 2746282 "STTFNC" 2748742 NIL STTFNC (NIL T) -7 NIL NIL) (-1142 2735330 2737197 2738991 "STTAYLOR" 2742256 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1141 2728574 2735194 2735277 "STRTBL" 2735282 NIL STRTBL (NIL T) -8 NIL NIL) (-1140 2723965 2728529 2728560 "STRING" 2728565 T STRING (NIL) -8 NIL NIL) (-1139 2718853 2723338 2723368 "STRICAT" 2723427 T STRICAT (NIL) -9 NIL 2723489) (-1138 2711662 2716472 2717083 "STREAM" 2718277 NIL STREAM (NIL T) -8 NIL NIL) (-1137 2711172 2711249 2711393 "STREAM3" 2711579 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1136 2710154 2710337 2710572 "STREAM2" 2710985 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1135 2709842 2709894 2709987 "STREAM1" 2710096 NIL STREAM1 (NIL T) -7 NIL NIL) (-1134 2708858 2709039 2709270 "STINPROD" 2709658 NIL STINPROD (NIL T) -7 NIL NIL) (-1133 2708436 2708620 2708650 "STEP" 2708730 T STEP (NIL) -9 NIL 2708808) (-1132 2701979 2708335 2708412 "STBL" 2708417 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1131 2697154 2701201 2701244 "STAGG" 2701397 NIL STAGG (NIL T) -9 NIL 2701486) (-1130 2694856 2695458 2696330 "STAGG-" 2696335 NIL STAGG- (NIL T T) -8 NIL NIL) (-1129 2693051 2694626 2694718 "STACK" 2694799 NIL STACK (NIL T) -8 NIL NIL) (-1128 2685776 2691192 2691648 "SREGSET" 2692681 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1127 2678202 2679570 2681083 "SRDCMPK" 2684382 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1126 2671169 2675642 2675672 "SRAGG" 2676975 T SRAGG (NIL) -9 NIL 2677583) (-1125 2670186 2670441 2670820 "SRAGG-" 2670825 NIL SRAGG- (NIL T) -8 NIL NIL) (-1124 2664681 2669133 2669554 "SQMATRIX" 2669812 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1123 2658433 2661401 2662127 "SPLTREE" 2664027 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1122 2654423 2655089 2655735 "SPLNODE" 2657859 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1121 2653470 2653703 2653733 "SPFCAT" 2654177 T SPFCAT (NIL) -9 NIL NIL) (-1120 2652207 2652417 2652681 "SPECOUT" 2653228 T SPECOUT (NIL) -7 NIL NIL) (-1119 2643859 2645603 2645633 "SPADXPT" 2650025 T SPADXPT (NIL) -9 NIL 2652059) (-1118 2643620 2643660 2643729 "SPADPRSR" 2643812 T SPADPRSR (NIL) -7 NIL NIL) (-1117 2641803 2643575 2643606 "SPADAST" 2643611 T SPADAST (NIL) -8 NIL NIL) (-1116 2633774 2635521 2635564 "SPACEC" 2639937 NIL SPACEC (NIL T) -9 NIL 2641753) (-1115 2631945 2633706 2633755 "SPACE3" 2633760 NIL SPACE3 (NIL T) -8 NIL NIL) (-1114 2630697 2630868 2631159 "SORTPAK" 2631750 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1113 2628747 2629050 2629469 "SOLVETRA" 2630361 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1112 2627758 2627980 2628254 "SOLVESER" 2628520 NIL SOLVESER (NIL T) -7 NIL NIL) (-1111 2622978 2623859 2624861 "SOLVERAD" 2626810 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1110 2618793 2619402 2620131 "SOLVEFOR" 2622345 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1109 2613090 2618142 2618239 "SNTSCAT" 2618244 NIL SNTSCAT (NIL T T T T) -9 NIL 2618314) (-1108 2607233 2611413 2611804 "SMTS" 2612780 NIL SMTS (NIL T T T) -8 NIL NIL) (-1107 2601683 2607121 2607198 "SMP" 2607203 NIL SMP (NIL T T) -8 NIL NIL) (-1106 2599842 2600143 2600541 "SMITH" 2601380 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1105 2592737 2596893 2596996 "SMATCAT" 2598347 NIL SMATCAT (NIL NIL T T T) -9 NIL 2598897) (-1104 2589677 2590500 2591678 "SMATCAT-" 2591683 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1103 2587390 2588913 2588956 "SKAGG" 2589217 NIL SKAGG (NIL T) -9 NIL 2589352) (-1102 2583506 2586494 2586772 "SINT" 2587134 T SINT (NIL) -8 NIL NIL) (-1101 2583278 2583316 2583382 "SIMPAN" 2583462 T SIMPAN (NIL) -7 NIL NIL) (-1100 2582585 2582813 2582953 "SIG" 2583160 T SIG (NIL) -8 NIL NIL) (-1099 2581423 2581644 2581919 "SIGNRF" 2582344 NIL SIGNRF (NIL T) -7 NIL NIL) (-1098 2580228 2580379 2580670 "SIGNEF" 2581252 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1097 2579561 2579811 2579935 "SIGAST" 2580126 T SIGAST (NIL) -8 NIL NIL) (-1096 2577251 2577705 2578211 "SHP" 2579102 NIL SHP (NIL T NIL) -7 NIL NIL) (-1095 2571157 2577152 2577228 "SHDP" 2577233 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1094 2570756 2570922 2570952 "SGROUP" 2571045 T SGROUP (NIL) -9 NIL 2571107) (-1093 2570614 2570640 2570713 "SGROUP-" 2570718 NIL SGROUP- (NIL T) -8 NIL NIL) (-1092 2567450 2568147 2568870 "SGCF" 2569913 T SGCF (NIL) -7 NIL NIL) (-1091 2561845 2566897 2566994 "SFRTCAT" 2566999 NIL SFRTCAT (NIL T T T T) -9 NIL 2567038) (-1090 2555269 2556284 2557420 "SFRGCD" 2560828 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1089 2548397 2549468 2550654 "SFQCMPK" 2554202 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1088 2548019 2548108 2548218 "SFORT" 2548338 NIL SFORT (NIL T T) -8 NIL NIL) (-1087 2547164 2547859 2547980 "SEXOF" 2547985 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1086 2546298 2547045 2547113 "SEX" 2547118 T SEX (NIL) -8 NIL NIL) (-1085 2541837 2542526 2542621 "SEXCAT" 2545558 NIL SEXCAT (NIL T T T T T) -9 NIL 2546136) (-1084 2539017 2541771 2541819 "SET" 2541824 NIL SET (NIL T) -8 NIL NIL) (-1083 2537268 2537730 2538035 "SETMN" 2538758 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1082 2536874 2537000 2537030 "SETCAT" 2537147 T SETCAT (NIL) -9 NIL 2537232) (-1081 2536654 2536706 2536805 "SETCAT-" 2536810 NIL SETCAT- (NIL T) -8 NIL NIL) (-1080 2533041 2535115 2535158 "SETAGG" 2536028 NIL SETAGG (NIL T) -9 NIL 2536368) (-1079 2532499 2532615 2532852 "SETAGG-" 2532857 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1078 2531969 2532195 2532296 "SEQAST" 2532420 T SEQAST (NIL) -8 NIL NIL) (-1077 2531168 2531462 2531523 "SEGXCAT" 2531809 NIL SEGXCAT (NIL T T) -9 NIL 2531929) (-1076 2530224 2530834 2531016 "SEG" 2531021 NIL SEG (NIL T) -8 NIL NIL) (-1075 2529203 2529417 2529460 "SEGCAT" 2529982 NIL SEGCAT (NIL T) -9 NIL 2530203) (-1074 2528252 2528582 2528782 "SEGBIND" 2529038 NIL SEGBIND (NIL T) -8 NIL NIL) (-1073 2527873 2527932 2528045 "SEGBIND2" 2528187 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1072 2527474 2527674 2527751 "SEGAST" 2527818 T SEGAST (NIL) -8 NIL NIL) (-1071 2526693 2526819 2527023 "SEG2" 2527318 NIL SEG2 (NIL T T) -7 NIL NIL) (-1070 2526130 2526628 2526675 "SDVAR" 2526680 NIL SDVAR (NIL T) -8 NIL NIL) (-1069 2518420 2525900 2526030 "SDPOL" 2526035 NIL SDPOL (NIL T) -8 NIL NIL) (-1068 2517013 2517279 2517598 "SCPKG" 2518135 NIL SCPKG (NIL T) -7 NIL NIL) (-1067 2516149 2516329 2516529 "SCOPE" 2516835 T SCOPE (NIL) -8 NIL NIL) (-1066 2515370 2515503 2515682 "SCACHE" 2516004 NIL SCACHE (NIL T) -7 NIL NIL) (-1065 2515042 2515202 2515232 "SASTCAT" 2515237 T SASTCAT (NIL) -9 NIL 2515250) (-1064 2514556 2514877 2514953 "SAOS" 2514988 T SAOS (NIL) -8 NIL NIL) (-1063 2514121 2514156 2514329 "SAERFFC" 2514515 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1062 2508095 2514018 2514098 "SAE" 2514103 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1061 2507688 2507723 2507882 "SAEFACT" 2508054 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1060 2506009 2506323 2506724 "RURPK" 2507354 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1059 2504645 2504924 2505236 "RULESET" 2505843 NIL RULESET (NIL T T T) -8 NIL NIL) (-1058 2501832 2502335 2502800 "RULE" 2504326 NIL RULE (NIL T T T) -8 NIL NIL) (-1057 2501471 2501626 2501709 "RULECOLD" 2501784 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1056 2500969 2501188 2501282 "RSTRCAST" 2501399 T RSTRCAST (NIL) -8 NIL NIL) (-1055 2495818 2496612 2497532 "RSETGCD" 2500168 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1054 2485075 2490127 2490224 "RSETCAT" 2494343 NIL RSETCAT (NIL T T T T) -9 NIL 2495440) (-1053 2483002 2483541 2484365 "RSETCAT-" 2484370 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1052 2475389 2476764 2478284 "RSDCMPK" 2481601 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1051 2473394 2473835 2473909 "RRCC" 2474995 NIL RRCC (NIL T T) -9 NIL 2475339) (-1050 2472745 2472919 2473198 "RRCC-" 2473203 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1049 2472215 2472441 2472542 "RPTAST" 2472666 T RPTAST (NIL) -8 NIL NIL) (-1048 2446221 2455808 2455875 "RPOLCAT" 2466539 NIL RPOLCAT (NIL T T T) -9 NIL 2469698) (-1047 2437721 2440059 2443181 "RPOLCAT-" 2443186 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1046 2428768 2435932 2436414 "ROUTINE" 2437261 T ROUTINE (NIL) -8 NIL NIL) (-1045 2425601 2428394 2428534 "ROMAN" 2428650 T ROMAN (NIL) -8 NIL NIL) (-1044 2423876 2424461 2424721 "ROIRC" 2425406 NIL ROIRC (NIL T T) -8 NIL NIL) (-1043 2420269 2422512 2422542 "RNS" 2422846 T RNS (NIL) -9 NIL 2423119) (-1042 2418778 2419161 2419695 "RNS-" 2419770 NIL RNS- (NIL T) -8 NIL NIL) (-1041 2418227 2418609 2418639 "RNG" 2418644 T RNG (NIL) -9 NIL 2418665) (-1040 2417619 2417981 2418024 "RMODULE" 2418086 NIL RMODULE (NIL T) -9 NIL 2418128) (-1039 2416455 2416549 2416885 "RMCAT2" 2417520 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1038 2413332 2415801 2416098 "RMATRIX" 2416217 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1037 2406274 2408508 2408623 "RMATCAT" 2411982 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2412964) (-1036 2405649 2405796 2406103 "RMATCAT-" 2406108 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1035 2405216 2405291 2405419 "RINTERP" 2405568 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1034 2404349 2404869 2404899 "RING" 2404955 T RING (NIL) -9 NIL 2405041) (-1033 2404141 2404185 2404282 "RING-" 2404287 NIL RING- (NIL T) -8 NIL NIL) (-1032 2402982 2403219 2403477 "RIDIST" 2403905 T RIDIST (NIL) -7 NIL NIL) (-1031 2394298 2402450 2402656 "RGCHAIN" 2402830 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1030 2393674 2394054 2394095 "RGBCSPC" 2394153 NIL RGBCSPC (NIL T) -9 NIL 2394205) (-1029 2392858 2393213 2393254 "RGBCMDL" 2393486 NIL RGBCMDL (NIL T) -9 NIL 2393600) (-1028 2389852 2390466 2391136 "RF" 2392222 NIL RF (NIL T) -7 NIL NIL) (-1027 2389498 2389561 2389664 "RFFACTOR" 2389783 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1026 2389223 2389258 2389355 "RFFACT" 2389457 NIL RFFACT (NIL T) -7 NIL NIL) (-1025 2387340 2387704 2388086 "RFDIST" 2388863 T RFDIST (NIL) -7 NIL NIL) (-1024 2386793 2386885 2387048 "RETSOL" 2387242 NIL RETSOL (NIL T T) -7 NIL NIL) (-1023 2386429 2386509 2386552 "RETRACT" 2386685 NIL RETRACT (NIL T) -9 NIL 2386772) (-1022 2386278 2386303 2386390 "RETRACT-" 2386395 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1021 2385907 2386100 2386170 "RETAST" 2386230 T RETAST (NIL) -8 NIL NIL) (-1020 2378761 2385560 2385687 "RESULT" 2385802 T RESULT (NIL) -8 NIL NIL) (-1019 2377387 2378030 2378229 "RESRING" 2378664 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1018 2377023 2377072 2377170 "RESLATC" 2377324 NIL RESLATC (NIL T) -7 NIL NIL) (-1017 2376729 2376763 2376870 "REPSQ" 2376982 NIL REPSQ (NIL T) -7 NIL NIL) (-1016 2374151 2374731 2375333 "REP" 2376149 T REP (NIL) -7 NIL NIL) (-1015 2373849 2373883 2373994 "REPDB" 2374110 NIL REPDB (NIL T) -7 NIL NIL) (-1014 2367759 2369138 2370361 "REP2" 2372661 NIL REP2 (NIL T) -7 NIL NIL) (-1013 2364136 2364817 2365625 "REP1" 2366986 NIL REP1 (NIL T) -7 NIL NIL) (-1012 2356862 2362277 2362733 "REGSET" 2363766 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1011 2355675 2356010 2356260 "REF" 2356647 NIL REF (NIL T) -8 NIL NIL) (-1010 2355052 2355155 2355322 "REDORDER" 2355559 NIL REDORDER (NIL T T) -7 NIL NIL) (-1009 2351059 2354267 2354493 "RECLOS" 2354881 NIL RECLOS (NIL T) -8 NIL NIL) (-1008 2350111 2350292 2350507 "REALSOLV" 2350866 T REALSOLV (NIL) -7 NIL NIL) (-1007 2349957 2349998 2350028 "REAL" 2350033 T REAL (NIL) -9 NIL 2350068) (-1006 2346440 2347242 2348126 "REAL0Q" 2349122 NIL REAL0Q (NIL T) -7 NIL NIL) (-1005 2342041 2343029 2344090 "REAL0" 2345421 NIL REAL0 (NIL T) -7 NIL NIL) (-1004 2341539 2341758 2341852 "RDUCEAST" 2341969 T RDUCEAST (NIL) -8 NIL NIL) (-1003 2340944 2341016 2341223 "RDIV" 2341461 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-1002 2340012 2340186 2340399 "RDIST" 2340766 NIL RDIST (NIL T) -7 NIL NIL) (-1001 2338609 2338896 2339268 "RDETRS" 2339720 NIL RDETRS (NIL T T) -7 NIL NIL) (-1000 2336421 2336875 2337413 "RDETR" 2338151 NIL RDETR (NIL T T) -7 NIL NIL) (-999 2335035 2335313 2335715 "RDEEFS" 2336137 NIL RDEEFS (NIL T T) -7 NIL NIL) (-998 2333533 2333839 2334269 "RDEEF" 2334723 NIL RDEEF (NIL T T) -7 NIL NIL) (-997 2327814 2330689 2330717 "RCFIELD" 2331994 T RCFIELD (NIL) -9 NIL 2332724) (-996 2325883 2326387 2327080 "RCFIELD-" 2327153 NIL RCFIELD- (NIL T) -8 NIL NIL) (-995 2322214 2323999 2324040 "RCAGG" 2325111 NIL RCAGG (NIL T) -9 NIL 2325576) (-994 2321845 2321939 2322099 "RCAGG-" 2322104 NIL RCAGG- (NIL T T) -8 NIL NIL) (-993 2321185 2321297 2321460 "RATRET" 2321729 NIL RATRET (NIL T) -7 NIL NIL) (-992 2320742 2320809 2320928 "RATFACT" 2321113 NIL RATFACT (NIL T) -7 NIL NIL) (-991 2320057 2320177 2320327 "RANDSRC" 2320612 T RANDSRC (NIL) -7 NIL NIL) (-990 2319794 2319838 2319909 "RADUTIL" 2320006 T RADUTIL (NIL) -7 NIL NIL) (-989 2312956 2318636 2318944 "RADIX" 2319518 NIL RADIX (NIL NIL) -8 NIL NIL) (-988 2304613 2312800 2312928 "RADFF" 2312933 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-987 2304265 2304340 2304368 "RADCAT" 2304525 T RADCAT (NIL) -9 NIL NIL) (-986 2304050 2304098 2304195 "RADCAT-" 2304200 NIL RADCAT- (NIL T) -8 NIL NIL) (-985 2302201 2303825 2303914 "QUEUE" 2303994 NIL QUEUE (NIL T) -8 NIL NIL) (-984 2298777 2302138 2302183 "QUAT" 2302188 NIL QUAT (NIL T) -8 NIL NIL) (-983 2298415 2298458 2298585 "QUATCT2" 2298728 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-982 2292162 2295464 2295504 "QUATCAT" 2296284 NIL QUATCAT (NIL T) -9 NIL 2297050) (-981 2288306 2289343 2290730 "QUATCAT-" 2290824 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-980 2285826 2287390 2287431 "QUAGG" 2287806 NIL QUAGG (NIL T) -9 NIL 2287981) (-979 2285458 2285651 2285719 "QQUTAST" 2285778 T QQUTAST (NIL) -8 NIL NIL) (-978 2284383 2284856 2285028 "QFORM" 2285330 NIL QFORM (NIL NIL T) -8 NIL NIL) (-977 2275595 2280800 2280840 "QFCAT" 2281498 NIL QFCAT (NIL T) -9 NIL 2282499) (-976 2271167 2272368 2273959 "QFCAT-" 2274053 NIL QFCAT- (NIL T T) -8 NIL NIL) (-975 2270805 2270848 2270975 "QFCAT2" 2271118 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-974 2270265 2270375 2270505 "QEQUAT" 2270695 T QEQUAT (NIL) -8 NIL NIL) (-973 2263413 2264484 2265668 "QCMPACK" 2269198 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-972 2260989 2261410 2261838 "QALGSET" 2263068 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-971 2260234 2260408 2260640 "QALGSET2" 2260809 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-970 2258925 2259148 2259465 "PWFFINTB" 2260007 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-969 2257107 2257275 2257629 "PUSHVAR" 2258739 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-968 2253025 2254079 2254120 "PTRANFN" 2256004 NIL PTRANFN (NIL T) -9 NIL NIL) (-967 2251427 2251718 2252040 "PTPACK" 2252736 NIL PTPACK (NIL T) -7 NIL NIL) (-966 2251059 2251116 2251225 "PTFUNC2" 2251364 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-965 2245586 2249931 2249972 "PTCAT" 2250268 NIL PTCAT (NIL T) -9 NIL 2250421) (-964 2245244 2245279 2245403 "PSQFR" 2245545 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-963 2243839 2244137 2244471 "PSEUDLIN" 2244942 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-962 2230608 2232973 2235297 "PSETPK" 2241599 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-961 2223652 2226366 2226462 "PSETCAT" 2229483 NIL PSETCAT (NIL T T T T) -9 NIL 2230297) (-960 2221488 2222122 2222943 "PSETCAT-" 2222948 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-959 2220837 2221002 2221030 "PSCURVE" 2221298 T PSCURVE (NIL) -9 NIL 2221465) (-958 2217193 2218675 2218740 "PSCAT" 2219584 NIL PSCAT (NIL T T T) -9 NIL 2219824) (-957 2216256 2216472 2216872 "PSCAT-" 2216877 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-956 2214988 2215621 2215826 "PRTITION" 2216071 T PRTITION (NIL) -8 NIL NIL) (-955 2214490 2214709 2214801 "PRTDAST" 2214916 T PRTDAST (NIL) -8 NIL NIL) (-954 2203588 2205794 2207982 "PRS" 2212352 NIL PRS (NIL T T) -7 NIL NIL) (-953 2201446 2202938 2202978 "PRQAGG" 2203161 NIL PRQAGG (NIL T) -9 NIL 2203263) (-952 2200832 2201061 2201089 "PROPLOG" 2201274 T PROPLOG (NIL) -9 NIL 2201396) (-951 2198002 2198646 2199110 "PROPFRML" 2200400 NIL PROPFRML (NIL T) -8 NIL NIL) (-950 2197462 2197572 2197702 "PROPERTY" 2197892 T PROPERTY (NIL) -8 NIL NIL) (-949 2191547 2195628 2196448 "PRODUCT" 2196688 NIL PRODUCT (NIL T T) -8 NIL NIL) (-948 2188860 2191005 2191239 "PR" 2191358 NIL PR (NIL T T) -8 NIL NIL) (-947 2188656 2188688 2188747 "PRINT" 2188821 T PRINT (NIL) -7 NIL NIL) (-946 2187996 2188113 2188265 "PRIMES" 2188536 NIL PRIMES (NIL T) -7 NIL NIL) (-945 2186061 2186462 2186928 "PRIMELT" 2187575 NIL PRIMELT (NIL T) -7 NIL NIL) (-944 2185790 2185839 2185867 "PRIMCAT" 2185991 T PRIMCAT (NIL) -9 NIL NIL) (-943 2181951 2185728 2185773 "PRIMARR" 2185778 NIL PRIMARR (NIL T) -8 NIL NIL) (-942 2180958 2181136 2181364 "PRIMARR2" 2181769 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-941 2180601 2180657 2180768 "PREASSOC" 2180896 NIL PREASSOC (NIL T T) -7 NIL NIL) (-940 2180076 2180209 2180237 "PPCURVE" 2180442 T PPCURVE (NIL) -9 NIL 2180578) (-939 2179698 2179871 2179954 "PORTNUM" 2180013 T PORTNUM (NIL) -8 NIL NIL) (-938 2177057 2177456 2178048 "POLYROOT" 2179279 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-937 2171002 2176661 2176821 "POLY" 2176930 NIL POLY (NIL T) -8 NIL NIL) (-936 2170385 2170443 2170677 "POLYLIFT" 2170938 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-935 2166660 2167109 2167738 "POLYCATQ" 2169930 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-934 2153477 2158835 2158900 "POLYCAT" 2162414 NIL POLYCAT (NIL T T T) -9 NIL 2164342) (-933 2146927 2148788 2151172 "POLYCAT-" 2151177 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-932 2146514 2146582 2146702 "POLY2UP" 2146853 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-931 2146146 2146203 2146312 "POLY2" 2146451 NIL POLY2 (NIL T T) -7 NIL NIL) (-930 2144831 2145070 2145346 "POLUTIL" 2145920 NIL POLUTIL (NIL T T) -7 NIL NIL) (-929 2143186 2143463 2143794 "POLTOPOL" 2144553 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-928 2138704 2143122 2143168 "POINT" 2143173 NIL POINT (NIL T) -8 NIL NIL) (-927 2136891 2137248 2137623 "PNTHEORY" 2138349 T PNTHEORY (NIL) -7 NIL NIL) (-926 2135310 2135607 2136019 "PMTOOLS" 2136589 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-925 2134903 2134981 2135098 "PMSYM" 2135226 NIL PMSYM (NIL T) -7 NIL NIL) (-924 2134413 2134482 2134656 "PMQFCAT" 2134828 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-923 2133768 2133878 2134034 "PMPRED" 2134290 NIL PMPRED (NIL T) -7 NIL NIL) (-922 2133164 2133250 2133411 "PMPREDFS" 2133669 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-921 2131807 2132015 2132400 "PMPLCAT" 2132926 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-920 2131339 2131418 2131570 "PMLSAGG" 2131722 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-919 2130814 2130890 2131071 "PMKERNEL" 2131257 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-918 2130431 2130506 2130619 "PMINS" 2130733 NIL PMINS (NIL T) -7 NIL NIL) (-917 2129859 2129928 2130144 "PMFS" 2130356 NIL PMFS (NIL T T T) -7 NIL NIL) (-916 2129087 2129205 2129410 "PMDOWN" 2129736 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-915 2128250 2128409 2128591 "PMASS" 2128925 T PMASS (NIL) -7 NIL NIL) (-914 2127524 2127635 2127798 "PMASSFS" 2128136 NIL PMASSFS (NIL T T) -7 NIL NIL) (-913 2127179 2127247 2127341 "PLOTTOOL" 2127450 T PLOTTOOL (NIL) -7 NIL NIL) (-912 2121801 2122990 2124138 "PLOT" 2126051 T PLOT (NIL) -8 NIL NIL) (-911 2117615 2118649 2119570 "PLOT3D" 2120900 T PLOT3D (NIL) -8 NIL NIL) (-910 2116527 2116704 2116939 "PLOT1" 2117419 NIL PLOT1 (NIL T) -7 NIL NIL) (-909 2091921 2096593 2101444 "PLEQN" 2111793 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-908 2091239 2091361 2091541 "PINTERP" 2091786 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-907 2090932 2090979 2091082 "PINTERPA" 2091186 NIL PINTERPA (NIL T T) -7 NIL NIL) (-906 2090217 2090738 2090825 "PI" 2090865 T PI (NIL) -8 NIL NIL) (-905 2088614 2089555 2089583 "PID" 2089765 T PID (NIL) -9 NIL 2089899) (-904 2088339 2088376 2088464 "PICOERCE" 2088571 NIL PICOERCE (NIL T) -7 NIL NIL) (-903 2087659 2087798 2087974 "PGROEB" 2088195 NIL PGROEB (NIL T) -7 NIL NIL) (-902 2083246 2084060 2084965 "PGE" 2086774 T PGE (NIL) -7 NIL NIL) (-901 2081370 2081616 2081982 "PGCD" 2082963 NIL PGCD (NIL T T T T) -7 NIL NIL) (-900 2080708 2080811 2080972 "PFRPAC" 2081254 NIL PFRPAC (NIL T) -7 NIL NIL) (-899 2077388 2079256 2079609 "PFR" 2080387 NIL PFR (NIL T) -8 NIL NIL) (-898 2075777 2076021 2076346 "PFOTOOLS" 2077135 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-897 2074310 2074549 2074900 "PFOQ" 2075534 NIL PFOQ (NIL T T T) -7 NIL NIL) (-896 2072783 2072995 2073358 "PFO" 2074094 NIL PFO (NIL T T T T T) -7 NIL NIL) (-895 2069371 2072672 2072741 "PF" 2072746 NIL PF (NIL NIL) -8 NIL NIL) (-894 2066805 2068042 2068070 "PFECAT" 2068655 T PFECAT (NIL) -9 NIL 2069039) (-893 2066250 2066404 2066618 "PFECAT-" 2066623 NIL PFECAT- (NIL T) -8 NIL NIL) (-892 2064854 2065105 2065406 "PFBRU" 2065999 NIL PFBRU (NIL T T) -7 NIL NIL) (-891 2062721 2063072 2063504 "PFBR" 2064505 NIL PFBR (NIL T T T T) -7 NIL NIL) (-890 2058637 2060097 2060773 "PERM" 2062078 NIL PERM (NIL T) -8 NIL NIL) (-889 2053903 2054844 2055714 "PERMGRP" 2057800 NIL PERMGRP (NIL T) -8 NIL NIL) (-888 2052035 2052966 2053007 "PERMCAT" 2053453 NIL PERMCAT (NIL T) -9 NIL 2053758) (-887 2051688 2051729 2051853 "PERMAN" 2051988 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-886 2049224 2051353 2051475 "PENDTREE" 2051599 NIL PENDTREE (NIL T) -8 NIL NIL) (-885 2047317 2048051 2048092 "PDRING" 2048749 NIL PDRING (NIL T) -9 NIL 2049035) (-884 2046420 2046638 2047000 "PDRING-" 2047005 NIL PDRING- (NIL T T) -8 NIL NIL) (-883 2043662 2044413 2045081 "PDEPROB" 2045772 T PDEPROB (NIL) -8 NIL NIL) (-882 2041209 2041711 2042266 "PDEPACK" 2043127 T PDEPACK (NIL) -7 NIL NIL) (-881 2040121 2040311 2040562 "PDECOMP" 2041008 NIL PDECOMP (NIL T T) -7 NIL NIL) (-880 2037726 2038543 2038571 "PDECAT" 2039358 T PDECAT (NIL) -9 NIL 2040071) (-879 2037477 2037510 2037600 "PCOMP" 2037687 NIL PCOMP (NIL T T) -7 NIL NIL) (-878 2035682 2036278 2036575 "PBWLB" 2037206 NIL PBWLB (NIL T) -8 NIL NIL) (-877 2028186 2029755 2031093 "PATTERN" 2034365 NIL PATTERN (NIL T) -8 NIL NIL) (-876 2027818 2027875 2027984 "PATTERN2" 2028123 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-875 2025575 2025963 2026420 "PATTERN1" 2027407 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-874 2022970 2023524 2024005 "PATRES" 2025140 NIL PATRES (NIL T T) -8 NIL NIL) (-873 2022534 2022601 2022733 "PATRES2" 2022897 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-872 2020417 2020822 2021229 "PATMATCH" 2022201 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-871 2019953 2020136 2020177 "PATMAB" 2020284 NIL PATMAB (NIL T) -9 NIL 2020367) (-870 2018498 2018807 2019065 "PATLRES" 2019758 NIL PATLRES (NIL T T T) -8 NIL NIL) (-869 2018044 2018167 2018208 "PATAB" 2018213 NIL PATAB (NIL T) -9 NIL 2018385) (-868 2015525 2016057 2016630 "PARTPERM" 2017491 T PARTPERM (NIL) -7 NIL NIL) (-867 2015146 2015209 2015311 "PARSURF" 2015456 NIL PARSURF (NIL T) -8 NIL NIL) (-866 2014778 2014835 2014944 "PARSU2" 2015083 NIL PARSU2 (NIL T T) -7 NIL NIL) (-865 2014542 2014582 2014649 "PARSER" 2014731 T PARSER (NIL) -7 NIL NIL) (-864 2014163 2014226 2014328 "PARSCURV" 2014473 NIL PARSCURV (NIL T) -8 NIL NIL) (-863 2013795 2013852 2013961 "PARSC2" 2014100 NIL PARSC2 (NIL T T) -7 NIL NIL) (-862 2013434 2013492 2013589 "PARPCURV" 2013731 NIL PARPCURV (NIL T) -8 NIL NIL) (-861 2013066 2013123 2013232 "PARPC2" 2013371 NIL PARPC2 (NIL T T) -7 NIL NIL) (-860 2012586 2012672 2012791 "PAN2EXPR" 2012967 T PAN2EXPR (NIL) -7 NIL NIL) (-859 2011392 2011707 2011935 "PALETTE" 2012378 T PALETTE (NIL) -8 NIL NIL) (-858 2009860 2010397 2010757 "PAIR" 2011078 NIL PAIR (NIL T T) -8 NIL NIL) (-857 2003766 2009119 2009313 "PADICRC" 2009715 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-856 1997030 2003112 2003296 "PADICRAT" 2003614 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-855 1995380 1996967 1997012 "PADIC" 1997017 NIL PADIC (NIL NIL) -8 NIL NIL) (-854 1992590 1994120 1994160 "PADICCT" 1994741 NIL PADICCT (NIL NIL) -9 NIL 1995023) (-853 1991547 1991747 1992015 "PADEPAC" 1992377 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-852 1990759 1990892 1991098 "PADE" 1991409 NIL PADE (NIL T T T) -7 NIL NIL) (-851 1989181 1989967 1990247 "OWP" 1990563 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-850 1988290 1988786 1988958 "OVAR" 1989049 NIL OVAR (NIL NIL) -8 NIL NIL) (-849 1987554 1987675 1987836 "OUT" 1988149 T OUT (NIL) -7 NIL NIL) (-848 1976461 1978663 1980863 "OUTFORM" 1985374 T OUTFORM (NIL) -8 NIL NIL) (-847 1975882 1976058 1976185 "OUTBFILE" 1976354 T OUTBFILE (NIL) -8 NIL NIL) (-846 1975519 1975602 1975630 "OUTBCON" 1975781 T OUTBCON (NIL) -9 NIL 1975866) (-845 1975359 1975394 1975470 "OUTBCON-" 1975475 NIL OUTBCON- (NIL T) -8 NIL NIL) (-844 1974767 1975088 1975177 "OSI" 1975290 T OSI (NIL) -8 NIL NIL) (-843 1974323 1974635 1974663 "OSGROUP" 1974668 T OSGROUP (NIL) -9 NIL 1974690) (-842 1973068 1973295 1973580 "ORTHPOL" 1974070 NIL ORTHPOL (NIL T) -7 NIL NIL) (-841 1970654 1972903 1973024 "OREUP" 1973029 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-840 1968092 1970345 1970472 "ORESUP" 1970596 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-839 1965620 1966120 1966681 "OREPCTO" 1967581 NIL OREPCTO (NIL T T) -7 NIL NIL) (-838 1959444 1961611 1961652 "OREPCAT" 1964000 NIL OREPCAT (NIL T) -9 NIL 1965104) (-837 1956591 1957373 1958431 "OREPCAT-" 1958436 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-836 1955768 1956040 1956068 "ORDSET" 1956377 T ORDSET (NIL) -9 NIL 1956541) (-835 1955287 1955409 1955602 "ORDSET-" 1955607 NIL ORDSET- (NIL T) -8 NIL NIL) (-834 1953921 1954678 1954706 "ORDRING" 1954908 T ORDRING (NIL) -9 NIL 1955033) (-833 1953566 1953660 1953804 "ORDRING-" 1953809 NIL ORDRING- (NIL T) -8 NIL NIL) (-832 1952972 1953409 1953437 "ORDMON" 1953442 T ORDMON (NIL) -9 NIL 1953463) (-831 1952134 1952281 1952476 "ORDFUNS" 1952821 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-830 1951645 1952004 1952032 "ORDFIN" 1952037 T ORDFIN (NIL) -9 NIL 1952058) (-829 1948237 1950231 1950640 "ORDCOMP" 1951269 NIL ORDCOMP (NIL T) -8 NIL NIL) (-828 1947503 1947630 1947816 "ORDCOMP2" 1948097 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-827 1944111 1944994 1945808 "OPTPROB" 1946709 T OPTPROB (NIL) -8 NIL NIL) (-826 1940913 1941552 1942256 "OPTPACK" 1943427 T OPTPACK (NIL) -7 NIL NIL) (-825 1938626 1939366 1939394 "OPTCAT" 1940213 T OPTCAT (NIL) -9 NIL 1940863) (-824 1938394 1938433 1938499 "OPQUERY" 1938580 T OPQUERY (NIL) -7 NIL NIL) (-823 1935560 1936705 1937209 "OP" 1937923 NIL OP (NIL T) -8 NIL NIL) (-822 1934871 1935083 1935124 "OPERCAT" 1935393 NIL OPERCAT (NIL T) -9 NIL 1935510) (-821 1934717 1934744 1934830 "OPERCAT-" 1934835 NIL OPERCAT- (NIL T T) -8 NIL NIL) (-820 1931562 1933514 1933883 "ONECOMP" 1934381 NIL ONECOMP (NIL T) -8 NIL NIL) (-819 1930867 1930982 1931156 "ONECOMP2" 1931434 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-818 1930286 1930392 1930522 "OMSERVER" 1930757 T OMSERVER (NIL) -7 NIL NIL) (-817 1927174 1929726 1929766 "OMSAGG" 1929827 NIL OMSAGG (NIL T) -9 NIL 1929891) (-816 1925797 1926060 1926342 "OMPKG" 1926912 T OMPKG (NIL) -7 NIL NIL) (-815 1925227 1925330 1925358 "OM" 1925657 T OM (NIL) -9 NIL NIL) (-814 1923809 1924776 1924945 "OMLO" 1925108 NIL OMLO (NIL T T) -8 NIL NIL) (-813 1922734 1922881 1923108 "OMEXPR" 1923635 NIL OMEXPR (NIL T) -7 NIL NIL) (-812 1922052 1922280 1922416 "OMERR" 1922618 T OMERR (NIL) -8 NIL NIL) (-811 1921230 1921473 1921633 "OMERRK" 1921912 T OMERRK (NIL) -8 NIL NIL) (-810 1920708 1920907 1921015 "OMENC" 1921142 T OMENC (NIL) -8 NIL NIL) (-809 1914603 1915788 1916959 "OMDEV" 1919557 T OMDEV (NIL) -8 NIL NIL) (-808 1913672 1913843 1914037 "OMCONN" 1914429 T OMCONN (NIL) -8 NIL NIL) (-807 1912293 1913235 1913263 "OINTDOM" 1913268 T OINTDOM (NIL) -9 NIL 1913289) (-806 1908099 1909283 1909999 "OFMONOID" 1911609 NIL OFMONOID (NIL T) -8 NIL NIL) (-805 1907537 1908036 1908081 "ODVAR" 1908086 NIL ODVAR (NIL T) -8 NIL NIL) (-804 1904995 1907282 1907437 "ODR" 1907442 NIL ODR (NIL T T NIL) -8 NIL NIL) (-803 1897339 1904771 1904897 "ODPOL" 1904902 NIL ODPOL (NIL T) -8 NIL NIL) (-802 1891215 1897211 1897316 "ODP" 1897321 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-801 1889981 1890196 1890471 "ODETOOLS" 1890989 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-800 1886950 1887606 1888322 "ODESYS" 1889314 NIL ODESYS (NIL T T) -7 NIL NIL) (-799 1881832 1882740 1883765 "ODERTRIC" 1886025 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-798 1881258 1881340 1881534 "ODERED" 1881744 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-797 1878146 1878694 1879371 "ODERAT" 1880681 NIL ODERAT (NIL T T) -7 NIL NIL) (-796 1875106 1875570 1876167 "ODEPRRIC" 1877675 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-795 1873076 1873645 1874131 "ODEPROB" 1874640 T ODEPROB (NIL) -8 NIL NIL) (-794 1869598 1870081 1870728 "ODEPRIM" 1872555 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-793 1868847 1868949 1869209 "ODEPAL" 1869490 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-792 1865009 1865800 1866664 "ODEPACK" 1868003 T ODEPACK (NIL) -7 NIL NIL) (-791 1864042 1864149 1864378 "ODEINT" 1864898 NIL ODEINT (NIL T T) -7 NIL NIL) (-790 1858143 1859568 1861015 "ODEIFTBL" 1862615 T ODEIFTBL (NIL) -8 NIL NIL) (-789 1853478 1854264 1855223 "ODEEF" 1857302 NIL ODEEF (NIL T T) -7 NIL NIL) (-788 1852813 1852902 1853132 "ODECONST" 1853383 NIL ODECONST (NIL T T T) -7 NIL NIL) (-787 1850964 1851599 1851627 "ODECAT" 1852232 T ODECAT (NIL) -9 NIL 1852763) (-786 1847871 1850676 1850795 "OCT" 1850877 NIL OCT (NIL T) -8 NIL NIL) (-785 1847509 1847552 1847679 "OCTCT2" 1847822 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-784 1842283 1844683 1844723 "OC" 1845820 NIL OC (NIL T) -9 NIL 1846678) (-783 1839510 1840258 1841248 "OC-" 1841342 NIL OC- (NIL T T) -8 NIL NIL) (-782 1838888 1839330 1839358 "OCAMON" 1839363 T OCAMON (NIL) -9 NIL 1839384) (-781 1838445 1838760 1838788 "OASGP" 1838793 T OASGP (NIL) -9 NIL 1838813) (-780 1837732 1838195 1838223 "OAMONS" 1838263 T OAMONS (NIL) -9 NIL 1838306) (-779 1837172 1837579 1837607 "OAMON" 1837612 T OAMON (NIL) -9 NIL 1837632) (-778 1836476 1836968 1836996 "OAGROUP" 1837001 T OAGROUP (NIL) -9 NIL 1837021) (-777 1836166 1836216 1836304 "NUMTUBE" 1836420 NIL NUMTUBE (NIL T) -7 NIL NIL) (-776 1829739 1831257 1832793 "NUMQUAD" 1834650 T NUMQUAD (NIL) -7 NIL NIL) (-775 1825495 1826483 1827508 "NUMODE" 1828734 T NUMODE (NIL) -7 NIL NIL) (-774 1822876 1823730 1823758 "NUMINT" 1824681 T NUMINT (NIL) -9 NIL 1825445) (-773 1821824 1822021 1822239 "NUMFMT" 1822678 T NUMFMT (NIL) -7 NIL NIL) (-772 1808183 1811128 1813660 "NUMERIC" 1819331 NIL NUMERIC (NIL T) -7 NIL NIL) (-771 1802580 1807632 1807727 "NTSCAT" 1807732 NIL NTSCAT (NIL T T T T) -9 NIL 1807771) (-770 1801774 1801939 1802132 "NTPOLFN" 1802419 NIL NTPOLFN (NIL T) -7 NIL NIL) (-769 1789614 1798599 1799411 "NSUP" 1800995 NIL NSUP (NIL T) -8 NIL NIL) (-768 1789246 1789303 1789412 "NSUP2" 1789551 NIL NSUP2 (NIL T T) -7 NIL NIL) (-767 1779243 1789020 1789153 "NSMP" 1789158 NIL NSMP (NIL T T) -8 NIL NIL) (-766 1777675 1777976 1778333 "NREP" 1778931 NIL NREP (NIL T) -7 NIL NIL) (-765 1776266 1776518 1776876 "NPCOEF" 1777418 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-764 1775332 1775447 1775663 "NORMRETR" 1776147 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-763 1773373 1773663 1774072 "NORMPK" 1775040 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-762 1773058 1773086 1773210 "NORMMA" 1773339 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-761 1772885 1773015 1773044 "NONE" 1773049 T NONE (NIL) -8 NIL NIL) (-760 1772674 1772703 1772772 "NONE1" 1772849 NIL NONE1 (NIL T) -7 NIL NIL) (-759 1772157 1772219 1772405 "NODE1" 1772606 NIL NODE1 (NIL T T) -7 NIL NIL) (-758 1770497 1771320 1771575 "NNI" 1771922 T NNI (NIL) -8 NIL NIL) (-757 1768917 1769230 1769594 "NLINSOL" 1770165 NIL NLINSOL (NIL T) -7 NIL NIL) (-756 1765185 1766153 1767052 "NIPROB" 1768038 T NIPROB (NIL) -8 NIL NIL) (-755 1763942 1764176 1764478 "NFINTBAS" 1764947 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-754 1763386 1763593 1763634 "NETCLT" 1763798 NIL NETCLT (NIL T) -9 NIL 1763887) (-753 1762094 1762325 1762606 "NCODIV" 1763154 NIL NCODIV (NIL T T) -7 NIL NIL) (-752 1761856 1761893 1761968 "NCNTFRAC" 1762051 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-751 1760036 1760400 1760820 "NCEP" 1761481 NIL NCEP (NIL T) -7 NIL NIL) (-750 1758947 1759686 1759714 "NASRING" 1759824 T NASRING (NIL) -9 NIL 1759898) (-749 1758742 1758786 1758880 "NASRING-" 1758885 NIL NASRING- (NIL T) -8 NIL NIL) (-748 1757895 1758394 1758422 "NARNG" 1758539 T NARNG (NIL) -9 NIL 1758630) (-747 1757587 1757654 1757788 "NARNG-" 1757793 NIL NARNG- (NIL T) -8 NIL NIL) (-746 1756466 1756673 1756908 "NAGSP" 1757372 T NAGSP (NIL) -7 NIL NIL) (-745 1747738 1749422 1751095 "NAGS" 1754813 T NAGS (NIL) -7 NIL NIL) (-744 1746286 1746594 1746925 "NAGF07" 1747427 T NAGF07 (NIL) -7 NIL NIL) (-743 1740824 1742115 1743422 "NAGF04" 1744999 T NAGF04 (NIL) -7 NIL NIL) (-742 1733792 1735406 1737039 "NAGF02" 1739211 T NAGF02 (NIL) -7 NIL NIL) (-741 1729016 1730116 1731233 "NAGF01" 1732695 T NAGF01 (NIL) -7 NIL NIL) (-740 1722644 1724210 1725795 "NAGE04" 1727451 T NAGE04 (NIL) -7 NIL NIL) (-739 1713813 1715934 1718064 "NAGE02" 1720534 T NAGE02 (NIL) -7 NIL NIL) (-738 1709766 1710713 1711677 "NAGE01" 1712869 T NAGE01 (NIL) -7 NIL NIL) (-737 1707561 1708095 1708653 "NAGD03" 1709228 T NAGD03 (NIL) -7 NIL NIL) (-736 1699311 1701239 1703193 "NAGD02" 1705627 T NAGD02 (NIL) -7 NIL NIL) (-735 1693122 1694547 1695987 "NAGD01" 1697891 T NAGD01 (NIL) -7 NIL NIL) (-734 1689331 1690153 1690990 "NAGC06" 1692305 T NAGC06 (NIL) -7 NIL NIL) (-733 1687796 1688128 1688484 "NAGC05" 1688995 T NAGC05 (NIL) -7 NIL NIL) (-732 1687172 1687291 1687435 "NAGC02" 1687672 T NAGC02 (NIL) -7 NIL NIL) (-731 1686232 1686789 1686829 "NAALG" 1686908 NIL NAALG (NIL T) -9 NIL 1686969) (-730 1686067 1686096 1686186 "NAALG-" 1686191 NIL NAALG- (NIL T T) -8 NIL NIL) (-729 1680017 1681125 1682312 "MULTSQFR" 1684963 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-728 1679336 1679411 1679595 "MULTFACT" 1679929 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-727 1672429 1676299 1676352 "MTSCAT" 1677422 NIL MTSCAT (NIL T T) -9 NIL 1677936) (-726 1672141 1672195 1672287 "MTHING" 1672369 NIL MTHING (NIL T) -7 NIL NIL) (-725 1671933 1671966 1672026 "MSYSCMD" 1672101 T MSYSCMD (NIL) -7 NIL NIL) (-724 1668045 1670688 1671008 "MSET" 1671646 NIL MSET (NIL T) -8 NIL NIL) (-723 1665140 1667606 1667647 "MSETAGG" 1667652 NIL MSETAGG (NIL T) -9 NIL 1667686) (-722 1661023 1662519 1663264 "MRING" 1664440 NIL MRING (NIL T T) -8 NIL NIL) (-721 1660589 1660656 1660787 "MRF2" 1660950 NIL MRF2 (NIL T T T) -7 NIL NIL) (-720 1660207 1660242 1660386 "MRATFAC" 1660548 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-719 1657819 1658114 1658545 "MPRFF" 1659912 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-718 1651879 1657673 1657770 "MPOLY" 1657775 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-717 1651369 1651404 1651612 "MPCPF" 1651838 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-716 1650883 1650926 1651110 "MPC3" 1651320 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-715 1650078 1650159 1650380 "MPC2" 1650798 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-714 1648379 1648716 1649106 "MONOTOOL" 1649738 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-713 1647630 1647921 1647949 "MONOID" 1648168 T MONOID (NIL) -9 NIL 1648315) (-712 1647176 1647295 1647476 "MONOID-" 1647481 NIL MONOID- (NIL T) -8 NIL NIL) (-711 1638035 1643943 1644002 "MONOGEN" 1644676 NIL MONOGEN (NIL T T) -9 NIL 1645132) (-710 1635253 1635988 1636988 "MONOGEN-" 1637107 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-709 1634112 1634532 1634560 "MONADWU" 1634952 T MONADWU (NIL) -9 NIL 1635190) (-708 1633484 1633643 1633891 "MONADWU-" 1633896 NIL MONADWU- (NIL T) -8 NIL NIL) (-707 1632869 1633087 1633115 "MONAD" 1633322 T MONAD (NIL) -9 NIL 1633434) (-706 1632554 1632632 1632764 "MONAD-" 1632769 NIL MONAD- (NIL T) -8 NIL NIL) (-705 1630870 1631467 1631746 "MOEBIUS" 1632307 NIL MOEBIUS (NIL T) -8 NIL NIL) (-704 1630262 1630640 1630680 "MODULE" 1630685 NIL MODULE (NIL T) -9 NIL 1630711) (-703 1629830 1629926 1630116 "MODULE-" 1630121 NIL MODULE- (NIL T T) -8 NIL NIL) (-702 1627545 1628194 1628521 "MODRING" 1629654 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-701 1624531 1625650 1626171 "MODOP" 1627074 NIL MODOP (NIL T T) -8 NIL NIL) (-700 1623146 1623598 1623875 "MODMONOM" 1624394 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-699 1612953 1621437 1621851 "MODMON" 1622783 NIL MODMON (NIL T T) -8 NIL NIL) (-698 1610144 1611797 1612073 "MODFIELD" 1612828 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-697 1609148 1609425 1609615 "MMLFORM" 1609974 T MMLFORM (NIL) -8 NIL NIL) (-696 1608674 1608717 1608896 "MMAP" 1609099 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-695 1606891 1607624 1607665 "MLO" 1608088 NIL MLO (NIL T) -9 NIL 1608330) (-694 1604258 1604773 1605375 "MLIFT" 1606372 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-693 1603649 1603733 1603887 "MKUCFUNC" 1604169 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-692 1603248 1603318 1603441 "MKRECORD" 1603572 NIL MKRECORD (NIL T T) -7 NIL NIL) (-691 1602296 1602457 1602685 "MKFUNC" 1603059 NIL MKFUNC (NIL T) -7 NIL NIL) (-690 1601684 1601788 1601944 "MKFLCFN" 1602179 NIL MKFLCFN (NIL T) -7 NIL NIL) (-689 1601227 1601594 1601653 "MKCHSET" 1601658 NIL MKCHSET (NIL T) -8 NIL NIL) (-688 1600504 1600606 1600791 "MKBCFUNC" 1601120 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-687 1597246 1600058 1600194 "MINT" 1600388 T MINT (NIL) -8 NIL NIL) (-686 1596058 1596301 1596578 "MHROWRED" 1597001 NIL MHROWRED (NIL T) -7 NIL NIL) (-685 1591484 1594593 1594998 "MFLOAT" 1595673 T MFLOAT (NIL) -8 NIL NIL) (-684 1590841 1590917 1591088 "MFINFACT" 1591396 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-683 1587156 1588004 1588888 "MESH" 1589977 T MESH (NIL) -7 NIL NIL) (-682 1585546 1585858 1586211 "MDDFACT" 1586843 NIL MDDFACT (NIL T) -7 NIL NIL) (-681 1582388 1584705 1584746 "MDAGG" 1585001 NIL MDAGG (NIL T) -9 NIL 1585144) (-680 1572166 1581681 1581888 "MCMPLX" 1582201 T MCMPLX (NIL) -8 NIL NIL) (-679 1571307 1571453 1571653 "MCDEN" 1572015 NIL MCDEN (NIL T T) -7 NIL NIL) (-678 1569197 1569467 1569847 "MCALCFN" 1571037 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-677 1568108 1568281 1568522 "MAYBE" 1568995 NIL MAYBE (NIL T) -8 NIL NIL) (-676 1565720 1566243 1566805 "MATSTOR" 1567579 NIL MATSTOR (NIL T) -7 NIL NIL) (-675 1561726 1565092 1565340 "MATRIX" 1565505 NIL MATRIX (NIL T) -8 NIL NIL) (-674 1557495 1558199 1558935 "MATLIN" 1561083 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-673 1547649 1550787 1550864 "MATCAT" 1555744 NIL MATCAT (NIL T T T) -9 NIL 1557161) (-672 1544013 1545026 1546382 "MATCAT-" 1546387 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-671 1542607 1542760 1543093 "MATCAT2" 1543848 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-670 1540719 1541043 1541427 "MAPPKG3" 1542282 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-669 1539700 1539873 1540095 "MAPPKG2" 1540543 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-668 1538199 1538483 1538810 "MAPPKG1" 1539406 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-667 1537305 1537605 1537782 "MAPPAST" 1538042 T MAPPAST (NIL) -8 NIL NIL) (-666 1536916 1536974 1537097 "MAPHACK3" 1537241 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-665 1536508 1536569 1536683 "MAPHACK2" 1536848 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-664 1535946 1536049 1536191 "MAPHACK1" 1536399 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-663 1534052 1534646 1534950 "MAGMA" 1535674 NIL MAGMA (NIL T) -8 NIL NIL) (-662 1533558 1533776 1533867 "MACROAST" 1533981 T MACROAST (NIL) -8 NIL NIL) (-661 1530025 1531797 1532258 "M3D" 1533130 NIL M3D (NIL T) -8 NIL NIL) (-660 1524180 1528395 1528436 "LZSTAGG" 1529218 NIL LZSTAGG (NIL T) -9 NIL 1529513) (-659 1520153 1521311 1522768 "LZSTAGG-" 1522773 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-658 1517267 1518044 1518531 "LWORD" 1519698 NIL LWORD (NIL T) -8 NIL NIL) (-657 1516870 1517071 1517146 "LSTAST" 1517212 T LSTAST (NIL) -8 NIL NIL) (-656 1510071 1516641 1516775 "LSQM" 1516780 NIL LSQM (NIL NIL T) -8 NIL NIL) (-655 1509295 1509434 1509662 "LSPP" 1509926 NIL LSPP (NIL T T T T) -7 NIL NIL) (-654 1507107 1507408 1507864 "LSMP" 1508984 NIL LSMP (NIL T T T T) -7 NIL NIL) (-653 1503886 1504560 1505290 "LSMP1" 1506409 NIL LSMP1 (NIL T) -7 NIL NIL) (-652 1497812 1503054 1503095 "LSAGG" 1503157 NIL LSAGG (NIL T) -9 NIL 1503235) (-651 1494507 1495431 1496644 "LSAGG-" 1496649 NIL LSAGG- (NIL T T) -8 NIL NIL) (-650 1492133 1493651 1493900 "LPOLY" 1494302 NIL LPOLY (NIL T T) -8 NIL NIL) (-649 1491715 1491800 1491923 "LPEFRAC" 1492042 NIL LPEFRAC (NIL T) -7 NIL NIL) (-648 1490062 1490809 1491062 "LO" 1491547 NIL LO (NIL T T T) -8 NIL NIL) (-647 1489714 1489826 1489854 "LOGIC" 1489965 T LOGIC (NIL) -9 NIL 1490046) (-646 1489576 1489599 1489670 "LOGIC-" 1489675 NIL LOGIC- (NIL T) -8 NIL NIL) (-645 1488769 1488909 1489102 "LODOOPS" 1489432 NIL LODOOPS (NIL T T) -7 NIL NIL) (-644 1486227 1488685 1488751 "LODO" 1488756 NIL LODO (NIL T NIL) -8 NIL NIL) (-643 1484765 1485000 1485353 "LODOF" 1485974 NIL LODOF (NIL T T) -7 NIL NIL) (-642 1481121 1483518 1483559 "LODOCAT" 1483997 NIL LODOCAT (NIL T) -9 NIL 1484208) (-641 1480854 1480912 1481039 "LODOCAT-" 1481044 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-640 1478209 1480695 1480813 "LODO2" 1480818 NIL LODO2 (NIL T T) -8 NIL NIL) (-639 1475679 1478146 1478191 "LODO1" 1478196 NIL LODO1 (NIL T) -8 NIL NIL) (-638 1474539 1474704 1475016 "LODEEF" 1475502 NIL LODEEF (NIL T T T) -7 NIL NIL) (-637 1469825 1472669 1472710 "LNAGG" 1473657 NIL LNAGG (NIL T) -9 NIL 1474101) (-636 1468972 1469186 1469528 "LNAGG-" 1469533 NIL LNAGG- (NIL T T) -8 NIL NIL) (-635 1465135 1465897 1466536 "LMOPS" 1468387 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-634 1464530 1464892 1464933 "LMODULE" 1464994 NIL LMODULE (NIL T) -9 NIL 1465036) (-633 1461776 1464175 1464298 "LMDICT" 1464440 NIL LMDICT (NIL T) -8 NIL NIL) (-632 1461502 1461684 1461744 "LITERAL" 1461749 NIL LITERAL (NIL T) -8 NIL NIL) (-631 1454729 1460448 1460746 "LIST" 1461237 NIL LIST (NIL T) -8 NIL NIL) (-630 1454254 1454328 1454467 "LIST3" 1454649 NIL LIST3 (NIL T T T) -7 NIL NIL) (-629 1453261 1453439 1453667 "LIST2" 1454072 NIL LIST2 (NIL T T) -7 NIL NIL) (-628 1451395 1451707 1452106 "LIST2MAP" 1452908 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-627 1450125 1450761 1450802 "LINEXP" 1451057 NIL LINEXP (NIL T) -9 NIL 1451206) (-626 1448772 1449032 1449329 "LINDEP" 1449877 NIL LINDEP (NIL T T) -7 NIL NIL) (-625 1445539 1446258 1447035 "LIMITRF" 1448027 NIL LIMITRF (NIL T) -7 NIL NIL) (-624 1443815 1444110 1444526 "LIMITPS" 1445234 NIL LIMITPS (NIL T T) -7 NIL NIL) (-623 1438270 1443326 1443554 "LIE" 1443636 NIL LIE (NIL T T) -8 NIL NIL) (-622 1437319 1437762 1437802 "LIECAT" 1437942 NIL LIECAT (NIL T) -9 NIL 1438093) (-621 1437160 1437187 1437275 "LIECAT-" 1437280 NIL LIECAT- (NIL T T) -8 NIL NIL) (-620 1429772 1436609 1436774 "LIB" 1437015 T LIB (NIL) -8 NIL NIL) (-619 1425409 1426290 1427225 "LGROBP" 1428889 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-618 1423275 1423549 1423911 "LF" 1425130 NIL LF (NIL T T) -7 NIL NIL) (-617 1422115 1422807 1422835 "LFCAT" 1423042 T LFCAT (NIL) -9 NIL 1423181) (-616 1419019 1419647 1420335 "LEXTRIPK" 1421479 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-615 1415790 1416589 1417092 "LEXP" 1418599 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-614 1415293 1415511 1415603 "LETAST" 1415718 T LETAST (NIL) -8 NIL NIL) (-613 1413691 1414004 1414405 "LEADCDET" 1414975 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-612 1412881 1412955 1413184 "LAZM3PK" 1413612 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-611 1407837 1410958 1411496 "LAUPOL" 1412393 NIL LAUPOL (NIL T T) -8 NIL NIL) (-610 1407402 1407446 1407614 "LAPLACE" 1407787 NIL LAPLACE (NIL T T) -7 NIL NIL) (-609 1405376 1406503 1406754 "LA" 1407235 NIL LA (NIL T T T) -8 NIL NIL) (-608 1404457 1405007 1405048 "LALG" 1405110 NIL LALG (NIL T) -9 NIL 1405169) (-607 1404171 1404230 1404366 "LALG-" 1404371 NIL LALG- (NIL T T) -8 NIL NIL) (-606 1404006 1404030 1404071 "KVTFROM" 1404133 NIL KVTFROM (NIL T) -9 NIL NIL) (-605 1402806 1403223 1403452 "KTVLOGIC" 1403797 T KTVLOGIC (NIL) -8 NIL NIL) (-604 1402641 1402665 1402706 "KRCFROM" 1402768 NIL KRCFROM (NIL T) -9 NIL NIL) (-603 1401545 1401732 1402031 "KOVACIC" 1402441 NIL KOVACIC (NIL T T) -7 NIL NIL) (-602 1401380 1401404 1401445 "KONVERT" 1401507 NIL KONVERT (NIL T) -9 NIL NIL) (-601 1401215 1401239 1401280 "KOERCE" 1401342 NIL KOERCE (NIL T) -9 NIL NIL) (-600 1398949 1399709 1400102 "KERNEL" 1400854 NIL KERNEL (NIL T) -8 NIL NIL) (-599 1398451 1398532 1398662 "KERNEL2" 1398863 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-598 1392302 1396990 1397044 "KDAGG" 1397421 NIL KDAGG (NIL T T) -9 NIL 1397627) (-597 1391831 1391955 1392160 "KDAGG-" 1392165 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-596 1385006 1391492 1391647 "KAFILE" 1391709 NIL KAFILE (NIL T) -8 NIL NIL) (-595 1379461 1384517 1384745 "JORDAN" 1384827 NIL JORDAN (NIL T T) -8 NIL NIL) (-594 1378867 1379110 1379231 "JOINAST" 1379360 T JOINAST (NIL) -8 NIL NIL) (-593 1378713 1378772 1378827 "JAVACODE" 1378832 T JAVACODE (NIL) -8 NIL NIL) (-592 1375012 1376918 1376972 "IXAGG" 1377901 NIL IXAGG (NIL T T) -9 NIL 1378360) (-591 1373931 1374237 1374656 "IXAGG-" 1374661 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-590 1369511 1373853 1373912 "IVECTOR" 1373917 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-589 1368277 1368514 1368780 "ITUPLE" 1369278 NIL ITUPLE (NIL T) -8 NIL NIL) (-588 1366713 1366890 1367196 "ITRIGMNP" 1368099 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-587 1365458 1365662 1365945 "ITFUN3" 1366489 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-586 1365090 1365147 1365256 "ITFUN2" 1365395 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-585 1362927 1363952 1364251 "ITAYLOR" 1364824 NIL ITAYLOR (NIL T) -8 NIL NIL) (-584 1351909 1357064 1358227 "ISUPS" 1361797 NIL ISUPS (NIL T) -8 NIL NIL) (-583 1351013 1351153 1351389 "ISUMP" 1351756 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-582 1346277 1350814 1350893 "ISTRING" 1350966 NIL ISTRING (NIL NIL) -8 NIL NIL) (-581 1345780 1345998 1346090 "ISAST" 1346205 T ISAST (NIL) -8 NIL NIL) (-580 1344990 1345071 1345287 "IRURPK" 1345694 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-579 1343926 1344127 1344367 "IRSN" 1344770 T IRSN (NIL) -7 NIL NIL) (-578 1341955 1342310 1342746 "IRRF2F" 1343564 NIL IRRF2F (NIL T) -7 NIL NIL) (-577 1341702 1341740 1341816 "IRREDFFX" 1341911 NIL IRREDFFX (NIL T) -7 NIL NIL) (-576 1340317 1340576 1340875 "IROOT" 1341435 NIL IROOT (NIL T) -7 NIL NIL) (-575 1336949 1338001 1338693 "IR" 1339657 NIL IR (NIL T) -8 NIL NIL) (-574 1334562 1335057 1335623 "IR2" 1336427 NIL IR2 (NIL T T) -7 NIL NIL) (-573 1333634 1333747 1333968 "IR2F" 1334445 NIL IR2F (NIL T T) -7 NIL NIL) (-572 1333425 1333459 1333519 "IPRNTPK" 1333594 T IPRNTPK (NIL) -7 NIL NIL) (-571 1330044 1333314 1333383 "IPF" 1333388 NIL IPF (NIL NIL) -8 NIL NIL) (-570 1328407 1329969 1330026 "IPADIC" 1330031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-569 1327738 1327965 1328102 "IP4ADDR" 1328290 T IP4ADDR (NIL) -8 NIL NIL) (-568 1327238 1327442 1327552 "IOMODE" 1327648 T IOMODE (NIL) -8 NIL NIL) (-567 1326596 1326835 1326962 "IOBFILE" 1327131 T IOBFILE (NIL) -8 NIL NIL) (-566 1326360 1326500 1326528 "IOBCON" 1326533 T IOBCON (NIL) -9 NIL 1326554) (-565 1325857 1325915 1326105 "INVLAPLA" 1326296 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-564 1315506 1317859 1320245 "INTTR" 1323521 NIL INTTR (NIL T T) -7 NIL NIL) (-563 1311850 1312592 1313456 "INTTOOLS" 1314691 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-562 1311436 1311527 1311644 "INTSLPE" 1311753 T INTSLPE (NIL) -7 NIL NIL) (-561 1309431 1311359 1311418 "INTRVL" 1311423 NIL INTRVL (NIL T) -8 NIL NIL) (-560 1307033 1307545 1308120 "INTRF" 1308916 NIL INTRF (NIL T) -7 NIL NIL) (-559 1306444 1306541 1306683 "INTRET" 1306931 NIL INTRET (NIL T) -7 NIL NIL) (-558 1304441 1304830 1305300 "INTRAT" 1306052 NIL INTRAT (NIL T T) -7 NIL NIL) (-557 1301669 1302252 1302878 "INTPM" 1303926 NIL INTPM (NIL T T) -7 NIL NIL) (-556 1298372 1298971 1299716 "INTPAF" 1301055 NIL INTPAF (NIL T T T) -7 NIL NIL) (-555 1293551 1294513 1295564 "INTPACK" 1297341 T INTPACK (NIL) -7 NIL NIL) (-554 1290463 1293280 1293407 "INT" 1293444 T INT (NIL) -8 NIL NIL) (-553 1289715 1289867 1290075 "INTHERTR" 1290305 NIL INTHERTR (NIL T T) -7 NIL NIL) (-552 1289154 1289234 1289422 "INTHERAL" 1289629 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-551 1287000 1287443 1287900 "INTHEORY" 1288717 T INTHEORY (NIL) -7 NIL NIL) (-550 1278308 1279929 1281708 "INTG0" 1285352 NIL INTG0 (NIL T T T) -7 NIL NIL) (-549 1258881 1263671 1268481 "INTFTBL" 1273518 T INTFTBL (NIL) -8 NIL NIL) (-548 1258130 1258268 1258441 "INTFACT" 1258740 NIL INTFACT (NIL T) -7 NIL NIL) (-547 1255515 1255961 1256525 "INTEF" 1257684 NIL INTEF (NIL T T) -7 NIL NIL) (-546 1253982 1254687 1254715 "INTDOM" 1255016 T INTDOM (NIL) -9 NIL 1255223) (-545 1253351 1253525 1253767 "INTDOM-" 1253772 NIL INTDOM- (NIL T) -8 NIL NIL) (-544 1249846 1251735 1251789 "INTCAT" 1252588 NIL INTCAT (NIL T) -9 NIL 1252908) (-543 1249319 1249421 1249549 "INTBIT" 1249738 T INTBIT (NIL) -7 NIL NIL) (-542 1247990 1248144 1248458 "INTALG" 1249164 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-541 1247447 1247537 1247707 "INTAF" 1247894 NIL INTAF (NIL T T) -7 NIL NIL) (-540 1240901 1247257 1247397 "INTABL" 1247402 NIL INTABL (NIL T T T) -8 NIL NIL) (-539 1235916 1238590 1238618 "INS" 1239552 T INS (NIL) -9 NIL 1240217) (-538 1233156 1233927 1234901 "INS-" 1234974 NIL INS- (NIL T) -8 NIL NIL) (-537 1231931 1232158 1232456 "INPSIGN" 1232909 NIL INPSIGN (NIL T T) -7 NIL NIL) (-536 1231049 1231166 1231363 "INPRODPF" 1231811 NIL INPRODPF (NIL T T) -7 NIL NIL) (-535 1229943 1230060 1230297 "INPRODFF" 1230929 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-534 1228943 1229095 1229355 "INNMFACT" 1229779 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-533 1228140 1228237 1228425 "INMODGCD" 1228842 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-532 1226649 1226893 1227217 "INFSP" 1227885 NIL INFSP (NIL T T T) -7 NIL NIL) (-531 1225833 1225950 1226133 "INFPROD0" 1226529 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-530 1222715 1223898 1224413 "INFORM" 1225326 T INFORM (NIL) -8 NIL NIL) (-529 1222325 1222385 1222483 "INFORM1" 1222650 NIL INFORM1 (NIL T) -7 NIL NIL) (-528 1221848 1221937 1222051 "INFINITY" 1222231 T INFINITY (NIL) -7 NIL NIL) (-527 1221293 1221566 1221674 "INETCLTS" 1221760 T INETCLTS (NIL) -8 NIL NIL) (-526 1219910 1220159 1220480 "INEP" 1221041 NIL INEP (NIL T T T) -7 NIL NIL) (-525 1219186 1219807 1219872 "INDE" 1219877 NIL INDE (NIL T) -8 NIL NIL) (-524 1218750 1218818 1218935 "INCRMAPS" 1219113 NIL INCRMAPS (NIL T) -7 NIL NIL) (-523 1217768 1218019 1218225 "INBFILE" 1218564 T INBFILE (NIL) -8 NIL NIL) (-522 1213079 1214004 1214948 "INBFF" 1216856 NIL INBFF (NIL T) -7 NIL NIL) (-521 1212748 1212824 1212852 "INBCON" 1212985 T INBCON (NIL) -9 NIL 1213063) (-520 1212588 1212623 1212699 "INBCON-" 1212704 NIL INBCON- (NIL T) -8 NIL NIL) (-519 1212090 1212309 1212401 "INAST" 1212516 T INAST (NIL) -8 NIL NIL) (-518 1211544 1211769 1211875 "IMPTAST" 1212004 T IMPTAST (NIL) -8 NIL NIL) (-517 1208038 1211388 1211492 "IMATRIX" 1211497 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-516 1206750 1206873 1207188 "IMATQF" 1207894 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-515 1204970 1205197 1205534 "IMATLIN" 1206506 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-514 1199596 1204894 1204952 "ILIST" 1204957 NIL ILIST (NIL T NIL) -8 NIL NIL) (-513 1197549 1199456 1199569 "IIARRAY2" 1199574 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-512 1192982 1197460 1197524 "IFF" 1197529 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-511 1192356 1192599 1192715 "IFAST" 1192886 T IFAST (NIL) -8 NIL NIL) (-510 1187399 1191648 1191836 "IFARRAY" 1192213 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-509 1186606 1187303 1187376 "IFAMON" 1187381 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-508 1186190 1186255 1186309 "IEVALAB" 1186516 NIL IEVALAB (NIL T T) -9 NIL NIL) (-507 1185865 1185933 1186093 "IEVALAB-" 1186098 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-506 1185523 1185779 1185842 "IDPO" 1185847 NIL IDPO (NIL T T) -8 NIL NIL) (-505 1184800 1185412 1185487 "IDPOAMS" 1185492 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-504 1184134 1184689 1184764 "IDPOAM" 1184769 NIL IDPOAM (NIL T T) -8 NIL NIL) (-503 1183219 1183469 1183522 "IDPC" 1183935 NIL IDPC (NIL T T) -9 NIL 1184084) (-502 1182715 1183111 1183184 "IDPAM" 1183189 NIL IDPAM (NIL T T) -8 NIL NIL) (-501 1182118 1182607 1182680 "IDPAG" 1182685 NIL IDPAG (NIL T T) -8 NIL NIL) (-500 1181848 1182033 1182083 "IDENT" 1182088 T IDENT (NIL) -8 NIL NIL) (-499 1178103 1178951 1179846 "IDECOMP" 1181005 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-498 1170976 1172026 1173073 "IDEAL" 1177139 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-497 1170140 1170252 1170451 "ICDEN" 1170860 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-496 1169239 1169620 1169767 "ICARD" 1170013 T ICARD (NIL) -8 NIL NIL) (-495 1167299 1167612 1168017 "IBPTOOLS" 1168916 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-494 1162933 1166919 1167032 "IBITS" 1167218 NIL IBITS (NIL NIL) -8 NIL NIL) (-493 1159656 1160232 1160927 "IBATOOL" 1162350 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-492 1157436 1157897 1158430 "IBACHIN" 1159191 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-491 1155313 1157282 1157385 "IARRAY2" 1157390 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-490 1151466 1155239 1155296 "IARRAY1" 1155301 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-489 1145459 1149878 1150359 "IAN" 1151005 T IAN (NIL) -8 NIL NIL) (-488 1144970 1145027 1145200 "IALGFACT" 1145396 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-487 1144498 1144611 1144639 "HYPCAT" 1144846 T HYPCAT (NIL) -9 NIL NIL) (-486 1144036 1144153 1144339 "HYPCAT-" 1144344 NIL HYPCAT- (NIL T) -8 NIL NIL) (-485 1143658 1143831 1143914 "HOSTNAME" 1143973 T HOSTNAME (NIL) -8 NIL NIL) (-484 1143503 1143540 1143581 "HOMOTOP" 1143586 NIL HOMOTOP (NIL T) -9 NIL 1143619) (-483 1140182 1141513 1141554 "HOAGG" 1142535 NIL HOAGG (NIL T) -9 NIL 1143214) (-482 1138776 1139175 1139701 "HOAGG-" 1139706 NIL HOAGG- (NIL T T) -8 NIL NIL) (-481 1132818 1138373 1138521 "HEXADEC" 1138648 T HEXADEC (NIL) -8 NIL NIL) (-480 1131566 1131788 1132051 "HEUGCD" 1132595 NIL HEUGCD (NIL T) -7 NIL NIL) (-479 1130669 1131403 1131533 "HELLFDIV" 1131538 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-478 1128897 1130446 1130534 "HEAP" 1130613 NIL HEAP (NIL T) -8 NIL NIL) (-477 1128188 1128449 1128583 "HEADAST" 1128783 T HEADAST (NIL) -8 NIL NIL) (-476 1122108 1128103 1128165 "HDP" 1128170 NIL HDP (NIL NIL T) -8 NIL NIL) (-475 1115859 1121743 1121895 "HDMP" 1122009 NIL HDMP (NIL NIL T) -8 NIL NIL) (-474 1115184 1115323 1115487 "HB" 1115715 T HB (NIL) -7 NIL NIL) (-473 1108681 1115030 1115134 "HASHTBL" 1115139 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-472 1108184 1108402 1108494 "HASAST" 1108609 T HASAST (NIL) -8 NIL NIL) (-471 1105996 1107806 1107988 "HACKPI" 1108022 T HACKPI (NIL) -8 NIL NIL) (-470 1101691 1105849 1105962 "GTSET" 1105967 NIL GTSET (NIL T T T T) -8 NIL NIL) (-469 1095217 1101569 1101667 "GSTBL" 1101672 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-468 1087530 1094248 1094513 "GSERIES" 1095008 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-467 1086697 1087088 1087116 "GROUP" 1087319 T GROUP (NIL) -9 NIL 1087453) (-466 1086063 1086222 1086473 "GROUP-" 1086478 NIL GROUP- (NIL T) -8 NIL NIL) (-465 1084432 1084751 1085138 "GROEBSOL" 1085740 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-464 1083372 1083634 1083685 "GRMOD" 1084214 NIL GRMOD (NIL T T) -9 NIL 1084382) (-463 1083140 1083176 1083304 "GRMOD-" 1083309 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-462 1078466 1079494 1080494 "GRIMAGE" 1082160 T GRIMAGE (NIL) -8 NIL NIL) (-461 1076933 1077193 1077517 "GRDEF" 1078162 T GRDEF (NIL) -7 NIL NIL) (-460 1076377 1076493 1076634 "GRAY" 1076812 T GRAY (NIL) -7 NIL NIL) (-459 1075590 1075970 1076021 "GRALG" 1076174 NIL GRALG (NIL T T) -9 NIL 1076267) (-458 1075251 1075324 1075487 "GRALG-" 1075492 NIL GRALG- (NIL T T T) -8 NIL NIL) (-457 1072055 1074836 1075014 "GPOLSET" 1075158 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-456 1071409 1071466 1071724 "GOSPER" 1071992 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-455 1067168 1067847 1068373 "GMODPOL" 1071108 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-454 1066173 1066357 1066595 "GHENSEL" 1066980 NIL GHENSEL (NIL T T) -7 NIL NIL) (-453 1060224 1061067 1062094 "GENUPS" 1065257 NIL GENUPS (NIL T T) -7 NIL NIL) (-452 1059921 1059972 1060061 "GENUFACT" 1060167 NIL GENUFACT (NIL T) -7 NIL NIL) (-451 1059333 1059410 1059575 "GENPGCD" 1059839 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-450 1058807 1058842 1059055 "GENMFACT" 1059292 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-449 1057375 1057630 1057937 "GENEEZ" 1058550 NIL GENEEZ (NIL T T) -7 NIL NIL) (-448 1051288 1056986 1057148 "GDMP" 1057298 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-447 1040665 1045059 1046165 "GCNAALG" 1050271 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-446 1039092 1039920 1039948 "GCDDOM" 1040203 T GCDDOM (NIL) -9 NIL 1040360) (-445 1038562 1038689 1038904 "GCDDOM-" 1038909 NIL GCDDOM- (NIL T) -8 NIL NIL) (-444 1037234 1037419 1037723 "GB" 1038341 NIL GB (NIL T T T T) -7 NIL NIL) (-443 1025854 1028180 1030572 "GBINTERN" 1034925 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-442 1023691 1023983 1024404 "GBF" 1025529 NIL GBF (NIL T T T T) -7 NIL NIL) (-441 1022472 1022637 1022904 "GBEUCLID" 1023507 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-440 1021821 1021946 1022095 "GAUSSFAC" 1022343 T GAUSSFAC (NIL) -7 NIL NIL) (-439 1020188 1020490 1020804 "GALUTIL" 1021540 NIL GALUTIL (NIL T) -7 NIL NIL) (-438 1018496 1018770 1019094 "GALPOLYU" 1019915 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-437 1015861 1016151 1016558 "GALFACTU" 1018193 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-436 1007667 1009166 1010774 "GALFACT" 1014293 NIL GALFACT (NIL T) -7 NIL NIL) (-435 1005055 1005713 1005741 "FVFUN" 1006897 T FVFUN (NIL) -9 NIL 1007617) (-434 1004321 1004503 1004531 "FVC" 1004822 T FVC (NIL) -9 NIL 1005005) (-433 1003963 1004118 1004199 "FUNCTION" 1004273 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-432 1001734 1002285 1002751 "FT" 1003517 T FT (NIL) -8 NIL NIL) (-431 1000552 1001035 1001238 "FTEM" 1001551 T FTEM (NIL) -8 NIL NIL) (-430 998808 999097 999501 "FSUPFACT" 1000243 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-429 997205 997494 997826 "FST" 998496 T FST (NIL) -8 NIL NIL) (-428 996376 996482 996677 "FSRED" 997087 NIL FSRED (NIL T T) -7 NIL NIL) (-427 995055 995310 995664 "FSPRMELT" 996091 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-426 992140 992578 993077 "FSPECF" 994618 NIL FSPECF (NIL T T) -7 NIL NIL) (-425 974200 982643 982683 "FS" 986531 NIL FS (NIL T) -9 NIL 988820) (-424 962850 965840 969896 "FS-" 970193 NIL FS- (NIL T T) -8 NIL NIL) (-423 962364 962418 962595 "FSINT" 962791 NIL FSINT (NIL T T) -7 NIL NIL) (-422 960691 961357 961660 "FSERIES" 962143 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 959705 959821 960052 "FSCINT" 960571 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 955939 958649 958690 "FSAGG" 959060 NIL FSAGG (NIL T) -9 NIL 959319) (-419 953701 954302 955098 "FSAGG-" 955193 NIL FSAGG- (NIL T T) -8 NIL NIL) (-418 952743 952886 953113 "FSAGG2" 953554 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-417 950398 950677 951231 "FS2UPS" 952461 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 949980 950023 950178 "FS2" 950349 NIL FS2 (NIL T T T T) -7 NIL NIL) (-415 948837 949008 949317 "FS2EXPXP" 949805 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-414 948263 948378 948530 "FRUTIL" 948717 NIL FRUTIL (NIL T) -7 NIL NIL) (-413 939718 943758 945116 "FR" 946937 NIL FR (NIL T) -8 NIL NIL) (-412 934793 937436 937476 "FRNAALG" 938872 NIL FRNAALG (NIL T) -9 NIL 939479) (-411 930471 931542 932817 "FRNAALG-" 933567 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-410 930109 930152 930279 "FRNAAF2" 930422 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-409 928516 928963 929258 "FRMOD" 929921 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-408 926295 926899 927216 "FRIDEAL" 928307 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-407 925490 925577 925866 "FRIDEAL2" 926202 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 924623 925037 925078 "FRETRCT" 925083 NIL FRETRCT (NIL T) -9 NIL 925259) (-405 923735 923966 924317 "FRETRCT-" 924322 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-404 920947 922123 922182 "FRAMALG" 923064 NIL FRAMALG (NIL T T) -9 NIL 923356) (-403 919081 919536 920166 "FRAMALG-" 920389 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-402 913039 918556 918832 "FRAC" 918837 NIL FRAC (NIL T) -8 NIL NIL) (-401 912675 912732 912839 "FRAC2" 912976 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 912311 912368 912475 "FR2" 912612 NIL FR2 (NIL T T) -7 NIL NIL) (-399 906984 909836 909864 "FPS" 910983 T FPS (NIL) -9 NIL 911540) (-398 906433 906542 906706 "FPS-" 906852 NIL FPS- (NIL T) -8 NIL NIL) (-397 903887 905522 905550 "FPC" 905775 T FPC (NIL) -9 NIL 905917) (-396 903680 903720 903817 "FPC-" 903822 NIL FPC- (NIL T) -8 NIL NIL) (-395 902558 903168 903209 "FPATMAB" 903214 NIL FPATMAB (NIL T) -9 NIL 903366) (-394 900258 900734 901160 "FPARFRAC" 902195 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-393 895651 896150 896832 "FORTRAN" 899690 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-392 893367 893867 894406 "FORT" 895132 T FORT (NIL) -7 NIL NIL) (-391 891043 891605 891633 "FORTFN" 892693 T FORTFN (NIL) -9 NIL 893317) (-390 890807 890857 890885 "FORTCAT" 890944 T FORTCAT (NIL) -9 NIL 891006) (-389 888940 889423 889813 "FORMULA" 890437 T FORMULA (NIL) -8 NIL NIL) (-388 888728 888758 888827 "FORMULA1" 888904 NIL FORMULA1 (NIL T) -7 NIL NIL) (-387 888251 888303 888476 "FORDER" 888670 NIL FORDER (NIL T T T T) -7 NIL NIL) (-386 887347 887511 887704 "FOP" 888078 T FOP (NIL) -7 NIL NIL) (-385 885955 886627 886801 "FNLA" 887229 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-384 884710 885099 885127 "FNCAT" 885587 T FNCAT (NIL) -9 NIL 885847) (-383 884276 884669 884697 "FNAME" 884702 T FNAME (NIL) -8 NIL NIL) (-382 882939 883868 883896 "FMTC" 883901 T FMTC (NIL) -9 NIL 883937) (-381 879301 880462 881091 "FMONOID" 882343 NIL FMONOID (NIL T) -8 NIL NIL) (-380 878520 879043 879192 "FM" 879197 NIL FM (NIL T T) -8 NIL NIL) (-379 875944 876590 876618 "FMFUN" 877762 T FMFUN (NIL) -9 NIL 878470) (-378 875213 875394 875422 "FMC" 875712 T FMC (NIL) -9 NIL 875894) (-377 872407 873241 873295 "FMCAT" 874490 NIL FMCAT (NIL T T) -9 NIL 874985) (-376 871300 872173 872273 "FM1" 872352 NIL FM1 (NIL T T) -8 NIL NIL) (-375 869074 869490 869984 "FLOATRP" 870851 NIL FLOATRP (NIL T) -7 NIL NIL) (-374 862698 866803 867424 "FLOAT" 868473 T FLOAT (NIL) -8 NIL NIL) (-373 860136 860636 861214 "FLOATCP" 862165 NIL FLOATCP (NIL T) -7 NIL NIL) (-372 858945 859749 859790 "FLINEXP" 859795 NIL FLINEXP (NIL T) -9 NIL 859888) (-371 858099 858334 858662 "FLINEXP-" 858667 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-370 857175 857319 857543 "FLASORT" 857951 NIL FLASORT (NIL T T) -7 NIL NIL) (-369 854392 855234 855286 "FLALG" 856513 NIL FLALG (NIL T T) -9 NIL 856980) (-368 848176 851878 851919 "FLAGG" 853181 NIL FLAGG (NIL T) -9 NIL 853833) (-367 846902 847241 847731 "FLAGG-" 847736 NIL FLAGG- (NIL T T) -8 NIL NIL) (-366 845944 846087 846314 "FLAGG2" 846755 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 842919 843893 843952 "FINRALG" 845080 NIL FINRALG (NIL T T) -9 NIL 845588) (-364 842079 842308 842647 "FINRALG-" 842652 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-363 841485 841698 841726 "FINITE" 841922 T FINITE (NIL) -9 NIL 842029) (-362 833943 836104 836144 "FINAALG" 839811 NIL FINAALG (NIL T) -9 NIL 841264) (-361 829284 830325 831469 "FINAALG-" 832848 NIL FINAALG- (NIL T T) -8 NIL NIL) (-360 828679 829039 829142 "FILE" 829214 NIL FILE (NIL T) -8 NIL NIL) (-359 827363 827675 827729 "FILECAT" 828413 NIL FILECAT (NIL T T) -9 NIL 828629) (-358 825231 826725 826753 "FIELD" 826793 T FIELD (NIL) -9 NIL 826873) (-357 823851 824236 824747 "FIELD-" 824752 NIL FIELD- (NIL T) -8 NIL NIL) (-356 821729 822486 822833 "FGROUP" 823537 NIL FGROUP (NIL T) -8 NIL NIL) (-355 820819 820983 821203 "FGLMICPK" 821561 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-354 816686 820744 820801 "FFX" 820806 NIL FFX (NIL T NIL) -8 NIL NIL) (-353 816287 816348 816483 "FFSLPE" 816619 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 812280 813059 813855 "FFPOLY" 815523 NIL FFPOLY (NIL T) -7 NIL NIL) (-351 811784 811820 812029 "FFPOLY2" 812238 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-350 807670 811703 811766 "FFP" 811771 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 803103 807581 807645 "FF" 807650 NIL FF (NIL NIL NIL) -8 NIL NIL) (-348 798264 802446 802636 "FFNBX" 802957 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-347 793238 797399 797657 "FFNBP" 798118 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-346 787906 792522 792733 "FFNB" 793071 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-345 786738 786936 787251 "FFINTBAS" 787703 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-344 782966 785145 785173 "FFIELDC" 785793 T FFIELDC (NIL) -9 NIL 786169) (-343 781629 781999 782496 "FFIELDC-" 782501 NIL FFIELDC- (NIL T) -8 NIL NIL) (-342 781199 781244 781368 "FFHOM" 781571 NIL FFHOM (NIL T T T) -7 NIL NIL) (-341 778897 779381 779898 "FFF" 780714 NIL FFF (NIL T) -7 NIL NIL) (-340 774550 778639 778740 "FFCGX" 778840 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-339 770217 774282 774389 "FFCGP" 774493 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-338 765435 769944 770052 "FFCG" 770153 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-337 747268 756306 756392 "FFCAT" 761557 NIL FFCAT (NIL T T T) -9 NIL 763008) (-336 742466 743513 744827 "FFCAT-" 746057 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-335 741877 741920 742155 "FFCAT2" 742417 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-334 731089 734849 736069 "FEXPR" 740729 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-333 730089 730524 730565 "FEVALAB" 730649 NIL FEVALAB (NIL T) -9 NIL 730910) (-332 729248 729458 729796 "FEVALAB-" 729801 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-331 727841 728631 728834 "FDIV" 729147 NIL FDIV (NIL T T T T) -8 NIL NIL) (-330 724907 725622 725737 "FDIVCAT" 727305 NIL FDIVCAT (NIL T T T T) -9 NIL 727742) (-329 724669 724696 724866 "FDIVCAT-" 724871 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-328 723889 723976 724253 "FDIV2" 724576 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-327 722575 722834 723123 "FCPAK1" 723620 T FCPAK1 (NIL) -7 NIL NIL) (-326 721703 722075 722216 "FCOMP" 722466 NIL FCOMP (NIL T) -8 NIL NIL) (-325 705439 708853 712391 "FC" 718185 T FC (NIL) -8 NIL NIL) (-324 698018 702003 702043 "FAXF" 703845 NIL FAXF (NIL T) -9 NIL 704537) (-323 695297 695952 696777 "FAXF-" 697242 NIL FAXF- (NIL T T) -8 NIL NIL) (-322 690397 694673 694849 "FARRAY" 695154 NIL FARRAY (NIL T) -8 NIL NIL) (-321 685650 687682 687735 "FAMR" 688758 NIL FAMR (NIL T T) -9 NIL 689218) (-320 684540 684842 685277 "FAMR-" 685282 NIL FAMR- (NIL T T T) -8 NIL NIL) (-319 683736 684462 684515 "FAMONOID" 684520 NIL FAMONOID (NIL T) -8 NIL NIL) (-318 681548 682232 682285 "FAMONC" 683226 NIL FAMONC (NIL T T) -9 NIL 683612) (-317 680240 681302 681439 "FAGROUP" 681444 NIL FAGROUP (NIL T) -8 NIL NIL) (-316 678035 678354 678757 "FACUTIL" 679921 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-315 677134 677319 677541 "FACTFUNC" 677845 NIL FACTFUNC (NIL T) -7 NIL NIL) (-314 669539 676385 676597 "EXPUPXS" 676990 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 667022 667562 668148 "EXPRTUBE" 668973 T EXPRTUBE (NIL) -7 NIL NIL) (-312 663216 663808 664545 "EXPRODE" 666361 NIL EXPRODE (NIL T T) -7 NIL NIL) (-311 648590 661871 662299 "EXPR" 662820 NIL EXPR (NIL T) -8 NIL NIL) (-310 642997 643584 644397 "EXPR2UPS" 647888 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-309 642633 642690 642797 "EXPR2" 642934 NIL EXPR2 (NIL T T) -7 NIL NIL) (-308 634038 641765 642062 "EXPEXPAN" 642470 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-307 633865 633995 634024 "EXIT" 634029 T EXIT (NIL) -8 NIL NIL) (-306 633372 633589 633680 "EXITAST" 633794 T EXITAST (NIL) -8 NIL NIL) (-305 632999 633061 633174 "EVALCYC" 633304 NIL EVALCYC (NIL T) -7 NIL NIL) (-304 632540 632658 632699 "EVALAB" 632869 NIL EVALAB (NIL T) -9 NIL 632973) (-303 632021 632143 632364 "EVALAB-" 632369 NIL EVALAB- (NIL T T) -8 NIL NIL) (-302 629489 630757 630785 "EUCDOM" 631340 T EUCDOM (NIL) -9 NIL 631690) (-301 627894 628336 628926 "EUCDOM-" 628931 NIL EUCDOM- (NIL T) -8 NIL NIL) (-300 615434 618192 620942 "ESTOOLS" 625164 T ESTOOLS (NIL) -7 NIL NIL) (-299 615066 615123 615232 "ESTOOLS2" 615371 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-298 614817 614859 614939 "ESTOOLS1" 615018 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-297 608722 610450 610478 "ES" 613246 T ES (NIL) -9 NIL 614655) (-296 603669 604956 606773 "ES-" 606937 NIL ES- (NIL T) -8 NIL NIL) (-295 600044 600804 601584 "ESCONT" 602909 T ESCONT (NIL) -7 NIL NIL) (-294 599789 599821 599903 "ESCONT1" 600006 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-293 599464 599514 599614 "ES2" 599733 NIL ES2 (NIL T T) -7 NIL NIL) (-292 599094 599152 599261 "ES1" 599400 NIL ES1 (NIL T T) -7 NIL NIL) (-291 598310 598439 598615 "ERROR" 598938 T ERROR (NIL) -7 NIL NIL) (-290 591813 598169 598260 "EQTBL" 598265 NIL EQTBL (NIL T T) -8 NIL NIL) (-289 584370 587127 588576 "EQ" 590397 NIL -3245 (NIL T) -8 NIL NIL) (-288 584002 584059 584168 "EQ2" 584307 NIL EQ2 (NIL T T) -7 NIL NIL) (-287 579294 580340 581433 "EP" 582941 NIL EP (NIL T) -7 NIL NIL) (-286 577876 578177 578494 "ENV" 578997 T ENV (NIL) -8 NIL NIL) (-285 577055 577575 577603 "ENTIRER" 577608 T ENTIRER (NIL) -9 NIL 577654) (-284 573557 575010 575380 "EMR" 576854 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 572701 572886 572940 "ELTAGG" 573320 NIL ELTAGG (NIL T T) -9 NIL 573531) (-282 572420 572482 572623 "ELTAGG-" 572628 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 572209 572238 572292 "ELTAB" 572376 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 571335 571481 571680 "ELFUTS" 572060 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 571077 571133 571161 "ELEMFUN" 571266 T ELEMFUN (NIL) -9 NIL NIL) (-278 570947 570968 571036 "ELEMFUN-" 571041 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 565838 569047 569088 "ELAGG" 570028 NIL ELAGG (NIL T) -9 NIL 570491) (-276 564123 564557 565220 "ELAGG-" 565225 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 562780 563060 563355 "ELABEXPR" 563848 T ELABEXPR (NIL) -8 NIL NIL) (-274 555646 557447 558274 "EFUPXS" 562056 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-273 549096 550897 551707 "EFULS" 554922 NIL EFULS (NIL T T T) -8 NIL NIL) (-272 546518 546876 547355 "EFSTRUC" 548728 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-271 535590 537155 538715 "EF" 545033 NIL EF (NIL T T) -7 NIL NIL) (-270 534691 535075 535224 "EAB" 535461 T EAB (NIL) -8 NIL NIL) (-269 533900 534650 534678 "E04UCFA" 534683 T E04UCFA (NIL) -8 NIL NIL) (-268 533109 533859 533887 "E04NAFA" 533892 T E04NAFA (NIL) -8 NIL NIL) (-267 532318 533068 533096 "E04MBFA" 533101 T E04MBFA (NIL) -8 NIL NIL) (-266 531527 532277 532305 "E04JAFA" 532310 T E04JAFA (NIL) -8 NIL NIL) (-265 530738 531486 531514 "E04GCFA" 531519 T E04GCFA (NIL) -8 NIL NIL) (-264 529949 530697 530725 "E04FDFA" 530730 T E04FDFA (NIL) -8 NIL NIL) (-263 529158 529908 529936 "E04DGFA" 529941 T E04DGFA (NIL) -8 NIL NIL) (-262 523336 524683 526047 "E04AGNT" 527814 T E04AGNT (NIL) -7 NIL NIL) (-261 522042 522522 522562 "DVARCAT" 523037 NIL DVARCAT (NIL T) -9 NIL 523236) (-260 521246 521458 521772 "DVARCAT-" 521777 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-259 514146 521045 521174 "DSMP" 521179 NIL DSMP (NIL T T T) -8 NIL NIL) (-258 508956 510091 511159 "DROPT" 513098 T DROPT (NIL) -8 NIL NIL) (-257 508621 508680 508778 "DROPT1" 508891 NIL DROPT1 (NIL T) -7 NIL NIL) (-256 503736 504862 505999 "DROPT0" 507504 T DROPT0 (NIL) -7 NIL NIL) (-255 502081 502406 502792 "DRAWPT" 503370 T DRAWPT (NIL) -7 NIL NIL) (-254 496668 497591 498670 "DRAW" 501055 NIL DRAW (NIL T) -7 NIL NIL) (-253 496301 496354 496472 "DRAWHACK" 496609 NIL DRAWHACK (NIL T) -7 NIL NIL) (-252 495032 495301 495592 "DRAWCX" 496030 T DRAWCX (NIL) -7 NIL NIL) (-251 494548 494616 494767 "DRAWCURV" 494958 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-250 485019 486978 489093 "DRAWCFUN" 492453 T DRAWCFUN (NIL) -7 NIL NIL) (-249 481832 483714 483755 "DQAGG" 484384 NIL DQAGG (NIL T) -9 NIL 484657) (-248 470111 476810 476893 "DPOLCAT" 478745 NIL DPOLCAT (NIL T T T T) -9 NIL 479290) (-247 464950 466296 468254 "DPOLCAT-" 468259 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-246 458105 464811 464909 "DPMO" 464914 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-245 451163 457885 458052 "DPMM" 458057 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-244 450583 450786 450900 "DOMAIN" 451069 T DOMAIN (NIL) -8 NIL NIL) (-243 444334 450218 450370 "DMP" 450484 NIL DMP (NIL NIL T) -8 NIL NIL) (-242 443934 443990 444134 "DLP" 444272 NIL DLP (NIL T) -7 NIL NIL) (-241 437804 443261 443451 "DLIST" 443776 NIL DLIST (NIL T) -8 NIL NIL) (-240 434650 436659 436700 "DLAGG" 437250 NIL DLAGG (NIL T) -9 NIL 437479) (-239 433463 434093 434121 "DIVRING" 434213 T DIVRING (NIL) -9 NIL 434296) (-238 432700 432890 433190 "DIVRING-" 433195 NIL DIVRING- (NIL T) -8 NIL NIL) (-237 430802 431159 431565 "DISPLAY" 432314 T DISPLAY (NIL) -7 NIL NIL) (-236 424744 430716 430779 "DIRPROD" 430784 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-235 423592 423795 424060 "DIRPROD2" 424537 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-234 412855 418807 418860 "DIRPCAT" 419270 NIL DIRPCAT (NIL NIL T) -9 NIL 420110) (-233 410181 410823 411704 "DIRPCAT-" 412041 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-232 409468 409628 409814 "DIOSP" 410015 T DIOSP (NIL) -7 NIL NIL) (-231 406170 408380 408421 "DIOPS" 408855 NIL DIOPS (NIL T) -9 NIL 409084) (-230 405719 405833 406024 "DIOPS-" 406029 NIL DIOPS- (NIL T T) -8 NIL NIL) (-229 404611 405205 405233 "DIFRING" 405420 T DIFRING (NIL) -9 NIL 405530) (-228 404257 404334 404486 "DIFRING-" 404491 NIL DIFRING- (NIL T) -8 NIL NIL) (-227 402062 403300 403341 "DIFEXT" 403704 NIL DIFEXT (NIL T) -9 NIL 403998) (-226 400347 400775 401441 "DIFEXT-" 401446 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-225 397669 399879 399920 "DIAGG" 399925 NIL DIAGG (NIL T) -9 NIL 399945) (-224 397053 397210 397462 "DIAGG-" 397467 NIL DIAGG- (NIL T T) -8 NIL NIL) (-223 392518 396012 396289 "DHMATRIX" 396822 NIL DHMATRIX (NIL T) -8 NIL NIL) (-222 388130 389039 390049 "DFSFUN" 391528 T DFSFUN (NIL) -7 NIL NIL) (-221 383246 387061 387373 "DFLOAT" 387838 T DFLOAT (NIL) -8 NIL NIL) (-220 381474 381755 382151 "DFINTTLS" 382954 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-219 378539 379495 379895 "DERHAM" 381140 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-218 376388 378314 378403 "DEQUEUE" 378483 NIL DEQUEUE (NIL T) -8 NIL NIL) (-217 375603 375736 375932 "DEGRED" 376250 NIL DEGRED (NIL T T) -7 NIL NIL) (-216 371998 372743 373596 "DEFINTRF" 374831 NIL DEFINTRF (NIL T) -7 NIL NIL) (-215 369525 369994 370593 "DEFINTEF" 371517 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-214 368902 369145 369260 "DEFAST" 369430 T DEFAST (NIL) -8 NIL NIL) (-213 362944 368499 368647 "DECIMAL" 368774 T DECIMAL (NIL) -8 NIL NIL) (-212 360456 360914 361420 "DDFACT" 362488 NIL DDFACT (NIL T T) -7 NIL NIL) (-211 360052 360095 360246 "DBLRESP" 360407 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-210 357951 358285 358645 "DBASE" 359819 NIL DBASE (NIL T) -8 NIL NIL) (-209 357220 357431 357577 "DATAARY" 357850 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-208 356353 357179 357207 "D03FAFA" 357212 T D03FAFA (NIL) -8 NIL NIL) (-207 355487 356312 356340 "D03EEFA" 356345 T D03EEFA (NIL) -8 NIL NIL) (-206 353437 353903 354392 "D03AGNT" 355018 T D03AGNT (NIL) -7 NIL NIL) (-205 352753 353396 353424 "D02EJFA" 353429 T D02EJFA (NIL) -8 NIL NIL) (-204 352069 352712 352740 "D02CJFA" 352745 T D02CJFA (NIL) -8 NIL NIL) (-203 351385 352028 352056 "D02BHFA" 352061 T D02BHFA (NIL) -8 NIL NIL) (-202 350701 351344 351372 "D02BBFA" 351377 T D02BBFA (NIL) -8 NIL NIL) (-201 343899 345487 347093 "D02AGNT" 349115 T D02AGNT (NIL) -7 NIL NIL) (-200 341668 342190 342736 "D01WGTS" 343373 T D01WGTS (NIL) -7 NIL NIL) (-199 340763 341627 341655 "D01TRNS" 341660 T D01TRNS (NIL) -8 NIL NIL) (-198 339858 340722 340750 "D01GBFA" 340755 T D01GBFA (NIL) -8 NIL NIL) (-197 338953 339817 339845 "D01FCFA" 339850 T D01FCFA (NIL) -8 NIL NIL) (-196 338048 338912 338940 "D01ASFA" 338945 T D01ASFA (NIL) -8 NIL NIL) (-195 337143 338007 338035 "D01AQFA" 338040 T D01AQFA (NIL) -8 NIL NIL) (-194 336238 337102 337130 "D01APFA" 337135 T D01APFA (NIL) -8 NIL NIL) (-193 335333 336197 336225 "D01ANFA" 336230 T D01ANFA (NIL) -8 NIL NIL) (-192 334428 335292 335320 "D01AMFA" 335325 T D01AMFA (NIL) -8 NIL NIL) (-191 333523 334387 334415 "D01ALFA" 334420 T D01ALFA (NIL) -8 NIL NIL) (-190 332618 333482 333510 "D01AKFA" 333515 T D01AKFA (NIL) -8 NIL NIL) (-189 331713 332577 332605 "D01AJFA" 332610 T D01AJFA (NIL) -8 NIL NIL) (-188 325010 326561 328122 "D01AGNT" 330172 T D01AGNT (NIL) -7 NIL NIL) (-187 324347 324475 324627 "CYCLOTOM" 324878 T CYCLOTOM (NIL) -7 NIL NIL) (-186 321082 321795 322522 "CYCLES" 323640 T CYCLES (NIL) -7 NIL NIL) (-185 320394 320528 320699 "CVMP" 320943 NIL CVMP (NIL T) -7 NIL NIL) (-184 318165 318423 318799 "CTRIGMNP" 320122 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-183 317582 317788 317902 "CTOR" 318071 T CTOR (NIL) -8 NIL NIL) (-182 317118 317313 317414 "CTORKIND" 317501 T CTORKIND (NIL) -8 NIL NIL) (-181 316629 316818 316917 "CTORCALL" 317039 T CTORCALL (NIL) -8 NIL NIL) (-180 316003 316102 316255 "CSTTOOLS" 316526 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311802 312459 313217 "CRFP" 315315 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311304 311523 311615 "CRCEAST" 311730 T CRCEAST (NIL) -8 NIL NIL) (-177 310351 310536 310764 "CRAPACK" 311108 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309735 309836 310040 "CPMATCH" 310227 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309460 309488 309594 "CPIMA" 309701 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305824 306496 307214 "COORDSYS" 308795 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 305208 305337 305487 "CONTOUR" 305694 T CONTOUR (NIL) -8 NIL NIL) (-172 301134 303211 303703 "CONTFRAC" 304748 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 301014 301035 301063 "CONDUIT" 301100 T CONDUIT (NIL) -9 NIL NIL) (-170 300187 300707 300735 "COMRING" 300740 T COMRING (NIL) -9 NIL 300792) (-169 299268 299545 299729 "COMPPROP" 300023 T COMPPROP (NIL) -8 NIL NIL) (-168 298929 298964 299092 "COMPLPAT" 299227 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288986 298738 298847 "COMPLEX" 298852 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288622 288679 288786 "COMPLEX2" 288923 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288340 288375 288473 "COMPFACT" 288581 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272513 282733 282773 "COMPCAT" 283777 NIL COMPCAT (NIL T) -9 NIL 285162) (-163 262028 264952 268579 "COMPCAT-" 268935 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261757 261785 261888 "COMMUPC" 261994 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261552 261585 261644 "COMMONOP" 261718 T COMMONOP (NIL) -7 NIL NIL) (-160 261135 261303 261390 "COMM" 261485 T COMM (NIL) -8 NIL NIL) (-159 260739 260939 261014 "COMMAAST" 261080 T COMMAAST (NIL) -8 NIL NIL) (-158 259988 260182 260210 "COMBOPC" 260548 T COMBOPC (NIL) -9 NIL 260723) (-157 258884 259094 259336 "COMBINAT" 259778 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255082 255655 256295 "COMBF" 258306 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253868 254198 254433 "COLOR" 254867 T COLOR (NIL) -8 NIL NIL) (-154 253371 253589 253681 "COLONAST" 253796 T COLONAST (NIL) -8 NIL NIL) (-153 253011 253058 253183 "CMPLXRT" 253318 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252486 252711 252810 "CLLCTAST" 252932 T CLLCTAST (NIL) -8 NIL NIL) (-151 247988 249016 250096 "CLIP" 251426 T CLIP (NIL) -7 NIL NIL) (-150 246370 247094 247333 "CLIF" 247815 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242592 244516 244557 "CLAGG" 245486 NIL CLAGG (NIL T) -9 NIL 246022) (-148 241014 241471 242054 "CLAGG-" 242059 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240558 240643 240783 "CINTSLPE" 240923 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238059 238530 239078 "CHVAR" 240086 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237302 237822 237850 "CHARZ" 237855 T CHARZ (NIL) -9 NIL 237870) (-144 237056 237096 237174 "CHARPOL" 237256 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236183 236736 236764 "CHARNZ" 236811 T CHARNZ (NIL) -9 NIL 236867) (-142 234208 234873 235208 "CHAR" 235868 T CHAR (NIL) -8 NIL NIL) (-141 233934 233995 234023 "CFCAT" 234134 T CFCAT (NIL) -9 NIL NIL) (-140 233179 233290 233472 "CDEN" 233818 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229171 232332 232612 "CCLASS" 232919 T CCLASS (NIL) -8 NIL NIL) (-138 229090 229116 229151 "CATEGORY" 229156 T -10 (NIL) -8 NIL NIL) (-137 228564 228790 228889 "CATAST" 229011 T CATAST (NIL) -8 NIL NIL) (-136 228067 228285 228377 "CASEAST" 228492 T CASEAST (NIL) -8 NIL NIL) (-135 223119 224096 224849 "CARTEN" 227370 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222227 222375 222596 "CARTEN2" 222966 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220569 221377 221634 "CARD" 221990 T CARD (NIL) -8 NIL NIL) (-132 220172 220373 220448 "CAPSLAST" 220514 T CAPSLAST (NIL) -8 NIL NIL) (-131 219544 219872 219900 "CACHSET" 220032 T CACHSET (NIL) -9 NIL 220109) (-130 219040 219336 219364 "CABMON" 219414 T CABMON (NIL) -9 NIL 219470) (-129 218068 218496 218669 "BYTE" 218887 T BYTE (NIL) -8 NIL NIL) (-128 213477 217536 217699 "BYTEBUF" 217925 T BYTEBUF (NIL) -8 NIL NIL) (-127 211034 213169 213276 "BTREE" 213403 NIL BTREE (NIL T) -8 NIL NIL) (-126 208532 210682 210804 "BTOURN" 210944 NIL BTOURN (NIL T) -8 NIL NIL) (-125 205950 208003 208044 "BTCAT" 208112 NIL BTCAT (NIL T) -9 NIL 208189) (-124 205617 205697 205846 "BTCAT-" 205851 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200909 204760 204788 "BTAGG" 205010 T BTAGG (NIL) -9 NIL 205171) (-122 200399 200524 200730 "BTAGG-" 200735 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197443 199677 199892 "BSTREE" 200216 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196581 196707 196891 "BRILL" 197299 NIL BRILL (NIL T) -7 NIL NIL) (-119 193282 195309 195350 "BRAGG" 195999 NIL BRAGG (NIL T) -9 NIL 196256) (-118 191811 192217 192772 "BRAGG-" 192777 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185075 191157 191341 "BPADICRT" 191659 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183425 185012 185057 "BPADIC" 185062 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183123 183153 183267 "BOUNDZRO" 183389 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 178638 179729 180596 "BOP" 182276 T BOP (NIL) -8 NIL NIL) (-113 176259 176703 177223 "BOP1" 178151 NIL BOP1 (NIL T) -7 NIL NIL) (-112 174997 175683 175876 "BOOLEAN" 176086 T BOOLEAN (NIL) -8 NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL) (-101 155195 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL) (-100 154629 154705 154857 "BALFACT" 155106 NIL BALFACT (NIL T T) -7 NIL NIL) (-99 153512 154044 154230 "AUTOMOR" 154474 NIL AUTOMOR (NIL T) -8 NIL NIL) (-98 153238 153243 153269 "ATTREG" 153274 T ATTREG (NIL) -9 NIL NIL) (-97 151517 151935 152287 "ATTRBUT" 152904 T ATTRBUT (NIL) -8 NIL NIL) (-96 151152 151345 151411 "ATTRAST" 151469 T ATTRAST (NIL) -8 NIL NIL) (-95 150688 150801 150827 "ATRIG" 151028 T ATRIG (NIL) -9 NIL NIL) (-94 150497 150538 150625 "ATRIG-" 150630 NIL ATRIG- (NIL T) -8 NIL NIL) (-93 150168 150328 150354 "ASTCAT" 150359 T ASTCAT (NIL) -9 NIL 150389) (-92 149895 149954 150073 "ASTCAT-" 150078 NIL ASTCAT- (NIL T) -8 NIL NIL) (-91 148092 149671 149759 "ASTACK" 149838 NIL ASTACK (NIL T) -8 NIL NIL) (-90 146597 146894 147259 "ASSOCEQ" 147774 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-89 145629 146256 146380 "ASP9" 146504 NIL ASP9 (NIL NIL) -8 NIL NIL) (-88 145393 145577 145616 "ASP8" 145621 NIL ASP8 (NIL NIL) -8 NIL NIL) (-87 144262 144998 145140 "ASP80" 145282 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143161 143897 144029 "ASP7" 144161 NIL ASP7 (NIL NIL) -8 NIL NIL) (-85 142115 142838 142956 "ASP78" 143074 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141084 141795 141912 "ASP77" 142029 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 139996 140722 140853 "ASP74" 140984 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 138896 139631 139763 "ASP73" 139895 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138000 138722 138822 "ASP6" 138827 NIL ASP6 (NIL NIL) -8 NIL NIL) (-80 136948 137677 137795 "ASP55" 137913 NIL ASP55 (NIL NIL) -8 NIL NIL) (-79 135898 136622 136741 "ASP50" 136860 NIL ASP50 (NIL NIL) -8 NIL NIL) (-78 134986 135599 135709 "ASP4" 135819 NIL ASP4 (NIL NIL) -8 NIL NIL) (-77 134074 134687 134797 "ASP49" 134907 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132859 133613 133781 "ASP42" 133963 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131636 132392 132562 "ASP41" 132746 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130586 131313 131431 "ASP35" 131549 NIL ASP35 (NIL NIL) -8 NIL NIL) (-73 130351 130534 130573 "ASP34" 130578 NIL ASP34 (NIL NIL) -8 NIL NIL) (-72 130088 130155 130231 "ASP33" 130306 NIL ASP33 (NIL NIL) -8 NIL NIL) (-71 128983 129723 129855 "ASP31" 129987 NIL ASP31 (NIL NIL) -8 NIL NIL) (-70 128748 128931 128970 "ASP30" 128975 NIL ASP30 (NIL NIL) -8 NIL NIL) (-69 128483 128552 128628 "ASP29" 128703 NIL ASP29 (NIL NIL) -8 NIL NIL) (-68 128248 128431 128470 "ASP28" 128475 NIL ASP28 (NIL NIL) -8 NIL NIL) (-67 128013 128196 128235 "ASP27" 128240 NIL ASP27 (NIL NIL) -8 NIL NIL) (-66 127097 127711 127822 "ASP24" 127933 NIL ASP24 (NIL NIL) -8 NIL NIL) (-65 126174 126899 127011 "ASP20" 127016 NIL ASP20 (NIL NIL) -8 NIL NIL) (-64 125262 125875 125985 "ASP1" 126095 NIL ASP1 (NIL NIL) -8 NIL NIL) (-63 124206 124936 125055 "ASP19" 125174 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123943 124010 124086 "ASP12" 124161 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122795 123542 123686 "ASP10" 123830 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 120694 122639 122730 "ARRAY2" 122735 NIL ARRAY2 (NIL T) -8 NIL NIL) (-59 116510 120342 120456 "ARRAY1" 120611 NIL ARRAY1 (NIL T) -8 NIL NIL) (-58 115542 115715 115936 "ARRAY12" 116333 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 109901 111772 111847 "ARR2CAT" 114477 NIL ARR2CAT (NIL T T T) -9 NIL 115235) (-56 107335 108079 109033 "ARR2CAT-" 109038 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-55 106929 107162 107241 "ARITY" 107274 T ARITY (NIL) -8 NIL NIL) (-54 105677 105829 106135 "APPRULE" 106765 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105328 105376 105495 "APPLYORE" 105623 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104302 104593 104788 "ANY" 105151 T ANY (NIL) -8 NIL NIL) (-51 103580 103703 103860 "ANY1" 104176 NIL ANY1 (NIL T) -7 NIL NIL) (-50 101145 102017 102344 "ANTISYM" 103304 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100660 100849 100946 "ANON" 101066 T ANON (NIL) -8 NIL NIL) (-48 94792 99199 99653 "AN" 100224 T AN (NIL) -8 NIL NIL) (-47 91048 92402 92453 "AMR" 93201 NIL AMR (NIL T T) -9 NIL 93801) (-46 90160 90381 90744 "AMR-" 90749 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74710 90077 90138 "ALIST" 90143 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71547 74304 74473 "ALGSC" 74628 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 68103 68657 69264 "ALGPKG" 70987 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67380 67481 67665 "ALGMFACT" 67989 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 63119 63804 64459 "ALGMANIP" 66903 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54525 62745 62895 "ALGFF" 63052 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53721 53852 54031 "ALGFACT" 54383 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52786 53352 53390 "ALGEBRA" 53395 NIL ALGEBRA (NIL T) -9 NIL 53436) (-37 52504 52563 52695 "ALGEBRA-" 52700 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 7ea1f5d1..c007c6cd 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,9768 +1,9664 @@ -(733959 . 3437447583) -(((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1192)) (-5 *1 (-179 *3 *2)) (-4 *2 (-659 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *3 (-630 (-553))) - (-5 *1 (-865))))) +(734242 . 3437790956) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) - (-5 *2 - (-3 (|:| |overq| (-1151 (-401 (-553)))) - (|:| |overan| (-1151 (-48))) (|:| -4140 (-111)))) - (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-630 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1185 *5 *6 *7 *8)) (-4 *5 (-545)) - (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1022))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-473))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-553)) (-4 *7 (-931 *4 *5 *6)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) -(((*1 *2 *3) (-12 (-5 *3 (-807)) (-5 *2 (-52)) (-5 *1 (-817))))) + (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399)) + (-5 *2 (-906))))) +(((*1 *2 *3) + (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-554)))) + (-5 *1 (-300))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554)))) + (-4 *5 (-871 (-554))) + (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-557 *5 *3)) (-4 *3 (-617)) + (-4 *3 (-13 (-27) (-1180) (-425 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1158)) (-5 *4 (-829 *2)) (-4 *2 (-1121)) + (-4 *2 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-602 (-877 (-554)))) (-4 *5 (-871 (-554))) + (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) + (-5 *1 (-557 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-530)) (-5 *1 (-529 *4)) + (-4 *4 (-1195))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1238 (-630 (-553)))) (-5 *1 (-473)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-357))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-172))) (-5 *1 (-1064))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022))))) + (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-954 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1041 (-1006 *3) (-1151 (-1006 *3)))) - (-5 *1 (-1006 *3)) (-4 *3 (-13 (-831) (-357) (-1004)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-343)) (-4 *2 (-1031)) (-5 *1 (-698 *2 *3)) - (-4 *3 (-1214 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *4 *5 *6)) - (-4 *4 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192))))) -(((*1 *1) (-5 *1 (-789)))) + (-12 (-4 *2 (-1082)) (-5 *1 (-949 *2 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539)))) + ((*1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-675 *11)) (-5 *4 (-631 (-402 (-937 *8)))) + (-5 *5 (-758)) (-5 *6 (-1140)) (-4 *8 (-13 (-302) (-145))) + (-4 *11 (-934 *8 *10 *9)) (-4 *9 (-13 (-836) (-602 (-1158)))) + (-4 *10 (-780)) + (-5 *2 + (-2 + (|:| |rgl| + (-631 + (-2 (|:| |eqzro| (-631 *11)) (|:| |neqzro| (-631 *11)) + (|:| |wcond| (-631 (-937 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *8)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *8)))))))))) + (|:| |rgsz| (-554)))) + (-5 *1 (-909 *8 *9 *10 *11)) (-5 *7 (-554))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-758)) (-4 *2 (-1082)) + (-5 *1 (-664 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-554)) (-4 *6 (-358)) (-4 *6 (-363)) + (-4 *6 (-1034)) (-5 *2 (-631 (-631 (-675 *6)))) (-5 *1 (-1014 *6)) + (-5 *3 (-631 (-675 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1034)) + (-5 *2 (-631 (-631 (-675 *4)))) (-5 *1 (-1014 *4)) + (-5 *3 (-631 (-675 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)) + (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) + (-5 *3 (-631 (-675 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-906)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034)) + (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) + (-5 *3 (-631 (-675 *5)))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-116 *4)) (-14 *4 *3) - (-5 *3 (-553)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-554)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-853 *4)) (-14 *4 *3) - (-5 *3 (-553)))) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-856 *4)) (-14 *4 *3) + (-5 *3 (-554)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-401 (-553))) (-5 *1 (-854 *4 *5)) - (-5 *3 (-553)) (-4 *5 (-851 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-994)) (-5 *2 (-401 (-553))))) + (-12 (-14 *4 *3) (-5 *2 (-402 (-554))) (-5 *1 (-857 *4 *5)) + (-5 *3 (-554)) (-4 *5 (-854 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-997)) (-5 *2 (-402 (-554))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1048 *2 *3)) (-4 *2 (-13 (-831) (-357))) - (-4 *3 (-1214 *2)))) + (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358))) + (-4 *3 (-1217 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *3 (-778)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3110 (*2 (-1155)))) - (-4 *2 (-1031))))) -(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-1017))) (-5 *2 (-1017)) (-5 *1 (-299)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *1) (-5 *1 (-1043))) - ((*1 *2 *3) - (-12 (-5 *3 (-1135 (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1132 *4)) - (-4 *4 (-1192)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1123)) (-5 *3 (-553)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-538)) (-4 *3 (-545)))) - ((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-783 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-819 *3)) (-4 *3 (-538)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-826 *3)) (-4 *3 (-538)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *1 (-979 *3)) (-4 *3 (-169)) (-4 *3 (-538)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-990 *3)) (-4 *3 (-1020 (-401 (-553))))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-538)))) -(((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) + (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3075 (*2 (-1158)))) + (-4 *2 (-1034))))) (((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) - (-4 *3 (-367 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 *5)) (-4 *5 (-974 *4)) (-4 *4 (-545)) - (-5 *2 (-2 (|:| |num| (-674 *4)) (|:| |den| *4))) - (-5 *1 (-678 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *6 (-1214 *5)) - (-5 *2 (-2 (|:| -2662 *7) (|:| |rh| (-630 (-401 *6))))) - (-5 *1 (-793 *5 *6 *7 *3)) (-5 *4 (-630 (-401 *6))) - (-4 *7 (-641 *6)) (-4 *3 (-641 (-401 *6))))) + (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) + (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758)))) ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1207 *4 *5 *3)) - (-4 *3 (-1214 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1073 (-826 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) - (-5 *1 (-299)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-461)))) -(((*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-845))))) -(((*1 *2) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *1) (-5 *1 (-548)))) + (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3)) + (-4 *3 (-673 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) + (-5 *2 (-758))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) - ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1151 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-343))))) + (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-38 (-402 (-554)))) + (-4 *2 (-170))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-109))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) + (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-731 *3)) (-4 *3 (-170))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-131)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-151)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-661)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1001)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1046)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-1075))))) + (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) + (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-1020))) (-5 *2 (-1020)) (-5 *1 (-300)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *1) (-5 *1 (-1046))) + ((*1 *2 *3) + (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1135 *4)) + (-4 *4 (-1195)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) + (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-875 *4 *5)) (-4 *5 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1148))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-903)) (-4 *5 (-833)) - (-5 *2 (-630 (-657 *5))) (-5 *1 (-657 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-401 (-934 *4))) (-5 *3 (-1155)) - (-4 *4 (-13 (-545) (-1020 (-553)) (-144))) (-5 *1 (-559 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-630 (-1155))) (-4 *2 (-169)) - (-4 *3 (-233 (-2563 *4) (-757))) - (-14 *6 - (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *3)) - (-2 (|:| -2735 *5) (|:| -2692 *3)))) - (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-833)) - (-4 *7 (-931 *2 *3 (-847 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1031)) (-4 *2 (-672 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1214 *4)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1137)) (-5 *1 (-971)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1073 *4)) (-4 *4 (-1192)) - (-5 *1 (-1071 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1151 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-833) (-545))) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-95)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-182)))) - ((*1 *2 *1) - (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1079)) (-4 *2 (-1079)))) - ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-432 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-476)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-947)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1054 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1094)))) - ((*1 *1 *1) (-5 *1 (-1155)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-2 (|:| |k| (-805 *3)) (|:| |c| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1079) (-1020 *5))) - (-4 *5 (-868 *4)) (-4 *4 (-1079)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-913 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-529))) (-5 *2 (-1155)) (-5 *1 (-529))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-545)) + (-12 (-5 *4 (-289 (-829 *3))) (-4 *3 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5))))) -(((*1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *3 (-760)) (-5 *1 (-113))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) - (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) - (-5 *5 (-1073 (-220))) (-5 *6 (-630 (-257))) (-5 *2 (-1112 (-220))) - (-5 *1 (-682))))) + (-3 (-829 *3) + (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed")) + (|:| |rightHandLimit| (-3 (-829 *3) "failed"))) + "failed")) + (-5 *1 (-624 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1140)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-829 *3)) (-5 *1 (-624 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 (-829 (-937 *5)))) (-4 *5 (-446)) + (-5 *2 + (-3 (-829 (-402 (-937 *5))) + (-2 (|:| |leftHandLimit| (-3 (-829 (-402 (-937 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-829 (-402 (-937 *5))) "failed"))) + "failed")) + (-5 *1 (-625 *5)) (-5 *3 (-402 (-937 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) + (-4 *5 (-446)) + (-5 *2 + (-3 (-829 *3) + (-2 (|:| |leftHandLimit| (-3 (-829 *3) "failed")) + (|:| |rightHandLimit| (-3 (-829 *3) "failed"))) + "failed")) + (-5 *1 (-625 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-289 (-402 (-937 *6)))) (-5 *5 (-1140)) + (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-829 *3)) + (-5 *1 (-625 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-662)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1049)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1078))))) (((*1 *2 *2) - (-12 (-4 *3 (-545)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) - (-4 *2 (-672 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-553)) + (-12 (-4 *3 (-1023 (-554))) (-4 *3 (-13 (-836) (-546))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1154 *4)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1034)) (-4 *1 (-297)))) + ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3)))) + ((*1 *2) (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358))) + (-4 *2 (-1217 *3))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1158)) + (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-565 *4 *2)) + (-4 *2 (-13 (-1180) (-944) (-1121) (-29 *4)))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-1246)) + (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-757)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-779)) (-4 *4 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-833)) - (-5 *1 (-442 *5 *6 *7 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *3)))) - (-5 *1 (-583 *3)) (-4 *3 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-953)) (-5 *1 (-887 *3)) (-4 *3 (-1079))))) -(((*1 *1) (-5 *1 (-1240)))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-599 *3)) (-5 *5 (-1 (-1151 *3) (-1151 *3))) - (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-833) (-545))) - (-5 *2 (-574 *3)) (-5 *1 (-540 *6 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-553)))) + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-112)) (-5 *1 (-295))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206))))) +(((*1 *1) (-5 *1 (-155))) + ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-4 *4 (-344)) (-5 *2 (-943 (-1154 *4))) (-5 *1 (-352 *4)) + (-5 *3 (-1154 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-231 *3)))) + ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-183)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-357)) (-4 *3 (-1031)) - (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-669 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-757)) (-4 *5 (-357)) (-5 *2 (-171 *6)) - (-5 *1 (-849 *5 *4 *6)) (-4 *4 (-1229 *5)) (-4 *6 (-1214 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-428)) (-4 *5 (-833)) - (-5 *1 (-1085 *5 *4)) (-4 *4 (-424 *5))))) + (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-433 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-950)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1057 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-500)) (-5 *1 (-1097)))) + ((*1 *1 *1) (-5 *1 (-1158)))) +(((*1 *2 *3) + (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1)) + (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836)))) + ((*1 *2 *3) + (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) (((*1 *2 *1) - (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-831)) (-5 *2 (-111)))) + (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) - (-4 *3 (-1214 *4)) (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) - ((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1151 *7)) (-5 *3 (-553)) (-4 *7 (-931 *6 *4 *5)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) - (-5 *1 (-315 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) + (-4 *3 (-1217 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251))))) +(((*1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-757)))) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-757))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2508 (-768 *3)) (|:| |coef2| (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-2 (|:| -2508 *1) (|:| |coef2| *1))) - (-4 *1 (-1045 *3 *4 *5))))) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-188))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *3) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-758)) (-4 *5 (-170)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-758)) (-4 *5 (-170)))) + ((*1 *2 *2 *3) (-12 - (-5 *3 - (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) - (-242 *4 (-401 (-553))))) - (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-111)) - (-5 *1 (-498 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1214 *9)) (-4 *7 (-779)) (-4 *8 (-833)) (-4 *9 (-301)) - (-4 *10 (-931 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-630 (-1151 *10))) - (|:| |dterm| - (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-630 *6)) (|:| |nlead| (-630 *10)))) - (-5 *1 (-764 *6 *7 *8 *9 *10)) (-5 *3 (-1151 *10)) (-5 *4 (-630 *6)) - (-5 *5 (-630 *10))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-871 *4 *3)) - (-4 *3 (-1079))))) -(((*1 *1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *3 (-553)) (-4 *1 (-851 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1064))) (-5 *1 (-285))))) + (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) + (-243 *4 (-402 (-554))))) + (-5 *3 (-631 (-850 *4))) (-14 *4 (-631 (-1158))) (-14 *5 (-758)) + (-5 *1 (-499 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *3 *2)) + (-4 *3 (-13 (-1082) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1252))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554)))) + (-5 *1 (-186))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-906)) (-4 *5 (-302)) (-4 *3 (-1217 *5)) + (-5 *2 (-2 (|:| |plist| (-631 *3)) (|:| |modulo| *5))) + (-5 *1 (-454 *5 *3)) (-5 *4 (-631 *3))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-950))) (-5 *1 (-286))))) +(((*1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *1) (-5 *1 (-142))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-258))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-554)) + (-5 *6 + (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374)))) + (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) + (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) + (-5 *1 (-775)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-554)) + (-5 *6 + (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -1634 (-374)))) + (-5 *7 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) + (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) + (-5 *1 (-775))))) +(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-727 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-836)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *1 (-965 *3)) (-4 *3 (-1034)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) + (-4 *3 (-1082))))) +(((*1 *1 *1 *1) (-5 *1 (-221))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025)))) + ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-758)) (-5 *5 (-631 *3)) (-4 *3 (-302)) (-4 *6 (-836)) + (-4 *7 (-780)) (-5 *2 (-112)) (-5 *1 (-613 *6 *7 *3 *8)) + (-4 *8 (-934 *3 *7 *6))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-539)))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) + ((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-630 (-1151 (-553)))) (-5 *1 (-186)) (-5 *3 (-553))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1162))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034)) + (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) + (-4 *3 (-838 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-757)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-757))))) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-737))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-877 *6))) + (-5 *5 (-1 (-874 *6 *8) *8 (-877 *6) (-874 *6 *8))) (-4 *6 (-1082)) + (-4 *8 (-13 (-1034) (-602 (-877 *6)) (-1023 *7))) + (-5 *2 (-874 *6 *8)) (-4 *7 (-13 (-1034) (-836))) + (-5 *1 (-926 *6 *7 *8))))) +(((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1082)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) + (-4 *4 (-170)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-425 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) + (-5 *1 (-156 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-170))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) (-5 *1 (-531 *4 *2)) + (-4 *2 (-1232 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3))) + (-4 *5 (-1217 *4)) (-4 *6 (-711 *4 *5)) (-5 *1 (-535 *4 *5 *6 *2)) + (-4 *2 (-1232 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-13 (-358) (-363) (-602 *3))) + (-5 *1 (-536 *4 *2)) (-4 *2 (-1232 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-13 (-546) (-145))) + (-5 *1 (-1134 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-1151 *4)) - (-5 *1 (-521 *4))))) + (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-188)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2))) + (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5)) + (-4 *3 (-337 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199)) + (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) + (-4 *2 (-1232 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) + (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) + (-4 *2 (-1232 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) + (-5 *1 (-1134 *3))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1192)) (-5 *1 (-179 *3 *2)) - (-4 *2 (-659 *3))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554)))) + (-4 *2 (-170))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) + (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) + (-5 *1 (-683))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3)) + (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2)) + (-4 *2 (-673 *3 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1137)) (|:| -4298 (-1137)))) - (-5 *1 (-808))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-545)) (-4 *2 (-1031)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *1)))) - (-4 *1 (-1051 *4 *5 *6 *3))))) + (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1195)) (-5 *2 (-758)) (-5 *1 (-180 *4 *3)) + (-4 *3 (-660 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-630 - (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 *3)) - (|:| |logand| (-1151 *3))))) - (-5 *1 (-574 *3)) (-4 *3 (-357))))) -(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1022))))) -(((*1 *1 *1) (-5 *1 (-1043)))) + (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *5)) (-5 *1 (-870 *3 *4 *5)) + (-4 *3 (-1082)) (-4 *5 (-652 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-826 (-373))) (-5 *2 (-826 (-220))) (-5 *1 (-299))))) -(((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-1241 (-675 *4))))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-411 *3 *4)) + (-4 *3 (-412 *4)))) + ((*1 *2) + (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 (-675 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358)) + (-5 *2 (-1241 (-675 (-402 (-937 *5))))) (-5 *1 (-1068 *5)) + (-5 *4 (-675 (-402 (-937 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-1158))) (-4 *5 (-358)) + (-5 *2 (-1241 (-675 (-937 *5)))) (-5 *1 (-1068 *5)) + (-5 *4 (-675 (-937 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) + (-5 *2 (-1241 (-675 *4))) (-5 *1 (-1068 *4))))) +(((*1 *2) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-554)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554))))) (((*1 *2 *3) + (-12 (-4 *4 (-13 (-546) (-836))) + (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180))) + (-5 *1 (-588 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-987) (-1180)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) + (-5 *1 (-831 *4 *5)) (-14 *4 (-758))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-630 - (-2 (|:| -2409 (-757)) - (|:| |eqns| - (-630 - (-2 (|:| |det| *7) (|:| |rows| (-630 (-553))) - (|:| |cols| (-630 (-553)))))) - (|:| |fgb| (-630 *7))))) - (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-757)) - (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-845))))) + (-631 + (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *2)) + (|:| |logand| (-1154 *2))))) + (-5 *4 (-631 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-358)) (-5 *1 (-575 *2))))) +(((*1 *2 *1) + (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) + (-4 *5 (-234 (-2563 *3) (-758))) + (-14 *6 + (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5)) + (-2 (|:| -2717 *2) (|:| -1407 *5)))) + (-4 *2 (-836)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-934 *4 *5 (-850 *3)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130)) + (-4 *3 (-779))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-301)) (-5 *2 (-412 *3)) - (-5 *1 (-728 *5 *4 *6 *3)) (-4 *3 (-931 *6 *5 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1155)) (-5 *5 (-1073 (-220))) (-5 *2 (-909)) - (-5 *1 (-907 *3)) (-4 *3 (-601 (-529))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1155)) (-5 *5 (-1073 (-220))) (-5 *2 (-909)) - (-5 *1 (-907 *3)) (-4 *3 (-601 (-529))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-908)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-908)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-630 (-1 (-220) (-220)))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1 (-220) (-220)))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-609 *4 *2)) (-4 *2 (-13 (-1177) (-941) (-29 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) - (-5 *2 (-674 *3))))) + (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-675 *3)) + (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3)) + (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373))))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-286))) + ((*1 *1) (-5 *1 (-848))) + ((*1 *1) + (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) + (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1067))) + ((*1 *1) + (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34))))) + ((*1 *1) (-5 *1 (-1161))) ((*1 *1) (-5 *1 (-1162)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) + (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) + (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-1241 (-675 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-675 *4)) (-4 *5 (-642 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1045)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1045))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 (-401 (-934 (-553))))) (-5 *4 (-630 (-1155))) - (-5 *2 (-630 (-630 *5))) (-5 *1 (-374 *5)) - (-4 *5 (-13 (-831) (-357))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 (-553)))) (-5 *2 (-630 *4)) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-831) (-357)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-630 (-1155))) (-4 *2 (-169)) - (-4 *4 (-233 (-2563 *5) (-757))) - (-14 *6 - (-1 (-111) (-2 (|:| -2735 *3) (|:| -2692 *4)) - (-2 (|:| -2735 *3) (|:| -2692 *4)))) - (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-833)) - (-4 *7 (-931 *2 *4 (-847 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-630 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-301)) - (-5 *1 (-176 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *8)) - (-5 *4 - (-630 - (-2 (|:| -4124 (-674 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-674 *7))))) - (-5 *5 (-757)) (-4 *8 (-1214 *7)) (-4 *7 (-1214 *6)) (-4 *6 (-343)) + (-12 (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) (-4 *7 (-836)) + (-4 *8 (-302)) (-4 *6 (-780)) (-4 *9 (-934 *8 *6 *7)) (-5 *2 - (-2 (|:| -4124 (-674 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-674 *7)))) - (-5 *1 (-491 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) -(((*1 *1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-1155))) (-4 *4 (-1079)) - (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4))))))) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-631 (-2 (|:| -2270 (-1154 *9)) (|:| -1407 (-554))))))) + (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-1157 (-401 (-553)))) - (-5 *1 (-185))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1185 *4 *5 *3 *6)) (-4 *4 (-545)) (-4 *5 (-779)) - (-4 *3 (-833)) (-4 *6 (-1045 *4 *5 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-630 (-1055 *4 *5 *2))) (-4 *4 (-1079)) - (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) - (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-630 (-1055 *5 *6 *2))) (-5 *4 (-903)) (-4 *5 (-1079)) - (-4 *6 (-13 (-1031) (-868 *5) (-833) (-601 (-874 *5)))) - (-4 *2 (-13 (-424 *6) (-868 *5) (-601 (-874 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) - (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-1251 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-630 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1251 *5 *6 *7 *8))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1079))))) + (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-302) (-145))) + (-4 *2 (-934 *4 *6 *5)) (-5 *1 (-909 *4 *5 *6 *2)) + (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221))) + (-5 *5 (-112)) (-5 *2 (-1243)) (-5 *1 (-252))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *5)) (-4 *4 (-1031)) - (-4 *5 (-833)) (-5 *2 (-934 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *5)) (-4 *4 (-1031)) - (-4 *5 (-833)) (-5 *2 (-934 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-1229 *4)) (-4 *4 (-1031)) - (-5 *2 (-934 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-1229 *4)) (-4 *4 (-1031)) - (-5 *2 (-934 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1195)) (-5 *2 (-1246))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) + (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-934 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-875 *4 *3)) + (-4 *3 (-1195)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1) + (-12 (-4 *2 (-446)) (-4 *3 (-836)) (-4 *4 (-780)) + (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-572))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-630 (-1155))) - (-5 *2 (-630 (-630 (-373)))) (-5 *1 (-1005)) (-5 *5 (-373)))) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7))))) + (-4 *7 (-834)) + (-4 *8 + (-13 (-1219 *3 *7) (-358) (-1180) + (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) + (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8)) + (-14 *10 (-1158))))) +(((*1 *1) + (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364))) + (-4081 (|has| *1 (-6 -4356))))) + ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836)))) + ((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) (-4 *1 (-836))) ((*1 *1) (-5 *1 (-1102)))) +(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-928 *5)) (-4 *5 (-1034)) (-5 *2 (-758)) + (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5)) + (-14 *4 (-906)) (-4 *5 (-1034)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034)) + (-5 *1 (-1146 *4 *5)) (-14 *4 (-906))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-554)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) + (-4 *3 (-1217 *4)) (-5 *2 (-554)))) ((*1 *2 *3) - (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-14 *5 (-630 (-1155))) (-5 *2 (-630 (-630 (-1006 (-401 *4))))) - (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) - (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *4))))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155)))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-994)) (-5 *2 (-845))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-806)) (-14 *5 (-1155)) - (-5 *2 (-553)) (-5 *1 (-1093 *4 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-630 *4)) (-4 *4 (-357)) (-5 *2 (-1238 *4)) - (-5 *1 (-800 *4 *3)) (-4 *3 (-641 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1178 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) - (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) - (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-1089)) (-5 *3 (-553))))) -(((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-574 *3)) (-5 *1 (-546 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-517))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-833) (-545))) - (-5 *2 (-845)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1238 *6)) (-5 *4 (-1238 (-553))) (-5 *5 (-553)) - (-4 *6 (-1079)) (-5 *2 (-1 *6)) (-5 *1 (-999 *6))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1017)) (-5 *1 (-734))))) -(((*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-1155))) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) - (-5 *2 (-630 (-401 (-934 *4)))) (-5 *1 (-906 *4 *5 *6 *7)) - (-4 *7 (-931 *4 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)) - (-4 *2 (-445)))) + (|partial| -12 + (-4 *4 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) + (-5 *2 (-554)) (-5 *1 (-1098 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) + (-5 *2 (-554)) (-5 *1 (-1098 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-1140)) + (-4 *6 (-13 (-546) (-836) (-1023 *2) (-627 *2) (-446))) + (-5 *2 (-554)) (-5 *1 (-1098 *6 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-1214 (-553))) (-5 *2 (-630 (-553))) - (-5 *1 (-479 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-445)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *3 (-445))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-553))))) - (-4 *2 (-13 (-833) (-21)))))) + (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-554)) + (-5 *1 (-1099 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-829 (-402 (-937 *6)))) + (-5 *3 (-402 (-937 *6))) (-4 *6 (-446)) (-5 *2 (-554)) + (-5 *1 (-1099 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1158)) + (-5 *5 (-1140)) (-4 *6 (-446)) (-5 *2 (-554)) (-5 *1 (-1099 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034))))) +(((*1 *2) + (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4)) + (-4 *4 (-1217 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34))) + (-4 *5 (-13 (-1082) (-34))) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) (-5 *6 (-661 (-221))) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-737))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-574 *3)) (-5 *1 (-420 *5 *3)) - (-4 *3 (-13 (-1177) (-29 *5)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1229 *3))))) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) + (-5 *2 (-631 (-758))) (-5 *1 (-765 *3 *4 *5 *6 *7)) + (-4 *3 (-1217 *6)) (-4 *7 (-934 *6 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-631 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) + (-5 *1 (-206))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) + ((*1 *1 *1) (-4 *1 (-1183)))) (((*1 *2 *3) - (-12 (-5 *3 (-674 *2)) (-4 *4 (-1214 *2)) - (-4 *2 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (-4 *2 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-953))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) - (-5 *5 (-111)) (-4 *8 (-1045 *6 *7 *4)) (-4 *9 (-1051 *6 *7 *4 *8)) - (-4 *6 (-445)) (-4 *7 (-779)) (-4 *4 (-833)) - (-5 *2 (-630 (-2 (|:| |val| *8) (|:| -3233 *9)))) - (-5 *1 (-1052 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (-12 (-4 *4 (-891)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-412 (-1151 *7))) - (-5 *1 (-888 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-891)) (-4 *5 (-1214 *4)) (-5 *2 (-412 (-1151 *5))) - (-5 *1 (-889 *4 *5)) (-5 *3 (-1151 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1192)) (-5 *2 (-553))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) -(((*1 *2 *1) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6)) + (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-831))) (-5 *1 (-178 *3 *2)) - (-4 *2 (-1214 (-166 *3)))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) - (-4 *4 (-169))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 (-1155))) (-4 *6 (-357)) - (-5 *2 (-630 (-288 (-934 *6)))) (-5 *1 (-531 *5 *6 *7)) - (-4 *5 (-445)) (-4 *7 (-13 (-357) (-831)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1151 *7)) (-4 *5 (-1031)) - (-4 *7 (-1031)) (-4 *2 (-1214 *5)) (-5 *1 (-494 *5 *2 *6 *7)) - (-4 *6 (-1214 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1031)) (-4 *7 (-1031)) - (-4 *4 (-1214 *5)) (-5 *2 (-1151 *7)) (-5 *1 (-494 *5 *4 *6 *7)) - (-4 *6 (-1214 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-357)) (-5 *2 (-630 (-1135 *4))) (-5 *1 (-279 *4 *5)) - (-5 *3 (-1135 *4)) (-4 *5 (-1229 *4))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) + (-5 *1 (-262))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-939))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) + (-4 *4 (-344)) (-5 *2 (-675 *4)) (-5 *1 (-341 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-4 *3 (-546))))) +(((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-1082)) (-5 *2 (-112))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *3 (-545))))) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) + (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-424 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-757)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-113)))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *4)) - (-4 *4 (-424 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-113)) (-5 *1 (-160)))) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *4)) - (-4 *4 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) - ((*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-833)) (-5 *1 (-423 *3 *4)) - (-4 *3 (-424 *4)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *4)) - (-4 *4 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) + ((*1 *1 *1) (-4 *1 (-1183)))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) + (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) + (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34))) + (-5 *2 (-112)) (-5 *1 (-1122 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1075 *3)) (-4 *3 (-1195)) (-5 *2 (-554))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-302)) (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) + (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-836)) (-5 *2 (-1167 (-631 *4))) (-5 *1 (-1166 *4)) + (-5 *3 (-631 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158))))) + (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086)) + (-5 *1 (-392)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-631 (-631 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-631 (-3 (|:| |array| (-631 *3)) (|:| |scalar| (-1158))))) + (-5 *6 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1086)) + (-5 *1 (-392)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-631 (-1158))) (-5 *5 (-1161)) (-5 *3 (-1158)) + (-5 *2 (-1086)) (-5 *1 (-392))))) +(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-829 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *4)) - (-4 *4 (-13 (-424 *3) (-984) (-1177))))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192))))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) + ((*1 *1 *1) (-4 *1 (-1183)))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) (((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) + (-12 (-5 *2 (-758)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) + (-14 *4 *2) (-4 *5 (-170)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-906)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-906)))) + ((*1 *2) + (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) + (-5 *2 (-906)))) + ((*1 *2 *3) + (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) + (-5 *2 (-758)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358)) + (-5 *2 (-758)) (-5 *1 (-653 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) + (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-758)) + (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-758)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-5 *2 (-758)) (-5 *1 (-674 *4 *5 *6 *3)) + (-4 *3 (-673 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) + (-5 *2 (-758))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-631 *3)) (-5 *5 (-906)) (-4 *3 (-1217 *4)) + (-4 *4 (-302)) (-5 *1 (-454 *4 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-553)))) - (-5 *1 (-299))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 *3)) (-5 *1 (-951 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-826 *3))) (-4 *3 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) + (-12 (-5 *3 (-912)) (-5 *2 - (-3 (-826 *3) - (-2 (|:| |leftHandLimit| (-3 (-826 *3) "failed")) - (|:| |rightHandLimit| (-3 (-826 *3) "failed"))) - "failed")) - (-5 *1 (-623 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1137)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-826 *3)) (-5 *1 (-623 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-826 (-934 *5)))) (-4 *5 (-445)) + (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) + (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554))) (-5 *2 - (-3 (-826 (-401 (-934 *5))) - (-2 (|:| |leftHandLimit| (-3 (-826 (-401 (-934 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-826 (-401 (-934 *5))) "failed"))) - "failed")) - (-5 *1 (-624 *5)) (-5 *3 (-401 (-934 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-401 (-934 *5)))) (-5 *3 (-401 (-934 *5))) - (-4 *5 (-445)) + (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) + (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) + (-5 *1 (-151)))) + ((*1 *2 *3) + (-12 (-5 *2 - (-3 (-826 *3) - (-2 (|:| |leftHandLimit| (-3 (-826 *3) "failed")) - (|:| |rightHandLimit| (-3 (-826 *3) "failed"))) - "failed")) - (-5 *1 (-624 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-288 (-401 (-934 *6)))) (-5 *5 (-1137)) - (-5 *3 (-401 (-934 *6))) (-4 *6 (-445)) (-5 *2 (-826 *3)) - (-5 *1 (-624 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-940 (-1151 *4))) (-5 *1 (-351 *4)) - (-5 *3 (-1151 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) - (-4 *3 (-1079))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1031)) - (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) - (-4 *3 (-835 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-13 (-545) (-144))) (-5 *1 (-530 *4 *2)) - (-4 *2 (-1229 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-13 (-357) (-362) (-601 *3))) - (-4 *5 (-1214 *4)) (-4 *6 (-710 *4 *5)) (-5 *1 (-534 *4 *5 *6 *2)) - (-4 *2 (-1229 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-13 (-357) (-362) (-601 *3))) - (-5 *1 (-535 *4 *2)) (-4 *2 (-1229 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-13 (-545) (-144))) - (-5 *1 (-1131 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1073 (-220))) (-5 *6 (-630 (-257))) (-5 *2 (-1112 (-220))) - (-5 *1 (-682))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *5)) (-4 *5 (-778)) (-5 *2 (-111)) - (-5 *1 (-828 *4 *5)) (-14 *4 (-757))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-630 *7)) (-5 *5 (-630 (-630 *8))) (-4 *7 (-833)) - (-4 *8 (-301)) (-4 *6 (-779)) (-4 *9 (-931 *8 *6 *7)) + (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) + (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) + (-5 *1 (-151)) (-5 *3 (-631 (-928 (-221)))))) + ((*1 *2 *3) + (-12 (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-630 (-2 (|:| -3355 (-1151 *9)) (|:| -2692 (-553))))))) - (-5 *1 (-728 *6 *7 *8 *9)) (-5 *3 (-1151 *9))))) -(((*1 *1 *1) - (-12 (-4 *2 (-445)) (-4 *3 (-833)) (-4 *4 (-779)) - (-5 *1 (-969 *2 *3 *4 *5)) (-4 *5 (-931 *2 *4 *3))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) (-5 *6 (-660 (-220))) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-736))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-630 *6)) (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-4 *3 (-545))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-630 (-630 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-630 (-3 (|:| |array| (-630 *3)) (|:| |scalar| (-1155))))) - (-5 *6 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1083)) - (-5 *1 (-391)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-630 (-630 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-630 (-3 (|:| |array| (-630 *3)) (|:| |scalar| (-1155))))) - (-5 *6 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1083)) - (-5 *1 (-391)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-630 (-1155))) (-5 *5 (-1158)) (-5 *3 (-1155)) - (-5 *2 (-1083)) (-5 *1 (-391))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-166 (-401 (-553))))) (-5 *2 (-630 (-166 *4))) - (-5 *1 (-750 *4)) (-4 *4 (-13 (-357) (-831)))))) + (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) + (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) + (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 (-221))))))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-553))) (-5 *1 (-1029))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-1151 *7))) (-5 *3 (-1151 *7)) - (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-891)) (-4 *5 (-779)) - (-4 *6 (-833)) (-5 *1 (-888 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-1151 *5))) (-5 *3 (-1151 *5)) - (-4 *5 (-1214 *4)) (-4 *4 (-891)) (-5 *1 (-889 *4 *5))))) + (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) + (-5 *2 (-475 *4 *5)) (-5 *1 (-929 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-630 *2))) (-5 *4 (-630 *5)) - (-4 *5 (-38 (-401 (-553)))) (-4 *2 (-1229 *5)) - (-5 *1 (-1231 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-772))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 *4)))) - (-4 *3 (-1079)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-634 *3 *4 *5))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *2 (-631 (-167 *4))) + (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834)))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) + ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) (((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-630 (-2 (|:| |func| *2) (|:| |pole| (-111))))) - (-4 *2 (-13 (-424 *4) (-984))) (-4 *4 (-13 (-833) (-545))) - (-5 *1 (-270 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-27) (-425 *4))) + (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) + (-4 *7 (-1217 (-402 *6))) (-5 *1 (-542 *4 *5 *6 *7 *2)) + (-4 *2 (-337 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) + ((*1 *1 *1) (-4 *1 (-1183)))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-4 *2 (-1082)) + (-5 *1 (-874 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) + (-4 *5 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-402 (-554))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554))) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6)) + (-4 *6 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554))) + (-4 *7 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554))) + (-4 *3 (-13 (-27) (-1180) (-425 *7))) + (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8)) + (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554))) + (-4 *8 (-13 (-27) (-1180) (-425 *7))) + (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554)))) + (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8))) + (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) + (-4 *3 (-1034)) (-5 *1 (-584 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-585 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) + (-4 *3 (-1034)) (-4 *1 (-1201 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-758)) + (-5 *3 (-1138 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4)))) + (-4 *4 (-1034)) (-4 *1 (-1222 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-4 *1 (-1232 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1138 (-2 (|:| |k| (-758)) (|:| |c| *3)))) + (-4 *3 (-1034)) (-4 *1 (-1232 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-5 *1 (-1169 *2)) (-4 *2 (-358))))) +(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-111)) - (-5 *2 (-1017)) (-5 *1 (-731))))) + (-12 (-5 *3 (-402 (-554))) (-5 *4 (-554)) (-5 *2 (-52)) + (-5 *1 (-990))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-1155)) (-4 *6 (-424 *5)) - (-4 *5 (-833)) (-5 *2 (-630 (-599 *6))) (-5 *1 (-562 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-553))))) - (-4 *2 (-13 (-833) (-21)))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-5 *2 - (-2 (|:| |zeros| (-1135 (-220))) (|:| |ones| (-1135 (-220))) - (|:| |singularities| (-1135 (-220))))) - (-5 *1 (-104))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836))))) +(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-631 (-1154 *11))) (-5 *3 (-1154 *11)) + (-5 *4 (-631 *10)) (-5 *5 (-631 *8)) (-5 *6 (-631 (-758))) + (-5 *7 (-1241 (-631 (-1154 *8)))) (-4 *10 (-836)) + (-4 *8 (-302)) (-4 *11 (-934 *8 *9 *10)) (-4 *9 (-780)) + (-5 *1 (-694 *9 *10 *8 *11))))) +(((*1 *1 *1) (-4 *1 (-617))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987) (-1180)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-829))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-885 *3)) (-4 *3 (-1079)) (-5 *2 (-1081 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1079)) (-5 *2 (-1081 (-630 *4))) (-5 *1 (-886 *4)) - (-5 *3 (-630 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1079)) (-5 *2 (-1081 (-1081 *4))) (-5 *1 (-886 *4)) - (-5 *3 (-1081 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1081 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) + (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-675 (-221))) (-5 *6 (-112)) (-5 *7 (-675 (-554))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-554)) (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1195)) + (-4 *5 (-1195)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-758)) + (-4 *7 (-1195)) (-4 *5 (-1195)) (-5 *2 (-236 *6 *5)) + (-5 *1 (-235 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1195)) (-4 *5 (-1195)) + (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1082)) (-4 *5 (-1082)) + (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-631 *6)) (-4 *6 (-1195)) + (-4 *5 (-1195)) (-5 *2 (-631 *5)) (-5 *1 (-629 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-943 *6)) (-4 *6 (-1195)) + (-4 *5 (-1195)) (-5 *2 (-943 *5)) (-5 *1 (-942 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1138 *6)) (-4 *6 (-1195)) + (-4 *3 (-1195)) (-5 *2 (-1138 *3)) (-5 *1 (-1136 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1241 *6)) (-4 *6 (-1195)) + (-4 *5 (-1195)) (-5 *2 (-1241 *5)) (-5 *1 (-1240 *6 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-344)) (-5 *2 (-1241 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-675 *1)) (-4 *1 (-143)) (-4 *1 (-894)) + (-5 *2 (-1241 *1))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-738))))) (((*1 *1) - (-12 (-4 *3 (-1079)) (-5 *1 (-867 *2 *3 *4)) (-4 *2 (-1079)) - (-4 *4 (-651 *3)))) - ((*1 *1) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) + (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082)) + (-4 *4 (-652 *3)))) + ((*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-545)) - (-4 *3 (-931 *7 *5 *6)) - (-5 *2 - (-2 (|:| -2692 (-757)) (|:| -4120 *3) (|:| |radicand| (-630 *3)))) - (-5 *1 (-935 *5 *6 *7 *3 *8)) (-5 *4 (-757)) - (-4 *8 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *3)) (-15 -3963 (*3 $)) (-15 -3974 (*3 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-859 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-861 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-5 *1 (-864 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-630 (-274))) (-5 *1 (-274)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-1160))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-886 *4)) - (-4 *4 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-925 (-220)) (-925 (-220)))) (-5 *3 (-630 (-257))) - (-5 *1 (-255)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-925 (-220)) (-925 (-220)))) (-5 *1 (-257)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) - (-14 *5 (-630 (-1155))) (-4 *6 (-445)) (-5 *2 (-1238 *6)) - (-5 *1 (-618 *5 *6))))) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-580 *5 *6 *7 *8 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-698 *3 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *1)) (-5 *3 (-630 *7)) (-4 *1 (-1051 *4 *5 *6 *7)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *3))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *2 (-1048 *4 *5 *6)) (-5 *1 (-763 *4 *5 *6 *2 *3)) + (-4 *3 (-1054 *4 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) + (-5 *1 (-381 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-806 *3)) (|:| |mm| (-806 *3)) (|:| |rm| (-806 *3)))) + (-5 *1 (-806 *3)) (-4 *3 (-836))))) +(((*1 *1 *1) (-4 *1 (-617))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987) (-1180)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) + (-243 *4 (-402 (-554))))) + (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) + (-5 *1 (-499 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-545)) - (-4 *3 (-1192))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-674 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-833) (-545)))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1241)))) - ((*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1241))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-758)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7)) + (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-894)) (-4 *5 (-780)) + (-4 *6 (-836)) (-5 *1 (-891 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-545)) (-5 *2 (-412 *4)) - (-5 *1 (-413 *4)))) - ((*1 *1 *1) (-5 *1 (-908))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) - ((*1 *1 *1) (-5 *1 (-909))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) - (-5 *4 (-401 (-553))) (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) - (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) - (-5 *4 (-401 (-553))) (-5 *1 (-1003 *3)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) - (-5 *1 (-1003 *3)) (-4 *3 (-1214 (-401 (-553)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) - (-4 *3 (-1214 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1238 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) - (-4 *3 (-545)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-903)) (-4 *4 (-357)) (-5 *2 (-1238 *1)) - (-4 *1 (-323 *4)))) - ((*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1238 *1)) (-4 *1 (-323 *3)))) - ((*1 *2) - (-12 (-4 *3 (-169)) (-4 *4 (-1214 *3)) (-5 *2 (-1238 *1)) - (-4 *1 (-403 *3 *4)))) + (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5)) + (-4 *5 (-1217 *4)) (-4 *4 (-894)) (-5 *1 (-892 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-631 (-600 *3))) + (|:| |vals| (-631 *3)))) + (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) + (-5 *2 (-1020)) (-5 *1 (-733))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-554) "failed") *5)) (-4 *5 (-1034)) + (-5 *2 (-554)) (-5 *1 (-537 *5 *3)) (-4 *3 (-1217 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034)) + (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-554) "failed") *4)) (-4 *4 (-1034)) + (-5 *2 (-554)) (-5 *1 (-537 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-675 (-554))) (-5 *3 (-631 (-554))) (-5 *1 (-1092))))) +(((*1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) + (-14 *4 (-631 (-1158))))) + ((*1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) + (-14 *4 (-631 (-1158))))) + ((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) ((*1 *2 *1) - (-12 (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) - (-5 *2 (-1238 *6)) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *6 (-13 (-403 *4 *5) (-1020 *4))))) + (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358)) + (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) + (-4 *2 (-337 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-711 *2 *3)) (-4 *3 (-1217 *2))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *2 (-1246)) + (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-965 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) - (-5 *2 (-1238 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) - (-4 *6 (-403 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1238 *1)) (-4 *1 (-411 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1238 (-1238 *4))) (-5 *1 (-521 *4)) - (-4 *4 (-343))))) -(((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-484)) (-5 *3 (-936)) (-5 *1 (-526)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-936)) (-4 *1 (-753 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *2 (-1017)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-630 *5))) (-4 *5 (-1229 *4)) - (-4 *4 (-38 (-401 (-553)))) - (-5 *2 (-1 (-1135 *4) (-630 (-1135 *4)))) (-5 *1 (-1231 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1262 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-833)) - (-4 *2 (-169)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-833)) (-4 *2 (-1031)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-805 *4)) (-4 *1 (-1255 *4 *2)) (-4 *4 (-833)) - (-4 *2 (-1031)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1031)) (-5 *1 (-1261 *2 *3)) (-4 *3 (-829))))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-928 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-928 *3)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)) (-5 *3 (-221))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) - (-5 *2 (-2 (|:| -3124 *3) (|:| |nconst| *3))) (-5 *1 (-556 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-357) (-144))) - (-5 *2 (-630 (-2 (|:| -2692 (-757)) (|:| -4010 *4) (|:| |num| *4)))) - (-5 *1 (-393 *3 *4)) (-4 *4 (-1214 *3))))) + (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-1106 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5)) + (-4 *5 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) + (-5 *1 (-312 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-631 *7)) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) + (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7)) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) + (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-631 (-289 *8))) (-5 *4 (-631 (-114))) (-5 *5 (-289 *8)) + (-5 *6 (-631 *8)) (-4 *8 (-425 *7)) + (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) + (-5 *1 (-312 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) (-5 *5 (-289 *7)) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-836) (-546) (-602 (-530)))) + (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 (-114))) (-5 *6 (-631 (-289 *8))) + (-4 *8 (-425 *7)) (-5 *5 (-289 *8)) + (-4 *7 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) + (-5 *1 (-312 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6)) + (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) + (-5 *1 (-312 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) + (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) + (-5 *1 (-312 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) + (-4 *6 (-13 (-836) (-546) (-602 (-530)))) (-5 *2 (-52)) + (-5 *1 (-312 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-631 *3)) + (-4 *3 (-425 *7)) (-4 *7 (-13 (-836) (-546) (-602 (-530)))) + (-5 *2 (-52)) (-5 *1 (-312 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) + ((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-662)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1103 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6))))) + (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554)))) + ((*1 *2 *2) + (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-553)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) - (-4 *4 (-38 (-401 (-553)))) (-5 *2 (-1 (-1135 *4) (-1135 *4))) - (-5 *1 (-1231 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-90 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-180))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-758)))) ((*1 *2 *1) - (-12 (-5 *2 (-1238 (-3 (-461) "undefined"))) (-5 *1 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-833)) (-5 *1 (-911 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-310 (-553))) (-5 *1 (-912))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-758))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-903)) (-4 *5 (-545)) (-5 *2 (-674 *5)) - (-5 *1 (-938 *5 *3)) (-4 *3 (-641 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-116 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-553)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-853 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-853 *2)) (-14 *2 (-553)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-553)) (-14 *3 *2) (-5 *1 (-854 *3 *4)) - (-4 *4 (-851 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-553)) (-5 *1 (-854 *2 *3)) (-4 *3 (-851 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-553)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-1229 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-638 *4)) (-4 *4 (-336 *5 *6 *7)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) + (-12 (-5 *3 (-1 *2 (-631 *2))) (-5 *4 (-631 *5)) + (-4 *5 (-38 (-402 (-554)))) (-4 *2 (-1232 *5)) + (-5 *1 (-1234 *5 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-446)) (-4 *4 (-836)) + (-5 *1 (-563 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-392))))) +(((*1 *2 *2) + (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) + (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) + (-15 -2822 ((-1107 *3 (-600 $)) $)) + (-15 -3075 ($ (-1107 *3 (-600 $)))))))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297)))) + ((*1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-5 *1 (-848)))) +(((*1 *1 *1) (-4 *1 (-617))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987) (-1180)))))) +(((*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-758)))) + ((*1 *1 *1) (-4 *1 (-397)))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-521)) (-5 *3 (-128)) (-5 *2 (-1102))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-792 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-111)) (-5 *5 (-674 (-166 (-220)))) - (-5 *2 (-1017)) (-5 *1 (-741))))) -(((*1 *2 *1 *1) + (-1241 + (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1707 (-554)) + (|:| -4036 (-554)) (|:| |spline| (-554)) (|:| -3133 (-554)) + (|:| |axesColor| (-859)) (|:| -2079 (-554)) + (|:| |unitsColor| (-859)) (|:| |showing| (-554))))) + (-5 *1 (-1242))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-675 (-554))) (-5 *5 (-112)) (-5 *7 (-675 (-221))) + (-5 *3 (-554)) (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-741))))) +(((*1 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1244))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-38 (-402 (-554)))) + (-4 *2 (-170))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-289 (-820 *3))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-820 *3)) (-5 *1 (-624 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 (-820 (-937 *5)))) (-4 *5 (-446)) + (-5 *2 (-820 (-402 (-937 *5)))) (-5 *1 (-625 *5)) + (-5 *3 (-402 (-937 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) + (-4 *5 (-446)) (-5 *2 (-820 *3)) (-5 *1 (-625 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |polnum| (-768 *3)) (|:| |polden| *3) (|:| -4274 (-757)))) - (-5 *1 (-768 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4274 (-757)))) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-529)) (-5 *1 (-528 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-529))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-553)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-757)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-903)))) + (-631 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-758)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-780)) (-4 *6 (-934 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-836)) + (-5 *1 (-443 *4 *3 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-241 *3))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-554)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-758)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-906)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) - (-4 *4 (-169)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-154)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) + (-4 *4 (-170)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-155)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177))) - (-5 *1 (-222 *3)))) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180))) + (-5 *1 (-223 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) + (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) + (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-1091)) (-4 *2 (-1192)))) + (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-1091)) (-4 *2 (-1192)))) + (-12 (-5 *1 (-289 *2)) (-4 *2 (-1094)) (-4 *2 (-1195)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-129)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-833)))) + (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) - (-4 *6 (-233 (-2563 *3) (-757))) + (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) + (-4 *6 (-234 (-2563 *3) (-758))) (-14 *7 - (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *6)) - (-2 (|:| -2735 *5) (|:| -2692 *6)))) - (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-833)) - (-4 *2 (-931 *4 *6 (-847 *3))))) + (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) + (-2 (|:| -2717 *5) (|:| -1407 *6)))) + (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-836)) + (-4 *2 (-934 *4 *6 (-850 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) + (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) + (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-343)) (-5 *1 (-521 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-529))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1031)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1031)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1038)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-669 *5 *6 *7)))) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-530))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1034)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-670 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-672 *3 *2 *4)) (-4 *3 (-1031)) (-4 *2 (-367 *3)) - (-4 *4 (-367 *3)))) + (-12 (-4 *1 (-673 *3 *2 *4)) (-4 *3 (-1034)) (-4 *2 (-368 *3)) + (-4 *4 (-368 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-672 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *2 (-367 *3)))) + (-12 (-4 *1 (-673 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *2 (-368 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-706))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-707))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1238 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-545)) - (-5 *1 (-951 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1038)))) - ((*1 *1 *1 *1) (-4 *1 (-1091))) + (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546)) + (-5 *1 (-954 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1041)))) + ((*1 *1 *1 *1) (-4 *1 (-1094))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *2 *5)) (-4 *4 (-1031)) (-4 *2 (-233 *3 *4)) - (-4 *5 (-233 *3 *4)))) + (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *2 (-234 *3 *4)) + (-4 *5 (-234 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *4 (-1031)) (-4 *5 (-233 *3 *4)) - (-4 *2 (-233 *3 *4)))) + (-12 (-4 *1 (-1105 *3 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) + (-4 *2 (-234 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-833)) (-5 *1 (-1105 *3 *4 *2)) - (-4 *2 (-931 *3 (-524 *4) *4)))) + (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2)) + (-4 *2 (-934 *3 (-525 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-925 (-220))) (-5 *3 (-220)) (-5 *1 (-1188)))) + (-12 (-5 *2 (-928 (-221))) (-5 *3 (-221)) (-5 *1 (-1191)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) + (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-712)))) + (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-713)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-553)) (-4 *1 (-1236 *3)) (-4 *3 (-1192)) (-4 *3 (-21)))) + (-12 (-5 *2 (-554)) (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-833)) (-4 *2 (-1031)))) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-829))))) + (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832))))) (((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) + (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-363)) + (-4 *3 (-1082))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034)) + (-5 *1 (-1142 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) + (-12 (-5 *4 (-1 (-631 *7) *7 (-1154 *7))) (-5 *5 (-1 (-413 *7) *7)) + (-4 *7 (-1217 *6)) (-4 *6 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-5 *2 (-631 (-2 (|:| |frac| (-402 *7)) (|:| -4329 *3)))) + (-5 *1 (-796 *6 *7 *3 *8)) (-4 *3 (-642 *7)) + (-4 *8 (-642 (-402 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 + (-631 (-2 (|:| |frac| (-402 *6)) (|:| -4329 (-640 *6 (-402 *6)))))) + (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -3312 (-413 *3)) (|:| |special| (-413 *3)))) + (-5 *1 (-714 *5 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))) + (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-635 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1034) (-836))) + (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158)))))) +(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))) +(((*1 *2 *3) + (-12 (-5 *2 (-600 *4)) (-5 *1 (-599 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-836))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) + (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-554) (-554))) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-758) (-758))) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1082)) + (-4 *2 (-130))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 (-631 (-631 (-554)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1217 *5)) + (-5 *1 (-714 *5 *2)) (-4 *5 (-358))))) +(((*1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) + (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176))))) +(((*1 *2) + (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) + (-5 *2 (-631 (-631 *4))) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *3 (-337 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-631 (-631 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) + (-4 *3 (-1217 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) + (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1217 (-554))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1112 (-220))) (-5 *1 (-249)))) + (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1217 (-554))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-861 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) - (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-861 *5)) (-5 *4 (-1071 (-373))) - (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) - (-5 *2 (-1112 (-220))) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-601 (-529)) (-1079))))) + (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3)) + (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1071 (-373))) (-5 *2 (-1112 (-220))) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-601 (-529)) (-1079))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-864 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) - (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-864 *5)) (-5 *4 (-1071 (-373))) - (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1112 (-220))) - (-5 *1 (-253 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-168)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1155)) (-5 *5 (-1073 (-220))) (-5 *2 (-909)) - (-5 *1 (-907 *3)) (-4 *3 (-601 (-529))))) + (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1217 (-554))))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3)) + (-4 *3 (-1217 (-402 (-554)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-758)) (-4 *5 (-546)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) + (-4 *4 (-170)))) + ((*1 *1) (-4 *1 (-713))) ((*1 *1) (-5 *1 (-1158)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *1 *1) (-5 *1 (-374))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-5 *2 (-909)) (-5 *1 (-907 *3)) - (-4 *3 (-601 (-529))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-909)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909))))) -(((*1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) - (-14 *4 (-630 (-1155))))) - ((*1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) - (-14 *4 (-630 (-1155))))) - ((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) - (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) - (-4 *2 (-336 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-169)))) - ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-710 *2 *3)) (-4 *3 (-1214 *2))))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-553))) (-5 *1 (-1029))))) -(((*1 *1 *2 *3) (-12 (-5 *3 - (-630 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-553))))) - (-4 *2 (-545)) (-5 *1 (-412 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-553)) - (|:| -3713 (-630 (-2 (|:| |irr| *4) (|:| -3220 (-553))))))) - (-4 *4 (-1214 (-553))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) + (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-631 (-311 (-221)))) + (|:| -3834 (-631 (-221))))))) + (-5 *2 (-631 (-1140))) (-5 *1 (-262))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1) (-4 *1 (-952))) ((*1 *1 *1) (-5 *1 (-1102)))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-631 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-425 *4) (-987))) (-4 *4 (-13 (-836) (-546))) + (-5 *1 (-271 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) + (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) + (-12 (-4 *5 (-1082)) (-4 *2 (-885 *5)) (-5 *1 (-678 *5 *2 *3 *4)) + (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373))))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *2 *1) + (-12 (-4 *2 (-934 *3 *5 *4)) (-5 *1 (-972 *3 *4 *5 *2)) + (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-553)) (-5 *1 (-479 *4)) - (-4 *4 (-1214 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-887 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-188))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-142))) (-5 *1 (-139)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-139))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-631 (-2 (|:| |totdeg| (-758)) (|:| -2598 *3)))) + (-5 *4 (-758)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-780)) + (-4 *7 (-836)) (-5 *1 (-443 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-5 *2 (-1137))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5)))) + (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5))))) + (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5))))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1102)))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1020)) + (-5 *1 (-733))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1243)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) + (-5 *2 + (-2 (|:| |mval| (-675 *4)) (|:| |invmval| (-675 *4)) + (|:| |genIdeal| (-498 *4 *5 *6 *7)))) + (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-221))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *1) (-5 *1 (-374))) ((*1 *1) (-5 *1 (-374)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) - (-5 *2 (-2 (|:| |num| (-1238 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *5 (-1137)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1017)) - (-5 *1 (-736))))) -(((*1 *2 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-848 *4 *5 *6 *7)) - (-4 *4 (-1031)) (-14 *5 (-630 (-1155))) (-14 *6 (-630 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-1031)) (-4 *5 (-833)) (-4 *6 (-779)) - (-14 *8 (-630 *5)) (-5 *2 (-1243)) - (-5 *1 (-1250 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-931 *4 *6 *5)) - (-14 *9 (-630 *3)) (-14 *10 *3)))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-757)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-757)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-4 *3 (-882 *5)) (-5 *2 (-1238 *3)) - (-5 *1 (-677 *5 *3 *6 *4)) (-4 *6 (-367 *3)) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-779)) - (-4 *3 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *5 (-545)) - (-5 *1 (-718 *4 *3 *5 *2)) (-4 *2 (-931 (-401 (-934 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *3 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-5 *1 (-966 *4 *5 *3 *2)) (-4 *2 (-931 (-934 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *6)) - (-4 *6 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-4 *4 (-1031)) (-4 *5 (-779)) (-5 *1 (-966 *4 *5 *6 *2)) - (-4 *2 (-931 (-934 *4) *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-324))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-166 (-220))) (-5 *6 (-1137)) - (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-757)) (-5 *1 (-660 *2)) (-4 *2 (-1079))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) - ((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) - (-5 *1 (-734))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-970 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-668 *2)) (-4 *2 (-1082)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) - (-5 *2 (-111)) (-5 *1 (-1086 *5 *6 *7 *8 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-401 (-553))) (-4 *1 (-543 *3)) - (-4 *3 (-13 (-398) (-1177))))) - ((*1 *1 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) - (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-166 *3)) (-5 *1 (-1181 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1214 (-553)))))) -(((*1 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-5 *3 (-1 (-631 *5) (-631 *5))) (-5 *4 (-554)) + (-5 *2 (-631 *5)) (-5 *1 (-668 *5)) (-4 *5 (-1082))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-758)) + (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1217 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-970 *4 *2 *3 *5)) + (-4 *4 (-344)) (-4 *5 (-711 *2 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-500)) (-5 *3 (-1100)) (-5 *1 (-1097))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *5)) (-4 *5 (-357)) (-5 *2 (-630 *6)) - (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-831)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-630 *6)) (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-4 *3 (-545))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) - (-4 *2 (-1214 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) - (-5 *2 (-1017)) (-5 *1 (-734))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2388 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-357)) (-5 *1 (-563 *4 *2)) (-4 *2 (-1214 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-518))))) -(((*1 *1 *1) (-5 *1 (-220))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1 *1) (-5 *1 (-373))) ((*1 *1) (-5 *1 (-373)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1151 *3)) (-5 *1 (-896 *3)) (-4 *3 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-593))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1239)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-859 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1239)) (-5 *1 (-249)))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-815) (-836) (-1034))) + (-5 *2 (-1140)) (-5 *1 (-813 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1239)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) + (-12 (-5 *3 (-311 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1140)) + (-5 *1 (-813 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-861 (-1 (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1240)) (-5 *1 (-249)))) + (-12 (-5 *3 (-809)) (-5 *4 (-311 *5)) + (-4 *5 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246)) + (-5 *1 (-813 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-925 (-220)) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *5 (-630 (-257))) (-5 *2 (-1240)) (-5 *1 (-249)))) + (-12 (-5 *3 (-809)) (-5 *4 (-311 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-815) (-836) (-1034))) (-5 *2 (-1246)) + (-5 *1 (-813 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1140)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1140)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *2 (-1246)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *4 (-112)) (-5 *2 (-1246))))) +(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-362 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-530))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 (-402 (-937 *6)))) + (-5 *3 (-402 (-937 *6))) + (-4 *6 (-13 (-546) (-1023 (-554)) (-145))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) + (-5 *1 (-1142 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) + (-14 *4 (-1158)) (-14 *5 *3)))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1082) (-34))) + (-5 *2 (-112)) (-5 *1 (-1122 *4 *5)) (-4 *4 (-13 (-1082) (-34)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-808))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1020)) + (-5 *1 (-733))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-14 *5 (-631 (-1158))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) + (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) + (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-864 (-1 (-220) (-220) (-220)))) (-5 *4 (-1073 (-373))) - (-5 *2 (-1240)) (-5 *1 (-249)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-288 *7)) (-5 *4 (-1155)) (-5 *5 (-630 (-257))) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-545) (-833) (-1020 (-553)))) - (-5 *2 (-1239)) (-5 *1 (-250 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1239)) - (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1071 (-373))) (-5 *2 (-1239)) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-601 (-529)) (-1079))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-859 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) - (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1239)) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-859 *5)) (-5 *4 (-1071 (-373))) - (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1239)) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-861 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) - (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) - (-5 *1 (-253 *6)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) + (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-861 *5)) (-5 *4 (-1071 (-373))) - (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) (-5 *2 (-1240)) - (-5 *1 (-253 *3)) (-4 *3 (-13 (-601 (-529)) (-1079))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1071 (-373))) (-5 *2 (-1240)) (-5 *1 (-253 *3)) - (-4 *3 (-13 (-601 (-529)) (-1079))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-864 *6)) (-5 *4 (-1071 (-373))) (-5 *5 (-630 (-257))) - (-4 *6 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) - (-5 *1 (-253 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-864 *5)) (-5 *4 (-1071 (-373))) - (-4 *5 (-13 (-601 (-529)) (-1079))) (-5 *2 (-1240)) - (-5 *1 (-253 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 (-220))) (-5 *2 (-1239)) (-5 *1 (-254)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-630 (-220))) (-5 *4 (-630 (-257))) (-5 *2 (-1239)) - (-5 *1 (-254)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) + (-5 *1 (-1267 *5 *6 *7)) (-5 *3 (-631 (-937 *5))) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-925 (-220)))) (-5 *2 (-1239)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-925 (-220)))) (-5 *4 (-630 (-257))) - (-5 *2 (-1239)) (-5 *1 (-254)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-630 (-220))) (-5 *2 (-1240)) (-5 *1 (-254)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-630 (-220))) (-5 *4 (-630 (-257))) (-5 *2 (-1240)) - (-5 *1 (-254))))) + (-12 (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) + (-5 *1 (-1267 *4 *5 *6)) (-5 *3 (-631 (-937 *4))) + (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112)) + (-5 *2 (-1020)) (-5 *1 (-732))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2)) + (-4 *2 (-1217 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2508 *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-113))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-111)) (-5 *1 (-473))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-630 (-166 *4))) (-5 *1 (-152 *3 *4)) - (-4 *3 (-1214 (-166 (-553)))) (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-630 (-166 *4))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-630 (-166 *4))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-779)) - (-4 *3 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *5 (-545)) - (-5 *1 (-718 *4 *3 *5 *2)) (-4 *2 (-931 (-401 (-934 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *3 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-5 *1 (-966 *4 *5 *3 *2)) (-4 *2 (-931 (-934 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *6)) - (-4 *6 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-4 *4 (-1031)) (-4 *5 (-779)) (-5 *1 (-966 *4 *5 *6 *2)) - (-4 *2 (-931 (-934 *4) *5 *6))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-599 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1155))) - (-4 *2 (-13 (-424 *5) (-27) (-1177))) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *1 (-555 *5 *2 *6)) (-4 *6 (-1079))))) + (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) + (-5 *1 (-753 *3 *4)) (-4 *3 (-695 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-358)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) + (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) + (-4 *3 (-838 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) + (-4 *2 (-1217 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3))))) (((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-903)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4)) + (-4 *3 (-412 *4)))) ((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-819 (-903))) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-903)))) + (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) + (-5 *2 (-1154 (-937 *3))))) ((*1 *2) - (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-819 (-903)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1137)) (-5 *1 (-1173))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-4 *1 (-368 *3 *4)) - (-4 *4 (-169))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-630 *1)) (-4 *1 (-296)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-630 *5)) (-5 *4 (-757)) (-4 *5 (-833)) - (-5 *1 (-599 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-369 *4 *2)) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370))))))) -(((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-111))))) -(((*1 *1) (-5 *1 (-220))) ((*1 *1) (-5 *1 (-373)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1151 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) - (-4 *3 (-357))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1243)) (-5 *1 (-808))))) + (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) + ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-310 (-220)))) (-5 *4 (-757)) - (-5 *2 (-674 (-220))) (-5 *1 (-261))))) + (-12 (-5 *3 (-631 *6)) (-5 *4 (-1158)) (-4 *6 (-425 *5)) + (-4 *5 (-836)) (-5 *2 (-631 (-600 *6))) (-5 *1 (-563 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) - (-5 *2 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) - (-5 *1 (-340 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-301)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) - (-5 *1 (-380 *3)) (-4 *3 (-1079)))) + (-12 (-4 *4 (-358)) (-4 *4 (-546)) (-4 *5 (-1217 *4)) + (-5 *2 (-2 (|:| -2988 (-611 *4 *5)) (|:| -1836 (-402 *5)))) + (-5 *1 (-611 *4 *5)) (-5 *3 (-402 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) + (-14 *3 (-906)) (-4 *4 (-1034)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2666 (-757)) (|:| -1571 (-757)))) - (-5 *1 (-757)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *3 (-630 (-856))) - (-5 *1 (-461))))) -(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) - ((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-401 (-553))) - (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-424 *5)) - (-4 *5 (-13 (-833) (-545) (-1020 (-553)))) - (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-427 *5 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-5 *1 (-1231 *3 *2)) - (-4 *2 (-1229 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-553)) (-5 *4 (-412 *2)) (-4 *2 (-931 *7 *5 *6)) - (-5 *1 (-728 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-301))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-4 *3 (-446)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1217 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *6)) (-5 *5 (-1 (-413 (-1154 *6)) (-1154 *6))) + (-4 *6 (-358)) + (-5 *2 + (-631 + (-2 (|:| |outval| *7) (|:| |outmult| (-554)) + (|:| |outvect| (-631 (-675 *7)))))) + (-5 *1 (-526 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-834)))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325))))) +(((*1 *2) + (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1067))))) (((*1 *1 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-357)) (-14 *5 (-975 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1160))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-132))))) + (-12 (-5 *2 (-906)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-358)) (-14 *5 (-978 *3 *4))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-675 *2)) (-5 *4 (-554)) + (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) - (-5 *2 (-111)) (-5 *1 (-969 *3 *4 *5 *6)) - (-4 *6 (-931 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34)))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1137)) (-5 *4 (-166 (-220))) (-5 *5 (-553)) - (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-499))) (-5 *1 (-476))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2) - (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) - (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-836)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195)) + (-5 *2 (-112))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-934 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1034)) (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) + (-4 *1 (-1217 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034)))) ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1155)) - (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-187)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1155)) - (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-294))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373)))) - ((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-373))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1137)) (-5 *3 (-553)) (-5 *1 (-236)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-630 (-1137))) (-5 *3 (-553)) (-5 *4 (-1137)) - (-5 *1 (-236)))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) - (-5 *2 - (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-674 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-1214 *3)) - (-5 *2 - (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-674 *3)))) - (-5 *1 (-754 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 *3)) - (-5 *2 - (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-674 *3)))) - (-5 *1 (-967 *4 *3 *5 *6)) (-4 *6 (-710 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 *3)) - (-5 *2 - (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-674 *3)))) - (-5 *1 (-1247 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-4 *5 (-833)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-819 (-553))) (-5 *1 (-527)))) - ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1155)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-61 *3)) (-14 *3 (-1155)))) - ((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-68 *3)) (-14 *3 (-1155)))) - ((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-71 *3)) (-14 *3 (-1155)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1243)))) - ((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1243)) (-5 *1 (-391)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) - ((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-845))) (-5 *2 (-1243)) (-5 *1 (-1117))))) + (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1041 (-1006 *4) (-1151 (-1006 *4)))) (-5 *3 (-845)) - (-5 *1 (-1006 *4)) (-4 *4 (-13 (-831) (-357) (-1004)))))) + (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))) + (-4 *2 (-13 (-836) (-21)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554)) + (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-734))))) (((*1 *2 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1 (-1135 (-934 *4)) (-1135 (-934 *4)))) - (-5 *1 (-1246 *4)) (-4 *4 (-357))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-1034)) (-5 *2 (-1241 *4)) + (-5 *1 (-1159 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-906)) (-5 *2 (-1241 *3)) (-5 *1 (-1159 *3)) + (-4 *3 (-1034))))) +(((*1 *1) (-5 *1 (-155))) + ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) -(((*1 *2 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) - (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-294)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-984))) (-5 *1 (-270 *3 *2)) - (-4 *3 (-13 (-833) (-545))))) - ((*1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1) (-5 *1 (-470))) ((*1 *1) (-4 *1 (-1177)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-757)) (|:| -4252 *4))) (-5 *5 (-757)) - (-4 *4 (-931 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446))))) +(((*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539))))) +(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-4 *5 (-546)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-442 *6 *7 *8 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-630 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-555 *6 *3 *7)) (-4 *7 (-1079))))) + (-2 (|:| |minor| (-631 (-906))) (|:| -4329 *3) + (|:| |minors| (-631 (-631 (-906)))) (|:| |ops| (-631 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1079)) (-4 *6 (-1079)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-669 *4 *5 *6)) (-4 *5 (-1079))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1137)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-257)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)) - (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) - (-5 *2 (-674 *3))))) + (-12 (-5 *3 (-1158)) + (-5 *2 + (-2 (|:| |zeros| (-1138 (-221))) (|:| |ones| (-1138 (-221))) + (|:| |singularities| (-1138 (-221))))) + (-5 *1 (-105))))) +(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) +(((*1 *2 *2) + (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) + (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) + (-15 -2822 ((-1107 *3 (-600 $)) $)) + (-15 -3075 ($ (-1107 *3 (-600 $)))))))))) +(((*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-743))))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *1 *1 *1) (-4 *1 (-467))) + ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-868)))) + ((*1 *1 *1) (-5 *1 (-956))) + ((*1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-836)) (-4 *5 (-780)) + (-4 *6 (-546)) (-4 *7 (-934 *6 *5 *3)) + (-5 *1 (-456 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1023 (-402 (-554))) (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) + (-15 -2822 (*7 $)))))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859)) + (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-462)) (-5 *1 (-1245)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-462)) + (-5 *1 (-1245)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258))) + (-5 *2 (-462)) (-5 *1 (-1245))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432))))) +(((*1 *2 *3) + (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))) (((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-5 *2 (-630 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-554)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) - (-5 *2 (-630 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1135 *3)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 *3)) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1031)) (-5 *2 (-630 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1031)) (-5 *2 (-1135 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-230 *3)) - (-4 *3 (-1079)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-230 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-553)) (-4 *4 (-1079)) - (-5 *1 (-723 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-5 *1 (-723 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1137)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-805 *3)) (-4 *3 (-833)) (-5 *1 (-657 *3))))) -(((*1 *1) (-5 *1 (-431)))) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1214 *3)) (-5 *1 (-393 *3 *2)) - (-4 *3 (-13 (-357) (-144)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-833) (-545)))))) -(((*1 *1 *1) (-5 *1 (-1154))) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1 *1) (-5 *1 (-1157))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) -(((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-169)) (-4 *2 (-1031)) (-5 *1 (-700 *2 *3)) - (-4 *3 (-633 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-169)) (-4 *2 (-1031)) (-5 *1 (-700 *2 *3)) - (-4 *3 (-633 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-169)) (-4 *2 (-1031)))) - ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-169)) (-4 *2 (-1031))))) + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373)))) - (-5 *1 (-789))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-974 *2)) (-4 *4 (-1214 *3)) (-4 *2 (-301)) - (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1020 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-833)) (-5 *2 (-1104 *3 (-599 *1))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-488)))) (-5 *1 (-488)))) - ((*1 *2 *1) - (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-712) *4)) - (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-712) *4)) - (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-703 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545))))) -(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-757))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) + (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) + (-14 *6 (-1158)) (-14 *7 *3)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-630 (-401 *6))) (-5 *3 (-401 *6)) - (-4 *6 (-1214 *5)) (-4 *5 (-13 (-357) (-144) (-1020 (-553)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-557 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) - (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) - (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-385))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-934 (-553))) (-5 *3 (-1155)) - (-5 *4 (-1073 (-401 (-553)))) (-5 *1 (-30))))) -(((*1 *1 *1) (-4 *1 (-1123)))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1196)) (-4 *5 (-1214 *3)) (-4 *6 (-1214 (-401 *5))) - (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) + (-12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1196 *2)) + (-4 *2 (-1082)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-836)) + (-5 *1 (-1196 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-691 *3 *4)) (-4 *3 (-1192)) (-4 *4 (-1192))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-757)) (-5 *2 (-1243))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3674 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-301)) (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) - (-5 *2 (-1238 *6)) (-5 *1 (-407 *3 *4 *5 *6)) - (-4 *6 (-13 (-403 *4 *5) (-1020 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *3 (-833)) (-5 *2 (-1104 *3 (-599 *1))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104 (-553) (-599 (-488)))) (-5 *1 (-488)))) - ((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-608 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-712) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-703 *3)) (-5 *1 (-647 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-712) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |k| (-657 *3)) (|:| |c| *4)))) - (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903))))) -(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1243)) (-5 *1 (-385)))) - ((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-385))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034)) + (-4 *6 (-1217 *5)) (-5 *2 (-1154 (-1154 *7))) + (-5 *1 (-495 *5 *6 *4 *7)) (-4 *4 (-1217 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-498 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) + (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *8 (-1048 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-631 *8)) + (|:| |towers| (-631 (-1012 *5 *6 *7 *8))))) + (-5 *1 (-1012 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *8 (-1048 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-631 *8)) + (|:| |towers| (-631 (-1128 *5 *6 *7 *8))))) + (-5 *1 (-1128 *5 *6 *7 *8)) (-5 *3 (-631 *8))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 *2)) - (-5 *2 (-373)) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) - (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) + (-12 + (-5 *3 + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *2 (-631 (-402 (-554)))) (-5 *1 (-1005 *4)) + (-4 *4 (-1217 (-554)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-1084 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-631 *4))) (-5 *1 (-889 *4)) + (-5 *3 (-631 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-889 *4)) + (-5 *3 (-1084 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1082)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1082))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *2 (-1020)) (-5 *1 (-300)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) - (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) + (-12 + (-5 *3 + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) + (-5 *2 (-1020)) (-5 *1 (-300))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-675 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-155)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *1) + (-12 (-5 *2 (-928 *4)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1082)) (-4 *6 (-871 *5)) (-5 *2 (-870 *5 *6 (-631 *6))) + (-5 *1 (-872 *5 *6 *4)) (-5 *3 (-631 *6)) (-4 *4 (-602 (-877 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) - (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) + (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 *3))) (-5 *1 (-872 *5 *3 *4)) + (-4 *3 (-1023 (-1158))) (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-833)) (-4 *5 (-601 *2)) (-5 *2 (-373)) - (-5 *1 (-771 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-546 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-743))))) + (-12 (-4 *5 (-1082)) (-5 *2 (-631 (-289 (-937 *3)))) + (-5 *1 (-872 *5 *3 *4)) (-4 *3 (-1034)) + (-4081 (-4 *3 (-1023 (-1158)))) (-4 *3 (-871 *5)) + (-4 *4 (-602 (-877 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1082)) (-5 *2 (-874 *5 *3)) (-5 *1 (-872 *5 *3 *4)) + (-4081 (-4 *3 (-1023 (-1158)))) (-4081 (-4 *3 (-1034))) + (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *4 (-1082))))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-758))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3) + (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) + (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))) +(((*1 *2 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4)))) + (-5 *1 (-1249 *4)) (-4 *4 (-358))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) + (-5 *2 (-631 (-2 (|:| -2498 *1) (|:| -1303 (-631 *7))))) + (-5 *3 (-631 *7)) (-4 *1 (-1188 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) + (-5 *1 (-1055 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) + (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1158)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-631 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1180) (-27) (-425 *8))) + (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3))) + (-5 *3 (-554)) (-5 *2 (-631 *4)) (-5 *1 (-999 *8 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-669 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) + (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-4 *4 (-446)) + (-5 *2 (-631 (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4))))) + (-5 *1 (-287 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-845)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-757)) - (-14 *4 (-757)) (-4 *5 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-522))))) -(((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1017)) (-5 *1 (-823)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-310 (-373)))) (-5 *4 (-630 (-373))) - (-5 *2 (-1017)) (-5 *1 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-357)) (-5 *2 (-674 *4)) - (-5 *1 (-800 *4 *5)) (-4 *5 (-641 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-757)) (-4 *5 (-357)) - (-5 *2 (-674 *5)) (-5 *1 (-800 *5 *6)) (-4 *6 (-641 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-757))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) -(((*1 *1 *1) (-5 *1 (-845))) + (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-1048 *3 *4 *2)) (-4 *2 (-836)))) ((*1 *2 *1) - (-12 (-4 *1 (-1082 *2 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079)))) - ((*1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-1136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1155))))) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-109))) (-5 *1 (-173))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-546)) + (-4 *7 (-934 *3 *5 *6)) + (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *8) (|:| |radicand| *8))) + (-5 *1 (-938 *5 *6 *3 *7 *8)) (-5 *4 (-758)) + (-4 *8 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $)))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-758)) (-4 *5 (-344)) (-4 *6 (-1217 *5)) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-187))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) + (-631 + (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-675 *6))))) + (-5 *1 (-492 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3782 (-675 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-675 *6)))) + (-4 *7 (-1217 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-99 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (|has| *1 (-6 -4370)) (-4 *1 (-1226 *3)) - (-4 *3 (-1192))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696))))) + (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1084 (-1084 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *1) (-4 *1 (-344)))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-758))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) + ((*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-1139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1158))))) +(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-956))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) + (-4 *3 (-934 *7 *5 *6)) + (-5 *2 + (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| (-631 *3)))) + (-5 *1 (-938 *5 *6 *7 *3 *8)) (-5 *4 (-758)) + (-4 *8 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *3)) (-15 -2810 (*3 $)) (-15 -2822 (*3 $)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-554)) + (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) + (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-554)) + (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) + (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554)))))) (((*1 *2 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1031)) - (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-931 *2 *4 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-1031)) - (-5 *1 (-1139 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-553)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) - (-14 *4 (-1155)) (-14 *5 *3)))) + (-12 (-5 *3 (-639 (-402 *2))) (-4 *2 (-1217 *4)) (-5 *1 (-797 *4 *2)) + (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *2 (-402 *2))) (-4 *2 (-1217 *4)) + (-5 *1 (-797 *4 *2)) + (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554)))))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) + (-5 *2 (-1154 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1082)) + (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) + (-5 *2 (-631 (-1158))) (-5 *1 (-1058 *3 *4 *5)) + (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-805 *3)) (|:| |rm| (-805 *3)))) - (-5 *1 (-805 *3)) (-4 *3 (-833)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 (-431))))) - (-5 *1 (-1159))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) - (-4 *3 (-1214 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |rm| (-806 *3)))) + (-5 *1 (-806 *3)) (-4 *3 (-836)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2)) + (-4 *2 (-642 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381))))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1135 *3))) (-5 *1 (-1135 *3)) (-4 *3 (-1192))))) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1034)) (-5 *1 (-701 *2 *4)) + (-4 *4 (-634 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-356 (-114))) (-5 *1 (-823 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554))))) + (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554)) + (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-52))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1161)) (-5 *3 (-1158))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554))))) (((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-757)) (-4 *4 (-13 (-545) (-144))) - (-5 *1 (-1208 *4 *2)) (-4 *2 (-1214 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-52))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) - (-5 *2 (-1017)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1099))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1214 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-912)) + (-5 *2 + (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) + (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-912)) (-5 *4 (-402 (-554))) + (-5 *2 + (-2 (|:| |brans| (-631 (-631 (-928 (-221))))) + (|:| |xValues| (-1076 (-221))) (|:| |yValues| (-1076 (-221))))) + (-5 *1 (-151))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) + (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)) - (-4 *2 (-545)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-545))) + (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) + (-4 *2 (-546)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-546))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) - (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-545)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-757))) + (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) + (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-546)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-758))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-545)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) + (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-546)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-545)) - (-5 *1 (-951 *3 *4)))) + (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-546)) + (-5 *1 (-954 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1034 *3 *4 *2 *5 *6)) (-4 *2 (-1031)) - (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-545)))) + (|partial| -12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034)) + (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-546)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1177)))) - ((*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-599 *3)) (-4 *3 (-833))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-5 *2 (-1 (-111) *5)) - (-5 *1 (-872 *4 *5)) (-4 *5 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1145))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-1007 *3 *2)) (-4 *2 (-641 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -2662 *3) (|:| -1463 (-630 *5)))) - (-5 *1 (-1007 *5 *3)) (-5 *4 (-630 *5)) (-4 *3 (-641 *5))))) + (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) + (-5 *1 (-327)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-1074 (-937 (-554)))) (-5 *2 (-325)) + (-5 *1 (-327)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034)) + (-4 *3 (-1082))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1217 *6)) + (-4 *6 (-13 (-358) (-145) (-1023 *4))) (-5 *4 (-554)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4329 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1000 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-836)) + (-4 *5 (-780)) (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4))))) (((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-553)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1192)) - (-4 *3 (-367 *4)) (-4 *5 (-367 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1173)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1173))))) + (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-808))))) +(((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-1082)) (-5 *2 (-631 *1)) + (-4 *1 (-377 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-713)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-934 *3 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1079)) (-4 *2 (-833)) - (-5 *1 (-112 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-301)) - (-5 *2 (-757)) (-5 *1 (-448 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1239)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1240)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-257))) (-5 *1 (-1240))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-757)) (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) - (-4 *2 (-1214 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810))))) + (-12 (-5 *3 (-937 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158))) + (-4 *5 (-446)) (-5 *2 (-631 (-243 *4 *5))) (-5 *1 (-619 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1242)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-258))) (-5 *1 (-1243))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-862 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-864 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *1 (-867 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1162))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) + ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-104))))) + (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) + (-5 *2 (-631 (-631 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) + (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) - ((*1 *1 *1) (-4 *1 (-1123)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-630 (-310 (-220)))) - (|:| |constraints| - (-630 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-757)) (|:| |boundaryType| (-553)) - (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) - (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) - (|:| |tol| (-220)))) - (-5 *2 (-111)) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-925 (-220)))) (-5 *1 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-806)) (-14 *5 (-1155)) - (-5 *2 (-553)) (-5 *1 (-1093 *4 *5))))) -(((*1 *1) (-5 *1 (-1061)))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-373))) (-5 *1 (-257)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-545)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1170))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1151 *1)) (-5 *3 (-1155)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-934 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1155)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-833) (-545))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-833) (-545))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *2)) (-5 *4 (-1155)) (-4 *2 (-424 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-833) (-545))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1151 *1)) (-5 *3 (-903)) (-4 *1 (-994)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1151 *1)) (-5 *3 (-903)) (-5 *4 (-845)) - (-4 *1 (-994)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-903)) (-4 *4 (-13 (-831) (-357))) - (-4 *1 (-1048 *4 *2)) (-4 *2 (-1214 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *3)) - (-4 *3 (-1192)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-659 *3)) (-4 *3 (-1192)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1185 *4 *5 *3 *2)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *3 (-833)) (-4 *2 (-1045 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *1 (-1189 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2) - (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) - (-15 -3974 ((-1104 *3 (-599 $)) $)) - (-15 -3110 ($ (-1104 *3 (-599 $)))))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) - (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) - (-5 *1 (-774))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1223 *3 *4 *5)) (-4 *3 (-13 (-357) (-833))) - (-14 *4 (-1155)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1022)) (-5 *3 (-373))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1079)) (-5 *2 (-871 *3 *4)) (-5 *1 (-867 *3 *4 *5)) - (-4 *3 (-1079)) (-4 *5 (-651 *4))))) + (-12 (-5 *3 (-402 (-937 (-167 (-554))))) (-5 *2 (-631 (-167 *4))) + (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554)))))) + (-5 *4 (-631 (-1158))) (-5 *2 (-631 (-631 (-167 *5)))) + (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-834)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170))))) +(((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) + ((*1 *1 *1) + (-12 (-5 *1 (-615 *2 *3 *4)) (-4 *2 (-836)) + (-4 *3 (-13 (-170) (-704 (-402 (-554))))) (-14 *4 (-906)))) + ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) + (-5 *2 (-1020)) (-5 *1 (-735))))) (((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) + (-5 *2 (-631 (-631 (-928 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) (-4 *4 (-1034)) + (-4 *1 (-1116 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-925 *3))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-925 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) + (-12 (-5 *2 (-631 (-631 (-928 *3)))) (-4 *3 (-1034)) + (-4 *1 (-1116 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-112)) + (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-631 (-631 (-928 *4)))) (-5 *3 (-112)) + (-4 *1 (-1116 *4)) (-4 *4 (-1034)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-631 (-169))) + (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-631 (-631 (-928 *5)))) (-5 *3 (-631 (-169))) + (-5 *4 (-169)) (-4 *1 (-1116 *5)) (-4 *5 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-631 (-275))) (-5 *1 (-275)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163))))) +(((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) + ((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *3 (-836)) (-5 *2 (-758))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| |deg| (-757)) (|:| -2544 *5)))) - (-4 *5 (-1214 *4)) (-4 *4 (-343)) (-5 *2 (-630 *5)) - (-5 *1 (-211 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-2 (|:| -3355 *5) (|:| -3872 (-553))))) - (-5 *4 (-553)) (-4 *5 (-1214 *4)) (-5 *2 (-630 *5)) - (-5 *1 (-681 *5))))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3))))) + (-12 (-5 *3 (-1158)) (-5 *2 (-1 (-1154 (-937 *4)) (-937 *4))) + (-5 *1 (-1249 *4)) (-4 *4 (-358))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1192)) - (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *6 *2 *7)) (-4 *6 (-1031)) - (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-874 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1079)) - (-4 *5 (-1192)) (-5 *1 (-872 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-874 *4)) (-5 *3 (-630 (-1 (-111) *5))) (-4 *4 (-1079)) - (-4 *5 (-1192)) (-5 *1 (-872 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-874 *5)) (-5 *3 (-630 (-1155))) - (-5 *4 (-1 (-111) (-630 *6))) (-4 *5 (-1079)) (-4 *6 (-1192)) - (-5 *1 (-872 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1192)) (-4 *4 (-833)) - (-5 *1 (-919 *4 *2 *5)) (-4 *2 (-424 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-1 (-111) *5))) (-4 *5 (-1192)) (-4 *4 (-833)) - (-5 *1 (-919 *4 *2 *5)) (-4 *2 (-424 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1192)) - (-5 *2 (-310 (-553))) (-5 *1 (-920 *5)))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1199)) + (-4 *6 (-1217 (-402 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-337 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) + (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) + (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) + (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1097)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-631 (-1163))) (-5 *3 (-1163)) (-5 *1 (-1100))))) +(((*1 *2 *3) + (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) + (-5 *2 (-243 *4 *5)) (-5 *1 (-929 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-889 *4)) + (-4 *4 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1) (-4 *1 (-539)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554))))) + (-4 *4 (-1217 (-554))) (-5 *2 (-724 (-758))) (-5 *1 (-436 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-413 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-1034)) + (-5 *2 (-724 (-758))) (-5 *1 (-438 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-906)) + (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) + (-5 *1 (-341 *4)) (-4 *4 (-344))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 (-402 (-937 *4))) (-5 *1 (-909 *4 *5 *6 *3)) + (-4 *3 (-934 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5)) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 (-675 (-402 (-937 *4)))) + (-5 *1 (-909 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 (-631 (-402 (-937 *4)))) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1217 *5)) + (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) + (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-112)) + (-5 *1 (-896 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) + (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) + (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-897 *4 *5 *6))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) + (|:| -4341 *6))) + (-5 *1 (-1000 *5 *6)) (-5 *3 (-402 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) + (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *1)))) + (-4 *1 (-1054 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) + (-5 *7 (-675 (-554))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *3 (-631 (-258))) + (-5 *1 (-256)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-630 (-1 (-111) *5))) (-4 *5 (-1192)) - (-5 *2 (-310 (-553))) (-5 *1 (-920 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-1 (-111) (-630 *6))) - (-4 *6 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))) (-4 *4 (-1079)) - (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) - (-5 *1 (-1055 *4 *5 *6))))) + (-12 (-5 *4 (-631 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) + (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 (-1241 *6)) + (-5 *1 (-619 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-630 *3)) (|:| |image| (-630 *3)))) - (-5 *1 (-887 *3)) (-4 *3 (-1079))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-674 *3)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988))))) + (-12 (-4 *1 (-1105 *3 *4 *2 *5)) (-4 *4 (-1034)) (-4 *5 (-234 *3 *4)) + (-4 *2 (-234 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) + (-5 *1 (-735))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))))) (((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1137))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) (-5 *3 (-220)) - (-5 *2 (-1017)) (-5 *1 (-734))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-553)) (-5 *1 (-373))))) -(((*1 *2 *3) - (-12 (-5 *3 (-674 (-401 (-934 (-553))))) (-5 *2 (-630 (-310 (-553)))) - (-5 *1 (-1013))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-845)))) + (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-4 *1 (-297)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046))))) (((*1 *2 *2) - (-12 (-4 *3 (-601 (-874 *3))) (-4 *3 (-868 *3)) - (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-601 (-874 *3))) (-4 *2 (-868 *3)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *6 (-220)) - (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1079)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-668 *4 *5)) (-4 *4 (-1079)))) - ((*1 *2 *2) - (-12 (-4 *3 (-833)) (-5 *1 (-911 *3 *2)) (-4 *2 (-424 *3)))) + (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-834) (-358))) (-5 *2 (-112)) (-5 *1 (-1044 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) + (-5 *3 (-631 (-554))))) ((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-310 (-553))) (-5 *1 (-912)))) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) + (-5 *3 (-631 (-554)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-744))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *1)) (-5 *3 (-631 *7)) (-4 *1 (-1054 *4 *5 *6 *7)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *1)) (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614)))) ((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-833)) (-4 *2 (-1031)))) + (-12 (-4 *3 (-1082)) + (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) + (-5 *1 (-1058 *3 *4 *2)) + (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1031)) (-5 *1 (-1261 *2 *3)) (-4 *3 (-829))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1196)) - (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) - (-5 *2 (-2 (|:| |num| (-674 *5)) (|:| |den| *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) + (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1082))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112)) + (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1020)) (-5 *1 (-743))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) + (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) + (-4 *3 (-1217 *4)) + (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-674 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-674 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-4 *6 (-13 (-545) (-833))) - (-5 *2 (-630 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) - (-4 *5 (-1031)))) - ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-545)))) - ((*1 *2 *3) - (-12 (-5 *3 (-574 *5)) (-4 *5 (-13 (-29 *4) (-1177))) - (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *2 (-630 *5)) (-5 *1 (-572 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-574 (-401 (-934 *4)))) - (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *2 (-630 (-310 *4))) (-5 *1 (-577 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-831)) (-4 *2 (-1128 *3)))) + (-12 (-5 *3 (-554)) (|has| *1 (-6 -4364)) (-4 *1 (-399)) + (-5 *2 (-906))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-4 *2 (-1082)) (-5 *1 (-666 *5 *6 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) + (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1074 *4 *2)) (-4 *4 (-831)) - (-4 *2 (-1128 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1253 (-1155) *3)) (-5 *1 (-1260 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1253 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-1031))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) - ((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) - (-14 *4 (-630 (-1155))))) - ((*1 *2 *1) - (-12 (-5 *2 (-553)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) - (-14 *4 (-630 (-1155))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) - (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-269)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *8)) (-5 *4 (-630 *6)) (-4 *6 (-833)) - (-4 *8 (-931 *7 *5 *6)) (-4 *5 (-779)) (-4 *7 (-1031)) - (-5 *2 (-630 (-757))) (-5 *1 (-315 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-903)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) - (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-545)) (-5 *2 (-553)) (-5 *1 (-610 *3 *4)) - (-4 *4 (-1214 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *6)) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 (-757))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-931 *4 *5 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *3 (-833)) (-5 *2 (-757)))) - ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *2 *4)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *2 (-778)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-757)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1229 *3)) - (-5 *2 (-553)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1198 *3)) - (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-819 (-903))))) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5)) + (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-302))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 (-112) (-631 *1))) + (-4 *1 (-1054 *4 *5 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-431))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-210 (-496))) (-5 *1 (-824))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-865))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-546)) + (-4 *3 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-581)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-614)))) ((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-757))))) -(((*1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-510)))) + (-12 (-4 *3 (-1082)) + (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) + (-5 *1 (-1058 *3 *4 *2)) + (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1079) (-34))) (-5 *1 (-1119 *3 *2)) - (-4 *3 (-13 (-1079) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1249))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-412 *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-1031)) (-5 *2 (-630 *6)) (-5 *1 (-437 *5 *6))))) + (-12 (-4 *2 (-1082)) (-5 *1 (-1147 *2 *3)) (-4 *3 (-1082))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) + (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-631 *7) (-631 *7))) (-5 *2 (-631 *7)) + (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) (-4 *5 (-780)) + (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)))) + ((*1 *1) (-4 *1 (-1133)))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-554))))) +(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-906)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-906)) + (-5 *1 (-522 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-358)) (-5 *1 (-881 *2 *3)) + (-4 *2 (-1217 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-758)) (-5 *4 (-554)) (-5 *1 (-439 *2)) (-4 *2 (-1034))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-402 (-554))))) (-5 *1 (-258)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-675 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) + (-5 *2 (-408 *4 (-402 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 *6)) (-4 *6 (-13 (-404 *4 *5) (-1023 *4))) + (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *3 (-302)) + (-5 *1 (-408 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) -(((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-425 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1074 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) + (-5 *1 (-156 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-554))) (-5 *5 (-1 (-1138 *4))) (-4 *4 (-358)) + (-4 *4 (-1034)) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-302))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) - (-5 *2 (-630 (-1073 (-220)))) (-5 *1 (-910))))) -(((*1 *1 *1) - (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1031) (-833))) - (-14 *3 (-630 (-1155)))))) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-836) (-546)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) (-4 *5 (-1082)) + (-4 *6 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-628 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082)) + (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 *5)) (-4 *6 (-1082)) + (-4 *5 (-1195)) (-5 *2 (-1 *5 *6)) (-5 *1 (-628 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-4 *5 (-1082)) + (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-631 *5)) (-5 *4 (-631 *6)) + (-4 *5 (-1082)) (-4 *6 (-1195)) (-5 *1 (-628 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1082)) (-4 *2 (-1195)) (-5 *1 (-628 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1082)) (-5 *2 (-758))))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-237))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-631 (-112))) (-5 *5 (-675 (-221))) + (-5 *6 (-675 (-554))) (-5 *7 (-221)) (-5 *3 (-554)) (-5 *2 (-1020)) + (-5 *1 (-741))))) (((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-1055 *3 *4 *5))) (-4 *3 (-1079)) - (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) - (-4 *5 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))) - (-5 *1 (-1056 *3 *4 *5))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-712) (-25)))))) + (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-1241 (-311 (-374)))) + (-5 *1 (-300))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1244)))) + ((*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1244))))) (((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3640 (-630 (-1155))) (|:| -3162 (-630 (-1155))))) - (-5 *1 (-1194))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 (-310 (-220)))) - (-5 *2 - (-2 (|:| |additions| (-553)) (|:| |multiplications| (-553)) - (|:| |exponentiations| (-553)) (|:| |functionCalls| (-553)))) - (-5 *1 (-299))))) -(((*1 *1) (-5 *1 (-1064)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-1099)) (-5 *2 (-111)) (-5 *1 (-807))))) + (-12 (-4 *3 (-1034)) (-5 *2 (-943 (-699 *3 *4))) (-5 *1 (-699 *3 *4)) + (-4 *4 (-1217 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1079)) (-4 *2 (-882 *4)) (-5 *1 (-677 *4 *2 *5 *3)) - (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4369))))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-630 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) - (-5 *2 (-630 (-2 (|:| |poly| *6) (|:| -2662 *3)))) - (-5 *1 (-795 *5 *6 *3 *7)) (-4 *3 (-641 *6)) - (-4 *7 (-641 (-401 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-630 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *6 (-1214 *5)) - (-5 *2 (-630 (-2 (|:| |poly| *6) (|:| -2662 (-639 *6 (-401 *6)))))) - (-5 *1 (-798 *5 *6)) (-5 *3 (-639 *6 (-401 *6)))))) -(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1079)) (-4 *2 (-362))))) + (-12 (-5 *2 (-631 *4)) (-5 *1 (-1123 *3 *4)) + (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) + ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) + (-5 *1 (-831 *4 *5)) (-14 *4 (-758))))) +(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1241 (-631 *3))) (-4 *4 (-302)) + (-5 *2 (-631 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) + (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-546)) (-5 *2 (-413 *4)) + (-5 *1 (-414 *4)))) + ((*1 *1 *1) (-5 *1 (-911))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) + ((*1 *1 *1) (-5 *1 (-912))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) + (-5 *4 (-402 (-554))) (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) + (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) + (-5 *4 (-402 (-554))) (-5 *1 (-1006 *3)) (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) + (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-1217 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) - (-4 *7 (-833)) (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-630 *3)) - (-5 *1 (-579 *5 *6 *7 *8 *3)) (-4 *3 (-1088 *5 *6 *7 *8)))) + (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) + (-4 *7 (-780)) + (-5 *2 + (-631 + (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) + (|:| |wcond| (-631 (-937 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) + (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-631 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) + (-12 (-5 *3 (-675 *8)) (-5 *4 (-631 (-1158))) (-4 *8 (-934 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) + (-4 *7 (-780)) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) - (-5 *1 (-1057 *5 *6)) (-5 *3 (-630 (-934 *5))) - (-14 *6 (-630 (-1155))))) + (-631 + (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) + (|:| |wcond| (-631 (-937 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) + (-5 *1 (-909 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) + (-12 (-5 *3 (-675 *7)) (-4 *7 (-934 *4 *6 *5)) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *4)) (|:| -2855 (-630 (-934 *4)))))) - (-5 *1 (-1057 *4 *5)) (-5 *3 (-630 (-934 *4))) - (-14 *5 (-630 (-1155))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) + (-631 + (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7)) + (|:| |wcond| (-631 (-937 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))))) + (-5 *1 (-909 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *9)) (-5 *5 (-906)) (-4 *9 (-934 *6 *8 *7)) + (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-836) (-602 (-1158)))) + (-4 *8 (-780)) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) - (-5 *1 (-1057 *5 *6)) (-5 *3 (-630 (-934 *5))) - (-14 *6 (-630 (-1155)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-542))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-553)) - (-5 *6 - (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373)))) - (-5 *7 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) - (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) - (-5 *1 (-774)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-553)) - (-5 *6 - (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -2097 (-373)))) - (-5 *7 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) - (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) - (-5 *1 (-774))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-1238 (-674 *4))))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1238 (-674 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1238 (-674 *3))))) + (-631 + (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9)) + (|:| |wcond| (-631 (-937 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *6)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *6)))))))))) + (-5 *1 (-909 *6 *7 *8 *9)) (-5 *4 (-631 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-906)) + (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) + (-5 *2 + (-631 + (-2 (|:| |eqzro| (-631 *9)) (|:| |neqzro| (-631 *9)) + (|:| |wcond| (-631 (-937 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *6)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *6)))))))))) + (-5 *1 (-909 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-1155))) (-4 *5 (-357)) - (-5 *2 (-1238 (-674 (-401 (-934 *5))))) (-5 *1 (-1065 *5)) - (-5 *4 (-674 (-401 (-934 *5)))))) + (-12 (-5 *3 (-675 *8)) (-5 *4 (-906)) (-4 *8 (-934 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) + (-4 *7 (-780)) + (-5 *2 + (-631 + (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) + (|:| |wcond| (-631 (-937 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) + (-5 *1 (-909 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 *9)) (-5 *5 (-1140)) + (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) + (-5 *1 (-909 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *9)) (-5 *4 (-631 (-1158))) (-5 *5 (-1140)) + (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) + (-5 *1 (-909 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *8)) (-5 *4 (-1140)) (-4 *8 (-934 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) + (-4 *7 (-780)) (-5 *2 (-554)) (-5 *1 (-909 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 *10)) (-5 *5 (-906)) + (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) + (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554)) + (-5 *1 (-909 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-675 *10)) (-5 *4 (-631 (-1158))) (-5 *5 (-906)) + (-5 *6 (-1140)) (-4 *10 (-934 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) + (-4 *8 (-13 (-836) (-602 (-1158)))) (-4 *9 (-780)) (-5 *2 (-554)) + (-5 *1 (-909 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *9)) (-5 *4 (-906)) (-5 *5 (-1140)) + (-4 *9 (-934 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-836) (-602 (-1158)))) (-4 *8 (-780)) (-5 *2 (-554)) + (-5 *1 (-909 *6 *7 *8 *9))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -2997 (-758)) (|:| |period| (-758)))) + (-5 *1 (-1138 *4)) (-4 *4 (-1195)) (-5 *3 (-758))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) + (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-1155))) (-4 *5 (-357)) - (-5 *2 (-1238 (-674 (-934 *5)))) (-5 *1 (-1065 *5)) - (-5 *4 (-674 (-934 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-674 *4))) (-4 *4 (-357)) - (-5 *2 (-1238 (-674 *4))) (-5 *1 (-1065 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1151 *3))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) + (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) + (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-631 (-631 (-928 (-221))))))) + ((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-631 (-631 (-928 (-221)))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-925 *5)) (-4 *5 (-1031)) (-5 *2 (-757)) - (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-757))) (-5 *3 (-757)) (-5 *1 (-1143 *4 *5)) - (-14 *4 (-903)) (-4 *5 (-1031)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-757))) (-5 *3 (-925 *5)) (-4 *5 (-1031)) - (-5 *1 (-1143 *4 *5)) (-14 *4 (-903))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-936))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1079) (-34))) (-4 *6 (-13 (-1079) (-34))) - (-5 *2 (-111)) (-5 *1 (-1119 *5 *6))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-630 *3)) (-5 *5 (-903)) (-4 *3 (-1214 *4)) - (-4 *4 (-301)) (-5 *1 (-453 *4 *3))))) -(((*1 *1 *1 *2) + (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758)))) + ((*1 *2 *1) + (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-758))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) + (-5 *1 (-735))))) +(((*1 *2 *3 *3) (-12 - (-5 *2 - (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) - (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) - (|:| |args| (-630 (-845))))) - (-5 *1 (-1155)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-630 (-845)))) (-5 *1 (-1155))))) -(((*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-5 *1 (-1166 *2)) (-4 *2 (-357))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *2 (-1045 *4 *5 *6)) (-5 *1 (-762 *4 *5 *6 *2 *3)) - (-4 *3 (-1051 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-1103 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1031))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 *1)) (-4 *1 (-424 *4)) - (-4 *4 (-833)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833))))) -(((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-553) (-553))) (-5 *1 (-355 *3)) (-4 *3 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-757) (-757))) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-128))) - ((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) - (-4 *4 (-169)))) - ((*1 *1) (-4 *1 (-712))) ((*1 *1) (-5 *1 (-1155)))) -(((*1 *2 *1) - (-12 (-4 *2 (-931 *3 *5 *4)) (-5 *1 (-969 *3 *4 *5 *2)) - (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-674 *2)) (-5 *4 (-553)) - (-4 *2 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *5 (-1214 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) + (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-833)) (-5 *1 (-911 *3 *2)) (-4 *2 (-424 *3)))) + (-12 (-5 *2 (-1241 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302)) + (-4 *3 (-546)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-310 (-553))) (-5 *1 (-912))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 - (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137)))))) - (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) - (-14 *6 (-1155)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-5 *2 (-925 *4)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1155)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-630 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2388 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1177) (-27) (-424 *8))) - (-4 *8 (-13 (-445) (-833) (-144) (-1020 *3) (-626 *3))) - (-5 *3 (-553)) (-5 *2 (-630 *4)) (-5 *1 (-996 *8 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-807))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 (-166 (-553))))) (-5 *2 (-630 (-166 *4))) - (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 (-401 (-934 (-166 (-553)))))) - (-5 *4 (-630 (-1155))) (-5 *2 (-630 (-630 (-166 *5)))) - (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-831)))))) -(((*1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-1 (-1151 (-934 *4)) (-934 *4))) - (-5 *1 (-1246 *4)) (-4 *4 (-357))))) -(((*1 *2 *3) - (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1214 *5)) - (-4 *7 (-1214 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) - (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-111)) - (-5 *1 (-893 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-330 (-401 (-553)) *4 *5 *6)) - (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-1214 (-401 *4))) - (-4 *6 (-336 (-401 (-553)) *4 *5)) (-5 *2 (-111)) - (-5 *1 (-894 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-301)) - (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-931 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1151 *6)) (-4 *6 (-931 *5 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *5 (-301)) (-5 *1 (-898 *3 *4 *5 *6)))) + (-12 (-5 *3 (-906)) (-4 *4 (-358)) (-5 *2 (-1241 *1)) + (-4 *1 (-324 *4)))) + ((*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1241 *1)) (-4 *1 (-324 *3)))) + ((*1 *2) + (-12 (-4 *3 (-170)) (-4 *4 (-1217 *3)) (-5 *2 (-1241 *1)) + (-4 *1 (-404 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) + (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6)) + (-4 *6 (-13 (-404 *4 *5) (-1023 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) + (-5 *2 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)) + (-4 *6 (-404 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1241 *1)) (-4 *1 (-412 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *6 *4 *5)) - (-5 *1 (-898 *4 *5 *6 *2)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-301))))) -(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-903)))) + (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 *4))) (-5 *1 (-522 *4)) + (-4 *4 (-344))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 *8)) + (-4 *7 (-836)) (-4 *8 (-1034)) (-4 *9 (-934 *8 *6 *7)) + (-4 *6 (-780)) (-5 *2 (-1154 *8)) (-5 *1 (-316 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1195))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) + (-4 *3 (-1082)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-903)) - (-5 *1 (-521 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1071 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-833) (-545))) - (-5 *1 (-155 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1155))))) + (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) + (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3)) + (-5 *1 (-935 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) + (-15 -2822 (*7 $)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-665 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-631 + (-2 + (|:| -2564 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2701 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1138 (-221))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3827 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-549))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) +(((*1 *1 *1 *1) (-4 *1 (-539)))) (((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *1) (-12 (-4 *1 (-937)) (-5 *2 (-630 (-630 (-925 (-220))))))) - ((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-630 (-630 (-925 (-220)))))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *1 *1 *1) (-4 *1 (-952)))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-325))))) +(((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-485)) (-5 *3 (-939)) (-5 *1 (-527)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-939)) (-4 *1 (-754 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-734))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-665 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539))))) (((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-836) (-546)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2510 *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) + (-5 *2 (-1154 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-302)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-441 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *2 (-1020)) (-5 *1 (-738))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) + (-4 *3 (-1217 *4)) + (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-554)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) + (-5 *1 (-394 *3 *4))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) + ((*1 *1 *1) (|partial| -4 *1 (-709)))) +(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)))) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-5 *1 (-310 *3)) (-4 *3 (-545)) (-4 *3 (-833))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-757)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1193 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1079)) (-5 *2 (-111)) - (-5 *1 (-1193 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-480)))) - ((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-301)))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553)))) - ((*1 *1 *1) (-4 *1 (-1040)))) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *5 *6)) (-4 *6 (-601 (-1155))) - (-4 *4 (-357)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *2 (-1144 (-630 (-934 *4)) (-630 (-288 (-934 *4))))) - (-5 *1 (-497 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-845) (-845) (-845))) (-5 *4 (-553)) (-5 *2 (-845)) - (-5 *1 (-634 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-837 *3 *4 *5)) (-4 *3 (-1031)) - (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-845)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-845)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-845)))) - ((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-1151 *3)) (-4 *3 (-1031))))) + (-12 (-4 *2 (-1217 *4)) (-5 *1 (-796 *4 *2 *3 *5)) + (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) + (-4 *5 (-642 (-402 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-638 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-796 *5 *6)))) + (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *3 *5)) + (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) + (-4 *5 (-642 (-402 *2))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-638 (-401 *6))) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-2 (|:| -4124 (-630 (-401 *6))) (|:| -3344 (-674 *5)))) - (-5 *1 (-796 *5 *6)) (-5 *4 (-630 (-401 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-796 *5 *6)))) + (-12 (-4 *2 (-1217 *4)) (-5 *1 (-794 *4 *2 *5 *3)) + (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-642 *2)) + (-4 *3 (-642 (-402 *2)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-1034)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-1191)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-631 *5))) (-4 *5 (-1232 *4)) + (-4 *4 (-38 (-402 (-554)))) + (-5 *2 (-1 (-1138 *4) (-631 (-1138 *4)))) (-5 *1 (-1234 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *1 *1) (-4 *1 (-171))) + ((*1 *1 *1) + (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554))) + (-5 *1 (-186))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) + (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) + (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) + (-5 *1 (-683)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-221))) + (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-683)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1 (-928 (-221)) (-221) (-221))) + (-5 *4 (-1076 (-221))) (-5 *5 (-631 (-258))) (-5 *1 (-683))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-554)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6 (-401 *6))) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-2 (|:| -4124 (-630 (-401 *6))) (|:| -3344 (-674 *5)))) - (-5 *1 (-796 *5 *6)) (-5 *4 (-630 (-401 *6)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1020 (-553))) (-4 *1 (-296)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-887 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) + (-12 (-5 *4 (-554)) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) + (-4 *3 (-1034)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-806 *4)) (-4 *4 (-836)) (-4 *1 (-1258 *4 *3)) + (-4 *3 (-1034))))) (((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-737))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) - (-5 *1 (-741))))) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-689 *3)) - (-4 *3 (-601 (-529))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1155)) (-5 *2 (-1 (-220) (-220) (-220))) - (-5 *1 (-689 *3)) (-4 *3 (-601 (-529)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-574 *3)) (-4 *3 (-357))))) -(((*1 *2 *3) (-12 (-5 *3 (-934 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-773)) (-5 *2 (-1017)) - (-5 *3 - (-2 (|:| |fn| (-310 (-220))) - (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-773)) (-5 *2 (-1017)) - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) + (-12 (-4 *7 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-4 *7 (-546)) + (-4 *8 (-934 *7 *5 *6)) + (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *3))) + (-5 *1 (-938 *5 *6 *7 *8 *3)) (-5 *4 (-758)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *2 (-630 *4)) (-5 *1 (-765 *4)) - (-4 *4 (-13 (-357) (-831)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1017)) - (-5 *1 (-735))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) - (-4 *3 (-1214 *4)) (-5 *2 (-111))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1151 *6)) (-5 *3 (-553)) (-4 *6 (-301)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *1 (-728 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1238 *5)) (-4 *5 (-626 *4)) (-4 *4 (-545)) - (-5 *2 (-1238 *4)) (-5 *1 (-625 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-1160)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-1160))) (-5 *1 (-1160))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1155)) (-5 *6 (-630 (-599 *3))) - (-5 *5 (-599 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *7))) - (-4 *7 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) - (-5 *1 (-546 *7 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-1151 *4))) (-5 *3 (-1151 *4)) - (-4 *4 (-891)) (-5 *1 (-648 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1214 (-553))) (-5 *1 (-479 *3))))) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) + (-5 *2 (-2 (|:| -3341 *3) (|:| |nconst| *3))) (-5 *1 (-557 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 *5)) (-4 *5 (-357)) - (-4 *5 (-545)) (-5 *2 (-1238 *5)) (-5 *1 (-625 *5 *4)))) + (-12 (-5 *3 (-413 *5)) (-4 *5 (-546)) + (-5 *2 + (-2 (|:| -1407 (-758)) (|:| -1490 *5) (|:| |radicand| (-631 *5)))) + (-5 *1 (-315 *5)) (-5 *4 (-758)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-554))))) +(((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1) (-5 *1 (-620)))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1082)) (-5 *2 (-112)) + (-5 *1 (-1196 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246)) + (-5 *1 (-1196 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-5 *2 (-1246)) + (-5 *1 (-1196 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-739))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-937 *6)) (-5 *4 (-1158)) + (-5 *5 (-829 *7)) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-4 *7 (-13 (-1180) (-29 *6))) (-5 *1 (-220 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1154 *6)) (-5 *4 (-829 *6)) + (-4 *6 (-13 (-1180) (-29 *5))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-220 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *1) (-4 *1 (-952)))) +(((*1 *2) + (-12 (-4 *1 (-344)) + (-5 *2 (-631 (-2 (|:| -2270 (-554)) (|:| -1407 (-554)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481)))) + ((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-302)))) + ((*1 *2 *1) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554)))) + ((*1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1217 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 *5)) - (-2826 (-4 *5 (-357))) (-4 *5 (-545)) (-5 *2 (-1238 (-401 *5))) - (-5 *1 (-625 *5 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-369 *4 *2)) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370))))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1162))))) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-13 (-446) (-145))) + (-5 *2 (-413 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-675 *3)))) + (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) +(((*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) + (-14 *3 (-906)) (-4 *4 (-1034)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373)))) - (-5 *2 (-1017)) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-5 *2 (-412 *3)) - (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-931 *6 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-140))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) + (-631 + (-2 (|:| -4186 (-758)) + (|:| |eqns| + (-631 + (-2 (|:| |det| *7) (|:| |rows| (-631 (-554))) + (|:| |cols| (-631 (-554)))))) + (|:| |fgb| (-631 *7))))) + (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758)) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-605)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-374)) (-5 *1 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) + (-5 *1 (-1142 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) + (-14 *4 (-1158)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *6 (-602 (-1158))) + (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *2 (-1147 (-631 (-937 *4)) (-631 (-289 (-937 *4))))) + (-5 *1 (-498 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) + (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-984))) (-5 *1 (-270 *3 *2)) - (-4 *3 (-13 (-833) (-545)))))) + (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-848) (-848) (-848))) (-5 *4 (-554)) (-5 *2 (-848)) + (-5 *1 (-635 *5 *6 *7)) (-4 *5 (-1082)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-848)) (-5 *1 (-840 *3 *4 *5)) (-4 *3 (-1034)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-848)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-848)))) + ((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-848)) (-5 *1 (-1154 *3)) (-4 *3 (-1034))))) (((*1 *2 *3) - (-12 (-5 *3 (-934 *5)) (-4 *5 (-1031)) (-5 *2 (-242 *4 *5)) - (-5 *1 (-926 *4 *5)) (-14 *4 (-630 (-1155)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))) (-5 *2 (-111))))) + (-12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1495 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-674 *5))) (-4 *5 (-301)) (-4 *5 (-1031)) - (-5 *2 (-1238 (-1238 *5))) (-5 *1 (-1011 *5)) (-5 *4 (-1238 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1137)) (-5 *5 (-674 (-220))) (-5 *6 (-674 (-553))) - (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-743))))) + (-12 (-5 *3 (-675 *1)) (-5 *4 (-1241 *1)) (-4 *1 (-627 *5)) + (-4 *5 (-1034)) + (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *1)) (-4 *1 (-627 *4)) (-4 *4 (-1034)) + (-5 *2 (-675 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) - (-5 *2 - (-2 (|:| A (-674 *5)) - (|:| |eqs| - (-630 - (-2 (|:| C (-674 *5)) (|:| |g| (-1238 *5)) (|:| -2662 *6) - (|:| |rh| *5)))))) - (-5 *1 (-799 *5 *6)) (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)) - (-4 *6 (-641 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-641 *5)) - (-5 *2 (-2 (|:| -3344 (-674 *6)) (|:| |vec| (-1238 *5)))) - (-5 *1 (-799 *5 *6)) (-5 *3 (-674 *6)) (-5 *4 (-1238 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1031)) (-4 *4 (-1214 *3)) (-5 *1 (-161 *3 *4 *2)) - (-4 *2 (-1214 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-757)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1031)) (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2))))) -(((*1 *1) (-5 *1 (-285)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 (-1238 (-553)))) (-5 *3 (-903)) (-5 *1 (-459))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-903)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-257))))) + (-12 (-5 *3 (-402 *6)) (-4 *5 (-1199)) (-4 *6 (-1217 *5)) + (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *3) (|:| |radicand| *6))) + (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-758)) (-4 *7 (-1217 *3))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1034)) + (-5 *1 (-839 *5 *2)) (-4 *2 (-838 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-836) (-546)))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) - (-5 *2 (-111))))) + (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-117 *3)) (-14 *3 (-554)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-172 (-554))) (-5 *1 (-752 *3)) (-4 *3 (-399)))) + ((*1 *2 *1) + (-12 (-5 *2 (-172 (-402 (-554)))) (-5 *1 (-856 *3)) (-14 *3 (-554)))) + ((*1 *2 *1) + (-12 (-14 *3 (-554)) (-5 *2 (-172 (-402 (-554)))) + (-5 *1 (-857 *3 *4)) (-4 *4 (-854 *3))))) +(((*1 *1 *1) (-4 *1 (-539)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *8)) (-5 *4 (-757)) (-4 *8 (-931 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) - (-4 *7 (-779)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 - (-630 - (-2 (|:| |det| *8) (|:| |rows| (-630 (-553))) - (|:| |cols| (-630 (-553)))))) - (-5 *1 (-906 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-738))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-545)) (-4 *3 (-833))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-1099)) (-4 *4 (-343)) - (-5 *1 (-521 *4))))) + (-2 (|:| |ir| (-575 (-402 *6))) (|:| |specpart| (-402 *6)) + (|:| |polypart| *6))) + (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) + ((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-631 *2) *2 *2 *2)) (-4 *2 (-1082)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-103 *2))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *2 (-1020)) (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-928 (-221)))) (-5 *1 (-1242))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 - (-630 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-779)) (-4 *3 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-833)) - (-5 *1 (-442 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-1031)) (-5 *1 (-700 *4 *2)) - (-4 *2 (-633 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-820 *2)) (-4 *2 (-1031))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-903)) (-5 *1 (-1080 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *1) - (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-833)) - (-4 *4 (-779)) (-5 *1 (-969 *2 *3 *4 *5)) (-4 *5 (-931 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-553))) (-5 *1 (-1098)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-630 - (-2 (|:| -2409 (-757)) - (|:| |eqns| - (-630 - (-2 (|:| |det| *7) (|:| |rows| (-630 (-553))) - (|:| |cols| (-630 (-553)))))) - (|:| |fgb| (-630 *7))))) - (-4 *7 (-931 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-757)) - (-5 *1 (-906 *4 *5 *6 *7))))) + (-498 (-402 (-554)) (-236 *4 (-758)) (-850 *3) + (-243 *3 (-402 (-554))))) + (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-499 *3 *4))))) (((*1 *2 *1) - (-12 + (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 - (-630 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220))))) - (-5 *1 (-548)))) - ((*1 *2 *1) - (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-5 *2 (-630 *3)))) - ((*1 *2 *1) - (-12 + (-2 (|:| -3142 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) (-5 *2 - (-630 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220))))) - (-5 *1 (-789))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *1) (-4 *1 (-949)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1155)) (-4 *5 (-601 (-874 (-553)))) - (-4 *5 (-868 (-553))) - (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-556 *5 *3)) (-4 *3 (-616)) - (-4 *3 (-13 (-27) (-1177) (-424 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1155)) (-5 *4 (-826 *2)) (-4 *2 (-1118)) - (-4 *2 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-601 (-874 (-553)))) (-4 *5 (-868 (-553))) - (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) - (-5 *1 (-556 *5 *2))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-111)) (-5 *5 (-553)) (-4 *6 (-357)) (-4 *6 (-362)) - (-4 *6 (-1031)) (-5 *2 (-630 (-630 (-674 *6)))) (-5 *1 (-1011 *6)) - (-5 *3 (-630 (-674 *6))))) + (-2 (|:| |poly| *6) (|:| -3312 (-402 *6)) + (|:| |special| (-402 *6)))) + (-5 *1 (-714 *5 *6)) (-5 *3 (-402 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1031)) - (-5 *2 (-630 (-630 (-674 *4)))) (-5 *1 (-1011 *4)) - (-5 *3 (-630 (-674 *4))))) + (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-881 *3 *4)) + (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-758)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-881 *3 *5)) + (-4 *3 (-1217 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) + (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) + (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) + (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-631 *9)) (-5 *3 (-631 *8)) (-5 *4 (-112)) + (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1127 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1195)) + (-4 *2 (-1195)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (|has| *1 (-6 -4373)) + (-4 *1 (-149 *2)) (-4 *2 (-1195)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) + (-4 *2 (-1195)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) + (-4 *2 (-1195)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1034)) + (-5 *2 (-2 (|:| -2598 (-1154 *4)) (|:| |deg| (-906)))) + (-5 *1 (-217 *4 *5)) (-5 *3 (-1154 *4)) (-4 *5 (-13 (-546) (-836))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758)) + (-4 *6 (-1195)) (-4 *2 (-1195)) (-5 *1 (-235 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1217 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-546)) (-4 *2 (-836)))) + ((*1 *1 *1) + (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1217 *2)) + (-4 *4 (-1217 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1195)) (-4 *2 (-1195)) + (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1082)) (-4 *2 (-1082)) + (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2)))) + ((*1 *1 *1) (-5 *1 (-489))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-631 *5)) (-4 *5 (-1195)) + (-4 *2 (-1195)) (-5 *1 (-629 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1034)) (-4 *2 (-1034)) + (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2)) + (-4 *9 (-368 *2)) (-5 *1 (-671 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-673 *5 *6 *7)) (-4 *10 (-673 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1034)) (-5 *1 (-699 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) (-4 *3 (-358)) + (-4 *3 (-170)) (-4 *1 (-711 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-943 *5)) (-4 *5 (-1195)) + (-4 *2 (-1195)) (-5 *1 (-942 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5)) + (-14 *6 (-631 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1034)) (-4 *2 (-1034)) + (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7)) + (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) + (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *12 (-1037 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1138 *5)) (-4 *5 (-1195)) + (-4 *2 (-1195)) (-5 *1 (-1136 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1188 *5 *6 *7 *2)) (-4 *5 (-546)) (-4 *6 (-780)) + (-4 *7 (-836)) (-4 *2 (-1048 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) + (-4 *2 (-1195)) (-5 *1 (-1240 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1241 (-685))) (-5 *1 (-300))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) + (-5 *1 (-729 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -2292 (-631 *7)))) + (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1129 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) + (-5 *2 (-554)) (-5 *1 (-1096 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-834)) (-5 *1 (-298 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-772 *3)) (-4 *3 (-602 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1031)) - (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) - (-5 *3 (-630 (-674 *5))))) + (-12 (-5 *4 (-906)) (-5 *2 (-374)) (-5 *1 (-772 *3)) + (-4 *3 (-602 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2)) + (-5 *2 (-374)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1031)) - (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) - (-5 *3 (-630 (-674 *5)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) - (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) + (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) + (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *5 (-1045 *3 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-984) (-1177))) - (-4 *4 (-13 (-545) (-833))) - (-4 *2 (-13 (-424 (-166 *4)) (-984) (-1177))) - (-5 *1 (-587 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) - (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-757)))) - (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1214 (-401 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-829))))) -(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-604)))) -(((*1 *2 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) - (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031)))) + (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 *2)) + (-5 *2 (-374)) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) - (-5 *1 (-673 *2 *4 *5 *3)) (-4 *3 (-672 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031))))) + (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) + (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) + (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) + (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-546)) (-4 *2 (-934 *3 *5 *4)) + (-5 *1 (-719 *5 *4 *6 *2)) (-5 *3 (-402 (-937 *6))) (-4 *5 (-780)) + (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 (-553))))) - (-5 *1 (-355 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-600 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1180))) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-1154 (-402 (-1154 *6)))) (-5 *1 (-550 *5 *6 *7)) + (-5 *3 (-1154 *6)) (-4 *7 (-1082)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 (-757))))) - (-5 *1 (-380 *3)) (-4 *3 (-1079)))) + (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| -3355 *3) (|:| -2692 (-553))))) - (-5 *1 (-412 *3)) (-4 *3 (-545)))) + (-12 (-4 *1 (-711 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1154 *11)) (-5 *6 (-631 *10)) + (-5 *7 (-631 (-758))) (-5 *8 (-631 *11)) (-4 *10 (-836)) + (-4 *11 (-302)) (-4 *9 (-780)) (-4 *5 (-934 *11 *9 *10)) + (-5 *2 (-631 (-1154 *5))) (-5 *1 (-729 *9 *10 *11 *5)) + (-5 *3 (-1154 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 (-757))))) - (-5 *1 (-805 *3)) (-4 *3 (-833))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1081 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) + (-12 (-4 *2 (-934 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *2 *6)) + (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-14 *6 (-631 *2))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-758))) (-5 *3 (-112)) (-5 *1 (-1146 *4 *5)) + (-14 *4 (-906)) (-4 *5 (-1034))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) + (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8)) + (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836)) + (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9)))) + (-5 *1 (-1090 *6 *7 *4 *8 *9))))) +(((*1 *1 *1) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-928 (-221)) (-928 (-221)))) (-5 *1 (-258)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) + (-5 *2 (-675 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1241 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-675 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-1241 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1217 *4)) (-5 *2 (-1241 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1081 *3)) (-5 *1 (-887 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-127))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-236)))) + (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) + (-5 *2 (-1241 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1243)) (-5 *1 (-236))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1177))) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-574 *3)) (-5 *1 (-555 *5 *3 *6)) (-4 *6 (-1079))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *2 (-630 (-220))) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-4 *4 (-833)) (-5 *2 (-630 (-630 (-630 *4)))) - (-5 *1 (-1163 *4)) (-5 *3 (-630 (-630 *4)))))) -(((*1 *1) (-5 *1 (-567))) - ((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-846)))) - ((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-846)))) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170)) + (-5 *2 (-675 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-845)) (-5 *2 (-1243)) (-5 *1 (-846)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-1135 *4)) - (-4 *4 (-1079)) (-4 *4 (-1192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) - (-5 *2 (-630 (-630 (-630 (-925 *3)))))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-431)) (-5 *1 (-1159))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-757)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-1193 *3)) (-4 *3 (-833)) - (-4 *3 (-1079))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-630 (-768 *3))) (-5 *1 (-768 *3)) (-4 *3 (-545)) - (-4 *3 (-1031))))) + (-12 (-5 *4 (-631 (-675 *5))) (-5 *3 (-675 *5)) (-4 *5 (-358)) + (-5 *2 (-1241 *5)) (-5 *1 (-1068 *5))))) +(((*1 *1) (-5 *1 (-1064)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) + ((*1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1076 (-829 (-221)))) (-5 *2 (-221)) (-5 *1 (-300))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-661 *2)) (-4 *2 (-1034)) (-4 *2 (-1082))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344)) + (-5 *1 (-522 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) + (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) + (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-911)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-911)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-631 (-1 (-221) (-221)))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1214 *2)) (-4 *2 (-1196)) (-5 *1 (-145 *2 *4 *3)) - (-4 *3 (-1214 (-401 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) - (-14 *4 (-630 (-1155))))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) - (-14 *4 (-630 (-1155)))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-630 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 - (-2 (|:| |solns| (-630 *5)) - (|:| |maps| (-630 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1107 *3 *5)) (-4 *3 (-1214 *5))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *3 (-1241 *5)) (-4 *5 (-779)) (-5 *2 (-112)) + (-5 *1 (-831 *4 *5)) (-14 *4 (-758))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-5 *1 (-325))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-258)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-374)) (-5 *1 (-1046))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-1217 *4)) (-5 *1 (-533 *4 *2 *5 *6)) + (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-758)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-610 *4 *2)) (-4 *2 (-13 (-1180) (-944) (-29 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) + ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-836)) (-5 *3 (-631 *6)) (-5 *5 (-631 *3)) (-5 *2 - (-630 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-757)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-779)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-833)) - (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-844)))) - ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-844))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1151 *1)) (-4 *1 (-994))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-738))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-127)) (-5 *2 (-1099))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-599 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1155))) (-5 *5 (-1151 *2)) - (-4 *2 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1079)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-599 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1155))) - (-5 *5 (-401 (-1151 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-553))) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-599 *3)) (-5 *5 (-1151 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-574 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-599 *3)) (-5 *5 (-401 (-1151 *3))) - (-4 *3 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-574 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-242 *3 *4)) - (-14 *3 (-630 (-1155))) (-4 *4 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-14 *3 (-630 (-1155))) - (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1031)) - (-4 *5 (-233 (-2563 *3) (-757))))) + (-2 (|:| |f1| *3) (|:| |f2| (-631 *5)) (|:| |f3| *5) + (|:| |f4| (-631 *5)))) + (-5 *1 (-1166 *6)) (-5 *4 (-631 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-474 *3 *4)) - (-14 *3 (-630 (-1155))) (-4 *4 (-1031))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-903)) - (-14 *4 (-903))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-401 (-934 (-166 (-553)))))) - (-5 *2 (-630 (-630 (-288 (-934 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-288 (-401 (-934 (-166 (-553))))))) - (-5 *2 (-630 (-630 (-288 (-934 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 (-166 (-553))))) - (-5 *2 (-630 (-288 (-934 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-934 (-166 (-553)))))) - (-5 *2 (-630 (-288 (-934 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-357) (-831)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) - (-5 *2 (-1017)) (-5 *1 (-735))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1031)) (-14 *3 (-630 (-1155))))) - ((*1 *1 *1) - (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1031) (-833))) - (-14 *3 (-630 (-1155))))) - ((*1 *1 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-1079)))) - ((*1 *1 *1) - (-12 (-14 *2 (-630 (-1155))) (-4 *3 (-169)) - (-4 *5 (-233 (-2563 *2) (-757))) - (-14 *6 - (-1 (-111) (-2 (|:| -2735 *4) (|:| -2692 *5)) - (-2 (|:| -2735 *4) (|:| -2692 *5)))) - (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-833)) - (-4 *7 (-931 *3 *5 (-847 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-833)))) - ((*1 *1 *1) - (-12 (-4 *2 (-545)) (-5 *1 (-610 *2 *3)) (-4 *3 (-1214 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1031)))) - ((*1 *1 *1) - (-12 (-5 *1 (-721 *2 *3)) (-4 *3 (-833)) (-4 *2 (-1031)) - (-4 *3 (-712)))) - ((*1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)))) + (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-1034)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-829))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-547 *2)) (-4 *2 (-538))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1079)) (-4 *4 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-1 *6 *5)) (-5 *1 (-669 *5 *4 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-545)) (-4 *2 (-445)) (-5 *1 (-951 *2 *3)) - (-4 *3 (-1214 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1151 *7)) - (-4 *5 (-1031)) (-4 *7 (-1031)) (-4 *2 (-1214 *5)) - (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1214 *2))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4371 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) - (-4 *2 (-1031)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1214 *2)) - (-4 *4 (-672 *2 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |k| (-1155)) (|:| |c| (-1260 *3))))) - (-5 *1 (-1260 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |k| *3) (|:| |c| (-1262 *3 *4))))) - (-5 *1 (-1262 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031))))) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))) +(((*1 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1173))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1151 (-1151 *4)))) - (-5 *1 (-1190 *4)) (-5 *3 (-1151 (-1151 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-757))) - (-5 *1 (-532 *3 *2 *4 *5)) (-4 *2 (-1214 *3))))) + (-12 (-4 *3 (-1217 (-402 (-554)))) + (-5 *2 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554)))) + (-5 *1 (-898 *3 *4)) (-4 *4 (-1217 (-402 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3)) + (-4 *3 (-1217 (-402 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))) (((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-931 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) + (-12 (-5 *2 (-1011 (-829 (-554)))) (-5 *1 (-584 *3)) (-4 *3 (-1034))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-674 *4)) (-5 *3 (-757)) (-4 *4 (-1031)) - (-5 *1 (-675 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-656)))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-903)) - (-14 *4 (-903))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) + (-5 *2 (-675 *3))))) +(((*1 *1 *1) (-5 *1 (-221))) + ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1121))) ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-103 *3)) (-4 *3 (-1082))))) +(((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1154 *1)) (-5 *3 (-1158)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-937 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1158)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-836) (-546))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-836) (-546))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1154 *2)) (-5 *4 (-1158)) (-4 *2 (-425 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-836) (-546))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-4 *1 (-997)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1154 *1)) (-5 *3 (-906)) (-5 *4 (-848)) + (-4 *1 (-997)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-906)) (-4 *4 (-13 (-834) (-358))) + (-4 *1 (-1051 *4 *2)) (-4 *2 (-1217 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-546)))) + ((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-675 (-1154 *8))) (-4 *5 (-1034)) (-4 *8 (-1034)) + (-4 *6 (-1217 *5)) (-5 *2 (-675 *6)) (-5 *1 (-495 *5 *6 *7 *8)) + (-4 *7 (-1217 *6))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-445)) (-4 *4 (-806)) - (-14 *5 (-1155)) (-5 *2 (-553)) (-5 *1 (-1093 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-488))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1031)) (-5 *1 (-50 *2 *3)) (-14 *3 (-630 (-1155))))) - ((*1 *2 *1) - (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) - (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1079)) (-4 *2 (-1031)))) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 (-402 (-937 (-554))))) (-5 *4 (-631 (-1158))) + (-5 *2 (-631 (-631 *5))) (-5 *1 (-375 *5)) + (-4 *5 (-13 (-834) (-358))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-834) (-358)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-1138 (-1138 (-937 *5)))) + (-5 *1 (-1249 *5)) (-5 *4 (-1138 (-937 *5)))))) +(((*1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) + (-15 -2822 ((-1107 *3 (-600 $)) $)) + (-15 -3075 ($ (-1107 *3 (-600 $)))))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27)) + (-5 *2 (-631 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1)) + (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-14 *3 (-630 (-1155))) (-4 *5 (-233 (-2563 *3) (-757))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-906)) (-5 *2 (-462)) (-5 *1 (-1242))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-962 *5 *6 *7 *8))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-631 (-1158))) (-4 *2 (-170)) + (-4 *4 (-234 (-2563 *5) (-758))) (-14 *6 - (-1 (-111) (-2 (|:| -2735 *4) (|:| -2692 *5)) - (-2 (|:| -2735 *4) (|:| -2692 *5)))) - (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-833)) - (-4 *7 (-931 *2 *5 (-847 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-833)) (-4 *2 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *2 (-545)) (-5 *1 (-610 *2 *3)) (-4 *3 (-1214 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1031)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1031)) (-5 *1 (-721 *2 *3)) (-4 *3 (-833)) - (-4 *3 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)))) - ((*1 *2 *1) - (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *3 (-778)) (-4 *4 (-833)) - (-4 *2 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2 *3) (-12 (-5 *3 (-953)) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-694 *3)) (-5 *1 (-813 *2 *3)) (-4 *3 (-1031))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-757)) (-4 *6 (-1079)) (-4 *7 (-882 *6)) - (-5 *2 (-674 *7)) (-5 *1 (-677 *6 *7 *3 *4)) (-4 *3 (-367 *7)) - (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4369))))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-833)) - (-5 *2 (-2 (|:| -4120 (-553)) (|:| |var| (-599 *1)))) - (-4 *1 (-424 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-1089)) (-5 *3 (-553))))) + (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *4)) + (-2 (|:| -2717 *3) (|:| -1407 *4)))) + (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-836)) + (-4 *7 (-934 *2 *4 (-850 *5)))))) +(((*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-131))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6)) + (-4 *6 (-13 (-27) (-425 *5))) + (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7))) + (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) + (-4 *3 (-337 *6 *7 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-539)) (-5 *1 (-157 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180)))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-630 (-947))) (-5 *1 (-285))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-630 (-168))))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1079)))) - ((*1 *2 *1) - (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) - (-4 *6 (-233 (-2563 *3) (-757))) - (-14 *7 - (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *6)) - (-2 (|:| -2735 *5) (|:| -2692 *6)))) - (-5 *2 (-699 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-833)) (-4 *8 (-931 *4 *6 (-847 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-712)) (-4 *2 (-833)) (-5 *1 (-721 *3 *2)) - (-4 *3 (-1031)))) - ((*1 *1 *1) - (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-778)) - (-4 *4 (-833))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-829))))) -(((*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192))))) + (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358))))) (((*1 *2 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-4 *7 (-974 *4)) (-4 *2 (-672 *7 *8 *9)) - (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-672 *4 *5 *6)) - (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)) (-4 *2 (-301)))) - ((*1 *2 *2) - (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) - (-4 *2 (-672 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3)))) + (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) + (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1034 *2 *3 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301))))) -(((*1 *2 *2) (-12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-111)) - (-5 *1 (-351 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) - (-5 *2 (-934 *5)) (-5 *1 (-926 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-401 (-553))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) - (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *7)) (|:| |neqzro| (-630 *7)) - (|:| |wcond| (-630 (-934 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *4)))))))))) - (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833))))) -(((*1 *2 *3) - (-12 (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-139 *2 *4 *3)) - (-4 *3 (-367 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-496 *2 *4 *5 *3)) - (-4 *5 (-367 *2)) (-4 *3 (-367 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 *4)) (-4 *4 (-974 *2)) (-4 *2 (-545)) - (-5 *1 (-678 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-974 *2)) (-4 *2 (-545)) (-5 *1 (-1207 *2 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-630 *10)) (-5 *5 (-111)) (-4 *10 (-1051 *6 *7 *8 *9)) - (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *9 (-1045 *6 *7 *8)) - (-5 *2 - (-630 - (-2 (|:| -2662 (-630 *9)) (|:| -3233 *10) (|:| |ineq| (-630 *9))))) - (-5 *1 (-970 *6 *7 *8 *9 *10)) (-5 *3 (-630 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-630 *10)) (-5 *5 (-111)) (-4 *10 (-1051 *6 *7 *8 *9)) - (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *9 (-1045 *6 *7 *8)) - (-5 *2 - (-630 - (-2 (|:| -2662 (-630 *9)) (|:| -3233 *10) (|:| |ineq| (-630 *9))))) - (-5 *1 (-1086 *6 *7 *8 *9 *10)) (-5 *3 (-630 *9))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -4120 *3) (|:| |gap| (-757)) (|:| -2666 (-768 *3)) - (|:| -1571 (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) - (-5 *2 - (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -2666 *1) - (|:| -1571 *1))) - (-4 *1 (-1045 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 - (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -2666 *1) - (|:| -1571 *1))) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-553)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6))))) + (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-52))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) + (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) + (-5 *1 (-775))))) (((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -2388 (-401 *6)) (|:| |coeff| (-401 *6)))) - (-5 *1 (-563 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1214 *5)) - (-5 *1 (-793 *5 *2 *3 *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *3 (-641 *2)) (-4 *6 (-641 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-401 *2))) (-4 *2 (-1214 *5)) - (-5 *1 (-793 *5 *2 *3 *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) - (-4 *6 (-641 (-401 *2)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1243)) - (-5 *1 (-442 *4 *5 *6 *7))))) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-833)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) -(((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845)))))) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) - (-14 *4 *2)))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-545)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1169 *4 *5)) - (-4 *4 (-1079)) (-4 *5 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *1 (-611 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *2 (-1088 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-130))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *5 (-1214 *4)) (-5 *2 (-630 (-638 (-401 *5)))) - (-5 *1 (-642 *4 *5)) (-5 *3 (-638 (-401 *5)))))) -(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1022))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-442 *4 *5 *6 *2))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-757)) (-5 *3 (-925 *4)) (-4 *1 (-1113 *4)) - (-4 *4 (-1031)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-757)) (-5 *4 (-925 (-220))) (-5 *2 (-1243)) - (-5 *1 (-1240))))) -(((*1 *1 *1) (-4 *1 (-238))) - ((*1 *1 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1214 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3988 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1192))) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1192))))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-343)) (-5 *1 (-521 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *8)) (-4 *8 (-931 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) - (-4 *7 (-779)) - (-5 *2 - (-630 - (-2 (|:| -2409 (-757)) - (|:| |eqns| - (-630 - (-2 (|:| |det| *8) (|:| |rows| (-630 (-553))) - (|:| |cols| (-630 (-553)))))) - (|:| |fgb| (-630 *8))))) - (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-757))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-856)) - (-5 *5 (-903)) (-5 *6 (-630 (-257))) (-5 *2 (-1239)) - (-5 *1 (-1242)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-630 (-257))) - (-5 *2 (-1239)) (-5 *1 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-811))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) -(((*1 *1 *1 *1) (-4 *1 (-949)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-630 (-288 *4))) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1229 *4)) - (-4 *4 (-38 (-401 (-553)))) - (-5 *2 (-1 (-1135 *4) (-1135 *4) (-1135 *4))) (-5 *1 (-1231 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-760)) (-5 *1 (-52))))) -(((*1 *2) - (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-833)) (-5 *3 (-630 *6)) (-5 *5 (-630 *3)) + (-12 (-5 *3 (-631 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-631 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-302)) + (-5 *1 (-177 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 *8)) + (-5 *4 + (-631 + (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-675 *7))))) + (-5 *5 (-758)) (-4 *8 (-1217 *7)) (-4 *7 (-1217 *6)) (-4 *6 (-344)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-630 *5)) (|:| |f3| *5) - (|:| |f4| (-630 *5)))) - (-5 *1 (-1163 *6)) (-5 *4 (-630 *5))))) -(((*1 *1 *1) (-5 *1 (-220))) - ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1118))) ((*1 *1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) - (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1214 *6)) - (-4 *6 (-13 (-27) (-424 *5))) - (-4 *5 (-13 (-833) (-545) (-1020 (-553)))) (-4 *8 (-1214 (-401 *7))) - (-5 *2 (-574 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) - (-4 *3 (-336 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) + (-2 (|:| -3782 (-675 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-675 *7)))) + (-5 *1 (-492 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) +(((*1 *1) (-5 *1 (-432)))) (((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) + (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) (-14 *4 *2)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1187 *3)) (-4 *3 (-956))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) + (-5 *2 (-1020)) (-5 *1 (-735))))) +(((*1 *1) (-5 *1 (-325)))) +(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1197))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-13 (-358) (-836))) + (-14 *4 (-1158)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1) + (-12 (-4 *3 (-546)) (-5 *2 (-112)) (-5 *1 (-611 *3 *4)) + (-4 *4 (-1217 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-631 *7))) (-4 *1 (-1188 *4 *5 *6 *7)) + (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-112)) (-5 *1 (-877 *4)) + (-4 *4 (-1082))))) +(((*1 *1 *1 *1) (-4 *1 (-539)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-1034)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-1034))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1082)) (-5 *2 (-874 *3 *4)) (-5 *1 (-870 *3 *4 *5)) + (-4 *3 (-1082)) (-4 *5 (-652 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(((*1 *2 *2) + (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-1106 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) + (-4 *4 (-13 (-358) (-834))) (-4 *3 (-1217 *2))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1265 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-170)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-806 *3)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *3 (-1217 *4)) (-5 *1 (-796 *4 *3 *2 *5)) (-4 *2 (-642 *3)) + (-4 *5 (-642 (-402 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-402 *5)) + (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *5 (-1217 *4)) + (-5 *1 (-796 *4 *5 *2 *6)) (-4 *2 (-642 *5)) (-4 *6 (-642 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082)) + (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4))))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) + ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-129)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-130)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-355 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-356 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-380 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-381 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-634 *3 *4 *5)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-635 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-553)) (-5 *3 (-757)) (-5 *1 (-550))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) + (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) + (-5 *1 (-775)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) + (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) + (-5 *1 (-775))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-724 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082)))) + ((*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-1082))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-401 (-553))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-553))) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-401 (-553)))) (-5 *4 (-288 *8)) - (-5 *5 (-1205 (-401 (-553)))) (-5 *6 (-401 (-553))) - (-4 *8 (-13 (-27) (-1177) (-424 *7))) - (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-401 (-553)))) - (-5 *7 (-401 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *8))) - (-4 *8 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-401 (-553))) (-4 *4 (-1031)) (-4 *1 (-1221 *4 *3)) - (-4 *3 (-1198 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-1160 (-402 (-554)))) + (-5 *1 (-186))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-758)) (-5 *1 (-551))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-368 *3)) + (-4 *3 (-1195))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-1013 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-631 (-675 *3))) (-4 *3 (-1034)) (-5 *1 (-1013 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-758)) (-4 *2 (-546)) (-5 *1 (-954 *2 *4)) + (-4 *4 (-1217 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-5 *1 (-973 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-5 *1 (-1089 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *1 (-575 *2)) (-4 *2 (-1023 *3)) + (-4 *2 (-358)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2)) + (-4 *2 (-13 (-425 *4) (-987) (-1180))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-987) (-1180))) + (-4 *4 (-13 (-836) (-546))) (-5 *1 (-618 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-1158)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-944))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-943 *3)) (-5 *1 (-1145 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) (-5 *2 (-111)) - (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4)))) + (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-112)) + (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34)))))) -(((*1 *2 *1) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1137)) (-5 *1 (-772))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1031)) (-5 *1 (-698 *3 *4)) - (-4 *4 (-1214 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-1231 *4 *2)) - (-4 *4 (-38 (-401 (-553))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-373)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-166 (-220)))) (-5 *2 (-1017)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-5 *3 (-401 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-545)) - (-4 *4 (-1031)) (-4 *2 (-1229 *4)) (-5 *1 (-1232 *4 *5 *6 *2)) - (-4 *6 (-641 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-553)) (-4 *5 (-13 (-445) (-833) (-1020 *4) (-626 *4))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-445) (-833) (-1020 *5) (-626 *5))) (-5 *5 (-553)) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-553))) (-5 *4 (-288 *7)) (-5 *5 (-1205 (-553))) - (-4 *7 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-553))) - (-4 *3 (-13 (-27) (-1177) (-424 *7))) - (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-631 (-402 *7))) + (-4 *7 (-1217 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-564 *6 *7))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-631 (-1154 *7))) (-5 *3 (-1154 *7)) + (-4 *7 (-934 *5 *6 *4)) (-4 *5 (-894)) (-4 *6 (-780)) + (-4 *4 (-836)) (-5 *1 (-891 *5 *6 *4 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *5)))) + (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *2 (-631 *5)) + (-5 *1 (-212 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-2 (|:| -2270 *5) (|:| -3308 (-554))))) + (-5 *4 (-554)) (-4 *5 (-1217 *4)) (-5 *2 (-631 *5)) + (-5 *1 (-682 *5))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1158))))) +(((*1 *2 *3) + (-12 (-5 *3 (-575 *2)) (-4 *2 (-13 (-29 *4) (-1180))) + (-5 *1 (-573 *4 *2)) + (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-575 (-402 (-937 *4)))) + (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *2 (-311 *4)) (-5 *1 (-578 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1188 *4 *5 *3 *6)) (-4 *4 (-546)) (-4 *5 (-780)) + (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-911)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-553)) (-4 *4 (-1031)) (-4 *1 (-1200 *4 *3)) - (-4 *3 (-1229 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1198 *3))))) + (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-911)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-928 (-221)) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-738))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3324 *7) (|:| |sol?| (-112))) + (-554) *7)) + (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7)) + (-5 *3 (-402 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-564 *7 *8))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1151 (-934 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) - (-5 *2 (-1151 (-934 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-638 (-401 *6))) (-5 *4 (-1 (-630 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *6 (-1214 *5)) (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-638 (-401 *7))) (-5 *4 (-1 (-630 *6) *7)) - (-5 *5 (-1 (-412 *7) *7)) - (-4 *6 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *7 (-1214 *6)) (-5 *2 (-630 (-401 *7))) (-5 *1 (-798 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6 (-401 *6))) (-5 *4 (-1 (-630 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *6 (-1214 *5)) (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *7 (-401 *7))) (-5 *4 (-1 (-630 *6) *7)) - (-5 *5 (-1 (-412 *7) *7)) - (-4 *6 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *7 (-1214 *6)) (-5 *2 (-630 (-401 *7))) (-5 *1 (-798 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-638 (-401 *5))) (-4 *5 (-1214 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-630 (-401 *5))) (-5 *1 (-798 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-638 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) - (-4 *6 (-1214 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *5 (-401 *5))) (-4 *5 (-1214 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-630 (-401 *5))) (-5 *1 (-798 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) - (-4 *6 (-1214 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-630 (-401 *6))) (-5 *1 (-798 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2134 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) + (-12 (-4 *5 (-358)) + (-5 *2 (-631 (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5))))) + (-5 *1 (-963 *5)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-937 (-554)))) (-5 *1 (-432)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-221))) (-5 *2 (-1086)) + (-5 *1 (-746)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-675 (-554))) (-5 *2 (-1086)) + (-5 *1 (-746))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-631 (-1058 *4 *5 *2))) (-4 *4 (-1082)) + (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) + (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-631 (-1058 *5 *6 *2))) (-5 *4 (-906)) (-4 *5 (-1082)) + (-4 *6 (-13 (-1034) (-871 *5) (-836) (-602 (-877 *5)))) + (-4 *2 (-13 (-425 *6) (-871 *5) (-602 (-877 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1214 *4 *5)) (-5 *3 (-631 *5)) (-14 *4 (-1158)) + (-4 *5 (-358)) (-5 *1 (-908 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-358)) (-5 *2 (-1154 *5)) + (-5 *1 (-908 *4 *5)) (-14 *4 (-1158)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-631 *6)) (-5 *4 (-758)) (-4 *6 (-358)) + (-5 *2 (-402 (-937 *6))) (-5 *1 (-1035 *5 *6)) (-14 *5 (-1158))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) + (-4 *2 (-673 *3 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1195)) + (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *2 *7)) (-4 *6 (-1034)) + (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-903)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1151 *1)) - (-4 *1 (-323 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1151 *3)))) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) - (-4 *2 (-1214 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-1151 *4)) - (-5 *1 (-521 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1138 *3)) (-4 *3 (-1082)) + (-4 *3 (-1195))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-630 (-1155))) + (-12 (-5 *3 (-1154 (-937 *6))) (-4 *6 (-546)) + (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) (-5 *1 (-719 *5 *4 *6 *2)) + (-4 *5 (-780)) + (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $)))))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) + (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-1254 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-325))))) +(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) (-5 *2 - (-630 (-1125 *5 (-524 (-847 *6)) (-847 *6) (-766 *5 (-847 *6))))) - (-5 *1 (-615 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) -(((*1 *1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-5 *5 (-757)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-553))) (-5 *4 (-288 *6)) - (-4 *6 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-553))) (-5 *4 (-288 *7)) (-5 *5 (-1205 (-757))) - (-4 *7 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-757))) - (-4 *3 (-13 (-27) (-1177) (-424 *7))) - (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1229 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-946 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-599 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1151 (-48))) (-5 *3 (-630 (-599 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1151 (-48))) (-5 *3 (-599 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1214 (-166 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-903)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1214 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1214 *2)) (-4 *2 (-974 *3)) (-5 *1 (-407 *3 *2 *4 *5)) - (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1020 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1214 *2)) (-4 *2 (-974 *3)) - (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) - (-14 *6 (-1238 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-4 *5 (-1031)) - (-4 *2 (-13 (-398) (-1020 *5) (-357) (-1177) (-278))) - (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1214 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-599 (-488)))) (-5 *1 (-488)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-488))) (-5 *1 (-488)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1151 (-488))) (-5 *3 (-630 (-599 (-488)))) - (-5 *1 (-488)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1151 (-488))) (-5 *3 (-599 (-488))) (-5 *1 (-488)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-903)) (-4 *4 (-343)) - (-5 *1 (-521 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-710 *4 *2)) (-4 *2 (-1214 *4)) - (-5 *1 (-761 *4 *2 *5 *3)) (-4 *3 (-1214 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) - ((*1 *1 *1) (-4 *1 (-1040)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-5 *2 (-111))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-553))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *3 (-111)) (-5 *1 (-109)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (|has| *1 (-6 -4360)) (-4 *1 (-398)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903))))) -(((*1 *2 *3) - (-12 (-4 *1 (-343)) (-5 *3 (-553)) (-5 *2 (-1165 (-903) (-757)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) - (-4 *7 (-1214 (-401 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -4246 *3))) - (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7)))) + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 - (-2 (|:| |answer| (-401 *6)) (|:| -4246 (-401 *6)) - (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) - (-5 *1 (-552 *5 *6)) (-5 *3 (-401 *6))))) + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-228)) (-4 *3 (-1031)) (-4 *4 (-833)) (-4 *5 (-260 *4)) - (-4 *6 (-779)) (-5 *2 (-1 *1 (-757))) (-4 *1 (-247 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-4 *3 (-833)) (-4 *5 (-260 *3)) (-4 *6 (-779)) - (-5 *2 (-1 *1 (-757))) (-4 *1 (-247 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-260 *2)) (-4 *2 (-833))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-5 *2 (-630 *1)) (-4 *1 (-1113 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-856)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-631 *3)) (|:| |image| (-631 *3)))) + (-5 *1 (-890 *3)) (-4 *3 (-1082))))) +(((*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1082))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-642 *3)) (-4 *3 (-1034)) (-4 *3 (-358)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-758)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) + (-5 *1 (-645 *5 *2)) (-4 *2 (-642 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-1238 *5))) (-5 *4 (-553)) (-5 *2 (-1238 *5)) - (-5 *1 (-1011 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1031))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-674 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-169)) (-4 *2 (-1214 *4)) (-5 *1 (-174 *4 *2 *3)) - (-4 *3 (-710 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-401 (-934 *5)))) (-5 *4 (-1155)) - (-5 *2 (-934 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 (-401 (-934 *4)))) (-5 *2 (-934 *4)) - (-5 *1 (-286 *4)) (-4 *4 (-445)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1214 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 (-166 (-401 (-553))))) - (-5 *2 (-934 (-166 (-401 (-553))))) (-5 *1 (-750 *4)) - (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-166 (-401 (-553))))) (-5 *4 (-1155)) - (-5 *2 (-934 (-166 (-401 (-553))))) (-5 *1 (-750 *5)) - (-4 *5 (-13 (-357) (-831))))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *2 (-934 (-401 (-553)))) - (-5 *1 (-765 *4)) (-4 *4 (-13 (-357) (-831))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-401 (-553)))) (-5 *4 (-1155)) - (-5 *2 (-934 (-401 (-553)))) (-5 *1 (-765 *5)) - (-4 *5 (-13 (-357) (-831)))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-630 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-757)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-779)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-833)) - (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) - (|:| |c2| (-401 *5)) (|:| |deg| (-757)))) - (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1214 (-401 *5)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) - (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) - (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373)))) - ((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-373))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-909))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) - (-5 *2 (-1151 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) - (-5 *2 (-1151 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-1198 *4)) (-4 *4 (-1031)) (-4 *4 (-545)) - (-5 *2 (-401 (-934 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-1198 *4)) (-4 *4 (-1031)) (-4 *4 (-545)) - (-5 *2 (-401 (-934 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *1 *1 *1) (-5 *1 (-220))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022)))) - ((*1 *1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-736))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1137)) (-5 *1 (-187)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) + (-12 (-4 *5 (-546)) + (-5 *2 (-2 (|:| -2866 (-675 *5)) (|:| |vec| (-1241 (-631 (-906)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-906)) (-4 *3 (-642 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1192)) (-5 *2 (-757)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-659 *4))))) + (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-187)) (-5 *3 (-554)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-770 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-631 (-1154 *13))) (-5 *3 (-1154 *13)) + (-5 *4 (-631 *12)) (-5 *5 (-631 *10)) (-5 *6 (-631 *13)) + (-5 *7 (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *13))))) + (-5 *8 (-631 (-758))) (-5 *9 (-1241 (-631 (-1154 *10)))) + (-4 *12 (-836)) (-4 *10 (-302)) (-4 *13 (-934 *10 *11 *12)) + (-4 *11 (-780)) (-5 *1 (-694 *11 *12 *10 *13))))) (((*1 *2 *1) - (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) - (-4 *5 (-233 (-2563 *3) (-757))) - (-14 *6 - (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *5)) - (-2 (|:| -2735 *2) (|:| -2692 *5)))) - (-4 *2 (-833)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-931 *4 *5 (-847 *3)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1073 (-220))) - (-5 *5 (-111)) (-5 *2 (-1240)) (-5 *1 (-251))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192))))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-1146 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243)))) + ((*1 *2 *1) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1243))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1082))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-699 *3 *4)) + (-4 *4 (-1217 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) - (-5 *2 (-630 (-757))) (-5 *1 (-764 *3 *4 *5 *6 *7)) - (-4 *3 (-1214 *6)) (-4 *7 (-931 *6 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-780)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) + (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) + (-5 *2 (-1020)) (-5 *1 (-743))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-748)))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-826 *3)) (-4 *3 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) - ((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) -(((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *8 (-1045 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-579 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-553) "failed") *5)) (-4 *5 (-1031)) - (-5 *2 (-553)) (-5 *1 (-536 *5 *3)) (-4 *3 (-1214 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-553) "failed") *4)) (-4 *4 (-1031)) - (-5 *2 (-553)) (-5 *1 (-536 *4 *3)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-553) "failed") *4)) (-4 *4 (-1031)) - (-5 *2 (-553)) (-5 *1 (-536 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-391))))) + (-12 (-5 *2 (-675 *3)) + (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-675 *3)) + (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) + (-4 *5 (-836)) (-5 *2 (-937 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *5)) (-4 *4 (-1034)) + (-4 *5 (-836)) (-5 *2 (-937 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034)) + (-5 *2 (-937 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-1232 *4)) (-4 *4 (-1034)) + (-5 *2 (-937 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-288 (-819 *3))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-819 *3)) (-5 *1 (-623 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-819 (-934 *5)))) (-4 *5 (-445)) - (-5 *2 (-819 (-401 (-934 *5)))) (-5 *1 (-624 *5)) - (-5 *3 (-401 (-934 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 (-401 (-934 *5)))) (-5 *3 (-401 (-934 *5))) - (-4 *5 (-445)) (-5 *2 (-819 *3)) (-5 *1 (-624 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-599 *4)) (-5 *1 (-598 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-833))))) + (-12 (-5 *3 (-1154 *2)) (-4 *2 (-934 (-402 (-937 *6)) *5 *4)) + (-5 *1 (-719 *5 *4 *6 *2)) (-4 *5 (-780)) + (-4 *4 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) + (-4 *6 (-546))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-631 (-600 *5))) (-5 *3 (-1158)) (-4 *5 (-425 *4)) + (-4 *4 (-836)) (-5 *1 (-563 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1158)) + (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *1 (-1161))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) - (-4 *3 (-1214 *4)))) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2)) + (-4 *4 (-38 (-402 (-554))))))) +(((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-631 (-114)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-741))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) + (-14 *4 (-631 (-1158))))) + ((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-444 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-444 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-444 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) + (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446)) + (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) + ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374))))) +(((*1 *2 *1) + (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) + (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6)) + (-4 *6 (-337 *3 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-834))) + (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *5)))) + (-5 *1 (-179 *5 *3)) (-4 *3 (-1217 (-167 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-358) (-834))) + (-5 *2 (-631 (-2 (|:| -2316 (-631 *3)) (|:| -1841 *4)))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-631 (-1158))) + (-5 *2 (-631 (-631 (-374)))) (-5 *1 (-1008)) (-5 *5 (-374)))) ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-757))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-630 (-757))) (-5 *5 (-757)) (-5 *2 (-412 *3)) - (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) + (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) + (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1214 (-553))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-989 *3)) - (-4 *3 (-1214 (-401 (-553)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-1203 *3)) (-4 *3 (-1214 (-553)))))) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-937 *4))) + (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1012 *5 *6 *7 *3))) (-5 *1 (-1012 *5 *6 *7 *3)) + (-4 *3 (-1048 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-631 *6)) (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1054 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1128 *5 *6 *7 *3))) (-5 *1 (-1128 *5 *6 *7 *3)) + (-4 *3 (-1048 *5 *6 *7))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-369 *4 *2)) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370))))))) + (-12 (-5 *2 (-374)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092))))) +(((*1 *2 *3) (-12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) + (-4 *6 (-13 (-546) (-1023 *5))) (-4 *5 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *6)))))) (-5 *1 (-1024 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-1034)))) + ((*1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462))))) +(((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) - (-5 *2 - (-2 (|:| |mval| (-674 *4)) (|:| |invmval| (-674 *4)) - (|:| |genIdeal| (-497 *4 *5 *6 *7)))) - (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1079) (-34))) - (-5 *2 (-111)) (-5 *1 (-1119 *4 *5)) (-4 *4 (-13 (-1079) (-34)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-545)) (-5 *1 (-951 *4 *2)) - (-4 *2 (-1214 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *6)) (-5 *5 (-1 (-412 (-1151 *6)) (-1151 *6))) - (-4 *6 (-357)) + (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1046)) (-5 *3 (-1140))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-997)) (-5 *2 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020)) + (-5 *1 (-743))))) +(((*1 *2 *3) + (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816)) (-5 *3 (-1140))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-306)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-955)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-979)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1021)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1056))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) ((*1 *1) (-4 *1 (-539))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-888 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4)) + (-4 *4 (-1217 *3))))) +(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140))))) +(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *1) (-5 *1 (-810)))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-129)) (-5 *2 (-1102))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 - (-630 - (-2 (|:| |outval| *7) (|:| |outmult| (-553)) - (|:| |outvect| (-630 (-674 *7)))))) - (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-831)))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1137)) (-5 *4 (-166 (-220))) (-5 *5 (-553)) - (-5 *2 (-1017)) (-5 *1 (-744))))) + (-2 (|:| -1707 (-758)) (|:| |curves| (-758)) + (|:| |polygons| (-758)) (|:| |constructs| (-758))))))) (((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-833)) (-4 *3 (-1020 (-553))) - (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) - (-15 -3974 ((-1104 *3 (-599 $)) $)) - (-15 -3110 ($ (-1104 *3 (-599 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-553)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-546)) (-4 *2 (-170))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1))) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2999 *3) (|:| |coef2| (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *2 (-1017)) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) - (-5 *2 (-1017)) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) - (-5 *2 (-630 (-2 (|:| -2498 *1) (|:| -2984 (-630 *7))))) - (-5 *3 (-630 *7)) (-4 *1 (-1185 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-545)) - (-4 *7 (-931 *3 *5 *6)) - (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *8) (|:| |radicand| *8))) - (-5 *1 (-935 *5 *6 *3 *7 *8)) (-5 *4 (-757)) - (-4 *8 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $)))))))) + (-12 (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *2 (-631 *3)) (-5 *1 (-962 *4 *5 *6 *3)) + (-4 *3 (-1048 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-829 *4)) (-5 *3 (-600 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1180) (-29 *6))) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-220 *6 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) + (-5 *2 (-554)) (-5 *1 (-1096 *4 *5))))) (((*1 *2 *3) - (-12 + (-12 (-14 *4 (-631 (-1158))) (-14 *5 (-758)) + (-5 *2 + (-631 + (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) + (-243 *4 (-402 (-554)))))) + (-5 *1 (-499 *4 *5)) (-5 *3 - (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) - (-5 *2 (-630 (-1155))) (-5 *1 (-261)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 *7)) (-4 *7 (-931 *6 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1031)) (-5 *2 (-630 *5)) - (-5 *1 (-315 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-381)))) - ((*1 *2 *1) - (-12 (-4 *1 (-424 *3)) (-4 *3 (-833)) (-5 *2 (-630 (-1155))))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-630 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) - (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-630 *5)) - (-5 *1 (-932 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1081 (-1155))) (-5 *1 (-948 *3)) (-4 *3 (-949)))) - ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-4 *5 (-833)) (-5 *2 (-630 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-5 *2 (-630 (-1155))) - (-5 *1 (-1025 *4))))) + (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) + (-243 *4 (-402 (-554)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-638 (-401 *2))) (-4 *2 (-1214 *4)) (-5 *1 (-796 *4 *2)) - (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *2 (-401 *2))) (-4 *2 (-1214 *4)) - (-5 *1 (-796 *4 *2)) - (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553)))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1214 *6)) - (-4 *6 (-13 (-357) (-144) (-1020 *4))) (-5 *4 (-553)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) - (|:| -2662 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-997 *6 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-874 *3)) (|:| |den| (-874 *3)))) - (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) + (-12 (-5 *3 (-402 *5)) (-4 *5 (-1217 *4)) (-4 *4 (-546)) + (-4 *4 (-1034)) (-4 *2 (-1232 *4)) (-5 *1 (-1235 *4 *5 *6 *2)) + (-4 *6 (-642 *5))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-402 *6)) + (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358)) + (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5))) + (-5 *1 (-853 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-758)) (-5 *4 (-1233 *5 *6 *7)) (-4 *5 (-358)) + (-14 *6 (-1158)) (-14 *7 *5) (-5 *2 (-402 (-1214 *6 *5))) + (-5 *1 (-853 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| -3355 *4) (|:| -3872 (-553))))) - (-4 *4 (-1214 (-553))) (-5 *2 (-723 (-757))) (-5 *1 (-435 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-412 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-1031)) - (-5 *2 (-723 (-757))) (-5 *1 (-437 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1031))))) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) (((*1 *2 *3) - (-12 (-5 *3 (-553)) (|has| *1 (-6 -4360)) (-4 *1 (-398)) - (-5 *2 (-903))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *3)) - (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-630 *7) (-630 *7))) (-5 *2 (-630 *7)) - (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-779)) - (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1151 (-401 (-1151 *2)))) (-5 *4 (-599 *2)) - (-4 *2 (-13 (-424 *5) (-27) (-1177))) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1079)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1151 *1)) (-4 *1 (-931 *4 *5 *3)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *3 (-833)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1151 *4)) (-4 *4 (-1031)) (-4 *1 (-931 *4 *5 *3)) - (-4 *5 (-779)) (-4 *3 (-833)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-1151 *2))) (-4 *5 (-779)) (-4 *4 (-833)) - (-4 *6 (-1031)) - (-4 *2 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))) - (-5 *1 (-932 *5 *4 *6 *7 *2)) (-4 *7 (-931 *6 *5 *4)))) + (-12 (-4 *4 (-13 (-546) (-145))) (-5 *2 (-631 *3)) + (-5 *1 (-1211 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-402 (-554)))) + (-5 *2 (-2 (|:| -3003 (-1138 *4)) (|:| -3014 (-1138 *4)))) + (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4))))) +(((*1 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-5 *2 (-1246)) (-5 *1 (-1161)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-1151 (-401 (-934 *5))))) (-5 *4 (-1155)) - (-5 *2 (-401 (-934 *5))) (-5 *1 (-1025 *5)) (-4 *5 (-545))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-236))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1238 (-630 *3))) (-4 *4 (-301)) - (-5 *2 (-630 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-630 (-630 *7))) - (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) - (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-630 (-630 *8))) - (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-630 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1205 *3)) (-4 *3 (-1192))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-757)) (-5 *1 (-575 *2)) (-4 *2 (-538))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1137)) (-5 *1 (-299))))) + (-12 (-5 *3 (-1158)) + (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) + (-5 *1 (-1161)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1158)) + (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) (-5 *2 (-1246)) + (-5 *1 (-1161))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1157 (-401 (-553)))) (-5 *2 (-401 (-553))) - (-5 *1 (-185))))) -(((*1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-5 *1 (-619)))) -(((*1 *2) - (-12 (-4 *1 (-343)) - (-5 *2 (-630 (-2 (|:| -3355 (-553)) (|:| -2692 (-553)))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-373)) (-5 *1 (-1043))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-630 (-903))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-903)) - (-4 *2 (-357)) (-14 *5 (-975 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-699 *5 *6 *7)) (-4 *5 (-833)) - (-4 *6 (-233 (-2563 *4) (-757))) - (-14 *7 - (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *6)) - (-2 (|:| -2735 *5) (|:| -2692 *6)))) - (-14 *4 (-630 (-1155))) (-4 *2 (-169)) - (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-931 *2 *6 (-847 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-833)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-545)) (-5 *1 (-610 *2 *4)) - (-4 *4 (-1214 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-694 *2)) (-4 *2 (-1031)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-721 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-712)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *5)) (-5 *3 (-630 (-757))) (-4 *1 (-726 *4 *5)) - (-4 *4 (-1031)) (-4 *5 (-833)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *2)) (-4 *4 (-1031)) - (-4 *2 (-833)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-4 *1 (-835 *2)) (-4 *2 (-1031)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *6)) (-5 *3 (-630 (-757))) (-4 *1 (-931 *4 *5 *6)) - (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-931 *4 *5 *2)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *2 (-833)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *6)) (-5 *3 (-630 *5)) (-4 *1 (-955 *4 *5 *6)) - (-4 *4 (-1031)) (-4 *5 (-778)) (-4 *6 (-833)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-955 *4 *3 *2)) (-4 *4 (-1031)) (-4 *3 (-778)) - (-4 *2 (-833))))) -(((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1137))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) - ((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -3343 (-630 *7)))) - (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) - (-5 *5 (-111)) (-4 *8 (-1045 *6 *7 *4)) (-4 *9 (-1051 *6 *7 *4 *8)) - (-4 *6 (-445)) (-4 *7 (-779)) (-4 *4 (-833)) - (-5 *2 (-630 (-2 (|:| |val| *8) (|:| -3233 *9)))) - (-5 *1 (-1087 *6 *7 *4 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-757)) (-4 *4 (-343)) - (-5 *1 (-521 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-52)) (-5 *1 (-874 *4)) - (-4 *4 (-1079))))) -(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-908))))) + (-12 (-5 *2 (-631 *3)) (-5 *1 (-946 *3)) (-4 *3 (-539))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) (-5 *3 (-221)) + (-5 *2 (-1020)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-1241 *4)) + (-5 *1 (-801 *4 *3)) (-4 *3 (-642 *4))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-675 *2)) (-5 *4 (-758)) + (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *5 (-1217 *2)) (-5 *1 (-493 *2 *5 *6)) (-4 *6 (-404 *2 *5))))) +(((*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-816))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-553)) (-5 *1 (-558 *3)) (-4 *3 (-1020 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *2 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) - (-5 *1 (-734))))) -(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1040)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)) (-4 *2 (-1040)))) - ((*1 *1 *1) (-4 *1 (-831))) - ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)) (-4 *2 (-1040)))) - ((*1 *1 *1) (-4 *1 (-1040))) ((*1 *1 *1) (-4 *1 (-1118)))) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-302)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-441 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) + (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-441 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-1140)) (-4 *7 (-934 *4 *5 *6)) + (-4 *4 (-302)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-441 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-674 (-401 (-934 (-553))))) - (-5 *2 (-630 (-674 (-310 (-553))))) (-5 *1 (-1013)) - (-5 *3 (-310 (-553)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| -4120 *4) (|:| -2666 *3) (|:| -1571 *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1045 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| -4120 *3) (|:| -2666 *1) (|:| -1571 *1))) - (-4 *1 (-1214 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-545)) (-4 *3 (-169)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4124 (-630 *1)))) - (-4 *1 (-361 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-446 *3 *4 *5 *6)) - (|:| -4124 (-630 (-446 *3 *4 *5 *6))))) - (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1214 *4)) (-4 *4 (-1196)) - (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1214 (-401 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-1238 *1)) (-4 *4 (-169)) - (-4 *1 (-361 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-1238 *1)) (-4 *4 (-169)) - (-4 *1 (-364 *4 *5)) (-4 *5 (-1214 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1214 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-808))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-575 *2)) (-4 *2 (-538))))) + (-12 (-5 *4 (-554)) (-4 *5 (-344)) (-5 *2 (-413 (-1154 (-1154 *5)))) + (-5 *1 (-1193 *5)) (-5 *3 (-1154 (-1154 *5)))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-631 + (-2 (|:| |eqzro| (-631 *8)) (|:| |neqzro| (-631 *8)) + (|:| |wcond| (-631 (-937 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *5)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *5)))))))))) + (-5 *4 (-1140)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-934 *5 *7 *6)) + (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-554)) + (-5 *1 (-909 *5 *6 *7 *8))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-538)) - (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-412 *3)) (-4 *3 (-538)) - (-4 *3 (-545)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-538)) (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-783 *3)) (-4 *3 (-169)) (-4 *3 (-538)) - (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-819 *3)) (-4 *3 (-538)) - (-4 *3 (-1079)))) + (|partial| -12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) + (-5 *2 (-112)) (-5 *1 (-972 *3 *4 *5 *6)) + (-4 *6 (-934 *3 *5 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-826 *3)) (-4 *3 (-538)) - (-4 *3 (-1079)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-979 *3)) (-4 *3 (-169)) (-4 *3 (-538)) - (-5 *2 (-401 (-553))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-401 (-553))) (-5 *1 (-990 *3)) - (-4 *3 (-1020 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-111)) (-4 *7 (-1045 *4 *5 *6)) - (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-959 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-305)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-952)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-976)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1053))))) -(((*1 *2) - (-12 (-5 *2 (-1238 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) - (-14 *3 (-903)) (-14 *4 (-903))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-599 *3)) - (-4 *3 (-13 (-424 *5) (-27) (-1177))) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) - (-5 *1 (-555 *5 *3 *6)) (-4 *6 (-1079))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 (-553))) - (-5 *2 (-1238 (-553))) (-5 *1 (-1265 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) + (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) + (-4 *3 (-952))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-984 *3)) (-4 *3 (-170)) (-5 *1 (-786 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-554)) (-5 *1 (-374))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-59 *3)) (-4 *3 (-1195)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-59 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1) + (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) (((*1 *2) - (|partial| -12 (-4 *3 (-545)) (-4 *3 (-169)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4124 (-630 *1)))) - (-4 *1 (-361 *3)))) + (-12 (-4 *4 (-170)) (-5 *2 (-1154 (-937 *4))) (-5 *1 (-411 *3 *4)) + (-4 *3 (-412 *4)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-446 *3 *4 *5 *6)) - (|:| -4124 (-630 (-446 *3 *4 *5 *6))))) - (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) - (-5 *2 (-2 (|:| -4120 (-401 *5)) (|:| |poly| *3))) - (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1214 (-401 *5)))))) + (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) + (-5 *2 (-1154 (-937 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3) + (-12 (-5 *3 (-675 (-402 (-937 (-554))))) (-5 *2 (-631 (-311 (-554)))) + (-5 *1 (-1016))))) +(((*1 *1) (-5 *1 (-810)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-546)) (-4 *5 (-1034)) + (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) + (-4 *3 (-838 *5))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) + ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991))))) +(((*1 *1) (-5 *1 (-1242)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) + (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) + (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *5)))) - (-5 *1 (-1108 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-13 (-301) (-833) (-144))) - (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1108 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-934 *5)))) (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *5)))) - (-5 *1 (-1108 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-288 (-401 (-934 *4)))) - (-4 *4 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-288 (-310 *4)))) - (-5 *1 (-1108 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) - (-4 *5 (-13 (-301) (-833) (-144))) - (-5 *2 (-630 (-630 (-288 (-310 *5))))) (-5 *1 (-1108 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-401 (-934 *4)))) - (-4 *4 (-13 (-301) (-833) (-144))) - (-5 *2 (-630 (-630 (-288 (-310 *4))))) (-5 *1 (-1108 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-288 (-401 (-934 *5))))) (-5 *4 (-630 (-1155))) - (-4 *5 (-13 (-301) (-833) (-144))) - (-5 *2 (-630 (-630 (-288 (-310 *5))))) (-5 *1 (-1108 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-288 (-401 (-934 *4))))) - (-4 *4 (-13 (-301) (-833) (-144))) - (-5 *2 (-630 (-630 (-288 (-310 *4))))) (-5 *1 (-1108 *4))))) + (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-631 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 (-402 *7))) (-5 *4 (-1 (-631 *6) *7)) + (-5 *5 (-1 (-413 *7) *7)) + (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-631 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *6 (-1217 *5)) (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 *7 (-402 *7))) (-5 *4 (-1 (-631 *6) *7)) + (-5 *5 (-1 (-413 *7) *7)) + (-4 *6 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *7 (-1217 *6)) (-5 *2 (-631 (-402 *7))) (-5 *1 (-799 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) + (-4 *6 (-1217 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *5 (-402 *5))) (-4 *5 (-1217 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-631 (-402 *5))) (-5 *1 (-799 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) + (-4 *6 (-1217 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-631 (-402 *6))) (-5 *1 (-799 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-848)))) (((*1 *2 *2) - (-12 - (-5 *2 - (-969 (-401 (-553)) (-847 *3) (-235 *4 (-757)) - (-242 *3 (-401 (-553))))) - (-14 *3 (-630 (-1155))) (-14 *4 (-757)) (-5 *1 (-968 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) - (-5 *1 (-120 *3)) (-4 *3 (-833)))) - ((*1 *2 *2) - (-12 (-5 *2 (-574 *4)) (-4 *4 (-13 (-29 *3) (-1177))) - (-4 *3 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *1 (-572 *3 *4)))) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-443 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) ((*1 *2 *2) - (-12 (-5 *2 (-574 (-401 (-934 *3)))) - (-4 *3 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *1 (-577 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -1686 *3) (|:| |special| *3))) (-5 *1 (-713 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1238 *5)) (-4 *5 (-357)) (-4 *5 (-1031)) - (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) - (-5 *3 (-630 (-674 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1238 (-1238 *5))) (-4 *5 (-357)) (-4 *5 (-1031)) - (-5 *2 (-630 (-630 (-674 *5)))) (-5 *1 (-1011 *5)) - (-5 *3 (-630 (-674 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-630 *1)) (-4 *1 (-1123)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-630 *1)) (-4 *1 (-1123))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-510))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *2 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-959 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-630 (-553))) - (|:| |cols| (-630 (-553))))) - (-5 *4 (-674 *12)) (-5 *5 (-630 (-401 (-934 *9)))) - (-5 *6 (-630 (-630 *12))) (-5 *7 (-757)) (-5 *8 (-553)) - (-4 *9 (-13 (-301) (-144))) (-4 *12 (-931 *9 *11 *10)) - (-4 *10 (-13 (-833) (-601 (-1155)))) (-4 *11 (-779)) - (-5 *2 - (-2 (|:| |eqzro| (-630 *12)) (|:| |neqzro| (-630 *12)) - (|:| |wcond| (-630 (-934 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *9)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *9))))))))) - (-5 *1 (-906 *9 *10 *11 *12))))) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *2 (-1243)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-903)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-412 *3)) (-4 *3 (-545)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| -3355 *4) (|:| -3872 (-553))))) - (-4 *4 (-1214 (-553))) (-5 *2 (-757)) (-5 *1 (-435 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) - (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) - (-5 *1 (-774))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) - (-4 *8 (-833)) (-4 *9 (-1045 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2662 (-630 *9)) (|:| -3233 *4) (|:| |ineq| (-630 *9)))) - (-5 *1 (-970 *6 *7 *8 *9 *4)) (-5 *3 (-630 *9)) - (-4 *4 (-1051 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) - (-4 *8 (-833)) (-4 *9 (-1045 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2662 (-630 *9)) (|:| -3233 *4) (|:| |ineq| (-630 *9)))) - (-5 *1 (-1086 *6 *7 *8 *9 *4)) (-5 *3 (-630 *9)) - (-4 *4 (-1051 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 *4)))) - (-5 *1 (-871 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-4 *7 (-1079)) (-5 *2 (-630 *1)) (-4 *1 (-1082 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-477 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-630 (-630 (-630 *4)))) (-5 *3 (-630 *4)) (-4 *4 (-833)) - (-5 *1 (-1163 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3))))) + (-12 (-5 *3 (-675 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554))))) +(((*1 *2) + (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-934 (-401 (-553)))) (-5 *4 (-1155)) - (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-630 (-220))) (-5 *1 (-294))))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554) + *6)) + (-4 *6 (-358)) (-4 *7 (-1217 *6)) + (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) + (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221)) + (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-738))))) (((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-757))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-745))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-1077 *3)))) - ((*1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-745))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-730 *3)) (-4 *3 (-169))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-1243)) - (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-887 *3))) (-4 *3 (-1079)) (-5 *1 (-886 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-553)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-757)) (-4 *5 (-169)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-553)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-757)) (-4 *5 (-169)))) - ((*1 *2 *2 *3) + (-12 (-4 *3 (-602 (-877 *3))) (-4 *3 (-871 *3)) + (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-602 (-877 *3))) (-4 *2 (-871 *3)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 (-311 (-221)))) (-5 *1 (-262))))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3) (-12 (-5 *2 - (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) - (-242 *4 (-401 (-553))))) - (-5 *3 (-630 (-847 *4))) (-14 *4 (-630 (-1155))) (-14 *5 (-757)) - (-5 *1 (-498 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-553))) (-5 *4 (-887 (-553))) - (-5 *2 (-674 (-553))) (-5 *1 (-578)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-630 (-674 (-553)))) - (-5 *1 (-578)))) + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-553))) (-5 *4 (-630 (-887 (-553)))) - (-5 *2 (-630 (-674 (-553)))) (-5 *1 (-578))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934 (-553))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) - ((*1 *2 *3) - (-12 (-5 *3 (-934 (-401 (-553)))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) - ((*1 *2 *3) (-12 (-5 *3 (-934 *1)) (-4 *1 (-994)) (-5 *2 (-630 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 (-553))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 (-401 (-553)))) (-5 *2 (-630 *1)) (-4 *1 (-994)))) - ((*1 *2 *3) (-12 (-5 *3 (-1151 *1)) (-4 *1 (-994)) (-5 *2 (-630 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-831) (-357))) (-4 *3 (-1214 *4)) (-5 *2 (-630 *1)) - (-4 *1 (-1048 *4 *3))))) -(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1071 (-826 *3))) (-4 *3 (-13 (-1177) (-941) (-29 *5))) - (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 - (-3 (|:| |f1| (-826 *3)) (|:| |f2| (-630 (-826 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1071 (-826 *3))) (-5 *5 (-1137)) - (-4 *3 (-13 (-1177) (-941) (-29 *6))) - (-4 *6 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) + (-12 (-5 *2 - (-3 (|:| |f1| (-826 *3)) (|:| |f2| (-630 (-826 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *6 *3)))) + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) + (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1071 (-826 (-310 *5)))) - (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) + (-12 (-5 *2 - (-3 (|:| |f1| (-826 (-310 *5))) (|:| |f2| (-630 (-826 (-310 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *5)))) + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *1 (-1005 *3)) (-4 *3 (-1217 (-554))) (-5 *4 (-402 (-554))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-401 (-934 *6))) (-5 *4 (-1071 (-826 (-310 *6)))) - (-5 *5 (-1137)) - (-4 *6 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) + (-12 (-5 *5 (-402 (-554))) + (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1005 *3)) + (-4 *3 (-1217 (-554))) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 - (-3 (|:| |f1| (-826 (-310 *6))) (|:| |f2| (-630 (-826 (-310 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *6)))) + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1071 (-826 (-401 (-934 *5))))) (-5 *3 (-401 (-934 *5))) - (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 - (-3 (|:| |f1| (-826 (-310 *5))) (|:| |f2| (-630 (-826 (-310 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1071 (-826 (-401 (-934 *6))))) (-5 *5 (-1137)) - (-5 *3 (-401 (-934 *6))) - (-4 *6 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) + (-12 (-5 *2 - (-3 (|:| |f1| (-826 (-310 *6))) (|:| |f2| (-630 (-826 (-310 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *6)))) + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *1 (-1006 *3)) (-4 *3 (-1217 (-402 (-554)))) + (-5 *4 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-3 *3 (-630 *3))) (-5 *1 (-422 *5 *3)) - (-4 *3 (-13 (-1177) (-941) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-467 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) - (-5 *5 (-373)) (-5 *6 (-1043)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) - (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) + (-12 (-5 *4 (-402 (-554))) + (-5 *2 (-631 (-2 (|:| -3311 *4) (|:| -3324 *4)))) (-5 *1 (-1006 *3)) + (-4 *3 (-1217 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) - (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1073 (-826 (-373)))) - (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) - (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) - (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) - (-5 *5 (-373)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-1073 (-826 (-373))))) - (-5 *5 (-373)) (-5 *6 (-1043)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1071 (-826 (-373)))) - (-5 *5 (-1137)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1071 (-826 (-373)))) - (-5 *5 (-1155)) (-5 *2 (-1017)) (-5 *1 (-554)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) (-4 *5 (-1214 *4)) - (-5 *2 (-574 (-401 *5))) (-5 *1 (-557 *4 *5)) (-5 *3 (-401 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-144)) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *2 (-3 (-310 *5) (-630 (-310 *5)))) (-5 *1 (-577 *5)))) + (-12 (-5 *5 (-402 (-554))) + (-5 *2 (-631 (-2 (|:| -3311 *5) (|:| -3324 *5)))) (-5 *1 (-1006 *3)) + (-4 *3 (-1217 *5)) (-5 *4 (-2 (|:| -3311 *5) (|:| -3324 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-833)) - (-4 *3 (-38 (-401 (-553)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1155)) (-5 *1 (-934 *3)) (-4 *3 (-38 (-401 (-553)))) - (-4 *3 (-1031)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-4 *2 (-833)) - (-5 *1 (-1105 *3 *2 *4)) (-4 *4 (-931 *3 (-524 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) - (-5 *1 (-1139 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1146 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1152 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1153 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)))) + ((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) + (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1))) + (-4 *1 (-1048 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2423 *1))) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1158)) + (-5 *2 (-631 *4)) (-5 *1 (-1096 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2999 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-631 (-600 *4))) (-4 *4 (-425 *3)) (-4 *3 (-836)) + (-5 *1 (-563 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554))))) + (-5 *2 (-402 (-554))) (-5 *1 (-1005 *4)) (-4 *4 (-1217 (-554)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1195)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *1 (-1186 *3)) (-4 *3 (-38 (-401 (-553)))) - (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-3988 - (-12 (-5 *2 (-1155)) (-4 *1 (-1198 *3)) (-4 *3 (-1031)) - (-12 (-4 *3 (-29 (-553))) (-4 *3 (-941)) (-4 *3 (-1177)) - (-4 *3 (-38 (-401 (-553)))))) - (-12 (-5 *2 (-1155)) (-4 *1 (-1198 *3)) (-4 *3 (-1031)) - (-12 (|has| *3 (-15 -3506 ((-630 *2) *3))) - (|has| *3 (-15 -3406 (*3 *3 *2))) (-4 *3 (-38 (-401 (-553)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1202 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) - ((*1 *1 *1 *2) - (-3988 - (-12 (-5 *2 (-1155)) (-4 *1 (-1219 *3)) (-4 *3 (-1031)) - (-12 (-4 *3 (-29 (-553))) (-4 *3 (-941)) (-4 *3 (-1177)) - (-4 *3 (-38 (-401 (-553)))))) - (-12 (-5 *2 (-1155)) (-4 *1 (-1219 *3)) (-4 *3 (-1031)) - (-12 (|has| *3 (-15 -3506 ((-630 *2) *3))) - (|has| *3 (-15 -3406 (*3 *3 *2))) (-4 *3 (-38 (-401 (-553)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1223 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3988 - (-12 (-5 *2 (-1155)) (-4 *1 (-1229 *3)) (-4 *3 (-1031)) - (-12 (-4 *3 (-29 (-553))) (-4 *3 (-941)) (-4 *3 (-1177)) - (-4 *3 (-38 (-401 (-553)))))) - (-12 (-5 *2 (-1155)) (-4 *1 (-1229 *3)) (-4 *3 (-1031)) - (-12 (|has| *3 (-15 -3506 ((-630 *2) *3))) - (|has| *3 (-15 -3406 (*3 *3 *2))) (-4 *3 (-38 (-401 (-553)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1031)) (-4 *2 (-38 (-401 (-553)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1230 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031)) (-14 *5 *3)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-674 *5))) (-5 *4 (-553)) (-4 *5 (-357)) - (-4 *5 (-1031)) (-5 *2 (-111)) (-5 *1 (-1011 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-674 *4))) (-4 *4 (-357)) (-4 *4 (-1031)) - (-5 *2 (-111)) (-5 *1 (-1011 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-357)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-443 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) + (-12 (-5 *2 (-631 (-600 *1))) (-5 *3 (-631 *1)) (-4 *1 (-297)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-289 *1))) (-4 *1 (-297)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *6 (-221)) + (-5 *3 (-554)) (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1122 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1082) (-34))) (-4 *6 (-13 (-1082) (-34))) + (-5 *2 (-112)) (-5 *1 (-1123 *5 *6))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| R (-674 *6)) (|:| A (-674 *6)) (|:| |Ainv| (-674 *6)))) - (-5 *1 (-960 *6)) (-5 *3 (-674 *6))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-144) (-27) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *5 (-1214 *4)) (-5 *2 (-1151 (-401 *5))) (-5 *1 (-602 *4 *5)) - (-5 *3 (-401 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-144) (-27) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 (-1151 (-401 *6))) (-5 *1 (-602 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-632 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1214 *6)) - (-4 *6 (-13 (-27) (-424 *5))) - (-4 *5 (-13 (-833) (-545) (-1020 (-553)))) (-4 *8 (-1214 (-401 *7))) - (-5 *2 (-574 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) - (-4 *3 (-336 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-554)))) + (-4 *4 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $))))) + (-4 *3 (-546)) (-5 *1 (-1220 *3 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-1238 *4)) (-4 *4 (-1192)) (-4 *1 (-233 *3 *4))))) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-4 *1 (-888 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-630 (-1155))) (-4 *5 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-756 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-756 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4124 (-630 *6))) - *7 *6)) - (-4 *6 (-357)) (-4 *7 (-641 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1238 *6) "failed")) - (|:| -4124 (-630 (-1238 *6))))) - (-5 *1 (-799 *6 *7)) (-5 *4 (-1238 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-1031)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-1214 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-845)))) (-5 *1 (-845)))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199)) + (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) + (-5 *2 (-2 (|:| |num| (-675 *5)) (|:| |den| *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-742))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) - (-12 (-5 *2 (-1121 *3 *4)) (-5 *1 (-975 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-357)))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *5))) (-4 *5 (-1031)) - (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) - (-4 *7 (-233 *3 *5))))) + (-12 (-5 *2 (-631 (-928 *3))) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-928 *3))) (-4 *1 (-1116 *3)) (-4 *3 (-1034))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *4)) (-4 *4 (-1034)) (-4 *2 (-1217 *4)) + (-5 *1 (-438 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-402 (-1154 (-311 *5)))) (-5 *3 (-1241 (-311 *5))) + (-5 *4 (-554)) (-4 *5 (-13 (-546) (-836))) (-5 *1 (-1112 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-575 *3)) (-5 *1 (-547 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-4 *7 (-931 *4 *6 *5)) + (-12 (-4 *4 (-546)) (-5 *2 - (-2 (|:| |sysok| (-111)) (|:| |z0| (-630 *7)) (|:| |n0| (-630 *7)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833))))) -(((*1 *2 *1) - (-12 (-4 *1 (-680 *3)) (-4 *3 (-1079)) - (-5 *2 (-630 (-2 (|:| -3256 *3) (|:| -2796 (-757)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-357)) (-5 *1 (-878 *2 *4)) - (-4 *2 (-1214 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-630 (-257))) (-5 *1 (-255))))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-906)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1154 *1)) + (-4 *1 (-324 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1154 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) + (-4 *2 (-1217 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-310 *4)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3)))))) + (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4)) + (-5 *1 (-522 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-599 *5))) (-4 *4 (-833)) (-5 *2 (-599 *5)) - (-5 *1 (-562 *4 *5)) (-4 *5 (-424 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-805 *3)) (-4 *3 (-833))))) -(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-757))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-568))))) + (-12 (-5 *3 (-1076 (-829 (-374)))) (-5 *2 (-1076 (-829 (-221)))) + (-5 *1 (-300))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-928 (-221)) (-221) (-221))) + (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250))))) +(((*1 *2) + (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) + (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) + (-5 *2 + (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-675 *3)))) + (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1217 (-554))) + (-5 *2 + (-2 (|:| -3782 (-675 (-554))) (|:| |basisDen| (-554)) + (|:| |basisInv| (-675 (-554))))) + (-5 *1 (-755 *3 *4)) (-4 *4 (-404 (-554) *3)))) + ((*1 *2) + (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4)) + (-5 *2 + (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-675 *4)))) + (-5 *1 (-970 *3 *4 *5 *6)) (-4 *6 (-711 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-344)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 *4)) + (-5 *2 + (-2 (|:| -3782 (-675 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-675 *4)))) + (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1180) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145)) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *2 (-311 *5)) (-5 *1 (-578 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (-4 *4 (-1034)) + (-5 *1 (-1013 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) (-4 *4 (-1034)) + (-5 *1 (-1013 *4))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-2 (|:| -1463 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-757)) (-5 *3 (-925 *5)) (-4 *5 (-1031)) - (-5 *1 (-1143 *4 *5)) (-14 *4 (-903)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-757))) (-5 *3 (-757)) (-5 *1 (-1143 *4 *5)) - (-14 *4 (-903)) (-4 *5 (-1031)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-757))) (-5 *3 (-925 *5)) (-4 *5 (-1031)) - (-5 *1 (-1143 *4 *5)) (-14 *4 (-903))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1009 *5 *6 *7 *8))) (-5 *1 (-1009 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1125 *5 *6 *7 *8))) (-5 *1 (-1125 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1463 (-113)) (|:| |arg| (-630 (-874 *3))))) - (-5 *1 (-874 *3)) (-4 *3 (-1079)))) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344)))) + ((*1 *1) (-4 *1 (-363))) + ((*1 *2 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) + (-4 *4 (-344)))) + ((*1 *1 *1) (-4 *1 (-539))) ((*1 *1) (-4 *1 (-539))) + ((*1 *1 *1) (-5 *1 (-554))) ((*1 *1 *1) (-5 *1 (-758))) + ((*1 *2 *1) (-12 (-5 *2 (-890 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-630 (-874 *4))) - (-5 *1 (-874 *4)) (-4 *4 (-1079))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1151 *3)) (-4 *3 (-1031)) (-4 *1 (-1214 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-310 *4)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169)))) + (-12 (-5 *3 (-554)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4)) + (-4 *4 (-1082)))) + ((*1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-539)) (-4 *2 (-546))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7)))) + (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-973 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3162 (-630 *3)) (|:| -3640 (-630 *3)))) - (-5 *1 (-1193 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-630 (-630 *7))) - (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) - (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-630 (-630 *8))) - (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-630 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-630 (-630 *7))) - (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-630 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-779)) - (-4 *7 (-833)) (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-630 (-630 *8))) - (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-630 *8))))) + (-12 (-5 *2 (-631 (-2 (|:| |val| (-631 *6)) (|:| -2143 *7)))) + (-4 *6 (-1048 *3 *4 *5)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-1089 *3 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-674 *7)) (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-757)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-182))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1143 3 *3)) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) - ((*1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-630 (-599 *4))) (-4 *4 (-424 *3)) (-4 *3 (-833)) - (-5 *1 (-562 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-553)) (-5 *5 (-1137)) (-5 *6 (-674 (-220))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735))))) -(((*1 *2 *3) - (-12 (-5 *2 (-553)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031))))) -(((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) - ((*1 *1 *1) (-4 *1 (-984))) - ((*1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-994)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-4 *1 (-994)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-903)))) - ((*1 *1 *1) (-4 *1 (-994)))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-789))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1155)) (-5 *6 (-111)) - (-4 *7 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-4 *3 (-13 (-1177) (-941) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-826 *3)) (|:| |f2| (-630 (-826 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-214 *7 *3)) (-5 *5 (-826 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2134 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-251))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-740))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-1082)) (-4 *4 (-1195)) (-5 *2 (-112)) + (-5 *1 (-1138 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-630 (-934 *4))) (-5 *3 (-630 (-1155))) (-4 *4 (-445)) - (-5 *1 (-900 *4))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1214 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1214 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-48))) (-4 *5 (-833)) (-4 *6 (-779)) - (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-931 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-48))) (-4 *5 (-833)) (-4 *6 (-779)) - (-4 *7 (-931 (-48) *6 *5)) (-5 *2 (-412 (-1151 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1151 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) - (-4 *3 (-1214 (-166 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-831))) (-5 *2 (-412 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) - (-4 *3 (-1214 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-757))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-630 (-757))) (-5 *5 (-757)) (-5 *2 (-412 *3)) - (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-757)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) - (-4 *3 (-1214 (-553))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 (-166 (-553)))) (-5 *1 (-439)) - (-5 *3 (-166 (-553))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-4 *5 (-779)) (-4 *7 (-545)) (-5 *2 (-412 *3)) - (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-545)) - (-4 *3 (-931 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1151 *4))) (-5 *1 (-451 *4)) - (-5 *3 (-1151 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) - (-4 *7 (-13 (-357) (-144) (-710 *5 *6))) (-5 *2 (-412 *3)) - (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1214 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 (-1151 *7)) (-1151 *7))) - (-4 *7 (-13 (-301) (-144))) (-4 *5 (-833)) (-4 *6 (-779)) - (-5 *2 (-412 *3)) (-5 *1 (-533 *5 *6 *7 *3)) - (-4 *3 (-931 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 (-1151 *7)) (-1151 *7))) - (-4 *7 (-13 (-301) (-144))) (-4 *5 (-833)) (-4 *6 (-779)) - (-4 *8 (-931 *7 *6 *5)) (-5 *2 (-412 (-1151 *8))) - (-5 *1 (-533 *5 *6 *7 *8)) (-5 *3 (-1151 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-547 *3)) (-4 *3 (-538)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-630 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *6 (-1214 *5)) (-5 *2 (-630 (-638 (-401 *6)))) - (-5 *1 (-642 *5 *6)) (-5 *3 (-638 (-401 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-4 *5 (-1214 *4)) (-5 *2 (-630 (-638 (-401 *5)))) - (-5 *1 (-642 *4 *5)) (-5 *3 (-638 (-401 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-805 *4)) (-4 *4 (-833)) (-5 *2 (-630 (-657 *4))) - (-5 *1 (-657 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-553)) (-5 *2 (-630 *3)) (-5 *1 (-681 *3)) - (-4 *3 (-1214 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-343)) (-5 *2 (-412 *3)) - (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-931 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-343)) - (-4 *7 (-931 *6 *5 *4)) (-5 *2 (-412 (-1151 *7))) - (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) - (-4 *5 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-716 *4 *5 *6 *3)) - (-4 *3 (-931 (-934 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) - (-4 *5 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *6 (-545)) - (-5 *2 (-412 *3)) (-5 *1 (-718 *4 *5 *6 *3)) - (-4 *3 (-931 (-401 (-934 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-13 (-301) (-144))) - (-5 *2 (-412 *3)) (-5 *1 (-719 *4 *5 *6 *3)) - (-4 *3 (-931 (-401 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-13 (-301) (-144))) - (-5 *2 (-412 *3)) (-5 *1 (-727 *4 *5 *6 *3)) - (-4 *3 (-931 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-931 *6 *5 *4)) (-5 *2 (-412 (-1151 *7))) - (-5 *1 (-727 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-989 *3)) - (-4 *3 (-1214 (-401 (-553)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-1023 *3)) - (-4 *3 (-1214 (-401 (-934 (-553))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1214 (-401 (-553)))) - (-4 *5 (-13 (-357) (-144) (-710 (-401 (-553)) *4))) - (-5 *2 (-412 *3)) (-5 *1 (-1058 *4 *5 *3)) (-4 *3 (-1214 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1214 (-401 (-934 (-553))))) - (-4 *5 (-13 (-357) (-144) (-710 (-401 (-934 (-553))) *4))) - (-5 *2 (-412 *3)) (-5 *1 (-1060 *4 *5 *3)) (-4 *3 (-1214 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-445)) - (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-412 (-1151 (-401 *7)))) - (-5 *1 (-1150 *4 *5 *6 *7)) (-5 *3 (-1151 (-401 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1196)))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 *3)) (-5 *1 (-1203 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1155)) (-5 *1 (-660 *3)) (-4 *3 (-1079))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-630 *5) *6)) - (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *6 (-1214 *5)) - (-5 *2 (-630 (-2 (|:| -3879 *5) (|:| -2662 *3)))) - (-5 *1 (-795 *5 *6 *3 *7)) (-4 *3 (-641 *6)) - (-4 *7 (-641 (-401 *6)))))) + (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *4)) (-4 *4 (-626 (-553))) (-5 *2 (-111)) - (-5 *1 (-1265 *4))))) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) (((*1 *2 *3) - (-12 (-14 *4 (-630 (-1155))) (-4 *5 (-445)) - (-5 *2 - (-2 (|:| |glbase| (-630 (-242 *4 *5))) (|:| |glval| (-630 (-553))))) - (-5 *1 (-618 *4 *5)) (-5 *3 (-630 (-242 *4 *5)))))) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-834)) (-4 *4 (-358)) (-5 *2 (-758)) + (-5 *1 (-930 *4 *5)) (-4 *5 (-1217 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) + (-5 *2 (-1154 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-934 *5)) (-4 *5 (-1031)) (-5 *2 (-474 *4 *5)) - (-5 *1 (-926 *4 *5)) (-14 *4 (-630 (-1155)))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1137)) (-5 *5 (-674 (-220))) (-5 *6 (-220)) - (-5 *7 (-674 (-553))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *1 (-673 *4 *5 *6 *2)) - (-4 *2 (-672 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-4 *3 (-1214 *4)) (-4 *2 (-1229 *4)) - (-5 *1 (-1232 *4 *3 *5 *2)) (-4 *5 (-641 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-819 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-826 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-220))) (-5 *4 (-757)) (-5 *2 (-674 (-220))) - (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1185 *5 *6 *7 *3)) - (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *4)) - (-4 *4 (-1192)) (-5 *2 (-111))))) + (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5)) + (-5 *2 (-631 *3)) (-5 *1 (-764 *4 *5 *6 *3 *7)) (-4 *3 (-1217 *6)) + (-14 *7 (-906))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-669 *4 *3)) (-4 *4 (-1082)) + (-4 *3 (-1082))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258))))) +(((*1 *1 *1) (|partial| -4 *1 (-1133)))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-374)) (-5 *1 (-1025))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-836) (-546))) + (-5 *2 (-848)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-906)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-779)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-402 (-554))) (-4 *1 (-1222 *3)) (-4 *3 (-1034))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) + (-5 *2 (-112)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6))))) +(((*1 *2) + (-12 (-14 *4 (-758)) (-4 *5 (-1195)) (-5 *2 (-133)) + (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) + (-4 *3 (-324 *4)))) + ((*1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-170)))) + ((*1 *2 *1) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-554)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *6)) (-4 *6 (-836)) (-4 *4 (-358)) (-4 *5 (-780)) + (-5 *2 (-554)) (-5 *1 (-498 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *3)) (-4 *3 (-1034)) (-5 *2 (-906)))) + ((*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-358)) (-5 *2 (-133))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1092))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1241 *6)) (-5 *4 (-1241 (-554))) (-5 *5 (-554)) + (-4 *6 (-1082)) (-5 *2 (-1 *6)) (-5 *1 (-1002 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1238 *4)) (-4 *4 (-626 (-553))) - (-5 *2 (-1238 (-401 (-553)))) (-5 *1 (-1265 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-630 (-934 *4))) (-5 *3 (-630 (-1155))) (-4 *4 (-445)) - (-5 *1 (-900 *4))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-599 *4)) (-5 *6 (-1151 *4)) - (-4 *4 (-13 (-424 *7) (-27) (-1177))) - (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-641 *4)) (-4 *3 (-1079)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-599 *4)) (-5 *6 (-401 (-1151 *4))) - (-4 *4 (-13 (-424 *7) (-27) (-1177))) - (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) + (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-631 (-1158))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-641 *4)) (-4 *3 (-1079))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1119 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) - (-4 *4 (-13 (-1079) (-34))) (-4 *5 (-13 (-1079) (-34))) - (-5 *1 (-1120 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-630 (-1119 *3 *4))) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-674 (-220))) (-5 *6 (-674 (-553))) (-5 *3 (-553)) - (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-738))))) + (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6))))) + (-5 *1 (-616 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-1217 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-758)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1034)) + (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) + ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1) (-5 *1 (-1158)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1028 *5 *6))) - (-5 *1 (-615 *5 *6))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *1)) (-5 *4 (-1155)) (-4 *1 (-27)) - (-5 *2 (-630 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1151 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-934 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-675 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4)) + (-4 *3 (-412 *4)))) + ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-741))))) +(((*1 *1) (-5 *1 (-432)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1020)) (-5 *1 (-735))))) +(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-758)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-758))))) +(((*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-1217 *2))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-600 *1)) (-4 *1 (-297))))) +(((*1 *1) (-5 *1 (-182)))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) + ((*1 *2 *1) + (-12 (-5 *2 (-758)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) + (-14 *4 (-631 (-1158))))) + ((*1 *2 *1) + (-12 (-5 *2 (-554)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) + (-14 *4 (-631 (-1158))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-630 *1)) - (-4 *1 (-29 *4)))) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) + (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1154 *8)) (-5 *4 (-631 *6)) (-4 *6 (-836)) + (-4 *8 (-934 *7 *5 *6)) (-4 *5 (-780)) (-4 *7 (-1034)) + (-5 *2 (-631 (-758))) (-5 *1 (-316 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *2 (-630 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-630 (-1155))) - (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-294))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-269))))) -(((*1 *1 *1) (-4 *1 (-616))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984) (-1177)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) - (-4 *5 (-424 *4)) (-5 *2 (-412 (-1151 (-401 (-553))))) - (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1017))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) + (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) - (-4 *3 (-1214 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-424 *4)) (-4 *4 (-833)) - (-4 *4 (-545)) (-5 *2 (-401 (-1151 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-1151 (-401 (-1151 *3)))) (-5 *1 (-549 *6 *3 *7)) - (-5 *5 (-1151 *3)) (-4 *7 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1234 *5)) (-14 *5 (-1155)) (-4 *6 (-1031)) - (-5 *2 (-1211 *5 (-934 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-934 *6)))) + (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4)) + (-4 *4 (-1217 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *6)) (-4 *1 (-934 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-758))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *3 (-836)) (-5 *2 (-758)))) + ((*1 *2 *1) + (-12 (-4 *1 (-958 *3 *2 *4)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *2 (-779)))) ((*1 *2 *1) - (-12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-1151 *3)))) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-758)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1232 *3)) + (-5 *2 (-554)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3)) + (-5 *2 (-402 (-554))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-758))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1140)) (-5 *1 (-52))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1195)) (-4 *2 (-836)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1195)))) + ((*1 *2 *2) + (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) (-5 *2 (-1151 *1)) - (-4 *1 (-931 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-1031)) - (-4 *7 (-931 *6 *5 *4)) (-5 *2 (-401 (-1151 *3))) - (-5 *1 (-932 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1151 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) (-15 -3974 (*7 $))))) - (-4 *7 (-931 *6 *5 *4)) (-4 *5 (-779)) (-4 *4 (-833)) - (-4 *6 (-1031)) (-5 *1 (-932 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-4 *5 (-545)) - (-5 *2 (-401 (-1151 (-401 (-934 *5))))) (-5 *1 (-1025 *5)) - (-5 *3 (-401 (-934 *5)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-545) (-144))) - (-5 *2 (-2 (|:| -3313 *3) (|:| -3323 *3))) (-5 *1 (-1208 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-301)) - (-5 *2 (-401 (-412 (-934 *4)))) (-5 *1 (-1024 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) - (-5 *4 (-1 (-220) (-220) (-220) (-220))) - (-5 *2 (-1 (-925 (-220)) (-220) (-220))) (-5 *1 (-682))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-630 (-757)))) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-738))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1137)) (-5 *1 (-187)))) - ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1137)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1137)) (-5 *1 (-299))))) -(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) + (-4 *6 (-1048 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -4339 *1) (|:| |upper| *1))) + (-4 *1 (-961 *4 *5 *3 *6))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-4 *1 (-399)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-4 *1 (-399)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) - (-4 *3 (-1214 *2))))) + (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302))))) +(((*1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1244))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) + (-5 *2 (-631 (-402 (-937 *4)))) (-5 *1 (-909 *4 *5 *6 *7)) + (-4 *7 (-934 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(((*1 *1 *1 *1) (-4 *1 (-539)))) +(((*1 *1) (-5 *1 (-182)))) +(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-413 *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-1034)) (-5 *2 (-631 *6)) (-5 *1 (-438 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-984)) - (-4 *2 (-1031))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-324))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-599 *1))) (-4 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-903)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-757)) (-4 *4 (-301)) (-4 *6 (-1214 *4)) - (-5 *2 (-1238 (-630 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-630 *6))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1196)) (-4 *5 (-1214 (-401 *2))) - (-4 *2 (-1214 *4)) (-5 *1 (-335 *3 *4 *2 *5)) - (-4 *3 (-336 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1196)) - (-4 *4 (-1214 (-401 *2))) (-4 *2 (-1214 *3))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) + (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-630 (-934 *3))) (-4 *3 (-445)) - (-5 *1 (-354 *3 *4)) (-14 *4 (-630 (-1155))))) + (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) + (-4 *2 (-1232 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-630 (-766 *3 (-847 *4)))) (-4 *3 (-445)) - (-14 *4 (-630 (-1155))) (-5 *1 (-615 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-1006 *3)) - (-4 *3 (-13 (-831) (-357) (-1004))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) - (-4 *3 (-1214 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1048 *2 *3)) (-4 *2 (-13 (-831) (-357))) - (-4 *3 (-1214 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) - (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4)))))) -(((*1 *1) (-5 *1 (-181)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-896 *3)) (-4 *3 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1248))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1243)) (-5 *1 (-1194)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1243)) (-5 *1 (-1194))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *4)) - (-4 *4 (-1192)) (-5 *2 (-111))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-168)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-553)) (-5 *3 (-903)) (-4 *1 (-398)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-553)) (-4 *1 (-398)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *2 *6)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-674 (-401 (-934 (-553))))) - (-5 *2 (-630 (-674 (-310 (-553))))) (-5 *1 (-1013))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-742))))) -(((*1 *1) (-5 *1 (-181)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-630 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-546 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) + (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) + (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) + (-4 *2 (-1232 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) + (-5 *1 (-1134 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) + (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) + (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 (-373))) (-5 *1 (-771 *3)) (-4 *3 (-601 (-373))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-5 *2 (-166 (-373))) (-5 *1 (-771 *3)) - (-4 *3 (-601 (-373))))) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-758)) + (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-167 (-554))) (-5 *2 (-112)) (-5 *1 (-440)))) ((*1 *2 *3) - (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-601 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-166 *5)) (-5 *4 (-903)) (-4 *5 (-169)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) + (-12 + (-5 *3 + (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) + (-243 *4 (-402 (-554))))) + (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) + (-5 *1 (-499 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-946 *3)) (-4 *3 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-1199)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-949 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-446)) (-5 *2 (-112)) + (-5 *1 (-355 *4 *5)) (-14 *5 (-631 (-1158))))) ((*1 *2 *3) - (-12 (-5 *3 (-934 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-601 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-934 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-169)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) + (-12 (-5 *3 (-631 (-767 *4 (-850 *5)))) (-4 *4 (-446)) + (-14 *5 (-631 (-1158))) (-5 *2 (-112)) (-5 *1 (-616 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(((*1 *1) (-5 *1 (-182)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-631 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1082)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-631 *4))) (-4 *4 (-1082)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-631 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1082)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034)) + (-5 *1 (-701 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-631 (-258))) (-5 *1 (-1243)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1115 (-221))) (-5 *3 (-1140)) (-5 *1 (-1243)))) + ((*1 *1 *1) (-5 *1 (-1243)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1)))) + (-4 *1 (-1054 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1199))) + ((*1 *2 *2) + (-12 (-4 *3 (-546)) (-5 *1 (-1220 *3 *2)) + (-4 *2 (-13 (-1217 *3) (-546) (-10 -8 (-15 -2510 ($ $ $)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)))) ((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-4 *4 (-601 (-373))) - (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) + (|partial| -12 (-4 *4 (-780)) (-4 *5 (-1034)) (-4 *6 (-934 *5 *4 *2)) + (-4 *2 (-836)) (-5 *1 (-935 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *6)) (-15 -2810 (*6 $)) + (-15 -2822 (*6 $))))))) ((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 (-166 *4)))) (-4 *4 (-545)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 (-166 *5)))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) + (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) + (-5 *2 (-1158)) (-5 *1 (-1028 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)) + (-4 *2 (-446)))) ((*1 *2 *3) - (-12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-1217 (-554))) (-5 *2 (-631 (-554))) + (-5 *1 (-480 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *3 (-446))))) +(((*1 *1) (-5 *1 (-1046)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-600 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-631 (-600 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1154 (-48))) (-5 *3 (-600 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-833)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-771 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) - (-14 *4 (-757)) (-4 *5 (-169))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177)))))) + (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1217 (-167 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) + ((*1 *2 *1) + (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) (-5 *1 (-408 *3 *2 *4 *5)) + (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1023 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1217 *2)) (-4 *2 (-977 *3)) + (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4)) + (-14 *6 (-1241 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-906)) (-4 *5 (-1034)) + (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))) + (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-600 (-489)))) (-5 *1 (-489)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-600 (-489))) (-5 *1 (-489)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-631 (-600 (-489)))) + (-5 *1 (-489)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1154 (-489))) (-5 *3 (-600 (-489))) (-5 *1 (-489)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344)) + (-5 *1 (-522 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-711 *4 *2)) (-4 *2 (-1217 *4)) + (-5 *1 (-762 *4 *2 *5 *3)) (-4 *3 (-1217 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) + ((*1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *1) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-111) *7 (-630 *7))) (-4 *1 (-1185 *4 *5 *6 *7)) - (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-958 *4 *5 *6 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) + (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-725))))) +(((*1 *2) + (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) + (-5 *2 (-758)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-758))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-742))))) (((*1 *2 *3) - (-12 (-5 *3 (-574 *2)) (-4 *2 (-13 (-29 *4) (-1177))) - (-5 *1 (-572 *4 *2)) - (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-574 (-401 (-934 *4)))) - (-4 *4 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *2 (-310 *4)) (-5 *1 (-577 *4))))) -(((*1 *1) (-5 *1 (-181)))) + (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300))))) +(((*1 *2 *1) + (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) + (-4 *3 (-952))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1034)) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1217 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-675 *5)) (-4 *5 (-1034)) (-5 *1 (-1038 *3 *4 *5)) + (-14 *3 (-758)) (-14 *4 (-758))))) +(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) - (-5 *2 (-630 (-2 (|:| C (-674 *5)) (|:| |g| (-1238 *5))))) - (-5 *1 (-960 *5)) (-5 *3 (-674 *5)) (-5 *4 (-1238 *5))))) + (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) + (-4 *5 (-546)) (-5 *2 (-631 (-631 (-937 *5)))) (-5 *1 (-1164 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))) + (-4 *2 (-13 (-836) (-21)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111)))) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1195)) + (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *6 *7 *2)) (-4 *6 (-1034)) + (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300)))) ((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-877 *3)) (|:| |den| (-877 *3)))) + (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-928 (-221))) (-5 *4 (-859)) (-5 *5 (-906)) + (-5 *2 (-1246)) (-5 *1 (-462)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-928 (-221))) (-5 *2 (-1246)) (-5 *1 (-462)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-859)) (-5 *5 (-906)) + (-5 *2 (-1246)) (-5 *1 (-462))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1140)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *4 (-1048 *6 *7 *8)) (-5 *2 (-1246)) + (-5 *1 (-763 *6 *7 *8 *4 *5)) (-4 *5 (-1054 *6 *7 *8 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-5 *5 (-631 (-631 *8))) + (-4 *7 (-836)) (-4 *8 (-302)) (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) + (-5 *2 + (-2 (|:| |upol| (-1154 *8)) (|:| |Lval| (-631 *8)) + (|:| |Lfact| + (-631 (-2 (|:| -2270 (-1154 *8)) (|:| -1407 (-554))))) + (|:| |ctpol| *8))) + (-5 *1 (-729 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-545)) - (-5 *2 (-2 (|:| -3344 (-674 *5)) (|:| |vec| (-1238 (-630 (-903)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-903)) (-4 *3 (-641 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373)))) - ((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-373))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-461))))) -(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2508 (-768 *3)) (|:| |coef1| (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-2 (|:| -2508 *1) (|:| |coef1| *1))) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) + (-12 (-5 *4 (-631 *5)) (-4 *5 (-1217 *3)) (-4 *3 (-302)) + (-5 *2 (-112)) (-5 *1 (-449 *3 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-554))))) +(((*1 *1) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) - (-4 *3 (-949))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1031)) - (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) - (-4 *3 (-835 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-13 (-27) (-1177) (-424 (-166 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545))))) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-713)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3)) + (-4 *3 (-13 (-1180) (-29 *5)))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1158)) + (-4 *5 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) (-5 *1 (-547 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-413 *4)) (-4 *4 (-546))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1031))))) -(((*1 *2 *1) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-545)) - (-5 *2 (-1151 *3))))) + (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-112)) + (-5 *1 (-658 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-740))))) -(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1137)) (-5 *1 (-52))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-530 *3 *2)) - (-4 *2 (-1229 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-4 *4 (-1214 *3)) - (-4 *5 (-710 *3 *4)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-1229 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-5 *1 (-535 *3 *2)) - (-4 *2 (-1229 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-13 (-545) (-144))) - (-5 *1 (-1131 *3))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1135 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1457 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-548))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1112 (-220))) (-5 *3 (-630 (-257))) (-5 *1 (-1240)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1112 (-220))) (-5 *3 (-1137)) (-5 *1 (-1240)))) - ((*1 *1 *1) (-5 *1 (-1240)))) -(((*1 *2 *1) - (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) - (-4 *3 (-949))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-545)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-1137)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-630 *11)) - (|:| |todo| (-630 (-2 (|:| |val| *3) (|:| -3233 *11)))))) - (-5 *6 (-757)) - (-5 *2 (-630 (-2 (|:| |val| (-630 *10)) (|:| -3233 *11)))) - (-5 *3 (-630 *10)) (-5 *4 (-630 *11)) (-4 *10 (-1045 *7 *8 *9)) - (-4 *11 (-1051 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-779)) - (-4 *9 (-833)) (-5 *1 (-1049 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-630 *11)) - (|:| |todo| (-630 (-2 (|:| |val| *3) (|:| -3233 *11)))))) - (-5 *6 (-757)) - (-5 *2 (-630 (-2 (|:| |val| (-630 *10)) (|:| -3233 *11)))) - (-5 *3 (-630 *10)) (-5 *4 (-630 *11)) (-4 *10 (-1045 *7 *8 *9)) - (-4 *11 (-1088 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-779)) - (-4 *9 (-833)) (-5 *1 (-1124 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) + (-12 (-5 *3 (-675 *2)) (-4 *4 (-1217 *2)) + (-4 *2 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-5 *1 (-493 *2 *4 *5)) (-4 *5 (-404 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) + (-4 *5 (-234 *3 *2)) (-4 *2 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 *10)) - (-5 *1 (-611 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1051 *5 *6 *7 *8)) - (-4 *10 (-1088 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1028 *5 *6))) - (-5 *1 (-615 *5 *6)))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-877 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1082)) + (-4 *5 (-1195)) (-5 *1 (-875 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-877 *4)) (-5 *3 (-631 (-1 (-112) *5))) (-4 *4 (-1082)) + (-4 *5 (-1195)) (-5 *1 (-875 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-877 *5)) (-5 *3 (-631 (-1158))) + (-5 *4 (-1 (-112) (-631 *6))) (-4 *5 (-1082)) (-4 *6 (-1195)) + (-5 *1 (-875 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1195)) (-4 *4 (-836)) + (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) (-4 *4 (-836)) + (-5 *1 (-922 *4 *2 *5)) (-4 *2 (-425 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-630 (-1155))) - (-5 *2 - (-630 (-1125 *5 (-524 (-847 *6)) (-847 *6) (-766 *5 (-847 *6))))) - (-5 *1 (-615 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1009 *5 *6 *7 *8))) (-5 *1 (-1009 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1009 *5 *6 *7 *8))) (-5 *1 (-1009 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 (-766 *5 (-847 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) - (-14 *6 (-630 (-1155))) (-5 *2 (-630 (-1028 *5 *6))) - (-5 *1 (-1028 *5 *6)))) + (-12 (-5 *3 (-1158)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1195)) + (-5 *2 (-311 (-554))) (-5 *1 (-923 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1125 *5 *6 *7 *8))) (-5 *1 (-1125 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-111)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1125 *5 *6 *7 *8))) (-5 *1 (-1125 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1185 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-845))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-169)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-1031))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-1158)) (-5 *4 (-631 (-1 (-112) *5))) (-4 *5 (-1195)) + (-5 *2 (-311 (-554))) (-5 *1 (-923 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1 (-112) (-631 *6))) + (-4 *6 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))) (-4 *4 (-1082)) + (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) + (-5 *1 (-1058 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-142))))) +(((*1 *1) (-5 *1 (-1067)))) +(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-758)) (-4 *5 (-546)) (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-737))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-251))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1192)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-949))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-445)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5))))) +(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) + ((*1 *2 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) + (-4 *4 (-344))))) +(((*1 *2 *2) + (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) + (-15 -2822 ((-1107 *3 (-600 $)) $)) + (-15 -3075 ($ (-1107 *3 (-600 $))))))))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1151 *6)) (-4 *6 (-931 *5 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *5 (-891)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) - ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-141))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-630 (-1211 *5 *4))) - (-5 *1 (-1093 *4 *5)) (-5 *3 (-1211 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-599 *1))) (-4 *1 (-296))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1205 (-553))) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-276 *3)) (-4 *3 (-1192))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-401 (-1151 (-310 *3)))) (-4 *3 (-13 (-545) (-833))) - (-5 *1 (-1109 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833))) - (-4 *2 (-13 (-424 *4) (-984) (-1177))) (-5 *1 (-587 *4 *2 *3)) - (-4 *3 (-13 (-424 (-166 *4)) (-984) (-1177)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-757))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-805 *3)))) + (-12 (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) + (-15 -2822 ((-1107 *3 (-600 $)) $)) + (-15 -3075 ($ (-1107 *3 (-600 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *2)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) + (-15 -2822 ((-1107 *4 (-600 $)) $)) + (-15 -3075 ($ (-1107 *4 (-600 $))))))) + (-4 *4 (-546)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-631 (-600 *2))) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) + (-15 -2822 ((-1107 *4 (-600 $)) $)) + (-15 -3075 ($ (-1107 *4 (-600 $))))))) + (-4 *4 (-546)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-675 (-402 (-937 (-554))))) + (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-956))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-631 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) + (-4 *8 (-836)) (-5 *1 (-962 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) (-5 *6 (-1154 *3)) + (-4 *3 (-13 (-425 *7) (-27) (-1180))) + (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) + (-5 *6 (-402 (-1154 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1180))) + (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-550 *7 *3 *8)) (-4 *8 (-1082))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-554)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836)) + (-5 *1 (-443 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-4 *3 (-13 (-27) (-1180) (-425 *6) (-10 -8 (-15 -3075 ($ *7))))) + (-4 *7 (-834)) + (-4 *8 + (-13 (-1219 *3 *7) (-358) (-1180) + (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1140)) (|:| |prob| (-1140)))))) + (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1140)) (-4 *9 (-968 *8)) + (-14 *10 (-1158))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906))))) +(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) + (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-1254 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-631 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) + (-4 *6 (-780)) (-4 *7 (-836)) (-5 *1 (-1254 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-829)) (-5 *1 (-1261 *3 *2)) (-4 *3 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1135 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1135 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-294)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1135 (-220))) (-5 *2 (-630 (-1137))) (-5 *1 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-806)) (-14 *5 (-1155)) (-5 *2 (-630 (-1211 *5 *4))) - (-5 *1 (-1093 *4 *5)) (-5 *3 (-1211 *5 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-358)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) + (-4 *1 (-838 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-1140)) (-5 *1 (-773))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-344)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) + (-5 *1 (-212 *5 *3)) (-4 *3 (-1217 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-553)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-553))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-285))) - ((*1 *1) (-5 *1 (-845))) - ((*1 *1) - (-12 (-4 *2 (-445)) (-4 *3 (-833)) (-4 *4 (-779)) - (-5 *1 (-969 *2 *3 *4 *5)) (-4 *5 (-931 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1064))) - ((*1 *1) - (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34))))) - ((*1 *1) (-5 *1 (-1158))) ((*1 *1) (-5 *1 (-1159)))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1158))))) -(((*1 *2) - (-12 (-4 *3 (-1031)) (-5 *2 (-940 (-698 *3 *4))) (-5 *1 (-698 *3 *4)) - (-4 *4 (-1214 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) - (-4 *4 (-343)) (-5 *2 (-674 *4)) (-5 *1 (-340 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1192)) - (-4 *5 (-1192)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-757)) - (-4 *7 (-1192)) (-4 *5 (-1192)) (-5 *2 (-235 *6 *5)) - (-5 *1 (-234 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1192)) (-4 *5 (-1192)) - (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1079)) (-4 *5 (-1079)) - (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-630 *6)) (-4 *6 (-1192)) - (-4 *5 (-1192)) (-5 *2 (-630 *5)) (-5 *1 (-628 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-940 *6)) (-4 *6 (-1192)) - (-4 *5 (-1192)) (-5 *2 (-940 *5)) (-5 *1 (-939 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1135 *6)) (-4 *6 (-1192)) - (-4 *3 (-1192)) (-5 *2 (-1135 *3)) (-5 *1 (-1133 *6 *3)))) + (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) + (-4 *3 (-1082))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-836)) (-5 *1 (-1166 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1238 *6)) (-4 *6 (-1192)) - (-4 *5 (-1192)) (-5 *2 (-1238 *5)) (-5 *1 (-1237 *6 *5))))) + (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) + (-5 *5 (-112)) (-4 *8 (-1048 *6 *7 *4)) (-4 *9 (-1054 *6 *7 *4 *8)) + (-4 *6 (-446)) (-4 *7 (-780)) (-4 *4 (-836)) + (-5 *2 (-631 (-2 (|:| |val| *8) (|:| -2143 *9)))) + (-5 *1 (-1055 *6 *7 *4 *8 *9))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-401 (-553))) (-4 *4 (-1020 (-553))) - (-4 *4 (-13 (-833) (-545))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-132))) + (-12 (-5 *3 (-402 (-554))) (-4 *4 (-1023 (-554))) + (-4 *4 (-13 (-836) (-546))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-133))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-220))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-553)))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-221))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-554)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-401 (-553))) (-4 *4 (-357)) (-4 *4 (-38 *3)) - (-4 *5 (-1229 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1200 *4 *5)))) + (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3)) + (-4 *5 (-1232 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1203 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-401 (-553))) (-4 *4 (-357)) (-4 *4 (-38 *3)) - (-4 *5 (-1198 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1221 *4 *5)) - (-4 *6 (-965 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-278))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-355 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *1) (-5 *1 (-373))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-5 *1 (-380 *2)) (-4 *2 (-1079)))) + (-12 (-5 *3 (-402 (-554))) (-4 *4 (-358)) (-4 *4 (-38 *3)) + (-4 *5 (-1201 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1224 *4 *5)) + (-4 *6 (-968 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-279))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *1) (-5 *1 (-374))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-381 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-424 *3)) (-4 *3 (-833)) (-4 *3 (-1091)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-553)))) + (-12 (-5 *2 (-758)) (-4 *1 (-425 *3)) (-4 *3 (-836)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-554)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) + (-12 (-5 *2 (-758)) (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-553)) (-4 *4 (-343)) - (-5 *1 (-521 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-529)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-529)))) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-554)) (-4 *4 (-344)) + (-5 *1 (-522 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-530)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-530)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-757)) (-4 *4 (-1079)) - (-5 *1 (-667 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *4 (-1082)) + (-5 *1 (-668 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357)))) + (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + (-12 (-5 *2 (-758)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-674 *4)) (-5 *3 (-757)) (-4 *4 (-1031)) - (-5 *1 (-675 *4)))) + (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034)) + (-5 *1 (-676 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *3 (-1031)) (-5 *1 (-700 *3 *4)) - (-4 *4 (-633 *3)))) + (-12 (-5 *2 (-554)) (-4 *3 (-1034)) (-5 *1 (-701 *3 *4)) + (-4 *4 (-634 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-553)) (-4 *4 (-1031)) - (-5 *1 (-700 *4 *5)) (-4 *5 (-633 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-903)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-757)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-757)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-757)) (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-820 *3)) (-4 *3 (-1031)))) + (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-4 *4 (-1034)) + (-5 *1 (-701 *4 *5)) (-4 *5 (-634 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-713)) (-5 *2 (-758)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-823 *3)) (-4 *3 (-1034)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-553)) (-5 *1 (-820 *4)) (-4 *4 (-1031)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-401 (-553))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1091)) (-5 *2 (-903)))) + (-12 (-5 *2 (-114)) (-5 *3 (-554)) (-5 *1 (-823 *4)) (-4 *4 (-1034)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-402 (-554))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-906)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357)))) + (-12 (-5 *2 (-554)) (-4 *1 (-1105 *3 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) - (-5 *1 (-380 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-805 *3)) (|:| |mm| (-805 *3)) (|:| |rm| (-805 *3)))) - (-5 *1 (-805 *3)) (-4 *3 (-833))))) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758))) + (-5 *1 (-889 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-630 *7) *7 (-1151 *7))) (-5 *5 (-1 (-412 *7) *7)) - (-4 *7 (-1214 *6)) (-4 *6 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-5 *2 (-630 (-2 (|:| |frac| (-401 *7)) (|:| -2662 *3)))) - (-5 *1 (-795 *6 *7 *3 *8)) (-4 *3 (-641 *7)) - (-4 *8 (-641 (-401 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)) (-1020 (-401 (-553))))) - (-5 *2 - (-630 (-2 (|:| |frac| (-401 *6)) (|:| -2662 (-639 *6 (-401 *6)))))) - (-5 *1 (-798 *5 *6)) (-5 *3 (-639 *6 (-401 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *2 (-630 (-630 (-553)))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-553)) (-4 *7 (-931 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *1 *1) (-5 *1 (-373))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-762 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344)) (-5 *3 (-554)) (-5 *2 (-1168 (-906) (-758)))))) (((*1 *2 *3) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) + (-5 *2 (-631 (-1076 (-221)))) (-5 *1 (-913))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-670 *4 *5 *6))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-187))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) + (-5 *5 + (-2 (|:| |done| (-631 *11)) + (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11)))))) + (-5 *6 (-758)) + (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11)))) + (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9)) + (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780)) + (-4 *9 (-836)) (-5 *1 (-1052 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-631 *11)) + (|:| |todo| (-631 (-2 (|:| |val| *3) (|:| -2143 *11)))))) + (-5 *6 (-758)) + (-5 *2 (-631 (-2 (|:| |val| (-631 *10)) (|:| -2143 *11)))) + (-5 *3 (-631 *10)) (-5 *4 (-631 *11)) (-4 *10 (-1048 *7 *8 *9)) + (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-780)) + (-4 *9 (-836)) (-5 *1 (-1127 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) + (-5 *1 (-743))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1082)) (-5 *1 (-949 *3 *2)) (-4 *3 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-814) (-833) (-1031))) - (-5 *2 (-1137)) (-5 *1 (-812 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) - (-4 *5 (-13 (-814) (-833) (-1031))) (-5 *2 (-1137)) - (-5 *1 (-812 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808)) (-5 *4 (-310 *5)) - (-4 *5 (-13 (-814) (-833) (-1031))) (-5 *2 (-1243)) - (-5 *1 (-812 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-808)) (-5 *4 (-310 *6)) (-5 *5 (-111)) - (-4 *6 (-13 (-814) (-833) (-1031))) (-5 *2 (-1243)) - (-5 *1 (-812 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-1137)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-814)) (-5 *3 (-111)) (-5 *2 (-1137)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-814)) (-5 *3 (-808)) (-5 *2 (-1243)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-814)) (-5 *3 (-808)) (-5 *4 (-111)) (-5 *2 (-1243))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-807))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1151 (-934 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) - (-5 *2 (-1151 (-934 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-757)) (-4 *3 (-1192)) (-4 *1 (-56 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1) (-5 *1 (-168))) - ((*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1079)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1137)) (-4 *1 (-383)))) - ((*1 *1) (-5 *1 (-388))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) - ((*1 *1) - (-12 (-4 *3 (-1079)) (-5 *1 (-867 *2 *3 *4)) (-4 *2 (-1079)) - (-4 *4 (-651 *3)))) - ((*1 *1) (-12 (-5 *1 (-871 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079)))) + (-12 (-5 *3 (-631 (-2 (|:| |den| (-554)) (|:| |gcdnum| (-554))))) + (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *5)) + (-4 *5 (-1217 (-402 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *1)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) ((*1 *1 *2) - (-12 (-5 *1 (-1121 *3 *2)) (-14 *3 (-757)) (-4 *2 (-1031)))) - ((*1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) - ((*1 *1 *1) (-5 *1 (-1155))) ((*1 *1) (-5 *1 (-1155))) - ((*1 *1) (-5 *1 (-1172)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-931 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1031)) (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) - (-4 *1 (-1214 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-538))))) -(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *1 *1 *1) (-4 *1 (-466))) - ((*1 *1 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-865)))) - ((*1 *1 *1) (-5 *1 (-953))) - ((*1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1031)) (-4 *7 (-1031)) - (-4 *6 (-1214 *5)) (-5 *2 (-1151 (-1151 *7))) - (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1214 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1034)) (-5 *1 (-675 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *4)) (-4 *4 (-1034)) (-4 *1 (-1105 *3 *4 *5 *6)) + (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-894)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-413 (-1154 *7))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) + (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) - (-5 *2 (-1151 *3))))) + (-12 (-5 *2 (-631 (-928 *4))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) + (-4 *2 (-1082)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-356 *2)) (-4 *2 (-1082)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-381 *2)) (-4 *2 (-1082)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *2 (-1082)) (-5 *1 (-635 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *1 (-806 *2)) (-4 *2 (-836))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-1058 *3 *4 *5))) (-4 *3 (-1082)) + (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) + (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3)))) + (-5 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) + (-4 *7 (-1217 (-402 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2533 *3))) + (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) + (-5 *2 + (-2 (|:| |answer| (-402 *6)) (|:| -2533 (-402 *6)) + (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) + (-5 *1 (-553 *5 *6)) (-5 *3 (-402 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-551)) (-5 *3 (-554))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *1 *1) + (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) + (-14 *3 (-631 (-1158)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-546) (-836))) (-5 *2 (-167 *5)) + (-5 *1 (-588 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-987) (-1180))) + (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180)))))) (((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-630 *4))))) + (-12 (-5 *2 (-1154 (-402 (-937 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) (-5 *1 (-374))) + ((*1 *1) (-5 *1 (-374)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-675 *4)) (-5 *3 (-906)) (|has| *4 (-6 (-4375 "*"))) + (-4 *4 (-1034)) (-5 *1 (-1013 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-631 (-675 *4))) (-5 *3 (-906)) + (|has| *4 (-6 (-4375 "*"))) (-4 *4 (-1034)) (-5 *1 (-1013 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1138 *3))) (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3715)) (-5 *2 (-111)) (-5 *1 (-604)))) + (-12 (-5 *3 (|[\|\|]| -3715)) (-5 *2 (-112)) (-5 *1 (-605)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2676)) (-5 *2 (-111)) (-5 *1 (-604)))) + (-12 (-5 *3 (|[\|\|]| -1638)) (-5 *2 (-112)) (-5 *1 (-605)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2522)) (-5 *2 (-111)) (-5 *1 (-604)))) + (-12 (-5 *3 (|[\|\|]| -2521)) (-5 *2 (-112)) (-5 *1 (-605)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3621)) (-5 *2 (-111)) (-5 *1 (-676 *4)) - (-4 *4 (-600 (-845))))) + (-12 (-5 *3 (|[\|\|]| -3615)) (-5 *2 (-112)) (-5 *1 (-677 *4)) + (-4 *4 (-601 (-848))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-600 (-845))) (-5 *2 (-111)) - (-5 *1 (-676 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-601 (-848))) (-5 *2 (-112)) + (-5 *1 (-677 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-553))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-500))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-580))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-581))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-952))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-955))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1018))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1021))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-657))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1249))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1252))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1046))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-1248))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-1251))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-662))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1116)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) + (-12 (-4 *1 (-1119)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-111)) (-5 *1 (-1160)))) + (-12 (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)) (-5 *1 (-1163)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-111)) (-5 *1 (-1160)))) + (-12 (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)) (-5 *1 (-1163)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1160)))) + (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1163)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-553))) (-5 *2 (-111)) (-5 *1 (-1160))))) -(((*1 *2 *3) - (-12 (-5 *3 (-934 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-2 (|:| -2578 *3) (|:| -3256 *4)))) - (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *1 (-1168 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-833)) (-4 *3 (-169)))) - ((*1 *1 *1) - (-12 (-5 *1 (-614 *2 *3 *4)) (-4 *2 (-833)) - (-4 *3 (-13 (-169) (-703 (-401 (-553))))) (-14 *4 (-903)))) - ((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031))))) -(((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) - (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) - (-5 *1 (-1087 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-3 (-111) (-630 *1))) - (-4 *1 (-1051 *4 *5 *6 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-5 *1 (-878 *2 *3)) - (-4 *2 (-1214 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-553))) (-5 *5 (-1 (-1135 *4))) (-4 *4 (-357)) - (-4 *4 (-1031)) (-5 *2 (-1135 *4)) (-5 *1 (-1139 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *2 (-1238 (-310 (-373)))) - (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-630 *3)) (-4 *3 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) - (-5 *1 (-734))))) + (-12 (-5 *3 (|[\|\|]| (-554))) (-5 *2 (-112)) (-5 *1 (-1163))))) +(((*1 *2) (-12 (-5 *2 (-1115 (-221))) (-5 *1 (-1178))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-758)) (-4 *3 (-1195)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1) (-5 *1 (-169))) + ((*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1082)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384)))) + ((*1 *1) (-5 *1 (-389))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-758)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) + ((*1 *1) + (-12 (-4 *3 (-1082)) (-5 *1 (-870 *2 *3 *4)) (-4 *2 (-1082)) + (-4 *4 (-652 *3)))) + ((*1 *1) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1124 *3 *2)) (-14 *3 (-758)) (-4 *2 (-1034)))) + ((*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034)))) + ((*1 *1 *1) (-5 *1 (-1158))) ((*1 *1) (-5 *1 (-1158))) + ((*1 *1) (-5 *1 (-1175)))) +(((*1 *2 *1) + (-12 (-4 *3 (-229)) (-4 *3 (-1034)) (-4 *4 (-836)) (-4 *5 (-261 *4)) + (-4 *6 (-780)) (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1034)) (-4 *3 (-836)) (-4 *5 (-261 *3)) (-4 *6 (-780)) + (-5 *2 (-1 *1 (-758))) (-4 *1 (-248 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-261 *2)) (-4 *2 (-836))))) (((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2508 *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1214 *4)) (-5 *1 (-795 *4 *2 *3 *5)) - (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) - (-4 *5 (-641 (-401 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) + (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) (-5 *1 (-738))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-856)) (-5 *3 (-630 (-257))) (-5 *1 (-255))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-401 *6)) (-4 *5 (-1196)) (-4 *6 (-1214 *5)) - (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *3) (|:| |radicand| *6))) - (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-757)) (-4 *7 (-1214 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553))))) -(((*1 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-4 *3 (-1192)) (-5 *2 (-630 *1)) (-4 *1 (-992 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-545)) (-4 *2 (-931 *3 *5 *4)) - (-5 *1 (-718 *5 *4 *6 *2)) (-5 *3 (-401 (-934 *6))) (-4 *5 (-779)) - (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-845)))) - ((*1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-532 *4 *2 *5 *6)) - (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-757)))))) -(((*1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)) (-4 *2 (-545)))) - ((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1192)) (-4 *2 (-833)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *1)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 (-1143 *3 *4))) (-5 *1 (-1143 *3 *4)) - (-14 *3 (-903)) (-4 *4 (-1031)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *10)) + (-5 *1 (-612 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1054 *5 *6 *7 *8)) + (-4 *10 (-1091 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) + (-5 *1 (-616 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-631 (-1158))) (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2134 *3) (|:| |coef1| (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) - (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-735))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-757))) (-5 *3 (-111)) (-5 *1 (-1143 *4 *5)) - (-14 *4 (-903)) (-4 *5 (-1031))))) + (-631 (-1128 *5 (-525 (-850 *6)) (-850 *6) (-767 *5 (-850 *6))))) + (-5 *1 (-616 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) + (-5 *1 (-1031 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1188 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-1140)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2316 (-631 (-2 (|:| |irr| *10) (|:| -4218 (-554))))))) + (-5 *6 (-631 *3)) (-5 *7 (-631 *8)) (-4 *8 (-836)) (-4 *3 (-302)) + (-4 *10 (-934 *3 *9 *8)) (-4 *9 (-780)) + (-5 *2 + (-2 (|:| |polfac| (-631 *10)) (|:| |correct| *3) + (|:| |corrfact| (-631 (-1154 *3))))) + (-5 *1 (-613 *8 *9 *3 *10)) (-5 *4 (-631 (-1154 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *5)) (-4 *5 (-778)) (-5 *2 (-111)) - (-5 *1 (-828 *4 *5)) (-14 *4 (-757))))) -(((*1 *2 *3) (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) - ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *4 *5 *6 *7)) + (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)) + (-4 *7 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-631 *3)) (-4 *3 (-1195))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-2 (|:| -2564 *3) (|:| -2701 *4)))) + (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *1 (-1171 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1171 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2786 (-631 (-1158))) (|:| -3633 (-631 (-1158))))) + (-5 *1 (-1197))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-543))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-848))))) +(((*1 *1) (-5 *1 (-432)))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1158)) (-4 *4 (-1034)) (-4 *4 (-836)) + (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) + (-4 *1 (-425 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1034)) (-4 *4 (-836)) + (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) + (-4 *1 (-425 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-836)) + (-5 *2 (-2 (|:| |var| (-600 *1)) (|:| -1407 (-554)))) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-758)))) + (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-758)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) + (-4 *7 (-934 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -1407 (-554)))) + (-5 *1 (-935 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) + (-15 -2822 (*7 $)))))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *1) (-4 *1 (-344))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-425 *4)) + (-4 *4 (-13 (-546) (-836) (-145))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-631 (-1154 *5))) + (|:| |prim| (-1154 *5)))) + (-5 *1 (-427 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-546) (-836) (-145))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1154 *3)) + (|:| |pol2| (-1154 *3)) (|:| |prim| (-1154 *3)))) + (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-937 *5)) (-5 *4 (-1158)) (-4 *5 (-13 (-358) (-145))) + (-5 *2 + (-2 (|:| |coef1| (-554)) (|:| |coef2| (-554)) + (|:| |prim| (-1154 *5)))) + (-5 *1 (-945 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) + (-4 *5 (-13 (-358) (-145))) + (-5 *2 + (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *5))) + (|:| |prim| (-1154 *5)))) + (-5 *1 (-945 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-5 *5 (-1158)) + (-4 *6 (-13 (-358) (-145))) + (-5 *2 + (-2 (|:| -1490 (-631 (-554))) (|:| |poly| (-631 (-1154 *6))) + (|:| |prim| (-1154 *6)))) + (-5 *1 (-945 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-554)) (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -3308 *4)))) + (-5 *1 (-682 *3)) (-4 *3 (-1217 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 *1)) (-4 *1 (-425 *4)) + (-4 *4 (-836)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) + (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1217 (-167 *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 (-311 (-221)))) + (-5 *2 + (-2 (|:| |additions| (-554)) (|:| |multiplications| (-554)) + (|:| |exponentiations| (-554)) (|:| |functionCalls| (-554)))) + (-5 *1 (-300))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-170)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-1034))))) +(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-905)) (-5 *2 (-2 (|:| -1490 (-631 *1)) (|:| -4137 *1))) + (-5 *3 (-631 *1))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1140)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-258))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-553)) (-5 *1 (-681 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-630 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-959 *5 *6 *7 *8))))) + (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4))) + (-4 *4 (-836)) (-5 *1 (-1166 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) - (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4)))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-111)) (-5 *1 (-874 *4)) - (-4 *4 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *3 (-1214 *4)) (-5 *1 (-795 *4 *3 *2 *5)) (-4 *2 (-641 *3)) - (-4 *5 (-641 (-401 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-401 *5)) - (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-1214 *4)) - (-5 *1 (-795 *4 *5 *2 *6)) (-4 *2 (-641 *5)) (-4 *6 (-641 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1192)) (-5 *2 (-111))))) + (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915))))) +(((*1 *2 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1082))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) + (-4 *4 (-170))))) +(((*1 *1) (-5 *1 (-1067)))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-738))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *1 (-574 *2)) (-4 *2 (-1020 *3)) - (-4 *2 (-357)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-357)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-617 *4 *2)) - (-4 *2 (-13 (-424 *4) (-984) (-1177))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1071 *2)) (-4 *2 (-13 (-424 *4) (-984) (-1177))) - (-4 *4 (-13 (-833) (-545))) (-5 *1 (-617 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-1155)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-941))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-630 *3)) (-5 *1 (-927 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *1) (-5 *1 (-324)))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-934 (-553)))) (-5 *1 (-431)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-674 (-220))) (-5 *2 (-1083)) - (-5 *1 (-745)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-674 (-553))) (-5 *2 (-1083)) - (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-324))))) + (-12 (-5 *2 (-631 (-1194))) (-5 *3 (-1194)) (-5 *1 (-667))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-358)) (-4 *7 (-1217 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) + (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) + (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1158))) (-4 *6 (-358)) + (-5 *2 (-631 (-289 (-937 *6)))) (-5 *1 (-532 *5 *6 *7)) + (-4 *5 (-446)) (-4 *7 (-13 (-358) (-834)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816))))) +(((*1 *2 *2) (-12 (-5 *2 (-1076 (-829 (-221)))) (-5 *1 (-300))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-808))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-425 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034)) + (-5 *3 (-554))))) (((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-1143 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-1240)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-1240))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1137)) (-5 *1 (-1239)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1239)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1239)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-1137)) (-5 *1 (-1240)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1240)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1240))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1043)) (-5 *3 (-1137))))) -(((*1 *1) (-5 *1 (-809)))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) + (-5 *2 (-631 (-631 (-631 (-758)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-1241 *5))) (-5 *4 (-554)) (-5 *2 (-1241 *5)) + (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1034))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221)))) + (-5 *2 (-1020)) (-5 *1 (-741))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) (((*1 *2 *3) - (-12 (-14 *4 (-630 (-1155))) (-14 *5 (-757)) - (-5 *2 - (-630 - (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) - (-242 *4 (-401 (-553)))))) - (-5 *1 (-498 *4 *5)) - (-5 *3 - (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) - (-242 *4 (-401 (-553)))))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-674 *2)) (-5 *4 (-757)) - (-4 *2 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *5 (-1214 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) + (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-446)) + (-5 *2 (-475 *4 *5)) (-5 *1 (-619 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1154 *7)) (-4 *5 (-1034)) + (-4 *7 (-1034)) (-4 *2 (-1217 *5)) (-5 *1 (-495 *5 *2 *6 *7)) + (-4 *6 (-1217 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1034)) (-4 *7 (-1034)) + (-4 *4 (-1217 *5)) (-5 *2 (-1154 *7)) (-5 *1 (-495 *5 *4 *6 *7)) + (-4 *6 (-1217 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079))))) -(((*1 *1) (-5 *1 (-1239)))) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 (-674 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) - (-5 *2 (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -1571 *1))) - (-4 *1 (-1045 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-2 (|:| -4120 *1) (|:| |gap| (-757)) (|:| -1571 *1))) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-4 *1 (-885 *3))))) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5)))) + (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-642 *5)) + (-4 *6 (-642 (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4)))) + (-5 *1 (-794 *5 *4 *3 *6)) (-4 *3 (-642 *4)) + (-4 *6 (-642 (-402 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *5 (-1217 *4)) (-5 *2 (-631 (-2 (|:| -1608 *5) (|:| -1401 *5)))) + (-5 *1 (-794 *4 *5 *6 *3)) (-4 *6 (-642 *5)) + (-4 *3 (-642 (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *4 (-1217 *5)) (-5 *2 (-631 (-2 (|:| -1608 *4) (|:| -1401 *4)))) + (-5 *1 (-794 *5 *4 *6 *3)) (-4 *6 (-642 *4)) + (-4 *3 (-642 (-402 *4)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-358)) (-5 *2 (-631 (-1138 *4))) (-5 *1 (-280 *4 *5)) + (-5 *3 (-1138 *4)) (-4 *5 (-1232 *4))))) +(((*1 *1 *1) (-4 *1 (-1126)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-675 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-170)) (-4 *2 (-1217 *4)) (-5 *1 (-175 *4 *2 *3)) + (-4 *3 (-711 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-402 (-937 *5)))) (-5 *4 (-1158)) + (-5 *2 (-937 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 (-402 (-937 *4)))) (-5 *2 (-937 *4)) + (-5 *1 (-287 *4)) (-4 *4 (-446)))) + ((*1 *2 *1) + (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1217 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 (-167 (-402 (-554))))) + (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *4)) + (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-167 (-402 (-554))))) (-5 *4 (-1158)) + (-5 *2 (-937 (-167 (-402 (-554))))) (-5 *1 (-751 *5)) + (-4 *5 (-13 (-358) (-834))))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-937 (-402 (-554)))) + (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *4 (-1158)) + (-5 *2 (-937 (-402 (-554)))) (-5 *1 (-766 *5)) + (-4 *5 (-13 (-358) (-834)))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *4)) (-4 *4 (-1031)) (-4 *2 (-1214 *4)) - (-5 *1 (-437 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-401 (-1151 (-310 *5)))) (-5 *3 (-1238 (-310 *5))) - (-5 *4 (-553)) (-4 *5 (-13 (-545) (-833))) (-5 *1 (-1109 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111))))) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-631 (-937 *4))))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-631 (-937 *4))) (-5 *1 (-411 *3 *4)) + (-4 *3 (-412 *4)))) + ((*1 *2) + (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-631 (-937 *3))))) + ((*1 *2) + (-12 (-5 *2 (-631 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1241 (-447 *4 *5 *6 *7))) (-5 *2 (-631 (-937 *4))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-546)) (-4 *4 (-170)) + (-14 *5 (-906)) (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086)) (-5 *1 (-275))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-668 *4 *3)) (-4 *4 (-1079)) - (-4 *3 (-1079))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-1089))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-757)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-757))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-4 *1 (-148 *3)))) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-836)) (-4 *3 (-1082))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-906)) (-5 *1 (-436 *2)) + (-4 *2 (-1217 (-554))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-906)) (-5 *4 (-758)) (-5 *1 (-436 *2)) + (-4 *2 (-1217 (-554))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *1 (-436 *2)) + (-4 *2 (-1217 (-554))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758)) + (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-906)) (-5 *4 (-631 (-758))) (-5 *5 (-758)) + (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1217 (-554))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-413 *2)) (-4 *2 (-1217 *5)) + (-5 *1 (-438 *5 *2)) (-4 *5 (-1034))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-1031 *5 *6))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-937 *4))) + (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-1031 *4 *5))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546))))) +(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-631 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836)) + (-5 *1 (-443 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) + (-5 *2 (-1241 *6)) (-5 *1 (-331 *3 *4 *5 *6)) + (-4 *6 (-337 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) + (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -4341 *6))) + (-5 *1 (-1001 *5 *6)) (-5 *3 (-402 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 (-1254 *4 *5 *6 *7))) + (-5 *1 (-1254 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-631 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) + (-4 *7 (-780)) (-4 *8 (-836)) (-5 *2 (-631 (-1254 *6 *7 *8 *9))) + (-5 *1 (-1254 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1082)) (-4 *2 (-885 *4)) (-5 *1 (-678 *4 *2 *5 *3)) + (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4373))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-4 *4 (-1034)) + (-5 *1 (-1014 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-149 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-630 (-2 (|:| -2692 (-757)) (|:| -4010 *4) (|:| |num| *4)))) - (-4 *4 (-1214 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) + (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4)))) + (-4 *4 (-1217 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-5 *3 (-630 (-934 (-553)))) (-5 *4 (-111)) (-5 *1 (-431)))) + (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-5 *3 (-631 (-937 (-554)))) (-5 *4 (-112)) (-5 *1 (-432)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-5 *3 (-630 (-1155))) (-5 *4 (-111)) (-5 *1 (-431)))) + (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-5 *3 (-631 (-1158))) (-5 *4 (-112)) (-5 *1 (-432)))) ((*1 *2 *1) - (-12 (-5 *2 (-1135 *3)) (-5 *1 (-588 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2)) (-4 *2 (-169)))) + (-12 (-5 *2 (-1138 *3)) (-5 *1 (-589 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-5 *1 (-649 *3 *4)) - (-4 *4 (-169)))) + (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) + (-4 *4 (-170)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-5 *1 (-649 *3 *4)) - (-4 *4 (-169)))) + (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) + (-4 *4 (-170)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-833)) (-5 *1 (-649 *3 *4)) - (-4 *4 (-169)))) + (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-5 *1 (-650 *3 *4)) + (-4 *4 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 (-630 *3)))) (-4 *3 (-1079)) - (-5 *1 (-660 *3)))) + (-12 (-5 *2 (-631 (-631 (-631 *3)))) (-4 *3 (-1082)) + (-5 *1 (-661 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-699 *2 *3 *4)) (-4 *2 (-833)) (-4 *3 (-1079)) + (-12 (-5 *1 (-700 *2 *3 *4)) (-4 *2 (-836)) (-4 *3 (-1082)) (-14 *4 - (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *3)) - (-2 (|:| -2735 *2) (|:| -2692 *3)))))) + (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3)) + (-2 (|:| -2717 *2) (|:| -1407 *3)))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-855 *2 *3)) (-4 *2 (-1192)) (-4 *3 (-1192)))) + (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-2 (|:| -2578 (-1155)) (|:| -3256 *4)))) - (-4 *4 (-1079)) (-5 *1 (-871 *3 *4)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4)))) + (-4 *4 (-1082)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *5)) (-4 *5 (-13 (-1079) (-34))) - (-5 *2 (-630 (-1119 *3 *5))) (-5 *1 (-1119 *3 *5)) - (-4 *3 (-13 (-1079) (-34))))) + (-12 (-5 *4 (-631 *5)) (-4 *5 (-13 (-1082) (-34))) + (-5 *2 (-631 (-1122 *3 *5))) (-5 *1 (-1122 *3 *5)) + (-4 *3 (-13 (-1082) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| |val| *4) (|:| -3233 *5)))) - (-4 *4 (-13 (-1079) (-34))) (-4 *5 (-13 (-1079) (-34))) - (-5 *2 (-630 (-1119 *4 *5))) (-5 *1 (-1119 *4 *5)))) + (-12 (-5 *3 (-631 (-2 (|:| |val| *4) (|:| -2143 *5)))) + (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) + (-5 *2 (-631 (-1122 *4 *5))) (-5 *1 (-1122 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3233 *4))) - (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34))) - (-5 *1 (-1119 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2143 *4))) + (-4 *3 (-13 (-1082) (-34))) (-4 *4 (-13 (-1082) (-34))) + (-5 *1 (-1122 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34))))) + (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-1079) (-34))) - (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))))) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-1082) (-34))) + (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-630 (-1119 *2 *3))) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34))) (-5 *1 (-1120 *2 *3)))) + (-12 (-5 *4 (-631 (-1122 *2 *3))) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34))) (-5 *1 (-1123 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-630 (-1120 *2 *3))) (-5 *1 (-1120 *2 *3)) - (-4 *2 (-13 (-1079) (-34))) (-4 *3 (-13 (-1079) (-34))))) + (-12 (-5 *4 (-631 (-1123 *2 *3))) (-5 *1 (-1123 *2 *3)) + (-4 *2 (-13 (-1082) (-34))) (-4 *3 (-13 (-1082) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4)))) + (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-127))))) -(((*1 *2 *3) (-12 (-5 *3 (-166 (-553))) (-5 *2 (-111)) (-5 *1 (-439)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) - (-242 *4 (-401 (-553))))) - (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-111)) - (-5 *1 (-498 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-943 *3)) (-4 *3 (-538)))) - ((*1 *2 *1) (-12 (-4 *1 (-1196)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) - (-5 *2 (-757)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-757))))) -(((*1 *1 *2) - (-12 (-5 *2 (-674 *5)) (-4 *5 (-1031)) (-5 *1 (-1035 *3 *4 *5)) - (-14 *3 (-757)) (-14 *4 (-757))))) + (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *5)) (-4 *5 (-1214 *3)) (-4 *3 (-301)) - (-5 *2 (-111)) (-5 *1 (-448 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1240))))) + (-12 (-5 *3 (-808)) (-5 *4 (-52)) (-5 *2 (-1246)) (-5 *1 (-818))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-425 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *4)) + (-4 *4 (-425 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-114)) (-5 *1 (-161)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *4)) + (-4 *4 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) + ((*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-836)) (-5 *1 (-424 *3 *4)) + (-4 *3 (-425 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *4)) + (-4 *4 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *4)) + (-4 *4 (-13 (-425 *3) (-987) (-1180))))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-822 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1004))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-674 (-401 (-934 (-553))))) - (-5 *2 (-674 (-310 (-553)))) (-5 *1 (-1013))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-887 *4)) (-4 *4 (-1079)) (-5 *2 (-630 (-757))) - (-5 *1 (-886 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) - (-4 *2 (-1079)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-355 *2)) (-4 *2 (-1079)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-380 *2)) (-4 *2 (-1079)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-1079)) (-5 *1 (-634 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *1 (-805 *2)) (-4 *2 (-833))))) + (-12 (-5 *2 (-413 (-1154 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1154 *1)) + (-4 *4 (-446)) (-4 *4 (-546)) (-4 *4 (-836)))) + ((*1 *2 *3) + (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-173))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) + (|:| |c2| (-402 *5)) (|:| |deg| (-758)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-446)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *5 (-894)) (-5 *1 (-451 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1154 *1)) (-4 *1 (-894))))) +(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-687))))) (((*1 *1 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-357)) (-14 *6 (-1238 (-674 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))))) - ((*1 *1 *2) (-12 (-5 *2 (-1104 (-553) (-599 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1192)))) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-14 *6 (-1241 (-675 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))))) + ((*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'JINT 'X 'ELAM) (-3121) (-684)))) - (-5 *1 (-60 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'JINT 'X 'ELAM) (-3089) (-685)))) + (-5 *1 (-61 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 'XC) (-684)))) - (-5 *1 (-62 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'XC) (-685)))) + (-5 *1 (-63 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-3121 'X) (-3121) (-684))) (-5 *1 (-63 *3)) - (-14 *3 (-1155)))) + (-12 (-5 *2 (-334 (-3089 'X) (-3089) (-685))) (-5 *1 (-64 *3)) + (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-3121) (-3121 'XC) (-684))) (-5 *1 (-65 *3)) - (-14 *3 (-1155)))) + (-12 (-5 *2 (-334 (-3089) (-3089 'XC) (-685))) (-5 *1 (-66 *3)) + (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'X) (-3121 '-1276) (-684)))) - (-5 *1 (-70 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'X) (-3089 '-1277) (-685)))) + (-5 *1 (-71 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 'X) (-684)))) - (-5 *1 (-73 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'X) (-685)))) + (-5 *1 (-74 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'X 'EPS) (-3121 '-1276) (-684)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1155)) (-14 *4 (-1155)) - (-14 *5 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'X 'EPS) (-3089 '-1277) (-685)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158)) + (-14 *5 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'EPS) (-3121 'YA 'YB) (-684)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1155)) (-14 *4 (-1155)) - (-14 *5 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'EPS) (-3089 'YA 'YB) (-685)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1158)) (-14 *4 (-1158)) + (-14 *5 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-3121) (-3121 'X) (-684))) (-5 *1 (-76 *3)) - (-14 *3 (-1155)))) + (-12 (-5 *2 (-334 (-3089) (-3089 'X) (-685))) (-5 *1 (-77 *3)) + (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-3121) (-3121 'X) (-684))) (-5 *1 (-77 *3)) - (-14 *3 (-1155)))) + (-12 (-5 *2 (-334 (-3089) (-3089 'X) (-685))) (-5 *1 (-78 *3)) + (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 'XC) (-684)))) - (-5 *1 (-78 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'XC) (-685)))) + (-5 *1 (-79 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121) (-3121 'X) (-684)))) - (-5 *1 (-79 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089) (-3089 'X) (-685)))) + (-5 *1 (-80 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'X '-1276) (-3121) (-684)))) - (-5 *1 (-81 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'X '-1277) (-3089) (-685)))) + (-5 *1 (-82 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-674 (-333 (-3121 'X '-1276) (-3121) (-684)))) - (-5 *1 (-82 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-675 (-334 (-3089 'X '-1277) (-3089) (-685)))) + (-5 *1 (-83 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-674 (-333 (-3121 'X) (-3121) (-684)))) (-5 *1 (-83 *3)) - (-14 *3 (-1155)))) + (-12 (-5 *2 (-675 (-334 (-3089 'X) (-3089) (-685)))) (-5 *1 (-84 *3)) + (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'X) (-3121) (-684)))) - (-5 *1 (-84 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'X) (-3089) (-685)))) + (-5 *1 (-85 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-333 (-3121 'X) (-3121 '-1276) (-684)))) - (-5 *1 (-85 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-1241 (-334 (-3089 'X) (-3089 '-1277) (-685)))) + (-5 *1 (-86 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-674 (-333 (-3121 'XL 'XR 'ELAM) (-3121) (-684)))) - (-5 *1 (-86 *3)) (-14 *3 (-1155)))) + (-12 (-5 *2 (-675 (-334 (-3089 'XL 'XR 'ELAM) (-3089) (-685)))) + (-5 *1 (-87 *3)) (-14 *3 (-1158)))) ((*1 *1 *2) - (-12 (-5 *2 (-333 (-3121 'X) (-3121 '-1276) (-684))) (-5 *1 (-88 *3)) - (-14 *3 (-1155)))) - ((*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-128)))) + (-12 (-5 *2 (-334 (-3089 'X) (-3089 '-1277) (-685))) (-5 *1 (-89 *3)) + (-14 *3 (-1158)))) + ((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) - (-14 *3 (-553)) (-14 *4 (-757)) (-4 *5 (-169)))) + (-12 (-5 *2 (-631 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-554)) (-14 *4 (-758)) (-4 *5 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) - (-14 *3 (-553)) (-14 *4 (-757)))) + (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-554)) (-14 *4 (-758)))) ((*1 *1 *2) - (-12 (-5 *2 (-1121 *4 *5)) (-14 *4 (-757)) (-4 *5 (-169)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)))) + (-12 (-5 *2 (-1124 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)))) ((*1 *1 *2) - (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-757)) (-4 *5 (-169)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)))) + (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-758)) (-4 *5 (-170)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)))) ((*1 *2 *3) - (-12 (-5 *3 (-1238 (-674 *4))) (-4 *4 (-169)) - (-5 *2 (-1238 (-674 (-401 (-934 *4))))) (-5 *1 (-184 *4)))) + (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170)) + (-5 *2 (-1241 (-675 (-402 (-937 *4))))) (-5 *1 (-185 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1071 (-310 *4))) - (-4 *4 (-13 (-833) (-545) (-601 (-373)))) (-5 *2 (-1071 (-373))) - (-5 *1 (-252 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-833)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-269)))) + (-12 (-5 *3 (-1074 (-311 *4))) + (-4 *4 (-13 (-836) (-546) (-602 (-374)))) (-5 *2 (-1074 (-374))) + (-5 *1 (-253 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270)))) ((*1 *2 *1) - (-12 (-4 *2 (-1214 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1217 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1223 *4 *5 *6)) (-4 *4 (-13 (-27) (-1177) (-424 *3))) - (-14 *5 (-1155)) (-14 *6 *4) - (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) - (-5 *1 (-307 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1226 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) + (-14 *5 (-1158)) (-14 *6 *4) + (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) + (-5 *1 (-308 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) - (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5)) + (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) - (-4 *3 (-323 *4)))) + (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2)) + (-4 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) - (-4 *3 (-323 *4)))) + (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3)) + (-4 *3 (-324 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) - (-5 *2 (-1262 *3 *4)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) + (-5 *2 (-1265 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) - (-5 *2 (-1253 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-833)) (-4 *3 (-169)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) + (-5 *2 (-1256 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) - (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-684))) (-4 *1 (-377)))) + (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) + (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-685))) (-4 *1 (-378)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) - (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-378)))) - ((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1079)))) + (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) + (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-379)))) + ((*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) - (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-390)))) + (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) + (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-391)))) ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-553)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-289 (-311 (-554)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-553))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-311 (-554))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-679)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-289 (-311 (-680)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-684)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-289 (-311 (-685)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-288 (-310 (-686)))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-289 (-311 (-687)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-679))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-311 (-680))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-684))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-311 (-685))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-686))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-311 (-687))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) - (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) - (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) + (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) - (-14 *3 (-1155)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-631 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1158)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1155)) - (-14 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-14 *5 (-630 (-1155))) (-14 *6 (-1159)))) + (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1158)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-14 *5 (-631 (-1158))) (-14 *6 (-1162)))) ((*1 *1 *2) - (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-833) (-21))) - (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-553))))))) + (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-836) (-21))) + (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-554))))))) ((*1 *1 *2) - (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-553))))) - (-4 *3 (-13 (-833) (-21))))) + (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-554))))) + (-4 *3 (-13 (-836) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-401 (-934 (-401 *3)))) (-4 *3 (-545)) (-4 *3 (-833)) - (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-402 (-937 (-402 *3)))) (-4 *3 (-546)) (-4 *3 (-836)) + (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 (-401 *3))) (-4 *3 (-545)) (-4 *3 (-833)) - (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-937 (-402 *3))) (-4 *3 (-546)) (-4 *3 (-836)) + (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-401 *3)) (-4 *3 (-545)) (-4 *3 (-833)) - (-4 *1 (-424 *3)))) + (-12 (-5 *2 (-402 *3)) (-4 *3 (-546)) (-4 *3 (-836)) + (-4 *1 (-425 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1104 *3 (-599 *1))) (-4 *3 (-1031)) (-4 *3 (-833)) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-428)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-428)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-428)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-428)))) - ((*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) + (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-1034)) (-4 *3 (-836)) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-429)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-429)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-429)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-429)))) + ((*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) - (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-684))) (-4 *1 (-433)))) + (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) + (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-685))) (-4 *1 (-434)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1159)) (|:| -2106 (-630 (-324))))) - (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-4 *1 (-434)))) + (-5 *2 (-2 (|:| |localSymbols| (-1162)) (|:| -2126 (-631 (-325))))) + (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-325))) (-4 *1 (-435)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-401 (-934 *3)))) (-4 *3 (-169)) - (-14 *6 (-1238 (-674 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-14 *4 (-903)) (-14 *5 (-630 (-1155))))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-461)))) + (-12 (-5 *2 (-1241 (-402 (-937 *3)))) (-4 *3 (-170)) + (-14 *6 (-1241 (-675 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-14 *4 (-906)) (-14 *5 (-631 (-1158))))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-462)))) ((*1 *1 *2) - (-12 (-5 *2 (-1223 *3 *4 *5)) (-4 *3 (-1031)) (-14 *4 (-1155)) - (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) + (-12 (-5 *2 (-1226 *3 *4 *5)) (-4 *3 (-1034)) (-14 *4 (-1158)) + (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-467 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1104 (-553) (-599 (-488)))) (-5 *1 (-488)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-495)))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-496)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-357)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-517)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-593)))) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-358)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-498 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-518)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594)))) ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-594 *3 *2)) (-4 *2 (-730 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1031)))) + (-12 (-4 *3 (-170)) (-5 *1 (-595 *3 *2)) (-4 *2 (-731 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1034)))) ((*1 *2 *1) - (-12 (-5 *2 (-1258 *3 *4)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) + (-12 (-5 *2 (-1261 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) ((*1 *2 *1) - (-12 (-5 *2 (-1253 *3 *4)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) + (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-622 *3 *2)) (-4 *2 (-730 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-662 *3)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-805 *3)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) + (-12 (-4 *3 (-170)) (-5 *1 (-623 *3 *2)) (-4 *2 (-731 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) ((*1 *2 *1) - (-12 (-5 *2 (-940 (-940 (-940 *3)))) (-5 *1 (-660 *3)) - (-4 *3 (-1079)))) + (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-5 *1 (-661 *3)) + (-4 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-940 (-940 (-940 *3)))) (-4 *3 (-1079)) - (-5 *1 (-660 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-805 *3)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) - ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-666)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-943 (-943 (-943 *3)))) (-4 *3 (-1082)) + (-5 *1 (-661 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-667)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) - (-12 (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *2)) (-4 *4 (-367 *3)) - (-4 *2 (-367 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845))))) - ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845))))) - ((*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-686))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-684))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-553))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *2 (-686)) (-5 *1 (-684)))) - ((*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-684)))) - ((*1 *2 *3) - (-12 (-5 *3 (-310 (-553))) (-5 *2 (-310 (-686))) (-5 *1 (-686)))) - ((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696)))) + (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *2)) (-4 *4 (-368 *3)) + (-4 *2 (-368 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) + ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) + ((*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-687))) (-5 *1 (-680)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-685))) (-5 *1 (-680)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-554))) (-5 *1 (-680)))) + ((*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-680)))) + ((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-685)))) + ((*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-685)))) + ((*1 *2 *3) + (-12 (-5 *3 (-311 (-554))) (-5 *2 (-311 (-687))) (-5 *1 (-687)))) + ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697)))) ((*1 *2 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-170)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-170)) (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-2 (|:| -4120 *3) (|:| -1718 *4)))) - (-4 *3 (-1031)) (-4 *4 (-712)) (-5 *1 (-721 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-749)))) + (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4)))) + (-4 *3 (-1034)) (-4 *4 (-713)) (-5 *1 (-722 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-750)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (|:| |mdnia| - (-2 (|:| |fn| (-310 (-220))) - (|:| -1457 (-630 (-1073 (-826 (-220))))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) - (-5 *1 (-755)))) + (-2 (|:| |fn| (-311 (-221))) + (|:| -3827 (-631 (-1076 (-829 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) + (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-310 (-220))) - (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *1 (-755)))) + (-2 (|:| |fn| (-311 (-221))) + (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *1 (-755)))) - ((*1 *2 *3) (-12 (-5 *2 (-760)) (-5 *1 (-759 *3)) (-4 *3 (-1192)))) + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *1 (-756)))) + ((*1 *2 *3) (-12 (-5 *2 (-761)) (-5 *1 (-760 *3)) (-4 *3 (-1195)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *1 (-794)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-810)))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *1 (-795)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-811)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) - (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) + (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) (|:| |lsa| - (-2 (|:| |lfn| (-630 (-310 (-220)))) - (|:| -1945 (-630 (-220))))))) - (-5 *1 (-824)))) + (-2 (|:| |lfn| (-631 (-311 (-221)))) + (|:| -3834 (-631 (-221))))))) + (-5 *1 (-827)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) - (-5 *1 (-824)))) + (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) + (-5 *1 (-827)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) - (-5 *1 (-824)))) - ((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-841)))) - ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856)))) - ((*1 *2 *3) - (-12 (-5 *3 (-934 (-48))) (-5 *2 (-310 (-553))) (-5 *1 (-857)))) - ((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 (-48)))) (-5 *2 (-310 (-553))) - (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-805 *3)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) + (-5 *1 (-827)))) + ((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-844)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859)))) + ((*1 *2 *3) + (-12 (-5 *3 (-937 (-48))) (-5 *2 (-311 (-554))) (-5 *1 (-860)))) + ((*1 *2 *3) + (-12 (-5 *3 (-402 (-937 (-48)))) (-5 *2 (-311 (-554))) + (-5 *1 (-860)))) + ((*1 *1 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-630 (-310 (-220)))) + (-2 (|:| |pde| (-631 (-311 (-221)))) (|:| |constraints| - (-630 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-757)) (|:| |boundaryType| (-553)) - (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) - (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) - (|:| |tol| (-220)))) - (-5 *1 (-880)))) + (-631 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) + (|:| |grid| (-758)) (|:| |boundaryType| (-554)) + (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) + (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) + (|:| |tol| (-221)))) + (-5 *1 (-883)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-887 *3))) (-4 *3 (-1079)) (-5 *1 (-886 *3)))) + (-12 (-5 *2 (-631 (-890 *3))) (-4 *3 (-1082)) (-5 *1 (-889 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-887 *3)))) + (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-887 *3)))) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-896 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-896 *3)) (-4 *3 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-901 *4)) - (-4 *4 (-13 (-833) (-545))))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) - ((*1 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-949)))) - ((*1 *2 *3) (-12 (-5 *2 (-1243)) (-5 *1 (-1015 *3)) (-4 *3 (-1192)))) - ((*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1015 *2)) (-4 *2 (-1192)))) + (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-899 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302)))) + ((*1 *2 *3) + (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-904 *4)) + (-4 *4 (-13 (-836) (-546))))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) + ((*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952)))) + ((*1 *2 *3) (-12 (-5 *2 (-1246)) (-5 *1 (-1018 *3)) (-4 *3 (-1195)))) + ((*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1018 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *2 (-931 *3 *4 *5)) - (-14 *6 (-630 *2)))) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-1019 *3 *4 *5 *2 *6)) (-4 *2 (-934 *3 *4 *5)) + (-14 *6 (-631 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-1025 *3)) (-4 *3 (-545)))) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-1028 *3)) (-4 *3 (-546)))) ((*1 *1 *2) - (-12 (-4 *3 (-1031)) (-4 *4 (-833)) (-5 *1 (-1105 *3 *4 *2)) - (-4 *2 (-931 *3 (-524 *4) *4)))) + (-12 (-4 *3 (-1034)) (-4 *4 (-836)) (-5 *1 (-1108 *3 *4 *2)) + (-4 *2 (-934 *3 (-525 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1031)) (-4 *2 (-833)) (-5 *1 (-1105 *3 *2 *4)) - (-4 *4 (-931 *3 (-524 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-845)))) - ((*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1123)))) + (-12 (-4 *3 (-1034)) (-4 *2 (-836)) (-5 *1 (-1108 *3 *2 *4)) + (-4 *4 (-934 *3 (-525 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-848)))) + ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1126)))) ((*1 *2 *3) - (-12 (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1031)))) + (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034)))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1146 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1153 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1211 *4 *3)) (-4 *3 (-1031)) (-14 *4 (-1155)) - (-14 *5 *3) (-5 *1 (-1153 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165 (-1155) (-431))) (-5 *1 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-1164 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *1 (-1171 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158)) + (-14 *5 *3) (-5 *1 (-1156 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168 (-1158) (-432))) (-5 *1 (-1162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1174 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 *3)) (-4 *3 (-1031)) (-5 *1 (-1186 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1186 *3)) (-4 *3 (-1031)))) + (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-5 *1 (-1189 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-1034)))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1202 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1073 *3)) (-4 *3 (-1192)) (-5 *1 (-1205 *3)))) + (-12 (-5 *2 (-1076 *3)) (-4 *3 (-1195)) (-5 *1 (-1208 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1230 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1211 *4 *3)) (-4 *3 (-1031)) (-14 *4 (-1155)) - (-14 *5 *3) (-5 *1 (-1230 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1234 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-1239)))) - ((*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1239)) (-5 *1 (-1242)))) + (-12 (-5 *2 (-1214 *4 *3)) (-4 *3 (-1034)) (-14 *4 (-1158)) + (-14 *5 *3) (-5 *1 (-1233 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-1242)))) + ((*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1242)) (-5 *1 (-1245)))) ((*1 *1 *2) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)))) ((*1 *2 *1) - (-12 (-5 *2 (-1262 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-169)))) + (-12 (-5 *2 (-1265 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-170)))) ((*1 *2 *1) - (-12 (-5 *2 (-1253 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-169)))) + (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) - (-5 *1 (-1258 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1135 *3))) (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) - (-4 *3 (-38 (-401 (-553)))) (-4 *3 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1155)) (-4 *4 (-1031)) (-4 *4 (-833)) - (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -2692 (-553)))) - (-4 *1 (-424 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1031)) (-4 *4 (-833)) - (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -2692 (-553)))) - (-4 *1 (-424 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1091)) (-4 *3 (-833)) - (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -2692 (-553)))) - (-4 *1 (-424 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-874 *3)) (|:| -2692 (-757)))) - (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-2 (|:| |var| *5) (|:| -2692 (-757)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) - (-4 *7 (-931 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2692 (-553)))) - (-5 *1 (-932 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) - (-15 -3974 (*7 $)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1137)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-257))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1 (-373))) (-5 *1 (-1022))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1191))) (-5 *3 (-1191)) (-5 *1 (-666))))) + (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) + (-5 *1 (-1261 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) (((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) - (-5 *2 (-630 (-630 (-630 (-757)))))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-808)) (-5 *1 (-807))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) (((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-738))))) -(((*1 *2 *3) - (-12 (-5 *3 (-553)) (|has| *1 (-6 -4360)) (-4 *1 (-398)) - (-5 *2 (-903))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-38 (-401 (-553)))) - (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-518))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-230 *3)))) - ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1017)) (-5 *3 (-1155)) (-5 *1 (-187))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1192)) (-5 *2 (-757))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-659 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-726 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-833)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *1 (-962 *3)) (-4 *3 (-1031)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *1)) (-5 *3 (-630 *7)) (-4 *1 (-1051 *4 *5 *6 *7)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)))) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-739))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) + (-4 *3 (-1082)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)))) + (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-112)) + (-5 *1 (-889 *4)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1159))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) - (-4 *4 (-169)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1071 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-833) (-545))) - (-5 *1 (-155 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1071 *1)) (-4 *1 (-157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1155)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-169))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-553)) (-4 *3 (-169)) (-4 *5 (-367 *3)) - (-4 *6 (-367 *3)) (-5 *1 (-673 *3 *5 *6 *2)) - (-4 *2 (-672 *3 *5 *6))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-630 - (-2 (|:| |scalar| (-401 (-553))) (|:| |coeff| (-1151 *2)) - (|:| |logand| (-1151 *2))))) - (-5 *4 (-630 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-357)) (-5 *1 (-574 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1042)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-571))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1119 *4 *5)) (-4 *4 (-13 (-1079) (-34))) - (-4 *5 (-13 (-1079) (-34))) (-5 *2 (-111)) (-5 *1 (-1120 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-753 *3)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-833)) (-5 *2 (-1164 (-630 *4))) (-5 *1 (-1163 *4)) - (-5 *3 (-630 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-833))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-630 (-599 *3))) - (|:| |vals| (-630 *3)))) - (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-445)) (-4 *4 (-833)) - (-5 *1 (-562 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-4 *2 (-1079)) (-5 *1 (-665 *5 *6 *2))))) -(((*1 *2) (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 (-903))) (-5 *1 (-1241))))) -(((*1 *1 *2) - (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1031) (-833))) - (-5 *1 (-218 *3 *4)) (-14 *4 (-630 (-1155)))))) + (-12 (-5 *3 (-906)) (-5 *2 (-112)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *2 (-1246)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1217 (-402 *5))) (-14 *7 *6)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158)))) + (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-934 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) + ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-934 *4 *6 *5)) (-4 *4 (-446)) + (-4 *5 (-836)) (-4 *6 (-780)) (-5 *1 (-972 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-539))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) + (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-1246)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) + (-4 *5 (-1217 *4)) (-5 *2 (-631 (-402 *5))) (-5 *1 (-1001 *4 *5)) + (-5 *3 (-402 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) (((*1 *2) - (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) - (-5 *2 (-630 (-630 *4))) (-5 *1 (-335 *3 *4 *5 *6)) - (-4 *3 (-336 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-630 (-630 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-102 *3))))) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-401 (-934 *5)) (-1144 (-1155) (-934 *5)))) - (-4 *5 (-445)) (-5 *2 (-630 (-674 (-401 (-934 *5))))) - (-5 *1 (-286 *5)) (-5 *4 (-674 (-401 (-934 *5))))))) + (-12 (-5 *4 (-1 (-631 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) + (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 *3)))) + (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6)) + (-4 *7 (-642 (-402 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-631 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *6 (-1217 *5)) + (-5 *2 (-631 (-2 (|:| |poly| *6) (|:| -4329 (-640 *6 (-402 *6)))))) + (-5 *1 (-799 *5 *6)) (-5 *3 (-640 *6 (-402 *6)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-735))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4))) + (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-667 *2)) (-4 *2 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-630 *5) (-630 *5))) (-5 *4 (-553)) - (-5 *2 (-630 *5)) (-5 *1 (-667 *5)) (-4 *5 (-1079))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-630 (-401 (-934 *6)))) - (-5 *3 (-401 (-934 *6))) - (-4 *6 (-13 (-545) (-1020 (-553)) (-144))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-559 *6))))) + (-12 (-5 *3 (-906)) + (-5 *2 + (-3 (-1154 *4) + (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102))))))) + (-5 *1 (-341 *4)) (-4 *4 (-344))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) + (-14 *4 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1195)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) + (-14 *4 (-631 (-1158))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-836))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) (((*1 *2 *3) - (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-14 *5 (-630 (-1155))) + (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *4)) (|:| -2855 (-630 (-934 *4)))))) - (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) + ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-890 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082)) + (-4 *2 (-836))))) +(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-363))))) +(((*1 *2 *1) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)) + (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| -1490 *3) (|:| -3738 *4)))) + (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-5 *2 (-1138 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *1) (-4 *1 (-952)))) +(((*1 *2 *3) + (-12 (-5 *3 (-756)) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) - (-5 *1 (-1264 *5 *6 *7)) (-5 *3 (-630 (-934 *5))) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) + (-5 *1 (-555)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-756)) (-5 *4 (-1046)) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) - (-5 *1 (-1264 *5 *6 *7)) (-5 *3 (-630 (-934 *5))) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))) (|:| |extra| (-1020)))) + (-5 *1 (-555)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-831) (-301) (-144) (-1004))) + (-12 (-4 *1 (-774)) (-5 *3 (-1046)) + (-5 *4 + (-2 (|:| |fn| (-311 (-221))) + (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *5)) (|:| -2855 (-630 (-934 *5)))))) - (-5 *1 (-1264 *5 *6 *7)) (-5 *3 (-630 (-934 *5))) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-831) (-301) (-144) (-1004))) + (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) + (|:| |extra| (-1020)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-774)) (-5 *3 (-1046)) + (-5 *4 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 - (-630 (-2 (|:| -3803 (-1151 *4)) (|:| -2855 (-630 (-934 *4)))))) - (-5 *1 (-1264 *4 *5 *6)) (-5 *3 (-630 (-934 *4))) - (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) -(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *1) (-4 *1 (-949)))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *2 (-630 (-401 (-553)))) (-5 *1 (-1002 *4)) - (-4 *4 (-1214 (-553)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-891)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-931 *4 *5 *6)) (-5 *2 (-412 (-1151 *7))) - (-5 *1 (-888 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-891)) (-4 *5 (-1214 *4)) (-5 *2 (-412 (-1151 *5))) - (-5 *1 (-889 *4 *5)) (-5 *3 (-1151 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-108))) (-5 *1 (-172))))) -(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-953))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-644 *4 *2)) - (-4 *2 (-641 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-847 *5))) (-14 *5 (-630 (-1155))) (-4 *6 (-445)) - (-5 *2 (-630 (-630 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) - (-5 *3 (-630 (-242 *5 *6))) (-4 *7 (-445))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1173))))) -(((*1 *2 *3) - (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) - (-5 *2 (-242 *4 *5)) (-5 *1 (-926 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) - (-5 *7 (-674 (-553))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) - (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-739))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-373)) (-5 *1 (-1043))))) -(((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-630 (-1160))) (-5 *1 (-862))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-301))))) -(((*1 *1 *2) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-1178 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-630 (-1178 *2))) (-5 *1 (-1178 *2)) (-4 *2 (-1079))))) -(((*1 *2) - (-12 (-4 *3 (-1031)) (-5 *2 (-940 (-698 *3 *4))) (-5 *1 (-698 *3 *4)) - (-4 *4 (-1214 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *8)) (-4 *8 (-931 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) - (-4 *7 (-779)) + (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)) + (|:| |extra| (-1020)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-787)) (-5 *3 (-1046)) + (-5 *4 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-795)) (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) - (|:| |wcond| (-630 (-934 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) - (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-630 *8)))) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *1 (-792)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *8)) (-5 *4 (-630 (-1155))) (-4 *8 (-931 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) - (-4 *7 (-779)) + (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) - (|:| |wcond| (-630 (-934 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) - (-5 *1 (-906 *5 *6 *7 *8)))) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *1 (-792)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-825)) (-5 *3 (-1046)) + (-5 *4 + (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) + (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-825)) (-5 *3 (-1046)) + (-5 *4 + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) + (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) ((*1 *2 *3) - (-12 (-5 *3 (-674 *7)) (-4 *7 (-931 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) + (-12 (-5 *3 (-827)) (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *7)) (|:| |neqzro| (-630 *7)) - (|:| |wcond| (-630 (-934 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *4)))))))))) - (-5 *1 (-906 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *9)) (-5 *5 (-903)) (-4 *9 (-931 *6 *8 *7)) - (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-833) (-601 (-1155)))) - (-4 *8 (-779)) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *1 (-826)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *9)) (|:| |neqzro| (-630 *9)) - (|:| |wcond| (-630 (-934 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *6)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *6)))))))))) - (-5 *1 (-906 *6 *7 *8 *9)) (-5 *4 (-630 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *9)) (-5 *4 (-630 (-1155))) (-5 *5 (-903)) - (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *1 (-826)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-880)) (-5 *3 (-1046)) + (-5 *4 + (-2 (|:| |pde| (-631 (-311 (-221)))) + (|:| |constraints| + (-631 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) + (|:| |grid| (-758)) (|:| |boundaryType| (-554)) + (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) + (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) + (|:| |tol| (-221)))) + (-5 *2 (-2 (|:| -3037 (-374)) (|:| |explanations| (-1140)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-883)) (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *9)) (|:| |neqzro| (-630 *9)) - (|:| |wcond| (-630 (-934 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *6)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *6)))))))))) - (-5 *1 (-906 *6 *7 *8 *9)))) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *1 (-882)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *8)) (-5 *4 (-903)) (-4 *8 (-931 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) - (-4 *7 (-779)) + (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 - (-630 - (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) - (|:| |wcond| (-630 (-934 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) - (-5 *1 (-906 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *9)) (-5 *4 (-630 *9)) (-5 *5 (-1137)) - (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-553)) - (-5 *1 (-906 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *9)) (-5 *4 (-630 (-1155))) (-5 *5 (-1137)) - (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-553)) - (-5 *1 (-906 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *8)) (-5 *4 (-1137)) (-4 *8 (-931 *5 *7 *6)) - (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-833) (-601 (-1155)))) - (-4 *7 (-779)) (-5 *2 (-553)) (-5 *1 (-906 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-674 *10)) (-5 *4 (-630 *10)) (-5 *5 (-903)) - (-5 *6 (-1137)) (-4 *10 (-931 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) - (-4 *8 (-13 (-833) (-601 (-1155)))) (-4 *9 (-779)) (-5 *2 (-553)) - (-5 *1 (-906 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-674 *10)) (-5 *4 (-630 (-1155))) (-5 *5 (-903)) - (-5 *6 (-1137)) (-4 *10 (-931 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) - (-4 *8 (-13 (-833) (-601 (-1155)))) (-4 *9 (-779)) (-5 *2 (-553)) - (-5 *1 (-906 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 *9)) (-5 *4 (-903)) (-5 *5 (-1137)) - (-4 *9 (-931 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) - (-4 *7 (-13 (-833) (-601 (-1155)))) (-4 *8 (-779)) (-5 *2 (-553)) - (-5 *1 (-906 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1151 *9)) (-5 *4 (-630 *7)) (-5 *5 (-630 *8)) - (-4 *7 (-833)) (-4 *8 (-1031)) (-4 *9 (-931 *8 *6 *7)) - (-4 *6 (-779)) (-5 *2 (-1151 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *4 *3 *5)) - (-4 *3 (-1214 *4)) - (-4 *5 (-13 (-398) (-1020 *4) (-357) (-1177) (-278)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-4 *7 (-545)) - (-4 *8 (-931 *7 *5 *6)) - (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *3) (|:| |radicand| *3))) - (-5 *1 (-935 *5 *6 *7 *8 *3)) (-5 *4 (-757)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *8)) (-15 -3963 (*8 $)) (-15 -3974 (*8 $)))))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-111))))) + (-2 (|:| -3037 (-374)) (|:| -4309 (-1140)) + (|:| |explanations| (-631 (-1140))))) + (-5 *1 (-882))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-743))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) (-5 *2 (-111)) (-5 *1 (-575 *3)) (-4 *3 (-538))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-111)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1177) (-424 (-166 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) + (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) (-5 *2 (-631 *3)) + (-5 *1 (-580 *5 *6 *7 *8 *3)) (-4 *3 (-1091 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) + (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5))) + (-14 *6 (-631 (-1158))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-111)) (-5 *1 (-1181 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) + (-12 (-4 *4 (-13 (-302) (-145))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *4)) (|:| -3656 (-631 (-937 *4)))))) + (-5 *1 (-1060 *4 *5)) (-5 *3 (-631 (-937 *4))) + (-14 *5 (-631 (-1158))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) + (-5 *2 + (-631 (-2 (|:| -3900 (-1154 *5)) (|:| -3656 (-631 (-937 *5)))))) + (-5 *1 (-1060 *5 *6)) (-5 *3 (-631 (-937 *5))) + (-14 *6 (-631 (-1158)))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-631 (-1158))) (|:| |pred| (-52)))) + (-5 *1 (-877 *3)) (-4 *3 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343)))) - ((*1 *1) (-4 *1 (-362))) - ((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1238 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-538))) ((*1 *1) (-4 *1 (-538))) - ((*1 *1 *1) (-5 *1 (-553))) ((*1 *1 *1) (-5 *1 (-757))) - ((*1 *2 *1) (-12 (-5 *2 (-887 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) + (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) + (-5 *2 (-1154 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) + (-5 *2 (-1154 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-631 (-554))) (-5 *2 (-758)) (-5 *1 (-579))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-402 (-1154 (-311 *3)))) (-4 *3 (-13 (-546) (-836))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1241 *5)) (-5 *3 (-758)) (-5 *4 (-1102)) (-4 *5 (-344)) + (-5 *1 (-522 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1154 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-836) (-546))) + (-5 *1 (-32 *4 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-325))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546)) + (-5 *2 (-402 (-937 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-887 *4)) (-5 *1 (-886 *4)) - (-4 *4 (-1079)))) - ((*1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-538)) (-4 *2 (-545))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-1111 *4 *2)) - (-4 *2 (-13 (-591 (-553) *4) (-10 -7 (-6 -4369) (-6 -4370)))))) + (-12 (-5 *3 (-554)) (-4 *1 (-1201 *4)) (-4 *4 (-1034)) (-4 *4 (-546)) + (-5 *2 (-402 (-937 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) ((*1 *2 *2) - (-12 (-4 *3 (-833)) (-4 *3 (-1192)) (-5 *1 (-1111 *3 *2)) - (-4 *2 (-13 (-591 (-553) *3) (-10 -7 (-6 -4369) (-6 -4370))))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) - (-5 *3 (-630 (-553)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 (-1238 *4))) (-4 *4 (-1031)) (-5 *2 (-674 *4)) - (-5 *1 (-1011 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-576 *4)) - (-4 *4 (-343))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *1 *1) (-12 (-5 *1 (-1178 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1137)) (-5 *3 (-553)) (-5 *1 (-236))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2) - (-12 (-5 *2 (-940 (-1099))) (-5 *1 (-337 *3 *4)) (-14 *3 (-903)) - (-14 *4 (-903)))) - ((*1 *2) - (-12 (-5 *2 (-940 (-1099))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-1151 *3)))) - ((*1 *2) - (-12 (-5 *2 (-940 (-1099))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-903))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-1164 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-630 (-499))) (-5 *2 (-499)) (-5 *1 (-476))))) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-575 *3) *3 (-1158))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1158))) + (-4 *3 (-279)) (-4 *3 (-617)) (-4 *3 (-1023 *4)) (-4 *3 (-425 *7)) + (-5 *4 (-1158)) (-4 *7 (-602 (-877 (-554)))) (-4 *7 (-446)) + (-4 *7 (-871 (-554))) (-4 *7 (-836)) (-5 *2 (-575 *3)) + (-5 *1 (-563 *7 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1138 *4)) (-5 *3 (-1 *4 (-554))) (-4 *4 (-1034)) + (-5 *1 (-1142 *4))))) +(((*1 *1) (-5 *1 (-432)))) (((*1 *2 *3) - (-12 (-5 *3 (-1081 *4)) (-4 *4 (-1079)) (-5 *2 (-1 *4)) - (-5 *1 (-999 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1022)) (-5 *3 (-373)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-553))) (-5 *2 (-1 (-553))) (-5 *1 (-1029))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1155)))) - ((*1 *1 *1) (-4 *1 (-157)))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) - (-4 *2 (-1192))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1017))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-111)) (-5 *6 (-674 (-220))) - (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-741))))) + (-12 (-4 *4 (-13 (-546) (-836))) + (-4 *2 (-13 (-425 *4) (-987) (-1180))) (-5 *1 (-588 *4 *2 *3)) + (-4 *3 (-13 (-425 (-167 *4)) (-987) (-1180)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-1151 *5))) (-5 *3 (-1151 *5)) - (-4 *5 (-163 *4)) (-4 *4 (-538)) (-5 *1 (-146 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 *3)) (-4 *3 (-1214 *5)) - (-4 *5 (-1214 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-1151 (-553)))) (-5 *3 (-1151 (-553))) - (-5 *1 (-561)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-1151 *1))) (-5 *3 (-1151 *1)) - (-4 *1 (-891))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) - ((*1 *1 *1) (|partial| -4 *1 (-708)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1253 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) - (-5 *1 (-649 *3 *4)))) + (-12 (-4 *3 (-1034)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1217 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-649 *3 *4)) (-5 *1 (-1258 *3 *4)) - (-4 *3 (-833)) (-4 *4 (-169))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-610 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3323 *4) (|:| |sol?| (-111))) - (-553) *4)) - (-4 *4 (-357)) (-4 *5 (-1214 *4)) (-5 *1 (-563 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-630 *1)) (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1017)) (-5 *1 (-734))))) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) - (-4 *3 (-949))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1162))))) -(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-52)) (-5 *1 (-1170))))) -(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1214 *2)) - (-4 *2 (-169)))) - ((*1 *2) - (-12 (-4 *4 (-1214 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) - (-4 *3 (-403 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1214 *2)) (-4 *2 (-169)))) - ((*1 *2) - (-12 (-4 *3 (-1214 *2)) (-5 *2 (-553)) (-5 *1 (-754 *3 *4)) - (-4 *4 (-403 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *3 (-169)))) - ((*1 *2 *3) - (-12 (-4 *2 (-545)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-169))))) + (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1217 (-402 *2))) + (-4 *2 (-1217 *5)) (-5 *1 (-211 *5 *2 *6 *3)) + (-4 *3 (-337 *5 *2 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-5 *1 (-970 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *1) (-4 *1 (-487))) ((*1 *2 *2) - (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-5 *1 (-1086 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *3 (-170)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031))))) + (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) + (-12 (-5 *3 (-554)) (-4 *4 (-1217 (-402 *3))) (-5 *2 (-906)) + (-5 *1 (-898 *4 *5)) (-4 *5 (-1217 (-402 *4)))))) (((*1 *2 *1) - (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) - (-14 *6 - (-1 (-111) (-2 (|:| -2735 *5) (|:| -2692 *2)) - (-2 (|:| -2735 *5) (|:| -2692 *2)))) - (-4 *2 (-233 (-2563 *3) (-757))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-833)) (-4 *7 (-931 *4 *2 (-847 *3)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-1159)) (-5 *1 (-1158))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-741)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) - (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-741))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) - (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-630 (-757))))) - ((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-630 (-757)))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1192)) (-4 *2 (-833)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1192)))) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-2 (|:| |k| (-806 *3)) (|:| |c| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-847))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *3 (-833)) - (-4 *6 (-1045 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2334 *1) (|:| |upper| *1))) - (-4 *1 (-958 *4 *5 *3 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) - ((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (|has| *1 (-6 -4360)) (-4 *1 (-398)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) - ((*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-5 *2 (-1135 (-553)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1246)) (-5 *1 (-818))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 (-2 (|:| -2270 (-1154 *6)) (|:| -1407 (-554))))) + (-4 *6 (-302)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1217 *3)) (-5 *1 (-394 *3 *2)) + (-4 *3 (-13 (-358) (-145)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1082))))) (((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-806 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-296)))) - ((*1 *1 *1) (-4 *1 (-296))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) - ((*1 *1 *1) (-5 *1 (-845)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1137)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1079)) - (-4 *4 (-1079)))) - ((*1 *1 *2) - (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) + (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-903)) (-4 *3 (-357)) - (-14 *4 (-975 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1214 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *3 (-289 (-937 (-554)))) + (-5 *2 + (-2 (|:| |varOrder| (-631 (-1158))) + (|:| |inhom| (-3 (-631 (-1241 (-758))) "failed")) + (|:| |hom| (-631 (-1241 (-758)))))) + (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *3 (-546))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-1138 (-221))) (-5 *1 (-188)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158))) + (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158))) + (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-836) (-546)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-243 *5 *6))) (-4 *6 (-446)) + (-5 *2 (-243 *5 *6)) (-14 *5 (-631 (-1158))) (-5 *1 (-619 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1138 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1244))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1121)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) + (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) + (-5 *4 (-311 (-374))) (-5 *1 (-325)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) + (-5 *4 (-311 (-554))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-167 (-374))))) + (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-374)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-554)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-167 (-374))))) + (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-374)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-554)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-374))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-554))) (-5 *1 (-325)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) + (-5 *4 (-311 (-680))) (-5 *1 (-325)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) + (-5 *4 (-311 (-685))) (-5 *1 (-325)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-937 (-554)))) + (-5 *4 (-311 (-687))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-680)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-685)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-311 (-687)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-680)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-685)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-311 (-687)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-680))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-685))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-687))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-680))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-685))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-675 (-687))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-680))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-685))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-311 (-687))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-325)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-758)) (-4 *6 (-358)) (-5 *4 (-1189 *6)) + (-5 *2 (-1 (-1138 *4) (-1138 *4))) (-5 *1 (-1249 *6)) + (-5 *5 (-1138 *4))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) + (-4 *3 (-634 *2)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) + (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) + (-4 *3 (-634 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) + ((*1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) + ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-5 *1 (-1213 *4 *2)) + (-4 *2 (-1217 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-5 *2 (-1154 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1082) (-1023 *5))) + (-4 *5 (-871 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-916 *4 *5 *6))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-221))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *1 *1) (|partial| -4 *1 (-708))) - ((*1 *1 *1) (|partial| -4 *1 (-712))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-762 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1048 *3 *2)) (-4 *3 (-13 (-831) (-357))) - (-4 *2 (-1214 *3)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *1 *1) (-5 *1 (-374))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3323 *6) (|:| |sol?| (-111))) (-553) - *6)) - (-4 *6 (-357)) (-4 *7 (-1214 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) - (-2 (|:| -2388 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) - (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553)))) - ((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1) (-4 *1 (-851 *2))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-221)) (-5 *5 (-554)) (-5 *2 (-1190 *3)) + (-5 *1 (-777 *3)) (-4 *3 (-959)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-112)) + (-5 *1 (-1190 *2)) (-4 *2 (-959))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-807)) (-14 *5 (-1158)) (-5 *2 (-631 (-1214 *5 *4))) + (-5 *1 (-1096 *4 *5)) (-5 *3 (-1214 *5 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-631 *1)) + (-4 *1 (-1054 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-836) (-546)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807)) + (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3)) + (-4 *3 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) + (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3))) + (-4 *3 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) + (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) ((*1 *1 *1) - (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-778)) - (-4 *4 (-833))))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-891)) (-5 *2 (-412 (-1151 *1))) (-5 *3 (-1151 *1))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1155)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-630 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2388 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1177) (-27) (-424 *8))) - (-4 *8 (-13 (-445) (-833) (-144) (-1020 *3) (-626 *3))) - (-5 *3 (-553)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3323 *4) (|:| |sol?| (-111)))) - (-5 *1 (-995 *8 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-887 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1159))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-510))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 + (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) + (|:| |expense| (-374)) (|:| |accuracy| (-374)) + (|:| |intermediateResults| (-374)))) + (-5 *1 (-790))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-757)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) - (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-833)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-903)))) - ((*1 *2 *3) - (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) - (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) - (-5 *2 (-757)) (-5 *1 (-386 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-819 (-903))))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-553)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-584 *3)) (-4 *3 (-1031)))) + (-12 + (-5 *2 + (-631 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221))))) + (-5 *1 (-549)))) ((*1 *2 *1) - (-12 (-4 *3 (-545)) (-5 *2 (-553)) (-5 *1 (-610 *3 *4)) - (-4 *4 (-1214 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-726 *4 *3)) (-4 *4 (-1031)) - (-4 *3 (-833)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-726 *4 *3)) (-4 *4 (-1031)) (-4 *3 (-833)) - (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-886 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) - (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) - (-4 *8 (-336 *5 *6 *7)) - (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) (-5 *2 (-757)) - (-5 *1 (-893 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 (-401 (-553)) *4 *5 *6)) - (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-1214 (-401 *4))) - (-4 *6 (-336 (-401 (-553)) *4 *5)) (-5 *2 (-757)) - (-5 *1 (-894 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) - (-4 *7 (-1214 *6)) (-4 *4 (-1214 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) - (-4 *9 (-13 (-362) (-357))) (-5 *2 (-757)) - (-5 *1 (-1000 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1214 *3)) (-4 *3 (-1031)) (-4 *3 (-545)) - (-5 *2 (-757)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) + (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-5 *2 (-631 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-239 *2)) (-4 *2 (-1192))))) -(((*1 *1) (-5 *1 (-154))) - ((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) (-4 *1 (-646))) ((*1 *1 *1) (-5 *1 (-1099)))) -(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192))))) -(((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-154)))) - ((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) + (-12 + (-5 *2 + (-631 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221))))) + (-5 *1 (-790))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-758)) (-4 *5 (-546)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-210 *4)) + (-4 *4 + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) + (-15 -2941 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3)) + (-4 *3 + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) + (-15 -2941 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-489))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-631 (-631 *4)))) (-5 *2 (-631 (-631 *4))) + (-5 *1 (-1166 *4)) (-4 *4 (-836))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-529 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-530))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-631 (-402 *6))) (-5 *3 (-402 *6)) + (-4 *6 (-1217 *5)) (-4 *5 (-13 (-358) (-145) (-1023 (-554)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *5 *6))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) (-5 *2 (-112)) + (-5 *1 (-1268 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1011 (-829 (-554)))) + (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *4)))) (-4 *4 (-1034)) + (-5 *1 (-584 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-111)) (-4 *7 (-1045 *4 *5 *6)) - (-4 *4 (-445)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-959 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4))) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *4 *2))))) + (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-850 *4)) + (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5))))) (((*1 *2 *3) + (-12 (-4 *5 (-13 (-602 *2) (-170))) (-5 *2 (-877 *4)) + (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1082)) (-4 *3 (-164 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-1076 (-829 (-374))))) + (-5 *2 (-631 (-1076 (-829 (-221))))) (-5 *1 (-300)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-389)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) + (-4 *4 (-1217 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) + (-5 *2 (-1241 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1241 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-546)) + (-4 *3 (-836)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-530)))) + ((*1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) + (-12 (-4 *3 (-170)) (-4 *1 (-711 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *1 *2) + (-12 (-5 *2 (-937 *3)) (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) + (-4 *5 (-602 (-1158))) (-4 *4 (-780)) (-4 *5 (-836)))) + ((*1 *1 *2) + (-3994 + (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) + (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) + (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) + (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) + ((*1 *1 *2) + (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) + (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-631 *7)) (|:| -2143 *8))) + (-4 *7 (-1048 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1140)) + (-5 *1 (-1127 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1163)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-554)) (-5 *1 (-1175)))) + ((*1 *2 *3) + (-12 (-5 *3 (-767 *4 (-850 *5))) + (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *5 (-631 (-1158))) + (-5 *2 (-767 *4 (-850 *6))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *6 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-937 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-767 *4 (-850 *6))) + (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158))) + (-5 *2 (-937 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154 *4)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-1154 (-1009 (-402 *4)))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158))))) + ((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) ((*1 *1) (-4 *1 (-538))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-684)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) - (-12 (-4 *1 (-591 *2 *3)) (-4 *3 (-1192)) (-4 *2 (-1079)) - (-4 *2 (-833))))) + (-5 *3 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6)))) + (-4 *4 (-13 (-834) (-302) (-145) (-1007))) (-14 *6 (-631 (-1158))) + (-5 *2 (-631 (-767 *4 (-850 *6)))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) + ((*1 *1 *1) (-4 *1 (-1183)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) + (-4 *3 (-1082))))) (((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 (-674 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-630 (-474 *4 *5))) (-5 *3 (-630 (-847 *4))) - (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) - (-4 *6 (-445))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-230 *3)) - (-4 *3 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1192))))) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) + (-5 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) + (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-631 *1)) (|has| *1 (-6 -4374)) (-4 *1 (-995 *3)) + (-4 *3 (-1195))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *5 (-1196)) (-4 *6 (-1214 *5)) - (-4 *7 (-1214 (-401 *6))) (-5 *2 (-630 (-934 *5))) - (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1196)) - (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) (-4 *4 (-357)) - (-5 *2 (-630 (-934 *4)))))) + (-12 (-14 *4 (-631 (-1158))) (-4 *5 (-446)) + (-5 *2 + (-2 (|:| |glbase| (-631 (-243 *4 *5))) (|:| |glval| (-631 (-554))))) + (-5 *1 (-619 *4 *5)) (-5 *3 (-631 (-243 *4 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-325))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *6)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1034)) (-4 *3 (-836)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1407 (-554)))) (-4 *1 (-425 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-887 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-877 *3)) (|:| -1407 (-877 *3)))) + (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) + (-4 *7 (-934 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1407 (-554)))) + (-5 *1 (-935 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) + (-15 -2822 (*7 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) - (-5 *2 - (-2 (|:| -2723 (-757)) (|:| |curves| (-757)) - (|:| |polygons| (-757)) (|:| |constructs| (-757))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1151 *1)) (-4 *1 (-994))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-599 *4)) (-4 *4 (-833)) (-4 *2 (-833)) - (-5 *1 (-598 *2 *4))))) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2 *3) (-12 (-5 *3 (-956)) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1158)) + (-4 *5 (-13 (-546) (-1023 (-554)) (-145))) + (-5 *2 + (-2 (|:| -1709 (-402 (-937 *5))) (|:| |coeff| (-402 (-937 *5))))) + (-5 *1 (-560 *5)) (-5 *3 (-402 (-937 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) + ((*1 *1 *1) (-4 *1 (-1183)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1158)) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-4 *4 (-13 (-29 *6) (-1180) (-944))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4)))) + (-5 *1 (-788 *6 *4 *3)) (-4 *3 (-642 *4))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-937 (-554))) (-5 *3 (-1158)) + (-5 *4 (-1076 (-402 (-554)))) (-5 *1 (-30))))) (((*1 *2 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) - (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) + (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-475 *4 *5)) + (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158)))))) +(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-758))))) +(((*1 *2 *3) + (-12 (-4 *1 (-825)) + (-5 *3 + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) + (-5 *2 (-1020)))) ((*1 *2 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-401 (-934 *6)) (-1144 (-1155) (-934 *6)))) - (-5 *5 (-757)) (-4 *6 (-445)) (-5 *2 (-630 (-674 (-401 (-934 *6))))) - (-5 *1 (-286 *6)) (-5 *4 (-674 (-401 (-934 *6)))))) - ((*1 *2 *3 *4) - (-12 + (-12 (-4 *1 (-825)) (-5 *3 - (-2 (|:| |eigval| (-3 (-401 (-934 *5)) (-1144 (-1155) (-934 *5)))) - (|:| |eigmult| (-757)) (|:| |eigvec| (-630 *4)))) - (-4 *5 (-445)) (-5 *2 (-630 (-674 (-401 (-934 *5))))) - (-5 *1 (-286 *5)) (-5 *4 (-674 (-401 (-934 *5))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-412 *3)) (-4 *3 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-674 (-934 *4))) (-5 *1 (-1010 *4)) - (-4 *4 (-1031))))) -(((*1 *1 *1) (|partial| -4 *1 (-142))) ((*1 *1 *1) (-4 *1 (-343))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-891))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151 (-553))) (-5 *2 (-553)) (-5 *1 (-924))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-111)) (-5 *1 (-807))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) - ((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1158))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-301)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4093 *1))) - (-4 *1 (-301))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1045 *3 *4 *5))))) + (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) + (-5 *2 (-1020))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-761)) (-5 *1 (-114))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-779)) (-4 *3 (-170))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-826 (-220)))) (-5 *4 (-220)) (-5 *2 (-630 *4)) - (-5 *1 (-261))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-257))) (-5 *4 (-1155)) (-5 *2 (-111)) - (-5 *1 (-257))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-430))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-324))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-240 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-924)) (-5 *3 (-553))))) -(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) - ((*1 *1 *1) (-4 *1 (-1123)))) -(((*1 *2 *2) (-12 (-5 *2 (-674 (-310 (-553)))) (-5 *1 (-1013))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-757)) (-4 *5 (-445)) (-4 *5 (-833)) - (-4 *5 (-1020 (-553))) (-4 *5 (-545)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-424 *5)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *5 (-599 $)) $)) - (-15 -3974 ((-1104 *5 (-599 $)) $)) - (-15 -3110 ($ (-1104 *5 (-599 $)))))))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-630 *11)) (-5 *5 (-630 (-1151 *9))) - (-5 *6 (-630 *9)) (-5 *7 (-630 *12)) (-5 *8 (-630 (-757))) - (-4 *11 (-833)) (-4 *9 (-301)) (-4 *12 (-931 *9 *10 *11)) - (-4 *10 (-779)) (-5 *2 (-630 (-1151 *12))) - (-5 *1 (-693 *10 *11 *9 *12)) (-5 *3 (-1151 *12))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) - (-4 *2 (-1214 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1137)) (-5 *3 (-809)) (-5 *1 (-808))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-5 *1 (-431))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1135 *4)) (-5 *3 (-1 *4 (-553))) (-4 *4 (-1031)) - (-5 *1 (-1139 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1155))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 (-2 (|:| -3355 (-1151 *6)) (|:| -2692 (-553))))) - (-4 *6 (-301)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-728 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-220)) (-5 *5 (-553)) (-5 *2 (-1187 *3)) - (-5 *1 (-776 *3)) (-4 *3 (-956)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-111)) - (-5 *1 (-1187 *2)) (-4 *2 (-956))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *1)) (|has| *1 (-6 -4370)) (-4 *1 (-992 *3)) - (-4 *3 (-1192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1155)) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-4 *4 (-13 (-29 *6) (-1177) (-941))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4124 (-630 *4)))) - (-5 *1 (-787 *6 *4 *3)) (-4 *3 (-641 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48)))))) +(((*1 *1 *1) (-4 *1 (-1126)))) (((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553)))) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) ((*1 *2 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553)))) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-819 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-826 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) - (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) - (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1124 *5 *6 *7 *8 *9))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *2 *3) - (-12 (-5 *2 (-630 (-630 (-553)))) (-5 *1 (-953)) - (-5 *3 (-630 (-553)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1031)) (-4 *3 (-833)) - (-4 *4 (-260 *3)) (-4 *5 (-779))))) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *1)) (-4 *1 (-1116 *3)) (-4 *3 (-1034)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)) + (-4 *3 (-546)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-221)) + (-5 *7 (-675 (-554))) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1217 *3)) + (-4 *3 (-13 (-358) (-145) (-1023 (-554)))) (-5 *1 (-558 *3 *4))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) + (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) + (-5 *5 (-1076 (-221))) (-5 *6 (-631 (-258))) (-5 *2 (-1115 (-221))) + (-5 *1 (-683))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) + (-12 (-4 *2 (-695 *3)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1034))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) (((*1 *2 *3) - (-12 (-4 *4 (-779)) - (-4 *5 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) (-4 *6 (-545)) - (-5 *2 (-2 (|:| -2345 (-934 *6)) (|:| -2401 (-934 *6)))) - (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-931 (-401 (-934 *6)) *4 *5))))) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554)))) + (-5 *1 (-1092))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1199)) (-4 *5 (-1217 *3)) (-4 *6 (-1217 (-402 *5))) + (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) - (-4 *9 (-1045 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-779)) - (-4 *8 (-833)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3343 (-630 *9)))) - (-5 *3 (-630 *9)) (-4 *1 (-1185 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3343 (-630 *8)))) - (-5 *3 (-630 *8)) (-4 *1 (-1185 *5 *6 *7 *8))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-129))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1238 (-757))) (-5 *1 (-660 *3)) (-4 *3 (-1079))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-424 *3) (-984))) (-5 *1 (-270 *3 *2)) - (-4 *3 (-13 (-833) (-545)))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-553)) (-5 *5 (-111)) (-5 *6 (-674 (-220))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) - (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-739))))) + (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *3 (-885 *6)) + (-5 *2 (-675 *3)) (-5 *1 (-678 *6 *3 *7 *4)) (-4 *7 (-368 *3)) + (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-170)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-5 *1 (-674 *4 *5 *6 *2)) + (-4 *2 (-673 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-5 *2 (-1238 *3)) (-5 *1 (-698 *3 *4)) - (-4 *4 (-1214 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1238 (-553))) (-5 *3 (-553)) (-5 *1 (-1089)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1238 (-553))) (-5 *3 (-630 (-553))) (-5 *4 (-553)) - (-5 *1 (-1089))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1192)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-599 *1))) (-5 *3 (-630 *1)) (-4 *1 (-296)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-288 *1))) (-4 *1 (-296)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-992 *2)) (-4 *2 (-1192))))) + (-12 (-4 *1 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1054 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1214 (-553))) (-5 *1 (-479 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-903)) (-5 *1 (-1014 *2)) - (-4 *2 (-13 (-1079) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) - (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-52)) (-5 *1 (-815))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-760)) (-5 *1 (-52))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-461)) (-5 *3 (-630 (-257))) (-5 *1 (-1239)))) - ((*1 *1 *1) (-5 *1 (-1239)))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1137)) (-5 *3 (-553)) (-5 *1 (-1043))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-111)) (-5 *1 (-815))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856))))) -(((*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1079))))) -(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-522)))) - ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-522))))) + (-12 (-4 *3 (-546)) (-4 *3 (-170)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) + (-4 *2 (-673 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-523))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) + (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-758)) (-5 *2 (-1246))))) (((*1 *2 *3) - (-12 + (-12 (-4 *4 (-1034)) (-4 *3 (-1217 *4)) (-4 *2 (-1232 *4)) + (-5 *1 (-1235 *4 *3 *5 *2)) (-4 *5 (-642 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3654 (-554)) (|:| -2316 (-631 *3)))) + (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-167 (-402 (-554))))) + (-5 *2 + (-631 + (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-554)) + (|:| |outvect| (-631 (-675 (-167 *4))))))) + (-5 *1 (-751 *4)) (-4 *4 (-13 (-358) (-834)))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-554)) (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-779)) (-4 *2 (-931 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) - (-4 *4 (-445)) (-4 *6 (-833))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-583 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1031))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1073 *3)) (-4 *3 (-931 *7 *6 *4)) (-4 *6 (-779)) - (-4 *4 (-833)) (-4 *7 (-545)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-553)))) - (-5 *1 (-582 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-779)) (-4 *4 (-833)) (-4 *6 (-545)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-553)))) - (-5 *1 (-582 *5 *4 *6 *3)) (-4 *3 (-931 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1147 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1177))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1071 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1177))) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1147 *4 *2)))) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-758)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-780)) (-4 *4 (-934 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-836)) + (-5 *1 (-443 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-758)) (-4 *6 (-1082)) (-4 *7 (-885 *6)) + (-5 *2 (-675 *7)) (-5 *1 (-678 *6 *7 *3 *4)) (-4 *3 (-368 *7)) + (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4373))))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-758)) (-5 *1 (-576 *2)) (-4 *2 (-539)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3462 *3) (|:| -1407 (-758)))) (-5 *1 (-576 *3)) + (-4 *3 (-539))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-779)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-631 (-1158))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) - (-5 *2 (-401 (-934 *5))) (-5 *1 (-1148 *5)) (-5 *3 (-934 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) - (-5 *2 (-3 (-401 (-934 *5)) (-310 *5))) (-5 *1 (-1148 *5)) - (-5 *3 (-401 (-934 *5))))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554)) + (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1071 (-934 *5))) (-5 *3 (-934 *5)) - (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-401 *3)) - (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) + (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1034) (-836))) + (-5 *1 (-219 *3 *4)) (-14 *4 (-631 (-1158))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1071 (-401 (-934 *5)))) (-5 *3 (-401 (-934 *5))) - (-4 *5 (-13 (-545) (-833) (-1020 (-553)))) (-5 *2 (-3 *3 (-310 *5))) - (-5 *1 (-1148 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *5 (-1045 *3 *4 *2))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-758)) + (-4 *6 (-1195)) (-4 *7 (-1195)) (-5 *2 (-236 *5 *7)) + (-5 *1 (-235 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-289 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1140)) (-5 *5 (-600 *6)) + (-4 *6 (-297)) (-4 *2 (-1195)) (-5 *1 (-292 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-600 *5)) (-4 *5 (-297)) + (-4 *2 (-297)) (-5 *1 (-293 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-600 *1)) (-4 *1 (-297)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-5 *2 (-675 *6)) (-5 *1 (-299 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-836)) + (-4 *6 (-836)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358)) + (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) + (-4 *9 (-358)) (-4 *10 (-1217 *9)) (-4 *11 (-1217 (-402 *10))) + (-5 *2 (-331 *9 *10 *11 *12)) + (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-337 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1199)) (-4 *8 (-1199)) + (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-4 *9 (-1217 *8)) + (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1217 (-402 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) + (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-546)) + (-4 *6 (-546)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-546)) + (-4 *6 (-546)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) + (-4 *6 (-977 *5)) (-4 *7 (-1217 *6)) + (-4 *8 (-13 (-404 *6 *7) (-1023 *6))) (-4 *9 (-302)) + (-4 *10 (-977 *9)) (-4 *11 (-1217 *10)) + (-5 *2 (-408 *9 *10 *11 *12)) + (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-404 *10 *11) (-1023 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-546)) (-5 *1 (-413 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1034) (-836))) + (-4 *6 (-13 (-1034) (-836))) (-4 *2 (-425 *6)) + (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) + (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1195)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-575 *5)) (-4 *5 (-358)) + (-4 *6 (-358)) (-5 *2 (-575 *6)) (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -1709 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-358)) (-4 *6 (-358)) + (-5 *2 (-2 (|:| -1709 *6) (|:| |coeff| *6))) + (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-574 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-358)) (-4 *6 (-358)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-574 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-589 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-589 *6)) (-5 *1 (-586 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-589 *7)) + (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-589 *8)) + (-5 *1 (-587 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-589 *7)) + (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) + (-5 *1 (-587 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-589 *6)) (-5 *5 (-1138 *7)) + (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) + (-5 *1 (-587 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-631 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-631 *6)) (-5 *1 (-629 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-631 *6)) (-5 *5 (-631 *7)) + (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-631 *8)) + (-5 *1 (-630 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1034)) (-4 *8 (-1034)) + (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-673 *8 *9 *10)) + (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-673 *5 *6 *7)) + (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1034)) + (-4 *8 (-1034)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) + (-4 *2 (-673 *8 *9 *10)) (-5 *1 (-671 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-673 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-546)) (-4 *7 (-546)) + (-4 *6 (-1217 *5)) (-4 *2 (-1217 (-402 *8))) + (-5 *1 (-696 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1217 (-402 *6))) + (-4 *8 (-1217 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1034)) (-4 *9 (-1034)) + (-4 *5 (-836)) (-4 *6 (-780)) (-4 *2 (-934 *9 *7 *5)) + (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) + (-4 *4 (-934 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-836)) (-4 *6 (-836)) (-4 *7 (-780)) + (-4 *9 (-1034)) (-4 *2 (-934 *9 *8 *6)) + (-5 *1 (-716 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-780)) + (-4 *4 (-934 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-722 *5 *7)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-4 *7 (-713)) (-5 *2 (-722 *6 *7)) + (-5 *1 (-721 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-722 *3 *4)) + (-4 *4 (-713)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-4 *2 (-784 *6)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *4 (-784 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-819 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-862 *6)) (-5 *1 (-861 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-874 *5 *6)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-874 *5 *7)) + (-5 *1 (-873 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-5 *2 (-937 *6)) (-5 *1 (-931 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-836)) + (-4 *8 (-1034)) (-4 *6 (-780)) + (-4 *2 + (-13 (-1082) + (-10 -8 (-15 -1735 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-758)))))) + (-5 *1 (-936 *6 *7 *8 *5 *2)) (-4 *5 (-934 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-943 *6)) (-5 *1 (-942 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-5 *2 (-928 *6)) (-5 *1 (-966 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-937 *4))) (-4 *4 (-1034)) + (-4 *2 (-934 (-937 *4) *5 *6)) (-4 *5 (-780)) + (-4 *6 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-5 *1 (-969 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-546)) (-4 *6 (-546)) + (-4 *2 (-977 *6)) (-5 *1 (-975 *5 *6 *4 *2)) (-4 *4 (-977 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) + (-4 *2 (-982 *6)) (-5 *1 (-983 *4 *5 *2 *6)) (-4 *4 (-982 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) + (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1037 *3 *4 *5 *6 *7)) + (-4 *5 (-1034)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1034)) (-4 *10 (-1034)) + (-14 *5 (-758)) (-14 *6 (-758)) (-4 *8 (-234 *6 *7)) + (-4 *9 (-234 *5 *7)) (-4 *2 (-1037 *5 *6 *10 *11 *12)) + (-5 *1 (-1039 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1037 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) + (-4 *12 (-234 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-1076 *6)) (-5 *1 (-1071 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-834)) + (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-631 *6)) + (-5 *1 (-1071 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-1074 *6)) (-5 *1 (-1073 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834)) + (-4 *2 (-1131 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-1138 *6)) (-5 *1 (-1136 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1138 *6)) (-5 *5 (-1138 *7)) + (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1138 *8)) + (-5 *1 (-1137 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1154 *5)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-5 *2 (-1154 *6)) (-5 *1 (-1152 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1171 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5 *7 *9)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1205 *6 *8 *10)) (-5 *1 (-1200 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1158)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-1208 *6)) (-5 *1 (-1207 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1208 *5)) (-4 *5 (-834)) + (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1138 *6)) + (-5 *1 (-1207 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1214 *5 *6)) (-14 *5 (-1158)) + (-4 *6 (-1034)) (-4 *8 (-1034)) (-5 *2 (-1214 *7 *8)) + (-5 *1 (-1209 *5 *6 *7 *8)) (-14 *7 (-1158)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) + (-4 *2 (-1217 *6)) (-5 *1 (-1215 *5 *4 *6 *2)) (-4 *4 (-1217 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5 *7 *9)) (-4 *5 (-1034)) + (-4 *6 (-1034)) (-14 *7 (-1158)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1226 *6 *8 *10)) (-5 *1 (-1221 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1158)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1034)) (-4 *6 (-1034)) + (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *6 *4 *2)) (-4 *4 (-1232 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-1195)) + (-4 *6 (-1195)) (-5 *2 (-1241 *6)) (-5 *1 (-1240 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1241 *5)) + (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1241 *6)) + (-5 *1 (-1240 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-1034)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-1264 *3 *4)) + (-4 *4 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) + (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *9)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-780)) + (-4 *7 (-836)) (-5 *2 (-758)) (-5 *1 (-1127 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-1209 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-1214 *4)) (-4 *4 (-1031)) - (-5 *2 (-1238 *4))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *2 *1) (-12 (-4 *3 (-1192)) (-5 *2 (-630 *1)) (-4 *1 (-992 *3)))) + (-12 (-4 *4 (-446)) (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1942 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1082))))) +(((*1 *2 *2) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) + ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-675 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-675 *4)) (-5 *1 (-411 *3 *4)) + (-4 *3 (-412 *4)))) + ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-675 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358)) + (-5 *1 (-515 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-1143 *3 *4))) (-5 *1 (-1143 *3 *4)) - (-14 *3 (-903)) (-4 *4 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1192)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-591 *3 *2)) (-4 *3 (-1079)) - (-4 *2 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-831)) (-5 *1 (-297 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-925 (-220)) (-925 (-220)))) (-5 *1 (-257)))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) + (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) ((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) - (-5 *2 (-674 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1238 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-674 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-1238 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1214 *4)) (-5 *2 (-1238 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1214 *4)) (-5 *2 (-674 *4)))) + (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) + (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) - (-5 *2 (-1238 *3)))) + (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) + (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| |k| (-658 *3)) (|:| |c| *4)))) + (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) - (-5 *2 (-674 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1238 *3)))) + (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-674 *5))) (-5 *3 (-674 *5)) (-4 *5 (-357)) - (-5 *2 (-1238 *5)) (-5 *1 (-1065 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1214 (-401 (-553)))) - (-5 *2 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553)))) - (-5 *1 (-895 *3 *4)) (-4 *4 (-1214 (-401 *3))))) + (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1214 (-401 *2))) (-5 *2 (-553)) (-5 *1 (-895 *4 *3)) - (-4 *3 (-1214 (-401 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) + (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) + (-4 *5 (-546)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) + (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) + (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) + (-5 *1 (-772 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *1)) (-5 *4 (-1155)) (-4 *1 (-27)) - (-5 *2 (-630 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1151 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-934 *1)) (-4 *1 (-27)) (-5 *2 (-630 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-630 *1)) - (-4 *1 (-29 *4)))) + (-12 (-5 *3 (-631 (-221))) (-5 *4 (-758)) (-5 *2 (-675 (-221))) + (-5 *1 (-300))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-358) (-834))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1217 (-167 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) + (-5 *2 (-2 (|:| -1490 (-554)) (|:| |var| (-600 *1)))) + (-4 *1 (-425 *3))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) + (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) + (-4 *2 (-1195))))) +(((*1 *1 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-952))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3) + (-12 (-5 *2 (-631 (-631 (-554)))) (-5 *1 (-956)) + (-5 *3 (-631 (-554)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 *2)) + (-5 *2 (-374)) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) + (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) + (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) + (-4 *4 (-602 *2)) (-5 *2 (-374)) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-836)) (-4 *5 (-602 *2)) (-5 *2 (-374)) + (-5 *1 (-772 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-1048 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1188 *5 *6 *7 *3)) + (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-142))))) +(((*1 *2) (-12 (-5 *2 (-820 (-554))) (-5 *1 (-528)))) + ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1082))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4374)) (-4 *1 (-483 *3)) + (-4 *3 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-306)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *2 (-630 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-909))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1194))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-723 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-1079)))) - ((*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *2 (-545)) (-5 *1 (-951 *2 *4)) - (-4 *4 (-1214 *2))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-630 (-1151 *7))) (-5 *3 (-1151 *7)) - (-4 *7 (-931 *5 *6 *4)) (-4 *5 (-891)) (-4 *6 (-779)) - (-4 *4 (-833)) (-5 *1 (-888 *5 *6 *4 *7))))) + (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-547 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) + (-4 *4 (-1195)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) + (-4 *3 (-13 (-836) (-546))))) + ((*1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1) (-5 *1 (-471))) ((*1 *1) (-4 *1 (-1180)))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) + (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9)) + (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6)) + (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) + (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) + (-4 *2 (-673 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-675 *2)) (-4 *2 (-358)) (-4 *2 (-1034)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1105 *2 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-1166 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *3)))) + (-5 *1 (-584 *3)) (-4 *3 (-1034))))) +(((*1 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 (-758))) (-5 *1 (-1244))))) +(((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-631 (-950))) (-5 *1 (-286))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-744))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) + (-5 *2 (-1241 (-402 (-554)))) (-5 *1 (-1268 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-899 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-413 (-937 *6))) (-5 *5 (-1158)) (-5 *3 (-937 *6)) + (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-900 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-956)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-631 (-169))))))) +(((*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221))))) + ((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221)))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3323 *7) (|:| |sol?| (-111))) - (-553) *7)) - (-5 *6 (-630 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1214 *7)) - (-5 *3 (-401 *8)) + (-1 (-3 (-2 (|:| -1709 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-631 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1217 *7)) + (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-563 *7 *8))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1079))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-747)))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-674 (-401 *4)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-5 *2 (-1238 *3)) (-5 *1 (-698 *3 *4)) - (-4 *4 (-1214 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-545)) (-4 *2 (-169))))) + (-5 *1 (-564 *7 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-144))) (-5 *2 (-630 *3)) - (-5 *1 (-1208 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-553)) (-4 *5 (-343)) (-5 *2 (-412 (-1151 (-1151 *5)))) - (-5 *1 (-1190 *5)) (-5 *3 (-1151 (-1151 *5)))))) -(((*1 *1) (-5 *1 (-809)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-660 *2)) (-4 *2 (-1031)) (-4 *2 (-1079))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-442 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-630 (-310 (-220)))) (-5 *1 (-261))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-733))))) -(((*1 *2) - (-12 (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) - (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) - (-5 *2 - (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-674 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1214 (-553))) - (-5 *2 - (-2 (|:| -4124 (-674 (-553))) (|:| |basisDen| (-553)) - (|:| |basisInv| (-674 (-553))))) - (-5 *1 (-754 *3 *4)) (-4 *4 (-403 (-553) *3)))) - ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 *4)) - (-5 *2 - (-2 (|:| -4124 (-674 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-674 *4)))) - (-5 *1 (-967 *3 *4 *5 *6)) (-4 *6 (-710 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 *4)) - (-5 *2 - (-2 (|:| -4124 (-674 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-674 *4)))) - (-5 *1 (-1247 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1) (-4 *1 (-949))) ((*1 *1 *1) (-5 *1 (-1099)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-841)))) - ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-947)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-971)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1079) (-34))) (-5 *1 (-1119 *2 *3)) - (-4 *3 (-13 (-1079) (-34)))))) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-836) (-546)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-1243))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) - (-5 *2 (-2 (|:| |num| (-1238 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-630 *2)) (-5 *1 (-112 *2)) - (-4 *2 (-1079)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-630 *4))) (-4 *4 (-1079)) - (-5 *1 (-112 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1079)) - (-5 *1 (-112 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-630 *4))) - (-5 *1 (-112 *4)) (-4 *4 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-633 *3)) (-4 *3 (-1031)) - (-5 *1 (-700 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-820 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-111)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-741))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-925 (-220))) (-5 *4 (-856)) (-5 *5 (-903)) - (-5 *2 (-1243)) (-5 *1 (-461)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-925 (-220))) (-5 *2 (-1243)) (-5 *1 (-461)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-630 (-925 (-220)))) (-5 *4 (-856)) (-5 *5 (-903)) - (-5 *2 (-1243)) (-5 *1 (-461))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-412 *4)) (-4 *4 (-545))))) -(((*1 *1) (-5 *1 (-1064)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) - (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-1251 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-630 *8)) (-5 *3 (-1 (-111) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1251 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-669 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-737))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-542))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-833)) (-4 *3 (-1079))))) + (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758)) + (-14 *4 (-758)) (-4 *5 (-170))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446)) + (-5 *1 (-903 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-809))))) +(((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-977 *2)) (-4 *4 (-1217 *3)) (-4 *2 (-302)) + (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1023 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1))) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) + ((*1 *2 *1) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4)) + (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-713) *4)) + (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 (-1251 *4 *5 *6 *7))) - (-5 *1 (-1251 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *9)) (-5 *4 (-1 (-111) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1045 *6 *7 *8)) (-4 *6 (-545)) - (-4 *7 (-779)) (-4 *8 (-833)) (-5 *2 (-630 (-1251 *6 *7 *8 *9))) - (-5 *1 (-1251 *6 *7 *8 *9))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-833) (-601 (-1155)))) - (-4 *5 (-779)) (-5 *1 (-906 *3 *4 *5 *2)) (-4 *2 (-931 *3 *5 *4))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-734))))) -(((*1 *2 *1) - (-12 (-4 *1 (-591 *2 *3)) (-4 *3 (-1192)) (-4 *2 (-1079)) - (-4 *2 (-833))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205))))) + (-12 (-4 *1 (-787)) + (-5 *3 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-1020))))) +(((*1 *1) (-5 *1 (-1243)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-1241 *5)) (-4 *5 (-302)) + (-4 *5 (-1034)) (-5 *2 (-675 *5)) (-5 *1 (-1014 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-940)) (-5 *2 (-1076 (-221))))) + ((*1 *2 *1) (-12 (-4 *1 (-959)) (-5 *2 (-1076 (-221)))))) (((*1 *2 *1) - (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-398) (-1177))) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-831)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) - (-4 *3 (-1214 *4)) (-5 *2 (-111))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) - (-4 *3 (-1079)) (-5 *2 (-757)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4369)) (-4 *1 (-482 *4)) - (-4 *4 (-1192)) (-5 *2 (-757))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-903)) (-4 *5 (-301)) (-4 *3 (-1214 *5)) - (-5 *2 (-2 (|:| |plist| (-630 *3)) (|:| |modulo| *5))) - (-5 *1 (-453 *5 *3)) (-5 *4 (-630 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) - ((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1079)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1137)) (-5 *1 (-1173))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-757)) (-5 *1 (-769 *2)) (-4 *2 (-38 (-401 (-553)))) - (-4 *2 (-169))))) -(((*1 *2) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) + (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-806 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-832)) (-5 *1 (-1264 *3 *2)) (-4 *3 (-1034))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-523))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-4 *3 (-882 *5)) (-5 *2 (-674 *3)) - (-5 *1 (-677 *5 *3 *6 *4)) (-4 *6 (-367 *3)) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-445)) (-4 *3 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-931 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-581 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *1 *1) - (-12 (-4 *2 (-301)) (-4 *3 (-974 *2)) (-4 *4 (-1214 *3)) - (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1020 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-909)) - (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) - (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) - (-5 *1 (-150)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-909)) (-5 *4 (-401 (-553))) - (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) - (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) - (-5 *1 (-150)))) - ((*1 *2 *3) - (-12 + (-12 (-5 *3 (-631 *6)) (-5 *4 (-631 (-1138 *7))) (-4 *6 (-836)) + (-4 *7 (-934 *5 (-525 *6) *6)) (-4 *5 (-1034)) + (-5 *2 (-1 (-1138 *7) *7)) (-5 *1 (-1108 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-600 *4)) (-5 *6 (-1154 *4)) + (-4 *4 (-13 (-425 *7) (-27) (-1180))) + (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) - (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) - (-5 *1 (-150)) (-5 *3 (-630 (-925 (-220)))))) - ((*1 *2 *3) - (-12 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-600 *4)) (-5 *6 (-402 (-1154 *4))) + (-4 *4 (-13 (-425 *7) (-27) (-1180))) + (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) - (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) - (-5 *1 (-150)) (-5 *3 (-630 (-630 (-925 (-220))))))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-674 (-220))) (-5 *6 (-111)) (-5 *7 (-674 (-553))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) - (-5 *3 (-553)) (-5 *4 (-220)) (-5 *2 (-1017)) (-5 *1 (-739))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-357)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) - (-4 *5 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) - (-5 *1 (-311 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-630 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) - (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-630 (-288 *7))) (-5 *4 (-630 (-113))) (-5 *5 (-288 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) - (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-630 (-288 *8))) (-5 *4 (-630 (-113))) (-5 *5 (-288 *8)) - (-5 *6 (-630 *8)) (-4 *8 (-424 *7)) - (-4 *7 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) - (-5 *1 (-311 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-630 *7)) (-5 *4 (-630 (-113))) (-5 *5 (-288 *7)) - (-4 *7 (-424 *6)) (-4 *6 (-13 (-833) (-545) (-601 (-529)))) - (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 (-113))) (-5 *6 (-630 (-288 *8))) - (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) - (-4 *7 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) - (-5 *1 (-311 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) - (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) - (-5 *1 (-311 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) - (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) - (-5 *1 (-311 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) - (-4 *6 (-13 (-833) (-545) (-601 (-529)))) (-5 *2 (-52)) - (-5 *1 (-311 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-630 *3)) - (-4 *3 (-424 *7)) (-4 *7 (-13 (-833) (-545) (-601 (-529)))) - (-5 *2 (-52)) (-5 *1 (-311 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-127)) (-5 *2 (-1099))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082))))) (((*1 *2 *1) - (-12 (-5 *2 (-1081 *3)) (-5 *1 (-887 *3)) (-4 *3 (-362)) - (-4 *3 (-1079))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1079)) - (-4 *2 (-129))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-855 *2 *3)) (-4 *2 (-1192)) (-4 *3 (-1192))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1097)) (-5 *1 (-1094))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) - (-5 *2 (-1017)) (-5 *1 (-739))))) + (-12 (-4 *1 (-1224 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1201 *3)) + (-5 *2 (-402 (-554)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-302)) (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) + (-5 *2 (-1241 *6)) (-5 *1 (-408 *3 *4 *5 *6)) + (-4 *6 (-13 (-404 *4 *5) (-1023 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-4 *3 (-836)) (-5 *2 (-1107 *3 (-600 *1))) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1107 (-554) (-600 (-489)))) (-5 *1 (-489)))) + ((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-609 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-713) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-704 *3)) (-5 *1 (-648 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-713) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-600 *3)) (-5 *5 (-1 (-1154 *3) (-1154 *3))) + (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-836) (-546))) + (-5 *2 (-575 *3)) (-5 *1 (-541 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-481))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-758)) (-5 *1 (-209 *4 *2)) (-14 *4 (-906)) + (-4 *2 (-1082))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-52))))) +(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3) + (-12 (-4 *4 (-780)) + (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)) + (-5 *2 (-2 (|:| -1349 (-937 *6)) (|:| -3703 (-937 *6)))) + (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-934 (-402 (-937 *6)) *4 *5))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-1122 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1082) (-34))) (-4 *5 (-13 (-1082) (-34))) + (-5 *1 (-1123 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-631 (-1122 *3 *4))) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-946 *2)) (-4 *2 (-539))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-758))) (-5 *3 (-169)) (-5 *1 (-1146 *4 *5)) + (-14 *4 (-906)) (-4 *5 (-1034))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-1192)) (-4 *3 (-833)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1192)) - (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *5 (-545)) - (-5 *2 - (-2 (|:| |minor| (-630 (-903))) (|:| -2662 *3) - (|:| |minors| (-630 (-630 (-903)))) (|:| |ops| (-630 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-903)) (-4 *3 (-641 *5))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-742))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-529))) (-5 *1 (-529))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-832))))) +(((*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1195)) (-5 *2 (-758))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-154)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1079)) (-4 *5 (-1079)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-668 *4 *5))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1158)) (-5 *3 (-1155))))) -(((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-545)) (-4 *2 (-169))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1214 *4)) (-4 *4 (-1196)) - (-4 *6 (-1214 (-401 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-336 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *2 (-401 (-934 *4))) (-5 *1 (-906 *4 *5 *6 *3)) - (-4 *3 (-931 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 *7)) (-4 *7 (-931 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *2 (-674 (-401 (-934 *4)))) - (-5 *1 (-906 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *2 (-630 (-401 (-934 *4)))) - (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1031))))) -(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) - ((*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301)))) - ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-301)))) - ((*1 *2 *1) (-12 (-4 *1 (-1040)) (-5 *2 (-553))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1151 *4)) (-5 *1 (-351 *4)) - (-4 *4 (-343))))) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2)) + (-4 *5 (-368 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-4 *2 (-1082)) (-5 *1 (-209 *4 *2)) + (-14 *4 (-906)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) + (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-824)) (-5 *4 (-1043)) (-5 *2 (-1017)) (-5 *1 (-823)))) - ((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1017)) (-5 *1 (-823)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-630 (-373))) (-5 *5 (-630 (-826 (-373)))) - (-5 *6 (-630 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1017)) - (-5 *1 (-823)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-373))) - (-5 *5 (-630 (-826 (-373)))) (-5 *2 (-1017)) (-5 *1 (-823)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-373))) (-5 *4 (-630 (-373))) (-5 *2 (-1017)) - (-5 *1 (-823)))) + (-12 (-5 *3 (-758)) (-5 *4 (-1241 *2)) (-4 *5 (-302)) + (-4 *6 (-977 *5)) (-4 *2 (-13 (-404 *6 *7) (-1023 *6))) + (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1217 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-844)))) + ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-950)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-974)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1082) (-34))) (-5 *1 (-1122 *2 *3)) + (-4 *3 (-13 (-1082) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-181))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1048 *6 *7 *8)) (-4 *6 (-546)) (-4 *7 (-780)) + (-4 *8 (-836)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *9)))) + (-5 *3 (-631 *9)) (-4 *1 (-1188 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2292 (-631 *8)))) + (-5 *3 (-631 *8)) (-4 *1 (-1188 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374))) + (-5 *2 (-1020)) (-5 *1 (-826))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) (-5 *3 (-554)) + (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-779))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1034)) + (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-310 (-373)))) (-5 *4 (-630 (-373))) - (-5 *2 (-1017)) (-5 *1 (-823))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-630 (-111))) (-5 *5 (-674 (-220))) - (-5 *6 (-674 (-553))) (-5 *7 (-220)) (-5 *3 (-553)) (-5 *2 (-1017)) - (-5 *1 (-740))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1137)) (-5 *5 (-674 (-220))) (-5 *6 (-220)) - (-5 *7 (-674 (-553))) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) + (-12 (-5 *4 (-906)) (-4 *5 (-1034)) + (-4 *2 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))) + (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1217 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-554)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554))))) +(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-833) (-545)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) - (-14 *4 (-630 (-1155))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) (-4 *1 (-278))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-5 *1 (-614 *3 *4 *5)) - (-14 *5 (-903)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-13 (-1031) (-703 (-401 (-553))))) - (-4 *5 (-833)) (-5 *1 (-1254 *4 *5 *2)) (-4 *2 (-1259 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-1258 *3 *4)) - (-4 *4 (-703 (-401 (-553)))) (-4 *3 (-833)) (-4 *4 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-1079)) (-5 *2 (-1243)) - (-5 *1 (-1193 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-1079)) (-5 *2 (-1243)) - (-5 *1 (-1193 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) - (-5 *1 (-99 *4 *3)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-13 (-445) (-144))) - (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(((*1 *2 *2) (-12 (-5 *2 (-903)) (|has| *1 (-6 -4360)) (-4 *1 (-398)))) - ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-903)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-684)))) - ((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-684))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3000 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-903)) (-4 *1 (-362)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1238 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-343)))) - ((*1 *2 *1) - (-12 (-4 *2 (-833)) (-5 *1 (-699 *2 *3 *4)) (-4 *3 (-1079)) - (-14 *4 - (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *3)) - (-2 (|:| -2735 *2) (|:| -2692 *3))))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-630 (-599 *2))) (-5 *4 (-1155)) - (-4 *2 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *1 (-790 *4 *2)) (-4 *2 (-13 (-29 *4) (-1177) (-941)))))) -(((*1 *1) (-5 *1 (-285)))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-111)) - (-5 *2 (-1017)) (-5 *1 (-739))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1135 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1177) (-424 *3))) - (-14 *4 (-1155)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-4 *2 (-13 (-27) (-1177) (-424 *3) (-10 -8 (-15 -3110 ($ *4))))) - (-4 *4 (-831)) - (-4 *5 - (-13 (-1216 *2 *4) (-357) (-1177) - (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $))))) - (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-965 *5)) (-14 *7 (-1155))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-745))))) -(((*1 *2 *1) - (-12 (-5 *2 (-845)) (-5 *1 (-1135 *3)) (-4 *3 (-1079)) - (-4 *3 (-1192))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-401 (-553)))) - (-5 *2 (-2 (|:| -2224 (-1135 *4)) (|:| -2234 (-1135 *4)))) - (-5 *1 (-1141 *4)) (-5 *3 (-1135 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-217 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-4 *1 (-248 *3)))) - ((*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1020 *4)) (-4 *3 (-301)) - (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-4 *6 (-403 *4 *5)) - (-14 *7 (-1238 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-974 *3)) - (-4 *5 (-1214 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-1031)) (-4 *4 (-169)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)) - (-4 *3 (-169))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) - (-5 *1 (-326))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-111)) - (-5 *2 (-1017)) (-5 *1 (-731))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1079)) (-4 *5 (-1079)) - (-5 *2 (-1 *5)) (-5 *1 (-668 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-324))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-4 *1 (-106 *3))))) -(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-1243)) (-5 *1 (-373))))) -(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-547 *3)) (-4 *3 (-538)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) (-5 *2 (-412 *3)) - (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-931 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-301)) - (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-412 (-1151 *7))) - (-5 *1 (-728 *4 *5 *6 *7)) (-5 *3 (-1151 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-445)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-412 *1)) (-4 *1 (-931 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-779)) (-4 *6 (-445)) (-5 *2 (-412 *3)) - (-5 *1 (-961 *4 *5 *6 *3)) (-4 *3 (-931 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-445)) - (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-412 (-1151 (-401 *7)))) - (-5 *1 (-1150 *4 *5 *6 *7)) (-5 *3 (-1151 (-401 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1196)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-412 *3)) (-5 *1 (-1217 *4 *3)) - (-4 *3 (-13 (-1214 *4) (-545) (-10 -8 (-15 -2508 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-14 *5 (-630 (-1155))) - (-5 *2 - (-630 (-1125 *4 (-524 (-847 *6)) (-847 *6) (-766 *4 (-847 *6))))) - (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155)))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1192)))) + (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-401 (-934 (-373)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 (-553))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-401 (-934 (-553)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) + (-14 *3 (-631 *2)) (-14 *4 (-631 *2)) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 (-553))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382)) + (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))))) ((*1 *1 *2) - (-12 (-5 *2 (-1155)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 *2)) - (-14 *4 (-630 *2)) (-4 *5 (-381)))) + (|partial| -12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) - (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-1155))))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-401 (-934 (-553))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-401 (-934 (-373))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-934 (-553)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-934 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-310 (-553)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-674 (-310 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-553)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 (-934 (-373)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-934 (-553))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-934 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-553))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-401 (-934 (-553))))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-401 (-934 (-373))))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-934 (-553)))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-934 (-373)))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-310 (-553)))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 (-310 (-373)))) (-4 *1 (-434)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| |mdnia| - (-2 (|:| |fn| (-310 (-220))) - (|:| -1457 (-630 (-1073 (-826 (-220))))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) - (-5 *1 (-755)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *1 (-794)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) - (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-630 (-310 (-220)))) - (|:| -1945 (-630 (-220))))))) - (-5 *1 (-824)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-630 (-310 (-220)))) - (|:| |constraints| - (-630 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-757)) (|:| |boundaryType| (-553)) - (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) - (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) - (|:| |tol| (-220)))) - (-5 *1 (-880)))) + (|partial| -12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *1 (-958 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1192)))) + (|partial| -12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379)))) ((*1 *1 *2) - (-3988 - (-12 (-5 *2 (-934 *3)) - (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) - (-2826 (-4 *3 (-38 (-553)))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833))) - (-12 (-5 *2 (-934 *3)) - (-12 (-2826 (-4 *3 (-538))) (-2826 (-4 *3 (-38 (-401 (-553))))) - (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833))) - (-12 (-5 *2 (-934 *3)) - (-12 (-2826 (-4 *3 (-974 (-553)))) (-4 *3 (-38 (-401 (-553)))) - (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833))))) + (|partial| -12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379)))) ((*1 *1 *2) - (-3988 - (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) - (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) - (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))) - (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) + (|partial| -12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 (-401 (-553)))) (-4 *1 (-1045 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155))) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833))))) -(((*1 *2 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-988))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1211 *5 *4)) (-5 *1 (-1153 *4 *5 *6)) - (-4 *4 (-1031)) (-14 *5 (-1155)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1211 *5 *4)) (-5 *1 (-1230 *4 *5 *6)) - (-4 *4 (-1031)) (-14 *5 (-1155)) (-14 *6 *4)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-630 *3)) (-5 *1 (-927 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-274)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-553) (-220) (-1155) (-1137) (-1160))) - (-5 *1 (-1160))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1135 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1031)) - (-5 *3 (-401 (-553))) (-5 *1 (-1139 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) - (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) (-5 *2 (-630 (-1155))) (-5 *1 (-205)) - (-5 *3 (-1155)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-757)) (-5 *2 (-630 (-1155))) - (-5 *1 (-261)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) (-4 *4 (-169)) - (-5 *2 (-630 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 *3)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-805 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-630 *3))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1223 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) - (-4 *3 (-13 (-357) (-833))) (-14 *4 (-1155)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-553)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-412 *3)) (-4 *3 (-545)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-699 *3 *2 *4)) (-4 *3 (-833)) - (-14 *4 - (-1 (-111) (-2 (|:| -2735 *3) (|:| -2692 *2)) - (-2 (|:| -2735 *3) (|:| -2692 *2))))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-1205 (-553)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *5 (-1214 *4)) - (-5 *2 (-630 (-2 (|:| |deg| (-757)) (|:| -2662 *5)))) - (-5 *1 (-795 *4 *5 *3 *6)) (-4 *3 (-641 *5)) - (-4 *6 (-641 (-401 *5)))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1214 (-166 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-833)) (-4 *3 (-1020 (-553))) - (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) - (-15 -3974 ((-1104 *3 (-599 $)) $)) - (-15 -3110 ($ (-1104 *3 (-599 $)))))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1238 (-1155))) (-5 *3 (-1238 (-446 *4 *5 *6 *7))) - (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-903)) - (-14 *6 (-630 (-1155))) (-14 *7 (-1238 (-674 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-446 *4 *5 *6 *7))) - (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-903)) - (-14 *6 (-630 *2)) (-14 *7 (-1238 (-674 *4))))) + (|partial| -12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) - (-14 *6 (-1238 (-674 *3))))) + (|partial| -12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 (-1155))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-169)) (-14 *4 (-903)) (-14 *5 (-630 (-1155))) - (-14 *6 (-1238 (-674 *3))))) + (|partial| -12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-554))) (-4 *1 (-391)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-937 (-374))) (-4 *1 (-391)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-554))) (-4 *1 (-391)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) ((*1 *1 *2) - (-12 (-5 *2 (-1155)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-903)) (-14 *5 (-630 *2)) (-14 *6 (-1238 (-674 *3))))) - ((*1 *1) - (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-903)) - (-14 *4 (-630 (-1155))) (-14 *5 (-1238 (-674 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-553))) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-545)) (-4 *8 (-931 *7 *5 *6)) - (-5 *2 (-2 (|:| -2692 (-757)) (|:| -4120 *9) (|:| |radicand| *9))) - (-5 *1 (-935 *5 *6 *7 *8 *9)) (-5 *4 (-757)) - (-4 *9 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *8)) (-15 -3963 (*8 $)) (-15 -3974 (*8 $)))))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1137)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1137)) (-5 *1 (-96))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-357)) (-4 *2 (-1214 *4)) - (-5 *1 (-904 *4 *2))))) + (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1217 *5)) + (-5 *2 (-1154 (-1154 *4))) (-5 *1 (-764 *4 *5 *6 *3 *7)) + (-4 *3 (-1217 *6)) (-14 *7 (-906)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *1 (-961 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1023 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) + (|partial| -3994 + (-12 (-5 *2 (-937 *3)) + (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) + (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836))) + (-12 (-5 *2 (-937 *3)) + (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554))))) + (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836))) + (-12 (-5 *2 (-937 *3)) + (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554)))) + (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836))))) + ((*1 *1 *2) + (|partial| -3994 + (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) + (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) + (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) + (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-809))))) (((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-529)) (-5 *1 (-528 *4)) - (-4 *4 (-1192))))) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-5 *2 (-675 *4)) + (-5 *1 (-801 *4 *5)) (-4 *5 (-642 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-358)) + (-5 *2 (-675 *5)) (-5 *1 (-801 *5 *6)) (-4 *6 (-642 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-130))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) + (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-619 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-14 *5 (-631 (-1158))) (-5 *2 (-631 (-631 (-1009 (-402 *4))))) + (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *5))))) (-5 *1 (-1267 *5 *6 *7)) + (-14 *6 (-631 (-1158))) (-14 *7 (-631 (-1158))))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-937 *4))) + (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-5 *2 (-631 (-631 (-1009 (-402 *4))))) (-5 *1 (-1267 *4 *5 *6)) + (-14 *5 (-631 (-1158))) (-14 *6 (-631 (-1158)))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) + (-4 *3 (-1082)) (-5 *2 (-758)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) + (-4 *4 (-1195)) (-5 *2 (-758))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-358)) (-4 *3 (-1034)) + (-5 *1 (-1142 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) + (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) + (-4 *7 (-977 *4)) (-4 *2 (-673 *7 *8 *9)) + (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-673 *4 *5 *6)) + (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) - (-14 *4 *2)))) -(((*1 *1) (-5 *1 (-604)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2508 (-768 *3)) (|:| |coef1| (-768 *3)) - (|:| |coef2| (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-545)) (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-2 (|:| -2508 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-321 *3)) (-4 *3 (-1192)))) - ((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1192)) - (-14 *4 (-553))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1079)) - (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) - (-5 *2 (-630 (-1055 *3 *4 *5))) (-5 *1 (-1056 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-868 *3) (-601 (-874 *3))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-553)) (-4 *5 (-831)) (-4 *5 (-357)) - (-5 *2 (-757)) (-5 *1 (-927 *5 *6)) (-4 *6 (-1214 *5))))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)) (-4 *2 (-302)))) + ((*1 *2 *2) + (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *1 (-674 *3 *4 *5 *2)) + (-4 *2 (-673 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1037 *2 *3 *4 *5 *6)) (-4 *4 (-1034)) + (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302))))) +(((*1 *2) + (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894)) + (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-934 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *2 (-894)) + (-5 *1 (-891 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-894)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1217 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-906)) (-5 *2 (-1154 *3)) (-5 *1 (-1169 *3)) + (-4 *3 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-144)) - (-4 *3 (-301)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-757)) (-4 *2 (-1079)) - (-5 *1 (-663 *2))))) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-582 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) + (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-358)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) + (-4 *1 (-838 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-1103 *3)) (-4 *3 (-1195)) (-5 *2 (-758))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1092))))) (((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *5 (-362)) - (-5 *2 (-757))))) + (-12 (-5 *2 (-1241 (-758))) (-5 *1 (-661 *3)) (-4 *3 (-1082))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1161)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-554)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-758)) (-4 *5 (-170)))) + ((*1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) + (-4 *4 (-170)))) + ((*1 *1 *1) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1034)) (-4 *1 (-673 *3 *2 *4)) (-4 *2 (-368 *3)) + (-4 *4 (-368 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-758)) (-4 *3 (-1034))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-758)) (-4 *5 (-358)) (-5 *2 (-172 *6)) + (-5 *1 (-852 *5 *4 *6)) (-4 *4 (-1232 *5)) (-4 *6 (-1217 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)) (-4 *2 (-539)))) + ((*1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112)) + (-5 *1 (-352 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1154 *9)) (-5 *4 (-631 *7)) (-4 *7 (-836)) + (-4 *9 (-934 *8 *6 *7)) (-4 *6 (-780)) (-4 *8 (-302)) + (-5 *2 (-631 (-758))) (-5 *1 (-729 *6 *7 *8 *9)) (-5 *5 (-758))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) + (-4 *3 (-13 (-836) (-546)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-209 4 (-129))) (-5 *1 (-569))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1034)) (-5 *1 (-879 *2 *3)) (-4 *2 (-1217 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-631 (-1158))) (-4 *4 (-1082)) + (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) + (-5 *1 (-1058 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1082)) + (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) + (-5 *1 (-1058 *3 *4 *2)) + (-4 *2 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1195)) (-4 *3 (-1195))))) (((*1 *2 *1) + (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) + (-4 *3 (-1217 *4)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) + (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1190 *2)) (-4 *2 (-959))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 - (-630 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-553))))) - (-5 *1 (-412 *3)) (-4 *3 (-545)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-757)) (-4 *3 (-343)) (-4 *5 (-1214 *3)) - (-5 *2 (-630 (-1151 *3))) (-5 *1 (-491 *3 *5 *6)) - (-4 *6 (-1214 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-931 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-545)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-924)) (-5 *3 (-553))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-188))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)) (-4 *5 (-357)) - (-5 *2 (-111)) (-5 *1 (-652 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-5 *2 (-111)) - (-5 *1 (-653 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-553))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-679))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-686))) (-5 *1 (-324)))) - ((*1 *1 *2) (-12 (-5 *2 (-310 (-684))) (-5 *1 (-324)))) - ((*1 *1) (-5 *1 (-324)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) - (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-757) *2)) (-5 *4 (-757)) (-4 *2 (-1079)) - (-5 *1 (-663 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-757) *3)) (-4 *3 (-1079)) (-5 *1 (-667 *3))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1192)) - (-4 *2 (-1192)) (-5 *1 (-57 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1079)) (|has| *1 (-6 -4369)) - (-4 *1 (-148 *2)) (-4 *2 (-1192)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) - (-4 *2 (-1192)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) - (-4 *2 (-1192)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1031)) - (-5 *2 (-2 (|:| -4252 (-1151 *4)) (|:| |deg| (-903)))) - (-5 *1 (-216 *4 *5)) (-5 *3 (-1151 *4)) (-4 *5 (-13 (-545) (-833))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-757)) - (-4 *6 (-1192)) (-4 *2 (-1192)) (-5 *1 (-234 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1214 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-545)) (-4 *2 (-833)))) - ((*1 *1 *1) - (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1214 *2)) - (-4 *4 (-1214 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1192)) (-4 *2 (-1192)) - (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) - (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) - ((*1 *1 *1) (-5 *1 (-488))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-630 *5)) (-4 *5 (-1192)) - (-4 *2 (-1192)) (-5 *1 (-628 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1031)) (-4 *2 (-1031)) - (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) - (-4 *9 (-367 *2)) (-5 *1 (-670 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-672 *5 *6 *7)) (-4 *10 (-672 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-698 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-357)) - (-4 *3 (-169)) (-4 *1 (-710 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-4 *1 (-710 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-940 *5)) (-4 *5 (-1192)) - (-4 *2 (-1192)) (-5 *1 (-939 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *2 (-931 *3 *4 *5)) - (-14 *6 (-630 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1031)) (-4 *2 (-1031)) - (-14 *5 (-757)) (-14 *6 (-757)) (-4 *8 (-233 *6 *7)) - (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) - (-5 *1 (-1036 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1034 *5 *6 *7 *8 *9)) (-4 *12 (-1034 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1135 *5)) (-4 *5 (-1192)) - (-4 *2 (-1192)) (-5 *1 (-1133 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) - (-4 *1 (-1185 *5 *6 *7 *2)) (-4 *5 (-545)) (-4 *6 (-779)) - (-4 *7 (-833)) (-4 *2 (-1045 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1238 *5)) (-4 *5 (-1192)) - (-4 *2 (-1192)) (-5 *1 (-1237 *5 *2))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) + (-12 (-5 *3 (-631 (-767 *5 (-850 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-631 (-1158))) (-5 *2 (-631 (-1031 *5 *6))) + (-5 *1 (-616 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-874 *4 *5)) (-5 *3 (-874 *4 *6)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-652 *5)) (-5 *1 (-870 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-827)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-826)))) + ((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-1020)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-631 (-374))) (-5 *5 (-631 (-829 (-374)))) + (-5 *6 (-631 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1020)) + (-5 *1 (-826)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) + (-5 *5 (-631 (-829 (-374)))) (-5 *2 (-1020)) (-5 *1 (-826)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-374))) (-5 *2 (-1020)) + (-5 *1 (-826)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-311 (-374)))) (-5 *4 (-631 (-374))) + (-5 *2 (-1020)) (-5 *1 (-826))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-402 (-554))) (-5 *2 (-221)) (-5 *1 (-300))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-543))))) (((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) + (-12 (-4 *3 (-1034)) (-5 *2 (-1241 *3)) (-5 *1 (-699 *3 *4)) + (-4 *4 (-1217 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1073 (-220))) - (-5 *2 (-1240)) (-5 *1 (-251))))) + (|partial| -12 (-5 *1 (-1123 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1180) (-29 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1161)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246)) + (-5 *1 (-1161)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-631 (-1158))) (-5 *3 (-1158)) (-5 *2 (-1246)) + (-5 *1 (-1161))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) + ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-685))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-833)) (-5 *4 (-630 *6)) - (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-630 *4)))) - (-5 *1 (-1163 *6)) (-5 *5 (-630 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-1 (-111) *8))) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-2 (|:| |goodPols| (-630 *8)) (|:| |badPols| (-630 *8)))) - (-5 *1 (-959 *5 *6 *7 *8)) (-5 *4 (-630 *8))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1071 (-934 (-553)))) (-5 *3 (-934 (-553))) - (-5 *1 (-324)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1071 (-934 (-553)))) (-5 *1 (-324))))) -(((*1 *1) (-5 *1 (-431)))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) + (-5 *2 + (-631 + (-2 (|:| |eqzro| (-631 *7)) (|:| |neqzro| (-631 *7)) + (|:| |wcond| (-631 (-937 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *4)))))))))) + (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5))))) +(((*1 *2) + (-12 (-4 *1 (-344)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-554)) (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3)) + (-4 *3 (-1195))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-554)) (-5 *1 (-1092)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1241 (-554))) (-5 *3 (-631 (-554))) (-5 *4 (-554)) + (-5 *1 (-1092))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1023 (-48))) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) + (-5 *2 (-413 (-1154 (-48)))) (-5 *1 (-430 *4 *5 *3)) + (-4 *3 (-1217 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-599 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1177))) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-1151 (-401 (-1151 *6)))) (-5 *1 (-549 *5 *6 *7)) - (-5 *3 (-1151 *6)) (-4 *7 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1214 *3)) (-5 *1 (-698 *3 *2)) (-4 *3 (-1031)))) - ((*1 *2 *1) - (-12 (-4 *1 (-710 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1214 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1151 *11)) (-5 *6 (-630 *10)) - (-5 *7 (-630 (-757))) (-5 *8 (-630 *11)) (-4 *10 (-833)) - (-4 *11 (-301)) (-4 *9 (-779)) (-4 *5 (-931 *11 *9 *10)) - (-5 *2 (-630 (-1151 *5))) (-5 *1 (-728 *9 *10 *11 *5)) - (-5 *3 (-1151 *5)))) + (-12 (-5 *3 (-1154 *1)) (-5 *4 (-1158)) (-4 *1 (-27)) + (-5 *2 (-631 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-27)) (-5 *2 (-631 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-631 *1)) + (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-931 *3 *4 *5)) (-5 *1 (-1016 *3 *4 *5 *2 *6)) - (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-14 *6 (-630 *2))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *2 (-631 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-311 (-221))) (-5 *4 (-631 (-1158))) + (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-1138 (-221))) (-5 *1 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-674 (-310 (-220)))) + (-12 (-5 *3 (-631 (-475 *4 *5))) (-14 *4 (-631 (-1158))) + (-4 *5 (-446)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) - (-5 *1 (-200))))) -(((*1 *1 *1) (-4 *1 (-1040)))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-742))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)) - (-4 *2 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1137)) (-5 *1 (-696))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-833)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-276 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) - (-12 + (-2 (|:| |gblist| (-631 (-243 *4 *5))) + (|:| |gvlist| (-631 (-554))))) + (-5 *1 (-619 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-906)) (-4 *1 (-363)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1241 *4)) (-5 *1 (-522 *4)) + (-4 *4 (-344)))) + ((*1 *2 *1) + (-12 (-4 *2 (-836)) (-5 *1 (-700 *2 *3 *4)) (-4 *3 (-1082)) + (-14 *4 + (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *3)) + (-2 (|:| -2717 *2) (|:| -1407 *3))))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *2 *3) + (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-140 *2 *4 *3)) + (-4 *3 (-368 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-497 *2 *4 *5 *3)) + (-4 *5 (-368 *2)) (-4 *3 (-368 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *4)) (-4 *4 (-977 *2)) (-4 *2 (-546)) + (-5 *1 (-679 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-977 *2)) (-4 *2 (-546)) (-5 *1 (-1210 *2 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-554)) (-14 *4 (-758))))) +(((*1 *2 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-325))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-270))))) +(((*1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034))))) +(((*1 *1) + (-12 (-4 *1 (-399)) (-4081 (|has| *1 (-6 -4364))) + (-4081 (|has| *1 (-6 -4356))))) + ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1082)) (-4 *2 (-836)))) + ((*1 *1 *1 *1) (-4 *1 (-836))) + ((*1 *2 *1) (-12 (-4 *1 (-953 *2)) (-4 *2 (-836)))) + ((*1 *1) (-5 *1 (-1102)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1154 *7)) (-5 *3 (-554)) (-4 *7 (-934 *6 *4 *5)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) + (-5 *1 (-316 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9)) + (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *9 (-1048 *6 *7 *8)) (-5 *2 - (-2 - (|:| -2578 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -3256 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1135 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1457 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-548)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-680 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2) - (-12 + (-631 + (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9))))) + (-5 *1 (-973 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-631 *10)) (-5 *5 (-112)) (-4 *10 (-1054 *6 *7 *8 *9)) + (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *9 (-1048 *6 *7 *8)) (-5 *2 - (-2 - (|:| -2578 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (|:| -3256 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373)))))) - (-5 *1 (-789)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-118 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-296)))) - ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-5 *1 (-845)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) - (-4 *4 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1159))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-553)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1020 *4)) (-4 *3 (-13 (-833) (-545)))))) -(((*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-269))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-856)) (-5 *3 (-630 (-257))) (-5 *1 (-255))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-212))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-5 *2 (-111))))) + (-631 + (-2 (|:| -4329 (-631 *9)) (|:| -2143 *10) (|:| |ineq| (-631 *9))))) + (-5 *1 (-1089 *6 *7 *8 *9 *10)) (-5 *3 (-631 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) + (-14 *4 (-554))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-574 *3)) (-5 *1 (-420 *5 *3)) - (-4 *3 (-13 (-1177) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-4 *5 (-13 (-545) (-1020 (-553)) (-144))) - (-5 *2 (-574 (-401 (-934 *5)))) (-5 *1 (-559 *5)) - (-5 *3 (-401 (-934 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-630 (-1160))) (-5 *1 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(((*1 *2 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-630 (-630 (-220)))) (-5 *1 (-1188))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-52)) (-5 *1 (-815))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) - (-5 *2 (-1017)) (-5 *1 (-740))))) -(((*1 *1 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1185 *2 *3 *4 *5)) (-4 *2 (-545)) - (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-1045 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *3) (-12 (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -9775,3580 +9671,3982 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1135 (-220))) + (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1457 + (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1017)) (-5 *1 (-299))))) -(((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) + (-5 *1 (-549))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1034)) + (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-934 *2 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-1217 *4)) (-5 *2 (-1 *6 (-631 *6))) + (-5 *1 (-1235 *4 *5 *3 *6)) (-4 *3 (-642 *5)) (-4 *6 (-1232 *4))))) +(((*1 *1 *1) (-4 *1 (-617))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987) (-1180)))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2510 (-769 *3)) (|:| |coef2| (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-2 (|:| -2510 *1) (|:| |coef2| *1))) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1490 *3) (|:| |gap| (-758)) (|:| -2325 (-769 *3)) + (|:| -2423 (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) + (-5 *2 + (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1) + (|:| -2423 *1))) + (-4 *1 (-1048 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 + (-2 (|:| -1490 *1) (|:| |gap| (-758)) (|:| -2325 *1) + (|:| -2423 *1))) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-112)) + (-5 *1 (-352 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) + (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-112)) + (-5 *1 (-522 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1045 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1138 *4)) (-5 *3 (-554)) (-4 *4 (-1034)) + (-5 *1 (-1142 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-554)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1034)) + (-14 *4 (-1158)) (-14 *5 *3)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-850 *5))) (-14 *5 (-631 (-1158))) (-4 *6 (-446)) (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-5 *2 (-111)) - (-5 *1 (-871 *4 *5)) (-4 *5 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-874 *5)) (-4 *5 (-1079)) (-5 *2 (-111)) - (-5 *1 (-872 *5 *3)) (-4 *3 (-1192)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) - (-4 *6 (-1192)) (-5 *2 (-111)) (-5 *1 (-872 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) - (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) - (-5 *4 (-310 (-373))) (-5 *1 (-324)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) - (-5 *4 (-310 (-553))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-166 (-373))))) - (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-373)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-553)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-166 (-373))))) - (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-373)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-553)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-553))) (-5 *1 (-324)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) - (-5 *4 (-310 (-679))) (-5 *1 (-324)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) - (-5 *4 (-310 (-684))) (-5 *1 (-324)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-934 (-553)))) - (-5 *4 (-310 (-686))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-679)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-684)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-310 (-686)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-679)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-684)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-310 (-686)))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-679))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-684))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1238 (-686))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-679))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-684))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-674 (-686))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-679))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-684))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-310 (-686))) (-5 *1 (-324)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1137)) (-5 *1 (-324)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-1151 *3)) - (-4 *3 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) - (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-401 (-1151 *3))) - (-4 *3 (-13 (-424 *6) (-27) (-1177))) - (-4 *6 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) - (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1079))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-5 *2 (-2 (|:| -2578 *3) (|:| -3256 *4)))))) + (-2 (|:| |dpolys| (-631 (-243 *5 *6))) + (|:| |coords| (-631 (-554))))) + (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-631 (-243 *5 *6))) (-4 *7 (-446))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) + (-4 *5 (-425 *4)) (-5 *2 (-413 (-1154 (-402 (-554))))) + (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))) (((*1 *2 *1) - (-12 (-4 *1 (-591 *3 *2)) (-4 *3 (-1079)) (-4 *3 (-833)) - (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *1 (-662 *2)) (-4 *2 (-833)))) - ((*1 *2 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1192)) (-5 *1 (-855 *2 *3)) (-4 *3 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) - ((*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1243)) (-5 *1 (-209 *4)) - (-4 *4 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 (*2 $)) - (-15 -2602 (*2 $))))))) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-758)) (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-554)) + (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1034)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) + (-4 *3 (-1217 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1243)) (-5 *1 (-209 *3)) - (-4 *3 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 (*2 $)) - (-15 -2602 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-495))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-630 (-474 *4 *5))) (-5 *3 (-847 *4)) - (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *1 (-618 *4 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1155)) - (-4 *5 (-13 (-545) (-1020 (-553)) (-144))) - (-5 *2 - (-2 (|:| -2388 (-401 (-934 *5))) (|:| |coeff| (-401 (-934 *5))))) - (-5 *1 (-559 *5)) (-5 *3 (-401 (-934 *5)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-778)) (-4 *3 (-169))))) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-522))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1137)) (-4 *1 (-383))))) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-325)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-546)) (-5 *1 (-954 *4 *2)) + (-4 *2 (-1217 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-554))) (-5 *1 (-300))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161)))) + ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-757)) (-5 *1 (-575 *2)) (-4 *2 (-538)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2959 *3) (|:| -2692 (-757)))) (-5 *1 (-575 *3)) - (-4 *3 (-538))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1075)))) + (-12 (-5 *3 (-906)) (-5 *1 (-1017 *2)) + (-4 *2 (-13 (-1082) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-498 (-402 (-554)) (-236 *5 (-758)) (-850 *4) + (-243 *4 (-402 (-554))))) + (-14 *4 (-631 (-1158))) (-14 *5 (-758)) (-5 *2 (-112)) + (-5 *1 (-499 *4 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-743))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-870 *3 *4 *5)) + (-4 *3 (-1082)) (-4 *5 (-652 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) - ((*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) + (-12 (-5 *2 (-112)) (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-674 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-674 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2) (-12 (-5 *2 (-630 (-757))) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 (-757))) (-5 *1 (-1241))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2388 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-630 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1214 *7)) - (-5 *3 (-401 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-563 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-674 *5))) (-5 *4 (-1238 *5)) (-4 *5 (-301)) - (-4 *5 (-1031)) (-5 *2 (-674 *5)) (-5 *1 (-1011 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1192)) (-5 *2 (-757))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) + (-12 (-4 *4 (-1034)) + (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4))))) (((*1 *2) - (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-891)) - (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-931 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *2 (-891)) - (-5 *1 (-888 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-891)) (-5 *1 (-889 *2 *3)) (-4 *3 (-1214 *2))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4093 *1))) - (-4 *1 (-835 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-538)))) - ((*1 *1 *1) (-4 *1 (-1040)))) -(((*1 *2 *2) (-12 (-5 *2 (-630 (-674 (-310 (-553))))) (-5 *1 (-1013))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1240))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) - (-14 *3 (-553)) (-14 *4 (-757))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1192)))) - ((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1192)) - (-14 *4 (-553))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-148 *2)) (-4 *2 (-1192)) - (-4 *2 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4369)) (-4 *1 (-148 *3)) - (-4 *3 (-1192)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-659 *3)) (-4 *3 (-1192)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-553)) (-4 *4 (-1079)) - (-5 *1 (-723 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-5 *1 (-723 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1119 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34))) (-5 *1 (-1120 *3 *4))))) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-111)) - (-5 *1 (-351 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1238 *4)) (-4 *4 (-343)) (-5 *2 (-111)) - (-5 *1 (-521 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-757)) (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1192)) (-5 *2 (-757)) - (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-129)) - (-5 *2 (-757)))) - ((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-757)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-355 *3)) (-4 *3 (-1079)))) - ((*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-380 *3)) (-4 *3 (-1079)))) - ((*1 *2) - (-12 (-4 *4 (-1079)) (-5 *2 (-757)) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-4 *5 (-1214 *4)) (-5 *2 (-757)) - (-5 *1 (-709 *3 *4 *5)) (-4 *3 (-710 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-805 *3)) (-4 *3 (-833)))) - ((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) - (-4 *3 (-1214 *2))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-742))))) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1217 *9)) (-4 *7 (-780)) (-4 *8 (-836)) (-4 *9 (-302)) + (-4 *10 (-934 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-631 (-1154 *10))) + (|:| |dterm| + (-631 (-631 (-2 (|:| -2672 (-758)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-631 *6)) (|:| |nlead| (-631 *10)))) + (-5 *1 (-765 *6 *7 *8 *9 *10)) (-5 *3 (-1154 *10)) (-5 *4 (-631 *6)) + (-5 *5 (-631 *10))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -1709 (-402 *6)) (|:| |coeff| (-402 *6)))) + (-5 *1 (-564 *5 *6)) (-5 *3 (-402 *6))))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1073 (-220))) (-5 *6 (-553)) (-5 *2 (-1187 (-908))) - (-5 *1 (-312)))) + (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) + (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *2 (-1190 (-911))) + (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1073 (-220))) (-5 *6 (-553)) (-5 *7 (-1137)) - (-5 *2 (-1187 (-908))) (-5 *1 (-312)))) + (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) + (-5 *5 (-1076 (-221))) (-5 *6 (-554)) (-5 *7 (-1140)) + (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1073 (-220))) (-5 *6 (-220)) (-5 *7 (-553)) - (-5 *2 (-1187 (-908))) (-5 *1 (-312)))) + (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) + (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) + (-5 *2 (-1190 (-911))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-310 (-553))) (-5 *4 (-1 (-220) (-220))) - (-5 *5 (-1073 (-220))) (-5 *6 (-220)) (-5 *7 (-553)) (-5 *8 (-1137)) - (-5 *2 (-1187 (-908))) (-5 *1 (-312))))) + (-12 (-5 *3 (-311 (-554))) (-5 *4 (-1 (-221) (-221))) + (-5 *5 (-1076 (-221))) (-5 *6 (-221)) (-5 *7 (-554)) (-5 *8 (-1140)) + (-5 *2 (-1190 (-911))) (-5 *1 (-313))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-634 *3)) (-4 *3 (-1034)) + (-5 *1 (-701 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1034)) (-5 *1 (-823 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1138 *3))) (-5 *1 (-1138 *3)) (-4 *3 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-52)) (-5 *1 (-816))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-546) (-145))) + (-5 *2 (-2 (|:| -3311 *3) (|:| -3324 *3))) (-5 *1 (-1211 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) + (-4 *3 (-1082))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-831) (-357))) (-5 *1 (-1041 *2 *3)) - (-4 *3 (-1214 *2))))) + (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-1217 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1217 *5)) + (-5 *1 (-794 *5 *2 *3 *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *3 (-642 *2)) (-4 *6 (-642 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-402 *2))) (-4 *2 (-1217 *5)) + (-5 *1 (-794 *5 *2 *3 *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *3 (-642 *2)) + (-4 *6 (-642 (-402 *2)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-462)) (-5 *3 (-631 (-258))) (-5 *1 (-1242)))) + ((*1 *1 *1) (-5 *1 (-1242)))) +(((*1 *2 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *3) + (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-302)) + (-5 *2 (-402 (-413 (-937 *4)))) (-5 *1 (-1027 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-600 *4)) (-4 *4 (-836)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1082)) (-5 *2 (-112)) (-5 *1 (-872 *5 *3 *4)) + (-4 *3 (-871 *5)) (-4 *4 (-602 (-877 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *6)) (-4 *6 (-871 *5)) (-4 *5 (-1082)) + (-5 *2 (-112)) (-5 *1 (-872 *5 *6 *4)) (-4 *4 (-602 (-877 *5)))))) +(((*1 *2) + (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *2) + (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 (-554))) (-5 *3 (-554)) (-4 *1 (-854 *4))))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *3 (-630 (-856))) - (-5 *4 (-630 (-903))) (-5 *5 (-630 (-257))) (-5 *1 (-461)))) + (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) + (-5 *4 (-631 (-906))) (-5 *5 (-631 (-258))) (-5 *1 (-462)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *3 (-630 (-856))) - (-5 *4 (-630 (-903))) (-5 *1 (-461)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-461)))) - ((*1 *1 *1) (-5 *1 (-461)))) -(((*1 *1 *1) (-5 *1 (-111)))) + (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) + (-5 *4 (-631 (-906))) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-462)))) + ((*1 *1 *1) (-5 *1 (-462)))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) + (-5 *1 (-443 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) + (-5 *1 (-327))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145))) + (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) + (-4 *5 (-1217 *4)) + (-5 *2 (-2 (|:| -1709 (-402 *5)) (|:| |coeff| (-402 *5)))) + (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-675 (-402 (-937 (-554))))) + (-5 *2 + (-631 + (-2 (|:| |radval| (-311 (-554))) (|:| |radmult| (-554)) + (|:| |radvect| (-631 (-675 (-311 (-554)))))))) + (-5 *1 (-1016))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) + (-5 *4 (-1 (-221) (-221) (-221) (-221))) + (-5 *2 (-1 (-928 (-221)) (-221) (-221))) (-5 *1 (-683))))) (((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-630 *6))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4369)) (-4 *1 (-34)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-127)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-553)))) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1188 *4 *5 *6 *3)) (-4 *4 (-546)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1067))) (-5 *1 (-286))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258)))) + ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-631 + (-2 + (|:| -2564 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2701 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1138 (-221))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3827 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-549)))) ((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-1261 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-829))))) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) + (-5 *2 (-631 *4))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-1046))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-485))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1233 *2 *3 *4)) (-4 *2 (-1034)) (-14 *3 (-1158)) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3000 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1495 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-402 (-554))) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-816))))) +(((*1 *2 *1) (-12 (-4 *1 (-521)) (-5 *2 (-1102))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-631 (-758)))) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1) (-4 *1 (-854 *2)))) +(((*1 *2) + (-12 (-5 *2 (-675 (-895 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) + (-14 *4 (-906)))) + ((*1 *2) + (-12 (-5 *2 (-675 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) + (-14 *4 + (-3 (-1154 *3) + (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))))) + ((*1 *2) + (-12 (-5 *2 (-675 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) + (-14 *4 (-906))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-631 (-1163))) (-5 *1 (-1118))))) +(((*1 *2 *3) + (-12 (-5 *2 (-631 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554))))) (((*1 *2 *1) (|partial| -12 - (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) - (-5 *2 (-826 *4)) (-5 *1 (-307 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1177) (-424 *3))) (-14 *5 (-1155)) + (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) + (-5 *2 (-829 *4)) (-5 *1 (-308 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 - (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) - (-5 *2 (-826 *4)) (-5 *1 (-1224 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1177) (-424 *3))) (-14 *5 (-1155)) + (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) + (-5 *2 (-829 *4)) (-5 *1 (-1227 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1180) (-425 *3))) (-14 *5 (-1158)) (-14 *6 *4)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-357)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 (-757))) (-5 *1 (-951 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-1031)) (-4 *2 (-1214 *5)) - (-5 *1 (-1232 *5 *2 *6 *3)) (-4 *6 (-641 *2)) (-4 *3 (-1229 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 (-1151 (-553)))) (-5 *1 (-186)) (-5 *3 (-553))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-553)) (-5 *5 (-1137)) (-5 *6 (-674 (-220))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-735))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1151 *3))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-220)) + (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-600 *4)) (-5 *6 (-1158)) + (-4 *4 (-13 (-425 *7) (-27) (-1180))) + (-4 *7 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 *4)))) - (|:| |xValues| (-1073 *4)) (|:| |yValues| (-1073 *4)))) - (-5 *1 (-150)) (-5 *3 (-630 (-630 (-925 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169))))) -(((*1 *2 *3) - (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) - (-5 *2 (-934 *5)) (-5 *1 (-926 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *2 (-1017)) (-5 *1 (-737))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-633 *5)) (-4 *5 (-1031)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-835 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-674 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1031)) - (-5 *1 (-836 *2 *3)) (-4 *3 (-835 *2))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-220)) (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1238 (-1238 (-553)))) (-5 *1 (-459))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-630 (-925 *4))) (-4 *1 (-1113 *4)) (-4 *4 (-1031)) - (-5 *2 (-757))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) - (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-931 *3 *4 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1155)) (-4 *5 (-601 (-874 (-553)))) - (-4 *5 (-868 (-553))) - (-4 *5 (-13 (-833) (-1020 (-553)) (-445) (-626 (-553)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-556 *5 *3)) (-4 *3 (-616)) - (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-642 *4)) (-4 *3 (-1082))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-5 *2 (-2 (|:| -2564 *3) (|:| -2701 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-1192))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-102 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-550)) (-5 *3 (-553))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-538)) (-5 *1 (-156 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1118)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1031)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-1031))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684)))) - ((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-684))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-553)) - (-14 *6 (-757)) (-4 *7 (-169)) (-4 *8 (-169)) - (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *9)) (-4 *9 (-1031)) (-4 *5 (-833)) (-4 *6 (-779)) - (-4 *8 (-1031)) (-4 *2 (-931 *9 *7 *5)) - (-5 *1 (-714 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-779)) - (-4 *4 (-931 *8 *6 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-553)) (|has| *1 (-6 -4370)) (-4 *1 (-367 *3)) - (-4 *3 (-1192))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-1192))))) + (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-170)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-940 *3)) (-5 *1 (-1142 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-908)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-908)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-925 (-220)) (-220))) (-5 *3 (-1073 (-220))) - (-5 *1 (-909))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1211 *4 *5)) (-5 *3 (-630 *5)) (-14 *4 (-1155)) - (-4 *5 (-357)) (-5 *1 (-905 *4 *5)))) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-739))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-631 (-675 *6))) (-5 *4 (-112)) (-5 *5 (-554)) + (-5 *2 (-675 *6)) (-5 *1 (-1014 *6)) (-4 *6 (-358)) (-4 *6 (-1034)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-357)) (-5 *2 (-1151 *5)) - (-5 *1 (-905 *4 *5)) (-14 *4 (-1155)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-757)) (-4 *6 (-357)) - (-5 *2 (-401 (-934 *6))) (-5 *1 (-1032 *5 *6)) (-14 *5 (-1155))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-845) (-845))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-845) (-630 (-845)))) (-5 *1 (-113)))) + (-12 (-5 *3 (-631 (-675 *4))) (-5 *2 (-675 *4)) (-5 *1 (-1014 *4)) + (-4 *4 (-358)) (-4 *4 (-1034)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-5 *2 (-675 *5)) + (-5 *1 (-1014 *5)) (-4 *5 (-358)) (-4 *5 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *4)) (-4 *4 (-344)) (-5 *2 (-1154 *4)) + (-5 *1 (-522 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1078)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-845) (-630 (-845)))) (-5 *1 (-113)))) + (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) + ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5)) + (-4 *4 (-1082)) (-4 *5 (-1082))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))) + (-5 *3 (-631 *7)) (-4 *4 (-13 (-302) (-145))) + (-4 *7 (-934 *4 *6 *5)) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-358)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) + ((*1 *1 *1) (-12 (-4 *1 (-681 *2)) (-4 *2 (-1082))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1180)))) + ((*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-600 *3)) (-4 *3 (-836))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) ((*1 *2 *1) - (-12 (-5 *2 (-1243)) (-5 *1 (-209 *3)) - (-4 *3 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 (*2 $)) - (-15 -2602 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-388)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-495)))) - ((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-1172))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-779)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-833)) - (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-604)))) -(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-630 (-113)))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1009 *5 *6 *7 *3))) (-5 *1 (-1009 *5 *6 *7 *3)) - (-4 *3 (-1045 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-630 *6)) (-4 *1 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-630 (-1125 *5 *6 *7 *3))) (-5 *1 (-1125 *5 *6 *7 *3)) - (-4 *3 (-1045 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) - (-14 *4 (-757)) (-4 *5 (-169))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-1192))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1192)) - (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) - (-4 *2 (-1192))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-757)) (-4 *5 (-357)) (-5 *2 (-401 *6)) - (-5 *1 (-849 *5 *4 *6)) (-4 *4 (-1229 *5)) (-4 *6 (-1214 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-757)) (-5 *4 (-1230 *5 *6 *7)) (-4 *5 (-357)) - (-14 *6 (-1155)) (-14 *7 *5) (-5 *2 (-401 (-1211 *6 *5))) - (-5 *1 (-850 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-757)) (-5 *4 (-1230 *5 *6 *7)) (-4 *5 (-357)) - (-14 *6 (-1155)) (-14 *7 *5) (-5 *2 (-401 (-1211 *6 *5))) - (-5 *1 (-850 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-815))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3323 *6) (|:| |sol?| (-111))) (-553) - *6)) - (-4 *6 (-357)) (-4 *7 (-1214 *6)) - (-5 *2 (-2 (|:| |answer| (-574 (-401 *7))) (|:| |a0| *6))) - (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-806)) (-14 *5 (-1155)) - (-5 *2 (-630 *4)) (-5 *1 (-1093 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-445)))) - ((*1 *1 *1 *1) (-4 *1 (-445))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1214 (-553))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-553)) (-5 *1 (-681 *2)) (-4 *2 (-1214 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-757))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-779)) (-4 *4 (-833)) (-4 *5 (-301)) - (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-931 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *6 *4 *5)) - (-5 *1 (-898 *4 *5 *6 *2)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-301)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1151 *6)) (-4 *6 (-931 *5 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *5 (-301)) (-5 *1 (-898 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-1151 *7))) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-301)) (-5 *2 (-1151 *7)) (-5 *1 (-898 *4 *5 *6 *7)) - (-4 *7 (-931 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-903))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) - (-4 *2 (-1214 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 (-2 (|:| |val| (-630 *6)) (|:| -3233 *7)))) - (-4 *6 (-1045 *3 *4 *5)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-970 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-630 (-2 (|:| |val| (-630 *6)) (|:| -3233 *7)))) - (-4 *6 (-1045 *3 *4 *5)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-1086 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1082 *2 *3 *4 *5 *6)) (-4 *2 (-1079)) (-4 *3 (-1079)) - (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4370)) (-4 *1 (-482 *3)) - (-4 *3 (-1192))))) -(((*1 *1 *1) (|partial| -4 *1 (-1130)))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) -(((*1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1241))))) -(((*1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1241))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) -(((*1 *1) (-5 *1 (-1043)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) - (-4 *5 (-545)) (-5 *2 (-630 (-630 (-934 *5)))) (-5 *1 (-1161 *5))))) -(((*1 *1) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) + (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) + (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) + (|:| |args| (-631 (-848))))) + (-5 *1 (-1158))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-631 (-1158))) + (-4 *2 (-13 (-425 (-167 *5)) (-987) (-1180))) + (-4 *5 (-13 (-546) (-836))) (-5 *1 (-588 *5 *6 *2)) + (-4 *6 (-13 (-425 *5) (-987) (-1180)))))) (((*1 *1 *1) - (-12 (-4 *1 (-1082 *2 *3 *4 *5 *6)) (-4 *2 (-1079)) (-4 *3 (-1079)) - (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1073 (-220)))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-630 *3)) (-5 *6 (-1151 *3)) - (-4 *3 (-13 (-424 *7) (-27) (-1177))) - (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1079)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-630 *3)) - (-5 *6 (-401 (-1151 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1177))) - (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1079))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-925 *4))) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) - (-5 *1 (-741))))) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-188)))) + ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-295)))) + ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1140)) (-5 *1 (-300))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1140)) (-4 *1 (-384))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) + (-4 *2 (-660 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(((*1 *1) (-4 *1 (-343))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-424 *4)) - (-4 *4 (-13 (-545) (-833) (-144))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-630 (-1151 *5))) - (|:| |prim| (-1151 *5)))) - (-5 *1 (-426 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-144))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1151 *3)) - (|:| |pol2| (-1151 *3)) (|:| |prim| (-1151 *3)))) - (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-934 *5)) (-5 *4 (-1155)) (-4 *5 (-13 (-357) (-144))) - (-5 *2 - (-2 (|:| |coef1| (-553)) (|:| |coef2| (-553)) - (|:| |prim| (-1151 *5)))) - (-5 *1 (-942 *5)))) + (-12 (-4 *4 (-546)) (-5 *2 (-631 (-758))) (-5 *1 (-954 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1082))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-358)) (-5 *1 (-1010 *3 *2)) (-4 *2 (-642 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-630 (-1155))) - (-4 *5 (-13 (-357) (-144))) - (-5 *2 - (-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 *5))) - (|:| |prim| (-1151 *5)))) - (-5 *1 (-942 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 (-934 *6))) (-5 *4 (-630 (-1155))) (-5 *5 (-1155)) - (-4 *6 (-13 (-357) (-144))) - (-5 *2 - (-2 (|:| -4120 (-630 (-553))) (|:| |poly| (-630 (-1151 *6))) - (|:| |prim| (-1151 *6)))) - (-5 *1 (-942 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1043))))) -(((*1 *2 *2) (-12 (-5 *2 (-1073 (-826 (-220)))) (-5 *1 (-299))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-166 (-220)))) - (-5 *2 (-1017)) (-5 *1 (-740))))) -(((*1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-1155))))) -(((*1 *2 *1) (-12 (-4 *1 (-937)) (-5 *2 (-1073 (-220))))) - ((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1073 (-220)))))) + (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -4329 *3) (|:| -1482 (-631 *5)))) + (-5 *1 (-1010 *5 *3)) (-5 *4 (-631 *5)) (-4 *3 (-642 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195))))) (((*1 *2 *1) - (-12 (-4 *4 (-1079)) (-5 *2 (-871 *3 *5)) (-5 *1 (-867 *3 *4 *5)) - (-4 *3 (-1079)) (-4 *5 (-651 *4))))) -(((*1 *1 *1) (-4 *1 (-1123)))) + (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987)) + (-4 *2 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1034)) + (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4)))) + ((*1 *1 *1) (-4 *1 (-539))) + ((*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-906)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1195)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-1192 *3)) (-4 *3 (-1195)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-987)) + (-4 *2 (-1034))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-368 *2)) (-4 *2 (-1195)) + (-4 *2 (-836)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4374)) + (-4 *1 (-368 *3)) (-4 *3 (-1195))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) - (-5 *2 (-1238 *6)) (-5 *1 (-330 *3 *4 *5 *6)) - (-4 *6 (-336 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-357)) (-4 *5 (-1214 *4)) (-5 *2 (-1243)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1214 (-401 *5))) (-14 *7 *6)))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) - (-4 *5 (-1214 *4)) (-5 *2 (-630 (-401 *5))) (-5 *1 (-998 *4 *5)) - (-5 *3 (-401 *5))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1140)) (|:| -4309 (-1140)))) + (-5 *1 (-809))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)) + (-4 *2 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3)) + (-4 *3 (-1195)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082)) + (-5 *1 (-724 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-4 *2 (-1217 *5)) + (-5 *1 (-1235 *5 *2 *6 *3)) (-4 *6 (-642 *2)) (-4 *3 (-1232 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-462)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242))))) (((*1 *2 *3) - (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1103 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *1)) (-4 *1 (-445)))) - ((*1 *1 *1 *1) (-4 *1 (-445)))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) + (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-1142 *4)) (-4 *4 (-1034)) + (-5 *3 (-554))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1214 (-401 *2))) - (-4 *2 (-1214 *5)) (-5 *1 (-210 *5 *2 *6 *3)) - (-4 *3 (-336 *5 *2 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-937)) (-5 *2 (-1073 (-220))))) - ((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1073 (-220)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-844))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-538)))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *1 (-612 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *2 (-1091 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-523)))) + ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-523))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1196)) (-4 *5 (-1214 (-401 *2))) - (-4 *2 (-1214 *4)) (-5 *1 (-335 *3 *4 *2 *5)) - (-4 *3 (-336 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1196)) - (-4 *4 (-1214 (-401 *2))) (-4 *2 (-1214 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1151 (-401 (-934 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-129)) - (-4 *3 (-778))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) + (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2)) + (-4 *4 (-673 *2 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1020)) (-5 *3 (-1158)) (-5 *1 (-262))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1243))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4373)) (-4 *1 (-34)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-554)))) + ((*1 *2 *1) + (-12 (-5 *2 (-758)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-832))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5)))) + (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-413 (-1154 (-554)))) (-5 *1 (-187)) (-5 *3 (-554))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-173)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-109)) (-5 *1 (-1067))))) (((*1 *2 *3) - (-12 (-5 *3 (-934 *4)) (-4 *4 (-13 (-301) (-144))) - (-4 *2 (-931 *4 *6 *5)) (-5 *1 (-906 *4 *5 *6 *2)) - (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-780)) (-4 *2 (-934 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2)) + (-4 *4 (-446)) (-4 *6 (-836))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1195)) + (-4 *3 (-368 *4)) (-4 *5 (-368 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *1 (-1190 *3)) + (-4 *3 (-959))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-4 *3 (-13 (-27) (-1177) (-424 *6) (-10 -8 (-15 -3110 ($ *7))))) - (-4 *7 (-831)) - (-4 *8 - (-13 (-1216 *3 *7) (-357) (-1177) - (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137)))))) - (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1137)) (-4 *9 (-965 *8)) - (-14 *10 (-1155))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-630 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) - (-5 *1 (-205))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)))) + (|partial| -12 (-5 *3 (-758)) (-4 *4 (-302)) (-4 *6 (-1217 *4)) + (-5 *2 (-1241 (-631 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-631 *6))))) +(((*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))))) + ((*1 *1 *1) + (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) + (-14 *3 (-631 (-1158))))) + ((*1 *1 *1) + (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1082)))) + ((*1 *1 *1) + (-12 (-14 *2 (-631 (-1158))) (-4 *3 (-170)) + (-4 *5 (-234 (-2563 *2) (-758))) + (-14 *6 + (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5)) + (-2 (|:| -2717 *4) (|:| -1407 *5)))) + (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-836)) + (-4 *7 (-934 *3 *5 (-850 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836)))) + ((*1 *1 *1) + (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034)))) + ((*1 *1 *1) + (-12 (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1034)) + (-4 *3 (-713)))) + ((*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-832))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1176)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1176))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-584 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1034))))) +(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-546)) (-4 *2 (-1034)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) (-4 *2 (-1217 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1191))) (-5 *1 (-666)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1160))) (-5 *1 (-1097))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-757)) (-5 *1 (-208 *4 *2)) (-14 *4 (-903)) - (-4 *2 (-1079))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-739))))) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *1)))) + (-4 *1 (-1054 *4 *5 *6 *3))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-27) (-424 *4))) - (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) - (-4 *7 (-1214 (-401 *6))) (-5 *1 (-541 *4 *5 *6 *7 *2)) - (-4 *2 (-336 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-630 (-1151 *11))) (-5 *3 (-1151 *11)) - (-5 *4 (-630 *10)) (-5 *5 (-630 *8)) (-5 *6 (-630 (-757))) - (-5 *7 (-1238 (-630 (-1151 *8)))) (-4 *10 (-833)) - (-4 *8 (-301)) (-4 *11 (-931 *8 *9 *10)) (-4 *9 (-779)) - (-5 *1 (-693 *9 *10 *8 *11))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) - (-5 *2 (-1017)) (-5 *1 (-732))))) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1154 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-934 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-445)) (-4 *3 (-833)) (-4 *3 (-1020 (-553))) - (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) - (-15 -3974 ((-1104 *3 (-599 $)) $)) - (-15 -3110 ($ (-1104 *3 (-599 $)))))))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-757)) (-5 *1 (-769 *2)) (-4 *2 (-38 (-401 (-553)))) - (-4 *2 (-169))))) -(((*1 *1 *1) (-4 *1 (-616))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984) (-1177)))))) -(((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-545)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-951 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) - (-4 *5 (-367 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *2 (-1079)) (-5 *1 (-208 *4 *2)) - (-14 *4 (-903)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *2 *6 *7)) - (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1017)) - (-5 *1 (-732))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-757)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-1031)) - (-5 *1 (-1139 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-553)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) - (-14 *4 (-1155)) (-14 *5 *3)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) - (-5 *1 (-752 *3 *4)) (-4 *3 (-694 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1031)) - (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) - (-4 *3 (-835 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *4 (-545)) (-4 *5 (-1214 *4)) - (-5 *2 (-2 (|:| -3980 (-610 *4 *5)) (|:| -4118 (-401 *5)))) - (-5 *1 (-610 *4 *5)) (-5 *3 (-401 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 (-1143 *3 *4))) (-5 *1 (-1143 *3 *4)) - (-14 *3 (-903)) (-4 *4 (-1031)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-445)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1214 *3))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) + (-12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-531 *3 *2)) + (-4 *2 (-1232 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) + (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-4 *4 (-1217 *3)) + (-4 *5 (-711 *3 *4)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-1232 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) + (-12 (-4 *3 (-13 (-358) (-363) (-602 (-554)))) (-5 *1 (-536 *3 *2)) + (-4 *2 (-1232 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-733))))) -(((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-13 (-546) (-145))) + (-5 *1 (-1134 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1079)) (-5 *1 (-1169 *3 *2)) (-4 *3 (-1079))))) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1082)) (-4 *2 (-836)) + (-5 *1 (-113 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-631 (-112))) (-5 *7 (-675 (-221))) + (-5 *8 (-675 (-554))) (-5 *3 (-554)) (-5 *4 (-221)) (-5 *5 (-112)) + (-5 *2 (-1020)) (-5 *1 (-741))))) (((*1 *2 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-1 (-1135 (-934 *4)) (-1135 (-934 *4)))) - (-5 *1 (-1246 *4)) (-4 *4 (-357))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-343)) (-4 *6 (-1214 *5)) - (-5 *2 - (-630 - (-2 (|:| -4124 (-674 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-674 *6))))) - (-5 *1 (-491 *5 *6 *7)) - (-5 *3 - (-2 (|:| -4124 (-674 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-674 *6)))) - (-4 *7 (-1214 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1120 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1031)) (-5 *1 (-700 *2 *4)) - (-4 *4 (-633 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-355 (-113))) (-5 *1 (-820 *2)) (-4 *2 (-1031))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-833)) - (-4 *5 (-779)) (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) - ((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-1159))))) -(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) - ((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1031)) (-5 *2 (-757)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *6)) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 (-757))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-931 *4 *5 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *3 (-833)) (-5 *2 (-757))))) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 (-402 *2))) + (-4 *2 (-1217 *4)) (-5 *1 (-336 *3 *4 *2 *5)) + (-4 *3 (-337 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1199)) + (-4 *4 (-1217 (-402 *2))) (-4 *2 (-1217 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-903)) - (-5 *2 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) (-5 *2 (-943 (-1102))) + (-5 *1 (-341 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *2 *5)) (-4 *4 (-1031)) (-4 *5 (-233 *3 *4)) - (-4 *2 (-233 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-111)) - (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) - (-5 *2 (-1017)) (-5 *1 (-742))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1079)) (-5 *2 (-757))))) -(((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *5 (-779)) (-4 *2 (-260 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1238 *5)) (-4 *5 (-778)) (-5 *2 (-111)) - (-5 *1 (-828 *4 *5)) (-14 *4 (-757))))) -(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| |cycle?| (-111)) (|:| -2608 (-757)) (|:| |period| (-757)))) - (-5 *1 (-1135 *4)) (-4 *4 (-1192)) (-5 *3 (-757))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1091)) (-4 *3 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-424 *3)))) + (-631 + (-2 (|:| |scalar| (-402 (-554))) (|:| |coeff| (-1154 *3)) + (|:| |logand| (-1154 *3))))) + (-5 *1 (-575 *3)) (-4 *3 (-358))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-758)) (-5 *3 (-928 *4)) (-4 *1 (-1116 *4)) + (-4 *4 (-1034)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-758)) (-5 *4 (-928 (-221))) (-5 *2 (-1246)) + (-5 *1 (-1243))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-221)) + (-5 *2 + (-2 (|:| |brans| (-631 (-631 (-928 *4)))) + (|:| |xValues| (-1076 *4)) (|:| |yValues| (-1076 *4)))) + (-5 *1 (-151)) (-5 *3 (-631 (-631 (-928 *4))))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) - (-4 *3 (-1079)))) + (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158))))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-630 *1)) (-4 *1 (-931 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) - (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-630 *3)) - (-5 *1 (-932 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) - (-15 -3974 (*7 $)))))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545)))) + (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) + (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034)))) + ((*1 *2 *1) + (-12 (-14 *3 (-631 (-1158))) (-4 *5 (-234 (-2563 *3) (-758))) + (-14 *6 + (-1 (-112) (-2 (|:| -2717 *4) (|:| -1407 *5)) + (-2 (|:| -2717 *4) (|:| -1407 *5)))) + (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-836)) + (-4 *7 (-934 *2 *5 (-850 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-503 *2 *3)) (-4 *3 (-836)) (-4 *2 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1034)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-836)) + (-4 *3 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) + ((*1 *2 *1) + (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *3 (-779)) (-4 *4 (-836)) + (-4 *2 (-1034)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545))))) + (-12 (-4 *1 (-1048 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836))))) (((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-553)) - (-14 *4 *2) (-4 *5 (-169)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-903)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-903)))) - ((*1 *2) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) - (-5 *2 (-903)))) + (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1195)) + (-5 *2 (-631 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-302)) + (-5 *2 (-758)) (-5 *1 (-449 *5 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-631 (-937 *3))) (-4 *3 (-446)) + (-5 *1 (-355 *3 *4)) (-14 *4 (-631 (-1158))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-631 (-767 *3 (-850 *4)))) (-4 *3 (-446)) + (-14 *4 (-631 (-1158))) (-5 *1 (-616 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-631 (-1 *4 (-631 *4)))) (-4 *4 (-1082)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 (-757)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *5)) (-5 *4 (-1238 *5)) (-4 *5 (-357)) - (-5 *2 (-757)) (-5 *1 (-652 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4370)))) (-5 *2 (-757)) - (-5 *1 (-653 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4)))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-1 *4 (-631 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1082))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-848))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-757)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-757)) (-5 *1 (-673 *4 *5 *6 *3)) - (-4 *3 (-672 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-1 (-848) (-631 (-848)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-545)) - (-5 *2 (-757))))) -(((*1 *1 *2) - (-12 (-5 *2 (-401 *4)) (-4 *4 (-1214 *3)) (-4 *3 (-13 (-357) (-144))) - (-5 *1 (-393 *3 *4))))) -(((*1 *1 *1) (-4 *1 (-170))) + (-12 (-5 *2 (-1246)) (-5 *1 (-210 *3)) + (-4 *3 + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 (*2 $)) + (-15 -2941 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-389)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-389)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-496)))) + ((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-697)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1175))))) +(((*1 *2) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-605)))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) +(((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1082)))) + ((*1 *2 *1) + (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) + (-4 *6 (-234 (-2563 *3) (-758))) + (-14 *7 + (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) + (-2 (|:| -2717 *5) (|:| -1407 *6)))) + (-5 *2 (-700 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-836)) (-4 *8 (-934 *4 *6 (-850 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-713)) (-4 *2 (-836)) (-5 *1 (-722 *3 *2)) + (-4 *3 (-1034)))) ((*1 *1 *1) - (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 *5)) (-4 *5 (-545)) + (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779)) + (-4 *4 (-836))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2692 (-757)) (|:| -4120 *5) (|:| |radicand| (-630 *5)))) - (-5 *1 (-314 *5)) (-5 *4 (-757)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-553))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-305)))) - ((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-630 *2) *2 *2 *2)) (-4 *2 (-1079)) - (-5 *1 (-102 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-102 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-630 (-934 *6))) (-5 *4 (-630 (-1155))) (-4 *6 (-445)) - (-5 *2 (-630 (-630 *7))) (-5 *1 (-531 *6 *7 *5)) (-4 *7 (-357)) - (-4 *5 (-13 (-357) (-831)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-630 (-630 (-220)))) (-5 *4 (-220)) - (-5 *2 (-630 (-925 *4))) (-5 *1 (-1188)) (-5 *3 (-925 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-373))) (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) + (-631 + (-631 + (-3 (|:| -4309 (-1158)) + (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554)))))))))) + (-5 *1 (-1162))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-554)) + (-14 *6 (-758)) (-4 *7 (-170)) (-4 *8 (-170)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *9)) (-4 *9 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) + (-4 *8 (-1034)) (-4 *2 (-934 *9 *7 *5)) + (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) + (-4 *4 (-934 *8 *6 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-1009 *3)) + (-4 *3 (-13 (-834) (-358) (-1007))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-1217 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1051 *2 *3)) (-4 *2 (-13 (-834) (-358))) + (-4 *3 (-1217 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-757)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-166 (-220))) (-5 *3 (-757)) (-5 *1 (-221)))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446)))) + ((*1 *1 *1 *1) (-4 *1 (-446))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-554)) (-5 *1 (-682 *2)) (-4 *2 (-1217 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-758))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-302)) + (-5 *1 (-901 *3 *4 *5 *2)) (-4 *2 (-934 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *6 *4 *5)) + (-5 *1 (-901 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-302)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274))))) + (-12 (-5 *2 (-1154 *6)) (-4 *6 (-934 *5 *3 *4)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *5 (-302)) (-5 *1 (-901 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-1154 *7))) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-302)) (-5 *2 (-1154 *7)) (-5 *1 (-901 *4 *5 *6 *7)) + (-4 *7 (-934 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-906))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-446)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) + (-4 *2 (-1217 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *2 *3) + (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-631 (-1158))) (-4 *5 (-1034)) + (-5 *2 (-937 *5)) (-5 *1 (-929 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *7 (-1214 *5)) (-4 *4 (-710 *5 *7)) - (-5 *2 (-2 (|:| -3344 (-674 *6)) (|:| |vec| (-1238 *5)))) - (-5 *1 (-797 *5 *6 *7 *4 *3)) (-4 *6 (-641 *5)) (-4 *3 (-641 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-357))))) -(((*1 *1 *1) - (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1031)) (-4 *3 (-833)) - (-4 *4 (-260 *3)) (-4 *5 (-779))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1135 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *2) - (-12 + (-12 (-5 *3 (-675 *8)) (-4 *8 (-934 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) + (-4 *7 (-780)) (-5 *2 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) - (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) - (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) - (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) - (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *1 (-257)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-553)) (-5 *4 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240)))) - ((*1 *2 *1 *3) + (-631 + (-2 (|:| -4186 (-758)) + (|:| |eqns| + (-631 + (-2 (|:| |det| *8) (|:| |rows| (-631 (-554))) + (|:| |cols| (-631 (-554)))))) + (|:| |fgb| (-631 *8))))) + (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-758))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-631 (-554))) (-5 *3 (-675 (-554))) (-5 *1 (-1092))))) +(((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-836))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) + (-14 *4 (-758)) (-4 *5 (-170))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-758)) (-4 *3 (-546)) (-5 *1 (-954 *3 *2)) + (-4 *2 (-1217 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) + (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) - (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) - (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *2 (-1243)) (-5 *1 (-1240)))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-374)) (-5 *1 (-201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) + (-12 (-5 *3 (-829 (-374))) (-5 *2 (-829 (-221))) (-5 *1 (-300))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431))))) +(((*1 *2 *1) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-1212 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-546))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199)) + (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-1154 *6)) + (-5 *1 (-316 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-859)) + (-5 *5 (-906)) (-5 *6 (-631 (-258))) (-5 *2 (-1242)) + (-5 *1 (-1245)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *4 (-631 (-258))) + (-5 *2 (-1242)) (-5 *1 (-1245))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *2 (-1020)) (-5 *1 (-738))))) +(((*1 *1 *1) (-4 *1 (-239))) + ((*1 *1 *1) + (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195))) + (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195))))) + ((*1 *1 *1) (-4 *1 (-467))) + ((*1 *2 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-1032))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-1217 *4)) (-4 *4 (-1034)) + (-5 *2 (-1241 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-899 *3)) (-4 *3 (-302))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-461)))) + ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-912))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-446)))) + ((*1 *1 *1 *1) (-4 *1 (-446)))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-812))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-221)) (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-962 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) +(((*1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1251))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) + (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1000 *4 *5)) (-5 *3 (-402 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-809))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-631 *3)))) ((*1 *2 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) + (-5 *2 (-631 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1241 (-1241 (-554)))) (-5 *1 (-460))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) + (-4 *5 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-402 (-554))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-554))) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-402 (-554)))) (-5 *4 (-289 *8)) + (-5 *5 (-1208 (-402 (-554)))) (-5 *6 (-402 (-554))) + (-4 *8 (-13 (-27) (-1180) (-425 *7))) + (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-402 (-554)))) + (-5 *7 (-402 (-554))) (-4 *3 (-13 (-27) (-1180) (-425 *8))) + (-4 *8 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-402 (-554))) (-4 *4 (-1034)) (-4 *1 (-1224 *4 *3)) + (-4 *3 (-1201 *4))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -1731 (-220)) - (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) - (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) - (-5 *1 (-1240)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-630 (-630 *3))))) + (-5 *3 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-374)) (-5 *1 (-201))))) +(((*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-631 *1)) (-4 *1 (-995 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-630 (-630 *5))))) + (-12 (-5 *2 (-631 (-1146 *3 *4))) (-5 *1 (-1146 *3 *4)) + (-14 *3 (-906)) (-4 *4 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 (-1158))) (-5 *2 (-1246)) (-5 *1 (-1197))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-744))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-322 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-510 *3 *4)) + (-14 *4 (-554))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-631 (-928 *4))) (-4 *1 (-1116 *4)) (-4 *4 (-1034)) + (-5 *2 (-758))))) +(((*1 *1 *1 *1) (-4 *1 (-952)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) + (-4 *5 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-554)) (-4 *5 (-13 (-446) (-836) (-1023 *4) (-627 *4))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-446) (-836) (-1023 *5) (-627 *5))) (-5 *5 (-554)) + (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-554))) + (-4 *7 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-554))) + (-4 *3 (-13 (-27) (-1180) (-425 *7))) + (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-554)) (-4 *4 (-1034)) (-4 *1 (-1203 *4 *3)) + (-4 *3 (-1232 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-630 *3))) (-5 *1 (-1164 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-667)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1100))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1126)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *5)) (-4 *5 (-445)) (-5 *2 (-630 *6)) - (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-831))))) + (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *4 (-631 (-1158))) + (-5 *2 (-675 (-311 (-221)))) (-5 *1 (-201)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-934 *5)) (-4 *5 (-445)) (-5 *2 (-630 *6)) - (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-831)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) + (-12 (-4 *5 (-1082)) (-4 *6 (-885 *5)) (-5 *2 (-675 *6)) + (-5 *1 (-678 *5 *6 *3 *4)) (-4 *3 (-368 *6)) + (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-402 (-554)))) + (-5 *2 + (-631 + (-2 (|:| |outval| *4) (|:| |outmult| (-554)) + (|:| |outvect| (-631 (-675 *4)))))) + (-5 *1 (-766 *4)) (-4 *4 (-13 (-358) (-834)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) + (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246)) + (-5 *1 (-1052 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-2 (|:| |val| (-631 *8)) (|:| -2143 *9)))) + (-5 *4 (-758)) (-4 *8 (-1048 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) (-5 *2 (-1246)) + (-5 *1 (-1127 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-631 (-289 *4))) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) + (-4 *5 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-758)) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-289 *3)) (-5 *5 (-758)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-554))) (-5 *4 (-289 *6)) + (-4 *6 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-554))) (-5 *4 (-289 *7)) (-5 *5 (-1208 (-758))) + (-4 *7 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1158)) (-5 *5 (-289 *3)) (-5 *6 (-1208 (-758))) + (-4 *3 (-13 (-27) (-1180) (-425 *7))) + (-4 *7 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-903))) (-5 *2 (-886 (-553))) (-5 *1 (-899))))) + (|partial| -12 (-5 *2 (-554)) (-5 *1 (-559 *3)) (-4 *3 (-1023 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) + (-4 *2 (-1195))))) (((*1 *2 *3) - (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) - (-4 *2 - (-13 (-396) - (-10 -7 (-15 -3110 (*2 *4)) (-15 -3796 ((-903) *2)) - (-15 -4124 ((-1238 *2) (-903))) (-15 -1950 (*2 *2))))) - (-5 *1 (-350 *2 *4))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-631 (-311 (-221)))) + (|:| |constraints| + (-631 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) + (|:| |grid| (-758)) (|:| |boundaryType| (-554)) + (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) + (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) + (|:| |tol| (-221)))) + (-5 *2 (-112)) (-5 *1 (-206))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-816))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4373)) (-4 *1 (-483 *4)) + (-4 *4 (-1195)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) + (-4 *4 (-344)) (-5 *2 (-758)) (-5 *1 (-341 *4)))) + ((*1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) + (-14 *4 (-906)))) + ((*1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) + (-14 *4 + (-3 (-1154 *3) + (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102))))))))) + ((*1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) + (-14 *4 (-906))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1) (-5 *1 (-848)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-310 *5))) - (-5 *1 (-1108 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) - (-4 *5 (-13 (-301) (-833) (-144))) (-5 *2 (-630 (-630 (-310 *5)))) - (-5 *1 (-1108 *5))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2999 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-425 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) + (-4 *3 (-1082)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-631 *1)) (-4 *1 (-934 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) + (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *3)) + (-5 *1 (-935 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) + (-15 -2822 (*7 $)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-905))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) + (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1034))))) +(((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2510 *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-169)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-167 (-221)))) (-5 *2 (-1020)) + (-5 *1 (-741))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-961 *4 *5 *6 *3)) (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *6 (-836)) (-4 *3 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1232 *4)) + (-4 *4 (-38 (-402 (-554)))) + (-5 *2 (-1 (-1138 *4) (-1138 *4) (-1138 *4))) (-5 *1 (-1234 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-128))))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-675 (-402 (-937 (-554))))) + (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-598 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-630 *8))) (-5 *3 (-630 *8)) - (-4 *8 (-931 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) - (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-111)) - (-5 *1 (-906 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) - ((*1 *1 *1 *1) (-5 *1 (-1099)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) + (|partial| -12 (-5 *4 (-1158)) (-4 *5 (-602 (-877 (-554)))) + (-4 *5 (-871 (-554))) + (-4 *5 (-13 (-836) (-1023 (-554)) (-446) (-627 (-554)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-557 *5 *3)) (-4 *3 (-617)) + (-4 *3 (-13 (-27) (-1180) (-425 *5)))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4374)) (-4 *4 (-358)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-515 *4 *5 *6 *3)) + (-4 *3 (-673 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4374)) (-4 *4 (-546)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-4 *7 (-977 *4)) (-4 *8 (-368 *7)) + (-4 *9 (-368 *7)) (-5 *2 (-631 *6)) + (-5 *1 (-516 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-673 *4 *5 *6)) + (-4 *10 (-673 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-4 *3 (-546)) (-5 *2 (-631 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *4 (-170)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4)) (-5 *2 (-631 *6)) (-5 *1 (-674 *4 *5 *6 *3)) + (-4 *3 (-673 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-546)) + (-5 *2 (-631 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1158)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-631 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1180) (-27) (-425 *8))) + (-4 *8 (-13 (-446) (-836) (-145) (-1023 *3) (-627 *3))) + (-5 *3 (-554)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112)))) + (-5 *1 (-998 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) + (-12 (-5 *2 (-631 (-631 *6))) (-4 *6 (-934 *3 *5 *4)) + (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-836) (-602 (-1158)))) + (-4 *5 (-780)) (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 APROD)))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-743))))) +(((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) + (-5 *2 (-631 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| |k| (-878 *3)) (|:| |c| *4)))) + (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-658 *3))) (-5 *1 (-878 *3)) (-4 *3 (-836))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086)) (-5 *3 (-761)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) + (-5 *2 (-631 (-1158))) (-5 *1 (-262)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154 *7)) (-4 *7 (-934 *6 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1034)) (-5 *2 (-631 *5)) + (-5 *1 (-316 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-382)))) + ((*1 *2 *1) + (-12 (-4 *1 (-425 *3)) (-4 *3 (-836)) (-5 *2 (-631 (-1158))))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-631 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1034)) + (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-631 *5)) + (-5 *1 (-935 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1084 (-1158))) (-5 *1 (-951 *3)) (-4 *3 (-952)))) + ((*1 *2 *1) + (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-4 *5 (-836)) (-5 *2 (-631 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-631 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-5 *2 (-631 (-1158))) + (-5 *1 (-1028 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-631 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-474))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1172 *4 *5)) + (-4 *4 (-1082)) (-4 *5 (-1082))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *6))) + (-4 *6 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-547 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-669 *4 *5)) (-4 *4 (-1082)))) ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-4 *3 (-836)) (-5 *1 (-914 *3 *2)) (-4 *2 (-425 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-311 (-554))) (-5 *1 (-915)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2510 (-769 *3)) (|:| |coef1| (-769 *3)) + (|:| |coef2| (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-2 (|:| -2510 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1048 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) (-4 *1 (-278))) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) (-4 *1 (-279))) ((*1 *2 *3) - (-12 (-5 *3 (-412 *4)) (-4 *4 (-545)) - (-5 *2 (-630 (-2 (|:| -4120 (-757)) (|:| |logand| *4)))) - (-5 *1 (-314 *4)))) + (-12 (-5 *3 (-413 *4)) (-4 *4 (-546)) + (-5 *2 (-631 (-2 (|:| -1490 (-758)) (|:| |logand| *4)))) + (-5 *1 (-315 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) ((*1 *2 *1) - (-12 (-5 *2 (-649 *3 *4)) (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) + (-12 (-5 *2 (-650 *3 *4)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-13 (-1031) (-703 (-401 (-553))))) - (-4 *5 (-833)) (-5 *1 (-1254 *4 *5 *2)) (-4 *2 (-1259 *5 *4)))) + (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) + (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-1258 *3 *4)) - (-4 *4 (-703 (-401 (-553)))) (-4 *3 (-833)) (-4 *4 (-169))))) + (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) + (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135 (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1139 *4)) - (-4 *4 (-1031))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) - (-5 *1 (-673 *3 *4 *5 *6)) (-4 *6 (-672 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-685 *3)) - (-4 *3 (-301))))) -(((*1 *1) (-5 *1 (-154)))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-925 *5)) (-5 *3 (-757)) (-4 *5 (-1031)) - (-5 *1 (-1143 *4 *5)) (-14 *4 (-903))))) -(((*1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-553)) (-5 *1 (-1166 *2)) (-4 *2 (-357))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-553)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1192)) - (-4 *5 (-367 *4)) (-4 *3 (-367 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-553)) (-4 *6 (-779)) (-4 *7 (-833)) (-4 *8 (-301)) - (-4 *9 (-931 *8 *6 *7)) - (-5 *2 (-2 (|:| -4252 (-1151 *9)) (|:| |polval| (-1151 *8)))) - (-5 *1 (-728 *6 *7 *8 *9)) (-5 *3 (-1151 *9)) (-5 *4 (-1151 *8))))) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) + (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1154 (-402 (-1154 *2)))) (-5 *4 (-600 *2)) + (-4 *2 (-13 (-425 *5) (-27) (-1180))) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1082)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 *1)) (-4 *1 (-934 *4 *5 *3)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *3 (-836)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1154 *4)) (-4 *4 (-1034)) (-4 *1 (-934 *4 *5 *3)) + (-4 *5 (-780)) (-4 *3 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-1154 *2))) (-4 *5 (-780)) (-4 *4 (-836)) + (-4 *6 (-1034)) + (-4 *2 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))) + (-5 *1 (-935 *5 *4 *6 *7 *2)) (-4 *7 (-934 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-1154 (-402 (-937 *5))))) (-5 *4 (-1158)) + (-5 *2 (-402 (-937 *5))) (-5 *1 (-1028 *5)) (-4 *5 (-546))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-890 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-631 (-167 *4))) (-5 *1 (-153 *3 *4)) + (-4 *3 (-1217 (-167 (-554)))) (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-631 (-167 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-258)))) + ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-401 *5)) (-4 *4 (-1196)) (-4 *5 (-1214 *4)) - (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1214 *3)))) + (-12 (-5 *3 (-402 *5)) (-4 *4 (-1199)) (-4 *5 (-1217 *4)) + (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1217 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1157 (-401 (-553)))) (-5 *2 (-401 (-553))) - (-5 *1 (-185)))) + (-12 (-5 *3 (-1160 (-402 (-554)))) (-5 *2 (-402 (-554))) + (-5 *1 (-186)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-674 (-310 (-220)))) (-5 *3 (-630 (-1155))) - (-5 *4 (-1238 (-310 (-220)))) (-5 *1 (-200)))) + (-12 (-5 *2 (-675 (-311 (-221)))) (-5 *3 (-631 (-1158))) + (-5 *4 (-1241 (-311 (-221)))) (-5 *1 (-201)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1079)) - (-4 *3 (-1192)) (-5 *1 (-288 *3)))) + (-12 (-5 *2 (-631 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1082)) + (-4 *3 (-1195)) (-5 *1 (-289 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-303 *2)) (-4 *2 (-1079)) (-4 *2 (-1192)) - (-5 *1 (-288 *2)))) + (-12 (-4 *2 (-304 *2)) (-4 *2 (-1082)) (-4 *2 (-1195)) + (-5 *1 (-289 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-630 *1))) (-4 *1 (-296)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-113))) (-5 *3 (-630 (-1 *1 (-630 *1)))) - (-4 *1 (-296)))) + (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 (-631 *1)))) + (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-113))) (-5 *3 (-630 (-1 *1 *1))) (-4 *1 (-296)))) + (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) + (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-1 *1 (-630 *1))) (-4 *1 (-296)))) + (-12 (-5 *2 (-1158)) (-5 *3 (-1 *1 (-631 *1))) (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-1 *1 (-630 *1)))) - (-4 *1 (-296)))) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 (-631 *1)))) + (-4 *1 (-297)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-1 *1 *1))) (-4 *1 (-296)))) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-1 *1 *1))) (-4 *1 (-297)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-631 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1082)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1082)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-553))) (-5 *4 (-1157 (-401 (-553)))) - (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-553)))))) + (-12 (-5 *3 (-1 *2 (-554))) (-5 *4 (-1160 (-402 (-554)))) + (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-554)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 *1)) (-4 *1 (-368 *4 *5)) - (-4 *4 (-833)) (-4 *5 (-169)))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *1)) (-4 *1 (-369 *4 *5)) + (-4 *4 (-836)) (-4 *5 (-170)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-833)) (-4 *3 (-169)))) + (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-836)) (-4 *3 (-170)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-757)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-1031)))) + (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1155)) (-5 *3 (-757)) (-5 *4 (-1 *1 (-630 *1))) - (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-1031)))) + (-12 (-5 *2 (-1158)) (-5 *3 (-758)) (-5 *4 (-1 *1 (-631 *1))) + (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-1034)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-757))) - (-5 *4 (-630 (-1 *1 (-630 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-833)) - (-4 *5 (-1031)))) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758))) + (-5 *4 (-631 (-1 *1 (-631 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-836)) + (-4 *5 (-1034)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-630 (-757))) - (-5 *4 (-630 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-833)) - (-4 *5 (-1031)))) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-631 (-758))) + (-5 *4 (-631 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-836)) + (-4 *5 (-1034)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-630 (-113))) (-5 *3 (-630 *1)) (-5 *4 (-1155)) - (-4 *1 (-424 *5)) (-4 *5 (-833)) (-4 *5 (-601 (-529))))) + (-12 (-5 *2 (-631 (-114))) (-5 *3 (-631 *1)) (-5 *4 (-1158)) + (-4 *1 (-425 *5)) (-4 *5 (-836)) (-4 *5 (-602 (-530))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1155)) (-4 *1 (-424 *4)) (-4 *4 (-833)) - (-4 *4 (-601 (-529))))) + (-12 (-5 *2 (-114)) (-5 *3 (-1158)) (-4 *1 (-425 *4)) (-4 *4 (-836)) + (-4 *4 (-602 (-530))))) ((*1 *1 *1) - (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)) (-4 *2 (-601 (-529))))) + (-12 (-4 *1 (-425 *2)) (-4 *2 (-836)) (-4 *2 (-602 (-530))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-1155))) (-4 *1 (-424 *3)) (-4 *3 (-833)) - (-4 *3 (-601 (-529))))) + (-12 (-5 *2 (-631 (-1158))) (-4 *1 (-425 *3)) (-4 *3 (-836)) + (-4 *3 (-602 (-530))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1155)) (-4 *1 (-424 *3)) (-4 *3 (-833)) - (-4 *3 (-601 (-529))))) + (-12 (-5 *2 (-1158)) (-4 *1 (-425 *3)) (-4 *3 (-836)) + (-4 *3 (-602 (-530))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1192)))) + (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1195)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 *5)) (-4 *1 (-507 *4 *5)) - (-4 *4 (-1079)) (-4 *5 (-1192)))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 *5)) (-4 *1 (-508 *4 *5)) + (-4 *4 (-1082)) (-4 *5 (-1195)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-819 *3)) (-4 *3 (-357)) (-5 *1 (-704 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1079)))) + (-12 (-5 *2 (-820 *3)) (-4 *3 (-358)) (-5 *1 (-705 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-401 (-934 *4))) (-5 *3 (-1155)) (-4 *4 (-545)) - (-5 *1 (-1025 *4)))) + (-12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) (-4 *4 (-546)) + (-5 *1 (-1028 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-630 (-1155))) (-5 *4 (-630 (-401 (-934 *5)))) - (-5 *2 (-401 (-934 *5))) (-4 *5 (-545)) (-5 *1 (-1025 *5)))) + (-12 (-5 *3 (-631 (-1158))) (-5 *4 (-631 (-402 (-937 *5)))) + (-5 *2 (-402 (-937 *5))) (-4 *5 (-546)) (-5 *1 (-1028 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-288 (-401 (-934 *4)))) (-5 *2 (-401 (-934 *4))) - (-4 *4 (-545)) (-5 *1 (-1025 *4)))) + (-12 (-5 *3 (-289 (-402 (-937 *4)))) (-5 *2 (-402 (-937 *4))) + (-4 *4 (-546)) (-5 *1 (-1028 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-288 (-401 (-934 *4))))) (-5 *2 (-401 (-934 *4))) - (-4 *4 (-545)) (-5 *1 (-1025 *4)))) + (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) (-5 *2 (-402 (-937 *4))) + (-4 *4 (-546)) (-5 *1 (-1028 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1135 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-545)) (-5 *1 (-610 *2 *3)) (-4 *3 (-1214 *2))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-1020 (-401 *2)))) (-5 *2 (-553)) - (-5 *1 (-114 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-428)) - (-5 *2 - (-630 - (-3 (|:| -4298 (-1155)) - (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553))))))))) - (-5 *1 (-1159))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-958 *4 *5 *3 *6)) (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *3 (-833)) (-4 *6 (-1045 *4 *5 *3)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) - (-5 *2 (-1017)) (-5 *1 (-735))))) + (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1138 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-631 (-906))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-906)) + (-4 *2 (-358)) (-14 *5 (-978 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-700 *5 *6 *7)) (-4 *5 (-836)) + (-4 *6 (-234 (-2563 *4) (-758))) + (-14 *7 + (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *6)) + (-2 (|:| -2717 *5) (|:| -1407 *6)))) + (-14 *4 (-631 (-1158))) (-4 *2 (-170)) + (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-934 *2 *6 (-850 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-836)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4)) + (-4 *4 (-1217 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-722 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-713)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5)) + (-4 *4 (-1034)) (-4 *5 (-836)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034)) + (-4 *2 (-836)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6)) + (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *2 (-836)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 *5)) (-4 *1 (-958 *4 *5 *6)) + (-4 *4 (-1034)) (-4 *5 (-779)) (-4 *6 (-836)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-958 *4 *3 *2)) (-4 *4 (-1034)) (-4 *3 (-779)) + (-4 *2 (-836))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) + (-5 *2 (-1020)) (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-757)) (-4 *4 (-13 (-545) (-144))) - (-5 *1 (-1208 *4 *2)) (-4 *2 (-1214 *4))))) + (-12 (-4 *4 (-780)) + (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546)) + (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *3 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *6)) + (-4 *6 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2)) + (-4 *2 (-934 (-937 *4) *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-1135 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1214 (-166 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-357) (-831))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1214 (-166 *2)))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-398) (-1177))))) - ((*1 *1 *1 *1) (-4 *1 (-779)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-301)) (-5 *1 (-685 *3))))) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-483 *3)) (-4 *3 (-1195)) + (-5 *2 (-631 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-724 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-554)) + (-14 *4 (-758)) (-4 *5 (-170))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) (((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-411 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1031)) (-4 *3 (-833)) - (-4 *5 (-260 *3)) (-4 *6 (-779)) (-5 *2 (-757)))) + (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180))) + (-4 *4 (-13 (-546) (-836))) + (-4 *2 (-13 (-425 (-167 *4)) (-987) (-1180))) + (-5 *1 (-588 *4 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) ((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-833)) (-5 *2 (-757))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-553))) (-4 *3 (-1031)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-553))) (-4 *1 (-1198 *3)) (-4 *3 (-1031)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-553))) (-4 *1 (-1229 *3)) (-4 *3 (-1031))))) -(((*1 *1 *1 *1) (-4 *1 (-140))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) - ((*1 *2 *3) - (-12 (-5 *2 (-111)) (-5 *1 (-558 *3)) (-4 *3 (-1020 (-553))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *3 (-1196)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) - (-5 *2 (-1238 *1)) (-4 *1 (-336 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-986 *3)) (-14 *3 (-553))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-845))))) -(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)) (-4 *2 (-538)))) - ((*1 *1 *1) (-4 *1 (-1040)))) + (-12 (-5 *2 (-758)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) + (-14 *4 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) + ((*1 *2 *1) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-600 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) + (-4 *2 (-13 (-425 *5) (-27) (-1180))) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *1 (-556 *5 *2 *6)) (-4 *6 (-1082))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1) (-5 *1 (-432)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-381 *4)) (-4 *4 (-1082)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *2 (-23)) (-5 *1 (-635 *4 *2 *5)) + (-4 *4 (-1082)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-758)) (-5 *1 (-806 *4)) (-4 *4 (-836))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-554)) (-4 *5 (-834)) (-4 *5 (-358)) + (-5 *2 (-758)) (-5 *1 (-930 *5 *6)) (-4 *6 (-1217 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1155))) (-5 *3 (-1155)) (-5 *1 (-529)))) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-1158)) (-5 *1 (-530)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529))))) + (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529))))) + (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1155)) (-5 *1 (-690 *3)) (-4 *3 (-601 (-529))))) + (-12 (-5 *2 (-1158)) (-5 *1 (-691 *3)) (-4 *3 (-602 (-530))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-630 (-1155))) (-5 *2 (-1155)) (-5 *1 (-690 *3)) - (-4 *3 (-601 (-529)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-1 (-111) *8))) (-4 *8 (-1045 *5 *6 *7)) - (-4 *5 (-545)) (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-2 (|:| |goodPols| (-630 *8)) (|:| |badPols| (-630 *8)))) - (-5 *1 (-959 *5 *6 *7 *8)) (-5 *4 (-630 *8))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1155)) - (-4 *4 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-564 *4 *2)) - (-4 *2 (-13 (-1177) (-941) (-1118) (-29 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 (-925 *3))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-925 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031))))) + (-12 (-5 *4 (-631 (-1158))) (-5 *2 (-1158)) (-5 *1 (-691 *3)) + (-4 *3 (-602 (-530)))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-358)) (-5 *2 (-906)) (-5 *1 (-323 *3 *4)) + (-4 *3 (-324 *4)))) + ((*1 *2) + (-12 (-4 *4 (-358)) (-5 *2 (-820 (-906))) (-5 *1 (-323 *3 *4)) + (-4 *3 (-324 *4)))) + ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-906)))) + ((*1 *2) + (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-820 (-906)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-725 *3))))) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-726 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *4 (-546)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -1942 *4))) (-5 *1 (-954 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-811)) (-5 *3 (-631 (-1158))) (-5 *1 (-812))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1239 *3)) (-4 *3 (-1195)) (-4 *3 (-1034)) + (-5 *2 (-675 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1140)) (-5 *1 (-1176))))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-903)) (-5 *4 (-220)) (-5 *5 (-553)) (-5 *6 (-856)) - (-5 *2 (-1243)) (-5 *1 (-1239))))) + (-12 (-5 *3 (-906)) (-5 *4 (-221)) (-5 *5 (-554)) (-5 *6 (-859)) + (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1 (-374))) (-5 *1 (-1025))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))) +(((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539))))) +(((*1 *1) (-5 *1 (-139)))) (((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1214 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *5 (-363)) + (-5 *2 (-758))))) +(((*1 *2 *3) + (-12 (-4 *4 (-344)) + (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -2436 *3)))) + (-5 *1 (-212 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) + (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-758)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 *4)))) + (-5 *1 (-874 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) + (-4 *7 (-1082)) (-5 *2 (-631 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145))) + (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5))))) + (-5 *1 (-1111 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145))) + (-5 *2 (-1147 (-631 (-311 *5)) (-631 (-289 (-311 *5))))) + (-5 *1 (-1111 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) + (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-906)))) + ((*1 *2 *3) + (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) + (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) + (-5 *2 (-758)) (-5 *1 (-387 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-820 (-906))))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1) + (-12 (-4 *3 (-546)) (-5 *2 (-554)) (-5 *1 (-611 *3 *4)) + (-4 *4 (-1217 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) + (-4 *3 (-836)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-727 *4 *3)) (-4 *4 (-1034)) (-4 *3 (-836)) + (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) + (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) + (-4 *8 (-337 *5 *6 *7)) + (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-758)) + (-5 *1 (-896 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) + (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) + (-4 *6 (-337 (-402 (-554)) *4 *5)) (-5 *2 (-758)) + (-5 *1 (-897 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) + (-4 *7 (-1217 *6)) (-4 *4 (-1217 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) + (-4 *9 (-13 (-363) (-358))) (-5 *2 (-758)) + (-5 *1 (-1003 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1217 *3)) (-4 *3 (-1034)) (-4 *3 (-546)) + (-5 *2 (-758)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))) +(((*1 *1 *2) + (-12 (-5 *2 (-658 *3)) (-4 *3 (-836)) (-4 *1 (-369 *3 *4)) + (-4 *4 (-170))))) +(((*1 *2 *1) + (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1217 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-697 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) - (-12 (-4 *2 (-1214 *3)) (-5 *1 (-698 *3 *2)) (-4 *3 (-1031)))) + (-12 (-4 *2 (-1217 *3)) (-5 *1 (-699 *3 *2)) (-4 *3 (-1034)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-701 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-12 (-4 *2 (-23)) (-5 *1 (-702 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-851 *3)) (-5 *2 (-553))))) + ((*1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1165))))) (((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1195)) (-5 *1 (-858 *3 *2)) (-4 *3 (-1195)))) + ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-832))))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-187))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-674 *4)) (-4 *4 (-1031)) (-5 *1 (-1121 *3 *4)) - (-14 *3 (-757))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-1155))) (-5 *1 (-529))))) -(((*1 *2 *3) - (-12 (-4 *2 (-357)) (-4 *2 (-831)) (-5 *1 (-927 *2 *3)) - (-4 *3 (-1214 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-1151 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *4 (-599 $)) $)) - (-15 -3974 ((-1104 *4 (-599 $)) $)) - (-15 -3110 ($ (-1104 *4 (-599 $)))))))))) + (-5 *2 + (-631 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-554))))) + (-5 *1 (-413 *3)) (-4 *3 (-546)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-758)) (-4 *3 (-344)) (-4 *5 (-1217 *3)) + (-5 *2 (-631 (-1154 *3))) (-5 *1 (-492 *3 *5 *6)) + (-4 *6 (-1217 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3)))) + ((*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *3 (-630 (-257))) - (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-257)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-461))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-1083)) (-5 *1 (-285))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1185 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *5 (-1045 *2 *3 *4))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) + (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374))))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 (-630 *4))) (-4 *4 (-833)) - (-5 *2 (-630 (-630 *4))) (-5 *1 (-1163 *4))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-553)) (-5 *1 (-1135 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-220))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *1 *1 *1) (-5 *1 (-373))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| -2666 *1) (|:| -1571 *1))) (-4 *1 (-835 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1031)) - (-5 *2 (-2 (|:| -2666 *3) (|:| -1571 *3))) (-5 *1 (-836 *5 *3)) - (-4 *3 (-835 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-856)))) - ((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-374)) (-5 *1 (-188))))) +(((*1 *1 *2) + (-12 (-5 *2 (-906)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1034)) + (-4 *4 (-1195)))) + ((*1 *1 *2) + (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) + (-4 *5 (-234 (-2563 *3) (-758))) + (-14 *6 + (-1 (-112) (-2 (|:| -2717 *2) (|:| -1407 *5)) + (-2 (|:| -2717 *2) (|:| -1407 *5)))) + (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-836)) + (-4 *7 (-934 *4 *5 (-850 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191))))) (((*1 *2 *1) - (-12 (-5 *2 (-845)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-757)) - (-14 *4 (-757)) (-4 *5 (-169))))) -(((*1 *2 *2) - (-12 (-4 *2 (-169)) (-4 *2 (-1031)) (-5 *1 (-700 *2 *3)) - (-4 *3 (-633 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-169)) (-4 *2 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1162))))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) + (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034)))) + ((*1 *2 *3) + (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) + (-5 *1 (-674 *2 *4 *5 *3)) (-4 *3 (-673 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) + (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4375 "*"))) (-4 *2 (-1034))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-934 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) + (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811))))) +(((*1 *1) (-5 *1 (-155))) + ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-675 *4)) (-4 *4 (-1034)) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-758))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-833)) (-4 *5 (-891)) (-4 *6 (-779)) - (-4 *8 (-931 *5 *6 *7)) (-5 *2 (-412 (-1151 *8))) - (-5 *1 (-888 *5 *6 *7 *8)) (-5 *4 (-1151 *8)))) + (-12 (-5 *3 (-631 (-554))) (-5 *4 (-890 (-554))) + (-5 *2 (-675 (-554))) (-5 *1 (-579)))) ((*1 *2 *3) - (-12 (-4 *4 (-891)) (-4 *5 (-1214 *4)) (-5 *2 (-412 (-1151 *5))) - (-5 *1 (-889 *4 *5)) (-5 *3 (-1151 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1063 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-553) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1063 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1192)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-757)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1031)) - (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-599 *3)) (-4 *3 (-833)))) - ((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-321 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1192)) (-14 *4 *2)))) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-631 (-675 (-554)))) + (-5 *1 (-579)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-554))) (-5 *4 (-631 (-890 (-554)))) + (-5 *2 (-631 (-675 (-554)))) (-5 *1 (-579))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-13 (-27) (-1177) (-424 (-166 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) - (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-144)) - (-4 *3 (-301)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1238 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) - (-4 *1 (-710 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1214 *5)) - (-5 *2 (-674 *5))))) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) + ((*1 *1 *1) (-5 *1 (-1102)))) (((*1 *2 *1) - (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-833)) - (-4 *5 (-260 *4)) (-4 *6 (-779)) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-120 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-1126 (-1137))) (-5 *1 (-385))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-553)))) - ((*1 *1 *1) (-5 *1 (-1099)))) + (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 *2))) + (-5 *2 (-877 *3)) (-5 *1 (-1058 *3 *4 *5)) + (-4 *5 (-13 (-425 *4) (-871 *3) (-602 *2)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 *2))) - (-5 *2 (-874 *3)) (-5 *1 (-1055 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-868 *3) (-601 *2)))))) -(((*1 *2) - (-12 - (-5 *2 - (-1238 (-630 (-2 (|:| -2821 (-892 *3)) (|:| -2735 (-1099)))))) - (-5 *1 (-345 *3 *4)) (-14 *3 (-903)) (-14 *4 (-903)))) - ((*1 *2) - (-12 (-5 *2 (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099)))))) - (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1151 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099)))))) - (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-903))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-903)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-257))))) + (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-554))))) + (-5 *1 (-356 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758))))) + (-5 *1 (-381 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| -2270 *3) (|:| -1407 (-554))))) + (-5 *1 (-413 *3)) (-4 *3 (-546)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 (-758))))) + (-5 *1 (-806 *3)) (-4 *3 (-836))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1082))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-325))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1241 *4)) (-4 *4 (-1195)) (-4 *1 (-234 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195))))) +(((*1 *1) (-5 *1 (-221))) ((*1 *1) (-5 *1 (-374)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) - (-4 *3 (-13 (-424 *4) (-984)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) - (-5 *2 (-111))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-166 (-220)))) - (-5 *2 (-1017)) (-5 *1 (-740))))) + (-12 (-4 *2 (-358)) (-4 *2 (-834)) (-5 *1 (-930 *2 *3)) + (-4 *3 (-1217 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-5 *2 (-2 (|:| -2498 (-630 *6)) (|:| -2984 (-630 *6))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-931 *5 *6 *7)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-442 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1121 *4 *2)) (-14 *4 (-903)) - (-4 *2 (-13 (-1031) (-10 -7 (-6 (-4371 "*"))))) - (-5 *1 (-884 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *1 *1) (-4 *1 (-1180)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-553)))) - ((*1 *1 *1 *1) (-5 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) - (-5 *1 (-326))))) -(((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-757)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-757))))) + (-12 (-4 *3 (-1034)) (-5 *2 (-631 *1)) (-4 *1 (-1116 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) + ((*1 *1 *1 *1) (-5 *1 (-1102)))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-631 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) + (-12 (-5 *4 (-758)) (-4 *5 (-546)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-954 *5 *3)) (-4 *3 (-1217 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1084 *3)) (-5 *1 (-889 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1084 *3)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) - (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4)))) + (-12 (-5 *3 (-1154 *6)) (-4 *6 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-1154 *7)) (-5 *1 (-316 *4 *5 *6 *7)) + (-4 *7 (-934 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) - (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-984))))) + (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-155)))) + ((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1154 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) + (-4 *3 (-358))))) +(((*1 *2 *3) + (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296)))) - ((*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) + (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) + ((*1 *2 *3) (-12 (-5 *3 (-937 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) + (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) - (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4)))) + (-12 (-5 *3 (-1154 (-402 (-554)))) (-5 *2 (-631 *1)) (-4 *1 (-997)))) + ((*1 *2 *3) (-12 (-5 *3 (-1154 *1)) (-4 *1 (-997)) (-5 *2 (-631 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-833) (-545))) (-5 *2 (-111)) - (-5 *1 (-617 *4 *5)) (-4 *5 (-13 (-424 *4) (-984) (-1177)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-737))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1135 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *1) (-5 *1 (-1043)))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-357)) (-4 *3 (-1214 *4)) (-4 *5 (-1214 (-401 *3))) - (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-357)) (-4 *4 (-1214 *2)) - (-4 *5 (-1214 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) - (-4 *6 (-336 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-357)) (-4 *3 (-1214 *2)) (-4 *4 (-1214 (-401 *3))) - (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) - (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) - (-4 *1 (-329 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-239 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *1 *1) (-4 *1 (-1180)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-553)))) - ((*1 *1 *1 *1) (-5 *1 (-1099)))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) - (-5 *2 (-1017)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-220)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-220)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-373)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-401 (-553))) (-5 *1 (-373))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) + (-12 (-4 *4 (-13 (-834) (-358))) (-4 *3 (-1217 *4)) (-5 *2 (-631 *1)) + (-4 *1 (-1051 *4 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1211 *5 *4)) (-4 *4 (-445)) (-4 *4 (-806)) - (-14 *5 (-1155)) (-5 *2 (-553)) (-5 *1 (-1093 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-154))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1192))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1008 (-826 (-553)))) - (-5 *3 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *4)))) (-4 *4 (-1031)) - (-5 *1 (-583 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-324))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) + (-12 (-4 *4 (-546)) (-5 *2 (-1154 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *4 (-600 $)) $)) + (-15 -2822 ((-1107 *4 (-600 $)) $)) + (-15 -3075 ($ (-1107 *4 (-600 $)))))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-14 *2 (-554)))) + ((*1 *1 *1 *1) (-5 *1 (-1102)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-128))))) +(((*1 *2) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-311 *4)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)))) ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *1 *1) (-4 *1 (-1180)))) -(((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-757))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *1)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)) - (-4 *3 (-545)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-545))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-757)) (-4 *6 (-1079)) (-4 *3 (-882 *6)) - (-5 *2 (-674 *3)) (-5 *1 (-677 *6 *3 *7 *4)) (-4 *7 (-367 *3)) - (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4369))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3165 (-553)) (|:| -3713 (-630 *3)))) - (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) + (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6)) + (-4 *4 (-446)) (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-962 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *3 (-631 (-258))) + (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-258)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1076 (-374)))) (-5 *1 (-462))))) +(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1180))) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-575 *3)) (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-934 (-166 *4))) (-4 *4 (-169)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) + (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-854 *3)) (-5 *2 (-554)))) + ((*1 *1 *1) (-4 *1 (-987))) + ((*1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-997)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-4 *1 (-997)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-906)))) + ((*1 *1 *1) (-4 *1 (-997)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-600 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4))) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *4 (-758)) + (-5 *2 (-675 (-221))) (-5 *1 (-262))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1074 (-829 *3))) (-4 *3 (-13 (-1180) (-944) (-29 *5))) + (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1074 (-829 *3))) (-5 *5 (-1140)) + (-4 *3 (-13 (-1180) (-944) (-29 *6))) + (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *6 *3)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-934 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-169)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1074 (-829 (-311 *5)))) + (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-216 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-402 (-937 *6))) (-5 *4 (-1074 (-829 (-311 *6)))) + (-5 *5 (-1140)) + (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-216 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) + (-12 (-5 *4 (-1074 (-829 (-402 (-937 *5))))) (-5 *3 (-402 (-937 *5))) + (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |f1| (-829 (-311 *5))) (|:| |f2| (-631 (-829 (-311 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-216 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1074 (-829 (-402 (-937 *6))))) (-5 *5 (-1140)) + (-5 *3 (-402 (-937 *6))) + (-4 *6 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 + (-3 (|:| |f1| (-829 (-311 *6))) (|:| |f2| (-631 (-829 (-311 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-216 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-934 (-166 *4)))) (-4 *4 (-545)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-3 *3 (-631 *3))) (-5 *1 (-423 *5 *3)) + (-4 *3 (-13 (-1180) (-944) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) + (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) + (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) + (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-401 (-934 (-166 *5)))) (-5 *4 (-903)) - (-4 *5 (-545)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1076 (-829 (-374)))) + (-5 *2 (-1020)) (-5 *1 (-555)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-771 *5)))) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) + (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) + (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) + (-5 *5 (-374)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-311 (-374))) (-5 *4 (-631 (-1076 (-829 (-374))))) + (-5 *5 (-374)) (-5 *6 (-1046)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374)))) + (-5 *5 (-1140)) (-5 *2 (-1020)) (-5 *1 (-555)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1074 (-829 (-374)))) + (-5 *5 (-1158)) (-5 *2 (-1020)) (-5 *1 (-555)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-833)) - (-4 *4 (-601 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-771 *4)))) + (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-554)))) (-4 *5 (-1217 *4)) + (-5 *2 (-575 (-402 *5))) (-5 *1 (-558 *4 *5)) (-5 *3 (-402 *5)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-833)) (-4 *5 (-601 (-373))) (-5 *2 (-166 (-373))) - (-5 *1 (-771 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-141))))) -(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-52))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) (-4 *5 (-145)) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *2 (-3 (-311 *5) (-631 (-311 *5)))) (-5 *1 (-578 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-727 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-836)) + (-4 *3 (-38 (-402 (-554)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1158)) (-5 *1 (-937 *3)) (-4 *3 (-38 (-402 (-554)))) + (-4 *3 (-1034)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-4 *2 (-836)) + (-5 *1 (-1108 *3 *2 *4)) (-4 *4 (-934 *3 (-525 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) + (-5 *1 (-1142 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *1 (-1189 *3)) (-4 *3 (-38 (-402 (-554)))) + (-4 *3 (-1034)))) + ((*1 *1 *1 *2) + (-3994 + (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034)) + (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) + (-4 *3 (-38 (-402 (-554)))))) + (-12 (-5 *2 (-1158)) (-4 *1 (-1201 *3)) (-4 *3 (-1034)) + (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) + (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1201 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) + ((*1 *1 *1 *2) + (-3994 + (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034)) + (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) + (-4 *3 (-38 (-402 (-554)))))) + (-12 (-5 *2 (-1158)) (-4 *1 (-1222 *3)) (-4 *3 (-1034)) + (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) + (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3994 + (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034)) + (-12 (-4 *3 (-29 (-554))) (-4 *3 (-944)) (-4 *3 (-1180)) + (-4 *3 (-38 (-402 (-554)))))) + (-12 (-5 *2 (-1158)) (-4 *1 (-1232 *3)) (-4 *3 (-1034)) + (-12 (|has| *3 (-15 -2405 ((-631 *2) *3))) + (|has| *3 (-15 -2279 (*3 *3 *2))) (-4 *3 (-38 (-402 (-554)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1034)) (-4 *2 (-38 (-402 (-554)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *3 (-1034)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-446)) + (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685)))) + ((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-685))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-757)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1236 *3)) (-4 *3 (-23)) (-4 *3 (-1192))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *1 *1) (-4 *1 (-1180)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-757)) (-5 *1 (-1080 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-808))))) + (-12 (-5 *2 (-758)) (-4 *1 (-1239 *3)) (-4 *3 (-23)) (-4 *3 (-1195))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1195)) (-5 *1 (-180 *3 *2)) (-4 *2 (-660 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 (-1135 *7))) (-4 *6 (-833)) - (-4 *7 (-931 *5 (-524 *6) *6)) (-4 *5 (-1031)) - (-5 *2 (-1 (-1135 *7) *7)) (-5 *1 (-1105 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *1 (-943 *2)) (-4 *2 (-538))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-778))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) - (-14 *4 (-630 (-1155))) (-4 *5 (-445)) (-5 *1 (-618 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-948 *3)) (-4 *3 (-949))))) -(((*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-568))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *1) (-5 *1 (-324)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *1 *1) (-4 *1 (-1180)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1137)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1177) (-29 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1020 (-48))) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) - (-5 *2 (-412 (-1151 (-48)))) (-5 *1 (-429 *4 *5 *3)) - (-4 *3 (-1214 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-274))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-4 *5 (-1214 *4)) (-5 *2 (-1 *6 (-630 *6))) - (-5 *1 (-1232 *4 *5 *3 *6)) (-4 *3 (-641 *5)) (-4 *6 (-1229 *4))))) + (-12 (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) (-4 *5 (-358)) + (-5 *2 (-112)) (-5 *1 (-653 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) + (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 (-112)) + (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-631 (-2 (|:| -3311 (-402 (-554))) (|:| -3324 (-402 (-554)))))) + (-5 *2 (-631 (-221))) (-5 *1 (-300))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-847 *5))) (-14 *5 (-630 (-1155))) (-4 *6 (-445)) - (-5 *2 - (-2 (|:| |dpolys| (-630 (-242 *5 *6))) - (|:| |coords| (-630 (-553))))) - (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-630 (-242 *5 *6))) (-4 *7 (-445))))) + (-12 (-5 *4 (-631 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1217 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780)) + (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-934 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-48))) (-4 *5 (-836)) (-4 *6 (-780)) + (-4 *7 (-934 (-48) *6 *5)) (-5 *2 (-413 (-1154 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1154 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3)) + (-4 *3 (-1217 (-167 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-834))) (-5 *2 (-413 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) + (-4 *3 (-1217 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-758))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-631 (-758))) (-5 *5 (-758)) (-5 *2 (-413 *3)) + (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-758)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1217 (-554))))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 (-167 (-554)))) (-5 *1 (-440)) + (-5 *3 (-167 (-554))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-4 *5 (-780)) (-4 *7 (-546)) (-5 *2 (-413 *3)) + (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-546)) + (-4 *3 (-934 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1154 *4))) (-5 *1 (-452 *4)) + (-5 *3 (-1154 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) (-4 *5 (-358)) + (-4 *7 (-13 (-358) (-145) (-711 *5 *6))) (-5 *2 (-413 *3)) + (-5 *1 (-488 *5 *6 *7 *3)) (-4 *3 (-1217 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7))) + (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780)) + (-5 *2 (-413 *3)) (-5 *1 (-534 *5 *6 *7 *3)) + (-4 *3 (-934 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-413 (-1154 *7)) (-1154 *7))) + (-4 *7 (-13 (-302) (-145))) (-4 *5 (-836)) (-4 *6 (-780)) + (-4 *8 (-934 *7 *6 *5)) (-5 *2 (-413 (-1154 *8))) + (-5 *1 (-534 *5 *6 *7 *8)) (-5 *3 (-1154 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-631 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *6 (-1217 *5)) (-5 *2 (-631 (-639 (-402 *6)))) + (-5 *1 (-643 *5 *6)) (-5 *3 (-639 (-402 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *5 (-1217 *4)) (-5 *2 (-631 (-639 (-402 *5)))) + (-5 *1 (-643 *4 *5)) (-5 *3 (-639 (-402 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-806 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-658 *4))) + (-5 *1 (-658 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-554)) (-5 *2 (-631 *3)) (-5 *1 (-682 *3)) + (-4 *3 (-1217 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) (-5 *2 (-413 *3)) + (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-344)) + (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7))) + (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) + (-4 *5 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-717 *4 *5 *6 *3)) + (-4 *3 (-934 (-937 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) + (-4 *5 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *6 (-546)) + (-5 *2 (-413 *3)) (-5 *1 (-719 *4 *5 *6 *3)) + (-4 *3 (-934 (-402 (-937 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-13 (-302) (-145))) + (-5 *2 (-413 *3)) (-5 *1 (-720 *4 *5 *6 *3)) + (-4 *3 (-934 (-402 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145))) + (-5 *2 (-413 *3)) (-5 *1 (-728 *4 *5 *6 *3)) + (-4 *3 (-934 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-413 (-1154 *7))) + (-5 *1 (-728 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-992 *3)) + (-4 *3 (-1217 (-402 (-554)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-1026 *3)) + (-4 *3 (-1217 (-402 (-937 (-554))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1217 (-402 (-554)))) + (-4 *5 (-13 (-358) (-145) (-711 (-402 (-554)) *4))) + (-5 *2 (-413 *3)) (-5 *1 (-1061 *4 *5 *3)) (-4 *3 (-1217 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1217 (-402 (-937 (-554))))) + (-4 *5 (-13 (-358) (-145) (-711 (-402 (-937 (-554))) *4))) + (-5 *2 (-413 *3)) (-5 *1 (-1063 *4 *5 *3)) (-4 *3 (-1217 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446)) + (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7)))) + (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199)))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-1206 *3)) (-4 *3 (-1217 (-554)))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-553))) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1229 *3)) - (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1200 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *4 (-1198 *3)) - (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1221 *3 *4)) (-4 *5 (-965 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-833)))) - ((*1 *1 *1) - (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-630 (-1155))) - (-14 *3 (-630 (-1155))) (-4 *4 (-381)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1140 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-38 (-401 (-553)))) - (-5 *1 (-1141 *3)))) - ((*1 *1 *1) (-4 *1 (-1180)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1243)) (-5 *1 (-1240))))) + (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) + (-5 *2 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) + (-5 *1 (-341 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-674 (-401 (-934 (-553))))) - (-5 *2 - (-630 - (-2 (|:| |radval| (-310 (-553))) (|:| |radmult| (-553)) - (|:| |radvect| (-630 (-674 (-310 (-553)))))))) - (-5 *1 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-484))))) -(((*1 *1 *1) (-4 *1 (-851 *2)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2134 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-630 (-599 *2))) (-5 *4 (-630 (-1155))) - (-4 *2 (-13 (-424 (-166 *5)) (-984) (-1177))) - (-4 *5 (-13 (-545) (-833))) (-5 *1 (-587 *5 *6 *2)) - (-4 *6 (-13 (-424 *5) (-984) (-1177)))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-374)) (-5 *1 (-201))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-539)))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-1086)) (-5 *1 (-286))))) +(((*1 *2 *3) + (-12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-631 *5)) + (-5 *1 (-875 *4 *5)) (-4 *5 (-1195))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *3 (-631 (-554))) + (-5 *1 (-868))))) +(((*1 *2 *3) + (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 (-631 *4)))) + (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-163 *3 *4)) + (-4 *3 (-164 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758)) + (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-836)) (-5 *2 (-758)) (-5 *1 (-424 *3 *4)) + (-4 *3 (-425 *4)))) + ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-538 *3)) (-4 *3 (-539)))) + ((*1 *2) (-12 (-4 *1 (-750)) (-5 *2 (-758)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-783 *3 *4)) + (-4 *3 (-784 *4)))) + ((*1 *2) + (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-976 *3 *4)) + (-4 *3 (-977 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-758)) (-5 *1 (-981 *3 *4)) + (-4 *3 (-982 *4)))) + ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-996 *3)) (-4 *3 (-997)))) + ((*1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-758)))) + ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-1042 *3)) (-4 *3 (-1043))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-302)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) + (-5 *1 (-381 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2325 (-758)) (|:| -2423 (-758)))) + (-5 *1 (-758)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) + (-12 (-5 *3 (-631 (-675 *5))) (-5 *4 (-554)) (-4 *5 (-358)) + (-4 *5 (-1034)) (-5 *2 (-112)) (-5 *1 (-1014 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-675 *4))) (-4 *4 (-358)) (-4 *4 (-1034)) + (-5 *2 (-112)) (-5 *1 (-1014 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-592 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1082)) + (-4 *2 (-836))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4371 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) - (-4 *2 (-1031)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1214 *2)) - (-4 *4 (-672 *2 *5 *6))))) + (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) + (-5 *2 + (-3 (|:| |overq| (-1154 (-402 (-554)))) + (|:| |overan| (-1154 (-48))) (|:| -4156 (-112)))) + (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-630 (-925 (-220))))) (-5 *1 (-1187 *3)) - (-4 *3 (-956))))) -(((*1 *1 *1) (-4 *1 (-616))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984) (-1177)))))) -(((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-630 (-111))) (-5 *7 (-674 (-220))) - (-5 *8 (-674 (-553))) (-5 *3 (-553)) (-5 *4 (-220)) (-5 *5 (-111)) - (-5 *2 (-1017)) (-5 *1 (-740))))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) + (-5 *2 (-631 (-631 (-631 (-928 *3)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-680))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-687))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-685))) (-5 *1 (-325)))) + ((*1 *1) (-5 *1 (-325)))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-530)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-630 (-1 *4 (-630 *4)))) (-4 *4 (-1079)) - (-5 *1 (-112 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1079)) - (-5 *1 (-112 *4)))) + (-12 (-5 *2 (-631 (-631 (-928 (-221))))) (-5 *3 (-631 (-859))) + (-5 *1 (-462))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1167 (-631 *4))) (-4 *4 (-836)) + (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-358)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-444 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) + (-5 *2 + (-2 (|:| R (-675 *6)) (|:| A (-675 *6)) (|:| |Ainv| (-675 *6)))) + (-5 *1 (-963 *6)) (-5 *3 (-675 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-237)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-630 (-1 *4 (-630 *4)))) - (-5 *1 (-112 *4)) (-4 *4 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) + (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1246)) (-5 *1 (-237))))) (((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3)))))) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1043)) (-4 *3 (-1180)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2) + (-12 (-4 *3 (-546)) (-5 *2 (-631 (-675 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-631 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1188 *5 *6 *7 *8)) (-4 *5 (-546)) + (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1214 *4)) (-4 *4 (-1196)) - (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1214 (-401 *3)))))) + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-554)) (-5 *1 (-200))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-432)) (-5 *1 (-1162))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) + (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) (-4 *5 (-1214 *4)) - (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) - (-5 *1 (-997 *4 *5)) (-5 *3 (-401 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-743))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *4 (-630 (-1155))) - (-5 *2 (-674 (-310 (-220)))) (-5 *1 (-200)))) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-112)) + (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-600 *1)) (-4 *1 (-425 *4)) (-4 *4 (-836)) + (-4 *4 (-546)) (-5 *2 (-402 (-1154 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-600 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-1154 (-402 (-1154 *3)))) (-5 *1 (-550 *6 *3 *7)) + (-5 *5 (-1154 *3)) (-4 *7 (-1082)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-4 *6 (-882 *5)) (-5 *2 (-674 *6)) - (-5 *1 (-677 *5 *6 *3 *4)) (-4 *3 (-367 *6)) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369))))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-815))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-424 *3)))) + (-12 (-5 *4 (-1237 *5)) (-14 *5 (-1158)) (-4 *6 (-1034)) + (-5 *2 (-1214 *5 (-937 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-937 *6)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) - (-4 *3 (-1079)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-630 *1)) (-4 *1 (-931 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) - (-4 *7 (-931 *6 *4 *5)) (-5 *2 (-630 *3)) - (-5 *1 (-932 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) - (-15 -3974 (*7 $)))))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-166 (-220)))) (-5 *2 (-1017)) - (-5 *1 (-740))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 (-630 *6))) (-4 *6 (-931 *3 *5 *4)) - (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-833) (-601 (-1155)))) - (-4 *5 (-779)) (-5 *1 (-906 *3 *4 *5 *6))))) + (-12 (-4 *1 (-934 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-1154 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *3 (-836)) (-5 *2 (-1154 *1)) + (-4 *1 (-934 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-1034)) + (-4 *7 (-934 *6 *5 *4)) (-5 *2 (-402 (-1154 *3))) + (-5 *1 (-935 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1154 *3)) + (-4 *3 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *7)) (-15 -2810 (*7 $)) (-15 -2822 (*7 $))))) + (-4 *7 (-934 *6 *5 *4)) (-4 *5 (-780)) (-4 *4 (-836)) + (-4 *6 (-1034)) (-5 *1 (-935 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) (-4 *5 (-546)) + (-5 *2 (-402 (-1154 (-402 (-937 *5))))) (-5 *1 (-1028 *5)) + (-5 *3 (-402 (-937 *5)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 (-475 *4 *5))) (-5 *3 (-631 (-850 *4))) + (-14 *4 (-631 (-1158))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) + (-4 *6 (-446))))) (((*1 *2 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1169 *4 *5)) - (-4 *4 (-1079)) (-4 *5 (-1079))))) -(((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) - (-5 *2 (-630 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 *3)) (-5 *1 (-723 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-357)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-745))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-808))))) + (-12 (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) (-5 *2 (-402 (-554))) + (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-600 *3)) (-4 *3 (-425 *5)) + (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) + (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-428 *5 *3))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-554)) (-5 *1 (-1138 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *5 (-1217 *4)) (-5 *2 (-1154 (-402 *5))) (-5 *1 (-603 *4 *5)) + (-5 *3 (-402 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-145) (-27) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-1154 (-402 *6))) (-5 *1 (-603 *5 *6)) (-5 *3 (-402 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-5 *1 (-970 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) + (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-630 *7)) (-4 *7 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) - (-5 *1 (-1086 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1155))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1135 *3)) (-4 *3 (-1079)) - (-4 *3 (-1192))))) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-758)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-836)) + (-4 *3 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-641 *3)) (-4 *3 (-1031)) (-4 *3 (-357)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-757)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) - (-5 *1 (-644 *5 *2)) (-4 *2 (-641 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 *2)) (-4 *2 (-931 (-401 (-934 *6)) *5 *4)) - (-5 *1 (-718 *5 *4 *6 *2)) (-4 *5 (-779)) - (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $))))) - (-4 *6 (-545))))) -(((*1 *1 *1) (-4 *1 (-616))) + (-12 + (-5 *2 + (-2 (|:| -3999 (-631 (-848))) (|:| -1349 (-631 (-848))) + (|:| |presup| (-631 (-848))) (|:| -1426 (-631 (-848))) + (|:| |args| (-631 (-848))))) + (-5 *1 (-1158)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-1158))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-539)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-358)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-838 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) + (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-839 *5 *3)) + (-4 *3 (-838 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-633 *3)) (-4 *3 (-1082))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3)) + (-4 *3 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))) +(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1025))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-758) *2)) (-5 *4 (-758)) (-4 *2 (-1082)) + (-5 *1 (-664 *2)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984) (-1177)))))) + (-12 (-5 *2 (-1 *3 (-758) *3)) (-4 *3 (-1082)) (-5 *1 (-668 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))) - (-5 *2 (-1238 *6)) (-5 *1 (-330 *3 *4 *5 *6)) - (-4 *6 (-336 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-833)) (-4 *2 (-1031)))) - ((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1135 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-141))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-826 *4)) (-5 *3 (-599 *4)) (-5 *5 (-111)) - (-4 *4 (-13 (-1177) (-29 *6))) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-219 *6 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-630 *3)) (-5 *1 (-943 *3)) (-4 *3 (-538))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-981 *3)) (-4 *3 (-169)) (-5 *1 (-785 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) + (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1232 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) (((*1 *2 *3) - (-12 (-5 *3 (-674 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-1162))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1119 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) - (-4 *5 (-13 (-1079) (-34))) (-4 *6 (-13 (-1079) (-34))) - (-5 *2 (-111)) (-5 *1 (-1120 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-741))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-301) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1177) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) (-4 *5 (-144)) - (-4 *5 (-13 (-445) (-1020 (-553)) (-833) (-626 (-553)))) - (-5 *2 (-310 *5)) (-5 *1 (-577 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-141))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-831)) (-4 *4 (-357)) (-5 *2 (-757)) - (-5 *1 (-927 *4 *5)) (-4 *5 (-1214 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-903)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-778)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-401 (-553))) (-4 *1 (-1219 *3)) (-4 *3 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-1135 *3))))) + (-12 (-5 *3 (-1158)) (-4 *5 (-1199)) (-4 *6 (-1217 *5)) + (-4 *7 (-1217 (-402 *6))) (-5 *2 (-631 (-937 *5))) + (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1199)) + (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) (-4 *4 (-358)) + (-5 *2 (-631 (-937 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158))))) +(((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-859)))) + ((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-985 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) - (-4 *6 (-779)) (-4 *7 (-833)) - (-5 *2 (-2 (|:| |goodPols| (-630 *8)) (|:| |badPols| (-630 *8)))) - (-5 *1 (-959 *5 *6 *7 *8)) (-5 *4 (-630 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1217 *6)) + (-4 *6 (-13 (-27) (-425 *5))) + (-4 *5 (-13 (-836) (-546) (-1023 (-554)))) (-4 *8 (-1217 (-402 *7))) + (-5 *2 (-575 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) + (-4 *3 (-337 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1140))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-911)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-221))) (-5 *1 (-912)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1137)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *4 (-1045 *6 *7 *8)) (-5 *2 (-1243)) - (-5 *1 (-762 *6 *7 *8 *4 *5)) (-4 *5 (-1051 *6 *7 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-805 *4)) (-4 *4 (-833)) (-5 *2 (-111)) - (-5 *1 (-657 *4))))) -(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) - ((*1 *2 *3) - (-12 (-5 *3 (-903)) (-5 *2 (-1238 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-343))))) + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-357)) (-4 *3 (-1031)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4093 *1))) - (-4 *1 (-835 *3))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) - (-5 *1 (-742))))) + (-12 (-5 *2 (-631 (-769 *3))) (-5 *1 (-769 *3)) (-4 *3 (-546)) + (-4 *3 (-1034))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) + ((*1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833))) (-5 *2 (-166 *5)) - (-5 *1 (-587 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-984) (-1177))) - (-4 *3 (-13 (-424 (-166 *4)) (-984) (-1177)))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-1137)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-1192)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-630 (-257))) (-5 *4 (-1155)) - (-5 *1 (-256 *2)) (-4 *2 (-1192)))) + (-12 (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) (-4 *3 (-602 (-374))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-630 (-257))) (-5 *4 (-1155)) (-5 *2 (-52)) - (-5 *1 (-257))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-903)) (-5 *1 (-435 *2)) - (-4 *2 (-1214 (-553))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-903)) (-5 *4 (-757)) (-5 *1 (-435 *2)) - (-4 *2 (-1214 (-553))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-903)) (-5 *4 (-630 (-757))) (-5 *1 (-435 *2)) - (-4 *2 (-1214 (-553))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-903)) (-5 *4 (-630 (-757))) (-5 *5 (-757)) - (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-903)) (-5 *4 (-630 (-757))) (-5 *5 (-757)) - (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1214 (-553))))) + (-12 (-5 *4 (-906)) (-5 *2 (-167 (-374))) (-5 *1 (-772 *3)) + (-4 *3 (-602 (-374))))) + ((*1 *2 *3) + (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-602 (-374))) + (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-412 *2)) (-4 *2 (-1214 *5)) - (-5 *1 (-437 *5 *2)) (-4 *5 (-1031))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-630 (-674 *4))) (-5 *2 (-674 *4)) (-4 *4 (-1031)) - (-5 *1 (-1011 *4))))) -(((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-686)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) - (-5 *2 - (-3 (-1151 *4) - (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099))))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-167 *5)) (-5 *4 (-906)) (-4 *5 (-170)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-937 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-602 (-374))) + (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-937 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-170)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-937 *4)) (-4 *4 (-1034)) (-4 *4 (-602 (-374))) + (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-937 *5)) (-5 *4 (-906)) (-4 *5 (-1034)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-546)) (-4 *4 (-602 (-374))) + (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-402 (-937 (-167 *4)))) (-4 *4 (-546)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 (-167 *5)))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-311 *4)) (-4 *4 (-546)) (-4 *4 (-836)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-311 *5)) (-5 *4 (-906)) (-4 *5 (-546)) (-4 *5 (-836)) + (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-546)) (-4 *4 (-836)) + (-4 *4 (-602 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-772 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-906)) (-4 *5 (-546)) + (-4 *5 (-836)) (-4 *5 (-602 (-374))) (-5 *2 (-167 (-374))) + (-5 *1 (-772 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *6)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1108 *4 *3 *5))) (-4 *4 (-38 (-402 (-554)))) + (-4 *4 (-1034)) (-4 *3 (-836)) (-5 *1 (-1108 *4 *3 *5)) + (-4 *5 (-934 *4 (-525 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1189 *4))) (-5 *3 (-1158)) (-5 *1 (-1189 *4)) + (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034))))) +(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) + ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))) (((*1 *2 *1) - (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-129)) - (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 *4)))))) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) + (-5 *2 (-402 (-554))))) + ((*1 *2 *1) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539)) + (-4 *3 (-546)))) + ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-402 (-554))))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| -4120 *3) (|:| -1718 *4)))) - (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-712)))) + (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) + (-5 *2 (-402 (-554))))) ((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-5 *2 (-1135 (-2 (|:| |k| *4) (|:| |c| *3))))))) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539)) + (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539)) + (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) + (-5 *2 (-402 (-554))))) + ((*1 *2 *3) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) (-4 *3 (-1023 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-848)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-758)) + (-14 *4 (-758)) (-4 *5 (-170))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-474))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-310 (-553))) (|:| -3105 (-310 (-373))) - (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1154)))) - (-5 *1 (-1154))))) + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) +(((*1 *1) (-5 *1 (-432)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1217 *2)) (-4 *2 (-1199)) (-5 *1 (-146 *2 *4 *3)) + (-4 *3 (-1217 (-402 *4)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-142))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-5 *1 (-1234 *3 *2)) + (-4 *2 (-1232 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-928 *4)) (-4 *4 (-1034)) (-5 *1 (-1146 *3 *4)) + (-14 *3 (-906))))) +(((*1 *2 *2) + (-12 (-4 *2 (-170)) (-4 *2 (-1034)) (-5 *1 (-701 *2 *3)) + (-4 *3 (-634 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-170)) (-4 *2 (-1034))))) +(((*1 *1) (-5 *1 (-810)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-111)) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1238 *5)) (-5 *3 (-757)) (-5 *4 (-1099)) (-4 *5 (-343)) - (-5 *1 (-521 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1031)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *3 (-169)))) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3782 (-631 *6))) + *7 *6)) + (-4 *6 (-358)) (-4 *7 (-642 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1241 *6) "failed")) + (|:| -3782 (-631 (-1241 *6))))) + (-5 *1 (-800 *6 *7)) (-5 *4 (-1241 *6))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1) (-5 *1 (-568))) + ((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-849)))) + ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-849)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-849)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-1138 *4)) + (-4 *4 (-1082)) (-4 *4 (-1195))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-554)) (-4 *7 (-934 *4 *5 *6)) + (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-443 *4 *5 *6 *7))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-4 *2 (-545)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1214 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545)))) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-169))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1079))))) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) + (-14 *4 (-631 (-1158))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1034) (-836))) + (-14 *4 (-631 (-1158)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 (-242 *5 *6))) (-4 *6 (-445)) - (-5 *2 (-242 *5 *6)) (-14 *5 (-630 (-1155))) (-5 *1 (-618 *5 *6))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-1031)) (-5 *1 (-1210 *4 *2)) - (-4 *2 (-1214 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *3))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-554)) (-5 *4 (-413 *2)) (-4 *2 (-934 *7 *5 *6)) + (-5 *1 (-729 *5 *6 *7 *2)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-302))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-836)) (-4 *5 (-894)) (-4 *6 (-780)) + (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-413 (-1154 *8))) + (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-1154 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-894)) (-4 *5 (-1217 *4)) (-5 *2 (-413 (-1154 *5))) + (-5 *1 (-892 *4 *5)) (-5 *3 (-1154 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) (-5 *3 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-950))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1140) (-761))) (-5 *1 (-114))))) +(((*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-52)) (-5 *1 (-818))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) + (-5 *1 (-257 *2)) (-4 *2 (-1195)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-52)) + (-5 *1 (-258))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 + (-2 (|:| |solns| (-631 *5)) + (|:| |maps| (-631 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1110 *3 *5)) (-4 *3 (-1217 *5))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-311 (-554))) (|:| -3085 (-311 (-374))) + (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1157)))) + (-5 *1 (-1157))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-631 (-554))) (-5 *3 (-112)) (-5 *1 (-1092))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1076 (-221))) + (-5 *2 (-1243)) (-5 *1 (-252))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-97))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-1034)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1217 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243)))) + ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1243))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-286))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-358))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-631 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-758)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-780)) (-4 *6 (-934 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-836)) + (-5 *1 (-443 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-546)) (-4 *4 (-836)) + (-5 *1 (-563 *4 *2)) (-4 *2 (-425 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833))) - (-4 *2 (-13 (-424 (-166 *4)) (-984) (-1177))) - (-5 *1 (-587 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-984) (-1177)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) - (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) - (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-931 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-931 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-831)) (-5 *2 (-553)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-887 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1048 *4 *3)) (-4 *4 (-13 (-831) (-357))) - (-4 *3 (-1214 *4)) (-5 *2 (-553)))) - ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-545) (-833) (-1020 *2) (-626 *2) (-445))) - (-5 *2 (-553)) (-5 *1 (-1095 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-826 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-545) (-833) (-1020 *2) (-626 *2) (-445))) - (-5 *2 (-553)) (-5 *1 (-1095 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-1137)) - (-4 *6 (-13 (-545) (-833) (-1020 *2) (-626 *2) (-445))) - (-5 *2 (-553)) (-5 *1 (-1095 *6 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-445)) (-5 *2 (-553)) - (-5 *1 (-1096 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-826 (-401 (-934 *6)))) - (-5 *3 (-401 (-934 *6))) (-4 *6 (-445)) (-5 *2 (-553)) - (-5 *1 (-1096 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-401 (-934 *6))) (-5 *4 (-1155)) - (-5 *5 (-1137)) (-4 *6 (-445)) (-5 *2 (-553)) (-5 *1 (-1096 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-553)) (-5 *1 (-1174 *3)) (-4 *3 (-1031))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) + (-12 (-5 *3 (-631 (-530))) (-5 *2 (-1158)) (-5 *1 (-530))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-554) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1066 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-4 *7 (-934 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-631 *7)) (|:| |n0| (-631 *7)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) (((*1 *2 *1) - (-12 (-4 *2 (-1192)) (-5 *1 (-855 *3 *2)) (-4 *3 (-1192)))) - ((*1 *2 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-1031)) - (-5 *2 (-474 *4 *5)) (-5 *1 (-926 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-674 *1)) (-4 *1 (-343)) (-5 *2 (-1238 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-674 *1)) (-4 *1 (-142)) (-4 *1 (-891)) - (-5 *2 (-1238 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) - ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-661)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) + (|partial| -12 + (-4 *3 (-13 (-836) (-1023 (-554)) (-627 (-554)) (-446))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1226 *4 *5 *6)) + (|:| |%expon| (-314 *4 *5 *6)) + (|:| |%expTerms| + (-631 (-2 (|:| |k| (-402 (-554))) (|:| |c| *4)))))) + (|:| |%type| (-1140)))) + (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1180) (-425 *3))) + (-14 *5 (-1158)) (-14 *6 *4)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-413 *3)) (-4 *3 (-546)) (-5 *1 (-414 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-173))) (-5 *1 (-1067))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-836)) (-5 *4 (-631 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-631 *4)))) + (-5 *1 (-1166 *6)) (-5 *5 (-631 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-847)))) + ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-847))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-631 (-928 (-221))))) (-5 *2 (-631 (-221))) + (-5 *1 (-462))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-600 *1))) (-4 *1 (-297))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-1238 - (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) - (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -2723 (-553)) - (|:| -1481 (-553)) (|:| |spline| (-553)) (|:| -3549 (-553)) - (|:| |axesColor| (-856)) (|:| -2064 (-553)) - (|:| |unitsColor| (-856)) (|:| |showing| (-553))))) - (-5 *1 (-1239))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-647))) ((*1 *1 *1 *1) (-5 *1 (-1102)))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) + (-5 *1 (-735))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-357)) (-4 *3 (-1031)) - (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1214 *5)) - (-5 *1 (-713 *5 *2)) (-4 *5 (-357))))) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1044 (-1009 *3) (-1154 (-1009 *3)))) + (-5 *1 (-1009 *3)) (-4 *3 (-13 (-834) (-358) (-1007)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) - (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-630 (-310 (-220)))) - (|:| -1945 (-630 (-220))))))) - (-5 *2 (-630 (-1137))) (-5 *1 (-261))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-141))) (-5 *1 (-138)))) - ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-138))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1238 *1)) (-4 *1 (-361 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1017)) - (-5 *1 (-732))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-757)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) - (-4 *2 (-1214 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-553)) (-5 *1 (-681 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031)))) - ((*1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031))))) + (-12 (-4 *4 (-446)) + (-5 *2 + (-631 + (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))) + (|:| |geneigvec| (-631 (-675 (-402 (-937 *4)))))))) + (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-600 *4)) (-4 *4 (-836)) (-4 *2 (-836)) + (-5 *1 (-599 *2 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-133))))) +(((*1 *1 *1 *1) (-4 *1 (-647))) ((*1 *1 *1 *1) (-5 *1 (-1102)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-961 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *5 (-1048 *3 *4 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-322 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-554)) (-5 *1 (-510 *3 *4)) (-4 *3 (-1195)) (-14 *4 *2)))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1155)) - (|:| |arrayIndex| (-630 (-934 (-553)))) + (-2 (|:| |var| (-1158)) + (|:| |arrayIndex| (-631 (-937 (-554)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1155)) (|:| |rand| (-845)) - (|:| |ints2Floats?| (-111)))) + (-2 (|:| |var| (-1158)) (|:| |rand| (-848)) + (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1154)) (|:| |thenClause| (-324)) - (|:| |elseClause| (-324)))) + (-2 (|:| |switch| (-1157)) (|:| |thenClause| (-325)) + (|:| |elseClause| (-325)))) (|:| |returnBranch| - (-2 (|:| -3586 (-111)) - (|:| -2821 - (-2 (|:| |ints2Floats?| (-111)) (|:| -1473 (-845)))))) - (|:| |blockBranch| (-630 (-324))) - (|:| |commentBranch| (-630 (-1137))) (|:| |callBranch| (-1137)) + (-2 (|:| -3543 (-112)) + (|:| -2794 + (-2 (|:| |ints2Floats?| (-112)) (|:| -1533 (-848)))))) + (|:| |blockBranch| (-631 (-325))) + (|:| |commentBranch| (-631 (-1140))) (|:| |callBranch| (-1140)) (|:| |forBranch| - (-2 (|:| -1457 (-1071 (-934 (-553)))) - (|:| |span| (-934 (-553))) (|:| -4310 (-324)))) - (|:| |labelBranch| (-1099)) - (|:| |loopBranch| (-2 (|:| |switch| (-1154)) (|:| -4310 (-324)))) + (-2 (|:| -3827 (-1074 (-937 (-554)))) + (|:| |span| (-937 (-554))) (|:| -4319 (-325)))) + (|:| |labelBranch| (-1102)) + (|:| |loopBranch| (-2 (|:| |switch| (-1157)) (|:| -4319 (-325)))) (|:| |commonBranch| - (-2 (|:| -4298 (-1155)) (|:| |contents| (-630 (-1155))))) - (|:| |printBranch| (-630 (-845))))) - (-5 *1 (-324))))) + (-2 (|:| -4309 (-1158)) (|:| |contents| (-631 (-1158))))) + (|:| |printBranch| (-631 (-848))))) + (-5 *1 (-325))))) (((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-833)) (-4 *5 (-779)) - (-4 *6 (-545)) (-4 *7 (-931 *6 *5 *3)) - (-5 *1 (-455 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1020 (-401 (-553))) (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) - (-15 -3974 (*7 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1193 *2)) - (-4 *2 (-1079)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-1079)) (-4 *2 (-833)) - (-5 *1 (-1193 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-4 *6 (-868 *5)) (-5 *2 (-867 *5 *6 (-630 *6))) - (-5 *1 (-869 *5 *6 *4)) (-5 *3 (-630 *6)) (-4 *4 (-601 (-874 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-5 *2 (-630 (-288 *3))) (-5 *1 (-869 *5 *3 *4)) - (-4 *3 (-1020 (-1155))) (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-5 *2 (-630 (-288 (-934 *3)))) - (-5 *1 (-869 *5 *3 *4)) (-4 *3 (-1031)) - (-2826 (-4 *3 (-1020 (-1155)))) (-4 *3 (-868 *5)) - (-4 *4 (-601 (-874 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-5 *2 (-871 *5 *3)) (-5 *1 (-869 *5 *3 *4)) - (-2826 (-4 *3 (-1020 (-1155)))) (-2826 (-4 *3 (-1031))) - (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-674 (-401 (-934 *4)))) (-4 *4 (-445)) - (-5 *2 (-630 (-3 (-401 (-934 *4)) (-1144 (-1155) (-934 *4))))) - (-5 *1 (-286 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1081 (-1081 *3))) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) + (-12 (-4 *2 (-344)) (-4 *2 (-1034)) (-5 *1 (-699 *2 *3)) + (-4 *3 (-1217 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-909)) - (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) - (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) - (-5 *1 (-150)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-909)) (-5 *4 (-401 (-553))) - (-5 *2 - (-2 (|:| |brans| (-630 (-630 (-925 (-220))))) - (|:| |xValues| (-1073 (-220))) (|:| |yValues| (-1073 (-220))))) - (-5 *1 (-150))))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-1 (-112) *8))) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-546)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-2 (|:| |goodPols| (-631 *8)) (|:| |badPols| (-631 *8)))) + (-5 *1 (-962 *5 *6 *7 *8)) (-5 *4 (-631 *8))))) (((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-1079)) (-5 *2 (-630 *1)) - (-4 *1 (-376 *3 *4)))) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-5 *2 (-758)))) ((*1 *2 *1) - (-12 (-5 *2 (-630 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-712)))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) + (-5 *2 (-758)))) ((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-931 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) - (-5 *2 (-1017)) (-5 *1 (-734))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) - (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) - (|:| -4334 *6))) - (-5 *1 (-997 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1031)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) - (-5 *3 (-630 (-553))))) + (-12 (-5 *2 (-758)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-713))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1140)) (-5 *4 (-167 (-221))) (-5 *5 (-554)) + (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) + (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) - (-5 *3 (-630 (-553)))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-430))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-757)) (-5 *4 (-553)) (-5 *1 (-438 *2)) (-4 *2 (-1031))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *6)) (-4 *1 (-931 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-757)))) - ((*1 *2 *1) - (-12 (-4 *1 (-931 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-757))))) -(((*1 *1 *1 *1) (-4 *1 (-538)))) + (-12 (-4 *1 (-681 *3)) (-4 *3 (-1082)) + (-5 *2 (-631 (-2 (|:| -2701 *3) (|:| -2777 (-758)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-545)) - (-5 *2 (-1151 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1214 *4)) (-5 *1 (-793 *4 *2 *3 *5)) - (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *3 (-641 *2)) - (-4 *5 (-641 (-401 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1214 *4)) (-5 *1 (-793 *4 *2 *5 *3)) - (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) (-4 *5 (-641 *2)) - (-4 *3 (-641 (-401 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *2 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-962 *4 *5 *6 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *3 (-937 (-554))) + (-5 *1 (-325)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1074 (-937 (-554)))) (-5 *1 (-325))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 - (-2 (|:| -4124 (-674 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-674 *3)))) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) - (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *1)) (-5 *4 (-1238 *1)) (-4 *1 (-626 *5)) - (-4 *5 (-1031)) - (-5 *2 (-2 (|:| -3344 (-674 *5)) (|:| |vec| (-1238 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 *1)) (-4 *1 (-626 *4)) (-4 *4 (-1031)) - (-5 *2 (-674 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) - (-5 *2 - (-2 (|:| |ir| (-574 (-401 *6))) (|:| |specpart| (-401 *6)) - (|:| |polypart| *6))) - (-5 *1 (-563 *5 *6)) (-5 *3 (-401 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3168 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) + (-5 *1 (-201))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-402 (-937 *6)) (-1147 (-1158) (-937 *6)))) + (-5 *5 (-758)) (-4 *6 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *6))))) + (-5 *1 (-287 *6)) (-5 *4 (-675 (-402 (-937 *6)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) (-4 *5 (-357)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -1686 (-401 *6)) - (|:| |special| (-401 *6)))) - (-5 *1 (-713 *5 *6)) (-5 *3 (-401 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-357)) (-5 *2 (-630 *3)) (-5 *1 (-878 *3 *4)) - (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-757)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -3313 *3) (|:| -3323 *3))) (-5 *1 (-878 *3 *5)) - (-4 *3 (-1214 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) - (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) - (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) - (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1124 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-630 *9)) (-5 *3 (-630 *8)) (-5 *4 (-111)) - (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) - (-4 *6 (-779)) (-4 *7 (-833)) (-5 *1 (-1124 *5 *6 *7 *8 *9))))) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-402 (-937 *5)) (-1147 (-1158) (-937 *5)))) + (|:| |eigmult| (-758)) (|:| |eigvec| (-631 *4)))) + (-4 *5 (-446)) (-5 *2 (-631 (-675 (-402 (-937 *5))))) + (-5 *1 (-287 *5)) (-5 *4 (-675 (-402 (-937 *5))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-13 (-27) (-1180) (-425 (-167 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) + (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 (-167 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1184 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-758)) (-4 *4 (-358)) (-5 *1 (-881 *2 *4)) + (-4 *2 (-1217 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) + (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6)) + (-4 *4 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1154 *1)) (-4 *1 (-997))))) +(((*1 *1) (-5 *1 (-432)))) +(((*1 *2 *3) (-12 (-5 *3 (-928 *2)) (-5 *1 (-967 *2)) (-4 *2 (-1034))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546))))) +(((*1 *2) + (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) (-4 *6 (-1217 (-402 *5))) + (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6))))) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-302)) (-4 *3 (-546)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-962 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))) +(((*1 *1) (-5 *1 (-790)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-373)) (-5 *1 (-1043))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1008 (-826 (-553)))) (-5 *1 (-583 *3)) (-4 *3 (-1031))))) + (-12 (-5 *3 (-675 (-311 (-221)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) + (-5 *1 (-201))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1217 (-402 *2))) (-5 *2 (-554)) (-5 *1 (-898 *4 *3)) + (-4 *3 (-1217 (-402 *4)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1158)) (-5 *3 (-429)) (-4 *5 (-836)) + (-5 *1 (-1088 *5 *4)) (-4 *4 (-425 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-675 (-937 *4))) (-5 *1 (-1013 *4)) + (-4 *4 (-1034))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-674 (-1151 *8))) (-4 *5 (-1031)) (-4 *8 (-1031)) - (-4 *6 (-1214 *5)) (-5 *2 (-674 *6)) (-5 *1 (-494 *5 *6 *7 *8)) - (-4 *7 (-1214 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *3)) (-5 *1 (-1107 *4 *3)) (-4 *4 (-1214 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1137)) (-5 *1 (-299))))) + (-12 (-5 *3 (-1241 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) + (-4 *1 (-711 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1217 *5)) + (-5 *2 (-675 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-445)) - (-5 *2 - (-630 - (-2 (|:| |eigval| (-3 (-401 (-934 *4)) (-1144 (-1155) (-934 *4)))) - (|:| |eigmult| (-757)) - (|:| |eigvec| (-630 (-674 (-401 (-934 *4)))))))) - (-5 *1 (-286 *4)) (-5 *3 (-674 (-401 (-934 *4))))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) + (-12 (-5 *3 (-631 (-600 *5))) (-4 *4 (-836)) (-5 *2 (-600 *5)) + (-5 *1 (-563 *4 *5)) (-4 *5 (-425 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158)) + (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-188)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1158)) + (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-739))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-344))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-894))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-758)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806 *3)) (-4 *3 (-836))))) +(((*1 *2 *1) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-630 (-373))) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-373))) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-373))) (-5 *1 (-461)))) + (-12 (-5 *2 (-631 (-374))) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-374))) (-5 *1 (-462)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-856)) (-5 *2 (-1243)) (-5 *1 (-1239)))) + (-12 (-5 *3 (-906)) (-5 *4 (-859)) (-5 *2 (-1246)) (-5 *1 (-1242)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239))))) + (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-846)) (-5 *3 (-128)) (-5 *2 (-1102))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-743))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) (-5 *2 (-630 *4)) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-553)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-385))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *1 (-790 *4 *2)) (-4 *2 (-13 (-29 *4) (-1177) (-941))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *3) - (-12 (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) (-4 *3 (-1031))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 *3)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) - (-4 *3 (-163 *6)) (-4 (-934 *6) (-868 *5)) - (-4 *6 (-13 (-868 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-871 *4 *1)) (-5 *3 (-874 *4)) (-4 *1 (-868 *4)) - (-4 *4 (-1079)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 *6)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) - (-4 *6 (-13 (-1079) (-1020 *3))) (-4 *3 (-868 *5)) - (-5 *1 (-913 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 *3)) (-4 *5 (-1079)) - (-4 *3 (-13 (-424 *6) (-601 *4) (-868 *5) (-1020 (-599 $)))) - (-5 *4 (-874 *5)) (-4 *6 (-13 (-545) (-833) (-868 *5))) - (-5 *1 (-914 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 (-553) *3)) (-5 *4 (-874 (-553))) (-4 *3 (-538)) - (-5 *1 (-915 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 *6)) (-5 *3 (-599 *6)) (-4 *5 (-1079)) - (-4 *6 (-13 (-833) (-1020 (-599 $)) (-601 *4) (-868 *5))) - (-5 *4 (-874 *5)) (-5 *1 (-916 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-867 *5 *6 *3)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) - (-4 *6 (-868 *5)) (-4 *3 (-651 *6)) (-5 *1 (-917 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-871 *6 *3) *8 (-874 *6) (-871 *6 *3))) - (-4 *8 (-833)) (-5 *2 (-871 *6 *3)) (-5 *4 (-874 *6)) - (-4 *6 (-1079)) (-4 *3 (-13 (-931 *9 *7 *8) (-601 *4))) - (-4 *7 (-779)) (-4 *9 (-13 (-1031) (-833) (-868 *6))) - (-5 *1 (-918 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 *3)) (-4 *5 (-1079)) - (-4 *3 (-13 (-931 *8 *6 *7) (-601 *4))) (-5 *4 (-874 *5)) - (-4 *7 (-868 *5)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *8 (-13 (-1031) (-833) (-868 *5))) - (-5 *1 (-918 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 *3)) (-4 *5 (-1079)) (-4 *3 (-974 *6)) - (-4 *6 (-13 (-545) (-868 *5) (-601 *4))) (-5 *4 (-874 *5)) - (-5 *1 (-921 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-871 *5 (-1155))) (-5 *3 (-1155)) (-5 *4 (-874 *5)) - (-4 *5 (-1079)) (-5 *1 (-922 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-630 (-874 *7))) (-5 *5 (-1 *9 (-630 *9))) - (-5 *6 (-1 (-871 *7 *9) *9 (-874 *7) (-871 *7 *9))) (-4 *7 (-1079)) - (-4 *9 (-13 (-1031) (-601 (-874 *7)) (-1020 *8))) - (-5 *2 (-871 *7 *9)) (-5 *3 (-630 *9)) (-4 *8 (-13 (-1031) (-833))) - (-5 *1 (-923 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-757)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-779)) - (-4 *9 (-833)) (-4 *3 (-1045 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1049 *7 *8 *9 *3 *4)) (-4 *4 (-1051 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-757)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-779)) - (-4 *9 (-833)) (-4 *3 (-1045 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1124 *7 *8 *9 *3 *4)) (-4 *4 (-1088 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-439)) (-5 *3 (-553))))) -(((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 (-474 *3 *4))) (-14 *3 (-630 (-1155))) - (-4 *4 (-445)) (-5 *1 (-618 *3 *4))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-591 *4 *3)) (-4 *4 (-1079)) - (-4 *3 (-1192)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1155)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-687 *3 *5 *6 *7)) - (-4 *3 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192)) - (-4 *7 (-1192)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *3 *5 *6)) - (-4 *3 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-1234 *4 *2)) + (-4 *4 (-38 (-402 (-554))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154 (-554))) (-5 *2 (-554)) (-5 *1 (-927))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374)))) + ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-374))))) +(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-758))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-121 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-903)) (-5 *1 (-1080 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-539)) (-4 *3 (-546)))) + ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-539)) (-4 *3 (-1082)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-993 *3)) (-4 *3 (-1023 (-402 (-554))))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-600 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) (-5 *5 (-1154 *2)) + (-4 *2 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-600 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1158))) + (-5 *5 (-402 (-1154 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *1 (-550 *6 *2 *7)) (-4 *7 (-1082))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1192)) - (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) + (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) - (-4 *5 (-367 *2)) (-4 *2 (-1192)))) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-368 *2)) + (-4 *5 (-368 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1192)))) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-630 (-553))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 (-553)) (-14 *5 (-757)))) + (-12 (-5 *3 (-631 (-554))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-554)) (-14 *5 (-758)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-757)))) + (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-758)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-757)))) + (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-758)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-757)))) + (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-758)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-757)))) + (-12 (-5 *3 (-554)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-758)))) ((*1 *2 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-553)) - (-14 *4 (-757)))) + (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-554)) + (-14 *4 (-758)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-240 (-1137))) (-5 *1 (-209 *4)) + (-12 (-5 *3 (-1158)) (-5 *2 (-241 (-1140))) (-5 *1 (-210 *4)) (-4 *4 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ *3)) (-15 -2524 ((-1243) $)) - (-15 -2602 ((-1243) $))))))) + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ *3)) (-15 -2524 ((-1246) $)) + (-15 -2941 ((-1246) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-971)) (-5 *1 (-209 *3)) + (-12 (-5 *2 (-974)) (-5 *1 (-210 *3)) (-4 *3 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) - (-15 -2602 ((-1243) $))))))) + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) + (-15 -2941 ((-1246) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-757)) (-5 *1 (-240 *4)) (-4 *4 (-833)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-833)))) + (-12 (-5 *3 "count") (-5 *2 (-758)) (-5 *1 (-241 *4)) (-4 *4 (-836)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-836)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-833)))) + (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-836)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) + (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1192)))) + (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1195)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1214 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1217 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-630 *1)) (-4 *1 (-296)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1196)) (-4 *3 (-1214 *2)) - (-4 *4 (-1214 (-401 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-553)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1137)) (-5 *1 (-495)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-52)) (-5 *1 (-619)))) + (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2)) + (-4 *4 (-1217 (-402 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-554)) (-4 *1 (-412 *2)) (-4 *2 (-170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1140)) (-5 *1 (-496)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-620)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1205 (-553))) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) + (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-757)) (-5 *1 (-660 *2)) (-4 *2 (-1079)))) + (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-630 (-553))) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) + (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-630 (-874 *4))) (-5 *1 (-874 *4)) - (-4 *4 (-1079)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1079)))) + (-12 (-5 *2 (-114)) (-5 *3 (-631 (-877 *4))) (-5 *1 (-877 *4)) + (-4 *4 (-1082)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-888 *2)) (-4 *2 (-1082)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-887 *4)) (-5 *1 (-886 *4)) - (-4 *4 (-1079)))) + (-12 (-5 *3 (-758)) (-5 *2 (-890 *4)) (-5 *1 (-889 *4)) + (-4 *4 (-1082)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-903)) (-4 *2 (-357)) - (-5 *1 (-975 *4 *2)))) + (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-906)) (-4 *2 (-358)) + (-5 *1 (-978 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-992 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) + (-12 (-5 *3 "value") (-4 *1 (-995 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *2 *6 *7)) (-4 *2 (-1031)) - (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) + (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) (-4 *2 (-1034)) + (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *2 *6 *7)) - (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1031)))) + (-12 (-5 *3 (-554)) (-4 *1 (-1037 *4 *5 *2 *6 *7)) + (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1034)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-903)) (-4 *4 (-1079)) - (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) - (-5 *1 (-1055 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))))) + (-12 (-5 *3 (-906)) (-4 *4 (-1082)) + (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) + (-5 *1 (-1058 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-903)) (-4 *4 (-1079)) - (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) - (-5 *1 (-1056 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))))) + (-12 (-5 *3 (-906)) (-4 *4 (-1082)) + (-4 *5 (-13 (-1034) (-871 *4) (-836) (-602 (-877 *4)))) + (-5 *1 (-1059 *4 *5 *2)) + (-4 *2 (-13 (-425 *5) (-871 *4) (-602 (-877 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-553))) (-4 *1 (-1082 *3 *4 *5 *6 *7)) - (-4 *3 (-1079)) (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-4 *7 (-1079)))) + (-12 (-5 *2 (-631 (-554))) (-4 *1 (-1085 *3 *4 *5 *6 *7)) + (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) + (-4 *7 (-1082)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) - (-4 *4 (-1079)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)))) - ((*1 *1 *1 *1) (-4 *1 (-1123))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155)))) + (-12 (-5 *2 (-554)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) + (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) + ((*1 *1 *1 *1) (-4 *1 (-1126))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-1158)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-401 *1)) (-4 *1 (-1214 *2)) (-4 *2 (-1031)) - (-4 *2 (-357)))) + (-12 (-5 *3 (-402 *1)) (-4 *1 (-1217 *2)) (-4 *2 (-1034)) + (-4 *2 (-358)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-401 *1)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)) - (-4 *3 (-545)))) + (-12 (-5 *2 (-402 *1)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)) + (-4 *3 (-546)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1216 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) + (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1226 *2)) (-4 *2 (-1192)))) + (-12 (-5 *3 "last") (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1226 *3)) (-4 *3 (-1192)))) + (-12 (-5 *2 "rest") (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) + (-12 (-5 *3 "first") (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1195)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) (-12 (-5 *1 (-1208 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-757)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) + (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-675 *3)))) + (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-1217 *3)) (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) + (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-675 *3)))) + (-5 *1 (-755 *4 *5)) (-4 *5 (-404 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3)) (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031))))) -(((*1 *2 *1) - (-12 (-5 *2 (-855 (-948 *3) (-948 *3))) (-5 *1 (-948 *3)) - (-4 *3 (-949))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-166 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) - (-5 *1 (-744))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *3 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-931 *4 *3 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1253 (-1155) *3)) (-4 *3 (-1031)) (-5 *1 (-1260 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *1 (-1262 *3 *4))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1137)) (-5 *2 (-760)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-1083)) (-5 *1 (-947))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-553)) (-5 *1 (-1174 *4)) - (-4 *4 (-1031))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-111)) (-5 *5 (-1081 (-757))) (-5 *6 (-757)) + (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-675 *3)))) + (-5 *1 (-970 *4 *3 *5 *6)) (-4 *6 (-711 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-344)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 *3)) (-5 *2 - (-2 (|:| |contp| (-553)) - (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) - (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1192)) (-5 *1 (-1111 *4 *2)) - (-4 *2 (-13 (-591 (-553) *4) (-10 -7 (-6 -4369) (-6 -4370)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-833)) (-4 *3 (-1192)) (-5 *1 (-1111 *3 *2)) - (-4 *2 (-13 (-591 (-553) *3) (-10 -7 (-6 -4369) (-6 -4370))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-630 *6) "failed") (-553) *6 *6)) (-4 *6 (-357)) - (-4 *7 (-1214 *6)) - (-5 *2 (-2 (|:| |answer| (-574 (-401 *7))) (|:| |a0| *6))) - (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-125 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-831))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3713 (-412 *3)))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)) (-4 *2 (-357)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-644 *4 *2)) - (-4 *2 (-641 *4))))) -(((*1 *1 *1) (-4 *1 (-616))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984) (-1177)))))) -(((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-111))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-3 *3 (-630 *1))) - (-4 *1 (-1051 *4 *5 *6 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1077 *3)) (-4 *3 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) + (-2 (|:| -3782 (-675 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-675 *3)))) + (-5 *1 (-1250 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-808))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-833))))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-569))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3908 *1) (|:| -4356 *1) (|:| |associate| *1))) - (-4 *1 (-545))))) -(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158))))) -(((*1 *2 *3) - (-12 (-4 *1 (-877)) - (-5 *3 - (-2 (|:| |pde| (-630 (-310 (-220)))) - (|:| |constraints| - (-630 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-757)) (|:| |boundaryType| (-553)) - (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) - (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) - (|:| |tol| (-220)))) - (-5 *2 (-1017))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-5 *2 (-757)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-672 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-757)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-757)) (-5 *1 (-673 *4 *5 *6 *3)) - (-4 *3 (-672 *4 *5 *6)))) + (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-1201 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-539)))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1140)) (-5 *1 (-697))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-554))) (-5 *1 (-300))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-631 (-631 (-631 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-631 *5)) (-4 *5 (-836)) (-5 *1 (-1166 *5))))) +(((*1 *1) (-5 *1 (-1246)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-545)) - (-5 *2 (-757))))) -(((*1 *2) - (-12 (-4 *4 (-1196)) (-4 *5 (-1214 *4)) (-4 *6 (-1214 (-401 *5))) - (-5 *2 (-757)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-757))))) -(((*1 *1) (-5 *1 (-154))) - ((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-1248))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-180))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-947))) (-5 *1 (-285))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-141))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-1079)) (-5 *1 (-887 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-646))) ((*1 *1 *1 *1) (-5 *1 (-1099)))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-810))))) + (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-4 *5 (-836)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1205 (-553))) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-4 *1 (-636 *3)) (-4 *3 (-1192))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324))))) + (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1151 *6)) (-4 *6 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *2 (-1151 *7)) (-5 *1 (-315 *4 *5 *6 *7)) - (-4 *7 (-931 *6 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-1178 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-111))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-757)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1192)) (-5 *2 (-757)) - (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-833)) (-5 *2 (-757)) (-5 *1 (-423 *3 *4)) - (-4 *3 (-424 *4)))) - ((*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-537 *3)) (-4 *3 (-538)))) - ((*1 *2) (-12 (-4 *1 (-749)) (-5 *2 (-757)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-757)) (-5 *1 (-782 *3 *4)) - (-4 *3 (-783 *4)))) - ((*1 *2) - (-12 (-4 *4 (-545)) (-5 *2 (-757)) (-5 *1 (-973 *3 *4)) - (-4 *3 (-974 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-757)) (-5 *1 (-978 *3 *4)) - (-4 *3 (-979 *4)))) - ((*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-993 *3)) (-4 *3 (-994)))) - ((*1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-757)))) - ((*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-1039 *3)) (-4 *3 (-1040))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-529))) ((*1 *1) (-4 *1 (-708))) - ((*1 *1) (-4 *1 (-712))) - ((*1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) - ((*1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-833))))) -(((*1 *1 *1 *1) (-4 *1 (-646))) ((*1 *1 *1 *1) (-5 *1 (-1099)))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-931 *4 *6 *5)) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *2 (-111)) (-5 *1 (-906 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-13 (-301) (-144))) - (-4 *5 (-13 (-833) (-601 (-1155)))) (-4 *6 (-779)) (-5 *2 (-111)) - (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-738))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1229 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) - ((*1 *1 *1) (-5 *1 (-845)))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-630 (-553))) (-5 *3 (-111)) (-5 *1 (-1089))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-529))) - ((*1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-545)) (-4 *4 (-833)) - (-5 *1 (-562 *4 *2)) (-4 *2 (-424 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *2 (-630 (-220))) - (-5 *1 (-461))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-2 (|:| -1482 (-114)) (|:| |w| (-221)))) (-5 *1 (-200))))) +(((*1 *1 *1) + (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) + (-4 *2 (-446)))) + ((*1 *1 *1) + (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1217 *2)) + (-4 *4 (-1217 (-402 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-446)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *3 (-446)))) + ((*1 *1 *1) + (-12 (-4 *1 (-934 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-446)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-302)) (-4 *3 (-546)) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-1217 *3))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-761)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1086)) (-5 *1 (-950))))) +(((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-836)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-836)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-277 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-630 - (-2 (|:| |eigval| (-3 (-401 (-934 *4)) (-1144 (-1155) (-934 *4)))) - (|:| |geneigvec| (-630 (-674 (-401 (-934 *4)))))))) - (-5 *1 (-286 *4)) (-5 *3 (-674 (-401 (-934 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-5 *2 (-757)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) - (-5 *2 (-757)))) - ((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-712))))) -(((*1 *2 *3) + (-2 + (|:| -2564 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2701 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1138 (-221))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3827 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-549)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-681 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) - (-5 *1 (-200))))) -(((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1214 (-401 *2))) (-5 *2 (-553)) (-5 *1 (-895 *4 *3)) - (-4 *3 (-1214 (-401 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) + (-2 + (|:| -2564 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (|:| -2701 + (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) + (|:| |expense| (-374)) (|:| |accuracy| (-374)) + (|:| |intermediateResults| (-374)))))) + (-5 *1 (-790)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)) + (-4 *4 (-38 (-402 (-554)))) (-4 *4 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161)))) + ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1161))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1158)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-758)) (-5 *3 (-928 *5)) (-4 *5 (-1034)) + (-5 *1 (-1146 *4 *5)) (-14 *4 (-906)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-758))) (-5 *3 (-758)) (-5 *1 (-1146 *4 *5)) + (-14 *4 (-906)) (-4 *5 (-1034)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-758))) (-5 *3 (-928 *5)) (-4 *5 (-1034)) + (-5 *1 (-1146 *4 *5)) (-14 *4 (-906))))) +(((*1 *2) (-12 (-5 *2 (-1129 (-1140))) (-5 *1 (-386))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-1231 *4 *2)) - (-4 *4 (-38 (-401 (-553))))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-630 (-630 (-630 *5)))) (-5 *3 (-1 (-111) *5 *5)) - (-5 *4 (-630 *5)) (-4 *5 (-833)) (-5 *1 (-1163 *5))))) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-631 *7)) (-4 *7 (-836)) + (-4 *8 (-934 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1241 (-402 *8)) "failed")) + (|:| -3782 (-631 (-1241 (-402 *8)))))) + (-5 *1 (-655 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135 (-1135 *4))) (-5 *2 (-1135 *4)) (-5 *1 (-1139 *4)) - (-4 *4 (-38 (-401 (-553)))) (-4 *4 (-1031))))) -(((*1 *1) - (-12 (-4 *1 (-398)) (-2826 (|has| *1 (-6 -4360))) - (-2826 (|has| *1 (-6 -4352))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1079)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) (-4 *1 (-833))) - ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-833)))) - ((*1 *1) (-5 *1 (-1099)))) + (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) + (-4 *3 (-368 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-497 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546)) + (-5 *2 (-2 (|:| |num| (-675 *4)) (|:| |den| *4))) + (-5 *1 (-679 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *6 (-1217 *5)) + (-5 *2 (-2 (|:| -4329 *7) (|:| |rh| (-631 (-402 *6))))) + (-5 *1 (-794 *5 *6 *7 *3)) (-5 *4 (-631 (-402 *6))) + (-4 *7 (-642 *6)) (-4 *3 (-642 (-402 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1210 *4 *5 *3)) + (-4 *3 (-1217 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-600 *3)) (-5 *5 (-1154 *3)) + (-4 *3 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-600 *3)) (-5 *5 (-402 (-1154 *3))) + (-4 *3 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-575 *3)) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1082))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-119 *2)) (-4 *2 (-1195))))) (((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-768 *3)) (-4 *3 (-1031)))) + (-12 (-5 *2 (-758)) (-5 *1 (-769 *3)) (-4 *3 (-1034)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-945 *3 *2)) (-4 *2 (-129)) (-4 *3 (-545)) - (-4 *3 (-1031)) (-4 *2 (-778)))) + (-12 (-5 *1 (-948 *3 *2)) (-4 *2 (-130)) (-4 *3 (-546)) + (-4 *3 (-1034)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-1151 *3)) (-4 *3 (-1031)))) + (-12 (-5 *2 (-758)) (-5 *1 (-1154 *3)) (-4 *3 (-1034)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-953)) (-4 *2 (-129)) (-5 *1 (-1157 *3)) (-4 *3 (-545)) - (-4 *3 (-1031)))) + (-12 (-5 *2 (-956)) (-4 *2 (-130)) (-5 *1 (-1160 *3)) (-4 *3 (-546)) + (-4 *3 (-1034)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-1211 *4 *3)) (-14 *4 (-1155)) - (-4 *3 (-1031))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-529))))) + (-12 (-5 *2 (-758)) (-5 *1 (-1214 *4 *3)) (-14 *4 (-1158)) + (-4 *3 (-1034))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1044 (-1009 *4) (-1154 (-1009 *4)))) (-5 *3 (-848)) + (-5 *1 (-1009 *4)) (-4 *4 (-13 (-834) (-358) (-1007)))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-302)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4137 *1))) + (-4 *1 (-302))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1012 *5 *6 *7 *8))) (-5 *1 (-1012 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-112)) (-4 *8 (-1048 *5 *6 *7)) + (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-631 (-1128 *5 *6 *7 *8))) (-5 *1 (-1128 *5 *6 *7 *8))))) +(((*1 *2) + (-12 + (-5 *2 + (-1241 (-631 (-2 (|:| -2794 (-895 *3)) (|:| -2717 (-1102)))))) + (-5 *1 (-346 *3 *4)) (-14 *3 (-906)) (-14 *4 (-906)))) + ((*1 *2) + (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))) + (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1154 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1241 (-631 (-2 (|:| -2794 *3) (|:| -2717 (-1102)))))) + (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-906))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *3) + (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1076 (-829 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) + (-5 *1 (-300)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-243 *3 *4)) + (-14 *3 (-631 (-1158))) (-4 *4 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-554))) (-14 *3 (-631 (-1158))) + (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1034)) + (-4 *5 (-234 (-2563 *3) (-758))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-475 *3 *4)) + (-14 *3 (-631 (-1158))) (-4 *4 (-1034))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-530))))) +(((*1 *2 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1 (-1138 (-937 *4)) (-1138 (-937 *4)))) + (-5 *1 (-1249 *4)) (-4 *4 (-358))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1208 (-554))) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1138 (-2 (|:| |k| (-554)) (|:| |c| *6)))) + (-5 *4 (-1011 (-829 (-554)))) (-5 *5 (-1158)) (-5 *7 (-402 (-554))) + (-4 *6 (-1034)) (-5 *2 (-848)) (-5 *1 (-584 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1) (-5 *1 (-462)))) (((*1 *1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-660 *3)) (-4 *3 (-1031)) - (-4 *3 (-1079))))) + (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) + (-14 *4 (-906))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)) (-4 *2 (-546))))) +(((*1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-661 *3)) (-4 *3 (-1034)) + (-4 *3 (-1082))))) +(((*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-530))) ((*1 *1) (-4 *1 (-709))) + ((*1 *1) (-4 *1 (-713))) + ((*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) + ((*1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-928 *3) (-928 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1180) (-987)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-1092)) (-5 *3 (-554))))) +(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-848))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-402 (-937 (-167 (-554)))))) + (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-289 (-402 (-937 (-167 (-554))))))) + (-5 *2 (-631 (-631 (-289 (-937 (-167 *4)))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 (-167 (-554))))) + (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-289 (-402 (-937 (-167 (-554)))))) + (-5 *2 (-631 (-289 (-937 (-167 *4))))) (-5 *1 (-373 *4)) + (-4 *4 (-13 (-358) (-834)))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-554)) (-14 *3 (-758)) + (-4 *4 (-170))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-674 *3)) (|:| |invmval| (-674 *3)) - (|:| |genIdeal| (-497 *3 *4 *5 *6)))) - (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5))))) + (-2 (|:| |mval| (-675 *3)) (|:| |invmval| (-675 *3)) + (|:| |genIdeal| (-498 *3 *4 *5 *6)))) + (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-530))) + ((*1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1482 (-114)) (|:| |arg| (-631 (-877 *3))))) + (-5 *1 (-877 *3)) (-4 *3 (-1082)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-631 (-877 *4))) + (-5 *1 (-877 *4)) (-4 *4 (-1082))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) + (-4 *3 (-13 (-425 *4) (-987)))))) +(((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034))))) +(((*1 *2) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1162))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *4 (-1158)) + (-5 *1 (-1161)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1161)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-432)) (-5 *3 (-1158)) (-5 *1 (-1162)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-432)) (-5 *3 (-631 (-1158))) (-5 *1 (-1162))))) +(((*1 *2 *3) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1217 *4)) + (-4 *5 (-1217 (-402 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-829 (-221)))) (-5 *4 (-221)) (-5 *2 (-631 *4)) + (-5 *1 (-262))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1154 *3)) (-4 *3 (-1034)) (-4 *1 (-1217 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-758)) + (-4 *3 (-13 (-713) (-363) (-10 -7 (-15 ** (*3 *3 (-554)))))) + (-5 *1 (-242 *3))))) +(((*1 *1) (-5 *1 (-549)))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *3 (-221)) + (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-554)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1023 *4)) (-4 *3 (-13 (-836) (-546)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1158))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1118)))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-188)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-295)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-221))) (-5 *2 (-631 (-1140))) (-5 *1 (-300))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) + (-12 (-5 *3 (-631 (-258))) (-5 *4 (-1158)) (-5 *2 (-112)) + (-5 *1 (-258))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-712) (-25)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1187 *3)) (-4 *3 (-956))))) + (-12 (-5 *2 (-2 (|:| -3633 (-631 *3)) (|:| -2786 (-631 *3)))) + (-5 *1 (-1196 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-167 (-221)))) + (-5 *2 (-1020)) (-5 *1 (-741))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-539))))) +(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-270))))) +(((*1 *1 *1) (-4 *1 (-546)))) +(((*1 *2 *1) (-12 (-4 *1 (-503 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-836))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-890 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-431))))) +(((*1 *1 *2) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-1181 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-631 (-1181 *2))) (-5 *1 (-1181 *2)) (-4 *2 (-1082))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *6)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-5 *2 (-2 (|:| -2498 (-631 *6)) (|:| -1303 (-631 *6))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-631 *7)) (|:| |badPols| (-631 *7)))) + (-5 *1 (-962 *4 *5 *6 *7)) (-5 *3 (-631 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *3)) - (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-1241))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-630 (-599 *6))) (-5 *4 (-1155)) (-5 *2 (-599 *6)) - (-4 *6 (-424 *5)) (-4 *5 (-833)) (-5 *1 (-562 *5 *6))))) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) + (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) + (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) + (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-934 *4 *5 *6)) (-5 *2 (-631 (-631 *7))) + (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-631 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-780)) + (-4 *7 (-836)) (-4 *8 (-934 *5 *6 *7)) (-5 *2 (-631 (-631 *8))) + (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-631 *8))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-167 (-221))) (-5 *5 (-554)) (-5 *6 (-1140)) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-745))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1238 *4)) (-5 *3 (-674 *4)) (-4 *4 (-357)) - (-5 *1 (-652 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-357)) - (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4370)))) - (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4370)))) - (-5 *1 (-653 *4 *5 *2 *3)) (-4 *3 (-672 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-630 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) - (-5 *1 (-800 *2 *3)) (-4 *3 (-641 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-466))) ((*1 *1 *1 *1) (-4 *1 (-747)))) + (-12 (-5 *2 (-859)) (-5 *3 (-631 (-258))) (-5 *1 (-256))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1161))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836)) + (-5 *2 (-59 (-631 (-658 *5)))) (-5 *1 (-658 *5))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -13362,4961 +13660,4668 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1135 (-220))) + (-3 (|:| |str| (-1138 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1457 + (|:| -3827 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-548))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) - (-5 *4 (-757)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1051 *5 *6 *7 *8)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-1243)) - (-5 *1 (-1049 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-2 (|:| |val| (-630 *8)) (|:| -3233 *9)))) - (-5 *4 (-757)) (-4 *8 (-1045 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) - (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) (-5 *2 (-1243)) - (-5 *1 (-1124 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-833)) (-5 *2 (-630 (-630 *4))) (-5 *1 (-1163 *4)) - (-5 *3 (-630 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) (-4 *5 (-424 *4)) - (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-887 *4)) (-4 *4 (-1079)) (-5 *2 (-630 (-757))) - (-5 *1 (-886 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1214 *4)) - (-5 *1 (-763 *3 *4 *5 *2 *6)) (-4 *2 (-1214 *5)) (-14 *6 (-903)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) - ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-357)) (-4 *2 (-362))))) -(((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-445)) (-4 *4 (-833)) (-4 *5 (-779)) (-5 *2 (-630 *6)) - (-5 *1 (-969 *3 *4 *5 *6)) (-4 *6 (-931 *3 *5 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)))) - ((*1 *1) (-4 *1 (-1130)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) - (-5 *2 (-1017)) (-5 *1 (-735)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *5 (-220)) - (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) - (-5 *8 (-382)) (-5 *2 (-1017)) (-5 *1 (-735))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-630 (-674 (-553)))) - (-5 *1 (-1089))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-13 (-1031) (-703 (-401 (-553))))) - (-4 *5 (-833)) (-5 *1 (-1254 *4 *5 *2)) (-4 *2 (-1259 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-236)) (-5 *3 (-1137)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-856))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) - (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-672 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) - (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031)))) - ((*1 *2 *3) - (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) - (-5 *1 (-673 *2 *4 *5 *3)) (-4 *3 (-672 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4371 "*"))) (-4 *2 (-1031))))) -(((*1 *1 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-949))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *3) - (-12 (-5 *2 (-553)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-243))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-833) (-545)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-805 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-829)) (-5 *1 (-1261 *3 *2)) (-4 *3 (-1031))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-745))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-757)) (-5 *4 (-1238 *2)) (-4 *5 (-301)) - (-4 *6 (-974 *5)) (-4 *2 (-13 (-403 *6 *7) (-1020 *6))) - (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1214 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-808))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-5 *2 (-1151 *3)) (-5 *1 (-1166 *3)) - (-4 *3 (-357))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1089))))) + (-5 *1 (-549))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1151 *9)) (-5 *4 (-630 *7)) (-4 *7 (-833)) - (-4 *9 (-931 *8 *6 *7)) (-4 *6 (-779)) (-4 *8 (-301)) - (-5 *2 (-630 (-757))) (-5 *1 (-728 *6 *7 *8 *9)) (-5 *5 (-757))))) -(((*1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-956))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-553)) (-5 *2 (-111)) (-5 *1 (-542))))) -(((*1 *2) - (-12 (-4 *1 (-343)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-545)) - (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1158)))) - ((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1155)) (-5 *2 (-1243)) (-5 *1 (-1158))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1079)) (-5 *2 (-111)) (-5 *1 (-867 *3 *4 *5)) - (-4 *3 (-1079)) (-4 *5 (-651 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-871 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-633 *3)) (-4 *3 (-1031)) - (-5 *1 (-700 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-820 *3))))) + (-12 (-5 *3 (-2 (|:| |totdeg| (-758)) (|:| -2598 *4))) (-5 *5 (-758)) + (-4 *4 (-934 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-443 *6 *7 *8 *4))))) (((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) + (-12 (-5 *2 (-1246)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) - (-5 *1 (-326))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-630 - (-2 - (|:| -2578 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -3256 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1135 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1457 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-548)))) - ((*1 *2 *1) - (-12 (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) - (-5 *2 (-630 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-401 (-553))) - (-4 *4 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -3062 (-630 (-845))) (|:| -2345 (-630 (-845))) - (|:| |presup| (-630 (-845))) (|:| -2994 (-630 (-845))) - (|:| |args| (-630 (-845))))) - (-5 *1 (-1155))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-599 *4)) (-5 *6 (-1155)) - (-4 *4 (-13 (-424 *7) (-27) (-1177))) - (-4 *7 (-13 (-445) (-1020 (-553)) (-833) (-144) (-626 (-553)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-555 *7 *4 *3)) (-4 *3 (-641 *4)) (-4 *3 (-1079))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *4))))))) - (-5 *3 (-630 *7)) (-4 *4 (-13 (-301) (-144))) - (-4 *7 (-931 *4 *6 *5)) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *1 (-906 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1135 (-553))) (-5 *1 (-1139 *4)) (-4 *4 (-1031)) - (-5 *3 (-553))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-108)) (-5 *1 (-172)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1155)) (-5 *2 (-108)) (-5 *1 (-1064))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1236 *3)) (-4 *3 (-1192)) (-4 *3 (-1031)) - (-5 *2 (-674 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-530 *3 *2)) - (-4 *2 (-1229 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-4 *4 (-1214 *3)) - (-4 *5 (-710 *3 *4)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-1229 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-5 *1 (-535 *3 *2)) - (-4 *2 (-1229 *3)))) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-934 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-443 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-13 (-545) (-144))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1192)) - (-5 *2 (-630 *3))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-630 - (-630 - (-3 (|:| -4298 (-1155)) - (|:| -1893 (-630 (-3 (|:| S (-1155)) (|:| P (-934 (-553)))))))))) - (-5 *1 (-1159))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) - (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) - ((*1 *1 *1) (-4 *1 (-538))) - ((*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-805 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-875 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1192)) (-5 *2 (-757)))) - ((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-1189 *3)) (-4 *3 (-1192)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-984)) - (-4 *2 (-1031))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-630 (-553))) (-5 *3 (-674 (-553))) (-5 *1 (-1089))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-430))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-1029))))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-746))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-959 *4 *5 *6 *7))))) + (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) + (-4 *3 (-1217 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-373)) (-5 *1 (-200))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-1069))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-553)) (-5 *1 (-558 *3)) (-4 *3 (-1020 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2134 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) + (-12 (-5 *3 (-758)) (-5 *2 (-1154 *4)) (-5 *1 (-522 *4)) + (-4 *4 (-344))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1082)) (-4 *4 (-1082)) + (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-670 *5 *4 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-213))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *3) + (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)) (-5 *3 (-1140)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-237)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-859))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-127))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4370)) (-4 *4 (-357)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-630 *6)) (-5 *1 (-514 *4 *5 *6 *3)) - (-4 *3 (-672 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4370)) (-4 *4 (-545)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-4 *7 (-974 *4)) (-4 *8 (-367 *7)) - (-4 *9 (-367 *7)) (-5 *2 (-630 *6)) - (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-672 *4 *5 *6)) - (-4 *10 (-672 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-630 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *4 (-169)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4)) (-5 *2 (-630 *6)) (-5 *1 (-673 *4 *5 *6 *3)) - (-4 *3 (-672 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-545)) - (-5 *2 (-630 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) - (-5 *2 (-1017)) (-5 *1 (-742))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-553)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-684))))) -(((*1 *2 *1) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-908)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073 (-220))) (-5 *1 (-909))))) + (|partial| -12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1034)) + (-4 *2 (-1232 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-675 *7)) (-5 *3 (-631 *7)) (-4 *7 (-934 *4 *6 *5)) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1124 *4 *2)) (-14 *4 (-906)) + (-4 *2 (-13 (-1034) (-10 -7 (-6 (-4375 "*"))))) + (-5 *1 (-887 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-810)) (-5 *3 (-630 (-1155))) (-5 *1 (-811))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-934 *5)))) (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144))) - (-5 *2 (-1144 (-630 (-310 *5)) (-630 (-288 (-310 *5))))) - (-5 *1 (-1108 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-833) (-144))) - (-5 *2 (-1144 (-630 (-310 *5)) (-630 (-288 (-310 *5))))) - (-5 *1 (-1108 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) - (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) - (-5 *1 (-774)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-553)) (-5 *6 (-1 (-1243) (-1238 *5) (-1238 *5) (-373))) - (-5 *3 (-1238 (-373))) (-5 *5 (-373)) (-5 *2 (-1243)) - (-5 *1 (-774))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-630 (-674 *3))) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-1010 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-630 (-674 *3))) (-4 *3 (-1031)) (-5 *1 (-1010 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-630 (-401 *7))) - (-4 *7 (-1214 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-546)) (-4 *2 (-446)) (-5 *1 (-954 *2 *3)) + (-4 *3 (-1217 *2))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-112)) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1241 (-631 (-2 (|:| -2794 *4) (|:| -2717 (-1102)))))) + (-4 *4 (-344)) (-5 *2 (-1246)) (-5 *1 (-522 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-600 *3)) (-5 *5 (-631 *3)) + (-4 *3 (-13 (-425 *6) (-27) (-1180))) + (-4 *6 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-563 *6 *7))))) -(((*1 *1) (-5 *1 (-1243)))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-845)))) - ((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-944))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-545)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) - (-4 *2 (-672 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-779)) (-4 *8 (-833)) - (-4 *3 (-1045 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1051 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-630 *4)) - (|:| |todo| (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))))) - (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *3 (-553)) - (-5 *2 (-1017)) (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-740))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-1089))))) -(((*1 *2 *3) - (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-815)) (-5 *3 (-1137))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-128)) (-5 *2 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-301)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-440 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) - (-4 *4 (-301)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-440 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) - (-4 *4 (-301)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-440 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-52))) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-674 (-220))) (-5 *5 (-674 (-553))) (-5 *6 (-220)) - (-5 *3 (-553)) (-5 *2 (-1017)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))) - (-5 *2 (-401 (-553))) (-5 *1 (-1002 *4)) (-4 *4 (-1214 (-553)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1137)) (-5 *3 (-809)) (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-373)))) (-5 *2 (-1073 (-826 (-220)))) - (-5 *1 (-299))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-1079)) (-4 *4 (-1192)) (-5 *2 (-111)) - (-5 *1 (-1135 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-373)) (-5 *1 (-1022))))) -(((*1 *2 *2) (-12 (-5 *2 (-903)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-1172))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-925 *3) (-925 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-357) (-1177) (-984)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1020 (-553))) (-4 *1 (-296)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-887 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301))))) -(((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-712)) (-5 *2 (-111))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-845))) (-5 *2 (-1243)) (-5 *1 (-1117))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-111)) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-4 *3 (-13 (-27) (-1177) (-424 *6) (-10 -8 (-15 -3110 ($ *7))))) - (-4 *7 (-831)) - (-4 *8 - (-13 (-1216 *3 *7) (-357) (-1177) - (-10 -8 (-15 -1330 ($ $)) (-15 -3406 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1137)) (|:| |prob| (-1137)))))) - (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1137)) (-4 *9 (-965 *8)) - (-14 *10 (-1155))))) + (-631 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-758)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-4 *3 (-1082)) (-5 *2 -55)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-692 *3 *4)) (-4 *3 (-1195)) (-4 *4 (-1195))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-554)) (-4 *3 (-170)) (-4 *5 (-368 *3)) + (-4 *6 (-368 *3)) (-5 *1 (-674 *3 *5 *6 *2)) + (-4 *2 (-673 *3 *5 *6))))) +(((*1 *1) (-5 *1 (-568)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) + (-5 *1 (-327))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-244))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-906)) (-4 *5 (-836)) + (-5 *2 (-631 (-658 *5))) (-5 *1 (-658 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *3) (-12 (-5 *2 (-630 (-553))) (-5 *1 (-550)) (-5 *3 (-553))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-113)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-833)) (-5 *1 (-911 *4 *2)) - (-4 *2 (-424 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-1137)) (-5 *2 (-310 (-553))) - (-5 *1 (-912))))) -(((*1 *2) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-1175))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-687 *4 *5 *6 *7)) - (-4 *4 (-601 (-529))) (-4 *5 (-1192)) (-4 *6 (-1192)) - (-4 *7 (-1192))))) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-553)) (-5 *2 (-630 (-2 (|:| -3355 *3) (|:| -3872 *4)))) - (-5 *1 (-681 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-630 (-630 *4)))) (-5 *2 (-630 (-630 *4))) - (-4 *4 (-833)) (-5 *1 (-1163 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-111)) (-5 *1 (-815))))) -(((*1 *2 *3) - (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-630 (-1155))) (-4 *5 (-445)) - (-5 *2 (-474 *4 *5)) (-5 *1 (-618 *4 *5))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1154 *7)) + (-4 *5 (-1034)) (-4 *7 (-1034)) (-4 *2 (-1217 *5)) + (-5 *1 (-495 *5 *2 *6 *7)) (-4 *6 (-1217 *2))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-630 (-934 *4))))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-630 (-934 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-630 (-934 *3))))) - ((*1 *2) - (-12 (-5 *2 (-630 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3))))) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-1246)) + (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-934 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551)))) ((*1 *2 *3) - (-12 (-5 *3 (-1238 (-446 *4 *5 *6 *7))) (-5 *2 (-630 (-934 *4))) - (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *4 (-169)) - (-14 *5 (-903)) (-14 *6 (-630 (-1155))) (-14 *7 (-1238 (-674 *4)))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1214 *5)) - (-4 *5 (-13 (-357) (-144) (-1020 (-553)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) - (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -4334 *6))) - (-5 *1 (-998 *5 *6)) (-5 *3 (-401 *6))))) + (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554))))) (((*1 *2 *3) - (-12 (-5 *2 (-412 (-1151 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1151 *1)) - (-4 *4 (-445)) (-4 *4 (-545)) (-4 *4 (-833)))) - ((*1 *2 *3) - (-12 (-4 *1 (-891)) (-5 *2 (-412 (-1151 *1))) (-5 *3 (-1151 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-290)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-306)) (-5 *1 (-290)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-306)) (-5 *1 (-290)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-1137))) (-5 *3 (-1137)) (-5 *2 (-306)) - (-5 *1 (-290))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) - (-4 *3 (-1079)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-887 *4)) (-4 *4 (-1079)) (-5 *2 (-111)) - (-5 *1 (-886 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-903)) (-5 *2 (-111)) (-5 *1 (-1080 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1082)) (-4 *6 (-1082)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-670 *4 *5 *6)) (-4 *5 (-1082))))) (((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-887 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-630 (-553))) (-5 *2 (-757)) (-5 *1 (-578))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-574 *3) *3 (-1155))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1155))) - (-4 *3 (-278)) (-4 *3 (-616)) (-4 *3 (-1020 *4)) (-4 *3 (-424 *7)) - (-5 *4 (-1155)) (-4 *7 (-601 (-874 (-553)))) (-4 *7 (-445)) - (-4 *7 (-868 (-553))) (-4 *7 (-833)) (-5 *2 (-574 *3)) - (-5 *1 (-562 *7 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-712)) (-4 *2 (-1192))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1243)) (-5 *1 (-817))))) -(((*1 *1) - (-12 (-4 *1 (-398)) (-2826 (|has| *1 (-6 -4360))) - (-2826 (|has| *1 (-6 -4352))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1079)) (-4 *2 (-833)))) - ((*1 *2 *1) (-12 (-4 *1 (-816 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) (-4 *1 (-833))) ((*1 *1) (-5 *1 (-1099)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-1135 (-220))) (-5 *1 (-187)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-310 (-220))) (-5 *4 (-630 (-1155))) - (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-294)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *4 (-630 (-1155))) - (-5 *5 (-1073 (-826 (-220)))) (-5 *2 (-1135 (-220))) (-5 *1 (-294))))) + (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4)) + (-4 *3 (-324 *4)))) + ((*1 *2) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-5 *2 (-758))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1146 3 *3)) (-4 *3 (-1034)) (-4 *1 (-1116 *3)))) + ((*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034))))) (((*1 *2 *3) - (-12 (-4 *4 (-833)) - (-5 *2 - (-2 (|:| |f1| (-630 *4)) (|:| |f2| (-630 (-630 (-630 *4)))) - (|:| |f3| (-630 (-630 *4))) (|:| |f4| (-630 (-630 (-630 *4)))))) - (-5 *1 (-1163 *4)) (-5 *3 (-630 (-630 (-630 *4))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-757)) (-4 *6 (-357)) (-5 *4 (-1186 *6)) - (-5 *2 (-1 (-1135 *4) (-1135 *4))) (-5 *1 (-1246 *6)) - (-5 *5 (-1135 *4))))) -(((*1 *2) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) + (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4)))) + (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-439 *3)) (-4 *3 (-1034))))) (((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *7)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-630 (-630 *4)))) (-5 *2 (-630 (-630 *4))) - (-5 *1 (-1163 *4)) (-4 *4 (-833))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-871 *4 *3)) - (-4 *3 (-1079))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-532 *4 *2 *5 *6)) - (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-757)))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-845))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-4 *2 (-1079)) - (-5 *1 (-871 *4 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-13 (-357) (-1177) (-984))) - (-5 *1 (-173 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-808)) (-5 *1 (-807))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-674 (-553))) (-5 *3 (-630 (-553))) (-5 *1 (-1089))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-757)))) - ((*1 *1 *1) (-4 *1 (-396)))) -(((*1 *2 *3 *2) (-12 (-5 *2 - (-630 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-757)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-779)) (-4 *6 (-931 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-833)) - (-5 *1 (-442 *4 *3 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1196)) (-4 *3 (-1214 *4)) - (-4 *5 (-1214 (-401 *3))) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-4 *2 (-882 *5)) (-5 *1 (-677 *5 *2 *3 *4)) - (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4369))))))) -(((*1 *1 *1) (-5 *1 (-529)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-1243)) (-5 *1 (-1240)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1214 *2)) (-4 *2 (-1214 *4)) (-5 *1 (-967 *4 *2 *3 *5)) - (-4 *4 (-343)) (-4 *5 (-710 *2 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-630 (-52))) (-5 *2 (-1243)) (-5 *1 (-846))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-630 (-1155))) (-4 *4 (-1079)) - (-4 *5 (-13 (-1031) (-868 *4) (-833) (-601 (-874 *4)))) - (-5 *1 (-1055 *4 *5 *2)) - (-4 *2 (-13 (-424 *5) (-868 *4) (-601 (-874 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1079)) - (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) - (-5 *1 (-1055 *3 *4 *2)) - (-4 *2 (-13 (-424 *4) (-868 *3) (-601 (-874 *3))))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 (-674 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-1031)) (-5 *2 (-1238 *4)) - (-5 *1 (-1156 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-5 *2 (-1238 *3)) (-5 *1 (-1156 *3)) - (-4 *3 (-1031))))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-325))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *6)) (-4 *5 (-1079)) - (-4 *6 (-1192)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *2)) (-4 *5 (-1079)) - (-4 *2 (-1192)) (-5 *1 (-627 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *6)) (-5 *4 (-630 *5)) (-4 *6 (-1079)) - (-4 *5 (-1192)) (-5 *2 (-1 *5 *6)) (-5 *1 (-627 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *2)) (-4 *5 (-1079)) - (-4 *2 (-1192)) (-5 *1 (-627 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-630 *5)) (-5 *4 (-630 *6)) - (-4 *5 (-1079)) (-4 *6 (-1192)) (-5 *1 (-627 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1079)) (-4 *2 (-1192)) (-5 *1 (-627 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1123)) (-5 *3 (-141)) (-5 *2 (-757))))) -(((*1 *2) (-12 (-5 *2 (-1126 (-1137))) (-5 *1 (-385))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1238 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) - (-5 *2 (-674 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-674 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) - (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1137)) (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-1243)) - (-5 *1 (-1087 *4 *5 *6 *7 *8)) (-4 *8 (-1051 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-553))) (-4 *3 (-1031)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-98 *3))))) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-575 *3)) (-5 *1 (-421 *5 *3)) + (-4 *3 (-13 (-1180) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-1023 (-554)) (-145))) + (-5 *2 (-575 (-402 (-937 *5)))) (-5 *1 (-560 *5)) + (-5 *3 (-402 (-937 *5)))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4375 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) + (-4 *2 (-1034)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1217 *2)) + (-4 *4 (-673 *2 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-5 *2 - (-2 (|:| |contp| (-553)) - (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) - (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) + (-12 (-5 *3 (-890 (-554))) (-5 *4 (-554)) (-5 *2 (-675 *4)) + (-5 *1 (-1013 *5)) (-4 *5 (-1034)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-675 (-554))) (-5 *1 (-1013 *4)) + (-4 *4 (-1034)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) - (-5 *2 - (-2 (|:| |contp| (-553)) - (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) - (-5 *1 (-1203 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)))) - ((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| -3355 (-1151 *6)) (|:| -2692 (-553))))) - (-4 *6 (-301)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-553)) - (-5 *1 (-728 *4 *5 *6 *7)) (-4 *7 (-931 *6 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-119 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 *4)) (-5 *1 (-1120 *3 *4)) - (-4 *3 (-13 (-1079) (-34))) (-4 *4 (-13 (-1079) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) - ((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) -(((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-301))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-757)) (-4 *1 (-226 *4)) - (-4 *4 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-757)))) - ((*1 *1 *1) (-4 *1 (-228))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) - (-4 *4 (-1214 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) - (-4 *3 (-1214 *2)))) - ((*1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1031)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 (-757))) (-4 *1 (-882 *4)) - (-4 *4 (-1079)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-882 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *1 (-882 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) - (-4 *5 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-401 (-553))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-553))) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-553))) (-5 *4 (-288 *6)) - (-4 *6 (-13 (-27) (-1177) (-424 *5))) - (-4 *5 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-553))) (-5 *4 (-288 *7)) (-5 *5 (-1205 (-553))) - (-4 *7 (-13 (-27) (-1177) (-424 *6))) - (-4 *6 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-553))) - (-4 *3 (-13 (-27) (-1177) (-424 *7))) - (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-401 (-553)))) (-5 *4 (-288 *8)) - (-5 *5 (-1205 (-401 (-553)))) (-5 *6 (-401 (-553))) - (-4 *8 (-13 (-27) (-1177) (-424 *7))) - (-4 *7 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1155)) (-5 *5 (-288 *3)) (-5 *6 (-1205 (-401 (-553)))) - (-5 *7 (-401 (-553))) (-4 *3 (-13 (-27) (-1177) (-424 *8))) - (-4 *8 (-13 (-545) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *3)))) - (-4 *3 (-1031)) (-5 *1 (-583 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-584 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *3)))) - (-4 *3 (-1031)) (-4 *1 (-1198 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-757)) - (-5 *3 (-1135 (-2 (|:| |k| (-401 (-553))) (|:| |c| *4)))) - (-4 *4 (-1031)) (-4 *1 (-1219 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-4 *1 (-1229 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1135 (-2 (|:| |k| (-757)) (|:| |c| *3)))) - (-4 *3 (-1031)) (-4 *1 (-1229 *3))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-674 (-220))) (-5 *4 (-553)) (-5 *2 (-1017)) - (-5 *1 (-734))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-831) (-357))) (-5 *2 (-111)) (-5 *1 (-1041 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *4 *3 *5)) - (-4 *3 (-1214 *4)) - (-4 *5 (-13 (-398) (-1020 *4) (-357) (-1177) (-278)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-636 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) - (-5 *2 (-407 *4 (-401 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1238 *6)) (-4 *6 (-13 (-403 *4 *5) (-1020 *4))) - (-4 *4 (-974 *3)) (-4 *5 (-1214 *4)) (-4 *3 (-301)) - (-5 *1 (-407 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-357)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-733))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-630 - (-2 - (|:| -2578 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -3256 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1135 (-220))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1457 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-548))))) -(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-909))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-545)))) - ((*1 *1 *1) (|partial| -4 *1 (-708)))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-220) (-220) (-220))) - (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) - (-5 *5 (-1073 (-220))) (-5 *6 (-630 (-257))) (-5 *2 (-1112 (-220))) - (-5 *1 (-682)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-925 (-220)) (-220) (-220))) (-5 *4 (-1073 (-220))) - (-5 *5 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-682)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1112 (-220))) (-5 *3 (-1 (-925 (-220)) (-220) (-220))) - (-5 *4 (-1073 (-220))) (-5 *5 (-630 (-257))) (-5 *1 (-682))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1135 *4)) (-5 *3 (-553)) (-4 *4 (-1031)) - (-5 *1 (-1139 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-553)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1031)) - (-14 *4 (-1155)) (-14 *5 *3)))) -(((*1 *2) - (-12 (-5 *2 (-1243)) (-5 *1 (-1169 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079))))) -(((*1 *2 *1) - (-12 (-5 *2 (-171 (-401 (-553)))) (-5 *1 (-116 *3)) (-14 *3 (-553)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1135 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) + (-12 (-5 *3 (-631 (-890 (-554)))) (-5 *4 (-554)) + (-5 *2 (-631 (-675 *4))) (-5 *1 (-1013 *5)) (-4 *5 (-1034)))) ((*1 *2 *3) - (-12 (-5 *2 (-171 (-553))) (-5 *1 (-751 *3)) (-4 *3 (-398)))) - ((*1 *2 *1) - (-12 (-5 *2 (-171 (-401 (-553)))) (-5 *1 (-853 *3)) (-14 *3 (-553)))) - ((*1 *2 *1) - (-12 (-14 *3 (-553)) (-5 *2 (-171 (-401 (-553)))) - (-5 *1 (-854 *3 *4)) (-4 *4 (-851 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *5 (-220)) - (-5 *2 (-1017)) (-5 *1 (-737))))) + (-12 (-5 *3 (-631 (-631 (-554)))) (-5 *2 (-631 (-675 (-554)))) + (-5 *1 (-1013 *4)) (-4 *4 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190 *3)) (-4 *3 (-959))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-664 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079))))) -(((*1 *2 *2) (-12 (-5 *2 (-630 (-310 (-220)))) (-5 *1 (-261))))) -(((*1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-324))) (-5 *1 (-324))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1262 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-169)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-805 *3)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031))))) -(((*1 *2) - (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) (-4 *4 (-1214 *3)) - (-4 *5 (-1214 (-401 *4))) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-4 *5 (-357)) (-5 *2 (-1135 (-1135 (-934 *5)))) - (-5 *1 (-1246 *5)) (-5 *4 (-1135 (-934 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1155)) (-5 *1 (-324))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1192)) (-4 *2 (-833)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1192)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-833))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-220))) (-5 *5 (-553)) (-5 *6 (-1137)) - (-5 *3 (-220)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -3105)))) - (-5 *2 (-1017)) (-5 *1 (-734))))) + (-12 (-5 *3 (-906)) (-5 *1 (-1015 *2)) + (-4 *2 (-13 (-1082) (-10 -8 (-15 -1735 ($ $ $)))))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1126)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-554)) (-5 *5 (-1140)) (-5 *6 (-675 (-221))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-221)) (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-664 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-630 (-1 *6 (-630 *6)))) - (-4 *5 (-38 (-401 (-553)))) (-4 *6 (-1229 *5)) (-5 *2 (-630 *6)) - (-5 *1 (-1231 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2388 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-357)) (-4 *7 (-1214 *6)) - (-5 *2 (-2 (|:| |answer| (-574 (-401 *7))) (|:| |a0| *6))) - (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-925 (-220))) (-5 *4 (-856)) (-5 *2 (-1243)) - (-5 *1 (-461)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1031)) (-4 *1 (-962 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-925 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-925 *3)) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-925 *3)) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)) (-5 *3 (-220))))) + (|partial| -12 (-5 *2 (-402 (-937 *4))) (-5 *3 (-1158)) + (-4 *4 (-13 (-546) (-1023 (-554)) (-145))) (-5 *1 (-560 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111))))) -(((*1 *1 *1) (-4 *1 (-616))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-617 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984) (-1177)))))) + (-12 (-5 *2 (-631 (-2 (|:| |k| (-1158)) (|:| |c| (-1263 *3))))) + (-5 *1 (-1263 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| |k| *3) (|:| |c| (-1265 *3 *4))))) + (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-631 *3)) + (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-5 *1 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 *5)) (-4 *5 (-626 *4)) (-4 *4 (-545)) - (-5 *2 (-111)) (-5 *1 (-625 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1119 *3 *2)) (-4 *3 (-13 (-1079) (-34))) - (-4 *2 (-13 (-1079) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-1031)))) - ((*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-1031))))) -(((*1 *1 *1 *1) (-4 *1 (-140))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-538)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-553))) (-5 *1 (-1029)) - (-5 *3 (-553))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-684)) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-1137))))) -(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1031)) - (-4 *2 (-1198 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |gen| *3) (|:| -2743 *4)))) - (-5 *1 (-634 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-373)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-757)) (-4 *5 (-1031)) (-5 *2 (-553)) - (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1214 *5)) - (-4 *6 (-13 (-398) (-1020 *5) (-357) (-1177) (-278))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1031)) (-5 *2 (-553)) (-5 *1 (-436 *4 *3 *5)) - (-4 *3 (-1214 *4)) - (-4 *5 (-13 (-398) (-1020 *4) (-357) (-1177) (-278)))))) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-675 *4)) + (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1217 *3)) + (-5 *2 (-675 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) - (-5 *2 (-373)) (-5 *1 (-261)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1238 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299))))) -(((*1 *1 *1) (-4 *1 (-1040))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-778))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-553)) (-5 *3 (-903)) (-5 *1 (-684)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-674 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-357)) (-5 *1 (-960 *5))))) -(((*1 *1) (-5 *1 (-809)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-790 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1177) (-941)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) (-5 *2 (-630 *3)) (-5 *1 (-906 *4 *5 *6 *3)) - (-4 *3 (-931 *4 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)) - (-4 *2 (-357)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-220)))) - ((*1 *1 *1 *1) - (-3988 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1192))) - (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1192))))) - ((*1 *1 *1 *1) (-4 *1 (-357))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-373)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1104 *3 (-599 *1))) (-4 *3 (-545)) (-4 *3 (-833)) - (-4 *1 (-424 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-343)) (-5 *1 (-521 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-529))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-712) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-169)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-712) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-169)) (-4 *2 (-357)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-647 *2 *4 *3)) (-4 *2 (-703 *4)) - (-4 *3 (|SubsetCategory| (-712) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-169)) (-5 *1 (-647 *3 *4 *2)) (-4 *3 (-703 *4)) - (-4 *2 (|SubsetCategory| (-712) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-848 *2 *3 *4 *5)) (-4 *2 (-357)) - (-4 *2 (-1031)) (-14 *3 (-630 (-1155))) (-14 *4 (-630 (-757))) - (-14 *5 (-757)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-545)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1034 *3 *4 *2 *5 *6)) (-4 *2 (-1031)) - (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1031)) (-4 *3 (-833)) - (-4 *4 (-779)) (-14 *6 (-630 *3)) - (-5 *1 (-1250 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-931 *2 *4 *3)) - (-14 *7 (-630 (-757))) (-14 *8 (-757)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1261 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1031)) - (-4 *3 (-829))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1031)) (-14 *3 (-630 (-1155))))) - ((*1 *1 *1) - (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1031) (-833))) - (-14 *3 (-630 (-1155)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) + (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-553)) (-5 *2 (-1135 *3)) (-5 *1 (-1139 *3)) - (-4 *3 (-1031)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-805 *4)) (-4 *4 (-833)) (-4 *1 (-1255 *4 *3)) - (-4 *3 (-1031))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-357)) (-5 *1 (-752 *2 *3)) (-4 *2 (-694 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-357))))) -(((*1 *2 *1) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-313 *3 *4 *5)) - (-4 *3 (-13 (-357) (-833))) (-14 *4 (-1155)) (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) (-4 *5 (-357)) (-5 *2 (-630 (-1186 *5))) - (-5 *1 (-1246 *5)) (-5 *4 (-1186 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-630 *3)) (|:| -3233 *4)))) - (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-553)) (-5 *1 (-1174 *3)) (-4 *3 (-1031))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) + (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-987))))) ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-132))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-209 *2)) - (-4 *2 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) - (-15 -2602 ((-1243) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-21))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-871 *4 *3)) - (-4 *3 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-833)) (-5 *2 (-630 (-649 *4 *5))) - (-5 *1 (-614 *4 *5 *6)) (-4 *5 (-13 (-169) (-703 (-401 (-553))))) - (-14 *6 (-903))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-805 *3)) (-4 *3 (-833)) (-5 *1 (-657 *3))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1063 *3)) (-4 *3 (-130))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-630 (-220))) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-566)))) - ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-566))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-757))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-209 *2)) - (-4 *2 - (-13 (-833) - (-10 -8 (-15 -2046 ((-1137) $ (-1155))) (-15 -2524 ((-1243) $)) - (-15 -2602 ((-1243) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1192)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1192)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-129)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) - (-4 *2 (-1214 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-529))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-25))))) -(((*1 *2 *3) - (-12 (-5 *3 (-674 *4)) (-4 *4 (-357)) (-5 *2 (-1151 *4)) - (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-831)))))) -(((*1 *1 *1 *1) (-5 *1 (-159))) - ((*1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-159))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-96))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-674 *11)) (-5 *4 (-630 (-401 (-934 *8)))) - (-5 *5 (-757)) (-5 *6 (-1137)) (-4 *8 (-13 (-301) (-144))) - (-4 *11 (-931 *8 *10 *9)) (-4 *9 (-13 (-833) (-601 (-1155)))) - (-4 *10 (-779)) - (-5 *2 - (-2 - (|:| |rgl| - (-630 - (-2 (|:| |eqzro| (-630 *11)) (|:| |neqzro| (-630 *11)) - (|:| |wcond| (-630 (-934 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *8)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *8)))))))))) - (|:| |rgsz| (-553)))) - (-5 *1 (-906 *8 *9 *10 *11)) (-5 *7 (-553))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-111)) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-553)) (-5 *5 (-674 (-220))) (-5 *4 (-220)) - (-5 *2 (-1017)) (-5 *1 (-738))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-1157 (-401 (-553)))) - (-5 *1 (-185))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-545)) (-5 *1 (-951 *3 *2)) (-4 *2 (-1214 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-545)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1031)) (-4 *2 (-545))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-144)) - (-4 *3 (-301)) (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 (-874 *6))) - (-5 *5 (-1 (-871 *6 *8) *8 (-874 *6) (-871 *6 *8))) (-4 *6 (-1079)) - (-4 *8 (-13 (-1031) (-601 (-874 *6)) (-1020 *7))) - (-5 *2 (-871 *6 *8)) (-4 *7 (-13 (-1031) (-833))) - (-5 *1 (-923 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-530 *3 *2)) - (-4 *2 (-1229 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-4 *4 (-1214 *3)) - (-4 *5 (-710 *3 *4)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-1229 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-362) (-601 (-553)))) (-5 *1 (-535 *3 *2)) - (-4 *2 (-1229 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-13 (-545) (-144))) - (-5 *1 (-1131 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1022)) (-5 *3 (-373))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1045 *4 *5 *6)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297)))) + ((*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) + (-12 (-5 *3 (-114)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-826 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-591 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1192)) (-5 *2 (-1243))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-445)) - (-4 *3 (-545)) (-4 *4 (-779)) (-4 *5 (-833)) - (-5 *1 (-959 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-874 *4)) (-4 *4 (-1079)) (-5 *2 (-630 *5)) - (-5 *1 (-872 *4 *5)) (-4 *5 (-1192))))) -(((*1 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1040)) (-4 *3 (-1177)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1031)) - (-5 *1 (-836 *5 *2)) (-4 *2 (-835 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-545) (-833) (-1020 (-553)))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-13 (-27) (-1177) (-424 (-166 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) (-4 *4 (-13 (-545) (-833) (-1020 (-553)))) - (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *3 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1155)) - (-4 *4 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-27) (-1177) (-424 *4)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111))))) -(((*1 *2) (-12 (-5 *2 (-826 (-553))) (-5 *1 (-527)))) - ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-5 *1 (-982 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-538)) - (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-412 *3)) (-4 *3 (-538)) - (-4 *3 (-545)))) - ((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (-12 (-4 *1 (-783 *3)) (-4 *3 (-169)) (-4 *3 (-538)) - (-5 *2 (-401 (-553))))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-819 *3)) (-4 *3 (-538)) - (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-826 *3)) (-4 *3 (-538)) - (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *1 (-979 *3)) (-4 *3 (-169)) (-4 *3 (-538)) - (-5 *2 (-401 (-553))))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) + (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-401 (-553))) (-5 *1 (-990 *3)) (-4 *3 (-1020 *2))))) -(((*1 *1) (-5 *1 (-809)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-836) (-546))) (-5 *2 (-112)) + (-5 *1 (-618 *4 *5)) (-4 *5 (-13 (-425 *4) (-987) (-1180)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1135 (-630 (-553)))) (-5 *1 (-865)) (-5 *3 (-553))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240)))) - ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1240))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-833) (-1020 (-553)) (-626 (-553)) (-445))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1223 *4 *5 *6)) - (|:| |%expon| (-313 *4 *5 *6)) - (|:| |%expTerms| - (-630 (-2 (|:| |k| (-401 (-553))) (|:| |c| *4)))))) - (|:| |%type| (-1137)))) - (-5 *1 (-1224 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1177) (-424 *3))) - (-14 *5 (-1155)) (-14 *6 *4)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1017)) - (-5 *1 (-734))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *5 (-1045 *3 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-826 (-553))) (-5 *1 (-527)))) - ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-959 *4 *5 *6 *2))))) + (-12 (-5 *2 (-554)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1034))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *4)))) - (-5 *1 (-762 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-169))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-630 (-1137))) (-5 *1 (-388))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-903)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-757))))) -(((*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1031)) (-4 *2 (-1198 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1031)) (-4 *3 (-778)) - (-4 *2 (-445)))) - ((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1196)) (-4 *3 (-1214 *2)) - (-4 *4 (-1214 (-401 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1031)) (-4 *2 (-445)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)) (-4 *3 (-445)))) - ((*1 *1 *1) - (-12 (-4 *1 (-931 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-301)) (-4 *3 (-545)) (-5 *1 (-1142 *3 *2)) - (-4 *2 (-1214 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-724))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *7)) (-4 *7 (-833)) - (-4 *8 (-931 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1238 (-401 *8)) "failed")) - (|:| -4124 (-630 (-1238 (-401 *8)))))) - (-5 *1 (-654 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) - (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) - (-5 *2 (-1017)) (-5 *1 (-739))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1135 (-2 (|:| |k| (-553)) (|:| |c| *6)))) - (-5 *4 (-1008 (-826 (-553)))) (-5 *5 (-1155)) (-5 *7 (-401 (-553))) - (-4 *6 (-1031)) (-5 *2 (-845)) (-5 *1 (-583 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-1126 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-630 (-553))) (-5 *1 (-1089)) (-5 *3 (-553))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-438 *3)) (-4 *3 (-1031))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-757)) - (-4 *3 (-13 (-712) (-362) (-10 -7 (-15 ** (*3 *3 (-553)))))) - (-5 *1 (-241 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-630 *7)) (|:| |badPols| (-630 *7)))) - (-5 *1 (-959 *4 *5 *6 *7)) (-5 *3 (-630 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) -(((*1 *1) (-5 *1 (-567)))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1151 (-1151 *4)))) - (-5 *1 (-1190 *4)) (-5 *3 (-1151 (-1151 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-401 (-934 (-553))))) - (-5 *2 (-630 (-630 (-288 (-934 *4))))) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-831) (-357))))) + (-12 (-5 *3 (-631 (-402 (-937 (-554))))) + (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-834) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-288 (-401 (-934 (-553)))))) - (-5 *2 (-630 (-630 (-288 (-934 *4))))) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-831) (-357))))) + (-12 (-5 *3 (-631 (-289 (-402 (-937 (-554)))))) + (-5 *2 (-631 (-631 (-289 (-937 *4))))) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-834) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 (-553)))) (-5 *2 (-630 (-288 (-934 *4)))) - (-5 *1 (-374 *4)) (-4 *4 (-13 (-831) (-357))))) + (-12 (-5 *3 (-402 (-937 (-554)))) (-5 *2 (-631 (-289 (-937 *4)))) + (-5 *1 (-375 *4)) (-4 *4 (-13 (-834) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-288 (-401 (-934 (-553))))) - (-5 *2 (-630 (-288 (-934 *4)))) (-5 *1 (-374 *4)) - (-4 *4 (-13 (-831) (-357))))) + (-12 (-5 *3 (-289 (-402 (-937 (-554))))) + (-5 *2 (-631 (-289 (-937 *4)))) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-834) (-358))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1155)) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-4 *4 (-13 (-29 *6) (-1177) (-941))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4124 (-630 *4)))) - (-5 *1 (-637 *6 *4 *3)) (-4 *3 (-641 *4)))) + (|partial| -12 (-5 *5 (-1158)) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-4 *4 (-13 (-29 *6) (-1180) (-944))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3782 (-631 *4)))) + (-5 *1 (-638 *6 *4 *3)) (-4 *3 (-642 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1155)) (-5 *5 (-630 *2)) - (-4 *2 (-13 (-29 *6) (-1177) (-941))) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *1 (-637 *6 *2 *3)) (-4 *3 (-641 *2)))) + (|partial| -12 (-5 *4 (-1158)) (-5 *5 (-631 *2)) + (-4 *2 (-13 (-29 *6) (-1180) (-944))) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *1 (-638 *6 *2 *3)) (-4 *3 (-642 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *5)) (-4 *5 (-357)) + (-12 (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 - (-2 (|:| |particular| (-3 (-1238 *5) "failed")) - (|:| -4124 (-630 (-1238 *5))))) - (-5 *1 (-652 *5)) (-5 *4 (-1238 *5)))) + (-2 (|:| |particular| (-3 (-1241 *5) "failed")) + (|:| -3782 (-631 (-1241 *5))))) + (-5 *1 (-653 *5)) (-5 *4 (-1241 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-630 *5))) (-4 *5 (-357)) + (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358)) (-5 *2 - (-2 (|:| |particular| (-3 (-1238 *5) "failed")) - (|:| -4124 (-630 (-1238 *5))))) - (-5 *1 (-652 *5)) (-5 *4 (-1238 *5)))) + (-2 (|:| |particular| (-3 (-1241 *5) "failed")) + (|:| -3782 (-631 (-1241 *5))))) + (-5 *1 (-653 *5)) (-5 *4 (-1241 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *5)) (-4 *5 (-357)) + (-12 (-5 *3 (-675 *5)) (-4 *5 (-358)) (-5 *2 - (-630 - (-2 (|:| |particular| (-3 (-1238 *5) "failed")) - (|:| -4124 (-630 (-1238 *5)))))) - (-5 *1 (-652 *5)) (-5 *4 (-630 (-1238 *5))))) + (-631 + (-2 (|:| |particular| (-3 (-1241 *5) "failed")) + (|:| -3782 (-631 (-1241 *5)))))) + (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-630 *5))) (-4 *5 (-357)) + (-12 (-5 *3 (-631 (-631 *5))) (-4 *5 (-358)) (-5 *2 - (-630 - (-2 (|:| |particular| (-3 (-1238 *5) "failed")) - (|:| -4124 (-630 (-1238 *5)))))) - (-5 *1 (-652 *5)) (-5 *4 (-630 (-1238 *5))))) + (-631 + (-2 (|:| |particular| (-3 (-1241 *5) "failed")) + (|:| -3782 (-631 (-1241 *5)))))) + (-5 *1 (-653 *5)) (-5 *4 (-631 (-1241 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) - (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4370)))) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) + (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4124 (-630 *4)))) - (-5 *1 (-653 *5 *6 *4 *3)) (-4 *3 (-672 *5 *6 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-654 *5 *6 *4 *3)) (-4 *3 (-673 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4370)))) - (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4370)))) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4374)))) + (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4374)))) (-5 *2 - (-630 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4124 (-630 *7))))) - (-5 *1 (-653 *5 *6 *7 *3)) (-5 *4 (-630 *7)) - (-4 *3 (-672 *5 *6 *7)))) + (-631 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3782 (-631 *7))))) + (-5 *1 (-654 *5 *6 *7 *3)) (-5 *4 (-631 *7)) + (-4 *3 (-673 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-630 (-1155))) (-4 *5 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-756 *5)))) + (-12 (-5 *3 (-631 (-937 *5))) (-5 *4 (-631 (-1158))) (-4 *5 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-757 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-756 *4)))) + (-12 (-5 *3 (-631 (-937 *4))) (-4 *4 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-757 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1155)) - (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *1 (-758 *5 *2)) (-4 *2 (-13 (-29 *5) (-1177) (-941))))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1158)) + (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *1 (-759 *5 *2)) (-4 *2 (-13 (-29 *5) (-1180) (-944))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-674 *7)) (-5 *5 (-1155)) - (-4 *7 (-13 (-29 *6) (-1177) (-941))) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) + (|partial| -12 (-5 *3 (-675 *7)) (-5 *5 (-1158)) + (-4 *7 (-13 (-29 *6) (-1180) (-944))) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 - (-2 (|:| |particular| (-1238 *7)) (|:| -4124 (-630 (-1238 *7))))) - (-5 *1 (-788 *6 *7)) (-5 *4 (-1238 *7)))) + (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) + (-5 *1 (-789 *6 *7)) (-5 *4 (-1241 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-674 *6)) (-5 *4 (-1155)) - (-4 *6 (-13 (-29 *5) (-1177) (-941))) - (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-630 (-1238 *6))) (-5 *1 (-788 *5 *6)))) + (|partial| -12 (-5 *3 (-675 *6)) (-5 *4 (-1158)) + (-4 *6 (-13 (-29 *5) (-1180) (-944))) + (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-631 (-1241 *6))) (-5 *1 (-789 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-630 (-288 *7))) (-5 *4 (-630 (-113))) - (-5 *5 (-1155)) (-4 *7 (-13 (-29 *6) (-1177) (-941))) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) + (|partial| -12 (-5 *3 (-631 (-289 *7))) (-5 *4 (-631 (-114))) + (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 - (-2 (|:| |particular| (-1238 *7)) (|:| -4124 (-630 (-1238 *7))))) - (-5 *1 (-788 *6 *7)))) + (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) + (-5 *1 (-789 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-630 *7)) (-5 *4 (-630 (-113))) - (-5 *5 (-1155)) (-4 *7 (-13 (-29 *6) (-1177) (-941))) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) + (|partial| -12 (-5 *3 (-631 *7)) (-5 *4 (-631 (-114))) + (-5 *5 (-1158)) (-4 *7 (-13 (-29 *6) (-1180) (-944))) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 - (-2 (|:| |particular| (-1238 *7)) (|:| -4124 (-630 (-1238 *7))))) - (-5 *1 (-788 *6 *7)))) + (-2 (|:| |particular| (-1241 *7)) (|:| -3782 (-631 (-1241 *7))))) + (-5 *1 (-789 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1155)) - (-4 *7 (-13 (-29 *6) (-1177) (-941))) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) + (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1158)) + (-4 *7 (-13 (-29 *6) (-1180) (-944))) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -4124 (-630 *7))) *7 "failed")) - (-5 *1 (-788 *6 *7)))) + (-3 (-2 (|:| |particular| *7) (|:| -3782 (-631 *7))) *7 "failed")) + (-5 *1 (-789 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1155)) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) + (-12 (-5 *4 (-114)) (-5 *5 (-1158)) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -4124 (-630 *3))) *3 "failed")) - (-5 *1 (-788 *6 *3)) (-4 *3 (-13 (-29 *6) (-1177) (-941))))) + (-3 (-2 (|:| |particular| *3) (|:| -3782 (-631 *3))) *3 "failed")) + (-5 *1 (-789 *6 *3)) (-4 *3 (-13 (-29 *6) (-1180) (-944))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-630 *2)) - (-4 *2 (-13 (-29 *6) (-1177) (-941))) (-5 *1 (-788 *6 *2)) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))))) + (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-631 *2)) + (-4 *2 (-13 (-29 *6) (-1180) (-944))) (-5 *1 (-789 *6 *2)) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-630 *2)) - (-4 *2 (-13 (-29 *6) (-1177) (-941))) - (-4 *6 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *1 (-788 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-794)) (-5 *2 (-1017)) (-5 *1 (-791)))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-631 *2)) + (-4 *2 (-13 (-29 *6) (-1180) (-944))) + (-4 *6 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *1 (-789 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-794)) (-5 *4 (-1043)) (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-795)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1238 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-630 *4)) - (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) + (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1238 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-630 *4)) - (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) + (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1238 (-310 *4))) (-5 *5 (-630 (-373))) - (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) + (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1238 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-630 *4)) - (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-1241 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-631 *4)) + (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1238 (-310 *4))) (-5 *5 (-630 (-373))) - (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) + (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1238 (-310 *4))) (-5 *5 (-630 (-373))) - (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1017)) (-5 *1 (-791)))) + (-12 (-5 *3 (-1241 (-311 *4))) (-5 *5 (-631 (-374))) + (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1020)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -4124 (-630 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -3782 (-631 *6))) "failed") *7 *6)) - (-4 *6 (-357)) (-4 *7 (-641 *6)) - (-5 *2 (-2 (|:| |particular| (-1238 *6)) (|:| -4124 (-674 *6)))) - (-5 *1 (-799 *6 *7)) (-5 *3 (-674 *6)) (-5 *4 (-1238 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1017)) (-5 *1 (-879)))) + (-4 *6 (-358)) (-4 *7 (-642 *6)) + (-5 *2 (-2 (|:| |particular| (-1241 *6)) (|:| -3782 (-675 *6)))) + (-5 *1 (-800 *6 *7)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-883)) (-5 *2 (-1020)) (-5 *1 (-882)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880)) (-5 *4 (-1043)) (-5 *2 (-1017)) (-5 *1 (-879)))) + (-12 (-5 *3 (-883)) (-5 *4 (-1046)) (-5 *2 (-1020)) (-5 *1 (-882)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-757)) (-5 *6 (-630 (-630 (-310 *3)))) (-5 *7 (-1137)) - (-5 *8 (-220)) (-5 *5 (-630 (-310 (-373)))) (-5 *3 (-373)) - (-5 *2 (-1017)) (-5 *1 (-879)))) + (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140)) + (-5 *8 (-221)) (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) + (-5 *2 (-1020)) (-5 *1 (-882)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-757)) (-5 *6 (-630 (-630 (-310 *3)))) (-5 *7 (-1137)) - (-5 *5 (-630 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1017)) - (-5 *1 (-879)))) + (-12 (-5 *4 (-758)) (-5 *6 (-631 (-631 (-311 *3)))) (-5 *7 (-1140)) + (-5 *5 (-631 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1020)) + (-5 *1 (-882)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-934 (-401 (-553)))) (-5 *2 (-630 (-373))) - (-5 *1 (-1005)) (-5 *4 (-373)))) + (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *2 (-631 (-374))) + (-5 *1 (-1008)) (-5 *4 (-374)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-934 (-553))) (-5 *2 (-630 (-373))) (-5 *1 (-1005)) - (-5 *4 (-373)))) + (-12 (-5 *3 (-937 (-554))) (-5 *2 (-631 (-374))) (-5 *1 (-1008)) + (-5 *4 (-374)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *2 (-630 *4)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1214 *4)))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1110 *4)) - (-5 *3 (-310 *4)))) + (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4)) + (-5 *3 (-311 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-630 (-288 (-310 *4)))) (-5 *1 (-1110 *4)) - (-5 *3 (-288 (-310 *4))))) + (-12 (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1113 *4)) + (-5 *3 (-289 (-311 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-630 (-288 (-310 *5)))) (-5 *1 (-1110 *5)) - (-5 *3 (-288 (-310 *5))))) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5)) + (-5 *3 (-289 (-311 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) - (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-630 (-288 (-310 *5)))) (-5 *1 (-1110 *5)) - (-5 *3 (-310 *5)))) + (-12 (-5 *4 (-1158)) + (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-631 (-289 (-311 *5)))) (-5 *1 (-1113 *5)) + (-5 *3 (-311 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-1155))) - (-4 *5 (-13 (-833) (-301) (-1020 (-553)) (-626 (-553)) (-144))) - (-5 *2 (-630 (-630 (-288 (-310 *5))))) (-5 *1 (-1110 *5)) - (-5 *3 (-630 (-288 (-310 *5)))))) + (-12 (-5 *4 (-631 (-1158))) + (-4 *5 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1113 *5)) + (-5 *3 (-631 (-289 (-311 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-401 (-934 *5)))) (-5 *4 (-630 (-1155))) - (-4 *5 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) - (-5 *1 (-1161 *5)))) + (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) + (-4 *5 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) + (-5 *1 (-1164 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-1155))) (-4 *5 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *5)))))) (-5 *1 (-1161 *5)) - (-5 *3 (-630 (-288 (-401 (-934 *5))))))) + (-12 (-5 *4 (-631 (-1158))) (-4 *5 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *5)))))) (-5 *1 (-1164 *5)) + (-5 *3 (-631 (-289 (-402 (-937 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-401 (-934 *4)))) (-4 *4 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) (-5 *1 (-1161 *4)))) + (-12 (-5 *3 (-631 (-402 (-937 *4)))) (-4 *4 (-546)) + (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) (-5 *1 (-1164 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 (-630 (-288 (-401 (-934 *4)))))) - (-5 *1 (-1161 *4)) (-5 *3 (-630 (-288 (-401 (-934 *4))))))) + (-12 (-4 *4 (-546)) (-5 *2 (-631 (-631 (-289 (-402 (-937 *4)))))) + (-5 *1 (-1164 *4)) (-5 *3 (-631 (-289 (-402 (-937 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-4 *5 (-545)) - (-5 *2 (-630 (-288 (-401 (-934 *5))))) (-5 *1 (-1161 *5)) - (-5 *3 (-401 (-934 *5))))) + (-12 (-5 *4 (-1158)) (-4 *5 (-546)) + (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5)) + (-5 *3 (-402 (-937 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1155)) (-4 *5 (-545)) - (-5 *2 (-630 (-288 (-401 (-934 *5))))) (-5 *1 (-1161 *5)) - (-5 *3 (-288 (-401 (-934 *5)))))) + (-12 (-5 *4 (-1158)) (-4 *5 (-546)) + (-5 *2 (-631 (-289 (-402 (-937 *5))))) (-5 *1 (-1164 *5)) + (-5 *3 (-289 (-402 (-937 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 (-288 (-401 (-934 *4))))) - (-5 *1 (-1161 *4)) (-5 *3 (-401 (-934 *4))))) + (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4))))) + (-5 *1 (-1164 *4)) (-5 *3 (-402 (-937 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-630 (-288 (-401 (-934 *4))))) - (-5 *1 (-1161 *4)) (-5 *3 (-288 (-401 (-934 *4))))))) + (-12 (-4 *4 (-546)) (-5 *2 (-631 (-289 (-402 (-937 *4))))) + (-5 *1 (-1164 *4)) (-5 *3 (-289 (-402 (-937 *4))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-631 (-848)))) (-5 *1 (-848)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1124 *3 *4)) (-5 *1 (-978 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-358)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 (-631 *5))) (-4 *5 (-1034)) + (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-631 (-1158))) (-4 *2 (-170)) + (-4 *3 (-234 (-2563 *4) (-758))) + (-14 *6 + (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *3)) + (-2 (|:| -2717 *5) (|:| -1407 *3)))) + (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-836)) + (-4 *7 (-934 *2 *3 (-850 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *5 (-780)) (-4 *2 (-261 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1154 (-1154 *4)))) + (-5 *1 (-1193 *4)) (-5 *3 (-1154 (-1154 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-554)) (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-1191))))) +(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-1244))))) +(((*1 *2 *1) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-5 *2 (-631 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-1082)) + (-5 *2 (-631 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1138 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 *3)) (-5 *1 (-722 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1034)) (-5 *2 (-631 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1034)) (-5 *2 (-1138 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-758)) (-4 *5 (-446)) (-4 *5 (-836)) + (-4 *5 (-1023 (-554))) (-4 *5 (-546)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-425 *5)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *5 (-600 $)) $)) + (-15 -2822 ((-1107 *5 (-600 $)) $)) + (-15 -3075 ($ (-1107 *5 (-600 $)))))))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-790))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-738))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-630 *8))) (-5 *3 (-630 *8)) - (-4 *8 (-1045 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-779)) - (-4 *7 (-833)) (-5 *2 (-111)) (-5 *1 (-959 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-833)) (-5 *2 (-111)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-885 *3)) (-4 *3 (-1079)) (-5 *2 (-111)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-886 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-550)) (-5 *3 (-553)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-401 (-553)))) (-5 *1 (-924)) (-5 *3 (-553))))) -(((*1 *1 *1 *1) (-4 *1 (-747)))) + (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8)) + (-4 *8 (-1048 *5 *6 *7)) (-4 *5 (-546)) (-4 *6 (-780)) + (-4 *7 (-836)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-816))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-231 *3)) + (-4 *3 (-1082)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-231 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-598 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-554)) (-4 *4 (-1082)) + (-5 *1 (-724 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-5 *1 (-724 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1122 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34))) (-5 *1 (-1123 *3 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-631 *11)) (-5 *5 (-631 (-1154 *9))) + (-5 *6 (-631 *9)) (-5 *7 (-631 *12)) (-5 *8 (-631 (-758))) + (-4 *11 (-836)) (-4 *9 (-302)) (-4 *12 (-934 *9 *10 *11)) + (-4 *10 (-780)) (-5 *2 (-631 (-1154 *12))) + (-5 *1 (-694 *10 *11 *9 *12)) (-5 *3 (-1154 *12))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1158)) (-5 *6 (-112)) + (-4 *7 (-13 (-302) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-4 *3 (-13 (-1180) (-944) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-829 *3)) (|:| |f2| (-631 (-829 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *7 *3)) (-5 *5 (-829 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1138 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *3) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-551)) (-5 *3 (-554)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1154 (-402 (-554)))) (-5 *1 (-927)) (-5 *3 (-554))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-569))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) + (-5 *2 (-1020)) (-5 *1 (-741))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1217 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-758))) + (-5 *1 (-533 *3 *2 *4 *5)) (-4 *2 (-1217 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-631 (-600 *6))) (-5 *4 (-1158)) (-5 *2 (-600 *6)) + (-4 *6 (-425 *5)) (-4 *5 (-836)) (-5 *1 (-563 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1140)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) + (-4 *4 (-1082))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) + (-4 *2 (-1217 *4))))) +(((*1 *1) (-5 *1 (-1046)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2999 *4))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4373)) (-4 *1 (-149 *3)) + (-4 *3 (-1195)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-660 *3)) (-4 *3 (-1195)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1188 *4 *5 *3 *2)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *3 (-836)) (-4 *2 (-1048 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-5 *1 (-1192 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *1) (-4 *1 (-748)))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-848)))) + ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-947))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1194))) (-5 *1 (-594))))) +(((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1138 (-221))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3827 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1020)) (-5 *1 (-300))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1241 *4)) (-5 *3 (-675 *4)) (-4 *4 (-358)) + (-5 *1 (-653 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-358)) + (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4374)))) + (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374)))) + (-5 *1 (-654 *4 *5 *2 *3)) (-4 *3 (-673 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-631 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) + (-5 *1 (-801 *2 *3)) (-4 *3 (-642 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *1 (-1110 *3 *2)) (-4 *3 (-1217 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-1181 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1082))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1140)) (-5 *3 (-810)) (-5 *1 (-809))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-358)) (-4 *3 (-1217 *4)) (-4 *5 (-1217 (-402 *3))) + (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-554)) (-4 *2 (-358)) (-4 *4 (-1217 *2)) + (-4 *5 (-1217 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6)) + (-4 *6 (-337 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-358)) (-4 *3 (-1217 *2)) (-4 *4 (-1217 (-402 *3))) + (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) + (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) + (-4 *1 (-330 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-630 (-474 *5 *6))) (-5 *4 (-847 *5)) - (-14 *5 (-630 (-1155))) (-5 *2 (-474 *5 *6)) (-5 *1 (-618 *5 *6)) - (-4 *6 (-445)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-474 *5 *6))) (-5 *4 (-847 *5)) - (-14 *5 (-630 (-1155))) (-5 *2 (-474 *5 *6)) (-5 *1 (-618 *5 *6)) - (-4 *6 (-445))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) + (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5)) + (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6)) + (-4 *6 (-446)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-475 *5 *6))) (-5 *4 (-850 *5)) + (-14 *5 (-631 (-1158))) (-5 *2 (-475 *5 *6)) (-5 *1 (-619 *5 *6)) + (-4 *6 (-446))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-252))))) +(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *1 *1 *1) (-4 *1 (-467))) ((*1 *1 *1 *1) (-4 *1 (-748)))) +(((*1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2053 "void"))) + (-5 *1 (-432))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *2 (-1020)) (-5 *1 (-741))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-114)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1140)) (-4 *4 (-836)) (-5 *1 (-914 *4 *2)) + (-4 *2 (-425 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-1140)) (-5 *2 (-311 (-554))) + (-5 *1 (-915))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-906)) (-4 *6 (-13 (-546) (-836))) + (-5 *2 (-631 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6)) + (-4 *5 (-1034)))) + ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-546)))) + ((*1 *2 *3) + (-12 (-5 *3 (-575 *5)) (-4 *5 (-13 (-29 *4) (-1180))) + (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *2 (-631 *5)) (-5 *1 (-573 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-575 (-402 (-937 *4)))) + (-4 *4 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *2 (-631 (-311 *4))) (-5 *1 (-578 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1131 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-834)) + (-4 *2 (-1131 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1256 (-1158) *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-1034))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-675 (-221))) (-5 *5 (-675 (-554))) (-5 *3 (-554)) + (-5 *2 (-1020)) (-5 *1 (-743))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-307)) (-5 *1 (-291)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-307)) (-5 *1 (-291)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 (-1140))) (-5 *3 (-1140)) (-5 *2 (-307)) + (-5 *1 (-291))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-836)) (-5 *2 (-631 (-631 *4))) (-5 *1 (-1166 *4)) + (-5 *3 (-631 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-358) (-145))) + (-5 *2 (-631 (-2 (|:| -1407 (-758)) (|:| -1608 *4) (|:| |num| *4)))) + (-5 *1 (-394 *3 *4)) (-4 *4 (-1217 *3))))) +(((*1 *2) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) (-5 *2 (-675 (-402 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-631 (-937 *4))) (-5 *3 (-631 (-1158))) (-4 *4 (-446)) + (-5 *1 (-903 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-811))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-551))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-524 *3)) (-4 *3 (-13 (-713) (-25)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-675 *4)) (-5 *3 (-758)) (-4 *4 (-1034)) + (-5 *1 (-676 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-4 *5 (-425 *4)) + (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1217 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1106 *4 *5 *6 *3)) (-4 *3 (-673 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-660 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-221)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-402 (-554))) (-5 *1 (-374))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1020 (-553))) - (-4 *4 (-13 (-833) (-545))) (-5 *2 (-1151 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-600 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1023 (-554))) + (-4 *4 (-13 (-836) (-546))) (-5 *2 (-1154 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *1)) (-4 *1 (-1031)) (-4 *1 (-296)) - (-5 *2 (-1151 *1))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) + (-12 (-5 *3 (-600 *1)) (-4 *1 (-1034)) (-4 *1 (-297)) + (-5 *2 (-1154 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-631 (-52))) (-5 *2 (-1246)) (-5 *1 (-849))))) +(((*1 *2 *3) + (-12 (-4 *4 (-836)) + (-5 *2 + (-2 (|:| |f1| (-631 *4)) (|:| |f2| (-631 (-631 (-631 *4)))) + (|:| |f3| (-631 (-631 *4))) (|:| |f4| (-631 (-631 (-631 *4)))))) + (-5 *1 (-1166 *4)) (-5 *3 (-631 (-631 (-631 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-657)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-906))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-906)) + (-14 *4 (-906))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-877 *4)) (-4 *4 (-1082)) (-5 *2 (-112)) + (-5 *1 (-874 *4 *5)) (-4 *5 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-877 *5)) (-4 *5 (-1082)) (-5 *2 (-112)) + (-5 *1 (-875 *5 *3)) (-4 *3 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) + (-4 *6 (-1195)) (-5 *2 (-112)) (-5 *1 (-875 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-890 *4)) (-4 *4 (-1082)) (-5 *2 (-631 (-758))) + (-5 *1 (-889 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-554)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-554))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-758)) (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-539))))) +(((*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1241 (-631 (-554)))) (-5 *1 (-474)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-589 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1195)) (-5 *1 (-1138 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *2) + (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1217 *4)) + (-5 *1 (-764 *3 *4 *5 *2 *6)) (-4 *2 (-1217 *5)) (-14 *6 (-906)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1260 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) + ((*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-358)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) + (-4 *4 (-38 (-402 (-554)))) (-5 *2 (-1 (-1138 *4) (-1138 *4))) + (-5 *1 (-1234 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-112)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-112)) (-5 *1 (-1184 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1214 *5 *4)) (-4 *4 (-446)) (-4 *4 (-807)) + (-14 *5 (-1158)) (-5 *2 (-554)) (-5 *1 (-1096 *4 *5))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1158)) (-5 *1 (-661 *3)) (-4 *3 (-1082))))) (((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-564 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-402 *6))) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5)))) + (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *6 (-402 *6))) (-4 *6 (-1217 *5)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-5 *2 (-2 (|:| -3782 (-631 (-402 *6))) (|:| -2866 (-675 *5)))) + (-5 *1 (-797 *5 *6)) (-5 *4 (-631 (-402 *6)))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-631 (-600 *2))) (-5 *4 (-1158)) + (-4 *2 (-13 (-27) (-1180) (-425 *5))) + (-4 *5 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *5 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-91 *3))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-442 *4 *5 *6 *2))))) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-934 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *1 (-443 *4 *5 *6 *2))))) +(((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-155))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1023 (-554))) (-4 *1 (-297)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-631 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1023 (-402 (-554))))) (-4 *6 (-1217 *5)) + (-5 *2 (-631 (-2 (|:| -2397 *5) (|:| -4329 *3)))) + (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-642 *6)) + (-4 *7 (-642 (-402 *6)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-713)) (-4 *2 (-1195))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4)) + (-4 *4 (-1034)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758)))) + ((*1 *1 *1) (-4 *1 (-229))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) + (-4 *4 (-1217 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) + (-4 *3 (-1217 *2)))) + ((*1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4)) + (-4 *4 (-1082)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082))))) +(((*1 *1 *1) (-4 *1 (-539)))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-712)) (-4 *2 (-1192))))) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-446)) (-4 *4 (-836)) (-4 *5 (-780)) (-5 *2 (-631 *6)) + (-5 *1 (-972 *3 *4 *5 *6)) (-4 *6 (-934 *3 *5 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-637 *3)) (-4 *3 (-1195)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-554)) (-4 *1 (-637 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1241 (-3 (-462) "undefined"))) (-5 *1 (-1242))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2)) + (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374))))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-778)) (-4 *2 (-1031)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1031)) (-5 *1 (-50 *2 *3)) (-14 *3 (-630 (-1155))))) + (-12 (-4 *2 (-1034)) (-5 *1 (-50 *2 *3)) (-14 *3 (-631 (-1158))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-630 (-903))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) - (-14 *4 (-903)) (-14 *5 (-975 *4 *2)))) + (-12 (-5 *3 (-631 (-906))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) + (-14 *4 (-906)) (-14 *5 (-978 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) - (-4 *3 (-13 (-1031) (-833))) (-14 *4 (-630 (-1155))))) + (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) + (-4 *3 (-13 (-1034) (-836))) (-14 *4 (-631 (-1158))))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-129)))) + (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-130)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1079)) (-4 *2 (-1031)))) + (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1034)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-545)) (-5 *1 (-610 *2 *4)) - (-4 *4 (-1214 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-694 *2)) (-4 *2 (-1031)))) + (-12 (-5 *3 (-554)) (-4 *2 (-546)) (-5 *1 (-611 *2 *4)) + (-4 *4 (-1217 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-695 *2)) (-4 *2 (-1034)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1031)) (-5 *1 (-721 *2 *3)) (-4 *3 (-712)))) + (-12 (-4 *2 (-1034)) (-5 *1 (-722 *2 *3)) (-4 *3 (-713)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *5)) (-5 *3 (-630 (-757))) (-4 *1 (-726 *4 *5)) - (-4 *4 (-1031)) (-4 *5 (-833)))) + (-12 (-5 *2 (-631 *5)) (-5 *3 (-631 (-758))) (-4 *1 (-727 *4 *5)) + (-4 *4 (-1034)) (-4 *5 (-836)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-726 *4 *2)) (-4 *4 (-1031)) - (-4 *2 (-833)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-757)) (-4 *1 (-835 *2)) (-4 *2 (-1031)))) + (-12 (-5 *3 (-758)) (-4 *1 (-727 *4 *2)) (-4 *4 (-1034)) + (-4 *2 (-836)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-4 *1 (-838 *2)) (-4 *2 (-1034)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *6)) (-5 *3 (-630 (-757))) (-4 *1 (-931 *4 *5 *6)) - (-4 *4 (-1031)) (-4 *5 (-779)) (-4 *6 (-833)))) + (-12 (-5 *2 (-631 *6)) (-5 *3 (-631 (-758))) (-4 *1 (-934 *4 *5 *6)) + (-4 *4 (-1034)) (-4 *5 (-780)) (-4 *6 (-836)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-931 *4 *5 *2)) (-4 *4 (-1031)) - (-4 *5 (-779)) (-4 *2 (-833)))) + (-12 (-5 *3 (-758)) (-4 *1 (-934 *4 *5 *2)) (-4 *4 (-1034)) + (-4 *5 (-780)) (-4 *2 (-836)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-4 *2 (-931 *4 (-524 *5) *5)) - (-5 *1 (-1105 *4 *5 *2)) (-4 *4 (-1031)) (-4 *5 (-833)))) + (-12 (-5 *3 (-758)) (-4 *2 (-934 *4 (-525 *5) *5)) + (-5 *1 (-1108 *4 *5 *2)) (-4 *4 (-1034)) (-4 *5 (-836)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-757)) (-5 *2 (-934 *4)) (-5 *1 (-1186 *4)) - (-4 *4 (-1031))))) + (-12 (-5 *3 (-758)) (-5 *2 (-937 *4)) (-5 *1 (-1189 *4)) + (-4 *4 (-1034))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-912))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-738))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868)) + (-5 *3 (-631 (-554)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-631 (-937 *6))) (-5 *4 (-631 (-1158))) (-4 *6 (-446)) + (-5 *2 (-631 (-631 *7))) (-5 *1 (-532 *6 *7 *5)) (-4 *7 (-358)) + (-4 *5 (-13 (-358) (-834)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-758)) (-4 *4 (-344)) + (-5 *1 (-522 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-545)) (-4 *4 (-974 *3)) (-5 *1 (-139 *3 *4 *2)) - (-4 *2 (-367 *4)))) + (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-140 *3 *4 *2)) + (-4 *2 (-368 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-974 *4)) (-4 *2 (-367 *4)) - (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) + (-12 (-4 *4 (-546)) (-4 *5 (-977 *4)) (-4 *2 (-368 *4)) + (-5 *1 (-497 *4 *5 *2 *3)) (-4 *3 (-368 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-674 *5)) (-4 *5 (-974 *4)) (-4 *4 (-545)) - (-5 *2 (-674 *4)) (-5 *1 (-678 *4 *5)))) + (-12 (-5 *3 (-675 *5)) (-4 *5 (-977 *4)) (-4 *4 (-546)) + (-5 *2 (-675 *4)) (-5 *1 (-679 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-545)) (-4 *4 (-974 *3)) (-5 *1 (-1207 *3 *4 *2)) - (-4 *2 (-1214 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1031)))) + (-12 (-4 *3 (-546)) (-4 *4 (-977 *3)) (-5 *1 (-1210 *3 *4 *2)) + (-4 *2 (-1217 *4))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *1) (-5 *1 (-286)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 (-1241 *4))) (-4 *4 (-1034)) (-5 *2 (-675 *4)) + (-5 *1 (-1014 *4))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-631 (-631 (-221)))) (-5 *4 (-221)) + (-5 *2 (-631 (-928 *4))) (-5 *1 (-1191)) (-5 *3 (-928 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241)))) - ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1241))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1182 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| -2821 *4) (|:| -2342 (-553))))) - (-4 *4 (-1079)) (-5 *2 (-1 *4)) (-5 *1 (-999 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1008 *3)) (-4 *3 (-1192))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-357) (-831))) (-5 *1 (-178 *3 *2)) - (-4 *2 (-1214 (-166 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1137) (-760))) (-5 *1 (-113))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) - (-4 *7 (-974 *4)) (-4 *2 (-672 *7 *8 *9)) - (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-672 *4 *5 *6)) - (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) - (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *1 (-673 *3 *4 *5 *2)) - (-4 *2 (-672 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-674 *2)) (-4 *2 (-357)) (-4 *2 (-1031)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-833)) (-5 *1 (-1163 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-896 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-1155)) - (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-897 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-412 (-934 *6))) (-5 *5 (-1155)) (-5 *3 (-934 *6)) - (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-897 *6))))) + (|partial| -12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1034)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-112)) + (-5 *2 (-1020)) (-5 *1 (-740))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-690 *3)) + (-4 *3 (-602 (-530))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1158)) (-5 *2 (-1 (-221) (-221) (-221))) + (-5 *1 (-690 *3)) (-4 *3 (-602 (-530)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1020)) (-5 *1 (-736)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-383)) (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-906)) (-4 *5 (-546)) (-5 *2 (-675 *5)) + (-5 *1 (-941 *5 *3)) (-4 *3 (-642 *5))))) (((*1 *2 *3) - (-12 (-4 *1 (-786)) - (-5 *3 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-1017))))) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-577 *4)) + (-4 *4 (-344))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-631 (-374))) (-5 *2 (-374)) (-5 *1 (-201))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) +(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779)) + (-4 *2 (-358)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-221)))) + ((*1 *1 *1 *1) + (-3994 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1195))) + (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1195))))) + ((*1 *1 *1 *1) (-4 *1 (-358))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1107 *3 (-600 *1))) (-4 *3 (-546)) (-4 *3 (-836)) + (-4 *1 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-467))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-344)) (-5 *1 (-522 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-530))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-609 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-713) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-170)) (-5 *1 (-609 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-713) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-170)) (-4 *2 (-358)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-170)) (-5 *1 (-648 *2 *4 *3)) (-4 *2 (-704 *4)) + (-4 *3 (|SubsetCategory| (-713) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-170)) (-5 *1 (-648 *3 *4 *2)) (-4 *3 (-704 *4)) + (-4 *2 (|SubsetCategory| (-713) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-851 *2 *3 *4 *5)) (-4 *2 (-358)) + (-4 *2 (-1034)) (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-758))) + (-14 *5 (-758)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-546)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1037 *3 *4 *2 *5 *6)) (-4 *2 (-1034)) + (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1034)) (-4 *3 (-836)) + (-4 *4 (-780)) (-14 *6 (-631 *3)) + (-5 *1 (-1253 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-934 *2 *4 *3)) + (-14 *7 (-631 (-758))) (-14 *8 (-758)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1264 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1034)) + (-4 *3 (-832))))) (((*1 *2 *1) - (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1198 *3)) - (-5 *2 (-401 (-553)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 (-757))) (-5 *3 (-168)) (-5 *1 (-1143 *4 *5)) - (-14 *4 (-903)) (-4 *5 (-1031))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1031)) - (-4 *2 (-13 (-398) (-1020 *4) (-357) (-1177) (-278))) - (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-4 *5 (-1031)) - (-4 *2 (-13 (-398) (-1020 *5) (-357) (-1177) (-278))) - (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1214 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-373)))) - ((*1 *1 *1 *1) (-4 *1 (-538))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1028 *4 *5)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-14 *5 (-630 (-1155))) (-5 *2 (-630 (-630 (-1006 (-401 *4))))) - (-5 *1 (-1264 *4 *5 *6)) (-14 *6 (-630 (-1155))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *5))))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) - (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-630 (-1006 (-401 *4))))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155)))))) -(((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-553)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-757)) (-4 *5 (-169)))) + (-12 (-5 *2 (-631 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-575 *3)) (-4 *3 (-358))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1138 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-554)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-856 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-14 *2 (-554)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-554)) (-14 *3 *2) (-5 *1 (-857 *3 *4)) + (-4 *4 (-854 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-553)) (-14 *3 (-757)) - (-4 *4 (-169)))) + (-12 (-14 *2 (-554)) (-5 *1 (-857 *2 *3)) (-4 *3 (-854 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-554)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1034)) + (-4 *4 (-1232 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-672 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-367 *2)) - (-4 *4 (-367 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1031)) (-4 *1 (-672 *3 *2 *4)) (-4 *2 (-367 *3)) - (-4 *4 (-367 *3)))) + (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-1232 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-631 (-1158))) (-5 *3 (-52)) (-5 *1 (-877 *4)) + (-4 *4 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-546)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-1185 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-210 *2)) + (-4 *2 + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) + (-15 -2941 ((-1246) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-5 *1 (-1121 *2 *3)) (-14 *2 (-757)) (-4 *3 (-1031))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-876 *2 *3)) (-4 *2 (-1214 *3)))) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) + ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-871 *4 *5)) (-5 *3 (-871 *4 *6)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-651 *5)) (-5 *1 (-867 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-1155))) (-5 *2 (-1243)) (-5 *1 (-1158)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1243)) - (-5 *1 (-1158)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-630 (-1155))) (-5 *3 (-1155)) (-5 *2 (-1243)) - (-5 *1 (-1158))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-474 *4 *5))) (-14 *4 (-630 (-1155))) - (-4 *5 (-445)) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-21))))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-937 (-221))) (-5 *2 (-221)) (-5 *1 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-389)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(((*1 *1 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-337 *5 *6 *7)) + (-4 *5 (-13 (-358) (-145) (-1023 (-554)) (-1023 (-402 (-554))))) + (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) (-5 *2 - (-2 (|:| |gblist| (-630 (-242 *4 *5))) - (|:| |gvlist| (-630 (-553))))) - (-5 *1 (-618 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1031))))) -(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3782 (-631 *4)))) + (-5 *1 (-793 *5 *6 *7 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-758)) (-5 *1 (-222)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-167 (-221))) (-5 *3 (-758)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-210 *2)) + (-4 *2 + (-13 (-836) + (-10 -8 (-15 -2064 ((-1140) $ (-1158))) (-15 -2524 ((-1246) $)) + (-15 -2941 ((-1246) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-130)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) + (-4 *2 (-1217 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-358)) (-4 *3 (-780)) (-4 *4 (-836)) + (-5 *1 (-498 *2 *3 *4 *5)) (-4 *5 (-934 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-530))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-673 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-368 *2)) + (-4 *4 (-368 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-928 (-221))) (-5 *1 (-1191)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1195)) (-4 *2 (-25))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-774)) (-5 *2 (-1020)) + (-5 *3 + (-2 (|:| |fn| (-311 (-221))) + (|:| -3827 (-631 (-1076 (-829 (-221))))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-774)) (-5 *2 (-1020)) + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1180) (-425 *3))) + (-14 *4 (-1158)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-425 *3 *2)) - (-4 *2 (-424 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185)) (-5 *3 (-553))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-757)) (-4 *4 (-545)) (-5 *1 (-951 *4 *2)) - (-4 *2 (-1214 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) + (-12 (-4 *3 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-4 *2 (-13 (-27) (-1180) (-425 *3) (-10 -8 (-15 -3075 ($ *4))))) + (-4 *4 (-834)) + (-4 *5 + (-13 (-1219 *2 *4) (-358) (-1180) + (-10 -8 (-15 -1553 ($ $)) (-15 -2279 ($ $))))) + (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-968 *5)) (-14 *7 (-1158))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-886 (-553))) (-5 *1 (-899)))) - ((*1 *2) (-12 (-5 *2 (-886 (-553))) (-5 *1 (-899))))) -(((*1 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *2) - (-12 (-5 *2 (-903)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1185 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) -(((*1 *2) - (-12 (-5 *2 (-674 (-892 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-903)) - (-14 *4 (-903)))) - ((*1 *2) - (-12 (-5 *2 (-674 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) - (-14 *4 - (-3 (-1151 *3) - (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099))))))))) - ((*1 *2) - (-12 (-5 *2 (-674 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-903))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-630 (-674 *6))) (-5 *4 (-111)) (-5 *5 (-553)) - (-5 *2 (-674 *6)) (-5 *1 (-1011 *6)) (-4 *6 (-357)) (-4 *6 (-1031)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-630 (-674 *4))) (-5 *2 (-674 *4)) (-5 *1 (-1011 *4)) - (-4 *4 (-357)) (-4 *4 (-1031)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-630 (-674 *5))) (-5 *4 (-553)) (-5 *2 (-674 *5)) - (-5 *1 (-1011 *5)) (-4 *5 (-357)) (-4 *5 (-1031))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-1066 *3)) (-4 *3 (-131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-2 (|:| -2794 *4) (|:| -1316 (-554))))) + (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1002 *4))))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-746))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1140)) (-5 *1 (-300))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-112)) (-5 *5 (-675 (-167 (-221)))) + (-5 *2 (-1020)) (-5 *1 (-742))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-367 *2)) (-4 *2 (-1192)) - (-4 *2 (-833)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4370)) - (-4 *1 (-367 *3)) (-4 *3 (-1192))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1017)) (-5 *3 (-1155)) (-5 *1 (-261))))) -(((*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177)))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-550))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151 *4)) (-4 *4 (-343)) (-5 *2 (-940 (-1099))) - (-5 *1 (-340 *4))))) -(((*1 *2) - (-12 (-4 *3 (-545)) (-5 *2 (-630 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-4 *7 (-1217 *5)) (-4 *4 (-711 *5 *7)) + (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5)))) + (-5 *1 (-798 *5 *6 *7 *4 *3)) (-4 *6 (-642 *5)) (-4 *3 (-642 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151 *7)) (-4 *7 (-931 *6 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1031)) (-5 *2 (-1151 *6)) - (-5 *1 (-315 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) - ((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-460)))) - ((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) -(((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-808))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-903)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1214 *2)) (-4 *2 (-169)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-903)) (-4 *4 (-343)) - (-5 *1 (-521 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) - (-4 *5 (-233 *3 *2)) (-4 *2 (-1031))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-321 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-509 *3 *4)) - (-14 *4 (-553))))) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-848)) (-5 *1 (-1138 *3)) (-4 *3 (-1082)) + (-4 *3 (-1195))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-401 (-553)))) - (-5 *2 - (-630 - (-2 (|:| |outval| *4) (|:| |outmult| (-553)) - (|:| |outvect| (-630 (-674 *4)))))) - (-5 *1 (-765 *4)) (-4 *4 (-13 (-357) (-831)))))) + (-12 (-5 *3 (-675 (-402 (-554)))) (-5 *2 (-631 *4)) (-5 *1 (-766 *4)) + (-4 *4 (-13 (-358) (-834)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) - (-4 *4 (-343)) (-5 *2 (-757)) (-5 *1 (-340 *4)))) - ((*1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-345 *3 *4)) (-14 *3 (-903)) - (-14 *4 (-903)))) + (-12 (-4 *4 (-446)) + (-5 *2 + (-631 + (-2 (|:| |eigval| (-3 (-402 (-937 *4)) (-1147 (-1158) (-937 *4)))) + (|:| |eigmult| (-758)) + (|:| |eigvec| (-631 (-675 (-402 (-937 *4)))))))) + (-5 *1 (-287 *4)) (-5 *3 (-675 (-402 (-937 *4))))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-769 *3)) (|:| |polden| *3) (|:| -2776 (-758)))) + (-5 *1 (-769 *3)) (-4 *3 (-1034)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2776 (-758)))) + (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-338 *3 *4)) (-14 *3 (-906)) + (-14 *4 (-906)))) ((*1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) - (-14 *4 - (-3 (-1151 *3) - (-1238 (-630 (-2 (|:| -2821 *3) (|:| -2735 (-1099))))))))) + (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344)) + (-14 *4 (-1154 *3)))) ((*1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-903))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-902))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-958 *4 *5 *6 *3)) (-4 *4 (-1031)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-4 *4 (-545)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-5 *2 (-111))))) + (-12 (-5 *2 (-943 (-1102))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344)) + (-14 *4 (-906))))) +(((*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528)))) + ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) + (-5 *1 (-735))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1242)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1242)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-1140)) (-5 *1 (-1243)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1243))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-631 (-1 *6 (-631 *6)))) + (-4 *5 (-38 (-402 (-554)))) (-4 *6 (-1232 *5)) (-5 *2 (-631 *6)) + (-5 *1 (-1234 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-358))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1020)) + (-5 *1 (-736))))) (((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) - (-5 *2 (-630 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |k| (-875 *3)) (|:| |c| *4)))) - (-5 *1 (-614 *3 *4 *5)) (-4 *3 (-833)) - (-4 *4 (-13 (-169) (-703 (-401 (-553))))) (-14 *5 (-903)))) - ((*1 *2 *1) - (-12 (-5 *2 (-630 (-657 *3))) (-5 *1 (-875 *3)) (-4 *3 (-833))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-909))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) (-4 *2 (-1192))))) -(((*1 *1) (-5 *1 (-431)))) + (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-631 (-928 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) (((*1 *2 *1) - (-12 (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-111)))) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *2) (-12 (-5 *2 (-829 (-554))) (-5 *1 (-528)))) + ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1082))))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) + ((*1 *1 *1) (-4 *1 (-834))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170)) (-4 *2 (-1043)))) + ((*1 *1 *1) (-4 *1 (-1043))) ((*1 *1 *1) (-4 *1 (-1121)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1709 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-358)) (-4 *7 (-1217 *6)) + (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) + (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836)) + (-4 *4 (-261 *3)) (-4 *5 (-780))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-402 (-554)))) + (-5 *2 (-2 (|:| -4177 (-1138 *4)) (|:| -4188 (-1138 *4)))) + (-5 *1 (-1144 *4)) (-5 *3 (-1138 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *5 (-1031)) - (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) -(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-575 *3)) (-4 *3 (-538))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-118 *2)) (-4 *2 (-1192))))) -(((*1 *1 *2) - (-12 (-5 *2 (-903)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1031)) - (-4 *4 (-1192)))) - ((*1 *1 *2) - (-12 (-14 *3 (-630 (-1155))) (-4 *4 (-169)) - (-4 *5 (-233 (-2563 *3) (-757))) - (-14 *6 - (-1 (-111) (-2 (|:| -2735 *2) (|:| -2692 *5)) - (-2 (|:| -2735 *2) (|:| -2692 *5)))) - (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-833)) - (-4 *7 (-931 *4 *5 (-847 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-925 (-220))) (-5 *1 (-1188))))) -(((*1 *2 *1) - (-12 (-5 *2 (-401 (-934 *3))) (-5 *1 (-446 *3 *4 *5 *6)) - (-4 *3 (-545)) (-4 *3 (-169)) (-14 *4 (-903)) - (-14 *5 (-630 (-1155))) (-14 *6 (-1238 (-674 *3)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1031)) (-5 *2 (-630 *1)) (-4 *1 (-1113 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) + (-12 (-4 *3 (-358)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-498 *3 *4 *5 *6)) (-4 *6 (-934 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1051 *4 *3)) (-4 *4 (-13 (-834) (-358))) + (-4 *3 (-1217 *4)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1151 (-934 *6))) (-4 *6 (-545)) - (-4 *2 (-931 (-401 (-934 *6)) *5 *4)) (-5 *1 (-718 *5 *4 *6 *2)) - (-4 *5 (-779)) - (-4 *4 (-13 (-833) (-10 -8 (-15 -1524 ((-1155) $)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-186)) (-5 *3 (-553)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-769 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-630 (-599 *5))) (-5 *3 (-1155)) (-4 *5 (-424 *4)) - (-4 *4 (-833)) (-5 *1 (-562 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-831))) - (-5 *2 (-630 (-2 (|:| -3713 (-630 *3)) (|:| -1833 *5)))) - (-5 *1 (-178 *5 *3)) (-4 *3 (-1214 (-166 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-357) (-831))) - (-5 *2 (-630 (-2 (|:| -3713 (-630 *3)) (|:| -1833 *4)))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1214 (-166 *4)))))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-631 *3))) (-4 *3 (-1082)) (-5 *1 (-1167 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-903)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-257))))) -(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *2 (-630 *3)) (-5 *1 (-959 *4 *5 *6 *3)) - (-4 *3 (-1045 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) - (-5 *2 (-1243)) (-5 *1 (-1158)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1155)) - (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *2 (-1243)) - (-5 *1 (-1158)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1155)) - (-5 *4 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *2 (-1243)) - (-5 *1 (-1158))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-58 *3)) (-4 *3 (-1192)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-58 *3))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988)))) - ((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-988))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-461)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *2 *3) (-12 (-5 *2 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))))) - ((*1 *2 *3 *4) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))) - (-5 *4 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) - ((*1 *2 *3 *4) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *1 (-258)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-554)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243)))) + ((*1 *2 *1 *3) (-12 - (-5 *2 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *1 (-1002 *3)) (-4 *3 (-1214 (-553))) (-5 *4 (-401 (-553))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-401 (-553))) - (-5 *2 (-630 (-2 (|:| -3313 *5) (|:| -3323 *5)))) (-5 *1 (-1002 *3)) - (-4 *3 (-1214 (-553))) (-5 *4 (-2 (|:| -3313 *5) (|:| -3323 *5))))) - ((*1 *2 *3) + (-5 *3 + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *2 (-1246)) (-5 *1 (-1243)))) + ((*1 *2 *1) (-12 (-5 *2 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *1 (-1003 *3)) (-4 *3 (-1214 (-401 (-553)))))) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1585 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *1 (-1243)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-675 (-402 (-937 (-554))))) + (-5 *2 (-631 (-675 (-311 (-554))))) (-5 *1 (-1016)) + (-5 *3 (-311 (-554)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1076 *3)) (-4 *3 (-934 *7 *6 *4)) (-4 *6 (-780)) + (-4 *4 (-836)) (-4 *7 (-546)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554)))) + (-5 *1 (-583 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-780)) (-4 *4 (-836)) (-4 *6 (-546)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-554)))) + (-5 *1 (-583 *5 *4 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1180))) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-1150 *4 *2)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-630 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553)))))) - (-5 *1 (-1003 *3)) (-4 *3 (-1214 (-401 (-553)))) - (-5 *4 (-2 (|:| -3313 (-401 (-553))) (|:| -3323 (-401 (-553))))))) + (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) + (-5 *2 (-402 (-937 *5))) (-5 *1 (-1151 *5)) (-5 *3 (-937 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-401 (-553))) - (-5 *2 (-630 (-2 (|:| -3313 *4) (|:| -3323 *4)))) (-5 *1 (-1003 *3)) - (-4 *3 (-1214 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-401 (-553))) - (-5 *2 (-630 (-2 (|:| -3313 *5) (|:| -3323 *5)))) (-5 *1 (-1003 *3)) - (-4 *3 (-1214 *5)) (-5 *4 (-2 (|:| -3313 *5) (|:| -3323 *5)))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *4 (-1158)) (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) + (-5 *2 (-3 (-402 (-937 *5)) (-311 *5))) (-5 *1 (-1151 *5)) + (-5 *3 (-402 (-937 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1074 (-937 *5))) (-5 *3 (-937 *5)) + (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-402 *3)) + (-5 *1 (-1151 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1074 (-402 (-937 *5)))) (-5 *3 (-402 (-937 *5))) + (-4 *5 (-13 (-546) (-836) (-1023 (-554)))) (-5 *2 (-3 *3 (-311 *5))) + (-5 *1 (-1151 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-553)))) - (-4 *4 (-13 (-1214 *3) (-545) (-10 -8 (-15 -2508 ($ $ $))))) - (-4 *3 (-545)) (-5 *1 (-1217 *3 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) (-5 *2 (-630 (-925 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 (-925 *3))) (-4 *3 (-1031)) (-4 *1 (-1113 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 (-925 *3))) (-4 *1 (-1113 *3)) (-4 *3 (-1031))))) + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-848)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-674 *4)) (-5 *3 (-903)) (-4 *4 (-1031)) - (-5 *1 (-1010 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 (-674 *4))) (-5 *3 (-903)) (-4 *4 (-1031)) - (-5 *1 (-1010 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1214 *5)) - (-5 *2 (-630 *3)) (-5 *1 (-763 *4 *5 *6 *3 *7)) (-4 *3 (-1214 *6)) - (-14 *7 (-903))))) + (-12 (-5 *2 (-1154 *6)) (-5 *3 (-554)) (-4 *6 (-302)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *1 (-729 *4 *5 *6 *7)) (-4 *7 (-934 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-5 *1 (-218 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-249 *3)))) + ((*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-554)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-413 *2)) (-4 *2 (-546))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-631 (-1140))) (-5 *1 (-1175))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-631 (-500))) (-5 *2 (-500)) (-5 *1 (-477))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) + (-5 *2 (-2 (|:| -1490 *4) (|:| -2325 *3) (|:| -2423 *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-2 (|:| -2325 *1) (|:| -2423 *1))) (-4 *1 (-1048 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) + (-5 *2 (-2 (|:| -1490 *3) (|:| -2325 *1) (|:| -2423 *1))) + (-4 *1 (-1217 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-111)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) - (-5 *2 (-111)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-431)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-757)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-931 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833)) (-4 *2 (-445)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *1)))) - (-4 *1 (-1051 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1196))) - ((*1 *2 *2) - (-12 (-4 *3 (-545)) (-5 *1 (-1217 *3 *2)) - (-4 *2 (-13 (-1214 *3) (-545) (-10 -8 (-15 -2508 ($ $ $)))))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-1214 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-600 (-845))))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-553)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-580)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-471)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-153)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1145)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-613)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1075)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1053)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-952)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-177)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1018)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-305)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-656)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-151)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1249)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1046)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-510)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-666)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-95)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1094)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1248)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-661)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-213)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-553)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1157 (-401 (-553)))) (-5 *1 (-185))))) -(((*1 *2 *2) - (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) - (-15 -3974 ((-1104 *3 (-599 $)) $)) - (-15 -3110 ($ (-1104 *3 (-599 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *3 (-599 $)) $)) - (-15 -3974 ((-1104 *3 (-599 $)) $)) - (-15 -3110 ($ (-1104 *3 (-599 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *4 (-599 $)) $)) - (-15 -3974 ((-1104 *4 (-599 $)) $)) - (-15 -3110 ($ (-1104 *4 (-599 $))))))) - (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-630 (-599 *2))) - (-4 *2 - (-13 (-357) (-296) - (-10 -8 (-15 -3963 ((-1104 *4 (-599 $)) $)) - (-15 -3974 ((-1104 *4 (-599 $)) $)) - (-15 -3110 ($ (-1104 *4 (-599 $))))))) - (-4 *4 (-545)) (-5 *1 (-41 *4 *2))))) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-631 (-631 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-631 (-631 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 (-631 *3))) (-5 *1 (-1167 *3)) (-4 *3 (-1082))))) +(((*1 *2 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1123 *3 *4)) (-4 *3 (-13 (-1082) (-34))) + (-4 *4 (-13 (-1082) (-34)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-836)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-888 *3)) (-4 *3 (-1082)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1082))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-343)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3713 (-630 (-2 (|:| |irr| *3) (|:| -3220 (-553))))))) - (-5 *1 (-211 *5 *3)) (-4 *3 (-1214 *5))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1123)) (-5 *3 (-141)) (-5 *2 (-111))))) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546)) + (-5 *2 (-1241 *4)) (-5 *1 (-626 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-386))))) (((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-946 *3 *2)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-5 *1 (-220))) ((*1 *1 *1) (-5 *1 (-373))) - ((*1 *1) (-5 *1 (-373)))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3713 (-630 (-2 (|:| |irr| *10) (|:| -3220 (-553))))))) - (-5 *6 (-630 *3)) (-5 *7 (-630 *8)) (-4 *8 (-833)) (-4 *3 (-301)) - (-4 *10 (-931 *3 *9 *8)) (-4 *9 (-779)) - (-5 *2 - (-2 (|:| |polfac| (-630 *10)) (|:| |correct| *3) - (|:| |corrfact| (-630 (-1151 *3))))) - (-5 *1 (-612 *8 *9 *3 *10)) (-5 *4 (-630 (-1151 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192))))) + (-12 (-5 *2 (-169)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-601 *2) (-169))) (-5 *2 (-874 *4)) - (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1079)) (-4 *3 (-163 *5)))) + (-12 (-5 *3 (-1084 *4)) (-4 *4 (-1082)) (-5 *2 (-1 *4)) + (-5 *1 (-1002 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1025)) (-5 *3 (-374)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-1073 (-826 (-373))))) - (-5 *2 (-630 (-1073 (-826 (-220))))) (-5 *1 (-299)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-845)) (-5 *3 (-553)) (-5 *1 (-388)))) + (-12 (-5 *3 (-1076 (-554))) (-5 *2 (-1 (-554))) (-5 *1 (-1032))))) +(((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1214 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1214 *3)) - (-5 *2 (-1238 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1238 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1238 *3)))) + (-12 (-5 *2 (-937 (-374))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-545)) - (-4 *3 (-833)))) + (-12 (-5 *2 (-402 (-937 (-374)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-456 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1192)))) + (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-374))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-4 *1 (-710 *3 *2)) (-4 *2 (-1214 *3)))) + (-12 (-5 *2 (-937 (-554))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-402 (-937 (-554)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 *3)) (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) - (-4 *5 (-601 (-1155))) (-4 *4 (-779)) (-4 *5 (-833)))) + (-12 (-5 *2 (-311 (-554))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1023 (-554))) (-14 *3 (-631 (-1158))) + (-14 *4 (-631 (-1158))) (-4 *5 (-382)))) ((*1 *1 *2) - (-3988 - (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) - (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) - (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))) - (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) + (-12 (-5 *2 (-1158)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-631 *2)) + (-14 *4 (-631 *2)) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 (-401 (-553)))) (-4 *1 (-1045 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155))) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) - (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1051 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1137)) - (-5 *1 (-1049 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-630 *7)) (|:| -3233 *8))) - (-4 *7 (-1045 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1137)) - (-5 *1 (-1124 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1160)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-553)) (-5 *1 (-1172)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-845)) (-5 *3 (-553)) (-5 *1 (-1172)))) - ((*1 *2 *3) - (-12 (-5 *3 (-766 *4 (-847 *5))) - (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *5 (-630 (-1155))) - (-5 *2 (-766 *4 (-847 *6))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *6 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-934 *4)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-934 (-1006 (-401 *4)))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-766 *4 (-847 *6))) - (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *6 (-630 (-1155))) - (-5 *2 (-934 (-1006 (-401 *4)))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 *4)) (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-1151 (-1006 (-401 *4)))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1125 *4 (-524 (-847 *6)) (-847 *6) (-766 *4 (-847 *6)))) - (-4 *4 (-13 (-831) (-301) (-144) (-1004))) (-14 *6 (-630 (-1155))) - (-5 *2 (-630 (-766 *4 (-847 *6)))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-674 *3)) (-4 *3 (-1031)) (-5 *1 (-675 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-424 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *5 (-1214 *4)) (-5 *2 (-630 (-2 (|:| -4010 *5) (|:| -4304 *5)))) - (-5 *1 (-793 *4 *5 *3 *6)) (-4 *3 (-641 *5)) - (-4 *6 (-641 (-401 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *4 (-1214 *5)) (-5 *2 (-630 (-2 (|:| -4010 *4) (|:| -4304 *4)))) - (-5 *1 (-793 *5 *4 *3 *6)) (-4 *3 (-641 *4)) - (-4 *6 (-641 (-401 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *5 (-1214 *4)) (-5 *2 (-630 (-2 (|:| -4010 *5) (|:| -4304 *5)))) - (-5 *1 (-793 *4 *5 *6 *3)) (-4 *6 (-641 *5)) - (-4 *3 (-641 (-401 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-357) (-144) (-1020 (-401 (-553))))) - (-4 *4 (-1214 *5)) (-5 *2 (-630 (-2 (|:| -4010 *4) (|:| -4304 *4)))) - (-5 *1 (-793 *5 *4 *6 *3)) (-4 *6 (-641 *4)) - (-4 *3 (-641 (-401 *4)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *5))) (-5 *4 (-111)) - (-4 *5 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-1028 *5 *6))) (-5 *1 (-1264 *5 *6 *7)) - (-14 *6 (-630 (-1155))) (-14 *7 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) - (-4 *4 (-13 (-831) (-301) (-144) (-1004))) - (-5 *2 (-630 (-1028 *4 *5))) (-5 *1 (-1264 *4 *5 *6)) - (-14 *5 (-630 (-1155))) (-14 *6 (-630 (-1155)))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1187 *3)) (-4 *3 (-956))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-151)))) - ((*1 *2 *1) (-12 (-5 *2 (-630 (-1114))) (-5 *1 (-1046))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-931 *4 *6 *5)) (-4 *4 (-445)) - (-4 *5 (-833)) (-4 *6 (-779)) (-5 *1 (-969 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1031)) - (-14 *4 (-630 (-1155))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1192)))) + (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) + (-14 *3 (-631 (-1158))) (-14 *4 (-631 (-1158))))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-554))))) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-402 (-937 (-374))))) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-554)))) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-937 (-374)))) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-554)))) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-675 (-311 (-374)))) (-4 *1 (-379)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-554)))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-937 (-374)))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-937 (-554))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-937 (-374))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-554))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-554))))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-402 (-937 (-374))))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-554)))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-937 (-374)))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-554)))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 (-311 (-374)))) (-4 *1 (-435)))) ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1031) (-833))) - (-14 *4 (-630 (-1155))))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-657 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-662 *3)) (-4 *3 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-875 *3)) (-4 *3 (-833))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1243)) (-5 *1 (-1117)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-845))) (-5 *2 (-1243)) (-5 *1 (-1117))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-630 (-1155))) (|:| |pred| (-52)))) - (-5 *1 (-874 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-757)) (-5 *2 (-111))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1192)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1178 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-833)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-847 *3)) (-14 *3 (-630 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-948 *3)) (-4 *3 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-971)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1071 *3)) (-4 *3 (-1192)))) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| |mdnia| + (-2 (|:| |fn| (-311 (-221))) + (|:| -3827 (-631 (-1076 (-829 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) + (-5 *1 (-756)))) ((*1 *2 *1) - (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-5 *2 (-1155)))) - ((*1 *2) (-12 (-5 *2 (-1155)) (-5 *1 (-1234 *3)) (-14 *3 *2)))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-538))) - ((*1 *1 *1) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1031)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1119 *2 *3)) (-4 *2 (-13 (-1079) (-34))) - (-4 *3 (-13 (-1079) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-553)) (-4 *4 (-1214 (-401 *3))) (-5 *2 (-903)) - (-5 *1 (-895 *4 *5)) (-4 *5 (-1214 (-401 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-288 (-934 (-553)))) + (-12 (-5 *2 - (-2 (|:| |varOrder| (-630 (-1155))) - (|:| |inhom| (-3 (-630 (-1238 (-757))) "failed")) - (|:| |hom| (-630 (-1238 (-757)))))) - (-5 *1 (-231))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-1241))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1214 *3)) (-4 *3 (-1031)) (-5 *2 (-1151 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-833) (-545)))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-845))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1151 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-833)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2692 (-553)))) (-4 *1 (-424 *3)))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *1 (-795)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-874 *3)) (|:| -2692 (-874 *3)))) - (-5 *1 (-874 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-779)) (-4 *5 (-833)) (-4 *6 (-1031)) - (-4 *7 (-931 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2692 (-553)))) - (-5 *1 (-932 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *7)) (-15 -3963 (*7 $)) - (-15 -3974 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-4 *1 (-822)) - (-5 *3 - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) - (-5 *2 (-1017)))) - ((*1 *2 *3) - (-12 (-4 *1 (-822)) - (-5 *3 - (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) - (-5 *2 (-1017))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1214 *3)) - (-4 *3 (-13 (-357) (-144) (-1020 (-553)))) (-5 *1 (-557 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1051 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-166 (-401 (-553))))) + (-12 (-5 *2 - (-630 - (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-553)) - (|:| |outvect| (-630 (-674 (-166 *4))))))) - (-5 *1 (-750 *4)) (-4 *4 (-13 (-357) (-831)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-553))) (-5 *4 (-553)) (-5 *2 (-52)) - (-5 *1 (-987))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) - (-5 *1 (-737))))) -(((*1 *2 *3) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-311 (-221))) (|:| -3834 (-631 (-221))) + (|:| |lb| (-631 (-829 (-221)))) + (|:| |cf| (-631 (-311 (-221)))) + (|:| |ub| (-631 (-829 (-221)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-631 (-311 (-221)))) + (|:| -3834 (-631 (-221))))))) + (-5 *1 (-827)))) + ((*1 *2 *1) (-12 - (-5 *3 - (-497 (-401 (-553)) (-235 *5 (-757)) (-847 *4) - (-242 *4 (-401 (-553))))) - (-14 *4 (-630 (-1155))) (-14 *5 (-757)) (-5 *2 (-111)) - (-5 *1 (-498 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1151 (-553))) (-5 *1 (-924)) (-5 *3 (-553)))) + (-5 *2 + (-2 (|:| |pde| (-631 (-311 (-221)))) + (|:| |constraints| + (-631 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) + (|:| |grid| (-758)) (|:| |boundaryType| (-554)) + (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) + (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) + (|:| |tol| (-221)))) + (-5 *1 (-883)))) + ((*1 *1 *2) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *1 (-961 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2) + (-3994 + (-12 (-5 *2 (-937 *3)) + (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) + (-4081 (-4 *3 (-38 (-554)))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836))) + (-12 (-5 *2 (-937 *3)) + (-12 (-4081 (-4 *3 (-539))) (-4081 (-4 *3 (-38 (-402 (-554))))) + (-4 *3 (-38 (-554))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836))) + (-12 (-5 *2 (-937 *3)) + (-12 (-4081 (-4 *3 (-977 (-554)))) (-4 *3 (-38 (-402 (-554)))) + (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *1 (-1048 *3 *4 *5)) (-4 *4 (-780)) + (-4 *5 (-836))))) + ((*1 *1 *2) + (-3994 + (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) + (-12 (-4081 (-4 *3 (-38 (-402 (-554))))) (-4 *3 (-38 (-554))) + (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))) + (-12 (-5 *2 (-937 (-554))) (-4 *1 (-1048 *3 *4 *5)) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158)))) + (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836))))) + ((*1 *1 *2) + (-12 (-5 *2 (-937 (-402 (-554)))) (-4 *1 (-1048 *3 *4 *5)) + (-4 *3 (-38 (-402 (-554)))) (-4 *5 (-602 (-1158))) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836))))) +(((*1 *1 *1) (-4 *1 (-617))) ((*1 *2 *2) - (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-674 (-553))) (-5 *5 (-111)) (-5 *7 (-674 (-220))) - (-5 *3 (-553)) (-5 *6 (-220)) (-5 *2 (-1017)) (-5 *1 (-740))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1192)) - (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4370)) (-4 *1 (-118 *3)) - (-4 *3 (-1192)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4370)) (-4 *1 (-118 *3)) - (-4 *3 (-1192)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1079)) - (-4 *2 (-1192)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1155)) (-5 *1 (-619)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1205 (-553))) (|has| *1 (-6 -4370)) (-4 *1 (-636 *2)) - (-4 *2 (-1192)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-630 (-553))) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4370)) (-4 *1 (-992 *2)) - (-4 *2 (-1192)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1079)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) - (-4 *2 (-1192)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4370)) (-4 *1 (-1226 *3)) - (-4 *3 (-1192)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4370)) (-4 *1 (-1226 *2)) - (-4 *2 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| -1686 (-412 *3)) (|:| |special| (-412 *3)))) - (-5 *1 (-713 *5 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4))))) -(((*1 *1 *1) (-5 *1 (-1043)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-630 (-2 (|:| |totdeg| (-757)) (|:| -4252 *3)))) - (-5 *4 (-757)) (-4 *3 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-779)) - (-4 *7 (-833)) (-5 *1 (-442 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-324))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-529))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-778)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-630 (-1155))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-553)) - (-14 *6 (-757)) (-4 *7 (-169)) (-4 *8 (-169)) - (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) - (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1031) (-833))) - (-5 *1 (-218 *3 *4)) (-14 *4 (-630 (-1155))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-757)) - (-4 *6 (-1192)) (-4 *7 (-1192)) (-5 *2 (-235 *5 *7)) - (-5 *1 (-234 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-288 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1137)) (-5 *5 (-599 *6)) - (-4 *6 (-296)) (-4 *2 (-1192)) (-5 *1 (-291 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-599 *5)) (-4 *5 (-296)) - (-4 *2 (-296)) (-5 *1 (-292 *5 *2)))) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987) (-1180)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1163))) (-5 *1 (-1163)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-599 *1)) (-4 *1 (-296)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-5 *2 (-674 *6)) (-5 *1 (-298 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-833)) - (-4 *6 (-833)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) - (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) - (-4 *9 (-357)) (-4 *10 (-1214 *9)) (-4 *11 (-1214 (-401 *10))) - (-5 *2 (-330 *9 *10 *11 *12)) - (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-336 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1196)) (-4 *8 (-1196)) - (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) (-4 *9 (-1214 *8)) - (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1214 (-401 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1192)) (-4 *6 (-1192)) - (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-545)) - (-4 *6 (-545)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-545)) - (-4 *6 (-545)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) - (-4 *6 (-974 *5)) (-4 *7 (-1214 *6)) - (-4 *8 (-13 (-403 *6 *7) (-1020 *6))) (-4 *9 (-301)) - (-4 *10 (-974 *9)) (-4 *11 (-1214 *10)) - (-5 *2 (-407 *9 *10 *11 *12)) - (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-403 *10 *11) (-1020 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-545)) (-5 *1 (-412 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1031) (-833))) - (-4 *6 (-13 (-1031) (-833))) (-4 *2 (-424 *6)) - (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1192)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-833)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-574 *5)) (-4 *5 (-357)) - (-4 *6 (-357)) (-5 *2 (-574 *6)) (-5 *1 (-573 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2388 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-357)) (-4 *6 (-357)) - (-5 *2 (-2 (|:| -2388 *6) (|:| |coeff| *6))) - (-5 *1 (-573 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-573 *5 *2)))) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-1163))) (-5 *1 (-1163))))) +(((*1 *1 *2) + (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1023 *4)) (-4 *3 (-302)) + (-4 *4 (-977 *3)) (-4 *5 (-1217 *4)) (-4 *6 (-404 *4 *5)) + (-14 *7 (-1241 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-977 *3)) + (-4 *5 (-1217 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1180) (-944))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *3) + (-12 (-5 *2 (-1138 *3)) (-5 *1 (-1142 *3)) (-4 *3 (-1034))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1158)) (-5 *5 (-1076 (-221))) (-5 *2 (-912)) + (-5 *1 (-910 *3)) (-4 *3 (-602 (-530))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-357)) (-4 *6 (-357)) + (-12 (-5 *4 (-1158)) (-5 *2 (-912)) (-5 *1 (-910 *3)) + (-4 *3 (-602 (-530))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-912)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1076 (-221))) + (-5 *1 (-912))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-836) (-546))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-425 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1158)))) + ((*1 *1 *1) (-4 *1 (-158)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1)))) + (-4 *1 (-362 *3)))) + ((*1 *2) + (|partial| -12 (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-630 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-573 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-588 *6)) (-5 *1 (-585 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-588 *7)) - (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-588 *8)) - (-5 *1 (-586 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1135 *6)) (-5 *5 (-588 *7)) - (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-1135 *8)) - (-5 *1 (-586 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-1135 *7)) - (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-1135 *8)) - (-5 *1 (-586 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1192)) (-5 *1 (-588 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-630 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-630 *6)) (-5 *1 (-628 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-630 *6)) (-5 *5 (-630 *7)) - (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-630 *8)) - (-5 *1 (-629 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-636 *3)) (-4 *3 (-1192)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1031)) (-4 *8 (-1031)) - (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-672 *8 *9 *10)) - (-5 *1 (-670 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-672 *5 *6 *7)) - (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1031)) - (-4 *8 (-1031)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) - (-4 *2 (-672 *8 *9 *10)) (-5 *1 (-670 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-672 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-545)) (-4 *7 (-545)) - (-4 *6 (-1214 *5)) (-4 *2 (-1214 (-401 *8))) - (-5 *1 (-695 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1214 (-401 *6))) - (-4 *8 (-1214 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1031)) (-4 *9 (-1031)) - (-4 *5 (-833)) (-4 *6 (-779)) (-4 *2 (-931 *9 *7 *5)) - (-5 *1 (-714 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-779)) - (-4 *4 (-931 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-833)) (-4 *6 (-833)) (-4 *7 (-779)) - (-4 *9 (-1031)) (-4 *2 (-931 *9 *8 *6)) - (-5 *1 (-715 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-779)) - (-4 *4 (-931 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-721 *5 *7)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-4 *7 (-712)) (-5 *2 (-721 *6 *7)) - (-5 *1 (-720 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-721 *3 *4)) - (-4 *4 (-712)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-768 *5)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-5 *2 (-768 *6)) (-5 *1 (-767 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-783 *6)) (-5 *1 (-784 *4 *5 *2 *6)) (-4 *4 (-783 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-819 *6)) (-5 *1 (-818 *5 *6)))) + (-2 (|:| |particular| (-447 *3 *4 *5 *6)) + (|:| -3782 (-631 (-447 *3 *4 *5 *6))))) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 *5)) (-4 *5 (-627 *4)) (-4 *4 (-546)) + (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1195))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1158)) (-5 *6 (-631 (-600 *3))) + (-5 *5 (-600 *3)) (-4 *3 (-13 (-27) (-1180) (-425 *7))) + (-4 *7 (-13 (-446) (-836) (-145) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) + (-5 *1 (-547 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 *5 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) + (-4 *3 (-164 *6)) (-4 (-937 *6) (-871 *5)) + (-4 *6 (-13 (-871 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-874 *4 *1)) (-5 *3 (-877 *4)) (-4 *1 (-871 *4)) + (-4 *4 (-1082)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-819 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *1 (-818 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-826 *6)) (-5 *1 (-825 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-826 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *1 (-825 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-859 *6)) (-5 *1 (-858 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-871 *5 *6)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-4 *7 (-1079)) (-5 *2 (-871 *5 *7)) - (-5 *1 (-870 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))) + (-12 (-5 *2 (-874 *5 *6)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) + (-4 *6 (-13 (-1082) (-1023 *3))) (-4 *3 (-871 *5)) + (-5 *1 (-916 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) + (-4 *3 (-13 (-425 *6) (-602 *4) (-871 *5) (-1023 (-600 $)))) + (-5 *4 (-877 *5)) (-4 *6 (-13 (-546) (-836) (-871 *5))) + (-5 *1 (-917 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 (-554) *3)) (-5 *4 (-877 (-554))) (-4 *3 (-539)) + (-5 *1 (-918 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 *5 *6)) (-5 *3 (-600 *6)) (-4 *5 (-1082)) + (-4 *6 (-13 (-836) (-1023 (-600 $)) (-602 *4) (-871 *5))) + (-5 *4 (-877 *5)) (-5 *1 (-919 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-870 *5 *6 *3)) (-5 *4 (-877 *5)) (-4 *5 (-1082)) + (-4 *6 (-871 *5)) (-4 *3 (-652 *6)) (-5 *1 (-920 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-874 *6 *3) *8 (-877 *6) (-874 *6 *3))) + (-4 *8 (-836)) (-5 *2 (-874 *6 *3)) (-5 *4 (-877 *6)) + (-4 *6 (-1082)) (-4 *3 (-13 (-934 *9 *7 *8) (-602 *4))) + (-4 *7 (-780)) (-4 *9 (-13 (-1034) (-836) (-871 *6))) + (-5 *1 (-921 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) + (-4 *3 (-13 (-934 *8 *6 *7) (-602 *4))) (-5 *4 (-877 *5)) + (-4 *7 (-871 *5)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *8 (-13 (-1034) (-836) (-871 *5))) + (-5 *1 (-921 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-977 *6)) + (-4 *6 (-13 (-546) (-871 *5) (-602 *4))) (-5 *4 (-877 *5)) + (-5 *1 (-924 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-874 *5 (-1158))) (-5 *3 (-1158)) (-5 *4 (-877 *5)) + (-4 *5 (-1082)) (-5 *1 (-925 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-631 (-877 *7))) (-5 *5 (-1 *9 (-631 *9))) + (-5 *6 (-1 (-874 *7 *9) *9 (-877 *7) (-874 *7 *9))) (-4 *7 (-1082)) + (-4 *9 (-13 (-1034) (-602 (-877 *7)) (-1023 *8))) + (-5 *2 (-874 *7 *9)) (-5 *3 (-631 *9)) (-4 *8 (-13 (-1034) (-836))) + (-5 *1 (-926 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-758)) (-5 *2 (-631 (-1158))) (-5 *1 (-206)) + (-5 *3 (-1158)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-5 *2 (-934 *6)) (-5 *1 (-928 *5 *6)))) + (-12 (-5 *3 (-311 (-221))) (-5 *4 (-758)) (-5 *2 (-631 (-1158))) + (-5 *1 (-262)))) + ((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) + (-5 *2 (-631 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-631 *3)) (-5 *1 (-615 *3 *4 *5)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-14 *5 (-906)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-658 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-663 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *2 (-631 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) + (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-1217 *4)) (-4 *4 (-1199)) + (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1217 (-402 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170)) + (-4 *1 (-362 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1241 *1)) (-4 *4 (-170)) + (-4 *1 (-365 *4 *5)) (-4 *5 (-1217 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) + (-4 *4 (-1217 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1241 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1122 *3 *2)) (-4 *3 (-13 (-1082) (-34))) + (-4 *2 (-13 (-1082) (-34)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-374)))) + ((*1 *1 *1 *1) (-4 *1 (-539))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-1034)) (-4 *4 (-170)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *2 (-836)) (-4 *3 (-1034)) + (-4 *3 (-170))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 (-1154 *4))) (-5 *3 (-1154 *4)) + (-4 *4 (-894)) (-5 *1 (-649 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780)) + (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1052 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-833)) - (-4 *8 (-1031)) (-4 *6 (-779)) - (-4 *2 - (-13 (-1079) - (-10 -8 (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-757)))))) - (-5 *1 (-933 *6 *7 *8 *5 *2)) (-4 *5 (-931 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-940 *6)) (-5 *1 (-939 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-925 *5)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-5 *2 (-925 *6)) (-5 *1 (-963 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-934 *4))) (-4 *4 (-1031)) - (-4 *2 (-931 (-934 *4) *5 *6)) (-4 *5 (-779)) - (-4 *6 - (-13 (-833) - (-10 -8 (-15 -1524 ((-1155) $)) - (-15 -1509 ((-3 $ "failed") (-1155)))))) - (-5 *1 (-966 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-545)) (-4 *6 (-545)) - (-4 *2 (-974 *6)) (-5 *1 (-972 *5 *6 *4 *2)) (-4 *4 (-974 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-979 *6)) (-5 *1 (-980 *4 *5 *2 *6)) (-4 *4 (-979 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1034 *3 *4 *5 *6 *7)) - (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1034 *3 *4 *5 *6 *7)) - (-4 *5 (-1031)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1031)) (-4 *10 (-1031)) - (-14 *5 (-757)) (-14 *6 (-757)) (-4 *8 (-233 *6 *7)) - (-4 *9 (-233 *5 *7)) (-4 *2 (-1034 *5 *6 *10 *11 *12)) - (-5 *1 (-1036 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1034 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) - (-4 *12 (-233 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-1073 *6)) (-5 *1 (-1068 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-831)) - (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-630 *6)) - (-5 *1 (-1068 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-1071 *6)) (-5 *1 (-1070 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1074 *4 *2)) (-4 *4 (-831)) - (-4 *2 (-1128 *4)))) + (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-1135 *6)) (-5 *1 (-1133 *5 *6)))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-758)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-780)) + (-4 *9 (-836)) (-4 *3 (-1048 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1127 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1135 *6)) (-5 *5 (-1135 *7)) - (-4 *6 (-1192)) (-4 *7 (-1192)) (-4 *8 (-1192)) (-5 *2 (-1135 *8)) - (-5 *1 (-1134 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-5 *2 (-1151 *6)) (-5 *1 (-1149 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5 *7 *9)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-14 *7 (-1155)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1202 *6 *8 *10)) (-5 *1 (-1197 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1155)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-1205 *6)) (-5 *1 (-1204 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1205 *5)) (-4 *5 (-831)) - (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1135 *6)) - (-5 *1 (-1204 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1211 *5 *6)) (-14 *5 (-1155)) - (-4 *6 (-1031)) (-4 *8 (-1031)) (-5 *2 (-1211 *7 *8)) - (-5 *1 (-1206 *5 *6 *7 *8)) (-14 *7 (-1155)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) - (-4 *2 (-1214 *6)) (-5 *1 (-1212 *5 *4 *6 *2)) (-4 *4 (-1214 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1031)) - (-4 *6 (-1031)) (-14 *7 (-1155)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1155)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1031)) (-4 *6 (-1031)) - (-4 *2 (-1229 *6)) (-5 *1 (-1227 *5 *6 *4 *2)) (-4 *4 (-1229 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1238 *5)) (-4 *5 (-1192)) - (-4 *6 (-1192)) (-5 *2 (-1238 *6)) (-5 *1 (-1237 *5 *6)))) + (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1238 *5)) - (-4 *5 (-1192)) (-4 *6 (-1192)) (-5 *2 (-1238 *6)) - (-5 *1 (-1237 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-1031)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1031)) (-5 *1 (-1261 *3 *4)) - (-4 *4 (-829))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *1 *1 *1) (-5 *1 (-845)))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-757)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-367 *3)) (-4 *3 (-1192)) - (-4 *3 (-1079)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-1192)) (-4 *3 (-1079)) - (-5 *2 (-553)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1192)) - (-5 *2 (-553)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-522)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-553)) (-5 *3 (-138)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-553))))) -(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-856)) - (-5 *5 (-903)) (-5 *6 (-630 (-257))) (-5 *2 (-461)) (-5 *1 (-1242)))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1082)) + (-4 *4 (-13 (-1034) (-871 *3) (-836) (-602 (-877 *3)))) + (-5 *2 (-631 (-1058 *3 *4 *5))) (-5 *1 (-1059 *3 *4 *5)) + (-4 *5 (-13 (-425 *4) (-871 *3) (-602 (-877 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1020))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-631 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-554))))) + (-4 *2 (-546)) (-5 *1 (-413 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *2 (-461)) - (-5 *1 (-1242)))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-554)) + (|:| -2316 (-631 (-2 (|:| |irr| *4) (|:| -4218 (-554))))))) + (-4 *4 (-1217 (-554))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-809))))) +(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034)))) + ((*1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-439 *3)) (-4 *3 (-1034))))) +(((*1 *1) (-5 *1 (-605)))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1217 (-554))) (-5 *1 (-480 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-5 *4 (-937 (-554))) (-5 *2 (-325)) + (-5 *1 (-327))))) +(((*1 *2 *3) (-12 (-5 *2 (-631 (-554))) (-5 *1 (-440)) (-5 *3 (-554))))) +(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-112)) (-5 *6 (-675 (-221))) + (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-576 *2)) (-4 *2 (-539))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-630 (-925 (-220))))) (-5 *4 (-630 (-257))) - (-5 *2 (-461)) (-5 *1 (-1242))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 (-497 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *1)) (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-630 *1)) (-5 *3 (-630 *7)) (-4 *1 (-1051 *4 *5 *6 *7)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-1045 *4 *5 *6)) (-4 *4 (-445)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-630 *1)) - (-4 *1 (-1051 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1073 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-1192)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1192))))) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-554))) (-5 *1 (-1032)) + (-5 *3 (-554))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-675 (-221))) (-5 *4 (-554)) (-5 *5 (-112)) + (-5 *2 (-1020)) (-5 *1 (-732))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) (-4 *5 (-358)) + (-4 *5 (-546)) (-5 *2 (-1241 *5)) (-5 *1 (-626 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 *5)) + (-4081 (-4 *5 (-358))) (-4 *5 (-546)) (-5 *2 (-1241 (-402 *5))) + (-5 *1 (-626 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1082 *3 *4 *5 *6 *2)) (-4 *3 (-1079)) (-4 *4 (-1079)) - (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1079))))) + (-12 (-5 *2 (-758)) (-5 *1 (-1146 *3 *4)) (-14 *3 (-906)) + (-4 *4 (-1034))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 (-1154 *5))) (-5 *3 (-1154 *5)) + (-4 *5 (-164 *4)) (-4 *4 (-539)) (-5 *1 (-147 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 *3)) (-4 *3 (-1217 *5)) + (-4 *5 (-1217 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 (-1154 (-554)))) (-5 *3 (-1154 (-554))) + (-5 *1 (-562)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-631 (-1154 *1))) (-5 *3 (-1154 *1)) + (-4 *1 (-894))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-669 *4 *5 *6)) (-4 *4 (-1079))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-1077 *3)))) - ((*1 *1) (-12 (-4 *1 (-1077 *2)) (-4 *2 (-1079))))) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-554)) (-5 *1 (-480 *4)) + (-4 *4 (-1217 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *2 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-1045 *3 *4 *2)) (-4 *2 (-833)))) + (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-539)) + (-5 *2 (-402 (-554))))) ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833))))) -(((*1 *1) (-4 *1 (-343)))) -(((*1 *2 *1) - (-12 (-4 *3 (-1079)) - (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))) - (-5 *2 (-630 (-1155))) (-5 *1 (-1055 *3 *4 *5)) - (-4 *5 (-13 (-424 *4) (-868 *3) (-601 (-874 *3))))))) -(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-367 *2)) (-4 *2 (-1192)))) - ((*1 *1 *1) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *3 (-1045 *5 *6 *7)) - (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1051 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1031)) - (-5 *2 (-630 (-630 (-925 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-630 (-630 (-925 *4)))) (-5 *3 (-111)) (-4 *4 (-1031)) - (-4 *1 (-1113 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 (-630 (-925 *3)))) (-4 *3 (-1031)) - (-4 *1 (-1113 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-630 (-630 (-630 *4)))) (-5 *3 (-111)) - (-4 *1 (-1113 *4)) (-4 *4 (-1031)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-630 (-630 (-925 *4)))) (-5 *3 (-111)) - (-4 *1 (-1113 *4)) (-4 *4 (-1031)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-630 (-630 (-630 *5)))) (-5 *3 (-630 (-168))) - (-5 *4 (-168)) (-4 *1 (-1113 *5)) (-4 *5 (-1031)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-630 (-630 (-925 *5)))) (-5 *3 (-630 (-168))) - (-5 *4 (-168)) (-4 *1 (-1113 *5)) (-4 *5 (-1031))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2134 *4))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1031)) (-5 *1 (-813 *2 *3)) (-4 *2 (-694 *3))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-324))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *3 (-1045 *4 *5 *6)) - (-5 *2 (-630 (-2 (|:| |val| (-111)) (|:| -3233 *1)))) - (-4 *1 (-1051 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-4 *1 (-296)))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1137)) (-5 *4 (-553)) (-5 *5 (-674 (-220))) - (-5 *2 (-1017)) (-5 *1 (-743))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1137)) (-5 *2 (-209 (-495))) (-5 *1 (-821))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-401 (-553))))) (-5 *1 (-257)))) - ((*1 *1 *2) (-12 (-5 *2 (-630 (-1073 (-373)))) (-5 *1 (-257))))) -(((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) - (-5 *1 (-1182 *3 *4 *5 *2)) (-4 *2 (-672 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1214 (-553)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-757)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-779)) (-4 *7 (-931 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-833)) - (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-949)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-931 *4 *5 *6)) (-4 *4 (-301)) - (-4 *5 (-779)) (-4 *6 (-833)) (-5 *1 (-440 *4 *5 *6 *2))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1192)) (-4 *2 (-1031)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-845)))) - ((*1 *1 *1) (-5 *1 (-845))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-925 (-220))) (-5 *2 (-220)) (-5 *1 (-1188)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1192)) (-4 *2 (-1031))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4)) (-4 *2 (-1031)) (-4 *3 (-779)) - (-4 *4 (-833))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-934 *6)) (-5 *4 (-1155)) - (-5 *5 (-826 *7)) - (-4 *6 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-4 *7 (-13 (-1177) (-29 *6))) (-5 *1 (-219 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1151 *6)) (-5 *4 (-826 *6)) - (-4 *6 (-13 (-1177) (-29 *5))) - (-4 *5 (-13 (-445) (-833) (-1020 (-553)) (-626 (-553)))) - (-5 *1 (-219 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-833) (-545)))))) + (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-413 *3)) (-4 *3 (-539)) + (-4 *3 (-546)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-539)) (-5 *2 (-402 (-554))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-539)) + (-5 *2 (-402 (-554))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-820 *3)) (-4 *3 (-539)) + (-4 *3 (-1082)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-829 *3)) (-4 *3 (-539)) + (-4 *3 (-1082)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-982 *3)) (-4 *3 (-170)) (-4 *3 (-539)) + (-5 *2 (-402 (-554))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-402 (-554))) (-5 *1 (-993 *3)) + (-4 *3 (-1023 *2))))) (((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-14 *2 (-903)) (-4 *3 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-220))) (-5 *2 (-1238 (-684))) (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1238 *4)) (-5 *3 (-553)) (-4 *4 (-343)) - (-5 *1 (-521 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-925 (-220))) (-5 *2 (-1243)) (-5 *1 (-461))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-4 *7 (-1045 *4 *5 *6)) (-5 *2 (-111)) - (-5 *1 (-1086 *4 *5 *6 *7 *3)) (-4 *3 (-1051 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-1072 *3)) (-4 *3 (-1192))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-903)) (-5 *2 (-461)) (-5 *1 (-1239))))) -(((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-619))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-357))))) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-685)) (-5 *1 (-300))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) + (-5 *2 (-1 *5)) (-5 *1 (-669 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-370 *4 *2)) + (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4374))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-545))) (-5 *1 (-270 *3 *2)) - (-4 *2 (-13 (-424 *3) (-984)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-461)) (-5 *4 (-903)) (-5 *2 (-1243)) (-5 *1 (-1239))))) -(((*1 *2 *1) (-12 (-5 *2 (-1243)) (-5 *1 (-808))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1262 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-169)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-805 *2)) (-4 *2 (-833)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-805 *3)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) - (-4 *4 (-1031)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1255 *2 *3)) (-4 *2 (-833)) (-4 *3 (-1031))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-553))))))) - (-5 *1 (-1107 *3 *2)) (-4 *3 (-1214 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-553)) (-5 *1 (-909))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-529) (-630 (-529)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-529) (-630 (-529)))) (-5 *1 (-113)))) - ((*1 *1) (-5 *1 (-567)))) -(((*1 *1 *2) (-12 (-5 *2 (-401 (-553))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-529))) (-5 *1 (-529))))) + (-12 (-5 *2 (-631 (-475 *3 *4))) (-14 *3 (-631 (-1158))) + (-4 *4 (-446)) (-5 *1 (-619 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-890 *3)) (-4 *3 (-1082))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-545) (-144))) (-5 *1 (-1208 *3 *2)) - (-4 *2 (-1214 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) - (-4 *6 (-1214 *5)) (-4 *7 (-1214 (-401 *6))) - (-4 *8 (-336 *5 *6 *7)) - (-4 *4 (-13 (-833) (-545) (-1020 (-553)))) - (-5 *2 (-2 (|:| -2968 (-757)) (|:| -2333 *8))) - (-5 *1 (-893 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-330 (-401 (-553)) *4 *5 *6)) - (-4 *4 (-1214 (-401 (-553)))) (-4 *5 (-1214 (-401 *4))) - (-4 *6 (-336 (-401 (-553)) *4 *5)) - (-5 *2 (-2 (|:| -2968 (-757)) (|:| -2333 *6))) - (-5 *1 (-894 *4 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-634 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-810)) (-5 *1 (-811))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-553)) (-4 *1 (-672 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) + (-12 (-5 *2 (-631 *6)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-5 *1 (-962 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-112)) (-4 *7 (-1048 *4 *5 *6)) + (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *1 (-962 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1154 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6)) + (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-937 *5)) (-4 *5 (-446)) (-5 *2 (-631 *6)) + (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1140))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-906)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) + ((*1 *2 *1) + (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-906)) (-4 *4 (-344)) + (-5 *1 (-522 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) + (-4 *5 (-234 *3 *2)) (-4 *2 (-1034))))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165))))) +(((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-325))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-592 *4 *3)) (-4 *4 (-1082)) + (-4 *3 (-1195)) (-4 *3 (-1082)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1140)) (-5 *3 (-554)) (-5 *1 (-237)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-631 (-1140))) (-5 *3 (-554)) (-5 *4 (-1140)) + (-5 *1 (-237)))) + ((*1 *1 *1) (-5 *1 (-848))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-848)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1034))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-530))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) + ((*1 *1 *1) (|partial| -4 *1 (-709)))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-630 (-1238 *4))) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) - (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-545)) - (-5 *2 (-630 (-1238 *3)))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-630 - (-2 - (|:| -2578 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) - (|:| |yinit| (-630 (-220))) (|:| |intvals| (-630 (-220))) - (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (|:| -3256 - (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) - (|:| |expense| (-373)) (|:| |accuracy| (-373)) - (|:| |intermediateResults| (-373))))))) - (-5 *1 (-789))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2134 *3) (|:| |coef1| (-768 *3)) (|:| |coef2| (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-553)) (-5 *1 (-236)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-1137))) (-5 *2 (-553)) (-5 *1 (-236))))) -(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1193 *3)) (-4 *3 (-1079))))) + (-12 (-5 *2 (-1241 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) + (-14 *3 (-906)) (-14 *4 (-906))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1034)) + (-4 *2 (-1201 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3344 (-674 (-401 (-934 *4)))) - (|:| |vec| (-630 (-401 (-934 *4)))) (|:| -2409 (-757)) - (|:| |rows| (-630 (-553))) (|:| |cols| (-630 (-553))))) - (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-833) (-601 (-1155)))) - (-4 *6 (-779)) - (-5 *2 - (-2 (|:| |partsol| (-1238 (-401 (-934 *4)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *4))))))) - (-5 *1 (-906 *4 *5 *6 *7)) (-4 *7 (-931 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1192)) (-5 *2 (-111))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1158)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1158)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-630 (-1155))) (-5 *4 (-1155)) - (-5 *1 (-1158)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1158)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-1155)) (-5 *1 (-1159)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-431)) (-5 *3 (-630 (-1155))) (-5 *1 (-1159))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-674 *3)) - (-4 *3 (-13 (-301) (-10 -8 (-15 -2708 ((-412 $) $))))) - (-4 *4 (-1214 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1192)) (-4 *4 (-367 *3)) - (-4 *5 (-367 *3)) (-5 *2 (-630 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4369)) (-4 *1 (-482 *3)) (-4 *3 (-1192)) - (-5 *2 (-630 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1238 (-674 *4))) (-4 *4 (-169)) - (-5 *2 (-1238 (-674 (-934 *4)))) (-5 *1 (-184 *4))))) -(((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) - (-5 *1 (-970 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-445)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *6 (-1045 *3 *4 *5)) (-5 *2 (-1243)) - (-5 *1 (-1086 *3 *4 *5 *6 *7)) (-4 *7 (-1051 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4370)) (-4 *1 (-239 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-630 (-220)))) (-5 *1 (-908))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1214 (-401 (-553)))) (-5 *1 (-895 *3 *2)) - (-4 *2 (-1214 (-401 *3)))))) + (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) + (|:| |expense| (-374)) (|:| |accuracy| (-374)) + (|:| |intermediateResults| (-374)))) + (-5 *2 (-1020)) (-5 *1 (-300))))) +(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262))))) (((*1 *1 *2) - (-12 (-5 *2 (-1121 *3 *4)) (-14 *3 (-903)) (-4 *4 (-357)) - (-5 *1 (-975 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-128))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-934 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-934 (-373)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-373))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-934 (-553))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-934 (-553)))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-310 (-553))) (-5 *1 (-333 *3 *4 *5)) - (-4 *5 (-1020 (-553))) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-333 *3 *4 *5)) - (-14 *3 (-630 *2)) (-14 *4 (-630 *2)) (-4 *5 (-381)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) - (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-630 (-1155))) - (-14 *4 (-630 (-1155))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-674 (-401 (-934 (-553))))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-674 (-401 (-934 (-373))))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-674 (-934 (-553)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-674 (-934 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-674 (-310 (-553)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-674 (-310 (-373)))) (-4 *1 (-378)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-934 (-553)))) (-4 *1 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-401 (-934 (-373)))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-553))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-934 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-553))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1238 (-401 (-934 (-553))))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1238 (-401 (-934 (-373))))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1238 (-934 (-553)))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1238 (-934 (-373)))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1238 (-310 (-553)))) (-4 *1 (-434)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1238 (-310 (-373)))) (-4 *1 (-434)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1214 *5)) - (-5 *2 (-1151 (-1151 *4))) (-5 *1 (-763 *4 *5 *6 *3 *7)) - (-4 *3 (-1214 *6)) (-14 *7 (-903)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-630 *6)) (-4 *6 (-1045 *3 *4 *5)) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833)) - (-4 *1 (-958 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1020 *2)) (-4 *2 (-1192)))) - ((*1 *1 *2) - (|partial| -3988 - (-12 (-5 *2 (-934 *3)) - (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) - (-2826 (-4 *3 (-38 (-553)))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833))) - (-12 (-5 *2 (-934 *3)) - (-12 (-2826 (-4 *3 (-538))) (-2826 (-4 *3 (-38 (-401 (-553))))) - (-4 *3 (-38 (-553))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833))) - (-12 (-5 *2 (-934 *3)) - (-12 (-2826 (-4 *3 (-974 (-553)))) (-4 *3 (-38 (-401 (-553)))) - (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *1 (-1045 *3 *4 *5)) (-4 *4 (-779)) - (-4 *5 (-833))))) - ((*1 *1 *2) - (|partial| -3988 - (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) - (-12 (-2826 (-4 *3 (-38 (-401 (-553))))) (-4 *3 (-38 (-553))) - (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))) - (-12 (-5 *2 (-934 (-553))) (-4 *1 (-1045 *3 *4 *5)) - (-12 (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155)))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-934 (-401 (-553)))) (-4 *1 (-1045 *3 *4 *5)) - (-4 *3 (-38 (-401 (-553)))) (-4 *5 (-601 (-1155))) - (-4 *3 (-1031)) (-4 *4 (-779)) (-4 *5 (-833))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2508 *3))) - (-5 *1 (-951 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1051 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-779)) - (-4 *6 (-833)) (-4 *3 (-1045 *4 *5 *6)) (-5 *2 (-111))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-946 *2 *3)) (-4 *3 (-1079))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1155)) (-5 *3 (-630 (-947))) (-5 *1 (-108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1020 (-553))) (-4 *3 (-13 (-833) (-545))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1151 *4)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1031)) (-4 *1 (-296)))) - ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1151 *3)))) - ((*1 *2) (-12 (-4 *1 (-710 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1214 *3)))) + (|partial| -12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-170)) + (-5 *1 (-650 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *2)) (-4 *3 (-13 (-831) (-357))) - (-4 *2 (-1214 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-412 (-1151 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1151 *1)) - (-4 *4 (-445)) (-4 *4 (-545)) (-4 *4 (-833)))) - ((*1 *2 *3) - (-12 (-4 *1 (-891)) (-5 *2 (-412 (-1151 *1))) (-5 *3 (-1151 *1))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-965 *2)) (-4 *2 (-1177))))) -(((*1 *1) (-5 *1 (-141))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-257))) (-5 *2 (-1112 (-220))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1112 (-220))) (-5 *1 (-257))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-757)) (-5 *5 (-630 *3)) (-4 *3 (-301)) (-4 *6 (-833)) - (-4 *7 (-779)) (-5 *2 (-111)) (-5 *1 (-612 *6 *7 *3 *8)) - (-4 *8 (-931 *3 *7 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) - (-4 *3 (-1214 *4))))) + (|partial| -12 (-5 *2 (-650 *3 *4)) (-5 *1 (-1261 *3 *4)) + (-4 *3 (-836)) (-4 *4 (-170))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-1031)) - (-4 *2 (-1229 *3))))) + (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-5 *2 (-1140))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-324))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-553)) (-4 *3 (-169)) (-4 *5 (-367 *3)) - (-4 *6 (-367 *3)) (-5 *1 (-673 *3 *5 *6 *2)) - (-4 *2 (-672 *3 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1243)) (-5 *1 (-438 *3)) (-4 *3 (-1031))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *5 (-833)) (-5 *2 (-111))))) + (-12 (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) (-5 *2 (-631 *1)) + (-4 *1 (-1048 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) - (-5 *2 (-630 (-2 (|:| |deg| (-757)) (|:| -2544 *3)))) - (-5 *1 (-211 *4 *3)) (-4 *3 (-1214 *4))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-630 (-1151 *13))) (-5 *3 (-1151 *13)) - (-5 *4 (-630 *12)) (-5 *5 (-630 *10)) (-5 *6 (-630 *13)) - (-5 *7 (-630 (-630 (-2 (|:| -2882 (-757)) (|:| |pcoef| *13))))) - (-5 *8 (-630 (-757))) (-5 *9 (-1238 (-630 (-1151 *10)))) - (-4 *12 (-833)) (-4 *10 (-301)) (-4 *13 (-931 *10 *11 *12)) - (-4 *11 (-779)) (-5 *1 (-693 *11 *12 *10 *13))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1155)) - (-5 *2 (-3 (|:| |fst| (-428)) (|:| -1875 "void"))) (-5 *1 (-1158))))) + (-12 (-5 *3 (-631 (-906))) (-5 *2 (-889 (-554))) (-5 *1 (-902))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-630 (-874 *3))) (-5 *1 (-874 *3)) - (-4 *3 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-630 (-2 (|:| |den| (-553)) (|:| |gcdnum| (-553))))) - (-4 *4 (-1214 (-401 *2))) (-5 *2 (-553)) (-5 *1 (-895 *4 *5)) - (-4 *5 (-1214 (-401 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-666)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-952)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1053)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1097))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1135 *3)) (-4 *3 (-1031)) (-5 *1 (-1139 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1230 *2 *3 *4)) (-4 *2 (-1031)) (-14 *3 (-1155)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-896 *3)) (-4 *3 (-301))))) -(((*1 *1) (-5 *1 (-138)))) -(((*1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-38 (-401 (-553)))) (-4 *2 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-52)) (-5 *1 (-815))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 (-553)) (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) -(((*1 *1 *2) (-12 (-5 *1 (-1008 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-5 *2 (-1238 (-674 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-674 *4)) (-4 *5 (-641 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-874 *4)) (-4 *4 (-1079)) (-5 *1 (-872 *4 *3)) - (-4 *3 (-1192)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-874 *3)) (-4 *3 (-1079))))) + (-12 (-5 *2 (-631 (-2 (|:| |gen| *3) (|:| -1333 *4)))) + (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-1140)) (-5 *2 (-1246)) (-5 *1 (-1242))))) (((*1 *2 *3) - (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *8 (-1045 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-630 *8)) - (|:| |towers| (-630 (-1009 *5 *6 *7 *8))))) - (-5 *1 (-1009 *5 *6 *7 *8)) (-5 *3 (-630 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-779)) (-4 *7 (-833)) - (-4 *8 (-1045 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-630 *8)) - (|:| |towers| (-630 (-1125 *5 *6 *7 *8))))) - (-5 *1 (-1125 *5 *6 *7 *8)) (-5 *3 (-630 *8))))) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) + (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-4 *1 (-107 *3))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-934 (-553))) (-5 *2 (-324)) - (-5 *1 (-326)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1155)) (-5 *4 (-1071 (-934 (-553)))) (-5 *2 (-324)) - (-5 *1 (-326)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-660 *3)) (-4 *3 (-1031)) - (-4 *3 (-1079))))) + (-12 (-5 *4 (-1158)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-688 *3 *5 *6 *7)) + (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195)) + (-4 *7 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1158)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *3 *5 *6)) + (-4 *3 (-602 (-530))) (-4 *5 (-1195)) (-4 *6 (-1195))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-611 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3324 *4) (|:| |sol?| (-112))) + (-554) *4)) + (-4 *4 (-358)) (-4 *5 (-1217 *4)) (-5 *1 (-564 *4 *5))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-600 *3)) + (-4 *3 (-13 (-425 *5) (-27) (-1180))) + (-4 *5 (-13 (-446) (-1023 (-554)) (-836) (-145) (-627 (-554)))) + (-5 *2 (-2 (|:| -1709 *3) (|:| |coeff| *3))) + (-5 *1 (-556 *5 *3 *6)) (-4 *6 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-474 *4 *5))) (-14 *4 (-630 (-1155))) - (-4 *5 (-445)) (-5 *2 (-630 (-242 *4 *5))) (-5 *1 (-618 *4 *5))))) + (-12 (-5 *3 (-1154 *4)) (-4 *4 (-344)) + (-4 *2 + (-13 (-397) + (-10 -7 (-15 -3075 (*2 *4)) (-15 -3830 ((-906) *2)) + (-15 -3782 ((-1241 *2) (-906))) (-15 -1811 (*2 *2))))) + (-5 *1 (-351 *2 *4))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1180))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *1 *2) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-374)) (-5 *2 (-1246)) (-5 *1 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1117))) (-5 *1 (-1049))))) +(((*1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244)))) + ((*1 *2 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1244))))) +(((*1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))) +(((*1 *2 *1) + (-12 (-5 *2 (-402 (-937 *3))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-546)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2134 *3) (|:| |coef2| (-768 *3)))) - (-5 *1 (-768 *3)) (-4 *3 (-545)) (-4 *3 (-1031))))) -(((*1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-23))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-355 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-757)) (-5 *1 (-380 *4)) (-4 *4 (-1079)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *2 (-23)) (-5 *1 (-634 *4 *2 *5)) - (-4 *4 (-1079)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-5 *2 (-757)) (-5 *1 (-805 *4)) (-4 *4 (-833))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-445)) (-4 *4 (-545)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3674 *4))) (-5 *1 (-951 *4 *3)) - (-4 *3 (-1214 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-845))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1094)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-630 (-1160))) (-5 *3 (-1160)) (-5 *1 (-1097))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1192)) - (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-553)) (-4 *1 (-1034 *4 *5 *6 *7 *2)) (-4 *6 (-1031)) - (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1155)) - (-4 *5 (-13 (-445) (-833) (-144) (-1020 (-553)) (-626 (-553)))) - (-5 *2 (-2 (|:| -2388 *3) (|:| |coeff| *3))) (-5 *1 (-546 *5 *3)) - (-4 *3 (-13 (-27) (-1177) (-424 *5)))))) + (-12 (-4 *3 (-546)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-631 *1)) (-4 *1 (-1048 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1217 *3)) + (-4 *5 (-1217 (-402 *4))) + (-5 *2 (-2 (|:| |num| (-1241 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1241 *4)) (-4 *4 (-627 (-554))) + (-5 *2 (-1241 (-554))) (-5 *1 (-1268 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1214 *5)) (-4 *5 (-357)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-563 *5 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) - (-5 *2 - (-2 (|:| -2821 *4) (|:| -1833 *4) (|:| |totalpts| (-553)) - (|:| |success| (-111)))) - (-5 *1 (-775)) (-5 *5 (-553))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-757)) (-5 *1 (-839 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-553)) (-5 *4 (-674 (-220))) (-5 *2 (-1017)) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-311 *5))) + (-5 *1 (-1111 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) + (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-631 (-311 *5)))) + (-5 *1 (-1111 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-850 *3)) (-14 *3 (-631 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-951 *3)) (-4 *3 (-952)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-974)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1074 *3)) (-4 *3 (-1195)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1034)) (-4 *4 (-779)) + (-5 *2 (-1158)))) + ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1237 *3)) (-14 *3 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-758)) (-4 *5 (-1034)) (-5 *2 (-554)) + (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1217 *5)) + (-4 *6 (-13 (-399) (-1023 *5) (-358) (-1180) (-279))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1034)) (-5 *2 (-554)) (-5 *1 (-437 *4 *3 *5)) + (-4 *3 (-1217 *4)) + (-4 *5 (-13 (-399) (-1023 *4) (-358) (-1180) (-279)))))) +(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-374))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4373)) (-4 *1 (-149 *2)) (-4 *2 (-1195)) + (-4 *2 (-1082))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *5 (-1140)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1020)) (-5 *1 (-737))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-903)) (-5 *1 (-1012 *2)) - (-4 *2 (-13 (-1079) (-10 -8 (-15 -1700 ($ $ $)))))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1020)) (-5 *1 (-735))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-220)) (-5 *4 (-553)) (-5 *2 (-1017)) (-5 *1 (-744))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-630 *9)) (-5 *3 (-1 (-111) *9)) - (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1045 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-779)) - (-4 *8 (-833)) (-5 *1 (-959 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1185 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-779)) - (-4 *5 (-833)) (-4 *2 (-1045 *3 *4 *5))))) -(((*1 *2 *2) + (-12 (-5 *4 (-631 (-631 *8))) (-5 *3 (-631 *8)) + (-4 *8 (-934 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) + (-4 *6 (-13 (-836) (-602 (-1158)))) (-4 *7 (-780)) (-5 *2 (-112)) + (-5 *1 (-909 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |lfn| (-631 (-311 (-221)))) (|:| -3834 (-631 (-221))))) + (-5 *2 (-374)) (-5 *1 (-262)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1241 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300))))) +(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-548 *3)) (-4 *3 (-539)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) (-5 *2 (-413 *3)) + (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-934 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-302)) + (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 *7))) + (-5 *1 (-729 *4 *5 *6 *7)) (-5 *3 (-1154 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-446)) (-4 *3 (-1034)) (-4 *4 (-780)) (-4 *5 (-836)) + (-5 *2 (-413 *1)) (-4 *1 (-934 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-780)) (-4 *6 (-446)) (-5 *2 (-413 *3)) + (-5 *1 (-964 *4 *5 *6 *3)) (-4 *3 (-934 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-446)) + (-4 *7 (-934 *6 *4 *5)) (-5 *2 (-413 (-1154 (-402 *7)))) + (-5 *1 (-1153 *4 *5 *6 *7)) (-5 *3 (-1154 (-402 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1199)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-413 *3)) (-5 *1 (-1220 *4 *3)) + (-4 *3 (-13 (-1217 *4) (-546) (-10 -8 (-15 -2510 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1031 *4 *5)) (-4 *4 (-13 (-834) (-302) (-145) (-1007))) + (-14 *5 (-631 (-1158))) (-5 *2 - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) - (-5 *1 (-261))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *9 (-1051 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) - (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-630 *9)) (-4 *8 (-1045 *5 *6 *7)) - (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-779)) - (-4 *7 (-833)) (-5 *2 (-757)) (-5 *1 (-1124 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1031)) (-4 *2 (-672 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1214 *4)) (-4 *5 (-367 *4)) - (-4 *6 (-367 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-903)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-757))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-925 (-220)) (-220) (-220))) - (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249))))) + (-631 (-1128 *4 (-525 (-850 *6)) (-850 *6) (-767 *4 (-850 *6))))) + (-5 *1 (-1267 *4 *5 *6)) (-14 *6 (-631 (-1158)))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) - (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-111)) (-5 *3 (-630 (-257))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) + (-12 (-4 *2 (-13 (-425 *3) (-987))) (-5 *1 (-271 *3 *2)) + (-4 *3 (-13 (-836) (-546)))))) (((*1 *2) - (-12 (-14 *4 (-757)) (-4 *5 (-1192)) (-5 *2 (-132)) - (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) - (-4 *3 (-323 *4)))) - ((*1 *2) - (-12 (-5 *2 (-757)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-169)))) - ((*1 *2 *1) - (-12 (-4 *3 (-357)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *2 (-553)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-931 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *6)) (-4 *6 (-833)) (-4 *4 (-357)) (-4 *5 (-779)) - (-5 *2 (-553)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-931 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1031)) (-5 *2 (-903)))) - ((*1 *2) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-497 (-401 (-553)) (-235 *4 (-757)) (-847 *3) - (-242 *3 (-401 (-553))))) - (-14 *3 (-630 (-1155))) (-14 *4 (-757)) (-5 *1 (-498 *3 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-296))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-896 *3)) (-4 *3 (-301))))) + (-12 (-4 *3 (-546)) (-5 *2 (-631 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-412 *3))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-934 *4))) (-4 *4 (-445)) (-5 *2 (-111)) - (-5 *1 (-354 *4 *5)) (-14 *5 (-630 (-1155))))) + (-12 (-5 *3 (-758)) (-5 *2 (-1246)) (-5 *1 (-851 *4 *5 *6 *7)) + (-4 *4 (-1034)) (-14 *5 (-631 (-1158))) (-14 *6 (-631 *3)) + (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-766 *4 (-847 *5)))) (-4 *4 (-445)) - (-14 *5 (-630 (-1155))) (-5 *2 (-111)) (-5 *1 (-615 *4 *5))))) + (-12 (-5 *3 (-758)) (-4 *4 (-1034)) (-4 *5 (-836)) (-4 *6 (-780)) + (-14 *8 (-631 *5)) (-5 *2 (-1246)) + (-5 *1 (-1253 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-934 *4 *6 *5)) + (-14 *9 (-631 *3)) (-14 *10 *3)))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-931 *3 *4 *2)) (-4 *3 (-1031)) (-4 *4 (-779)) - (-4 *2 (-833)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-779)) (-4 *5 (-1031)) (-4 *6 (-931 *5 *4 *2)) - (-4 *2 (-833)) (-5 *1 (-932 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-357) - (-10 -8 (-15 -3110 ($ *6)) (-15 -3963 (*6 $)) - (-15 -3974 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) - (-5 *2 (-1155)) (-5 *1 (-1025 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-547 *3)) (-4 *3 (-538))))) + (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) + (-4 *3 (-952))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-546)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3782 (-631 *1)))) + (-4 *1 (-362 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-447 *3 *4 *5 *6)) + (|:| -3782 (-631 (-447 *3 *4 *5 *6))))) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-906)) + (-14 *5 (-631 (-1158))) (-14 *6 (-1241 (-675 *3)))))) +(((*1 *1 *1) (-4 *1 (-1043))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1034)) (-4 *2 (-779))))) +(((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-601 (-848))))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-554)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1140)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-500)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-581)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-472)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1148)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-614)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1078)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1056)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-955)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-178)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1021)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-306)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-657)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1252)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1049)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-511)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-667)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1097)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-132)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1251)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-662)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1163)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-1163))))) +(((*1 *2 *3) (-12 (-5 *3 (-554)) (-5 *2 (-1246)) (-5 *1 (-991))))) +(((*1 *2 *3) + (-12 (-5 *3 (-937 *5)) (-4 *5 (-1034)) (-5 *2 (-243 *4 *5)) + (-5 *1 (-929 *4 *5)) (-14 *4 (-631 (-1158)))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-757)) (-4 *1 (-226 *4)) - (-4 *4 (-1031)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-758)) (-4 *1 (-227 *4)) + (-4 *4 (-1034)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1031)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-757)))) - ((*1 *1 *1) (-4 *1 (-228))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-4 *1 (-260 *3)) (-4 *3 (-833)))) - ((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-833)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1034)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-758)))) + ((*1 *1 *1) (-4 *1 (-229))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-4 *1 (-261 *3)) (-4 *3 (-836)))) + ((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-836)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1196)) - (-4 *4 (-1214 *3)) (-4 *5 (-1214 (-401 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1199)) + (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) - (-4 *4 (-1214 *3)))) + (-12 (-5 *2 (-758)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) + (-4 *4 (-1217 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) - (-4 *3 (-1214 *2)))) + (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) + (-4 *3 (-1217 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-467 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-468 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-357)) (-4 *2 (-882 *3)) (-5 *1 (-574 *2)) - (-5 *3 (-1155)))) + (-12 (-4 *2 (-358)) (-4 *2 (-885 *3)) (-5 *1 (-575 *2)) + (-5 *3 (-1158)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-574 *2)) (-4 *2 (-357)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-757)) (-5 *1 (-845)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-575 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-848)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-630 (-757))) (-4 *1 (-882 *4)) - (-4 *4 (-1079)))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-631 (-758))) (-4 *1 (-885 *4)) + (-4 *4 (-1082)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-757)) (-4 *1 (-882 *2)) (-4 *2 (-1079)))) + (-12 (-5 *3 (-758)) (-4 *1 (-885 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *1 (-882 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1079)))) + (-12 (-5 *2 (-631 *3)) (-4 *1 (-885 *3)) (-4 *3 (-1082)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-885 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1146 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1152 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1155 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1153 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1156 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1202 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1214 *3)) (-4 *3 (-1031)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1217 *3)) (-4 *3 (-1034)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1223 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1226 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1234 *4)) (-14 *4 (-1155)) (-5 *1 (-1230 *3 *4 *5)) - (-4 *3 (-1031)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1151 *9)) (-5 *4 (-630 *7)) (-5 *5 (-630 (-630 *8))) - (-4 *7 (-833)) (-4 *8 (-301)) (-4 *9 (-931 *8 *6 *7)) (-4 *6 (-779)) - (-5 *2 - (-2 (|:| |upol| (-1151 *8)) (|:| |Lval| (-630 *8)) - (|:| |Lfact| - (-630 (-2 (|:| -3355 (-1151 *8)) (|:| -2692 (-553))))) - (|:| |ctpol| *8))) - (-5 *1 (-728 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-553)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-757)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-779)) (-4 *4 (-931 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-833)) - (-5 *1 (-442 *5 *6 *7 *4))))) + (-12 (-5 *2 (-1237 *4)) (-14 *4 (-1158)) (-5 *1 (-1233 *3 *4 *5)) + (-4 *3 (-1034)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-836)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1188 *2 *3 *4 *5)) (-4 *2 (-546)) + (-4 *3 (-780)) (-4 *4 (-836)) (-4 *5 (-1048 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) + ((*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1126)) (-5 *3 (-142)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1242)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-758)) (-5 *4 (-906)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-170))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1199)) (-4 *5 (-1217 *4)) + (-5 *2 (-2 (|:| -1490 (-402 *5)) (|:| |poly| *3))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1217 (-402 *5)))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-554)) (-5 *3 (-906)) (-5 *1 (-685)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-675 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-358)) (-5 *1 (-963 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-181))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-544 *3)) (-4 *3 (-13 (-399) (-1180))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-630 (-630 *3))) (-4 *3 (-833)) (-5 *1 (-1163 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *1)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1031)) (-4 *1 (-672 *3 *4 *5)) - (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1238 *3)) (-4 *3 (-1031)) (-5 *1 (-674 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-630 *4)) (-4 *4 (-1031)) (-4 *1 (-1102 *3 *4 *5 *6)) - (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-674 *4)) (-5 *3 (-903)) (|has| *4 (-6 (-4371 "*"))) - (-4 *4 (-1031)) (-5 *1 (-1010 *4)))) + (-12 (-4 *3 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 (-674 *4))) (-5 *3 (-903)) - (|has| *4 (-6 (-4371 "*"))) (-4 *4 (-1031)) (-5 *1 (-1010 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-771 *3)) (-4 *3 (-601 *2)))) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-546) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1195)) (-5 *1 (-1241 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-903)) (-5 *2 (-373)) (-5 *1 (-771 *3)) - (-4 *3 (-601 *2)))) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-758)) (-4 *6 (-446)) (-4 *7 (-780)) (-4 *8 (-836)) + (-4 *3 (-1048 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-631 *4)) + (|:| |todo| (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1082)) (-4 *3 (-836)) + (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-836)))) + ((*1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-836)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1195)) (-5 *1 (-858 *2 *3)) (-4 *3 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-658 *3)) (-5 *1 (-878 *3)) (-4 *3 (-836)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1229 *3)) (-4 *3 (-1195)))) + ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-758)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-780)) + (-4 *4 (-836)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1188 *3 *4 *5 *2)) (-4 *3 (-546)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *2 (-1048 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1138 (-1138 *4))) (-5 *2 (-1138 *4)) (-5 *1 (-1142 *4)) + (-4 *4 (-1034))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-937 *5))) (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) + (-5 *1 (-1111 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-934 *4)) (-4 *4 (-1031)) (-4 *4 (-601 *2)) - (-5 *2 (-373)) (-5 *1 (-771 *4)))) + (-12 (-5 *3 (-402 (-937 *4))) (-4 *4 (-13 (-302) (-836) (-145))) + (-5 *2 (-631 (-289 (-311 *4)))) (-5 *1 (-1111 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-934 *5)) (-5 *4 (-903)) (-4 *5 (-1031)) - (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) + (-12 (-5 *3 (-289 (-402 (-937 *5)))) (-5 *4 (-1158)) + (-4 *5 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *5)))) + (-5 *1 (-1111 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-401 (-934 *4))) (-4 *4 (-545)) (-4 *4 (-601 *2)) - (-5 *2 (-373)) (-5 *1 (-771 *4)))) + (-12 (-5 *3 (-289 (-402 (-937 *4)))) + (-4 *4 (-13 (-302) (-836) (-145))) (-5 *2 (-631 (-289 (-311 *4)))) + (-5 *1 (-1111 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-401 (-934 *5))) (-5 *4 (-903)) (-4 *5 (-545)) - (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5)))) + (-12 (-5 *3 (-631 (-402 (-937 *5)))) (-5 *4 (-631 (-1158))) + (-4 *5 (-13 (-302) (-836) (-145))) + (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-310 *4)) (-4 *4 (-545)) (-4 *4 (-833)) - (-4 *4 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *4)))) + (-12 (-5 *3 (-631 (-402 (-937 *4)))) + (-4 *4 (-13 (-302) (-836) (-145))) + (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-310 *5)) (-5 *4 (-903)) (-4 *5 (-545)) (-4 *5 (-833)) - (-4 *5 (-601 *2)) (-5 *2 (-373)) (-5 *1 (-771 *5))))) + (-12 (-5 *3 (-631 (-289 (-402 (-937 *5))))) (-5 *4 (-631 (-1158))) + (-4 *5 (-13 (-302) (-836) (-145))) + (-5 *2 (-631 (-631 (-289 (-311 *5))))) (-5 *1 (-1111 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-289 (-402 (-937 *4))))) + (-4 *4 (-13 (-302) (-836) (-145))) + (-5 *2 (-631 (-631 (-289 (-311 *4))))) (-5 *1 (-1111 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) +(((*1 *1) (-5 *1 (-810)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1156 *4 *5 *6)) + (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-758)) (-5 *2 (-1214 *5 *4)) (-5 *1 (-1233 *4 *5 *6)) + (-4 *4 (-1034)) (-14 *5 (-1158)) (-14 *6 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-675 *5))) (-4 *5 (-302)) (-4 *5 (-1034)) + (-5 *2 (-1241 (-1241 *5))) (-5 *1 (-1014 *5)) (-5 *4 (-1241 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))) +(((*1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1165))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1082)) (-4 *3 (-885 *5)) (-5 *2 (-1241 *3)) + (-5 *1 (-678 *5 *3 *6 *4)) (-4 *6 (-368 *3)) + (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4373))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-833) (-445))) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-13 (-424 *3) (-1177)))))) + (-12 + (-5 *2 + (-972 (-402 (-554)) (-850 *3) (-236 *4 (-758)) + (-243 *3 (-402 (-554))))) + (-14 *3 (-631 (-1158))) (-14 *4 (-758)) (-5 *1 (-971 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) + (-5 *1 (-674 *3 *4 *5 *6)) (-4 *6 (-673 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2325 *3) (|:| -2423 *3))) (-5 *1 (-686 *3)) + (-4 *3 (-302))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1158)) + (-4 *4 (-13 (-836) (-302) (-1023 (-554)) (-627 (-554)) (-145))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-791 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1180) (-944)))))) +(((*1 *1 *2) (-12 (-5 *2 (-402 (-554))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-530))) (-5 *1 (-530))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-539))) + ((*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1082)))) + ((*1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1034)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1122 *2 *3)) (-4 *2 (-13 (-1082) (-34))) + (-4 *3 (-13 (-1082) (-34)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1140)) (-5 *2 (-374)) (-5 *1 (-773))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-426 *3 *2)) + (-4 *2 (-425 *3))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1155)) (-5 *1 (-599 *3)) (-4 *3 (-833))))) + (-12 (-5 *2 (-858 (-951 *3) (-951 *3))) (-5 *1 (-951 *3)) + (-4 *3 (-952))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-546) (-145))) (-5 *1 (-1211 *3 *2)) + (-4 *2 (-1217 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-780)) + (-4 *3 (-13 (-836) (-10 -8 (-15 -2927 ((-1158) $))))) (-4 *5 (-546)) + (-5 *1 (-719 *4 *3 *5 *2)) (-4 *2 (-934 (-402 (-937 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *3 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-5 *1 (-969 *4 *5 *3 *2)) (-4 *2 (-934 (-937 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *6)) + (-4 *6 + (-13 (-836) + (-10 -8 (-15 -2927 ((-1158) $)) + (-15 -1576 ((-3 $ "failed") (-1158)))))) + (-4 *4 (-1034)) (-4 *5 (-780)) (-5 *1 (-969 *4 *5 *6 *2)) + (-4 *2 (-934 (-937 *4) *5 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-902)) (-5 *2 (-2 (|:| -4120 (-630 *1)) (|:| -4093 *1))) - (-5 *3 (-630 *1))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2388 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-357)) (-4 *7 (-1214 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) - (-2 (|:| -2388 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) - (-5 *1 (-563 *6 *7)) (-5 *3 (-401 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1135 (-553))) (-5 *1 (-1139 *4)) (-4 *4 (-1031)) - (-5 *3 (-553))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-274))))) -(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) + (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1217 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-836)))) + ((*1 *2 *2) + (-12 (-5 *2 (-575 *4)) (-4 *4 (-13 (-29 *3) (-1180))) + (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *1 (-573 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-575 (-402 (-937 *3)))) + (-4 *3 (-13 (-446) (-1023 (-554)) (-836) (-627 (-554)))) + (-5 *1 (-578 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1217 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -3312 *3) (|:| |special| *3))) (-5 *1 (-714 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1241 *5)) (-4 *5 (-358)) (-4 *5 (-1034)) + (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) + (-5 *3 (-631 (-675 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1241 (-1241 *5))) (-4 *5 (-358)) (-4 *5 (-1034)) + (-5 *2 (-631 (-631 (-675 *5)))) (-5 *1 (-1014 *5)) + (-5 *3 (-631 (-675 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-631 *1)) (-4 *1 (-1126)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-631 *1)) (-4 *1 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) (-5 *2 (-631 *3)) (-5 *1 (-909 *4 *5 *6 *3)) + (-4 *3 (-934 *4 *6 *5))))) +(((*1 *1) (-5 *1 (-155)))) +(((*1 *2 *3) + (-12 (-4 *4 (-358)) (-5 *2 (-631 *3)) (-5 *1 (-930 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1140)) (-5 *5 (-675 (-221))) (-5 *6 (-675 (-554))) + (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-744))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-807)) (-5 *4 (-52)) (-5 *2 (-1243)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-580)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-613)))) + (-12 (-5 *3 (-167 (-221))) (-5 *4 (-554)) (-5 *2 (-1020)) + (-5 *1 (-745))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-758)) + (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-1079)) - (-4 *2 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))) - (-5 *1 (-1055 *3 *4 *2)) - (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))))) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-130)) + (-5 *2 (-758)))) + ((*1 *2) + (-12 (-4 *4 (-358)) (-5 *2 (-758)) (-5 *1 (-323 *3 *4)) + (-4 *3 (-324 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-356 *3)) (-4 *3 (-1082)))) + ((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-381 *3)) (-4 *3 (-1082)))) + ((*1 *2) + (-12 (-4 *4 (-1082)) (-5 *2 (-758)) (-5 *1 (-419 *3 *4)) + (-4 *3 (-420 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-553)) (-5 *1 (-908))))) -(((*1 *2 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-538))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1177))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-373)) (-5 *2 (-1243)) (-5 *1 (-1239)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-373)) (-5 *2 (-1243)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-5 *3 (-755)) + (-12 (-5 *2 (-758)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-1082)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-170)) (-4 *5 (-1217 *4)) (-5 *2 (-758)) + (-5 *1 (-710 *3 *4 *5)) (-4 *3 (-711 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-806 *3)) (-4 *3 (-836)))) + ((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-991)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-834) (-358))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-1217 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-52)) (-5 *1 (-1173))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-928 *5)) (-5 *3 (-758)) (-4 *5 (-1034)) + (-5 *1 (-1146 *4 *5)) (-14 *4 (-906))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-554)) (-5 *5 (-167 (-221))) (-5 *6 (-1140)) + (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-511))))) +(((*1 *1 *1) + (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1034)) (-4 *3 (-836)) + (-4 *4 (-261 *3)) (-4 *5 (-780))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-554)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1195)) + (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3)) + (-4 *3 (-1195)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4374)) (-4 *1 (-119 *3)) + (-4 *3 (-1195)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1082)) + (-4 *2 (-1195)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1158)) (-5 *1 (-620)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1208 (-554))) (|has| *1 (-6 -4374)) (-4 *1 (-637 *2)) + (-4 *2 (-1195)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-631 (-554))) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4374)) (-4 *1 (-995 *2)) + (-4 *2 (-1195)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1011 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1171 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) + (-4 *2 (-1195)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *3)) + (-4 *3 (-1195)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4374)) (-4 *1 (-1229 *2)) + (-4 *2 (-1195))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1034)) (-14 *3 (-631 (-1158))))) + ((*1 *1 *1) + (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1034) (-836))) + (-14 *3 (-631 (-1158)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-275)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-554) (-221) (-1158) (-1140) (-1163))) + (-5 *1 (-1163))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) - (-5 *1 (-554)))) + (-2 (|:| A (-675 *5)) + (|:| |eqs| + (-631 + (-2 (|:| C (-675 *5)) (|:| |g| (-1241 *5)) (|:| -4329 *6) + (|:| |rh| *5)))))) + (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *5)) (-5 *4 (-1241 *5)) + (-4 *6 (-642 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-755)) (-5 *4 (-1043)) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))) (|:| |extra| (-1017)))) - (-5 *1 (-554)))) + (-12 (-4 *5 (-358)) (-4 *6 (-642 *5)) + (-5 *2 (-2 (|:| -2866 (-675 *6)) (|:| |vec| (-1241 *5)))) + (-5 *1 (-800 *5 *6)) (-5 *3 (-675 *6)) (-5 *4 (-1241 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *3 (-780)) (-4 *5 (-836)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-934 *4 *3 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) + (-4 *6 (-1217 *5)) (-4 *7 (-1217 (-402 *6))) + (-4 *8 (-337 *5 *6 *7)) + (-4 *4 (-13 (-836) (-546) (-1023 (-554)))) + (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *8))) + (-5 *1 (-896 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-331 (-402 (-554)) *4 *5 *6)) + (-4 *4 (-1217 (-402 (-554)))) (-4 *5 (-1217 (-402 *4))) + (-4 *6 (-337 (-402 (-554)) *4 *5)) + (-5 *2 (-2 (|:| -2342 (-758)) (|:| -2367 *6))) + (-5 *1 (-897 *4 *5 *6))))) +(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1241 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1217 *2)) + (-4 *2 (-170)))) + ((*1 *2) + (-12 (-4 *4 (-1217 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4)) + (-4 *3 (-404 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1217 *2)) (-4 *2 (-170)))) + ((*1 *2) + (-12 (-4 *3 (-1217 *2)) (-5 *2 (-554)) (-5 *1 (-755 *3 *4)) + (-4 *4 (-404 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-934 *3 *4 *2)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *2 (-836)) (-4 *3 (-170)))) + ((*1 *2 *3) + (-12 (-4 *2 (-546)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1217 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1034)) (-4 *2 (-170))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-546)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-962 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-758)) (-5 *1 (-661 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554))))) +(((*1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1265 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-836)) + (-4 *2 (-170)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-836)) (-4 *2 (-1034)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-806 *4)) (-4 *1 (-1258 *4 *2)) (-4 *4 (-836)) + (-4 *2 (-1034)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1034)) (-5 *1 (-1264 *2 *3)) (-4 *3 (-832))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-1082)) (-4 *1 (-1080 *3)))) + ((*1 *1) (-12 (-4 *1 (-1080 *2)) (-4 *2 (-1082))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1138 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1034)) + (-5 *3 (-402 (-554))) (-5 *1 (-1142 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1034)) (-4 *4 (-1217 *3)) (-5 *1 (-162 *3 *4 *2)) + (-4 *2 (-1217 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1256 (-1158) *3)) (-4 *3 (-1034)) (-5 *1 (-1263 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *3 *4)) (-4 *3 (-836)) (-4 *4 (-1034)) + (-5 *1 (-1265 *3 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-634 *5)) (-4 *5 (-1034)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-838 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-675 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1034)) + (-5 *1 (-839 *2 *3)) (-4 *3 (-838 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-758)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-368 *3)) (-4 *3 (-1195)) + (-4 *3 (-1082)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-368 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) + (-5 *2 (-554)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1195)) + (-5 *2 (-554)))) + ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-523)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554)) (-5 *3 (-139)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1126)) (-5 *2 (-554))))) +(((*1 *1) (-5 *1 (-286)))) +(((*1 *1 *2) + (-12 (-4 *3 (-1034)) (-5 *1 (-814 *2 *3)) (-4 *2 (-695 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-5 *1 (-973 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-631 *7)) (-4 *7 (-1054 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-5 *1 (-1089 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-554)) (-5 *1 (-1169 *2)) (-4 *2 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) + ((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) + ((*1 *2 *3) + (-12 (-4 *4 (-546)) (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-962 *4 *5 *6 *3)) (-4 *3 (-1048 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-758)) (-4 *3 (-1034)) (-4 *1 (-673 *3 *4 *5)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1034)) (-4 *1 (-1105 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) + (-4 *5 (-234 *3 *2))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| *3) (|:| -2143 *4)))) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-1177 *4)) + (-4 *4 (-1034))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-811)) (-5 *1 (-812))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-4 *1 (-1217 *3)) (-4 *3 (-1034))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *5 (-221)) + (-5 *2 (-1020)) (-5 *1 (-739))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 G)))) (-5 *2 (-1020)) + (-5 *1 (-735))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-773)) (-5 *3 (-1043)) - (-5 *4 - (-2 (|:| |fn| (-310 (-220))) - (|:| -1457 (-630 (-1073 (-826 (-220))))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) - (|:| |extra| (-1017)))))) + (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-773)) (-5 *3 (-1043)) - (-5 *4 - (-2 (|:| |var| (-1155)) (|:| |fn| (-310 (-220))) - (|:| -1457 (-1073 (-826 (-220)))) (|:| |abserr| (-220)) - (|:| |relerr| (-220)))) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)) - (|:| |extra| (-1017)))))) + (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1115 (-221))) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) + (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) + (-5 *1 (-254 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-786)) (-5 *3 (-1043)) - (-5 *4 - (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) - (|:| |fn| (-1238 (-310 (-220)))) (|:| |yinit| (-630 (-220))) - (|:| |intvals| (-630 (-220))) (|:| |g| (-310 (-220))) - (|:| |abserr| (-220)) (|:| |relerr| (-220)))) - (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-794)) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *1 (-791)))) + (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374))) + (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) + (-5 *1 (-254 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) + (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3)) + (-4 *3 (-13 (-602 (-530)) (-1082))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1115 (-221))) (-5 *1 (-254 *3)) + (-4 *3 (-13 (-602 (-530)) (-1082))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) + (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) + (-5 *1 (-254 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374))) + (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1115 (-221))) + (-5 *1 (-254 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-554)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1195)) + (-4 *5 (-368 *4)) (-4 *3 (-368 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1241 (-1241 (-554)))) (-5 *3 (-906)) (-5 *1 (-460))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1034)) + (-4 *2 (-13 (-399) (-1023 *4) (-358) (-1180) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) (-5 *2 (-1020)) (-5 *1 (-745))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-794)) (-5 *4 (-1043)) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-1048 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-1048 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1089 *5 *6 *7 *8 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) + (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-631 (-554))) + (|:| |cols| (-631 (-554))))) + (-5 *4 (-675 *12)) (-5 *5 (-631 (-402 (-937 *9)))) + (-5 *6 (-631 (-631 *12))) (-5 *7 (-758)) (-5 *8 (-554)) + (-4 *9 (-13 (-302) (-145))) (-4 *12 (-934 *9 *11 *10)) + (-4 *10 (-13 (-836) (-602 (-1158)))) (-4 *11 (-780)) + (-5 *2 + (-2 (|:| |eqzro| (-631 *12)) (|:| |neqzro| (-631 *12)) + (|:| |wcond| (-631 (-937 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1241 (-402 (-937 *9)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *9))))))))) + (-5 *1 (-909 *9 *10 *11 *12))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-554)) (-4 *6 (-780)) (-4 *7 (-836)) (-4 *8 (-302)) + (-4 *9 (-934 *8 *6 *7)) + (-5 *2 (-2 (|:| -2598 (-1154 *9)) (|:| |polval| (-1154 *8)))) + (-5 *1 (-729 *6 *7 *8 *9)) (-5 *3 (-1154 *9)) (-5 *4 (-1154 *8))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-358)) (-5 *1 (-753 *2 *3)) (-4 *2 (-695 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1034)) (-4 *2 (-358))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) (|:| |yinit| (-631 (-221))) + (|:| |intvals| (-631 (-221))) (|:| |g| (-311 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-374)) (-5 *1 (-201))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-1048 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-780)) (-4 *6 (-836)) (-5 *2 (-112)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1054 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-906)) (-5 *3 (-631 (-258))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-258))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1084 (-758))) (-5 *6 (-758)) + (-5 *2 + (-2 (|:| |contp| (-554)) + (|:| -2316 (-631 (-2 (|:| |irr| *3) (|:| -4218 (-554))))))) + (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-631 *2)) (-4 *2 (-1082)) (-4 *2 (-1195))))) +(((*1 *1 *2) + (-12 (-5 *2 (-402 (-554))) (-4 *1 (-544 *3)) + (-4 *3 (-13 (-399) (-1180))))) + ((*1 *1 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180)))))) +(((*1 *2 *1) + (-12 (-14 *3 (-631 (-1158))) (-4 *4 (-170)) + (-14 *6 + (-1 (-112) (-2 (|:| -2717 *5) (|:| -1407 *2)) + (-2 (|:| -2717 *5) (|:| -1407 *2)))) + (-4 *2 (-234 (-2563 *3) (-758))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-836)) (-4 *7 (-934 *4 *2 (-850 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-554)) (-4 *1 (-1075 *3)) (-4 *3 (-1195))))) +(((*1 *2 *1) + (-12 (-4 *2 (-546)) (-5 *1 (-611 *2 *3)) (-4 *3 (-1217 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-554)) (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-5 *2 (-1246)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-934 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-631 (-1241 *4))) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) + (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-546)) + (-5 *2 (-631 (-1241 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-620))))) +(((*1 *2 *1) + (-12 (-5 *2 (-402 (-554))) (-5 *1 (-314 *3 *4 *5)) + (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-4 *3 (-1082)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-951 *3)) (-4 *3 (-952))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1114 *4 *2)) + (-4 *2 (-13 (-592 (-554) *4) (-10 -7 (-6 -4373) (-6 -4374)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-836)) (-4 *3 (-1195)) (-5 *1 (-1114 *3 *2)) + (-4 *2 (-13 (-592 (-554) *3) (-10 -7 (-6 -4373) (-6 -4374))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) + (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-631 + (-2 + (|:| -2564 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1241 (-311 (-221)))) + (|:| |yinit| (-631 (-221))) (|:| |intvals| (-631 (-221))) + (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2701 + (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) + (|:| |expense| (-374)) (|:| |accuracy| (-374)) + (|:| |intermediateResults| (-374))))))) + (-5 *1 (-790))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-546) (-836) (-1023 (-554)))) + (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 (-167 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-446) (-836) (-1023 (-554)) (-627 (-554)))) + (-5 *2 (-167 *3)) (-5 *1 (-1184 *4 *3)) + (-4 *3 (-13 (-27) (-1180) (-425 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))) + (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1158)) (-5 *2 (-1162)) (-5 *1 (-1161))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1158)) (-4 *5 (-358)) (-5 *2 (-631 (-1189 *5))) + (-5 *1 (-1249 *5)) (-5 *4 (-1189 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-906)) (-5 *1 (-773))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-530) (-631 (-530)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-568)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *8)) (-5 *4 (-758)) (-4 *8 (-934 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-836) (-602 (-1158)))) + (-4 *7 (-780)) + (-5 *2 + (-631 + (-2 (|:| |det| *8) (|:| |rows| (-631 (-554))) + (|:| |cols| (-631 (-554)))))) + (-5 *1 (-909 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-631 *6) "failed") (-554) *6 *6)) (-4 *6 (-358)) + (-4 *7 (-1217 *6)) + (-5 *2 (-2 (|:| |answer| (-575 (-402 *7))) (|:| |a0| *6))) + (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) + (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082))))) +(((*1 *1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *1 (-791)))) + (-2 (|:| -2999 *3) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) + (-5 *1 (-769 *3)) (-4 *3 (-546)) (-4 *3 (-1034))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1217 (-554)))))) +(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-2 (|:| -2270 *4) (|:| -3308 (-554))))) + (-4 *4 (-1217 (-554))) (-5 *2 (-758)) (-5 *1 (-436 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) + (-5 *2 (-631 (-2 (|:| |val| (-631 *3)) (|:| -2143 *4)))) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-1023 (-402 *2)))) (-5 *2 (-554)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-822)) (-5 *3 (-1043)) - (-5 *4 - (-2 (|:| |lfn| (-630 (-310 (-220)))) (|:| -1945 (-630 (-220))))) - (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) + (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1242)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1242)) (-5 *1 (-250)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-822)) (-5 *3 (-1043)) - (-5 *4 - (-2 (|:| |fn| (-310 (-220))) (|:| -1945 (-630 (-220))) - (|:| |lb| (-630 (-826 (-220)))) (|:| |cf| (-630 (-310 (-220)))) - (|:| |ub| (-630 (-826 (-220)))))) - (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-824)) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *1 (-823)))) + (-12 (-5 *3 (-862 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1242)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-824)) (-5 *4 (-1043)) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *1 (-823)))) + (-12 (-5 *3 (-864 (-1 (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-877)) (-5 *3 (-1043)) - (-5 *4 - (-2 (|:| |pde| (-630 (-310 (-220)))) - (|:| |constraints| - (-630 - (-2 (|:| |start| (-220)) (|:| |finish| (-220)) - (|:| |grid| (-757)) (|:| |boundaryType| (-553)) - (|:| |dStart| (-674 (-220))) (|:| |dFinish| (-674 (-220)))))) - (|:| |f| (-630 (-630 (-310 (-220))))) (|:| |st| (-1137)) - (|:| |tol| (-220)))) - (-5 *2 (-2 (|:| -1309 (-373)) (|:| |explanations| (-1137)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-880)) - (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *1 (-879)))) + (-12 (-5 *3 (-1 (-928 (-221)) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-928 (-221)) (-221) (-221))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *5 (-631 (-258))) (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-867 (-1 (-221) (-221) (-221)))) (-5 *4 (-1076 (-374))) + (-5 *2 (-1243)) (-5 *1 (-250)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-289 *7)) (-5 *4 (-1158)) (-5 *5 (-631 (-258))) + (-4 *7 (-425 *6)) (-4 *6 (-13 (-546) (-836) (-1023 (-554)))) + (-5 *2 (-1242)) (-5 *1 (-251 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1242)) + (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1242)) (-5 *1 (-254 *3)) + (-4 *3 (-13 (-602 (-530)) (-1082))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-862 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) + (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242)) + (-5 *1 (-254 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-880)) (-5 *4 (-1043)) + (-12 (-5 *3 (-862 *5)) (-5 *4 (-1074 (-374))) + (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1242)) + (-5 *1 (-254 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-864 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) + (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) + (-5 *1 (-254 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-864 *5)) (-5 *4 (-1074 (-374))) + (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) + (-5 *1 (-254 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) (-5 *2 (-1243)) + (-5 *1 (-254 *3)) (-4 *3 (-13 (-602 (-530)) (-1082))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1074 (-374))) (-5 *2 (-1243)) (-5 *1 (-254 *3)) + (-4 *3 (-13 (-602 (-530)) (-1082))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-374))) (-5 *5 (-631 (-258))) + (-4 *6 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) + (-5 *1 (-254 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-374))) + (-4 *5 (-13 (-602 (-530)) (-1082))) (-5 *2 (-1243)) + (-5 *1 (-254 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1242)) (-5 *1 (-255)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1242)) + (-5 *1 (-255)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *2 (-1242)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-928 (-221)))) (-5 *4 (-631 (-258))) + (-5 *2 (-1242)) (-5 *1 (-255)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-631 (-221))) (-5 *2 (-1243)) (-5 *1 (-255)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-631 (-221))) (-5 *4 (-631 (-258))) (-5 *2 (-1243)) + (-5 *1 (-255))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-739))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-126 *3))))) +(((*1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1195)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-1158))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-848))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-221)) + (-5 *2 (-1020)) (-5 *1 (-742)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-383)) + (-5 *4 (-221)) (-5 *2 (-1020)) (-5 *1 (-742))))) +(((*1 *2) + (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554))))) + ((*1 *2 *2) + (-12 (-5 *2 (-906)) (-5 *1 (-436 *3)) (-4 *3 (-1217 (-554)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-429)) (-5 *2 - (-2 (|:| -1309 (-373)) (|:| -4298 (-1137)) - (|:| |explanations| (-630 (-1137))))) - (-5 *1 (-879))))) -(((*1 *2 *3) (-12 (-5 *3 (-925 *2)) (-5 *1 (-964 *2)) (-4 *2 (-1031))))) -(((*1 *1 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-1192)) (-5 *1 (-1238 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-324))))) + (-631 + (-3 (|:| -4309 (-1158)) + (|:| -2453 (-631 (-3 (|:| S (-1158)) (|:| P (-937 (-554))))))))) + (-5 *1 (-1162))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-554)) (-5 *1 (-1177 *3)) (-4 *3 (-1034))))) +(((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-554)) (-5 *1 (-237)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-1140))) (-5 *2 (-554)) (-5 *1 (-237))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-631 *1)) (-4 *1 (-297)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-600 *3)) (-4 *3 (-836)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-631 *5)) (-5 *4 (-758)) (-4 *5 (-836)) + (-5 *1 (-600 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-757)) (-5 *1 (-1143 *3 *4)) (-14 *3 (-903)) - (-4 *4 (-1031))))) -(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1045 *3 *4 *5)) (-4 *3 (-1031)) - (-4 *4 (-779)) (-4 *5 (-833)) (-4 *3 (-545))))) -(((*1 *2 *3) - (-12 (-4 *4 (-545)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-111)) - (-5 *1 (-959 *4 *5 *6 *3)) (-4 *3 (-1045 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-580)))) - ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-613)))) + (-12 (-5 *2 (-1226 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) + (-4 *3 (-13 (-358) (-836))) (-14 *4 (-1158)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-554)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-413 *3)) (-4 *3 (-546)))) + ((*1 *2 *1) (-12 (-5 *2 (-554)) (-5 *1 (-685)))) ((*1 *2 *1) - (-12 (-4 *3 (-1079)) - (-4 *2 (-13 (-424 *4) (-868 *3) (-601 (-874 *3)))) - (-5 *1 (-1055 *3 *4 *2)) - (-4 *4 (-13 (-1031) (-868 *3) (-833) (-601 (-874 *3)))))) + (-12 (-4 *2 (-1082)) (-5 *1 (-700 *3 *2 *4)) (-4 *3 (-836)) + (-14 *4 + (-1 (-112) (-2 (|:| -2717 *3) (|:| -1407 *2)) + (-2 (|:| -2717 *3) (|:| -1407 *2))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-546)) (-4 *3 (-836))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-62 *3)) (-14 *3 (-1158)))) + ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-69 *3)) (-14 *3 (-1158)))) + ((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-72 *3)) (-14 *3 (-1158)))) + ((*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1246)))) + ((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-392)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1140)) (-5 *4 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) + ((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1246)) (-5 *1 (-1120)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 (-848))) (-5 *2 (-1246)) (-5 *1 (-1120))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) (-4 *3 (-546)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-5 *2 + (-2 (|:| -2794 *4) (|:| -1841 *4) (|:| |totalpts| (-554)) + (|:| |success| (-112)))) + (-5 *1 (-776)) (-5 *5 (-554))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1082))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1195)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-1140)) (-5 *1 (-974)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1076 *4)) (-4 *4 (-1195)) + (-5 *1 (-1074 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-961 *4 *5 *3 *6)) (-4 *4 (-1034)) (-4 *5 (-780)) + (-4 *3 (-836)) (-4 *6 (-1048 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1154 (-554))) (-5 *1 (-927)) (-5 *3 (-554))))) +(((*1 *2) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1126)) (-5 *2 (-1208 (-554)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1241 *4)) (-5 *3 (-1102)) (-4 *4 (-344)) + (-5 *1 (-522 *4))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-386))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-834))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2316 (-413 *3)))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1217 (-167 *4)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2866 (-675 (-402 (-937 *4)))) + (|:| |vec| (-631 (-402 (-937 *4)))) (|:| -4186 (-758)) + (|:| |rows| (-631 (-554))) (|:| |cols| (-631 (-554))))) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-836) (-602 (-1158)))) + (-4 *6 (-780)) + (-5 *2 + (-2 (|:| |partsol| (-1241 (-402 (-937 *4)))) + (|:| -3782 (-631 (-1241 (-402 (-937 *4))))))) + (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-934 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1154 *5)) (-4 *5 (-358)) (-5 *2 (-631 *6)) + (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-834)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-554)) (-5 *6 (-1 (-1246) (-1241 *5) (-1241 *5) (-374))) + (-5 *3 (-1241 (-374))) (-5 *5 (-374)) (-5 *2 (-1246)) + (-5 *1 (-775))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-554)) (-5 *5 (-675 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221)) + (-5 *2 (-1020)) (-5 *1 (-736))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-877 *4)) (-4 *4 (-1082)) (-5 *1 (-874 *4 *3)) + (-4 *3 (-1082))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) + (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-631 (-758))))) ((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-1144 *2 *3)) (-4 *3 (-1079))))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-631 (-758)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1034)) (-4 *2 (-358)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-645 *4 *2)) + (-4 *2 (-642 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1246)) (-5 *1 (-386)))) + ((*1 *2 *3) (-12 (-5 *3 (-1140)) (-5 *2 (-1246)) (-5 *1 (-386))))) +(((*1 *2 *1) (-12 (-4 *1 (-1131 *3)) (-4 *3 (-1195)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-631 *6)) (-4 *1 (-961 *3 *4 *5 *6)) (-4 *3 (-1034)) + (-4 *4 (-780)) (-4 *5 (-836)) (-4 *6 (-1048 *3 *4 *5)) + (-4 *3 (-546))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-758)) (-4 *4 (-13 (-546) (-145))) + (-5 *1 (-1211 *4 *2)) (-4 *2 (-1217 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) + ((*1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) + ((*1 *2 *2) (-12 (-5 *2 (-906)) (|has| *1 (-6 -4364)) (-4 *1 (-399)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-906)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-5 *2 (-1138 (-554)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-836)) (-5 *2 (-631 (-650 *4 *5))) + (-5 *1 (-615 *4 *5 *6)) (-4 *5 (-13 (-170) (-704 (-402 (-554))))) + (-14 *6 (-906))))) +(((*1 *1 *1) + (-12 (-5 *1 (-584 *2)) (-4 *2 (-38 (-402 (-554)))) (-4 *2 (-1034))))) +(((*1 *2 *2) + (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) + (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-673 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-631 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-758)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-780)) (-4 *3 (-934 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-836)) + (-5 *1 (-443 *4 *5 *6 *3))))) +(((*1 *1 *1) (-4 *1 (-617))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-618 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987) (-1180)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-757)) (-4 *1 (-1214 *3)) (-4 *3 (-1031))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1151 *1)) (-5 *3 (-1155)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-934 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1155)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-833) (-545))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-833) (-545)))))) + (-12 (-5 *2 (-631 (-52))) (-5 *1 (-877 *3)) (-4 *3 (-1082))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-734))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) + (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9)))) + (-5 *1 (-973 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9)) + (-4 *4 (-1054 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-780)) + (-4 *8 (-836)) (-4 *9 (-1048 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4329 (-631 *9)) (|:| -2143 *4) (|:| |ineq| (-631 *9)))) + (-5 *1 (-1089 *6 *7 *8 *9 *4)) (-5 *3 (-631 *9)) + (-4 *4 (-1054 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-778)) - (-5 *2 (-111)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1031)) (-4 *4 (-1079)) - (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1031)))) - ((*1 *2 *1) - (-12 (-4 *3 (-545)) (-5 *2 (-111)) (-5 *1 (-610 *3 *4)) - (-4 *4 (-1214 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-111)) (-5 *1 (-721 *3 *4)) (-4 *3 (-1031)) - (-4 *4 (-712)))) + (-12 (-5 *2 (-1138 (-554))) (-5 *1 (-989 *3)) (-14 *3 (-554))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-806 *3)) (-4 *3 (-836)) (-5 *1 (-658 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-675 *3)) + (-4 *3 (-13 (-302) (-10 -8 (-15 -1565 ((-413 $) $))))) + (-4 *4 (-1217 *3)) (-5 *1 (-493 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1138 (-631 (-554)))) (-5 *1 (-868))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-2 (|:| -2564 (-1158)) (|:| -2701 (-432))))) + (-5 *1 (-1162))))) +(((*1 *2 *1) (-12 (-4 *1 (-546)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-667)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-955)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1056)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1100))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-758)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) + (-4 *2 (-1217 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1241 (-675 *4))) (-4 *4 (-170)) + (-5 *2 (-1241 (-675 (-937 *4)))) (-5 *1 (-185 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1180))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-631 (-530))) (-5 *1 (-530))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1217 (-167 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1217 (-167 *2)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1034)) (-5 *1 (-701 *4 *2)) + (-4 *2 (-634 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-823 *2)) (-4 *2 (-1034))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-145) (-1023 (-402 (-554))))) + (-4 *5 (-1217 *4)) + (-5 *2 (-631 (-2 (|:| |deg| (-758)) (|:| -4329 *5)))) + (-5 *1 (-796 *4 *5 *3 *6)) (-4 *3 (-642 *5)) + (-4 *6 (-642 (-402 *5)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-554)) (-5 *4 (-675 (-221))) (-5 *2 (-1020)) + (-5 *1 (-742))))) +(((*1 *2) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) + (-5 *1 (-973 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-446)) (-4 *4 (-780)) (-4 *5 (-836)) + (-4 *6 (-1048 *3 *4 *5)) (-5 *2 (-1246)) + (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1054 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-673 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-368 *3)) + (-4 *5 (-368 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-833)) (-4 *4 (-1031)) - (-5 *2 (-111))))) + (-12 (-4 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *5 (-1034)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-544 *2)) (-4 *2 (-13 (-399) (-1180))))) + ((*1 *1 *1 *1) (-4 *1 (-780)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-221)) (-5 *4 (-554)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 -3085)))) + (-5 *2 (-1020)) (-5 *1 (-735))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-836)) (-5 *1 (-478 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) - (-4 *4 (-13 (-357) (-831))) (-4 *3 (-1214 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-630 (-934 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) - (-14 *4 (-630 (-1155))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1158)) (|:| |fn| (-311 (-221))) + (|:| -3827 (-1076 (-829 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-631 (-221))) (-5 *1 (-200))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-906)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1034)) (-4 *3 (-779))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-446)) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *3 (-1048 *4 *5 *6)) (-5 *2 (-3 *3 (-631 *1))) + (-4 *1 (-1054 *4 *5 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-631 *1)) (-4 *1 (-297)))) + ((*1 *1 *1) (-4 *1 (-297))) + ((*1 *1 *2) (-12 (-5 *2 (-631 (-848))) (-5 *1 (-848)))) + ((*1 *1 *1) (-5 *1 (-848)))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1709 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-358)) (-5 *1 (-564 *4 *2)) (-4 *2 (-1217 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-631 (-631 (-631 *4)))) (-5 *3 (-631 *4)) (-4 *4 (-836)) + (-5 *1 (-1166 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-302)) (-5 *1 (-686 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-567)))) + ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-567))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4374)) (-4 *1 (-240 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) + (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-836)) + (-4 *4 (-780)) (-5 *1 (-972 *2 *3 *4 *5)) (-4 *5 (-934 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-554))) (-5 *1 (-1101)))) ((*1 *2 *2) - (-12 (-5 *2 (-630 *6)) (-4 *6 (-931 *3 *4 *5)) (-4 *3 (-445)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-443 *3 *4 *5 *6)))) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1080 *3)) (-4 *3 (-1082)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-631 (-554))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1034)) + (-14 *4 (-631 (-1158))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-425 *3) (-987))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1232 *3)) + (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1203 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-402 (-554)))) (-4 *4 (-1201 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1224 *3 *4)) (-4 *5 (-968 *4)))) + ((*1 *1 *1) (-4 *1 (-279))) + ((*1 *1 *1) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-631 (-1158))) + (-14 *3 (-631 (-1158))) (-4 *4 (-382)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 *3 *4)) (-4 *3 (-836)) + (-4 *4 (-13 (-170) (-704 (-402 (-554))))) (-5 *1 (-615 *3 *4 *5)) + (-14 *5 (-906)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1143 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1138 *3)) (-4 *3 (-38 (-402 (-554)))) + (-5 *1 (-1144 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-443 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-1137)) (-4 *7 (-931 *4 *5 *6)) - (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) - (-5 *1 (-443 *4 *5 *6 *7)))) + (-12 (-5 *3 (-758)) (-4 *4 (-13 (-1034) (-704 (-402 (-554))))) + (-4 *5 (-836)) (-5 *1 (-1257 *4 *5 *2)) (-4 *2 (-1262 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-758)) (-5 *1 (-1261 *3 *4)) + (-4 *4 (-704 (-402 (-554)))) (-4 *3 (-836)) (-4 *4 (-170))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-631 (-221)))) (-5 *1 (-911))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1146 *2 *3)) (-14 *2 (-906)) (-4 *3 (-1034))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *4)) (-5 *1 (-1110 *3 *4)) (-4 *3 (-1217 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-554))))))) + (-5 *2 (-631 *3)) (-5 *1 (-1110 *4 *3)) (-4 *4 (-1217 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-906)) (-5 *2 (-1154 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-344))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1154 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-631 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-412 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-358) (-834))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1217 (-167 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-631 (-554))) (-5 *2 (-889 (-554))) (-5 *1 (-902)))) + ((*1 *2) (-12 (-5 *2 (-889 (-554))) (-5 *1 (-902))))) +(((*1 *2 *1) (-12 (-5 *2 (-631 (-1158))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-631 (-500))) (-5 *1 (-477))))) +(((*1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-911))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-906)) (-4 *3 (-358)) + (-14 *4 (-978 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1217 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-546)))) ((*1 *1 *1) - (-12 (-4 *2 (-357)) (-4 *3 (-779)) (-4 *4 (-833)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-931 *2 *3 *4)))) + (|partial| -12 (-5 *1 (-702 *2 *3 *4 *5 *6)) (-4 *2 (-170)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-358)))) + ((*1 *1 *1) (|partial| -4 *1 (-709))) + ((*1 *1 *1) (|partial| -4 *1 (-713))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-763 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1051 *3 *2)) (-4 *3 (-13 (-834) (-358))) + (-4 *2 (-1217 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-630 (-766 *3 (-847 *4)))) (-4 *3 (-445)) - (-14 *4 (-630 (-1155))) (-5 *1 (-615 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-630 (-947))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1137) (-760))) (-5 *1 (-113))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-934 *6))) (-5 *4 (-630 (-1155))) - (-4 *6 (-13 (-545) (-1020 *5))) (-4 *5 (-545)) - (-5 *2 (-630 (-630 (-288 (-401 (-934 *6)))))) (-5 *1 (-1021 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-1079)) (-4 *1 (-885 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-401 (-553)))) - (-5 *2 (-2 (|:| -2357 (-1135 *4)) (|:| -2368 (-1135 *4)))) - (-5 *1 (-1141 *4)) (-5 *3 (-1135 *4))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-630 - (-2 (|:| |eqzro| (-630 *8)) (|:| |neqzro| (-630 *8)) - (|:| |wcond| (-630 (-934 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1238 (-401 (-934 *5)))) - (|:| -4124 (-630 (-1238 (-401 (-934 *5)))))))))) - (-5 *4 (-1137)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-931 *5 *7 *6)) - (-4 *6 (-13 (-833) (-601 (-1155)))) (-4 *7 (-779)) (-5 *2 (-553)) - (-5 *1 (-906 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-111)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1155)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1155)) (-5 *2 (-111)) (-5 *1 (-599 *4)) (-4 *4 (-833)))) + (|partial| -12 (-5 *2 (-1138 *3)) (-4 *3 (-1034)) (-5 *1 (-1142 *3))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-549))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-937 (-402 (-554)))) (-5 *4 (-1158)) + (-5 *5 (-1076 (-829 (-221)))) (-5 *2 (-631 (-221))) (-5 *1 (-295))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1034)) (-5 *2 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-114)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-599 *4)) (-4 *4 (-833)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1079)) (-5 *2 (-111)) (-5 *1 (-869 *5 *3 *4)) - (-4 *3 (-868 *5)) (-4 *4 (-601 (-874 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *6)) (-4 *6 (-868 *5)) (-4 *5 (-1079)) - (-5 *2 (-111)) (-5 *1 (-869 *5 *6 *4)) (-4 *4 (-601 (-874 *5)))))) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1034)) (-4 *3 (-836)) + (-4 *5 (-261 *3)) (-4 *6 (-780)) (-5 *2 (-758)))) + ((*1 *2 *1) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1034)) (-4 *4 (-836)) + (-4 *5 (-261 *4)) (-4 *6 (-780)) (-5 *2 (-758)))) + ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-836)) (-5 *2 (-758))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-374)) (-5 *2 (-1246)) (-5 *1 (-1243))))) +(((*1 *2 *2) + (-12 (-4 *3 (-446)) (-4 *3 (-836)) (-4 *3 (-1023 (-554))) + (-4 *3 (-546)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) + (-4 *2 + (-13 (-358) (-297) + (-10 -8 (-15 -2810 ((-1107 *3 (-600 $)) $)) + (-15 -2822 ((-1107 *3 (-600 $)) $)) + (-15 -3075 ($ (-1107 *3 (-600 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-836) (-446))) (-5 *1 (-1186 *3 *2)) + (-4 *2 (-13 (-425 *3) (-1180)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1217 (-402 (-554)))) (-5 *1 (-898 *3 *2)) + (-4 *2 (-1217 (-402 *3)))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3324 *6) (|:| |sol?| (-112))) (-554) + *6)) + (-4 *6 (-358)) (-4 *7 (-1217 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) + (-2 (|:| -1709 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) + (-5 *1 (-564 *6 *7)) (-5 *3 (-402 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-554))) (-4 *3 (-1034)) (-5 *1 (-584 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1201 *3)) (-4 *3 (-1034)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-554))) (-4 *1 (-1232 *3)) (-4 *3 (-1034))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-519))))) +(((*1 *1 *1) (-5 *1 (-1046)))) +(((*1 *2 *2) + (-12 (-5 *2 (-928 *3)) (-4 *3 (-13 (-358) (-1180) (-987))) + (-5 *1 (-174 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1020 (-553)))) - (-4 *5 (-1214 *4)) - (-5 *2 (-2 (|:| -2388 (-401 *5)) (|:| |coeff| (-401 *5)))) - (-5 *1 (-557 *4 *5)) (-5 *3 (-401 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1064))))) -(((*1 *1) (-5 *1 (-154))) - ((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-23))))) + (-12 (-4 *4 (-1034)) (-4 *2 (-673 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1217 *4)) (-4 *5 (-368 *4)) + (-4 *6 (-368 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-631 + (-2 (|:| -4186 (-758)) + (|:| |eqns| + (-631 + (-2 (|:| |det| *7) (|:| |rows| (-631 (-554))) + (|:| |cols| (-631 (-554)))))) + (|:| |fgb| (-631 *7))))) + (-4 *7 (-934 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-836) (-602 (-1158)))) (-4 *6 (-780)) (-5 *2 (-758)) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1241 (-1158))) (-5 *3 (-1241 (-447 *4 *5 *6 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906)) + (-14 *6 (-631 (-1158))) (-14 *7 (-1241 (-675 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158)) (-5 *3 (-1241 (-447 *4 *5 *6 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-906)) + (-14 *6 (-631 *2)) (-14 *7 (-1241 (-675 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) + (-14 *6 (-1241 (-675 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1241 (-1158))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-170)) (-14 *4 (-906)) (-14 *5 (-631 (-1158))) + (-14 *6 (-1241 (-675 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1158)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-906)) (-14 *5 (-631 *2)) (-14 *6 (-1241 (-675 *3))))) + ((*1 *1) + (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-906)) + (-14 *4 (-631 (-1158))) (-14 *5 (-1241 (-675 *2)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1140)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1082)) + (-4 *4 (-1082)))) + ((*1 *1 *2) + (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-836))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1124 *3 *4)) (-14 *3 (-906)) (-4 *4 (-358)) + (-5 *1 (-978 *3 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1160 (-402 (-554)))) (-5 *1 (-186)) (-5 *3 (-554)))) + ((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1195)))) + ((*1 *1 *1) (-4 *1 (-854 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1034)) (-4 *3 (-779)) + (-4 *4 (-836))))) (((*1 *2 *1) - (-12 (-5 *2 (-630 (-2 (|:| |val| *3) (|:| -3233 *4)))) - (-5 *1 (-1120 *3 *4)) (-4 *3 (-13 (-1079) (-34))) - (-4 *4 (-13 (-1079) (-34)))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1155)) (-5 *3 (-1083)) (-5 *1 (-285))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-412 *3)) (-4 *3 (-545)) (-5 *1 (-413 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-845))) (-5 *1 (-1155))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1105 *4 *3 *5))) (-4 *4 (-38 (-401 (-553)))) - (-4 *4 (-1031)) (-4 *3 (-833)) (-5 *1 (-1105 *4 *3 *5)) - (-4 *5 (-931 *4 (-524 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1186 *4))) (-5 *3 (-1155)) (-5 *1 (-1186 *4)) - (-4 *4 (-38 (-401 (-553)))) (-4 *4 (-1031))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-925 *4)) (-4 *4 (-1031)) (-5 *1 (-1143 *3 *4)) - (-14 *3 (-903))))) -(((*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-833))))) + (-12 (-4 *1 (-1048 *3 *4 *5)) (-4 *3 (-1034)) (-4 *4 (-780)) + (-4 *5 (-836)) (-5 *2 (-758))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1154 *3)) (-5 *1 (-899 *3)) (-4 *3 (-302))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-906)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-758))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1135 *4) (-1135 *4))) (-5 *2 (-1135 *4)) - (-5 *1 (-1263 *4)) (-4 *4 (-1192)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-630 (-1135 *5)) (-630 (-1135 *5)))) (-5 *4 (-553)) - (-5 *2 (-630 (-1135 *5))) (-5 *1 (-1263 *5)) (-4 *5 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-903)) (-4 *5 (-833)) - (-5 *2 (-58 (-630 (-657 *5)))) (-5 *1 (-657 *5))))) + (-12 (-5 *3 (-675 *4)) (-4 *4 (-358)) (-5 *2 (-1154 *4)) + (-5 *1 (-526 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-834)))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-836) (-546))) (-5 *1 (-156 *3 *2)) + (-4 *2 (-425 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-539))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1238 (-630 (-2 (|:| -2821 *4) (|:| -2735 (-1099)))))) - (-4 *4 (-343)) (-5 *2 (-1243)) (-5 *1 (-521 *4))))) + (-12 (-5 *3 (-402 (-554))) (-4 *5 (-780)) (-4 *6 (-836)) + (-4 *7 (-546)) (-4 *8 (-934 *7 *5 *6)) + (-5 *2 (-2 (|:| -1407 (-758)) (|:| -1490 *9) (|:| |radicand| *9))) + (-5 *1 (-938 *5 *6 *7 *8 *9)) (-5 *4 (-758)) + (-4 *9 + (-13 (-358) + (-10 -8 (-15 -3075 ($ *8)) (-15 -2810 (*8 $)) (-15 -2822 (*8 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-809))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3646 *1) (|:| -4360 *1) (|:| |associate| *1))) + (-4 *1 (-546))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-911))))) (((*1 *2 *3) - (-12 (-4 *4 (-445)) (-4 *5 (-779)) (-4 *6 (-833)) (-5 *2 (-1243)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-931 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-111))))) + (-12 (-4 *1 (-894)) (-5 *2 (-413 (-1154 *1))) (-5 *3 (-1154 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-559 *3)) (-4 *3 (-1023 (-554))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) + (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-746))))) +(((*1 *1 *1 *1) (-5 *1 (-160))) + ((*1 *1 *2) (-12 (-5 *2 (-554)) (-5 *1 (-160))))) +(((*1 *1 *2) (-12 (-5 *2 (-758)) (-5 *1 (-129))))) +(((*1 *1 *1) (-4 *1 (-647))) ((*1 *1 *1) (-5 *1 (-1102)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-887 (-553))) (-5 *4 (-553)) (-5 *2 (-674 *4)) - (-5 *1 (-1010 *5)) (-4 *5 (-1031)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-553))) (-5 *2 (-674 (-553))) (-5 *1 (-1010 *4)) - (-4 *4 (-1031)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-887 (-553)))) (-5 *4 (-553)) - (-5 *2 (-630 (-674 *4))) (-5 *1 (-1010 *5)) (-4 *5 (-1031)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 (-630 (-553)))) (-5 *2 (-630 (-674 (-553)))) - (-5 *1 (-1010 *4)) (-4 *4 (-1031))))) -((-1271 . 733485) (-1272 . 733429) (-1273 . 733290) (-1274 . 733148) - (-1275 . 733021) (-1276 . 732752) (-1277 . 732678) (-1278 . 732576) - (-1279 . 732261) (-1280 . 732198) (-1281 . 732135) (-1282 . 732057) - (-1283 . 731977) (-1284 . 731819) (-1285 . 731738) (-1286 . 731682) - (-1287 . 731467) (-1288 . 730812) (-1289 . 730364) (-1290 . 730209) - (-1291 . 730135) (-1292 . 730061) (-1293 . 729865) (-1294 . 729809) - (-1295 . 729686) (-1296 . 728869) (-1297 . 728756) (-1298 . 728221) - (-1299 . 727891) (-1300 . 727814) (-1301 . 727248) (-1302 . 727109) - (-1303 . 726972) (-1304 . 726920) (-1305 . 726824) (-1306 . 726765) - (-1307 . 726688) (-1308 . 726614) (-1309 . 723315) (-1310 . 723070) - (-1311 . 722997) (-1312 . 722942) (-1313 . 722893) (-1314 . 722327) - (-1315 . 722240) (-1316 . 722181) (-1317 . 722118) (-1318 . 722018) - (-1319 . 721688) (-1320 . 721578) (-1321 . 721495) (-1322 . 721386) - (-1323 . 720465) (-1324 . 720208) (-1325 . 719764) (-1326 . 719681) - (-1327 . 719425) (-1328 . 719316) (-1329 . 718950) (-1330 . 716788) - (-1331 . 716715) (-1332 . 716237) (-1333 . 715975) (-1334 . 715902) - (-1335 . 715837) (-1336 . 715657) (-1337 . 714922) (-1338 . 714793) - (-1339 . 714635) (-1340 . 714508) (-1341 . 714400) (-1342 . 714242) - (-1343 . 713818) (-1344 . 713599) (-1345 . 713471) (-1346 . 713397) - (-1347 . 713169) (-1348 . 713081) (-1349 . 712966) (-1350 . 712856) - (-1351 . 712707) (-1352 . 712485) (-1353 . 712327) (-1354 . 712085) - (-1355 . 711833) (-1356 . 711648) (-1357 . 711429) (-1358 . 711360) - (-1359 . 711212) (-1360 . 710852) (-1361 . 710800) (-1362 . 710669) - (-1363 . 710526) (-1364 . 710222) (-1365 . 709712) (-1366 . 709629) - (-1367 . 709457) (-1368 . 709333) (-1369 . 709276) (-1370 . 709195) - (-1371 . 708985) (-1372 . 708918) (-1373 . 708832) (-1374 . 708804) - (-1375 . 708731) (-1376 . 708675) (-1377 . 708502) (-1378 . 708243) - (-1379 . 708064) (-1380 . 707965) (-1381 . 707852) (-1382 . 707431) - (-1383 . 707292) (-1384 . 707179) (-1385 . 707110) (-1386 . 706954) - (-1387 . 706439) (-1388 . 706342) (-1389 . 706245) (-1390 . 706065) - (-1391 . 705897) (-1392 . 705831) (-1393 . 705614) (-1394 . 705117) - (-1395 . 705037) (-1396 . 704960) (-1397 . 704817) (-1398 . 704687) - (-1399 . 700145) (-1400 . 700093) (-1401 . 699992) (-1402 . 699888) - (-1403 . 699839) (-1404 . 699773) (-1405 . 699690) (-1406 . 699349) - (-1407 . 699230) (-1408 . 699011) (-1409 . 698841) (-1410 . 698355) - (-1411 . 698283) (-1412 . 697835) (-1413 . 697766) (-1414 . 697623) - (-1415 . 697461) (-1416 . 696915) (-1417 . 696715) (-1418 . 696585) - (-1419 . 696533) (-1420 . 696437) (-1421 . 695883) (-1422 . 695774) - (-1423 . 695662) (-1424 . 695543) (-1425 . 695362) (-1426 . 695143) - (-1427 . 695091) (-1428 . 694958) (-1429 . 694401) (-1430 . 694348) - (-1431 . 694256) (-1432 . 694149) (-1433 . 694085) (-1434 . 694033) - (-1435 . 693962) (-1436 . 693885) (-1437 . 693534) (-1438 . 693453) - (-1439 . 693373) (-1440 . 693276) (-1441 . 693180) (-1442 . 693096) - (-1443 . 693018) (-1444 . 692906) (-1445 . 692820) (-1446 . 692749) - (-1447 . 692289) (-1448 . 692191) (-1449 . 691875) (-1450 . 691731) - (-1451 . 691697) (-1452 . 691456) (-1453 . 691353) (-1454 . 691273) - (-1455 . 691140) (-1456 . 691084) (-1457 . 690945) (-1458 . 690868) - (-1459 . 690748) (-1460 . 690686) (-1461 . 690357) (-1462 . 690244) - (-1463 . 690165) (-1464 . 690015) (-1465 . 689208) (-1466 . 688990) - (-1467 . 688765) (-1468 . 688561) (-1469 . 688533) (-1470 . 688312) - (-1471 . 688183) (-1472 . 688043) (-1473 . 687905) (-1474 . 687714) - (-1475 . 686754) (-1476 . 686387) (-1477 . 686317) (-1478 . 685796) - (-1479 . 685710) (-1480 . 685676) (-1481 . 685583) (-1482 . 671469) - (-1483 . 671416) (-1484 . 671288) (-1485 . 671235) (-1486 . 671031) - (-1487 . 670999) (-1488 . 670876) (-1489 . 670708) (-1490 . 669405) - (-1491 . 669222) (-1492 . 669017) (-1493 . 668819) (-1494 . 668709) - (-1495 . 668613) (-1496 . 668375) (-1497 . 668094) (-1498 . 667953) - (-1499 . 667583) (-1500 . 666998) (-1501 . 666912) (-1502 . 666853) - (-1503 . 666741) (-1504 . 666663) (-1505 . 666612) (-1506 . 666395) - (-1507 . 666265) (-1508 . 665938) (-1509 . 665449) (-1510 . 665308) - (-1511 . 665239) (-1512 . 665119) (-1513 . 664974) (-1514 . 664470) - (-1515 . 664326) (-1516 . 664168) (-1517 . 664049) (-1518 . 663928) - (-1519 . 663284) (-1520 . 662396) (-1521 . 662302) (-1522 . 662236) - (-1523 . 662154) (-1524 . 658488) (-1525 . 658432) (-1526 . 657981) - (-1527 . 657896) (-1528 . 657819) (-1529 . 657745) (-1530 . 657546) - (-1531 . 656582) (-1532 . 656512) (-1533 . 656441) (-1534 . 654583) - (-1535 . 654499) (-1536 . 654052) (-1537 . 653914) (-1538 . 653805) - (-1539 . 653777) (-1540 . 653482) (-1541 . 653317) (-1542 . 653116) - (-1543 . 652663) (-1544 . 652428) (-1545 . 650996) (-1546 . 650904) - (-1547 . 650805) (-1548 . 650661) (-1549 . 650288) (-1550 . 650128) - (-1551 . 650059) (-1552 . 649930) (-1553 . 649584) (-1554 . 649459) - (-1555 . 649236) (-1556 . 649025) (-1557 . 648991) (-1558 . 648914) - (-1559 . 648821) (-1560 . 648642) (-1561 . 648204) (-1562 . 648121) - (-1563 . 648051) (-1564 . 647804) (-1565 . 647776) (-1566 . 647695) - (-1567 . 647643) (-1568 . 647569) (-1569 . 647185) (-1570 . 647087) - (-1571 . 646879) (-1572 . 646811) (-1573 . 646332) (-1574 . 646115) - (-1575 . 645945) (-1576 . 645519) (-1577 . 645467) (-1578 . 645321) - (-1579 . 645156) (-1580 . 645103) (-1581 . 644996) (-1582 . 644901) - (-1583 . 644799) (-1584 . 644747) (-1585 . 644681) (-1586 . 644609) - (-1587 . 644401) (-1588 . 644315) (-1589 . 643896) (-1590 . 643537) - (-1591 . 643482) (-1592 . 643201) (-1593 . 643046) (-1594 . 642909) - (-1595 . 642857) (-1596 . 642802) (-1597 . 642699) (-1598 . 642615) - (-1599 . 642384) (-1600 . 642328) (-1601 . 642121) (-1602 . 641841) - (-1603 . 641695) (-1604 . 641533) (-1605 . 641044) (-1606 . 640970) - (-1607 . 640087) (-1608 . 639838) (-1609 . 639536) (-1610 . 639412) - (-1611 . 639306) (-1612 . 639013) (-1613 . 638656) (-1614 . 637690) - (-1615 . 637621) (-1616 . 637519) (-1617 . 637247) (-1618 . 637116) - (-1619 . 636934) (-1620 . 636801) (-1621 . 636700) (-1622 . 636542) - (-1623 . 636102) (-1624 . 634514) (-1625 . 634431) (-1626 . 634287) - (-1627 . 634201) (-1628 . 634167) (-1629 . 633921) (-1630 . 633866) - (-1631 . 633684) (-1632 . 633613) (-1633 . 633292) (-1634 . 633258) - (-1635 . 633102) (-1636 . 632871) (-1637 . 632683) (-1638 . 623121) - (-1639 . 623066) (-1640 . 622944) (-1641 . 622916) (-1642 . 622867) - (-1643 . 622636) (-1644 . 622422) (-1645 . 622356) (-1646 . 622210) - (-1647 . 622142) (-1648 . 622055) (-1649 . 621972) (-1650 . 621895) - (-1651 . 621685) (-1652 . 621514) (-1653 . 621236) (-1654 . 621167) - (-1655 . 620572) (-1656 . 620491) (-1657 . 620420) (-1658 . 620312) - (-1659 . 620153) (-1660 . 620090) (-1661 . 619982) (-1662 . 619764) - (-1663 . 619619) (-1664 . 619512) (-1665 . 619384) (-1666 . 619219) - (-1667 . 618743) (-1668 . 618642) (-1669 . 618555) (-1670 . 618471) - (-1671 . 618443) (-1672 . 617731) (-1673 . 617657) (-1674 . 617550) - (-1675 . 617421) (-1676 . 616826) (-1677 . 616699) (-1678 . 616566) - (-1679 . 616489) (-1680 . 616373) (-1681 . 616210) (-1682 . 616103) - (-1683 . 615979) (-1684 . 615731) (-1685 . 615204) (-1686 . 615126) - (-1687 . 614680) (-1688 . 614400) (-1689 . 614225) (-1690 . 613954) - (-1691 . 613857) (-1692 . 613723) (-1693 . 613513) (-1694 . 613460) - (-1695 . 612840) (-1696 . 612731) (-1697 . 612682) (-1698 . 612598) - (-1699 . 612452) (-1700 . 611266) (-1701 . 611234) (-1702 . 611162) - (-1703 . 611076) (-1704 . 610973) (-1705 . 610731) (-1706 . 610665) - (-1707 . 610596) (-1708 . 610511) (-1709 . 610338) (-1710 . 610234) - (-1711 . 609052) (-1712 . 608904) (-1713 . 608820) (-1714 . 608595) - (-1715 . 608470) (-1716 . 608340) (-1717 . 608187) (-1718 . 607911) - (-1719 . 607804) (-1720 . 607752) (-1721 . 607604) (-1722 . 607421) - (-1723 . 605215) (-1724 . 605037) (-1725 . 604846) (-1726 . 604818) - (-1727 . 604624) (-1728 . 604433) (-1729 . 604215) (-1730 . 603883) - (-1731 . 603604) (-1732 . 603461) (-1733 . 603364) (-1734 . 603312) - (-1735 . 603258) (-1736 . 603191) (-1737 . 602870) (-1738 . 602733) - (-1739 . 602625) (-1740 . 602510) (-1741 . 602366) (-1742 . 602226) - (-1743 . 601588) (-1744 . 601366) (-1745 . 601106) (-1746 . 600935) - (-1747 . 600855) (-1748 . 600689) (-1749 . 600551) (-1750 . 600333) - (-1751 . 600252) (-1752 . 600112) (-1753 . 599988) (-1754 . 599431) - (-1755 . 599372) (-1756 . 599269) (-1757 . 599203) (-1758 . 599123) - (-1759 . 598989) (-1760 . 598480) (-1761 . 598386) (-1762 . 598168) - (-1763 . 597817) (-1764 . 597731) (-1765 . 597186) (-1766 . 597065) - (-1767 . 596999) (-1768 . 596947) (-1769 . 595501) (-1770 . 595400) - (-1771 . 595299) (-1772 . 595234) (-1773 . 594756) (-1774 . 594600) - (-1775 . 594514) (-1776 . 594356) (-1777 . 594242) (-1778 . 594138) - (-1779 . 591211) (-1780 . 590379) (-1781 . 590260) (-1782 . 590205) - (-1783 . 590059) (-1784 . 589936) (-1785 . 589781) (-1786 . 589578) - (-1787 . 589371) (-1788 . 588992) (-1789 . 588760) (-1790 . 588368) - (-1791 . 588197) (-1792 . 588115) (-1793 . 588057) (-1794 . 587184) - (-1795 . 586988) (-1796 . 586886) (-1797 . 586820) (-1798 . 586714) - (-1799 . 586322) (-1800 . 586248) (-1801 . 586120) (-1802 . 585968) - (-1803 . 585937) (-1804 . 585784) (-1805 . 585693) (-1806 . 585310) - (-1807 . 585071) (-1808 . 584987) (-1809 . 584897) (-1810 . 584845) - (-1811 . 584746) (-1812 . 584632) (-1813 . 584580) (-1814 . 584441) - (-1815 . 584296) (-1816 . 584222) (-1817 . 584118) (-1818 . 584000) - (-1819 . 583847) (-1820 . 583795) (-1821 . 583637) (-1822 . 583400) - (-1823 . 582886) (-1824 . 582607) (-1825 . 582535) (-1826 . 582452) - (-1827 . 582075) (-1828 . 582001) (-1829 . 581948) (-1830 . 581874) - (-1831 . 581779) (-1832 . 581463) (-1833 . 581154) (-1834 . 580937) - (-1835 . 580625) (-1836 . 579957) (-1837 . 579828) (-1838 . 579757) - (-1839 . 579636) (-1840 . 579504) (-1841 . 579339) (-1842 . 579281) - (-1843 . 579030) (-1844 . 578956) (-1845 . 578803) (-1846 . 578311) - (-1847 . 578166) (-1848 . 577928) (-1849 . 577873) (-1850 . 577677) - (-1851 . 577563) (-1852 . 577444) (-1853 . 577391) (-1854 . 577321) - (-1855 . 577253) (-1856 . 577139) (-1857 . 577037) (-1858 . 576963) - (-1859 . 576807) (-1860 . 576651) (-1861 . 576569) (-1862 . 576516) - (-1863 . 576050) (-1864 . 575936) (-1865 . 575865) (-1866 . 575787) - (-1867 . 575697) (-1868 . 575590) (-1869 . 575434) (-1870 . 574874) - (-1871 . 574818) (-1872 . 574655) (-1873 . 574536) (-1874 . 574426) - (-1875 . 574397) (-1876 . 574094) (-1877 . 573772) (-1878 . 573410) - (-1879 . 573029) (-1880 . 572949) (-1881 . 572791) (-1882 . 572673) - (-1883 . 572571) (-1884 . 572509) (-1885 . 572371) (-1886 . 572300) - (-1887 . 572193) (-1888 . 571306) (-1889 . 571254) (-1890 . 571135) - (-1891 . 571005) (-1892 . 570919) (-1893 . 570858) (-1894 . 570566) - (-1895 . 570406) (-1896 . 570344) (-1897 . 570275) (-1898 . 570185) - (-1899 . 569511) (-1900 . 569334) (-1901 . 569236) (-1902 . 568790) - (-1903 . 568691) (-1904 . 568595) (-1905 . 568430) (-1906 . 568330) - (-1907 . 568219) (-1908 . 567925) (-1909 . 567608) (-1910 . 567341) - (-1911 . 567170) (-1912 . 565628) (-1913 . 565530) (-1914 . 565437) - (-1915 . 565255) (-1916 . 565046) (-1917 . 564856) (-1918 . 564747) - (-1919 . 564528) (-1920 . 564440) (-1921 . 564282) (-1922 . 564191) - (-1923 . 564121) (-1924 . 564065) (-1925 . 563859) (-1926 . 563803) - (-1927 . 563705) (-1928 . 563653) (-1929 . 563469) (-1930 . 563392) - (-1931 . 563343) (-1932 . 563170) (-1933 . 563058) (-1934 . 563005) - (-1935 . 562917) (-1936 . 562831) (-1937 . 562776) (-1938 . 562252) - (-1939 . 562200) (-1940 . 562014) (-1941 . 561861) (-1942 . 561767) - (-1943 . 561224) (-1944 . 561158) (-1945 . 561033) (-1946 . 560880) - (-1947 . 560739) (-1948 . 560630) (-1949 . 560575) (-1950 . 560273) - (-1951 . 560169) (-1952 . 560020) (-1953 . 559916) (-1954 . 559810) - (-1955 . 559306) (-1956 . 558010) (-1957 . 557945) (-1958 . 557362) - (-1959 . 557216) (-1960 . 557142) (-1961 . 557041) (-1962 . 556896) - (-1963 . 556825) (-1964 . 556740) (-1965 . 556521) (-1966 . 556278) - (-1967 . 556227) (-1968 . 556196) (-1969 . 556087) (-1970 . 555959) - (-1971 . 555723) (-1972 . 555631) (-1973 . 555578) (-1974 . 555081) - (-1975 . 554801) (-1976 . 554665) (-1977 . 554522) (-1978 . 554473) - (-1979 . 554355) (-1980 . 554321) (-1981 . 554206) (-1982 . 554132) - (-1983 . 553773) (-1984 . 553494) (-1985 . 553252) (-1986 . 553152) - (-1987 . 553037) (-1988 . 552866) (-1989 . 552783) (-1990 . 552141) - (-1991 . 552113) (-1992 . 552025) (-1993 . 551944) (-1994 . 551840) - (-1995 . 551449) (-1996 . 551383) (-1997 . 551136) (-1998 . 550994) - (-1999 . 550135) (-2000 . 550063) (-2001 . 549978) (-2002 . 549883) - (-2003 . 549718) (-2004 . 549662) (-2005 . 549506) (-2006 . 549454) - (-2007 . 549388) (-2008 . 549305) (-2009 . 549195) (-2010 . 549143) - (-2011 . 549060) (-2012 . 549007) (-2013 . 548953) (-2014 . 548872) - (-2015 . 548529) (-2016 . 547947) (-2017 . 547820) (-2018 . 547391) - (-2019 . 547321) (-2020 . 547215) (-2021 . 547145) (-2022 . 547036) - (-2023 . 546899) (-2024 . 546822) (-2025 . 546662) (-2026 . 546610) - (-2027 . 546494) (-2028 . 546442) (-2029 . 546298) (-2030 . 546120) - (-2031 . 545963) (-2032 . 545802) (-2033 . 545729) (-2034 . 545486) - (-2035 . 545190) (-2036 . 544956) (-2037 . 544868) (-2038 . 544775) - (-2039 . 544622) (-2040 . 544436) (-2041 . 544295) (-2042 . 544197) - (-2043 . 544102) (-2044 . 544024) (-2045 . 542906) (-2046 . 537794) - (-2047 . 537708) (-2048 . 537613) (-2049 . 537509) (-2050 . 537330) - (-2051 . 537018) (-2052 . 536944) (-2053 . 536808) (-2054 . 536693) - (-2055 . 536659) (-2056 . 536563) (-2057 . 536489) (-2058 . 534759) - (-2059 . 532496) (-2060 . 532153) (-2061 . 532103) (-2062 . 531980) - (-2063 . 531800) (-2064 . 531416) (-2065 . 531357) (-2066 . 531089) - (-2067 . 531021) (-2068 . 530724) (-2069 . 530605) (-2070 . 530376) - (-2071 . 530288) (-2072 . 530216) (-2073 . 529968) (-2074 . 529805) - (-2075 . 528228) (-2076 . 528006) (-2077 . 527749) (-2078 . 527535) - (-2079 . 527289) (-2080 . 527223) (-2081 . 527135) (-2082 . 526793) - (-2083 . 526699) (-2084 . 526665) (-2085 . 526422) (-2086 . 526175) - (-2087 . 526103) (-2088 . 526025) (-2089 . 525934) (-2090 . 525884) - (-2091 . 525695) (-2092 . 525612) (-2093 . 525338) (-2094 . 525124) - (-2095 . 524958) (-2096 . 524642) (-2097 . 524586) (-2098 . 524188) - (-2099 . 524108) (-2100 . 524023) (-2101 . 523865) (-2102 . 523155) - (-2103 . 522953) (-2104 . 522647) (-2105 . 522534) (-2106 . 521353) - (-2107 . 521182) (-2108 . 520996) (-2109 . 520813) (-2110 . 520742) - (-2111 . 520660) (-2112 . 520550) (-2113 . 520151) (-2114 . 520029) - (-2115 . 519930) (-2116 . 519570) (-2117 . 519318) (-2118 . 519265) - (-2119 . 519074) (-2120 . 519043) (-2121 . 518913) (-2122 . 518755) - (-2123 . 518623) (-2124 . 518568) (-2125 . 517192) (-2126 . 516921) - (-2127 . 516529) (-2128 . 516362) (-2129 . 516213) (-2130 . 516105) - (-2131 . 515945) (-2132 . 515857) (-2133 . 515744) (-2134 . 515357) - (-2135 . 515300) (-2136 . 515217) (-2137 . 515101) (-2138 . 514707) - (-2139 . 514535) (-2140 . 514154) (-2141 . 513988) (-2142 . 513935) - (-2143 . 513836) (-2144 . 513728) (-2145 . 512977) (-2146 . 512922) - (-2147 . 512867) (-2148 . 512656) (-2149 . 512484) (-2150 . 512261) - (-2151 . 512190) (-2152 . 512162) (-2153 . 512036) (-2154 . 511851) - (-2155 . 511741) (-2156 . 511597) (-2157 . 511438) (-2158 . 511345) - (-2159 . 511146) (-2160 . 511088) (-2161 . 510916) (-2162 . 510809) - (-2163 . 510569) (-2164 . 510492) (-2165 . 510421) (-2166 . 510166) - (-2167 . 510036) (-2168 . 509926) (-2169 . 509581) (-2170 . 509450) - (-2171 . 509273) (-2172 . 509101) (-2173 . 509050) (-2174 . 508967) - (-2175 . 508894) (-2176 . 508740) (-2177 . 508662) (-2178 . 508438) - (-2179 . 508328) (-2180 . 508245) (-2181 . 508121) (-2182 . 507961) - (-2183 . 507817) (-2184 . 507613) (-2185 . 507403) (-2186 . 507313) - (-2187 . 507219) (-2188 . 507168) (-2189 . 506817) (-2190 . 506745) - (-2191 . 506620) (-2192 . 506567) (-2193 . 506483) (-2194 . 506342) - (-2195 . 506169) (-2196 . 506070) (-2197 . 505957) (-2198 . 505772) - (-2199 . 505648) (-2200 . 505534) (-2201 . 504927) (-2202 . 504856) - (-2203 . 504557) (-2204 . 504428) (-2205 . 504238) (-2206 . 504124) - (-2207 . 503990) (-2208 . 503698) (-2209 . 503614) (-2210 . 503562) - (-2211 . 503234) (-2212 . 503029) (-2213 . 502928) (-2214 . 502784) - (-2215 . 502687) (-2216 . 502504) (-2217 . 502324) (-2218 . 502100) - (-2219 . 501970) (-2220 . 501936) (-2221 . 501883) (-2222 . 501670) - (-2223 . 501518) (-2224 . 500777) (-2225 . 500670) (-2226 . 500618) - (-2227 . 500566) (-2228 . 500483) (-2229 . 500233) (-2230 . 500080) - (-2231 . 500017) (-2232 . 499810) (-2233 . 499640) (-2234 . 498899) - (-2235 . 498871) (-2236 . 498800) (-2237 . 498739) (-2238 . 498669) - (-2239 . 498570) (-2240 . 498431) (-2241 . 498330) (-2242 . 498275) - (-2243 . 498084) (-2244 . 498031) (-2245 . 497922) (-2246 . 497234) - (-2247 . 497027) (-2248 . 496955) (-2249 . 496904) (-2250 . 496852) - (-2251 . 494996) (-2252 . 494917) (-2253 . 494795) (-2254 . 494603) - (-2255 . 494332) (-2256 . 494261) (-2257 . 493685) (-2258 . 493632) - (-2259 . 493484) (-2260 . 493424) (-2261 . 493375) (-2262 . 493242) - (-2263 . 493148) (-2264 . 492832) (-2265 . 492780) (-2266 . 492633) - (-2267 . 492541) (-2268 . 491965) (-2269 . 491604) (-2270 . 490846) - (-2271 . 490817) (-2272 . 490734) (-2273 . 490630) (-2274 . 489726) - (-2275 . 489508) (-2276 . 489349) (-2277 . 489251) (-2278 . 489159) - (-2279 . 488583) (-2280 . 488446) (-2281 . 488251) (-2282 . 488066) - (-2283 . 487927) (-2284 . 487832) (-2285 . 487710) (-2286 . 487581) - (-2287 . 487474) (-2288 . 487034) (-2289 . 486852) (-2290 . 486766) - (-2291 . 486080) (-2292 . 486022) (-2293 . 485914) (-2294 . 485805) - (-2295 . 485732) (-2296 . 485599) (-2297 . 485440) (-2298 . 485262) - (-2299 . 484667) (-2300 . 484529) (-2301 . 484366) (-2302 . 483680) - (-2303 . 483628) (-2304 . 483201) (-2305 . 483032) (-2306 . 482923) - (-2307 . 482606) (-2308 . 482536) (-2309 . 482370) (-2310 . 482257) - (-2311 . 482133) (-2312 . 481847) (-2313 . 481098) (-2314 . 480936) - (-2315 . 480824) (-2316 . 480699) (-2317 . 480612) (-2318 . 480499) - (-2319 . 480204) (-2320 . 479957) (-2321 . 479860) (-2322 . 479797) - (-2323 . 479698) (-2324 . 479124) (-2325 . 478914) (-2326 . 478201) - (-2327 . 478043) (-2328 . 477965) (-2329 . 477629) (-2330 . 477556) - (-2331 . 477351) (-2332 . 477104) (-2333 . 476658) (-2334 . 476558) - (-2335 . 476505) (-2336 . 475931) (-2337 . 475851) (-2338 . 475723) - (-2339 . 475442) (-2340 . 475257) (-2341 . 475007) (-2342 . 474569) - (-2343 . 474471) (-2344 . 474393) (-2345 . 474292) (-2346 . 473718) - (-2347 . 473513) (-2348 . 473432) (-2349 . 473305) (-2350 . 473041) - (-2351 . 472898) (-2352 . 472717) (-2353 . 472596) (-2354 . 472371) - (-2355 . 472292) (-2356 . 468294) (-2357 . 467607) (-2358 . 467357) - (-2359 . 467234) (-2360 . 467160) (-2361 . 467104) (-2362 . 466981) - (-2363 . 466953) (-2364 . 466656) (-2365 . 466548) (-2366 . 465310) - (-2367 . 465224) (-2368 . 464537) (-2369 . 464439) (-2370 . 464341) - (-2371 . 464117) (-2372 . 463792) (-2373 . 463566) (-2374 . 463483) - (-2375 . 463430) (-2376 . 463135) (-2377 . 463049) (-2378 . 462952) - (-2379 . 462901) (-2380 . 462214) (-2381 . 462132) (-2382 . 462070) - (-2383 . 462013) (-2384 . 461664) (-2385 . 460324) (-2386 . 460207) - (-2387 . 460089) (-2388 . 460034) (-2389 . 459822) (-2390 . 459770) - (-2391 . 459495) (-2392 . 458920) (-2393 . 458867) (-2394 . 458735) - (-2395 . 458593) (-2396 . 458399) (-2397 . 458327) (-2398 . 458275) - (-2399 . 458092) (-2400 . 457998) (-2401 . 457929) (-2402 . 457783) - (-2403 . 457208) (-2404 . 457156) (-2405 . 457061) (-2406 . 456831) - (-2407 . 456725) (-2408 . 456612) (-2409 . 455362) (-2410 . 455132) - (-2411 . 454523) (-2412 . 454360) (-2413 . 454244) (-2414 . 453669) - (-2415 . 453551) (-2416 . 453480) (-2417 . 453408) (-2418 . 453307) - (-2419 . 453034) (-2420 . 452979) (-2421 . 452866) (-2422 . 452709) - (-2423 . 452246) (-2424 . 452124) (-2425 . 451550) (-2426 . 451395) - (-2427 . 451207) (-2428 . 451102) (-2429 . 450773) (-2430 . 450648) - (-2431 . 450560) (-2432 . 450443) (-2433 . 450391) (-2434 . 450259) - (-2435 . 449685) (-2436 . 449262) (-2437 . 448851) (-2438 . 448633) - (-2439 . 448466) (-2440 . 448286) (-2441 . 447854) (-2442 . 447771) - (-2443 . 447611) (-2444 . 447510) (-2445 . 447366) (-2446 . 447260) - (-2447 . 446686) (-2448 . 446384) (-2449 . 446224) (-2450 . 446117) - (-2451 . 445772) (-2452 . 445520) (-2453 . 445389) (-2454 . 445288) - (-2455 . 445169) (-2456 . 444966) (-2457 . 444859) (-2458 . 444367) - (-2459 . 444189) (-2460 . 444092) (-2461 . 443905) (-2462 . 443630) - (-2463 . 443550) (-2464 . 443513) (-2465 . 443361) (-2466 . 443243) - (-2467 . 443080) (-2468 . 442973) (-2469 . 442864) (-2470 . 442757) - (-2471 . 442670) (-2472 . 442460) (-2473 . 442282) (-2474 . 442126) - (-2475 . 442070) (-2476 . 441910) (-2477 . 441878) (-2478 . 441756) - (-2479 . 441638) (-2480 . 441523) (-2481 . 441375) (-2482 . 441308) - (-2483 . 441251) (-2484 . 440086) (-2485 . 439699) (-2486 . 439583) - (-2487 . 439477) (-2488 . 439319) (-2489 . 438515) (-2490 . 438455) - (-2491 . 438317) (-2492 . 438261) (-2493 . 438171) (-2494 . 438020) - (-2495 . 437961) (-2496 . 437932) (-2497 . 437876) (-2498 . 437717) - (-2499 . 437600) (-2500 . 437542) (-2501 . 437443) (-2502 . 437401) - (-2503 . 437174) (-2504 . 437036) (-2505 . 436607) (-2506 . 436444) - (-2507 . 436326) (-2508 . 435224) (-2509 . 435100) (-2510 . 434820) - (-2511 . 434736) (-2512 . 434663) (-2513 . 434606) (-2514 . 434070) - (-2515 . 433838) (-2516 . 433761) (-2517 . 433645) (-2518 . 433592) - (-2519 . 433540) (-2520 . 432880) (-2521 . 432821) (-2522 . 432768) - (-2523 . 432530) (-2524 . 431776) (-2525 . 431638) (-2526 . 431248) - (-2527 . 430831) (-2528 . 430727) (-2529 . 430650) (-2530 . 430546) - (-2531 . 430145) (-2532 . 430046) (-2533 . 429850) (-2534 . 429607) - (-2535 . 429434) (-2536 . 429356) (-2537 . 429282) (-2538 . 429208) - (-2539 . 429148) (-2540 . 429071) (-2541 . 428753) (-2542 . 428630) - (-2543 . 428416) (-2544 . 428319) (-2545 . 428184) (-2546 . 428079) - (-2547 . 427994) (-2548 . 427820) (-2549 . 427429) (-2550 . 427295) - (-2551 . 427241) (-2552 . 427114) (-2553 . 427059) (-2554 . 426841) - (-2555 . 426767) (-2556 . 426445) (-2557 . 426361) (-2558 . 426216) - (-2559 . 426109) (-2560 . 425968) (-2561 . 425515) (-2562 . 425388) - (-2563 . 425021) (-2564 . 424878) (-2565 . 424847) (-2566 . 424462) - (-2567 . 424366) (-2568 . 423612) (-2569 . 423481) (-2570 . 422907) - (-2571 . 421904) (-2572 . 421852) (-2573 . 421766) (-2574 . 421495) - (-2575 . 420896) (-2576 . 420732) (-2577 . 420616) (-2578 . 420462) - (-2579 . 420353) (-2580 . 420266) (-2581 . 420192) (-2582 . 420092) - (-2583 . 419948) (-2584 . 419638) (-2585 . 419572) (-2586 . 419500) - (-2587 . 419449) (-2588 . 419307) (-2589 . 418840) (-2590 . 418725) - (-2591 . 418652) (-2592 . 418587) (-2593 . 418328) (-2594 . 417954) - (-2595 . 417764) (-2596 . 417705) (-2597 . 417649) (-2598 . 417542) - (-2599 . 417427) (-2600 . 417187) (-2601 . 417048) (-2602 . 416626) - (-2603 . 416013) (-2604 . 415875) (-2605 . 415273) (-2606 . 415221) - (-2607 . 412440) (-2608 . 412378) (-2609 . 412003) (-2610 . 411933) - (-2611 . 411714) (-2612 . 411598) (-2613 . 411510) (-2614 . 411355) - (-2615 . 410290) (-2616 . 409863) (-2617 . 409734) (-2618 . 409667) - (-2619 . 409583) (-2620 . 409513) (-2621 . 409434) (-2622 . 409083) - (-2623 . 408925) (-2624 . 408682) (-2625 . 408623) (-2626 . 408561) - (-2627 . 408482) (-2628 . 408430) (-2629 . 408300) (-2630 . 408239) - (-2631 . 408144) (-2632 . 408031) (-2633 . 407919) (-2634 . 407846) - (-2635 . 407763) (-2636 . 405348) (-2637 . 405280) (-2638 . 405181) - (-2639 . 405149) (-2640 . 405039) (-2641 . 405007) (-2642 . 404854) - (-2643 . 404005) (-2644 . 403977) (-2645 . 403809) (-2646 . 403562) - (-2647 . 403507) (-2648 . 403309) (-2649 . 403202) (-2650 . 403074) - (-2651 . 402988) (-2652 . 402892) (-2653 . 402761) (-2654 . 399140) - (-2655 . 398950) (-2656 . 398876) (-2657 . 398745) (-2658 . 398368) - (-2659 . 398316) (-2660 . 398001) (-2661 . 397867) (-2662 . 397711) - (-2663 . 397645) (-2664 . 397485) (-2665 . 397312) (-2666 . 397062) - (-2667 . 396727) (-2668 . 396569) (-2669 . 396468) (-2670 . 396293) - (-2671 . 396142) (-2672 . 395929) (-2673 . 395765) (-2674 . 395652) - (-2675 . 395299) (-2676 . 395271) (-2677 . 395098) (-2678 . 395006) - (-2679 . 394903) (-2680 . 394762) (-2681 . 394424) (-2682 . 393428) - (-2683 . 393126) (-2684 . 393024) (-2685 . 392965) (-2686 . 392880) - (-2687 . 392651) (-2688 . 392544) (-2689 . 392415) (-2690 . 392316) - (-2691 . 392249) (-2692 . 391768) (-2693 . 391740) (-2694 . 390924) - (-2695 . 390814) (-2696 . 390694) (-2697 . 390307) (-2698 . 390164) - (-2699 . 389949) (-2700 . 389826) (-2701 . 389671) (-2702 . 389571) - (-2703 . 389477) (-2704 . 389205) (-2705 . 388899) (-2706 . 388831) - (-2707 . 383493) (-2708 . 382220) (-2709 . 382152) (-2710 . 382051) - (-2711 . 381977) (-2712 . 381683) (-2713 . 381630) (-2714 . 381512) - (-2715 . 381393) (-2716 . 381295) (-2717 . 381086) (-2718 . 381017) - (-2719 . 380656) (-2720 . 380568) (-2721 . 380371) (-2722 . 380216) - (-2723 . 380123) (-2724 . 380030) (-2725 . 379980) (-2726 . 379462) - (-2727 . 379354) (-2728 . 379275) (-2729 . 379123) (-2730 . 379095) - (-2731 . 378923) (-2732 . 378816) (-2733 . 378749) (-2734 . 378534) - (-2735 . 378207) (-2736 . 378060) (-2737 . 377842) (-2738 . 377772) - (-2739 . 377526) (-2740 . 377333) (-2741 . 377260) (-2742 . 377207) - (-2743 . 375995) (-2744 . 375883) (-2745 . 375823) (-2746 . 375749) - (-2747 . 375550) (-2748 . 375363) (-2749 . 374684) (-2750 . 374590) - (-2751 . 374363) (-2752 . 374304) (-2753 . 374238) (-2754 . 374101) - (-2755 . 373494) (-2756 . 373268) (-2757 . 373189) (-2758 . 373122) - (-2759 . 373040) (-2760 . 372966) (-2761 . 372825) (-2762 . 372704) - (-2763 . 372627) (-2764 . 372572) (-2765 . 372492) (-2766 . 372385) - (-2767 . 372146) (-2768 . 371955) (-2769 . 371813) (-2770 . 371636) - (-2771 . 371564) (-2772 . 371484) (-2773 . 371418) (-2774 . 371338) - (-2775 . 371119) (-2776 . 371022) (-2777 . 370927) (-2778 . 370856) - (-2779 . 369005) (-2780 . 368864) (-2781 . 368584) (-2782 . 368496) - (-2783 . 367580) (-2784 . 367436) (-2785 . 367299) (-2786 . 367180) - (-2787 . 367033) (-2788 . 366924) (-2789 . 366750) (-2790 . 366574) - (-2791 . 366468) (-2792 . 366340) (-2793 . 366239) (-2794 . 366169) - (-2795 . 365987) (-2796 . 365748) (-2797 . 365500) (-2798 . 365441) - (-2799 . 365407) (-2800 . 365312) (-2801 . 365212) (-2802 . 365055) - (-2803 . 364986) (-2804 . 364569) (-2805 . 364481) (-2806 . 364386) - (-2807 . 364279) (-2808 . 364157) (-2809 . 364091) (-2810 . 364036) - (-2811 . 363923) (-2812 . 363704) (-2813 . 363561) (-2814 . 363185) - (-2815 . 363156) (-2816 . 363036) (-2817 . 362709) (-2818 . 362566) - (-2819 . 361964) (-2820 . 361798) (-2821 . 361487) (-2822 . 361455) - (-2823 . 361325) (-2824 . 361273) (-2825 . 361207) (-2826 . 361090) - (-2827 . 360092) (-2828 . 359963) (-2829 . 359911) (-2830 . 359845) - (-2831 . 359704) (-2832 . 359436) (-2833 . 359408) (-2834 . 359268) - (-2835 . 359154) (-2836 . 359075) (-2837 . 358973) (-2838 . 358839) - (-2839 . 358790) (-2840 . 358753) (-2841 . 358685) (-2842 . 358467) - (-2843 . 357981) (-2844 . 357788) (-2845 . 357685) (-2846 . 357506) - (-2847 . 357472) (-2848 . 357421) (-2849 . 357335) (-2850 . 357283) - (-2851 . 356853) (-2852 . 356765) (-2853 . 356491) (-2854 . 356439) - (-2855 . 355247) (-2856 . 355174) (-2857 . 355086) (-2858 . 354878) - (-2859 . 354826) (-2860 . 354644) (-2861 . 354551) (-2862 . 354452) - (-2863 . 354304) (-2864 . 354227) (-2865 . 354168) (-2866 . 354030) - (-2867 . 353902) (-2868 . 352432) (-2869 . 352329) (-2870 . 352106) - (-2871 . 352003) (-2872 . 351933) (-2873 . 351807) (-2874 . 351755) - (-2875 . 351687) (-2876 . 351600) (-2877 . 351548) (-2878 . 351438) - (-2879 . 351368) (-2880 . 351302) (-2881 . 351159) (-2882 . 351048) - (-2883 . 350965) (-2884 . 350882) (-2885 . 350603) (-2886 . 350531) - (-2887 . 350328) (-2888 . 350137) (-2889 . 350035) (-2890 . 349810) - (-2891 . 349706) (-2892 . 349625) (-2893 . 349572) (-2894 . 349471) - (-2895 . 348953) (-2896 . 348714) (-2897 . 348662) (-2898 . 348510) - (-2899 . 348439) (-2900 . 348359) (-2901 . 348241) (-2902 . 348148) - (-2903 . 348116) (-2904 . 347692) (-2905 . 347552) (-2906 . 347413) - (-2907 . 347156) (-2908 . 346897) (-2909 . 346793) (-2910 . 346749) - (-2911 . 346591) (-2912 . 346360) (-2913 . 346332) (-2914 . 346218) - (-2915 . 345957) (-2916 . 345904) (-2917 . 345797) (-2918 . 345704) - (-2919 . 345633) (-2920 . 345530) (-2921 . 345199) (-2922 . 344858) - (-2923 . 344791) (-2924 . 344705) (-2925 . 344568) (-2926 . 344459) - (-2927 . 344386) (-2928 . 344333) (-2929 . 344247) (-2930 . 344178) - (-2931 . 344080) (-2932 . 343973) (-2933 . 343863) (-2934 . 343749) - (-2935 . 343633) (-2936 . 343420) (-2937 . 343301) (-2938 . 343228) - (-2939 . 343157) (-2940 . 343080) (-2941 . 342951) (-2942 . 342849) - (-2943 . 342776) (-2944 . 342291) (-2945 . 342039) (-2946 . 341930) - (-2947 . 341864) (-2948 . 341689) (-2949 . 341633) (-2950 . 341563) - (-2951 . 341475) (-2952 . 341422) (-2953 . 341200) (-2954 . 340848) - (-2955 . 340657) (-2956 . 340477) (-2957 . 340375) (-2958 . 340280) - (-2959 . 340034) (-2960 . 339742) (-2961 . 339575) (-2962 . 339239) - (-2963 . 339115) (-2964 . 339059) (-2965 . 338999) (-2966 . 338918) - (-2967 . 338835) (-2968 . 336566) (-2969 . 336508) (-2970 . 336455) - (-2971 . 336427) (-2972 . 336337) (-2973 . 336276) (-2974 . 336193) - (-2975 . 336127) (-2976 . 335607) (-2977 . 335552) (-2978 . 335393) - (-2979 . 335309) (-2980 . 334991) (-2981 . 334641) (-2982 . 333425) - (-2983 . 333331) (-2984 . 333157) (-2985 . 332987) (-2986 . 332740) - (-2987 . 332631) (-2988 . 332549) (-2989 . 332234) (-2990 . 331803) - (-2991 . 331522) (-2992 . 331364) (-2993 . 330826) (-2994 . 330792) - (-2995 . 330719) (-2996 . 330435) (-2997 . 330143) (-2998 . 330066) - (-2999 . 329715) (-3000 . 329012) (-3001 . 328944) (-3002 . 328892) - (-3003 . 328841) (-3004 . 328734) (-3005 . 328626) (-3006 . 328531) - (-3007 . 328339) (-3008 . 328205) (-3009 . 327987) (-3010 . 327763) - (-3011 . 327642) (-3012 . 327590) (-3013 . 327102) (-3014 . 326953) - (-3015 . 326900) (-3016 . 326800) (-3017 . 326512) (-3018 . 326259) - (-3019 . 326180) (-3020 . 326096) (-3021 . 326064) (-3022 . 325766) - (-3023 . 325680) (-3024 . 325609) (-3025 . 325552) (-3026 . 325499) - (-3027 . 325405) (-3028 . 325298) (-3029 . 325201) (-3030 . 324905) - (-3031 . 324255) (-3032 . 324167) (-3033 . 324114) (-3034 . 323753) - (-3035 . 323663) (-3036 . 323592) (-3037 . 323458) (-3038 . 323127) - (-3039 . 322884) (-3040 . 322726) (-3041 . 322600) (-3042 . 322393) - (-3043 . 318233) (-3044 . 318125) (-3045 . 317907) (-3046 . 317839) - (-3047 . 317783) (-3048 . 317705) (-3049 . 317631) (-3050 . 317554) - (-3051 . 317150) (-3052 . 317020) (-3053 . 316966) (-3054 . 316767) - (-3055 . 316681) (-3056 . 316503) (-3057 . 316391) (-3058 . 316332) - (-3059 . 316036) (-3060 . 315856) (-3061 . 315778) (-3062 . 315744) - (-3063 . 315647) (-3064 . 315588) (-3065 . 315435) (-3066 . 314133) - (-3067 . 313807) (-3068 . 313602) (-3069 . 313409) (-3070 . 313330) - (-3071 . 313019) (-3072 . 312900) (-3073 . 312785) (-3074 . 312642) - (-3075 . 312512) (-3076 . 312253) (-3077 . 312110) (-3078 . 312052) - (-3079 . 311986) (-3080 . 311881) (-3081 . 311810) (-3082 . 311665) - (-3083 . 311596) (-3084 . 311491) (-3085 . 311245) (-3086 . 311089) - (-3087 . 310479) (-3088 . 310425) (-3089 . 309227) (-3090 . 309086) - (-3091 . 309020) (-3092 . 308943) (-3093 . 308818) (-3094 . 308765) - (-3095 . 308659) (-3096 . 308572) (-3097 . 308342) (-3098 . 308248) - (-3099 . 308126) (-3100 . 308071) (-3101 . 308019) (-3102 . 307933) - (-3103 . 307835) (-3104 . 307754) (-3105 . 307676) (-3106 . 307545) - (-3107 . 306470) (-3108 . 306396) (-3109 . 306260) (-3110 . 287376) - (-3111 . 286884) (-3112 . 286780) (-3113 . 286659) (-3114 . 286553) - (-3115 . 286331) (-3116 . 286213) (-3117 . 286095) (-3118 . 285822) - (-3119 . 285433) (-3120 . 285381) (-3121 . 282629) (-3122 . 282514) - (-3123 . 282427) (-3124 . 282328) (-3125 . 282256) (-3126 . 282002) - (-3127 . 281919) (-3128 . 281586) (-3129 . 281484) (-3130 . 281455) - (-3131 . 281378) (-3132 . 281190) (-3133 . 280905) (-3134 . 280877) - (-3135 . 280795) (-3136 . 280401) (-3137 . 280315) (-3138 . 280088) - (-3139 . 279816) (-3140 . 279763) (-3141 . 279503) (-3142 . 279475) - (-3143 . 279372) (-3144 . 278840) (-3145 . 278768) (-3146 . 278415) - (-3147 . 278314) (-3148 . 278286) (-3149 . 278155) (-3150 . 277956) - (-3151 . 277877) (-3152 . 277768) (-3153 . 277573) (-3154 . 277457) - (-3155 . 277333) (-3156 . 277039) (-3157 . 276973) (-3158 . 276842) - (-3159 . 276620) (-3160 . 276082) (-3161 . 275959) (-3162 . 275902) - (-3163 . 275871) (-3164 . 275726) (-3165 . 275642) (-3166 . 275449) - (-3167 . 275375) (-3168 . 275319) (-3169 . 275235) (-3170 . 275024) - (-3171 . 274945) (-3172 . 274865) (-3173 . 274752) (-3174 . 274699) - (-3175 . 274530) (-3176 . 274400) (-3177 . 274323) (-3178 . 274155) - (-3179 . 274071) (-3180 . 274000) (-3181 . 273898) (-3182 . 273749) - (-3183 . 273651) (-3184 . 273490) (-3185 . 273404) (-3186 . 273331) - (-3187 . 273243) (-3188 . 272901) (-3189 . 272525) (-3190 . 272323) - (-3191 . 272240) (-3192 . 268904) (-3193 . 268768) (-3194 . 268674) - (-3195 . 268594) (-3196 . 268537) (-3197 . 268384) (-3198 . 268208) - (-3199 . 267929) (-3200 . 267874) (-3201 . 267622) (-3202 . 266852) - (-3203 . 266470) (-3204 . 266417) (-3205 . 265604) (-3206 . 265505) - (-3207 . 265014) (-3208 . 264467) (-3209 . 264260) (-3210 . 263686) - (-3211 . 263614) (-3212 . 263480) (-3213 . 263189) (** . 260100) - (-3215 . 258919) (-3216 . 258866) (-3217 . 258723) (-3218 . 258600) - (-3219 . 258459) (-3220 . 258351) (-3221 . 258300) (-3222 . 257924) - (-3223 . 257678) (-3224 . 257543) (-3225 . 257442) (-3226 . 257191) - (-3227 . 257018) (-3228 . 256912) (-3229 . 256745) (-3230 . 256632) - (-3231 . 256476) (-3232 . 256410) (-3233 . 256348) (-3234 . 256213) - (-3235 . 256110) (-3236 . 255915) (-3237 . 255656) (-3238 . 255601) - (-3239 . 255376) (-3240 . 255288) (-3241 . 255236) (-3242 . 255184) - (-3243 . 255077) (-3244 . 254905) (-3245 . 254713) (-3246 . 254658) - (-3247 . 252690) (-3248 . 252503) (-3249 . 251701) (-3250 . 251633) - (-3251 . 251452) (-3252 . 251366) (-3253 . 251313) (-3254 . 251218) - (-3255 . 251020) (-3256 . 249818) (-3257 . 249372) (-3258 . 249305) - (-3259 . 249164) (-3260 . 249057) (-3261 . 248963) (-3262 . 248906) - (-3263 . 248769) (-3264 . 248647) (-3265 . 248561) (-3266 . 248283) - (-3267 . 247997) (-3268 . 247902) (-3269 . 247832) (-3270 . 247532) - (-3271 . 247431) (-3272 . 247358) (-3273 . 247242) (-3274 . 247153) - (-3275 . 246983) (-3276 . 246456) (-3277 . 246294) (-9 . 246266) - (-3279 . 245956) (-3280 . 245767) (-3281 . 245697) (-3282 . 245567) - (-3283 . 245388) (-3284 . 245209) (-3285 . 245137) (-3286 . 245014) - (-3287 . 242882) (-3288 . 242780) (-3289 . 242431) (-8 . 242403) - (-3291 . 242200) (-3292 . 242085) (-3293 . 241823) (-3294 . 241742) - (-3295 . 241664) (-3296 . 241540) (-3297 . 241466) (-3298 . 241307) - (-3299 . 241253) (-3300 . 241183) (-3301 . 241106) (-7 . 241078) - (-3303 . 240947) (-3304 . 240640) (-3305 . 240382) (-3306 . 239995) - (-3307 . 239837) (-3308 . 239677) (-3309 . 239609) (-3310 . 239547) - (-3311 . 239436) (-3312 . 239343) (-3313 . 239005) (-3314 . 238805) - (-3315 . 238686) (-3316 . 238599) (-3317 . 238533) (-3318 . 238363) - (-3319 . 238245) (-3320 . 238087) (-3321 . 238013) (-3322 . 236605) - (-3323 . 236267) (-3324 . 236214) (-3325 . 236142) (-3326 . 235955) - (-3327 . 235811) (-3328 . 235752) (-3329 . 235178) (-3330 . 235060) - (-3331 . 234888) (-3332 . 234775) (-3333 . 234746) (-3334 . 234652) - (-3335 . 234499) (-3336 . 234322) (-3337 . 234012) (-3338 . 233358) - (-3339 . 233247) (-3340 . 233114) (-3341 . 232990) (-3342 . 232569) - (-3343 . 232512) (-3344 . 232408) (-3345 . 232218) (-3346 . 232091) - (-3347 . 231938) (-3348 . 231754) (-3349 . 231627) (-3350 . 231429) - (-3351 . 231327) (-3352 . 231073) (-3353 . 231009) (-3354 . 230929) - (-3355 . 225416) (-3356 . 225261) (-3357 . 225177) (-3358 . 225066) - (-3359 . 224968) (-3360 . 224836) (-3361 . 224784) (-3362 . 224654) - (-3363 . 224312) (-3364 . 224262) (-3365 . 223874) (-3366 . 223786) - (-3367 . 223398) (-3368 . 223037) (-3369 . 222905) (-3370 . 222792) - (-3371 . 222593) (-3372 . 222499) (-3373 . 221735) (-3374 . 221619) - (-3375 . 221164) (-3376 . 221086) (-3377 . 220830) (-3378 . 220760) - (-3379 . 220656) (-3380 . 220248) (-3381 . 219881) (-3382 . 219612) - (-3383 . 219559) (-3384 . 219507) (-3385 . 219292) (-3386 . 219168) - (-3387 . 218819) (-3388 . 218740) (-3389 . 218640) (-3390 . 218525) - (-3391 . 218410) (-3392 . 218331) (-3393 . 218067) (-3394 . 217634) - (-3395 . 217511) (-3396 . 217443) (-3397 . 216839) (-3398 . 216759) - (-3399 . 216658) (-3400 . 216410) (-3401 . 216339) (-3402 . 215906) - (-3403 . 215547) (-3404 . 215297) (-3405 . 215260) (-3406 . 208261) - (-3407 . 208194) (-3408 . 207613) (-3409 . 207351) (-3410 . 207026) - (-3411 . 206948) (-3412 . 206864) (-3413 . 206791) (-3414 . 206684) - (-3415 . 206244) (-3416 . 206161) (-3417 . 206039) (-3418 . 205966) - (-3419 . 205916) (-3420 . 205701) (-3421 . 205619) (-3422 . 205537) - (-3423 . 205487) (-3424 . 205374) (-3425 . 205275) (-3426 . 205130) - (-3427 . 204830) (-3428 . 204716) (-3429 . 204643) (-3430 . 204570) - (-3431 . 204281) (-3432 . 203642) (-3433 . 203556) (-3434 . 203371) - (-3435 . 203319) (-3436 . 203209) (-3437 . 203004) (-3438 . 202936) - (-3439 . 202782) (-3440 . 202148) (-3441 . 202023) (-3442 . 201970) - (-3443 . 201807) (-3444 . 201669) (-3445 . 201616) (-3446 . 200507) - (-3447 . 200327) (-3448 . 199042) (-3449 . 198876) (-3450 . 198468) - (-3451 . 198402) (-3452 . 198279) (-3453 . 198007) (-3454 . 197891) - (-3455 . 197783) (-3456 . 197473) (-3457 . 197164) (-3458 . 196348) - (-3459 . 196283) (-3460 . 196230) (-3461 . 195633) (-3462 . 195225) - (-3463 . 195116) (-3464 . 194689) (-3465 . 194546) (-3466 . 194045) - (-3467 . 193874) (-3468 . 193664) (-3469 . 193565) (-3470 . 193513) - (-3471 . 193408) (-3472 . 193304) (-3473 . 193252) (-3474 . 193077) - (-3475 . 192980) (-3476 . 192450) (-3477 . 192217) (-3478 . 192043) - (-3479 . 191990) (-3480 . 191835) (-3481 . 190206) (-3482 . 189956) - (-3483 . 189879) (-3484 . 189782) (-3485 . 189697) (-3486 . 189600) - (-3487 . 189532) (-3488 . 189459) (-3489 . 189387) (-3490 . 189007) - (-3491 . 188862) (-3492 . 188812) (-3493 . 187946) (-3494 . 187860) - (-3495 . 187107) (-3496 . 187013) (-3497 . 186954) (-3498 . 186801) - (-3499 . 186536) (-3500 . 186448) (-3501 . 186396) (-3502 . 186192) - (-3503 . 185849) (-3504 . 185707) (-3505 . 185389) (-3506 . 184015) - (-3507 . 183699) (-3508 . 183493) (-3509 . 183157) (-3510 . 182911) - (-3511 . 182609) (-3512 . 182489) (-3513 . 182199) (-3514 . 182096) - (-3515 . 181944) (-3516 . 181725) (-3517 . 181471) (-3518 . 181334) - (-3519 . 180537) (-3520 . 180441) (-3521 . 179938) (-3522 . 179878) - (-3523 . 179417) (-3524 . 179207) (-3525 . 179133) (-3526 . 178987) - (-3527 . 178915) (-3528 . 178752) (-3529 . 178582) (-3530 . 178522) - (-3531 . 178376) (-3532 . 178089) (-3533 . 177992) (-3534 . 177857) - (-3535 . 177720) (-3536 . 177369) (-3537 . 177316) (-3538 . 177158) - (-3539 . 176917) (-3540 . 176715) (-3541 . 176666) (-3542 . 176550) - (-3543 . 176159) (-3544 . 176085) (-3545 . 175852) (-3546 . 175613) - (-3547 . 174528) (-3548 . 174373) (-3549 . 174119) (-3550 . 174067) - (-3551 . 174001) (-3552 . 173924) (-3553 . 173558) (-3554 . 173107) - (-3555 . 173023) (-3556 . 172834) (-3557 . 172730) (-3558 . 172656) - (-3559 . 172495) (-3560 . 170712) (-3561 . 170632) (-3562 . 168794) - (-3563 . 168760) (-3564 . 168708) (-3565 . 168485) (-3566 . 168432) - (-3567 . 168337) (-3568 . 167962) (-3569 . 167874) (-3570 . 167724) - (-3571 . 167580) (-3572 . 165802) (-3573 . 165750) (-3574 . 165368) - (-3575 . 163858) (-3576 . 163786) (-3577 . 163623) (-3578 . 163516) - (-3579 . 163393) (-3580 . 163264) (-3581 . 163140) (-3582 . 163038) - (-3583 . 162970) (-3584 . 162833) (-3585 . 162776) (-3586 . 162471) - (-3587 . 160923) (-3588 . 160853) (-3589 . 160483) (-3590 . 160409) - (-3591 . 160236) (-3592 . 160184) (-3593 . 159936) (-3594 . 159838) - (-3595 . 159451) (-3596 . 159226) (-3597 . 159132) (-3598 . 159081) - (-3599 . 158914) (-3600 . 158855) (-3601 . 158767) (-3602 . 158615) - (-3603 . 158581) (-3604 . 158466) (-3605 . 158406) (-3606 . 158126) - (-3607 . 158040) (-3608 . 157626) (-3609 . 157492) (-3610 . 156756) - (-3611 . 156555) (-3612 . 156411) (-3613 . 156361) (-3614 . 156152) - (-3615 . 156081) (-3616 . 155892) (-3617 . 155840) (-3618 . 155724) - (-3619 . 155642) (-3620 . 155469) (-3621 . 155410) (-3622 . 155308) - (-3623 . 155146) (-3624 . 154986) (-3625 . 154583) (-3626 . 154380) - (-3627 . 154318) (-3628 . 154232) (-3629 . 154094) (-3630 . 153548) - (-3631 . 152915) (-3632 . 152493) (-3633 . 152366) (-3634 . 151939) - (-3635 . 151865) (-3636 . 151738) (-3637 . 151594) (-3638 . 151520) - (-3639 . 150702) (-3640 . 150645) (-3641 . 150338) (-3642 . 150279) - (-3643 . 150178) (-3644 . 149534) (-3645 . 149446) (-3646 . 149356) - (-3647 . 149273) (-3648 . 149126) (-3649 . 149025) (-3650 . 148830) - (-3651 . 148802) (-3652 . 148723) (-3653 . 148645) (-3654 . 148490) - (-3655 . 147318) (-3656 . 147100) (-3657 . 147045) (-3658 . 146909) - (-3659 . 146773) (-3660 . 146542) (-3661 . 146381) (-3662 . 146275) - (-3663 . 145892) (-3664 . 145785) (-3665 . 145714) (-3666 . 145658) - (-3667 . 145543) (-3668 . 145253) (-3669 . 145197) (-3670 . 145075) - (-3671 . 144819) (-3672 . 144633) (-3673 . 144435) (-3674 . 144335) - (-3675 . 144192) (-3676 . 144054) (-3677 . 143989) (-3678 . 142852) - (-3679 . 142607) (-3680 . 142541) (-3681 . 141889) (-3682 . 141786) - (-3683 . 141412) (-3684 . 140920) (-3685 . 140867) (-3686 . 140793) - (-3687 . 140187) (-3688 . 140116) (-3689 . 139988) (-3690 . 139922) - (-3691 . 139856) (-3692 . 139755) (-3693 . 139646) (-3694 . 139591) - (-3695 . 139488) (-3696 . 139252) (-3697 . 138996) (-3698 . 138922) - (-3699 . 138706) (-3700 . 138591) (-3701 . 138487) (-3702 . 138390) - (-3703 . 138228) (-3704 . 138156) (-3705 . 138055) (-3706 . 137697) - (-3707 . 137579) (-3708 . 137436) (-3709 . 137222) (-3710 . 137077) - (-3711 . 137022) (-3712 . 136870) (-3713 . 136418) (-3714 . 136021) - (-3715 . 135968) (-3716 . 135780) (-3717 . 135590) (-3718 . 135504) - (-3719 . 135451) (-3720 . 135263) (-3721 . 135135) (-3722 . 134883) - (-3723 . 134206) (-3724 . 133606) (-3725 . 133533) (-3726 . 133436) - (-3727 . 133256) (-3728 . 133203) (-3729 . 132608) (-3730 . 132215) - (-3731 . 132135) (-3732 . 132079) (-3733 . 131747) (-3734 . 131640) - (-3735 . 131468) (-3736 . 131401) (-3737 . 131162) (-3738 . 131053) - (-3739 . 130952) (-3740 . 130865) (-3741 . 130752) (-3742 . 130446) - (-3743 . 130351) (-3744 . 130222) (-3745 . 130134) (-3746 . 130106) - (-3747 . 129874) (-3748 . 129715) (-3749 . 129243) (-3750 . 129089) - (-3751 . 129009) (-3752 . 128858) (-3753 . 128769) (-3754 . 128642) - (-3755 . 128538) (-3756 . 128380) (-3757 . 128204) (-3758 . 128063) - (-3759 . 127843) (-3760 . 127792) (-3761 . 127655) (-3762 . 127336) - (-3763 . 127253) (-3764 . 127132) (-3765 . 126838) (-3766 . 126694) - (-3767 . 126562) (-3768 . 126402) (-3769 . 126103) (-3770 . 125902) - (-3771 . 125779) (-3772 . 125672) (-3773 . 125265) (-3774 . 125191) - (-3775 . 125072) (-3776 . 124838) (-3777 . 124731) (-3778 . 124618) - (-3779 . 124520) (-3780 . 123946) (-3781 . 123750) (-3782 . 122722) - (-3783 . 122158) (-3784 . 121931) (-3785 . 121582) (-3786 . 121321) - (-3787 . 121231) (-3788 . 121028) (-3789 . 120934) (-3790 . 120882) - (-3791 . 120308) (-3792 . 120164) (-3793 . 120057) (-3794 . 119933) - (-3795 . 119595) (-3796 . 119451) (-3797 . 119040) (-3798 . 118936) - (-3799 . 118831) (-3800 . 118397) (-3801 . 118279) (-3802 . 118248) - (-3803 . 117933) (-3804 . 117880) (-3805 . 117803) (-3806 . 117717) - (-3807 . 117629) (-3808 . 117108) (-3809 . 117009) (-3810 . 116680) - (-3811 . 116628) (-3812 . 116475) (-3813 . 116376) (-3814 . 116185) - (-3815 . 116092) (-3816 . 116004) (-3817 . 115610) (-3818 . 115501) - (-3819 . 115378) (-3820 . 115156) (-3821 . 114869) (-3822 . 114813) - (-3823 . 114404) (-3824 . 114315) (-3825 . 114104) (-3826 . 113943) - (-3827 . 113890) (-3828 . 113816) (-3829 . 113538) (-3830 . 113414) - (-3831 . 113230) (-3832 . 113177) (-3833 . 112813) (-3834 . 112739) - (-3835 . 112660) (-3836 . 111959) (-3837 . 111850) (-3838 . 111707) - (-3839 . 111619) (-3840 . 111076) (-3841 . 111024) (-3842 . 110969) - (-3843 . 110898) (-3844 . 110034) (-3845 . 109963) (-3846 . 109444) - (-3847 . 109391) (-3848 . 109275) (-3849 . 109122) (-3850 . 109038) - (-3851 . 108885) (-3852 . 108793) (-3853 . 108764) (-3854 . 108551) - (-3855 . 108441) (-3856 . 108353) (-3857 . 108140) (-3858 . 108088) - (-3859 . 107995) (-3860 . 107894) (-3861 . 107786) (-3862 . 107621) - (-3863 . 107466) (-3864 . 107405) (-3865 . 107298) (-3866 . 107191) - (-3867 . 107108) (-3868 . 107007) (-3869 . 106870) (-3870 . 106662) - (-3871 . 106631) (-3872 . 104517) (-3873 . 103507) (-3874 . 103248) - (-3875 . 103174) (-3876 . 103060) (-3877 . 102951) (-3878 . 102767) - (-3879 . 102351) (-3880 . 102177) (-3881 . 101976) (-3882 . 101920) - (-3883 . 101812) (-3884 . 101757) (-3885 . 101590) (-3886 . 101396) - (-3887 . 101287) (-3888 . 101234) (-3889 . 101148) (-3890 . 101099) - (-3891 . 100758) (-3892 . 100633) (-3893 . 99476) (-3894 . 99224) - (-3895 . 99057) (-3896 . 98962) (-3897 . 98650) (-3898 . 98597) - (-3899 . 98261) (-3900 . 98139) (-3901 . 97935) (-3902 . 97756) - (-3903 . 97643) (-3904 . 97415) (-3905 . 96928) (-3906 . 96152) - (-3907 . 96098) (-3908 . 95909) (-3909 . 95880) (-3910 . 95762) - (-3911 . 95695) (-3912 . 95267) (-3913 . 95181) (-3914 . 95093) - (-3915 . 95036) (-3916 . 94821) (-3917 . 94769) (-3918 . 94663) - (-3919 . 94423) (-3920 . 94371) (-3921 . 94253) (-3922 . 94149) - (-3923 . 94040) (-3924 . 93917) (-3925 . 93793) (-3926 . 93560) - (-3927 . 93387) (-3928 . 93192) (-3929 . 92331) (-3930 . 91671) - (-3931 . 91618) (-3932 . 91447) (-3933 . 91395) (-3934 . 91265) - (-3935 . 91122) (-3936 . 91039) (-3937 . 90944) (-3938 . 90691) - (-3939 . 90482) (-3940 . 90380) (-3941 . 90217) (-3942 . 89999) - (-3943 . 89860) (-3944 . 89792) (-3945 . 89690) (-3946 . 89595) - (-3947 . 89022) (-3948 . 88861) (-3949 . 88703) (-3950 . 88433) - (-3951 . 88339) (-3952 . 88242) (-3953 . 87992) (-3954 . 87814) - (-3955 . 87740) (-3956 . 87688) (-3957 . 87575) (-3958 . 87471) - (-3959 . 87283) (-3960 . 86443) (-3961 . 86308) (-3962 . 86128) - (-3963 . 85427) (-3964 . 85262) (-3965 . 85191) (-3966 . 85061) - (-3967 . 84776) (-3968 . 84744) (-3969 . 84623) (-3970 . 84573) - (-3971 . 84231) (-3972 . 83922) (-3973 . 83825) (-3974 . 83147) - (-3975 . 82668) (-3976 . 82580) (-3977 . 81996) (-3978 . 81797) - (-3979 . 81685) (-3980 . 81590) (-3981 . 81239) (-3982 . 81211) - (-3983 . 81138) (-3984 . 81053) (-3985 . 80954) (-3986 . 80211) - (-3987 . 79700) (-3988 . 79528) (-3989 . 79195) (-3990 . 78922) - (-3991 . 78849) (-3992 . 78709) (-3993 . 78336) (-3994 . 78270) - (-3995 . 77980) (-3996 . 77715) (-3997 . 77632) (-3998 . 77384) - (-3999 . 77132) (-12 . 76960) (-4001 . 76853) (-4002 . 76755) - (-4003 . 76630) (-4004 . 76484) (-4005 . 75933) (-4006 . 75809) - (-4007 . 75702) (-4008 . 75521) (-4009 . 74642) (-4010 . 74311) - (-4011 . 74195) (-4012 . 74100) (-4013 . 73826) (-4014 . 73553) - (-4015 . 73462) (-4016 . 73346) (-4017 . 73226) (-4018 . 72951) - (-4019 . 72899) (-4020 . 72772) (-4021 . 72719) (-4022 . 72604) - (-4023 . 72518) (-4024 . 72356) (-4025 . 72257) (-4026 . 72186) - (-4027 . 72082) (-4028 . 72045) (-4029 . 71753) (-4030 . 71587) - (-4031 . 71484) (-4032 . 71049) (-4033 . 70904) (-4034 . 70793) - (-4035 . 70722) (-4036 . 70625) (-4037 . 70572) (-4038 . 70501) - (-4039 . 70364) (-4040 . 70057) (-4041 . 69961) (-4042 . 69897) - (-4043 . 69566) (-4044 . 69289) (-4045 . 68632) (-4046 . 68245) - (-4047 . 68167) (-4048 . 68090) (-4049 . 68034) (-4050 . 67884) - (-4051 . 63821) (-4052 . 63772) (-4053 . 63712) (-4054 . 63633) - (-4055 . 63436) (-4056 . 63383) (-4057 . 63333) (-4058 . 63255) - (-4059 . 63074) (-4060 . 62908) (-4061 . 62805) (-4062 . 62701) - (-4063 . 62537) (-4064 . 62388) (-4065 . 62302) (-4066 . 62268) - (-4067 . 62113) (-4068 . 62030) (-4069 . 61703) (-4070 . 61470) - (-4071 . 60734) (-4072 . 60569) (-4073 . 60277) (-4074 . 60192) - (-4075 . 60051) (-4076 . 59998) (-4077 . 59964) (-4078 . 59307) - (-4079 . 59132) (-4080 . 58905) (-4081 . 58711) (-4082 . 58331) - (-4083 . 58085) (-4084 . 57919) (-4085 . 57810) (-4086 . 57714) - (-4087 . 57643) (-4088 . 57572) (-4089 . 57471) (-4090 . 57383) - (-4091 . 57012) (-4092 . 56927) (-4093 . 56316) (-4094 . 55935) - (-4095 . 55839) (-4096 . 53494) (-4097 . 53430) (-4098 . 53371) - (-4099 . 53218) (* . 48672) (-4101 . 48552) (-4102 . 48236) - (-4103 . 48086) (-4104 . 47949) (-4105 . 47656) (-4106 . 47060) - (-4107 . 46930) (-4108 . 46772) (-4109 . 46619) (-4110 . 46539) - (-4111 . 46377) (-4112 . 46317) (-4113 . 46244) (-4114 . 46171) - (-4115 . 46018) (-4116 . 45772) (-4117 . 45590) (-4118 . 45423) - (-4119 . 45209) (-4120 . 44851) (-4121 . 44684) (-4122 . 44556) - (-4123 . 44390) (-4124 . 43524) (-4125 . 42454) (-4126 . 42338) - (-4127 . 42226) (-4128 . 42055) (-4129 . 41954) (-4130 . 41331) - (-4131 . 41251) (-4132 . 40906) (-4133 . 40738) (-4134 . 40610) - (-4135 . 40392) (-4136 . 40267) (-4137 . 40196) (-4138 . 39869) - (-4139 . 39711) (-4140 . 39543) (-4141 . 39488) (-4142 . 39116) - (-4143 . 38964) (-4144 . 38787) (-4145 . 38668) (-4146 . 38525) - (-4147 . 38406) (-4148 . 38353) (-4149 . 38265) (-4150 . 38169) - (-4151 . 37978) (-4152 . 37925) (-4153 . 37863) (-4154 . 37720) - (-4155 . 37652) (-4156 . 37506) (-4157 . 37175) (-4158 . 37092) - (-4159 . 37007) (-4160 . 36870) (-4161 . 36267) (-4162 . 36103) - (-4163 . 35896) (-4164 . 35773) (-4165 . 35455) (-4166 . 35339) - (-4167 . 35162) (-4168 . 34637) (-4169 . 34351) (-4170 . 34252) - (-4171 . 34196) (-4172 . 33949) (-4173 . 33844) (-4174 . 32532) - (-4175 . 32483) (-4176 . 32380) (-4177 . 32287) (-4178 . 32134) - (-4179 . 32077) (-4180 . 30989) (-4181 . 30855) (-4182 . 30725) - (-4183 . 30391) (-4184 . 30203) (-4185 . 30108) (-4186 . 30006) - (-4187 . 29827) (-4188 . 29775) (-4189 . 29703) (-4190 . 29407) - (-4191 . 28877) (-4192 . 28825) (-4193 . 28547) (-4194 . 28465) - (-4195 . 28279) (-4196 . 27988) (-4197 . 27869) (-4198 . 27487) - (-4199 . 27391) (-4200 . 27173) (-4201 . 27116) (-4202 . 26921) - (-4203 . 26781) (-4204 . 26655) (-4205 . 26595) (-4206 . 26402) - (-4207 . 26321) (-4208 . 26251) (-4209 . 26168) (-4210 . 25711) - (-4211 . 25634) (-4212 . 25574) (-4213 . 25437) (-4214 . 25316) - (-4215 . 25158) (-4216 . 25096) (-4217 . 23834) (-4218 . 23740) - (-4219 . 23314) (-4220 . 23198) (-4221 . 22822) (-4222 . 22378) - (-4223 . 22166) (-4224 . 22075) (-4225 . 21981) (-4226 . 21776) - (-4227 . 21742) (-4228 . 21156) (-4229 . 21049) (-4230 . 20756) - (-4231 . 20469) (-4232 . 20249) (-4233 . 20074) (-4234 . 18894) - (-4235 . 18828) (-4236 . 18684) (-4237 . 18629) (-4238 . 18577) - (-4239 . 18453) (-4240 . 18060) (-4241 . 18008) (-4242 . 17952) - (-4243 . 17869) (-4244 . 17837) (-4245 . 17787) (-4246 . 17609) - (-4247 . 17156) (-4248 . 17021) (-4249 . 16966) (-4250 . 16872) - (-4251 . 16777) (-4252 . 16679) (-4253 . 16433) (-4254 . 16349) - (-4255 . 16169) (-4256 . 16109) (-4257 . 15966) (-4258 . 15859) - (-4259 . 15450) (-4260 . 15275) (-4261 . 15077) (-4262 . 14989) - (-4263 . 14909) (-4264 . 14609) (-4265 . 14363) (-4266 . 14199) - (-4267 . 14167) (-4268 . 14068) (-4269 . 14016) (-4270 . 13768) - (-4271 . 13649) (-4272 . 13490) (-4273 . 13347) (-4274 . 13248) - (-4275 . 13002) (-4276 . 12893) (-4277 . 12704) (-4278 . 12675) - (-4279 . 12604) (-4280 . 12492) (-4281 . 12429) (-4282 . 12316) - (-4283 . 12217) (-4284 . 11964) (-4285 . 11817) (-4286 . 11597) - (-4287 . 11523) (-4288 . 11435) (-4289 . 11382) (-4290 . 11254) - (-4291 . 11073) (-4292 . 10931) (-4293 . 10854) (-4294 . 10687) - (-4295 . 10634) (-4296 . 10582) (-4297 . 10456) (-4298 . 9742) - (-4299 . 9215) (-4300 . 9100) (-4301 . 9005) (-4302 . 8802) - (-4303 . 8415) (-4304 . 8188) (-4305 . 8030) (-4306 . 7737) - (-4307 . 7592) (-4308 . 7477) (-4309 . 7356) (-4310 . 6764) - (-4311 . 6606) (-4312 . 6512) (-4313 . 6478) (-4314 . 6252) - (-4315 . 6224) (-4316 . 6048) (-4317 . 5995) (-4318 . 5967) - (-4319 . 5623) (-4320 . 4753) (-4321 . 4696) (-4322 . 4659) - (-4323 . 4010) (-4324 . 3936) (-4325 . 3306) (-4326 . 3237) - (-4327 . 2562) (-4328 . 2455) (-4329 . 2427) (-4330 . 2287) - (-4331 . 2253) (-4332 . 2155) (-4333 . 2014) (-4334 . 1941) - (-4335 . 1881) (-4336 . 1811) (-4337 . 1496) (-4338 . 1430) - (-4339 . 1372) (-4340 . 1207) (-4341 . 1152) (-4342 . 810) - (-4343 . 760) (-4344 . 707) (-4345 . 504) (-4346 . 264) (-4347 . 167) - (-4348 . 85) (-4349 . 30))
\ No newline at end of file + (-12 (-4 *5 (-446)) (-4 *6 (-780)) (-4 *7 (-836)) + (-4 *3 (-1048 *5 *6 *7)) (-5 *2 (-631 *4)) + (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1246)) (-5 *1 (-1161))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1140)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-546)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2510 *3))) + (-5 *1 (-954 *4 *3)) (-4 *3 (-1217 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-675 *3)) (-4 *3 (-1034)) (-5 *1 (-676 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1199)) (-4 *4 (-1217 *3)) (-4 *5 (-1217 (-402 *4))) + (-5 *2 (-1241 *1)) (-4 *1 (-337 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1246)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1138 *4) (-1138 *4))) (-5 *2 (-1138 *4)) + (-5 *1 (-1266 *4)) (-4 *4 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-631 (-1138 *5)) (-631 (-1138 *5)))) (-5 *4 (-554)) + (-5 *2 (-631 (-1138 *5))) (-5 *1 (-1266 *5)) (-4 *5 (-1195))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-358)) (-4 *2 (-1217 *4)) + (-5 *1 (-907 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *1 (-880)) + (-5 *3 + (-2 (|:| |pde| (-631 (-311 (-221)))) + (|:| |constraints| + (-631 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) + (|:| |grid| (-758)) (|:| |boundaryType| (-554)) + (|:| |dStart| (-675 (-221))) (|:| |dFinish| (-675 (-221)))))) + (|:| |f| (-631 (-631 (-311 (-221))))) (|:| |st| (-1140)) + (|:| |tol| (-221)))) + (-5 *2 (-1020))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-758)) (-5 *1 (-842 *2)) (-4 *2 (-170))))) +((-1274 . 734169) (-1275 . 733740) (-1276 . 733637) (-1277 . 733368) + (-1278 . 733319) (-1279 . 733191) (-1280 . 733109) (-1281 . 732979) + (-1282 . 732838) (-1283 . 732768) (-1284 . 732588) (-1285 . 732528) + (-1286 . 732476) (-1287 . 732392) (-1288 . 732342) (-1289 . 732061) + (-1290 . 731977) (-1291 . 731928) (-1292 . 731822) (-1293 . 731769) + (-1294 . 731431) (-1295 . 731246) (-1296 . 731100) (-1297 . 730992) + (-1298 . 730913) (-1299 . 730800) (-1300 . 730482) (-1301 . 730381) + (-1302 . 730311) (-1303 . 730137) (-1304 . 729141) (-1305 . 728748) + (-1306 . 728590) (-1307 . 728491) (-1308 . 728459) (-1309 . 728406) + (-1310 . 728156) (-1311 . 727806) (-1312 . 727702) (-1313 . 727593) + (-1314 . 727291) (-1315 . 727211) (-1316 . 726773) (-1317 . 726701) + (-1318 . 726556) (-1319 . 726506) (-1320 . 725290) (-1321 . 725241) + (-1322 . 725125) (-1323 . 724988) (-1324 . 724886) (-1325 . 724830) + (-1326 . 724732) (-1327 . 724705) (-1328 . 724619) (-1329 . 724525) + (-1330 . 724225) (-1331 . 724147) (-1332 . 724081) (-1333 . 722869) + (-1334 . 722792) (-1335 . 722733) (-1336 . 722401) (-1337 . 722318) + (-1338 . 722215) (-1339 . 722137) (-1340 . 722023) (-1341 . 721842) + (-1342 . 721672) (-1343 . 721512) (-1344 . 721427) (-1345 . 721320) + (-1346 . 721078) (-1347 . 721005) (-1348 . 720839) (-1349 . 720738) + (-1350 . 720491) (-1351 . 720150) (-1352 . 720034) (-1353 . 719805) + (-1354 . 719633) (-1355 . 719428) (-1356 . 719348) (-1357 . 719282) + (-1358 . 719163) (-1359 . 719090) (-1360 . 718987) (-1361 . 718878) + (-1362 . 718619) (-1363 . 718567) (-1364 . 718465) (-1365 . 718358) + (-1366 . 718291) (-1367 . 718121) (-1368 . 718036) (-1369 . 717955) + (-1370 . 717316) (-1371 . 717212) (-1372 . 717130) (-1373 . 716986) + (-1374 . 716747) (-1375 . 716618) (-1376 . 716532) (-1377 . 716359) + (-1378 . 716044) (-1379 . 715917) (-1380 . 715753) (-1381 . 715681) + (-1382 . 715546) (-1383 . 715368) (-1384 . 715269) (-1385 . 715160) + (-1386 . 714879) (-1387 . 714775) (-1388 . 714511) (-1389 . 714326) + (-1390 . 714177) (-1391 . 713729) (-1392 . 713572) (-1393 . 713522) + (-1394 . 713421) (-1395 . 713354) (-1396 . 713302) (-1397 . 713144) + (-1398 . 712996) (-1399 . 712910) (-1400 . 712767) (-1401 . 712540) + (-1402 . 712471) (-1403 . 712252) (-1404 . 712091) (-1405 . 711540) + (-1406 . 711453) (-1407 . 710972) (-1408 . 710665) (-1409 . 710522) + (-1410 . 710438) (-1411 . 710328) (-1412 . 710147) (-1413 . 709992) + (-1414 . 709454) (-1415 . 709385) (-1416 . 709270) (-1417 . 709197) + (-1418 . 709169) (-1419 . 709056) (-1420 . 704993) (-1421 . 704872) + (-1422 . 704647) (-1423 . 704442) (-1424 . 704359) (-1425 . 704197) + (-1426 . 704163) (-1427 . 704025) (-1428 . 703782) (-1429 . 703672) + (-1430 . 703366) (-1431 . 703185) (-1432 . 703117) (-1433 . 702992) + (-1434 . 702919) (-1435 . 702694) (-1436 . 702367) (-1437 . 701821) + (-1438 . 701683) (-1439 . 701387) (-1440 . 701267) (-1441 . 701172) + (-1442 . 701042) (-1443 . 700990) (-1444 . 700790) (-1445 . 700636) + (-1446 . 700557) (-1447 . 700480) (-1448 . 700196) (-1449 . 699963) + (-1450 . 699886) (-1451 . 699652) (-1452 . 699523) (-1453 . 699136) + (-1454 . 698844) (-1455 . 698691) (-1456 . 698441) (-1457 . 697807) + (-1458 . 697677) (-1459 . 696941) (-1460 . 696864) (-1461 . 696776) + (-1462 . 696633) (-1463 . 696545) (-1464 . 696422) (-1465 . 694077) + (-1466 . 693974) (-1467 . 693867) (-1468 . 693702) (-1469 . 693577) + (-1470 . 693500) (-1471 . 693448) (-1472 . 693371) (-1473 . 693278) + (-1474 . 693063) (-1475 . 692831) (-1476 . 692735) (-1477 . 692683) + (-1478 . 692391) (-1479 . 692338) (-1480 . 692264) (-1481 . 691913) + (-1482 . 691834) (-1483 . 691806) (-1484 . 691285) (-1485 . 690894) + (-1486 . 690708) (-1487 . 690549) (-1488 . 690426) (-1489 . 690297) + (-1490 . 689939) (-1491 . 689883) (-1492 . 689735) (-1493 . 689650) + (-1494 . 689487) (-1495 . 688784) (-1496 . 688230) (-1497 . 688089) + (-1498 . 687617) (-1499 . 687462) (-1500 . 687279) (-1501 . 685976) + (-1502 . 685858) (-1503 . 685805) (-1504 . 685664) (-1505 . 685541) + (-1506 . 685473) (-1507 . 685364) (-1508 . 684361) (-1509 . 684263) + (-1510 . 684109) (-1511 . 684009) (-1512 . 683981) (-1513 . 683803) + (-1514 . 683751) (-1515 . 682642) (-1516 . 681985) (-1517 . 681873) + (-1518 . 681778) (-1519 . 681684) (-1520 . 681604) (-1521 . 681277) + (-1522 . 681158) (-1523 . 680967) (-1524 . 680670) (-1525 . 680490) + (-1526 . 680315) (-1527 . 680264) (-1528 . 680186) (-1529 . 680035) + (-1530 . 679763) (-1531 . 679656) (-1532 . 679628) (-1533 . 679490) + (-1534 . 678205) (-1535 . 678097) (-1536 . 677870) (-1537 . 677651) + (-1538 . 677542) (-1539 . 676929) (-1540 . 675811) (-1541 . 675734) + (-1542 . 675428) (-1543 . 675339) (-1544 . 675286) (-1545 . 675092) + (-1546 . 674926) (-1547 . 674840) (-1548 . 674732) (-1549 . 674538) + (-1550 . 674464) (-1551 . 674037) (-1552 . 673951) (-1553 . 671789) + (-1554 . 671662) (-1555 . 671594) (-1556 . 669736) (-1557 . 669545) + (-1558 . 669137) (-1559 . 669039) (-1560 . 668944) (-1561 . 668564) + (-1562 . 668502) (-1563 . 668407) (-1564 . 668303) (-1565 . 667030) + (-1566 . 666812) (-1567 . 666588) (-1568 . 666522) (-1569 . 666330) + (-1570 . 666084) (-1571 . 665985) (-1572 . 665881) (-1573 . 665723) + (-1574 . 665655) (-1575 . 665323) (-1576 . 664834) (-1577 . 664509) + (-1578 . 664386) (-1579 . 664220) (-1580 . 664086) (-1581 . 663907) + (-1582 . 663731) (-1583 . 663630) (-1584 . 663511) (-1585 . 663232) + (-1586 . 663006) (-1587 . 662734) (-1588 . 662516) (-1589 . 662407) + (-1590 . 662095) (-1591 . 662021) (-1592 . 661880) (-1593 . 661787) + (-1594 . 661644) (-1595 . 661561) (-1596 . 661445) (-1597 . 661349) + (-1598 . 661125) (-1599 . 661051) (-1600 . 660831) (-1601 . 660537) + (-1602 . 660440) (-1603 . 660387) (-1604 . 660279) (-1605 . 660158) + (-1606 . 660087) (-1607 . 660024) (-1608 . 659693) (-1609 . 659557) + (-1610 . 659504) (-1611 . 659453) (-1612 . 659027) (-1613 . 658973) + (-1614 . 658678) (-1615 . 658369) (-1616 . 658317) (-1617 . 658246) + (-1618 . 658131) (-1619 . 657994) (-1620 . 657876) (-1621 . 657809) + (-1622 . 657723) (-1623 . 656907) (-1624 . 656806) (-1625 . 656318) + (-1626 . 656222) (-1627 . 655903) (-1628 . 655784) (-1629 . 655463) + (-1630 . 655398) (-1631 . 655301) (-1632 . 655152) (-1633 . 655064) + (-1634 . 655008) (-1635 . 654934) (-1636 . 654836) (-1637 . 654753) + (-1638 . 654725) (-1639 . 654588) (-1640 . 654537) (-1641 . 654484) + (-1642 . 654113) (-1643 . 654060) (-1644 . 653847) (-1645 . 652117) + (-1646 . 651996) (-1647 . 651787) (-1648 . 651538) (-1649 . 651430) + (-1650 . 651348) (-1651 . 650751) (-1652 . 650651) (-1653 . 650566) + (-1654 . 649750) (-1655 . 647487) (-1656 . 647418) (-1657 . 647124) + (-1658 . 646852) (-1659 . 646737) (-1660 . 646329) (-1661 . 646267) + (-1662 . 645979) (-1663 . 645598) (-1664 . 645255) (-1665 . 644894) + (-1666 . 644750) (-1667 . 644606) (-1668 . 639268) (-1669 . 639159) + (-1670 . 639102) (-1671 . 638848) (-1672 . 638752) (-1673 . 638702) + (-1674 . 638570) (-1675 . 638482) (-1676 . 638251) (-1677 . 638093) + (-1678 . 637953) (-1679 . 637604) (-1680 . 637177) (-1681 . 637098) + (-1682 . 637034) (-1683 . 636911) (-1684 . 636714) (-1685 . 636554) + (-1686 . 636467) (-1687 . 636245) (-1688 . 634775) (-1689 . 634669) + (-1690 . 634526) (-1691 . 633186) (-1692 . 633127) (-1693 . 633043) + (-1694 . 632863) (-1695 . 632564) (-1696 . 632409) (-1697 . 632250) + (-1698 . 632132) (-1699 . 631872) (-1700 . 631371) (-1701 . 631264) + (-1702 . 631232) (-1703 . 631079) (-1704 . 631020) (-1705 . 630936) + (-1706 . 630735) (-1707 . 630642) (-1708 . 630555) (-1709 . 630500) + (-1710 . 630329) (-1711 . 629935) (-1712 . 629764) (-1713 . 629657) + (-1714 . 629359) (-1715 . 629043) (-1716 . 628775) (-1717 . 628652) + (-1718 . 628559) (-1719 . 628460) (-1720 . 628248) (-1721 . 628162) + (-1722 . 628012) (-1723 . 627944) (-1724 . 627837) (-1725 . 627787) + (-1726 . 627655) (-1727 . 627584) (-1728 . 627532) (-1729 . 627480) + (-1730 . 627343) (-1731 . 627274) (-1732 . 626977) (-1733 . 626459) + (-1734 . 626052) (-1735 . 624866) (-1736 . 624684) (-1737 . 624579) + (-1738 . 624304) (-1739 . 624011) (-1740 . 623954) (-1741 . 623835) + (-1742 . 623761) (-1743 . 623653) (-1744 . 622471) (-1745 . 622338) + (-1746 . 622285) (-1747 . 622181) (-1748 . 622128) (-1749 . 621532) + (-1750 . 621453) (-1751 . 621334) (-1752 . 619128) (-1753 . 619027) + (-1754 . 618975) (-1755 . 618843) (-1756 . 618749) (-1757 . 618619) + (-1758 . 618076) (-1759 . 617842) (-1760 . 617690) (-1761 . 617532) + (-1762 . 617480) (-1763 . 617305) (-1764 . 617163) (-1765 . 617005) + (-1766 . 616898) (-1767 . 616832) (-1768 . 616804) (-1769 . 616697) + (-1770 . 616257) (-1771 . 616160) (-1772 . 615966) (-1773 . 615886) + (-1774 . 615789) (-1775 . 615636) (-1776 . 615523) (-1777 . 615351) + (-1778 . 615299) (-1779 . 613711) (-1780 . 613415) (-1781 . 613253) + (-1782 . 613097) (-1783 . 612956) (-1784 . 612849) (-1785 . 612751) + (-1786 . 612720) (-1787 . 611888) (-1788 . 611805) (-1789 . 611551) + (-1790 . 611491) (-1791 . 611418) (-1792 . 611330) (-1793 . 611221) + (-1794 . 611154) (-1795 . 610958) (-1796 . 610909) (-1797 . 610765) + (-1798 . 610543) (-1799 . 610479) (-1800 . 610406) (-1801 . 610353) + (-1802 . 610298) (-1803 . 610083) (-1804 . 609055) (-1805 . 608897) + (-1806 . 608811) (-1807 . 608731) (-1808 . 608598) (-1809 . 608237) + (-1810 . 608084) (-1811 . 607782) (-1812 . 607688) (-1813 . 607654) + (-1814 . 607339) (-1815 . 607184) (-1816 . 607094) (-1817 . 606848) + (-1818 . 606744) (-1819 . 606369) (-1820 . 606208) (-1821 . 605971) + (-1822 . 605897) (-1823 . 605651) (-1824 . 605335) (-1825 . 605251) + (-1826 . 605180) (-1827 . 604998) (-1828 . 604849) (-1829 . 604743) + (-1830 . 604524) (-1831 . 604436) (-1832 . 604381) (-1833 . 604329) + (-1834 . 604218) (-1835 . 604084) (-1836 . 603917) (-1837 . 603815) + (-1838 . 603711) (-1839 . 603595) (-1840 . 603212) (-1841 . 602903) + (-1842 . 602805) (-1843 . 602623) (-1844 . 602476) (-1845 . 601466) + (-1846 . 601360) (-1847 . 601253) (-1848 . 601165) (-1849 . 600914) + (-1850 . 600782) (-1851 . 600711) (-1852 . 600544) (-1853 . 600183) + (-1854 . 600090) (-1855 . 600017) (-1856 . 599952) (-1857 . 599881) + (-1858 . 599726) (-1859 . 599674) (-1860 . 599353) (-1861 . 598595) + (-1862 . 598428) (-1863 . 598357) (-1864 . 598272) (-1865 . 597689) + (-1866 . 596624) (-1867 . 596568) (-1868 . 596508) (-1869 . 596389) + (-1870 . 596355) (-1871 . 595868) (-1872 . 595738) (-1873 . 595709) + (-1874 . 595606) (-1875 . 595507) (-1876 . 595361) (-1877 . 595071) + (-1878 . 594942) (-1879 . 594880) (-1880 . 594724) (-1881 . 594641) + (-1882 . 594299) (-1883 . 593968) (-1884 . 593225) (-1885 . 593151) + (-1886 . 593084) (-1887 . 593028) (-1888 . 592870) (-1889 . 592682) + (-1890 . 592578) (-1891 . 592528) (-1892 . 592187) (-1893 . 591676) + (-1894 . 591575) (-1895 . 591491) (-1896 . 591369) (-1897 . 591251) + (-1898 . 590958) (-1899 . 590525) (-1900 . 580963) (-1901 . 580875) + (-1902 . 579971) (-1903 . 579638) (-1904 . 579571) (-1905 . 579426) + (-1906 . 579356) (-1907 . 579100) (-1908 . 578955) (-1909 . 578900) + (-1910 . 578512) (-1911 . 578294) (-1912 . 578221) (-1913 . 578135) + (-1914 . 578020) (-1915 . 577949) (-1916 . 577475) (-1917 . 577289) + (-1918 . 576938) (-1919 . 576823) (-1920 . 576308) (-1921 . 576239) + (-1922 . 576117) (-1923 . 575985) (-1924 . 575826) (-1925 . 575686) + (-1926 . 575549) (-1927 . 575410) (-1928 . 575325) (-1929 . 575127) + (-1930 . 574969) (-1931 . 574848) (-1932 . 574795) (-1933 . 574697) + (-1934 . 574669) (-1935 . 574513) (-1936 . 574383) (-1937 . 574204) + (-1938 . 573831) (-1939 . 573722) (-1940 . 573580) (-1941 . 573361) + (-1942 . 573261) (-1943 . 573018) (-1944 . 572860) (-1945 . 572807) + (-1946 . 572670) (-1947 . 572621) (-1948 . 572422) (-1949 . 572325) + (-1950 . 572259) (-1951 . 572073) (-1952 . 571830) (-1953 . 571771) + (-1954 . 571628) (-1955 . 571534) (-1956 . 571437) (-1957 . 571388) + (-1958 . 571302) (-1959 . 571071) (-1960 . 570876) (-1961 . 570782) + (-1962 . 570492) (-1963 . 569196) (-1964 . 569069) (-1965 . 569018) + (-1966 . 568939) (-1967 . 568801) (-1968 . 568767) (-1969 . 568003) + (-1970 . 567789) (-1971 . 567604) (-1972 . 567386) (-1973 . 567317) + (-1974 . 567234) (-1975 . 567160) (-1976 . 567129) (-1977 . 567077) + (-1978 . 567012) (-1979 . 566786) (-1980 . 566720) (-1981 . 566581) + (-1982 . 566465) (-1983 . 566367) (-1984 . 566119) (-1985 . 566010) + (-1986 . 565880) (-1987 . 565635) (-1988 . 565607) (-1989 . 565461) + (-1990 . 565366) (-1991 . 565288) (-1992 . 565181) (-1993 . 564929) + (-1994 . 564443) (-1995 . 564315) (-1996 . 564249) (-1997 . 564188) + (-1998 . 564012) (-1999 . 563944) (-2000 . 563822) (-2001 . 563566) + (-2002 . 563459) (-2003 . 563349) (-2004 . 563178) (-2005 . 562942) + (-2006 . 562847) (-2007 . 562195) (-2008 . 562142) (-2009 . 562059) + (-2010 . 561930) (-2011 . 561860) (-2012 . 561746) (-2013 . 561648) + (-2014 . 561401) (-2015 . 561309) (-2016 . 561196) (-2017 . 561093) + (-2018 . 561065) (-2019 . 560958) (-2020 . 560748) (-2021 . 560592) + (-2022 . 560488) (-2023 . 560372) (-2024 . 560247) (-2025 . 560194) + (-2026 . 559820) (-2027 . 559747) (-2028 . 559403) (-2029 . 559232) + (-2030 . 558792) (-2031 . 558384) (-2032 . 558171) (-2033 . 558025) + (-2034 . 557528) (-2035 . 557445) (-2036 . 556953) (-2037 . 556083) + (-2038 . 555805) (-2039 . 555747) (-2040 . 555380) (-2041 . 555256) + (-2042 . 555137) (-2043 . 555001) (-2044 . 554948) (-2045 . 552533) + (-2046 . 552476) (-2047 . 552323) (-2048 . 551728) (-2049 . 551459) + (-2050 . 551351) (-2051 . 551170) (-2052 . 551097) (-2053 . 551068) + (-2054 . 550925) (-2055 . 550851) (-2056 . 550783) (-2057 . 550746) + (-2058 . 550665) (-2059 . 550612) (-2060 . 550503) (-2061 . 550432) + (-2062 . 549553) (-2063 . 549362) (-2064 . 544250) (-2065 . 544201) + (-2066 . 543595) (-2067 . 543563) (-2068 . 543529) (-2069 . 542880) + (-2070 . 542809) (-2071 . 542736) (-2072 . 542684) (-2073 . 542568) + (-2074 . 542491) (-2075 . 542373) (-2076 . 542263) (-2077 . 542192) + (-2078 . 542123) (-2079 . 541739) (-2080 . 541631) (-2081 . 541498) + (-2082 . 541283) (-2083 . 541188) (-2084 . 541059) (-2085 . 541025) + (-2086 . 540897) (-2087 . 540865) (-2088 . 540758) (-2089 . 540484) + (-2090 . 540421) (-2091 . 540297) (-2092 . 540138) (-2093 . 540036) + (-2094 . 539917) (-2095 . 539802) (-2096 . 539649) (-2097 . 539583) + (-2098 . 539555) (-2099 . 539447) (-2100 . 539368) (-2101 . 539190) + (-2102 . 538917) (-2103 . 538844) (-2104 . 538770) (-2105 . 538742) + (-2106 . 538676) (-2107 . 538536) (-2108 . 538318) (-2109 . 538218) + (-2110 . 537623) (-2111 . 537138) (-2112 . 537047) (-2113 . 536688) + (-2114 . 536520) (-2115 . 536419) (-2116 . 536385) (-2117 . 536240) + (-2118 . 536102) (-2119 . 535987) (-2120 . 535735) (-2121 . 535615) + (-2122 . 535336) (-2123 . 535089) (-2124 . 534980) (-2125 . 534882) + (-2126 . 533701) (-2127 . 533538) (-2128 . 533410) (-2129 . 533295) + (-2130 . 533229) (-2131 . 533177) (-2132 . 533068) (-2133 . 532826) + (-2134 . 532771) (-2135 . 532716) (-2136 . 532575) (-2137 . 532496) + (-2138 . 532331) (-2139 . 532279) (-2140 . 532213) (-2141 . 532086) + (-2142 . 532020) (-2143 . 531958) (-2144 . 531858) (-2145 . 531755) + (-2146 . 531557) (-2147 . 531497) (-2148 . 531419) (-2149 . 530943) + (-2150 . 530679) (-2151 . 530510) (-2152 . 530454) (-2153 . 530401) + (-2154 . 530324) (-2155 . 530209) (-2156 . 530102) (-2157 . 529866) + (-2158 . 529796) (-2159 . 529716) (-2160 . 529615) (-2161 . 529506) + (-2162 . 529383) (-2163 . 529313) (-2164 . 529227) (-2165 . 529099) + (-2166 . 529016) (-2167 . 528844) (-2168 . 528588) (-2169 . 528365) + (-2170 . 528299) (-2171 . 528176) (-2172 . 528092) (-2173 . 528024) + (-2174 . 527707) (-2175 . 527545) (-2176 . 527457) (-2177 . 527241) + (-2178 . 526599) (-2179 . 526513) (-2180 . 526341) (-2181 . 526176) + (-2182 . 525818) (-2183 . 525573) (-2184 . 524969) (-2185 . 524941) + (-2186 . 524775) (-2187 . 524673) (-2188 . 524620) (-2189 . 524521) + (-2190 . 524411) (-2191 . 524296) (-2192 . 524268) (-2193 . 524096) + (-2194 . 524000) (-2195 . 523945) (-2196 . 523832) (-2197 . 523120) + (-2198 . 523019) (-2199 . 522704) (-2200 . 522633) (-2201 . 522411) + (-2202 . 520279) (-2203 . 520169) (-2204 . 520038) (-2205 . 519950) + (-2206 . 519846) (-2207 . 519674) (-2208 . 519332) (-2209 . 519279) + (-2210 . 519031) (-2211 . 518957) (-2212 . 518833) (-2213 . 518770) + (-2214 . 518418) (-2215 . 518314) (-2216 . 518233) (-2217 . 518043) + (-2218 . 517946) (-2219 . 517896) (-2220 . 517705) (-2221 . 517634) + (-2222 . 517505) (-2223 . 517219) (-2224 . 517156) (-2225 . 517119) + (-2226 . 516841) (-2227 . 516779) (-2228 . 516675) (-2229 . 516601) + (-2230 . 516439) (-2231 . 516386) (-2232 . 515791) (-2233 . 515358) + (-2234 . 515196) (-2235 . 514904) (-2236 . 514724) (-2237 . 513316) + (-2238 . 512925) (-2239 . 512794) (-2240 . 512722) (-2241 . 512512) + (-2242 . 512309) (-2243 . 512207) (-2244 . 512074) (-2245 . 511929) + (-2246 . 511570) (-2247 . 511458) (-2248 . 511355) (-2249 . 511324) + (-2250 . 511182) (-2251 . 510805) (-2252 . 510704) (-2253 . 510464) + (-2254 . 510397) (-2255 . 510320) (-2256 . 510225) (-2257 . 509975) + (-2258 . 509850) (-2259 . 509415) (-2260 . 509354) (-2261 . 508495) + (-2262 . 508443) (-2263 . 508325) (-2264 . 508228) (-2265 . 508112) + (-2266 . 508025) (-2267 . 507988) (-2268 . 507696) (-2269 . 507551) + (-2270 . 502038) (-2271 . 501966) (-2272 . 501823) (-2273 . 501508) + (-2274 . 501426) (-2275 . 501219) (-2276 . 501001) (-2277 . 500838) + (-2278 . 500725) (-2279 . 493726) (-2280 . 493615) (-2281 . 493448) + (-2282 . 493060) (-2283 . 492975) (-2284 . 492761) (-2285 . 492627) + (-2286 . 492572) (-2287 . 492465) (-2288 . 492398) (-2289 . 492103) + (-2290 . 492032) (-2291 . 491696) (-2292 . 491639) (-2293 . 491184) + (-2294 . 491089) (-2295 . 491034) (-2296 . 490968) (-2297 . 490876) + (-2298 . 490629) (-2299 . 490048) (-2300 . 489951) (-2301 . 489827) + (-2302 . 489478) (-2303 . 489313) (-2304 . 489161) (-2305 . 489001) + (-2306 . 488927) (-2307 . 488835) (-2308 . 488758) (-2309 . 488496) + (-2310 . 488399) (-2311 . 488346) (-2312 . 488290) (-2313 . 488210) + (-2314 . 488154) (-2315 . 487981) (-2316 . 487529) (-2317 . 487347) + (-2318 . 487261) (-2319 . 487082) (-2320 . 486757) (-2321 . 486658) + (-2322 . 486587) (-2323 . 486506) (-2324 . 486454) (-2325 . 486204) + (-2326 . 485807) (-2327 . 485369) (-2328 . 485159) (-2329 . 485081) + (-2330 . 484998) (-2331 . 484861) (-2332 . 484646) (-2333 . 484311) + (-2334 . 484123) (-2335 . 484037) (-2336 . 483954) (-2337 . 483822) + (-2338 . 483738) (-2339 . 483668) (-2340 . 482955) (-2341 . 482859) + (-2342 . 480590) (-2343 . 480209) (-2344 . 479920) (-2345 . 479730) + (-2346 . 479591) (-2347 . 479433) (-2348 . 479405) (-2349 . 479335) + (-2350 . 479278) (-2351 . 479220) (-2352 . 479147) (-2353 . 478989) + (-2354 . 478925) (-2355 . 478826) (-2356 . 478746) (-2357 . 478660) + (-2358 . 478485) (-2359 . 478337) (-2360 . 478284) (-2361 . 478037) + (-2362 . 477930) (-2363 . 477852) (-2364 . 477799) (-2365 . 477468) + (-2366 . 477310) (-2367 . 476864) (-2368 . 476811) (-2369 . 476660) + (-2370 . 476300) (-2371 . 476272) (-2372 . 476244) (-2373 . 475967) + (-2374 . 475849) (-2375 . 475685) (-2376 . 475497) (-2377 . 475416) + (-2378 . 475293) (-2379 . 475120) (-2380 . 474463) (-2381 . 474402) + (-2382 . 474264) (-2383 . 472635) (-2384 . 472507) (-2385 . 472394) + (-2386 . 468396) (-2387 . 468344) (-2388 . 468245) (-2389 . 468143) + (-2390 . 467756) (-2391 . 467673) (-2392 . 467602) (-2393 . 466736) + (-2394 . 466484) (-2395 . 465246) (-2396 . 464893) (-2397 . 464477) + (-2398 . 464403) (-2399 . 464054) (-2400 . 463941) (-2401 . 463863) + (-2402 . 463797) (-2403 . 463680) (-2404 . 463573) (-2405 . 462199) + (-2406 . 462129) (-2407 . 461745) (-2408 . 461542) (-2409 . 461357) + (-2410 . 460837) (-2411 . 460760) (-2412 . 459873) (-2413 . 459555) + (-2414 . 459461) (-2415 . 459363) (-2416 . 459239) (-2417 . 459124) + (-2418 . 459068) (-2419 . 459013) (-2420 . 458961) (-2421 . 458838) + (-2422 . 458671) (-2423 . 458463) (-2424 . 458349) (-2425 . 458268) + (-2426 . 458109) (-2427 . 457959) (-2428 . 457840) (-2429 . 457781) + (-2430 . 457567) (-2431 . 457499) (-2432 . 457421) (-2433 . 456814) + (-2434 . 456684) (-2435 . 456596) (-2436 . 456499) (-2437 . 456020) + (-2438 . 455896) (-2439 . 455825) (-2440 . 455397) (-2441 . 455189) + (-2442 . 455054) (-2443 . 454968) (-2444 . 453130) (-2445 . 452978) + (-2446 . 452474) (-2447 . 452257) (-2448 . 452183) (-2449 . 451884) + (-2450 . 451832) (-2451 . 451746) (-2452 . 451627) (-2453 . 451566) + (-2454 . 450056) (-2455 . 450022) (-2456 . 449917) (-2457 . 449747) + (-2458 . 449618) (-2459 . 449459) (-2460 . 449371) (-2461 . 449189) + (-2462 . 448897) (-2463 . 447349) (-2464 . 447234) (-2465 . 447149) + (-2466 . 446930) (-2467 . 446878) (-2468 . 446687) (-2469 . 446633) + (-2470 . 446576) (-2471 . 446483) (-2472 . 446323) (-2473 . 446149) + (-2474 . 446089) (-2475 . 446002) (-2476 . 445950) (-2477 . 445804) + (-2478 . 445690) (-2479 . 445620) (-2480 . 445405) (-2481 . 445306) + (-2482 . 445244) (-2483 . 444508) (-2484 . 444374) (-2485 . 444094) + (-2486 . 444038) (-2487 . 443873) (-2488 . 443739) (-2489 . 443662) + (-2490 . 443610) (-2491 . 443462) (-2492 . 443300) (-2493 . 443231) + (-2494 . 443177) (-2495 . 443091) (-2496 . 443008) (-2497 . 442949) + (-2498 . 442790) (-2499 . 442737) (-2500 . 442445) (-2501 . 442314) + (-2502 . 442237) (-2503 . 442131) (-2504 . 442015) (-2505 . 441888) + (-2506 . 441798) (-2507 . 441384) (-2508 . 441257) (-2509 . 441225) + (-2510 . 440123) (-2511 . 440016) (-2512 . 439964) (-2513 . 439657) + (-2514 . 439605) (-2515 . 439546) (-2516 . 439145) (-2517 . 438968) + (-2518 . 438324) (-2519 . 438190) (-2520 . 438135) (-2521 . 438082) + (-2522 . 438032) (-2523 . 437937) (-2524 . 437183) (-2525 . 436855) + (-2526 . 436597) (-2527 . 436479) (-2528 . 436341) (-2529 . 436243) + (-2530 . 435071) (-2531 . 434853) (-2532 . 434652) (-2533 . 434474) + (-2534 . 434372) (-2535 . 433985) (-2536 . 433780) (-2537 . 433676) + (-2538 . 433548) (-2539 . 433102) (-2540 . 432987) (-2541 . 432913) + (-2542 . 432769) (-2543 . 432316) (-2544 . 432264) (-2545 . 432106) + (-2546 . 432005) (-2547 . 431902) (-2548 . 431793) (-2549 . 431697) + (-2550 . 430560) (-2551 . 430238) (-2552 . 430188) (-2553 . 430053) + (-2554 . 429987) (-2555 . 429827) (-2556 . 429730) (-2557 . 429607) + (-2558 . 429384) (-2559 . 429219) (-2560 . 429135) (-2561 . 428926) + (-2562 . 428871) (-2563 . 428504) (-2564 . 428350) (-2565 . 428278) + (-2566 . 428095) (-2567 . 428027) (-2568 . 427903) (-2569 . 427800) + (-2570 . 427611) (-2571 . 427511) (-2572 . 427419) (-2573 . 427274) + (-2574 . 426675) (-2575 . 426581) (-2576 . 426373) (-2577 . 425699) + (-2578 . 425519) (-2579 . 425426) (-2580 . 425356) (-2581 . 425123) + (-2582 . 425071) (-2583 . 424960) (-2584 . 424847) (-2585 . 424740) + (-2586 . 424645) (-2587 . 424586) (-2588 . 424386) (-2589 . 424300) + (-2590 . 424076) (-2591 . 423809) (-2592 . 423614) (-2593 . 423488) + (-2594 . 423347) (-2595 . 423053) (-2596 . 422937) (-2597 . 422563) + (-2598 . 422465) (-2599 . 422395) (-2600 . 421976) (-2601 . 421857) + (-2602 . 421727) (-2603 . 421067) (-2604 . 421015) (-2605 . 420877) + (-2606 . 420560) (-2607 . 420478) (-2608 . 420025) (-2609 . 419941) + (-2610 . 419862) (-2611 . 419503) (-2612 . 419469) (-2613 . 419382) + (-2614 . 419329) (-2615 . 419261) (-2616 . 419090) (-2617 . 418963) + (-2618 . 418790) (-2619 . 418610) (-2620 . 418555) (-2621 . 418502) + (-2622 . 418436) (-2623 . 418265) (-2624 . 418178) (-2625 . 416636) + (-2626 . 416534) (-2627 . 416391) (-2628 . 416331) (-2629 . 416279) + (-2630 . 415998) (-2631 . 415828) (-2632 . 415615) (-2633 . 415400) + (-2634 . 415270) (-2635 . 415172) (-2636 . 415012) (-2637 . 414627) + (-2638 . 414484) (-2639 . 414329) (-2640 . 413674) (-2641 . 413556) + (-2642 . 413404) (-2643 . 413261) (-2644 . 413151) (-2645 . 413058) + (-2646 . 412655) (-2647 . 412559) (-2648 . 412452) (-2649 . 412315) + (-2650 . 412208) (-2651 . 412050) (-2652 . 411984) (-2653 . 411901) + (-2654 . 411719) (-2655 . 410965) (-2656 . 410762) (-2657 . 410353) + (-2658 . 410301) (-2659 . 410249) (-2660 . 410175) (-2661 . 410062) + (-2662 . 409967) (-2663 . 409824) (-2664 . 409615) (-2665 . 409484) + (-2666 . 409422) (-2667 . 409224) (-2668 . 409169) (-2669 . 409117) + (-2670 . 409064) (-2671 . 408811) (-2672 . 408700) (-2673 . 408510) + (-2674 . 408458) (-2675 . 408372) (-2676 . 408284) (-2677 . 408201) + (-2678 . 408098) (-2679 . 408070) (-2680 . 407998) (-2681 . 407915) + (-2682 . 407706) (-2683 . 407597) (-2684 . 407459) (-2685 . 407373) + (-2686 . 407293) (-2687 . 407209) (-2688 . 407022) (-2689 . 406772) + (-2690 . 406689) (-2691 . 406471) (-2692 . 406252) (-2693 . 405981) + (-2694 . 405435) (-2695 . 405135) (-2696 . 404904) (-2697 . 404760) + (-2698 . 404607) (-2699 . 404468) (-2700 . 404396) (-2701 . 403194) + (-2702 . 403106) (-2703 . 402942) (-2704 . 402309) (-2705 . 402145) + (-2706 . 401865) (-2707 . 401809) (-2708 . 401750) (-2709 . 401687) + (-2710 . 401619) (-2711 . 401416) (-2712 . 401305) (-2713 . 401147) + (-2714 . 401031) (-2715 . 400609) (-2716 . 400577) (-2717 . 400250) + (-2718 . 400043) (-2719 . 399469) (-2720 . 399262) (-2721 . 399071) + (-2722 . 398969) (-2723 . 398878) (-2724 . 398451) (-2725 . 398342) + (-2726 . 398243) (-2727 . 397963) (-2728 . 397793) (-2729 . 397675) + (-2730 . 397580) (-2731 . 397478) (-2732 . 397408) (-2733 . 397334) + (-2734 . 397247) (-2735 . 397195) (-2736 . 396516) (-2737 . 396370) + (-2738 . 396198) (-2739 . 396127) (-2740 . 395554) (-2741 . 395329) + (-2742 . 395273) (-2743 . 395146) (-2744 . 395072) (-2745 . 394824) + (-2746 . 394744) (-2747 . 394352) (-2748 . 394190) (-2749 . 394129) + (-2750 . 394016) (-2751 . 393855) (-2752 . 393751) (-2753 . 393545) + (-2754 . 393401) (-2755 . 393301) (-2756 . 393142) (-2757 . 392653) + (-2758 . 392583) (-2759 . 392554) (-2760 . 392396) (-2761 . 392315) + (-2762 . 392259) (-2763 . 392118) (-2764 . 392044) (-2765 . 391900) + (-2766 . 391757) (-2767 . 391683) (-2768 . 391564) (-2769 . 391465) + (-2770 . 391371) (-2771 . 391277) (-2772 . 391224) (-2773 . 391126) + (-2774 . 390816) (-2775 . 389998) (-2776 . 389899) (-2777 . 389660) + (-2778 . 388777) (-2779 . 388638) (-2780 . 388485) (-2781 . 388384) + (-2782 . 388134) (-2783 . 388082) (-2784 . 383540) (-2785 . 383474) + (-2786 . 383417) (-2787 . 383171) (-2788 . 382869) (-2789 . 382768) + (-2790 . 382591) (-2791 . 382413) (-2792 . 381895) (-2793 . 381835) + (-2794 . 381524) (-2795 . 381340) (-2796 . 380908) (-2797 . 380836) + (-2798 . 380529) (-2799 . 380420) (-2800 . 380296) (-2801 . 380241) + (-2802 . 379931) (-2803 . 379692) (-2804 . 379618) (-2805 . 379567) + (-2806 . 379490) (-2807 . 379389) (-2808 . 379330) (-2809 . 379141) + (-2810 . 378440) (-2811 . 378334) (-2812 . 377680) (-2813 . 377489) + (-2814 . 377437) (-2815 . 377385) (-2816 . 377284) (-2817 . 377111) + (-2818 . 376993) (-2819 . 376851) (-2820 . 376822) (-2821 . 376529) + (-2822 . 375851) (-2823 . 375798) (-2824 . 375687) (-2825 . 375574) + (-2826 . 375422) (-2827 . 375310) (-2828 . 374843) (-2829 . 374725) + (-2830 . 374637) (-2831 . 374566) (-2832 . 374209) (-2833 . 374137) + (-2834 . 374004) (-2835 . 373900) (-2836 . 373829) (-2837 . 373739) + (-2838 . 373651) (-2839 . 373591) (-2840 . 373476) (-2841 . 373364) + (-2842 . 373313) (-2843 . 372347) (-2844 . 372082) (-2845 . 371958) + (-2846 . 371770) (-2847 . 371690) (-2848 . 371544) (-2849 . 371317) + (-2850 . 371231) (-2851 . 371148) (-2852 . 371075) (-2853 . 371012) + (-2854 . 370943) (-2855 . 370836) (-2856 . 370784) (-2857 . 370363) + (-2858 . 369523) (-2859 . 369430) (-2860 . 369365) (-2861 . 369310) + (-2862 . 369078) (-2863 . 368931) (-2864 . 368818) (-2865 . 368716) + (-2866 . 368612) (-2867 . 366756) (-2868 . 366576) (-2869 . 366544) + (-2870 . 366020) (-2871 . 365761) (-2872 . 365660) (-2873 . 365561) + (-2874 . 365371) (-2875 . 365292) (-2876 . 365127) (-2877 . 364703) + (-2878 . 364651) (-2879 . 350537) (-2880 . 350347) (-2881 . 350152) + (-2882 . 349899) (-2883 . 349661) (-2884 . 349539) (-2885 . 349412) + (-2886 . 349341) (-2887 . 349201) (-2888 . 349048) (-2889 . 349020) + (-2890 . 348964) (-2891 . 348817) (-2892 . 348536) (-2893 . 348383) + (-2894 . 348191) (-2895 . 347906) (-2896 . 347767) (-2897 . 347673) + (-2898 . 347566) (-2899 . 347487) (-2900 . 347267) (-2901 . 347126) + (-2902 . 346942) (-2903 . 346671) (-2904 . 346414) (-2905 . 346382) + (-2906 . 346304) (-2907 . 346189) (-2908 . 345615) (-2909 . 345541) + (-2910 . 345171) (-2911 . 345100) (-2912 . 344973) (-2913 . 344852) + (-2914 . 344593) (-2915 . 344519) (-2916 . 343943) (-2917 . 343703) + (-2918 . 343548) (-2919 . 343460) (-2920 . 342875) (-2921 . 342822) + (-2922 . 342624) (-2923 . 342520) (-2924 . 342178) (-2925 . 342074) + (-2926 . 341498) (-2927 . 337832) (-2928 . 337693) (-2929 . 337475) + (-2930 . 337347) (-2931 . 337261) (-2932 . 337113) (-2933 . 337011) + (-2934 . 336967) (-2935 . 336658) (-2936 . 336538) (-2937 . 336448) + (-2938 . 335762) (-2939 . 335644) (-2940 . 335589) (-2941 . 335167) + (-2942 . 334986) (-2943 . 334927) (-2944 . 334332) (-2945 . 334174) + (-2946 . 333695) (-2947 . 333542) (-2948 . 332856) (-2949 . 332254) + (-2950 . 332118) (-2951 . 331976) (-2952 . 331864) (-2953 . 331715) + (-2954 . 331580) (-2955 . 331492) (-2956 . 331261) (-2957 . 331230) + (-2958 . 331178) (-2959 . 330429) (-2960 . 330377) (-2961 . 330241) + (-2962 . 330074) (-2963 . 329992) (-2964 . 329914) (-2965 . 329806) + (-2966 . 329705) (-2967 . 329677) (-2968 . 329093) (-2969 . 328519) + (-2970 . 328361) (-2971 . 328222) (-2972 . 325441) (-2973 . 325210) + (-2974 . 325157) (-2975 . 325106) (-2976 . 324855) (-2977 . 324695) + (-2978 . 324583) (-2979 . 324469) (-2980 . 323955) (-2981 . 323381) + (-2982 . 323244) (-2983 . 323192) (-2984 . 322975) (-2985 . 322887) + (-2986 . 322714) (-2987 . 322652) (-2988 . 322557) (-2989 . 322296) + (-2990 . 322224) (-2991 . 321650) (-2992 . 321597) (-2993 . 321445) + (-2994 . 321393) (-2995 . 321267) (-2996 . 321137) (-2997 . 321075) + (-2998 . 320969) (-2999 . 320582) (-3000 . 320231) (-3001 . 320178) + (-3002 . 320095) (-3003 . 319408) (-3004 . 319245) (-3005 . 319087) + (-3006 . 318991) (-3007 . 318464) (-3008 . 318323) (-3009 . 318240) + (-3010 . 318073) (-3011 . 318045) (-3012 . 317938) (-3013 . 317561) + (-3014 . 316874) (-3015 . 316767) (-3016 . 316526) (-3017 . 316467) + (-3018 . 316352) (-3019 . 316283) (-3020 . 316167) (-3021 . 316054) + (-3022 . 315980) (-3023 . 315293) (-3024 . 315184) (-3025 . 314982) + (-3026 . 314908) (-3027 . 314813) (-3028 . 314693) (-3029 . 314537) + (-3030 . 314143) (-3031 . 314109) (-3032 . 313245) (-3033 . 313192) + (-3034 . 312617) (-3035 . 312510) (-3036 . 312461) (-3037 . 309162) + (-3038 . 309065) (-3039 . 308862) (-3040 . 308717) (-3041 . 308651) + (-3042 . 308270) (-3043 . 308199) (-3044 . 308104) (-3045 . 308030) + (-3046 . 307455) (-3047 . 307339) (-3048 . 307129) (-3049 . 307056) + (-3050 . 306669) (-3051 . 306165) (-3052 . 305999) (-3053 . 305864) + (-3054 . 305764) (-3055 . 305245) (-3056 . 305150) (-3057 . 304575) + (-3058 . 304396) (-3059 . 304005) (-3060 . 303950) (-3061 . 303806) + (-3062 . 303719) (-3063 . 303524) (-3064 . 303471) (-3065 . 303418) + (-3066 . 303261) (-3067 . 303105) (-3068 . 302789) (-3069 . 302215) + (-3070 . 302141) (-3071 . 302019) (-3072 . 301866) (-3073 . 301817) + (-3074 . 301659) (-3075 . 282775) (-3076 . 282676) (-3077 . 282417) + (-3078 . 282348) (-3079 . 282232) (-3080 . 281999) (-3081 . 281944) + (-3082 . 281727) (-3083 . 281153) (-3084 . 281097) (-3085 . 281019) + (-3086 . 279805) (-3087 . 279718) (-3088 . 279597) (-3089 . 276845) + (-3090 . 276790) (-3091 . 276682) (-3092 . 276529) (-3093 . 276112) + (-3094 . 276053) (-3095 . 275740) (-3096 . 275166) (-3097 . 275006) + (-3098 . 274767) (-3099 . 274715) (-3100 . 274581) (-3101 . 273937) + (-3102 . 273186) (-3103 . 273098) (-3104 . 273010) (-3105 . 272926) + (-3106 . 272863) (-3107 . 272195) (-3108 . 271621) (-3109 . 270536) + (-3110 . 270504) (-3111 . 270374) (-3112 . 270288) (-3113 . 269400) + (-3114 . 269348) (-3115 . 269293) (-3116 . 269198) (-3117 . 269045) + (-3118 . 268711) (-3119 . 268582) (-3120 . 268008) (-3121 . 267860) + (-3122 . 267705) (-3123 . 267607) (-3124 . 267507) (-3125 . 267413) + (-3126 . 267361) (-3127 . 267306) (-3128 . 267199) (-3129 . 267107) + (-3130 . 267040) (-3131 . 266969) (-3132 . 266781) (-3133 . 266527) + (-3134 . 266197) (-3135 . 266116) (-3136 . 266050) (-3137 . 265839) + (-3138 . 265732) (-3139 . 265610) (-3140 . 265581) (-3141 . 265486) + (-3142 . 265430) (-3143 . 265277) (-3144 . 265156) (-3145 . 265104) + (-3146 . 265047) (-3147 . 264916) (-3148 . 264806) (-3149 . 264724) + (-3150 . 264653) (-3151 . 264461) (-3152 . 264248) (-3153 . 264182) + (-3154 . 264080) (-3155 . 263671) (-3156 . 263539) (-3157 . 262374) + (-3158 . 262308) (-3159 . 262225) (-3160 . 261150) (-3161 . 261094) + (-3162 . 261066) (-3163 . 261011) (-3164 . 260956) (-3165 . 260846) + (-3166 . 260772) (-3167 . 260570) (-3168 . 260499) (-3169 . 260334) + (-3170 . 259947) (-3171 . 259870) (-3172 . 259691) (-3173 . 259582) + (-3174 . 259131) (-3175 . 259005) (-3176 . 257037) (-3177 . 256924) + (-3178 . 256831) (-3179 . 256465) (-3180 . 255695) (-3181 . 255637) + (-3182 . 252301) (-3183 . 252249) (-3184 . 252133) (-3185 . 251997) + (-3186 . 251740) (-3187 . 251655) (-3188 . 251468) (-3189 . 251283) + (-3190 . 251182) (-3191 . 250963) (-3192 . 250889) (-3193 . 250438) + (-3194 . 250225) (-3195 . 249733) (-3196 . 249627) (-3197 . 249331) + (-3198 . 248887) (-3199 . 248708) (-3200 . 248631) (-3201 . 248521) + (-3202 . 247719) (-3203 . 247576) (-3204 . 247468) (-3205 . 247384) + (-3206 . 247226) (-3207 . 247073) (-3208 . 246969) (** . 243880) + (-3210 . 243350) (-3211 . 243267) (-3212 . 243168) (-3213 . 242969) + (-3214 . 242901) (-3215 . 242757) (-3216 . 242592) (-3217 . 242216) + (-3218 . 242163) (-3219 . 241974) (-3220 . 241482) (-3221 . 241226) + (-3222 . 240422) (-3223 . 240194) (-3224 . 240142) (-3225 . 240021) + (-3226 . 239057) (-3227 . 238898) (-3228 . 238717) (-3229 . 238562) + (-3230 . 238533) (-3231 . 238430) (-3232 . 238374) (-3233 . 238270) + (-3234 . 237113) (-3235 . 236968) (-3236 . 236880) (-3237 . 236658) + (-3238 . 236380) (-3239 . 236271) (-3240 . 236201) (-3241 . 236094) + (-3242 . 236008) (-3243 . 235915) (-3244 . 235795) (-3245 . 235623) + (-3246 . 235381) (-3247 . 235195) (-3248 . 234957) (-3249 . 234867) + (-3250 . 234793) (-3251 . 234675) (-3252 . 234309) (-3253 . 234238) + (-3254 . 234039) (-3255 . 233986) (-3256 . 233879) (-3257 . 233552) + (-3258 . 233348) (-3259 . 233096) (-3260 . 232977) (-3261 . 232922) + (-3262 . 232761) (-3263 . 232610) (-3264 . 232537) (-3265 . 232419) + (-3266 . 232335) (-3267 . 232277) (-3268 . 232182) (-3269 . 232099) + (-3270 . 231956) (-3271 . 231683) (-3272 . 231614) (-3273 . 231418) + (-3274 . 229635) (-3275 . 229606) (-3276 . 229224) (-3277 . 228746) + (-3278 . 228299) (-3279 . 228192) (-3280 . 227994) (-3281 . 227893) + (-3282 . 227291) (-3283 . 227177) (-9 . 227149) (-3285 . 227093) + (-3286 . 226831) (-3287 . 226751) (-3288 . 226655) (-3289 . 226266) + (-3290 . 226128) (-3291 . 225888) (-3292 . 225442) (-3293 . 225276) + (-3294 . 225139) (-3295 . 225087) (-8 . 225059) (-3297 . 225025) + (-3298 . 224906) (-3299 . 224688) (-3300 . 224571) (-3301 . 224498) + (-3302 . 224236) (-3303 . 223805) (-3304 . 223696) (-3305 . 223629) + (-3306 . 223552) (-3307 . 223520) (-3308 . 221406) (-7 . 221378) + (-3310 . 221313) (-3311 . 220975) (-3312 . 220897) (-3313 . 220844) + (-3314 . 220792) (-3315 . 220734) (-3316 . 220619) (-3317 . 220424) + (-3318 . 220396) (-3319 . 220255) (-3320 . 220184) (-3321 . 219925) + (-3322 . 219795) (-3323 . 219368) (-3324 . 219030) (-3325 . 218960) + (-3326 . 218861) (-3327 . 218638) (-3328 . 218497) (-3329 . 218410) + (-3330 . 217675) (-3331 . 217380) (-3332 . 217273) (-3333 . 217018) + (-3334 . 216966) (-3335 . 216892) (-3336 . 216766) (-3337 . 216698) + (-3338 . 216645) (-3339 . 216603) (-3340 . 216474) (-3341 . 216375) + (-3342 . 216210) (-3343 . 216116) (-3344 . 215986) (-3345 . 215872) + (-3346 . 215806) (-3347 . 215711) (-3348 . 215597) (-3349 . 215439) + (-3350 . 215010) (-3351 . 214950) (-3352 . 214878) (-3353 . 214228) + (-3354 . 214027) (-3355 . 213682) (-3356 . 213625) (-3357 . 213516) + (-3358 . 212518) (-3359 . 212391) (-3360 . 212289) (-3361 . 211914) + (-3362 . 211751) (-3363 . 211558) (-3364 . 211304) (-3365 . 210851) + (-3366 . 210720) (-3367 . 210583) (-3368 . 210399) (-3369 . 210270) + (-3370 . 210196) (-3371 . 210108) (-3372 . 209990) (-3373 . 209909) + (-3374 . 209826) (-3375 . 209591) (-3376 . 209469) (-3377 . 209292) + (-3378 . 209118) (-3379 . 209066) (-3380 . 208787) (-3381 . 208631) + (-3382 . 208270) (-3383 . 208120) (-3384 . 207996) (-3385 . 207926) + (-3386 . 207593) (-3387 . 207386) (-3388 . 205954) (-3389 . 205868) + (-3390 . 205817) (-3391 . 205751) (-3392 . 205550) (-3393 . 205394) + (-3394 . 205114) (-3395 . 204970) (-3396 . 204868) (-3397 . 204785) + (-3398 . 204693) (-3399 . 204610) (-3400 . 204332) (-3401 . 204191) + (-3402 . 204135) (-3403 . 204053) (-3404 . 203969) (-3405 . 202191) + (-3406 . 201734) (-3407 . 201705) (-3408 . 201606) (-3409 . 201320) + (-3410 . 201247) (-3411 . 201219) (-3412 . 201111) (-3413 . 201058) + (-3414 . 200985) (-3415 . 200603) (-3416 . 200526) (-3417 . 200449) + (-3418 . 200305) (-3419 . 200250) (-3420 . 200096) (-3421 . 200001) + (-3422 . 199726) (-3423 . 199278) (-3424 . 199138) (-3425 . 198672) + (-3426 . 198600) (-3427 . 198543) (-3428 . 198355) (-3429 . 198218) + (-3430 . 198024) (-3431 . 197946) (-3432 . 197573) (-3433 . 197503) + (-3434 . 197451) (-3435 . 197296) (-3436 . 197182) (-3437 . 197068) + (-3438 . 196532) (-3439 . 196369) (-3440 . 196084) (-3441 . 195963) + (-3442 . 195739) (-3443 . 195665) (-3444 . 195505) (-3445 . 195374) + (-3446 . 195074) (-3447 . 194995) (-3448 . 194886) (-3449 . 194711) + (-3450 . 194573) (-3451 . 194502) (-3452 . 194395) (-3453 . 194342) + (-3454 . 194184) (-3455 . 194156) (-3456 . 194073) (-3457 . 194004) + (-3458 . 193951) (-3459 . 193850) (-3460 . 193748) (-3461 . 193674) + (-3462 . 193428) (-3463 . 193118) (-3464 . 193040) (-3465 . 192917) + (-3466 . 192865) (-3467 . 192803) (-3468 . 192721) (-3469 . 192592) + (-3470 . 192458) (-3471 . 192385) (-3472 . 192261) (-3473 . 191970) + (-3474 . 191884) (-3475 . 191688) (-3476 . 191478) (-3477 . 191388) + (-3478 . 191259) (-3479 . 190599) (-3480 . 190513) (-3481 . 189251) + (-3482 . 189202) (-3483 . 188856) (-3484 . 188696) (-3485 . 188580) + (-3486 . 187763) (-3487 . 187714) (-3488 . 187607) (-3489 . 187548) + (-3490 . 187424) (-3491 . 187330) (-3492 . 187103) (-3493 . 186990) + (-3494 . 186865) (-3495 . 186776) (-3496 . 186572) (-3497 . 186146) + (-3498 . 185805) (-3499 . 185768) (-3500 . 185612) (-3501 . 185374) + (-3502 . 185272) (-3503 . 185156) (-3504 . 184884) (-3505 . 184463) + (-3506 . 184240) (-3507 . 184070) (-3508 . 183860) (-3509 . 183792) + (-3510 . 183667) (-3511 . 183107) (-3512 . 182969) (-3513 . 182901) + (-3514 . 182848) (-3515 . 182472) (-3516 . 182261) (-3517 . 182171) + (-3518 . 181644) (-3519 . 181392) (-3520 . 181174) (-3521 . 181011) + (-3522 . 180874) (-3523 . 180484) (-3524 . 180040) (-3525 . 179780) + (-3526 . 179746) (-3527 . 179652) (-3528 . 179490) (-3529 . 179395) + (-3530 . 178909) (-3531 . 178799) (-3532 . 178689) (-3533 . 178272) + (-3534 . 178215) (-3535 . 178112) (-3536 . 177900) (-3537 . 177590) + (-3538 . 177539) (-3539 . 177227) (-3540 . 177034) (-3541 . 176731) + (-3542 . 176582) (-3543 . 176277) (-3544 . 176173) (-3545 . 176082) + (-3546 . 175550) (-3547 . 175498) (-3548 . 175309) (-3549 . 174958) + (-3550 . 174905) (-3551 . 174802) (-3552 . 174480) (-3553 . 174376) + (-3554 . 174306) (-3555 . 174212) (-3556 . 174140) (-3557 . 174007) + (-3558 . 173937) (-3559 . 173865) (-3560 . 173686) (-3561 . 173350) + (-3562 . 172988) (-3563 . 172618) (-3564 . 172519) (-3565 . 172314) + (-3566 . 171961) (-3567 . 171404) (-3568 . 171291) (-3569 . 171161) + (-3570 . 171036) (-3571 . 171002) (-3572 . 170880) (-3573 . 170806) + (-3574 . 170610) (-3575 . 170576) (-3576 . 170475) (-3577 . 170422) + (-3578 . 170369) (-3579 . 170190) (-3580 . 169655) (-3581 . 169451) + (-3582 . 169400) (-3583 . 169344) (-3584 . 169316) (-3585 . 169150) + (-3586 . 168907) (-3587 . 168734) (-3588 . 168706) (-3589 . 168120) + (-3590 . 168013) (-3591 . 167834) (-3592 . 167750) (-3593 . 167664) + (-3594 . 167485) (-3595 . 167347) (-3596 . 167296) (-3597 . 167244) + (-3598 . 167071) (-3599 . 166964) (-3600 . 166833) (-3601 . 166769) + (-3602 . 166628) (-3603 . 166556) (-3604 . 166504) (-3605 . 166391) + (-3606 . 166173) (-3607 . 166095) (-3608 . 165847) (-3609 . 165776) + (-3610 . 165483) (-3611 . 165284) (-3612 . 165213) (-3613 . 164783) + (-3614 . 164555) (-3615 . 164496) (-3616 . 164356) (-3617 . 164282) + (-3618 . 164184) (-3619 . 163897) (-3620 . 163818) (-3621 . 163467) + (-3622 . 163238) (-3623 . 163115) (-3624 . 163027) (-3625 . 162251) + (-3626 . 162127) (-3627 . 162053) (-3628 . 161666) (-3629 . 161446) + (-3630 . 161337) (-3631 . 161256) (-3632 . 161168) (-3633 . 161111) + (-3634 . 160837) (-3635 . 160783) (-3636 . 160726) (-3637 . 160169) + (-3638 . 159944) (-3639 . 159884) (-3640 . 159689) (-3641 . 159514) + (-3642 . 159434) (-3643 . 159289) (-3644 . 159217) (-3645 . 159165) + (-3646 . 158976) (-3647 . 158895) (-3648 . 158836) (-3649 . 158720) + (-3650 . 157540) (-3651 . 157443) (-3652 . 157175) (-3653 . 156927) + (-3654 . 156843) (-3655 . 156814) (-3656 . 155622) (-3657 . 155519) + (-3658 . 154989) (-3659 . 154917) (-3660 . 154851) (-3661 . 154727) + (-3662 . 153878) (-3663 . 153782) (-3664 . 153589) (-3665 . 153426) + (-3666 . 152505) (-3667 . 152432) (-3668 . 152314) (-3669 . 152248) + (-3670 . 152171) (-3671 . 152119) (-3672 . 151886) (-3673 . 151742) + (-3674 . 151448) (-3675 . 151364) (-3676 . 147743) (-3677 . 147669) + (-3678 . 146092) (-3679 . 145912) (-3680 . 145824) (-3681 . 145757) + (-3682 . 145623) (-3683 . 145440) (-3684 . 145266) (-3685 . 145200) + (-3686 . 145145) (-3687 . 145067) (-3688 . 144983) (-3689 . 144761) + (-3690 . 144730) (-3691 . 144221) (-3692 . 144127) (-3693 . 143972) + (-3694 . 143841) (-3695 . 143789) (-3696 . 143677) (-3697 . 143550) + (-3698 . 143339) (-3699 . 143082) (-3700 . 142935) (-3701 . 142371) + (-3702 . 142277) (-3703 . 142208) (-3704 . 141958) (-3705 . 141834) + (-3706 . 141612) (-3707 . 141526) (-3708 . 141447) (-3709 . 141233) + (-3710 . 141006) (-3711 . 140936) (-3712 . 140718) (-3713 . 140666) + (-3714 . 140589) (-3715 . 140536) (-3716 . 140143) (-3717 . 139605) + (-3718 . 139534) (-3719 . 139454) (-3720 . 139208) (-3721 . 138960) + (-3722 . 138611) (-3723 . 138260) (-3724 . 138165) (-3725 . 138068) + (-3726 . 137971) (-3727 . 137511) (-3728 . 137398) (-3729 . 137332) + (-3730 . 137139) (-3731 . 136878) (-3732 . 136792) (-3733 . 136707) + (-3734 . 136477) (-3735 . 136263) (-3736 . 135932) (-3737 . 135834) + (-3738 . 135558) (-3739 . 135470) (-3740 . 135417) (-3741 . 135327) + (-3742 . 135254) (-3743 . 134709) (-3744 . 134612) (-3745 . 134506) + (-3746 . 134263) (-3747 . 134096) (-3748 . 133780) (-3749 . 133438) + (-3750 . 133269) (-3751 . 133216) (-3752 . 133013) (-3753 . 132945) + (-3754 . 132824) (-3755 . 132711) (-3756 . 132637) (-3757 . 132479) + (-3758 . 132351) (-3759 . 132207) (-3760 . 132113) (-3761 . 131983) + (-3762 . 131871) (-3763 . 131777) (-3764 . 131704) (-3765 . 131638) + (-3766 . 131558) (-3767 . 131328) (-3768 . 131202) (-3769 . 131036) + (-3770 . 130955) (-3771 . 130921) (-3772 . 130844) (-3773 . 130810) + (-3774 . 130758) (-3775 . 130698) (-3776 . 129252) (-3777 . 129172) + (-3778 . 128563) (-3779 . 128507) (-3780 . 128435) (-3781 . 128228) + (-3782 . 127362) (-3783 . 127121) (-3784 . 126953) (-3785 . 126710) + (-3786 . 126636) (-3787 . 126492) (-3788 . 126391) (-3789 . 126011) + (-3790 . 125848) (-3791 . 121688) (-3792 . 120618) (-3793 . 120538) + (-3794 . 120454) (-3795 . 120207) (-3796 . 120100) (-3797 . 119901) + (-3798 . 119756) (-3799 . 119531) (-3800 . 119415) (-3801 . 119314) + (-3802 . 119258) (-3803 . 119135) (-3804 . 119027) (-3805 . 118911) + (-3806 . 118778) (-3807 . 118676) (-3808 . 118604) (-3809 . 118480) + (-3810 . 118293) (-3811 . 118228) (-3812 . 118178) (-3813 . 118107) + (-3814 . 117234) (-3815 . 117122) (-3816 . 117054) (-3817 . 116998) + (-3818 . 116920) (-3819 . 116771) (-3820 . 116433) (-3821 . 116339) + (-3822 . 115861) (-3823 . 115775) (-3824 . 115703) (-3825 . 115647) + (-3826 . 115476) (-3827 . 115337) (-3828 . 115246) (-3829 . 115148) + (-3830 . 115004) (-3831 . 114777) (-3832 . 114691) (-3833 . 114590) + (-3834 . 114465) (-3835 . 113712) (-3836 . 113146) (-3837 . 113045) + (-3838 . 112967) (-3839 . 112890) (-3840 . 112840) (-3841 . 112679) + (-3842 . 112620) (-3843 . 112209) (-3844 . 112066) (-3845 . 111972) + (-3846 . 111814) (-3847 . 111541) (-3848 . 110975) (-3849 . 110901) + (-3850 . 110278) (-3851 . 110158) (-3852 . 110072) (-3853 . 109883) + (-3854 . 109779) (-3855 . 109713) (-3856 . 109383) (-3857 . 109269) + (-3858 . 109210) (-3859 . 109155) (-3860 . 109075) (-3861 . 108998) + (-3862 . 108936) (-3863 . 108863) (-3864 . 108780) (-3865 . 108643) + (-3866 . 108538) (-3867 . 108461) (-3868 . 108308) (-3869 . 108204) + (-3870 . 108152) (-3871 . 108039) (-3872 . 107694) (-3873 . 107290) + (-3874 . 106961) (-3875 . 106873) (-3876 . 106598) (-3877 . 106164) + (-3878 . 105557) (-3879 . 105400) (-3880 . 105135) (-3881 . 105016) + (-3882 . 104985) (-3883 . 104817) (-3884 . 104687) (-3885 . 104502) + (-3886 . 104352) (-3887 . 104138) (-3888 . 103796) (-3889 . 103570) + (-3890 . 103452) (-3891 . 103397) (-3892 . 103309) (-3893 . 102846) + (-3894 . 102718) (-3895 . 102664) (-3896 . 101857) (-3897 . 101691) + (-3898 . 101315) (-3899 . 101236) (-3900 . 100921) (-3901 . 100722) + (-3902 . 100576) (-3903 . 100524) (-3904 . 100402) (-3905 . 100184) + (-3906 . 99944) (-3907 . 99801) (-3908 . 99583) (-3909 . 99500) + (-3910 . 99184) (-3911 . 99117) (-3912 . 99064) (-3913 . 98909) + (-3914 . 98754) (-3915 . 98410) (-3916 . 98324) (-3917 . 98199) + (-3918 . 97895) (-3919 . 97034) (-3920 . 96809) (-3921 . 96411) + (-3922 . 96275) (-3923 . 96198) (-3924 . 96116) (-3925 . 96064) + (-3926 . 95861) (-3927 . 95673) (-3928 . 95531) (-3929 . 95353) + (-3930 . 95282) (-3931 . 95119) (-3932 . 94915) (-3933 . 94821) + (-3934 . 94741) (-3935 . 94667) (-3936 . 94581) (-3937 . 94263) + (-3938 . 93884) (-3939 . 93779) (-3940 . 93452) (-3941 . 93340) + (-3942 . 93070) (-3943 . 92973) (-3944 . 92945) (-3945 . 92865) + (-3946 . 92780) (-3947 . 92692) (-3948 . 92551) (-3949 . 92319) + (-3950 . 91990) (-3951 . 91674) (-3952 . 91615) (-3953 . 91457) + (-3954 . 91236) (-3955 . 91078) (-3956 . 91021) (-3957 . 90900) + (-3958 . 90379) (-3959 . 89987) (-3960 . 89781) (-3961 . 89656) + (-3962 . 89601) (-3963 . 89305) (-3964 . 89208) (-3965 . 89068) + (-3966 . 88358) (-3967 . 88205) (-3968 . 88106) (-3969 . 88029) + (-3970 . 87858) (-3971 . 87522) (-3972 . 87434) (-3973 . 87062) + (-3974 . 86882) (-3975 . 86372) (-3976 . 86317) (-3977 . 85357) + (-3978 . 85181) (-3979 . 84979) (-3980 . 84650) (-3981 . 84451) + (-3982 . 84178) (-3983 . 84096) (-3984 . 83979) (-3985 . 83733) + (-3986 . 83655) (-3987 . 83503) (-3988 . 83420) (-3989 . 83368) + (-3990 . 83001) (-3991 . 82695) (-3992 . 82416) (-3993 . 82309) + (-3994 . 82137) (-3995 . 82079) (-3996 . 81777) (-3997 . 81725) + (-3998 . 81548) (-3999 . 81514) (-4000 . 81275) (-4001 . 81205) + (-4002 . 81150) (-4003 . 81037) (-4004 . 80938) (-12 . 80766) + (-4006 . 80685) (-4007 . 80489) (-4008 . 80357) (-4009 . 80237) + (-4010 . 80118) (-4011 . 80059) (-4012 . 79973) (-4013 . 79802) + (-4014 . 79550) (-4015 . 79359) (-4016 . 79168) (-4017 . 79053) + (-4018 . 78997) (-4019 . 78895) (-4020 . 78782) (-4021 . 78492) + (-4022 . 78069) (-4023 . 77926) (-4024 . 77773) (-4025 . 77739) + (-4026 . 77573) (-4027 . 77191) (-4028 . 77005) (-4029 . 76863) + (-4030 . 76770) (-4031 . 76704) (-4032 . 76293) (-4033 . 76190) + (-4034 . 76071) (-4035 . 74769) (-4036 . 74676) (-4037 . 74493) + (-4038 . 74440) (-4039 . 74263) (-4040 . 74175) (-4041 . 74069) + (-4042 . 73917) (-4043 . 73699) (-4044 . 73373) (-4045 . 73320) + (-4046 . 73267) (-4047 . 73196) (-4048 . 72383) (-4049 . 71989) + (-4050 . 71917) (-4051 . 71864) (-4052 . 71736) (-4053 . 71569) + (-4054 . 71350) (-4055 . 71145) (-4056 . 71057) (-4057 . 70929) + (-4058 . 70847) (-4059 . 70748) (-4060 . 70682) (-4061 . 70573) + (-4062 . 70376) (-4063 . 70122) (-4064 . 69970) (-4065 . 69790) + (-4066 . 69692) (-4067 . 69499) (-4068 . 69403) (-4069 . 69199) + (-4070 . 69089) (-4071 . 68598) (-4072 . 68518) (-4073 . 68395) + (-4074 . 68361) (-4075 . 68208) (-4076 . 68125) (-4077 . 67988) + (-4078 . 67909) (-4079 . 67718) (-4080 . 67658) (-4081 . 67541) + (-4082 . 67489) (-4083 . 67457) (-4084 . 67058) (-4085 . 66511) + (-4086 . 66292) (-4087 . 66070) (-4088 . 66036) (-4089 . 65945) + (-4090 . 65785) (-4091 . 64988) (-4092 . 64677) (-4093 . 64624) + (-4094 . 64501) (-4095 . 64379) (-4096 . 64172) (-4097 . 64075) + (-4098 . 63788) (-4099 . 63405) (-4100 . 63309) (-4101 . 63208) + (-4102 . 63089) (-4103 . 62946) (-4104 . 62890) (-4105 . 62722) + (-4106 . 62569) (-4107 . 61995) (-4108 . 61896) (-4109 . 61801) + (* . 57255) (-4111 . 57182) (-4112 . 56943) (-4113 . 56440) + (-4114 . 56334) (-4115 . 56266) (-4116 . 56151) (-4117 . 55968) + (-4118 . 55608) (-4119 . 55536) (-4120 . 55465) (-4121 . 55376) + (-4122 . 55292) (-4123 . 55219) (-4124 . 55075) (-4125 . 54963) + (-4126 . 54661) (-4127 . 54601) (-4128 . 54471) (-4129 . 54325) + (-4130 . 54079) (-4131 . 53874) (-4132 . 53740) (-4133 . 53488) + (-4134 . 51637) (-4135 . 51426) (-4136 . 50788) (-4137 . 50177) + (-4138 . 50087) (-4139 . 49626) (-4140 . 49466) (-4141 . 49207) + (-4142 . 48876) (-4143 . 48630) (-4144 . 48432) (-4145 . 48288) + (-4146 . 47997) (-4147 . 47944) (-4148 . 47803) (-4149 . 47642) + (-4150 . 47586) (-4151 . 47534) (-4152 . 47427) (-4153 . 47217) + (-4154 . 47134) (-4155 . 46991) (-4156 . 46823) (-4157 . 46713) + (-4158 . 46522) (-4159 . 45341) (-4160 . 45061) (-4161 . 45008) + (-4162 . 44835) (-4163 . 44736) (-4164 . 44592) (-4165 . 44247) + (-4166 . 44173) (-4167 . 44115) (-4168 . 44030) (-4169 . 43942) + (-4170 . 43846) (-4171 . 43793) (-4172 . 43762) (-4173 . 43705) + (-4174 . 43631) (-4175 . 40704) (-4176 . 40590) (-4177 . 39849) + (-4178 . 39597) (-4179 . 39451) (-4180 . 39314) (-4181 . 39248) + (-4182 . 39118) (-4183 . 38975) (-4184 . 38059) (-4185 . 37935) + (-4186 . 36685) (-4187 . 36633) (-4188 . 35892) (-4189 . 35761) + (-4190 . 35689) (-4191 . 35086) (-4192 . 34981) (-4193 . 34823) + (-4194 . 34679) (-4195 . 34556) (-4196 . 34484) (-4197 . 34300) + (-4198 . 33876) (-4199 . 33737) (-4200 . 33049) (-4201 . 32886) + (-4202 . 32683) (-4203 . 32612) (-4204 . 32448) (-4205 . 32307) + (-4206 . 32252) (-4207 . 32115) (-4208 . 32062) (-4209 . 32005) + (-4210 . 31877) (-4211 . 31658) (-4212 . 31513) (-4213 . 30937) + (-4214 . 30830) (-4215 . 30660) (-4216 . 30453) (-4217 . 30308) + (-4218 . 30200) (-4219 . 28824) (-4220 . 28677) (-4221 . 28313) + (-4222 . 28239) (-4223 . 27960) (-4224 . 27468) (-4225 . 27408) + (-4226 . 27339) (-4227 . 27216) (-4228 . 27044) (-4229 . 26773) + (-4230 . 26722) (-4231 . 26648) (-4232 . 26539) (-4233 . 26415) + (-4234 . 26269) (-4235 . 26091) (-4236 . 25773) (-4237 . 25668) + (-4238 . 25544) (-4239 . 25152) (-4240 . 24776) (-4241 . 24602) + (-4242 . 24523) (-4243 . 24275) (-4244 . 24178) (-4245 . 23891) + (-4246 . 23645) (-4247 . 23529) (-4248 . 23362) (-4249 . 23116) + (-4250 . 22940) (-4251 . 22239) (-4252 . 22117) (-4253 . 21590) + (-4254 . 21493) (-4255 . 21306) (-4256 . 21150) (-4257 . 20973) + (-4258 . 20867) (-4259 . 20758) (-4260 . 20312) (-4261 . 20037) + (-4262 . 19902) (-4263 . 19377) (-4264 . 18767) (-4265 . 18684) + (-4266 . 18556) (-4267 . 18413) (-4268 . 18238) (-4269 . 17958) + (-4270 . 17821) (-4271 . 17741) (-4272 . 17455) (-4273 . 17401) + (-4274 . 17291) (-4275 . 17203) (-4276 . 17102) (-4277 . 16927) + (-4278 . 16890) (-4279 . 16710) (-4280 . 16359) (-4281 . 16260) + (-4282 . 15062) (-4283 . 15010) (-4284 . 14940) (-4285 . 14397) + (-4286 . 14126) (-4287 . 13958) (-4288 . 13892) (-4289 . 13836) + (-4290 . 13753) (-4291 . 13571) (-4292 . 13519) (-4293 . 13422) + (-4294 . 13214) (-4295 . 12774) (-4296 . 12438) (-4297 . 12372) + (-4298 . 12295) (-4299 . 12048) (-4300 . 11996) (-4301 . 11943) + (-4302 . 11889) (-4303 . 11834) (-4304 . 11586) (-4305 . 11452) + (-4306 . 11369) (-4307 . 11296) (-4308 . 11079) (-4309 . 10311) + (-4310 . 10186) (-4311 . 10081) (-4312 . 10000) (-4313 . 9941) + (-4314 . 9870) (-4315 . 9660) (-4316 . 9538) (-4317 . 9333) + (-4318 . 8836) (-4319 . 8244) (-4320 . 8191) (-4321 . 6879) + (-4322 . 6706) (-4323 . 6076) (-4324 . 5733) (-4325 . 5680) + (-4326 . 5607) (-4327 . 5360) (-4328 . 5280) (-4329 . 5124) + (-4330 . 5018) (-4331 . 4969) (-4332 . 4387) (-4333 . 3712) + (-4334 . 3035) (-4335 . 2862) (-4336 . 2761) (-4337 . 2141) + (-4338 . 2091) (-4339 . 1991) (-4340 . 1914) (-4341 . 1841) + (-4342 . 1738) (-4343 . 1508) (-4344 . 1450) (-4345 . 1323) + (-4346 . 1231) (-4347 . 631) (-4348 . 522) (-4349 . 440) (-4350 . 360) + (-4351 . 217) (-4352 . 124) (-4353 . 30))
\ No newline at end of file |